WO2019233070A1 - 粒子投射空间成像系统 - Google Patents

粒子投射空间成像系统 Download PDF

Info

Publication number
WO2019233070A1
WO2019233070A1 PCT/CN2018/119809 CN2018119809W WO2019233070A1 WO 2019233070 A1 WO2019233070 A1 WO 2019233070A1 CN 2018119809 W CN2018119809 W CN 2018119809W WO 2019233070 A1 WO2019233070 A1 WO 2019233070A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle
imaging system
projection space
space imaging
coil group
Prior art date
Application number
PCT/CN2018/119809
Other languages
English (en)
French (fr)
Inventor
李超
Original Assignee
Li Chao
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Li Chao filed Critical Li Chao
Publication of WO2019233070A1 publication Critical patent/WO2019233070A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/388Volumetric displays, i.e. systems where the image is built up from picture elements distributed through a volume
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/388Volumetric displays, i.e. systems where the image is built up from picture elements distributed through a volume
    • H04N13/39Volumetric displays, i.e. systems where the image is built up from picture elements distributed through a volume the picture elements emitting light at places where a pair of light beams intersect in a transparent material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • G02B30/56Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels by projecting aerial or floating images
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H13/00Magnetic resonance accelerators; Cyclotrons
    • H05H13/005Cyclotrons
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/04Magnet systems, e.g. undulators, wigglers; Energisation thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/04Magnet systems, e.g. undulators, wigglers; Energisation thereof
    • H05H2007/046Magnet systems, e.g. undulators, wigglers; Energisation thereof for beam deflection

Definitions

  • the present application belongs to the field of projection imaging technology, and more particularly, relates to a particle projection space imaging system.
  • Spectral stereoscopic display means that the retina receives two parallax images.
  • a person can "see" three-dimensional objects by distinguishing the light, darkness, front, back, and distance of different areas of the object.
  • polarizing lenses such as 3D stereo glasses, 3D Stereo movies, etc.
  • Volume 3D display uses technologies such as high-speed movement of optical devices and high-frequency light projection to synthesize multiple 2D images in a certain transparent solid to create a 3D stereoscopic image that is full of real three-dimensionality, such as a volume 3D display.
  • Both the spectroscopic three-dimensional display and the volume three-dimensional display depend on the solid medium for three-dimensional display.
  • the three-dimensional hologram shows that two light beams interfere with each other to form a complex holographic light field.
  • the holographic light field needs to be holographically recorded, that is, the information such as the brightness and darkness of the object and the depth of field are recorded in the holographic material to form a hologram.
  • Reconstruction, holograms can be displayed dynamically using continuous film, but the imaging perspective is still inside the film.
  • the object of the present application is to provide a particle projection space imaging system, which aims to solve the technical problems in the prior art that the particle projection space imaging system depends on the solid realization and the holographic three-dimensional film cannot be aerially projected.
  • the present application provides a particle projection space imaging system, including a particle source for generating and accelerating a particle beam, a deflection coil group for scanning and deflecting the accelerated particle beam to form a dynamic three-dimensional particle array, and An excitation coil group generating an excitation magnetic field, and a scanning control mechanism for controlling the particle source, the deflection coil group, and the excitation coil group, the dynamic three-dimensional particle array is excited by the excitation magnetic field generated by the excitation coil group.
  • Particles, and the particles generate luminous effects and generate pixel points after being stimulated by radiation.
  • a spatial stereoscopic image is formed by using human vision residues; a three-dimensional particle array region within the excitation magnetic field is a display region.
  • the deflection coil group includes a pair of field deflection coils arranged in a first direction and a pair of row deflection coils arranged in a second direction, and the first direction and the second direction are in a first predetermined clip. Corner set.
  • the particle source is an electron gun, a first particle accelerator, or a storage ring.
  • a second particle accelerator provided between the deflection coil group and the display area is further included.
  • the second particle accelerator may be an electric field accelerator, a laser accelerator, a drift tube accelerator, a traveling wave tube accelerator or a standing wave tube accelerator, and the second particle accelerator is used to compensate the particle beam after being deflected by the deflection coil group. Lost energy.
  • the display area has a back surface for receiving the particle beam, a front surface corresponding to the back surface, and a side surface adjacent to the back surface, and the excitation coil group is provided on a side surface of the display area. Or positive.
  • a vacuum housing with an internal vacuum is further included, and the particle source and the second particle accelerator are both disposed in the vacuum housing.
  • the direction of the excitation magnetic field generated by the excitation coil group and the direction of flight of the particle beam are set at a second predetermined angle.
  • the predetermined included angle is 90 °.
  • the display area is a cuboid.
  • the display area is a square cone.
  • the excitation coil group is a deflection magnet or a undulator.
  • the particle beam is an electron beam.
  • the particle beam is controlledly emitted from the particle source in the form of a particle cluster and in a pulsed manner.
  • the particle projection space imaging system provided by the present application has the beneficial effect that the particle projection space imaging system generates and accelerates a particle beam by setting a particle source, and uses a deflection coil group to deflect the particle beam to form a dynamic three-dimensional particle array.
  • the display area generates an excitation pulse magnetic field, which excites the dynamic particles that currently reach the predetermined pixel point position to cause a radiation effect to form a three-dimensional stereoscopic image, which does not depend on the solid display medium.
  • the scanning control mechanism can control the size, speed, and energy of the particle beams emitted by the particle source, and control the scanning deflection coil group and the particle excitation coil group to adjust the deflection angle of the particle beam, and the time when the particle beam reaches the display area, thereby generating a three-dimensional Motion image.
  • FIG. 1 is a schematic structural diagram of a particle projection space imaging system according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a particle projection space imaging system according to another embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a particle projection space imaging system according to another embodiment of the present invention.
  • FIG. 4 is a schematic diagram of projection imaging of a particle projection space imaging system according to an embodiment of the present invention.
  • 1-particle source 2-deflection coil group; 21-field deflection coil; 22-line deflection coil; 3-second particle accelerator; 4-excitation coil group; 41-wave oscillator; 42-deflecting magnet; 5-display area ; 6-dimensional image.
  • first, second, etc. are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the present application, the meaning of "a plurality” is two or more, unless it is specifically and specifically defined otherwise.
  • the particle projection space imaging system includes a particle source 1, a deflection coil group 2, an excitation coil group 4, and a scanning control mechanism (not shown in the figure).
  • the particle source 1 is used to generate and accelerate a particle beam, so that the particle beam has a certain initial velocity.
  • the particle source 1 emits the particle beam in a high-frequency pulse manner, so that the particle beam enters the deflection coil group 2.
  • the particle beam is an electron beam. Compared with other particles, the mass of the electrons is smaller. Under the current engineering and technical conditions, the electron beam is easier to obtain and accelerate, and the radiation effect generated by the dynamic electrons is also larger than other heavy particles.
  • the particle source 1 may be an electron gun, a first particle accelerator, or a storage ring.
  • the particle source 1 may generate electrons and provide the electrons with a certain initial velocity.
  • the particle beam is emitted from the particle source 1 in the form of a particle cluster and in a pulse manner, so as to achieve the purpose of accurately controlling the positioning of the spatial pixel points.
  • the deflection coil group 2 is used to scan the deflected and accelerated particle beam, and deflect the accelerated particle beam to form a dynamic three-dimensional particle array.
  • the array has a two-dimensional closed cross-section, and the cross-section scanning method can be two-dimensional planar scanning.
  • the deflected particles move along their preset trajectories to the pixels in the magnetic field area generated by the particle excitation coil group 4.
  • the excitation coil group 4 uses a scanning magnetic pulse to excite each particle cluster that reaches a predetermined pixel point in the display area 5.
  • the pixel is illuminated by the excitation light, and the three-dimensional particle array region located in the magnetic field is the display region 5.
  • the display area 5 contains a plurality of spatial pixels, and the incident particle cluster can reach the corresponding predicted spatial pixels under the action of the scanning control mechanism, and then is excited and lighted. Because of the dispersion of the pixels, under the control of the scanning control mechanism, a single magnetic pulse can be used to excite the pixels of several pixels at the same time to save scanning time.
  • the particle projection space imaging system does not depend on any solid medium and can work in air or vacuum to generate dynamic three-dimensional images 6.
  • the scanning control mechanism can control the particle source 1, the deflection coil group 2, the second particle accelerator 3, and the excitation coil group 4. Specifically, the scanning control mechanism controls the size, velocity, and energy of the currently emitted particle clusters through the particle source 1, and scans and controls the deflection angle of each electron cluster through the deflection coil group 2 to dynamically display the three-dimensional image 6.
  • the speed of the particle beam and the intensity of the magnetic field generated by the deflection coil group 2 are adjusted to change the emission spectrum of the stimulated radiation to generate a color image or a monochrome image.
  • the scanning control mechanism must predict the time for each particle cluster to reach a predetermined space pixel point after being deflected and scanned by the deflection coil group 2 so as to start the excitation coil group 4 at an appropriate time to excite particles reaching the space pixel point and radiate with dynamic particles The effect lights up the pixel.
  • the particle projection space imaging system provided by the present invention accelerates a particle beam by setting a particle source 1 and uses a deflection coil group 2 to deflect the particle beam to form a particle beam of a dynamic particle array.
  • the excitation coil group 4 generates a magnetic field in the display area 5 and excites the particle beam to cause radiation to form a three-dimensional space image, which does not depend on the solid display medium.
  • the scanning control mechanism can control the number, speed, and energy of particles emitted by the particle beam from the particle source 1, and can also control the deflection angle of the particle beam by the deflection coil group 2 and the excitation coil group 4, the time when the particle beam reaches the display area 5, and so on. Generate dynamic three-dimensional images 6.
  • the particle projection space imaging system further includes a second particle accelerator 3, and the second particle accelerator 3 is provided in the deflection yoke. Between the group 2 and the display area 5, a secondary acceleration of the deflected particle beam can be performed to compensate the energy lost by the particles during scanning and deflection.
  • the particle beam enters the display area 5 after passing through the second particle accelerator 3.
  • the second particle accelerator 3 may be an electric field accelerator, a laser accelerator, a drift tube accelerator, a traveling wave tube accelerator, or a standing wave tube accelerator.
  • the second particle accelerator 3 may not be used.
  • the parameters of the particle source 1 may be adjusted to extend the deflection coil.
  • the particle deflection radius of the group 2 allows the particle beam scanned and deflected by the deflection coil group 2 to directly enter the display area 5.
  • the deflection coil group 2 includes a pair of field deflection coils 21 disposed along the first direction, and a pair of The row deflection coils 22 arranged in the directions are arranged at a first predetermined angle between the first direction and the second direction.
  • the first predetermined included angle is 90 °
  • the first direction is a vertical direction
  • the second direction is a horizontal direction.
  • the field deflection coil 21 generates a periodically changing magnetic field in the vertical direction to scan the particle beam in the vertical direction
  • the row deflection coil 22 generates a horizontally changing magnetic field in the horizontal direction to scan the electron beam in the horizontal direction.
  • the electron beam can be deflected to a predetermined scanning line by the deflection coil group 2.
  • the display area 5 is composed of a scanning line matrix and the cube is a cuboid. Gyroradiation is generated under the excitation of the excitation coil group 4, and the image viewing angle is almost omnidirectional, which is isotropic. The difference between the radiation intensity of the particle beam on the front of the display area 5 and the radiation intensity on the side of the display area 5 is not large. For an observer, the radiation intensity at a single viewing angle is almost the same.
  • the excitation of the particle radiation by the particle excitation coil group 4 belongs to pulse-type instantaneous excitation of a specific pixel point, and can be regarded as a uniform magnetic field relative to the vicinity of the specific pixel point.
  • the display area is composed of a scanning line matrix.
  • the display area 5 is a square cone, a square cone.
  • the vertex is the observation area.
  • the radiation produced is synchrotron radiation. Since the synchrotron radiation has extremely strong directivity and large radiation intensity, in this embodiment, the image projected in the display area can only be observed near a specific point in the observation area, and no image can be seen in other directions and positions.
  • the excitation coil group 4 is a undulator 41 or a deflecting magnet 42.
  • the oscillating device 41 uses the oscillating device 41 to excite particles will limit the size of the displayed image and affect the viewing angle, but the magnetic field generated by the oscillating device 41 is linear.
  • the magnetic field generated by a single deflecting magnet 42 is relatively weak and the linearity of magnetic field lines is poor, which requires slightly higher requirements for the scanning control mechanism.
  • the display area 5 has a rear surface, a front surface corresponding to the rear surface, and a side surface adjacent to the rear surface.
  • the particle beam passes through The back side of the display area 5 is incident, and the particle excitation coil group 4 is disposed on the side of the display area 5.
  • the scanning control mechanism controls the excitation coil group 4 to scan in a pulse manner, and when the particle beam reaches a predetermined space pixel point, the particle beam is excited to generate cyclotron radiation or Synchrotron radiation illuminates the pixel, and can deviate the electron beam from the front observation area to prevent the observer in the front observation area from being irradiated by the particle beam.
  • the time it takes for the electron beam to reach the corresponding spatial pixel is also different.
  • the electron beams directed at several spatial pixels can reach the target pixel at the same time, and then the coil group 4 is excited to excite the electrons to light up the spatial pixels and form a multi-point time-scan
  • Non-point-to-point scanning greatly saves projection time, and can be close to a two-dimensional scanning system in terms of system scan time consumption.
  • the particle projection space imaging system further includes a vacuum housing with an internal vacuum.
  • the particle source 1 and the second particle accelerator 3 are all Set in a vacuum enclosure.
  • the vacuum inside the vacuum envelope minimizes the loss of the particle beam in air transmission.
  • the vacuum casing has an exit port through which the particle beam exits, and the exit port is made of a low-density material to reduce its obstruction to particles.
  • the nucleus of a low-density material also produces bremsstrahlung radiation for individual particles passing through, the obstruction is negligible relative to the number of particles in the entire particle cluster.
  • the magnetic field generated by the excitation coil group 4 and the particle beam are set at a second predetermined angle to make the particle beam produce a radiation effect.
  • the second predetermined included angle is 90 °.
  • the radiation effect of the particle beam is the largest.
  • the scanning control mechanism dynamically adjusts the energy of the space scanning particle beam, the number of particles in the particle cluster, and the particle excitation coil group 4.
  • the intensity of the magnetic field, etc. can be used to change the wavelength and average radiant power of the radiation to obtain a three-dimensional image 6 in color display.
  • adjusting the intensity and emission angle of the particle beam using a multi-directional multiple projection system and an infrared tracking / spatial positioning system, allows the user to interactively operate the spatial image without the user's complex actions blocking the particle beam. Create, add, modify, delete, section, rotate, distort, and stretch spatial images.
  • FIGS. 1 to 4 Please refer to FIGS. 1 to 4 as a specific implementation of the particle projection space imaging system provided by the present invention.
  • the particle beam only needs to perform a two-dimensional cross-section boundary of a three-dimensional image.
  • the magnetic field only needs to excite the spatial pixels on the surface of the three-dimensional image 6, and there is no need to light up the spatial pixels on the inside of the three-dimensional image 6.
  • the 2D plane scanning of the particle beam can omit the area without image boundaries in the 6-section of the 3D image, and only need to do the boundary scanning of the stereo image, which saves scanning time and hardware resources.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Electron Tubes For Measurement (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

一种粒子投射空间成像系统,包括用于产生并加速粒子束的粒子源(1)、用于将粒子束偏转成依时间顺序展开的动态三维粒子阵列的偏转线圈组(2)、用于产生磁场的激发线圈组(4)、以及用于控制粒子源(1)、偏转线圈组(2)及激发线圈组(4)的扫描控制机构。粒子投射空间成像系统,通过设置粒子源(1)产生并加速粒子束,并使用偏转线圈组(2)将粒子束偏转形成动态三维粒子阵列,粒子激发线圈组(4)以分时方式激发阵列中的对应像素点上的粒子束团使其产生辐射效应,形成三维图像(6)。粒子投射空间成像系统并不依赖于固体显示介质,可工作于空气及真空中,生成动态的三维图像(6)。

Description

粒子投射空间成像系统 技术领域
本申请属于投影成像技术领域,更具体地说,是涉及一种粒子投射空间成像系统。
背景技术
目前的三维投影成像技术包括分光立体显示、体三维显示、全息三维显示等。分光立体显示是指视网膜接收到两幅有视差的图像,人通过区分物体不同区域的明暗、前后、远近,从而“看”到立体的物体,通常通过偏振光镜实现,如三维立体眼镜、三维立体电影等。体三维显示通过光学器件的高速运动和高频光投影等技术,将多幅二维图像在一定透明固体内合成出富有真实立体感的三维立体影像,如体三维显示器。分光立体显示、体三维显示均依赖于固体介质实现三维显示。全息三维图显示通过两束光相互干涉形成复杂的全息光场,但该全息光场需要先进行全息记录,即将物体的亮暗、景深等信息记录在全息材料中形成全息图,再进行三维信息重建,全息图使用连续胶片虽然可以动态显示,但是图像成像视角依然在胶片内部。
技术问题
本申请的目的在于提供一种粒子投射空间成像系统,旨在解决现有技术中,粒子投射空间成像系统分光立体显示、体三维显示依赖于固体实现及全息三维胶片无法空中投影的技术问题。
技术解决方案
本申请提供了一种粒子投射空间成像系统,包括用于产生及加速粒子束的粒子源、用于扫描加速后的所述粒子束并将其偏转形成动态三维粒子阵列的偏转线圈组、用于产生激发磁场的激发线圈组、以及用于控制所述粒子源、所述偏转线圈组及所述激发线圈组的扫描控制机构,通过所述激发线圈组产生的激发磁场激发所述动态三维粒子阵列中的粒子,且所述粒子受激辐射后产生发光效应并生成像素点,利用人眼视觉残留形成空间立体图像;位于所述激发磁场内的三维粒子阵列区域为显示区域。
进一步地,所述偏转线圈组包括一对沿第一方向设置的场偏转线圈、以及一对沿第二方向设置的行偏转线圈,所述第一方向和所述第二方向呈第一预定夹角设置。
进一步地,所述粒子源为电子枪、第一粒子加速器或者储存环。
进一步地,还包括设于所述偏转线圈组和所述显示区域之间的第二粒子加速器。
进一步地,所述第二粒子加速器可为电场加速器,激光加速器、漂移管加速器、行波管加速器或者驻波管加速器,所述第二粒子加速器用于补偿粒子束经所述偏转线圈组偏转后所损失的能量。
进一步地,所述显示区域具有用于接收所述粒子束的背面、与所述背面相对应的正面、以及与所述背面相邻的侧面,所述激发线圈组设于所述显示区域的侧面或者正面。
进一步地,还包括内部真空的真空外壳,所述粒子源、所述第二粒子加速器均设于所述真空外壳内。
进一步地,所述激发线圈组产生的所述激发磁场的方向与所述粒子束飞行方向呈第二预定夹角设置。
进一步地,所述预定夹角为90º。
进一步地,所述粒子束为非相对论性粒子束时,所述显示区域为长方体。
进一步地,所述粒子束为相对论性粒子束时,所述显示区域为方锥形。
进一步地,所述激发线圈组为偏转磁铁或者波荡器。
进一步地,所述粒子束为电子束。
进一步地,粒子束以粒子团的形态并以脉冲方式从所述粒子源中受控射出。
有益效果
本申请提供的粒子投射空间成像系统的有益效果在于:该粒子投射空间成像系统通过设置粒子源产生并加速粒子束,并使用偏转线圈组将粒子束偏转形成动态三维粒子阵列,粒子激发线圈组在显示区域产生激发脉冲磁场,激发当下到达预定像素点位置的动态粒子使其发生辐射效应,形成三维立体图像,并不依赖于固体显示介质。而且扫描控制机构可控制粒子源发出粒子束团的大小、速度、能量,并控制扫描偏转线圈组及粒子激发线圈组以调整粒子束的偏转角度、粒子束到达显示区域的时间等,从而生成三维动态图像。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1为本发明实施例提供的粒子投射空间成像系统的结构示意图;
图2为本发明另一实施例提供的粒子投射空间成像系统的结构示意图;
图3为本发明另一实施例提供的粒子投射空间成像系统的结构示意图;
图4为本发明实施例提供的粒子投射空间成像系统投影成像的示意图。
其中,图中各附图标记:
1-粒子源;2-偏转线圈组;21-场偏转线圈;22-行偏转线圈;3-第二粒子加速器;4-激发线圈组;41-波荡器;42-偏转磁铁;5-显示区域;6-三维图像。
本发明的实施方式
为了使本申请所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。
需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
请一并参阅图1至图4,现对本发明提供的粒子投射空间成像系统进行说明。该粒子投射空间成像系统,包括粒子源1、偏转线圈组2、激发线圈组4以及扫描控制机构(图中未示出)。粒子源1用于产生并加速粒子束,使粒子束具有一定的初速度,粒子源1并以高频脉冲方式发射粒子束,使粒子束进入偏转线圈组2中。优选地,粒子束为电子束,相对于其他粒子,电子的质量较小,在当前工程技术条件下电子束更容易获得,也容易加速,动态电子被激发之后产生的辐射效应也比其他重粒子更明显。相应地,粒子源1可为电子枪,第一粒子加速器或者储存环,粒子源1可产生电子并使电子具备一定初速。优选地,粒子束以粒子团的形态并以脉冲方式从粒子源1中射出,以达到精确控制空间像素点定位的目的。偏转线圈组2用于扫描偏转加速后的粒子束,并将加速后的粒子束偏转形成动态三维粒子阵列,该阵列的截面为二维封闭截面,截面扫描方式可为二维平面扫描。偏转后的粒子沿其预设轨迹运动至粒子激发线圈组4产生的磁场区域内的像素点上,激发线圈组4以扫描磁脉冲方式激发每一个到达显示区域5内预定像素点的粒子束团,使之产生辐射效应,粒子受激发光点亮该像素点,位于磁场内的三维粒子阵列区域为显示区域5。显示区域5内包含多个空间像素点,入射的粒子束团在扫描控制机构的作用下可到达对应的预计空间像素点,然后被激发点亮。因为像素点的分散性,在扫描控制机构的控制下,可以使用单个磁脉冲同时激发若干个像素点的像素以节省扫描时间。该粒子投射空间成像系统,不依赖于任何固体介质,可以工作在空气中或者真空中,生成动态的三维图像6。扫描控制机构可控制粒子源1、偏转线圈组2,第二粒子加速器3以及激发线圈组4。具体地,扫描控制机构通过粒子源1控制当前发射的粒子束团的大小、速度、能量,通过偏转线圈组2扫描控制每一个电子束团的偏转角度,从而动态显示三维图像6,另可以通过调整粒子束的速度及偏转线圈组2产生的磁场强度,改变受激辐射发光光谱,生成彩色图像或者单色图像。扫描控制机构须预判每一粒子束团经过偏转线圈组2偏转扫描后到达预定空间像素点的时间,从而在适当的时刻启动激发线圈组4,激发到达空间像素点的粒子,以动态粒子辐射效应点亮该像素点。
本发明提供的粒子投射空间成像系统,与现有技术相比,本发明粒子投射空间成像系统通过设置粒子源1加速粒子束,并使用偏转线圈组2将粒子束偏转形成动态粒子阵列的粒子束,激发线圈组4在显示区域5产生磁场,激发粒子束使其发生辐射,形成三维空间图像,并不依赖于固体显示介质。而且扫描控制机构可控制粒子源1发出粒子束的粒子数量、速度、能量,还能控制偏转线圈组2及激发线圈组4对粒子束的偏转角度、粒子束到达显示区域5的时间等,从而生成动态的三维图像6。
请一并参阅图1至图4,作为本发明提供的粒子投射空间成像系统的一种具体实施方式,该粒子投射空间成像系统还包括第二粒子加速器3,第二粒子加速器3设于偏转线圈组2和显示区域5之间,可对经过偏转后的粒子束做二次加速,以补偿粒子在扫描偏转时所损失的能量,粒子束经过第二粒子加速器3后进入显示区域5。第二粒子加速器3可为电场加速器、激光加速器、漂移管加速器、行波管加速器、驻波管加速器。当然,在该粒子投射空间成像系统中,粒子源1本身包含粒子加速器或储存环的某些情况下,也可不采用第二粒子加速器3,可通过调整粒子源1的各项参数,延长偏转线圈组2的粒子偏转半径,使经过偏转线圈组2扫描偏转后的粒子束直接进入显示区域5。
请继续参阅图1至图4,作为本发明提供的粒子投射空间成像系统的一种具体实施方式,偏转线圈组2包括一对沿第一方向设置的场偏转线圈21、以及一对沿第二方向设置的行偏转线圈22,第一方向和第二方向呈第一预定夹角设置。优选为第一预定夹角为90º,具体地,第一方向为竖直方向,第二方向为水平方向。场偏转线圈21会产生垂直方向上周期变化的磁场,使粒子束作垂直方向扫描,行偏转线圈22产生一个水平方向周期变化的磁场,使电子束作水平方向扫描。电子束在偏转线圈组2的作用下,可偏转到一根预定的扫描线上。
请参阅图1及图4,作为本发明提供的粒子投射空间成像系统的一种具体实施方式,使用的粒子束为非相对论性粒子束时,由扫描线矩阵组成显示区域5为长方体,粒子束在激发线圈组4的激发下产生回旋辐射,图像视角几乎为全向视角可见,为各向同性。粒子束在显示区域5正面的辐射强度与显示区域5侧面辐射强度之间的差距不大,对于观察者而言,单一视角的辐射强度几乎是一致的。在该实施例中,粒子激发线圈组4对于粒子辐射的激发属于脉冲式瞬间激发特定像素点,相对于特定像素点附近,可认为是均匀磁场。
请参阅图3,作为本发明提供的粒子投射空间成像系统的一种具体实施方式,使用的粒子束为相对论性粒子束时,由扫描线矩阵组成显示区域5为方锥形,方锥形的顶点处为观察区域。相对论性粒子束受激时,产生的辐射为同步辐射。由于同步辐射方向性极强,辐射强度大,所以在该实施例中,只能在观察区域的特定点附近观察到在显示区投射出的图像,其他方向和位置均看不到任何图像。
请参阅图1及图2,作为本发明提供的粒子投射空间成像系统的一种具体实施方式,激发线圈组4为波荡器41或者偏转磁铁42。如图1,使用波荡器41激发粒子会限制所显示图像的尺寸,并影响观察角度,但是波荡器41产生的磁场线性较好。如图2,单个的偏转磁铁42产生的磁场相对较弱且磁力线走向线性度较差,对扫描控制机构要求稍高。
请继续参阅图1至图4,作为本发明提供的粒子投射空间成像系统的一种具体实施方式,显示区域5具有背面、与背面相对应的正面以及与背面相邻的侧面,粒子束穿过显示区域5的背面入射,粒子激发线圈组4设于显示区域5的侧面,扫描控制机构控制激发线圈组4以脉冲的方式扫描,在粒子束到达预定空间像素点时激发粒子束产生回旋辐射或者同步辐射,点亮该像素点,并可将电子束偏离正面观测区,避免正面观测区的观察者受到粒子束的照射。
请继续参阅图1至图4,作为本发明提供的粒子投射空间成像系统的一种具体实施方式,由于每一个预定空间像素点的位置不同,电子束到达对应的空间像素点所用的时间也不同,通过扫描控制机构控制电子束的速度,可使射向若干个空间像素点的电子束同时到达目标像素点,然后激发线圈组4激发电子,点亮空间像素点,形成多点对时扫描而非逐点扫描,大大节省了投射时间,在系统扫描的时间消耗上可接近于二维扫描系统。
请继续参阅图1至图4,作为本发明提供的粒子投射空间成像系统的一种具体实施方式,该粒子投射空间成像系统还包括内部真空的真空外壳,粒子源1、第二粒子加速器3均设于真空外壳内。真空外壳的内部真空,尽可能地减少了粒子束在空气传输中的损耗。在真空外壳上,具有供粒子束出射的出射口,所述出射口的材质为低密度材料,减小其对粒子的阻碍。虽然低密度材料的原子核一样会对通过的个别粒子产生韧致辐射,但是相对于整个粒子团的粒子数量而言,其阻碍作用可以忽略不计。
请继续参阅图1至图4,作为本发明提供的粒子投射空间成像系统的一种具体实施方式,激发线圈组4产生的磁场与粒子束呈第二预定夹角设置,使粒子束产生辐射效应。优选第二预定夹角为90º,此时,粒子束的辐射效应最大。
请机组参阅图1至图4,作为本发明提供的粒子投射空间成像系统的一种具体实施方式,扫描控制机构动态调整空间扫描粒子束的能量、粒子束团的粒子数量以及粒子激发线圈组4的磁场强度等,可以改变辐射的波长和平均辐射功率,得到彩色显示的三维图像6。在显示较大图像或者高清图像的情况下,在某些情况下,为了节省扫描时间以避免扫描不过来的情况,可以使用多个系统共用一套粒子激发线圈或者多套系统多个激发线圈组。另外,调整粒子束的强度和发射角度,使用多方向多重投射系统和红外跟踪/空间定位系统,在避免用户复杂动作对粒子束遮挡的情况下,可使用户对空间图像进行交互式操作,对空间图像进行创建、增加、修改、删除、剖面、旋转、扭曲、拉伸等操作。
请参阅图1至图4,作为本发明提供的粒子投射空间成像系统的一种具体实施方式,在该实施例中,对于普通的非透视图像,粒子束只需进行三维图像的二维截面边界的扫描,同样,磁场只需激发三维图像6表面的空间像素点,无需点亮三维图像6内部的空间像素点。在此种情况下,粒子束的二维平面扫描可以省略三维图像6截面中无图像边界的区域,只需做立体图像的边界扫描,节省了扫描时间和硬件资源,在同等的软硬件条件下,可增加三维图像6的点阵密度,投射出更加清晰的物体并增加动态图像变化的流畅性。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (15)

  1. 粒子投射空间成像系统,其特征在于:包括用于产生及加速粒子束的粒子源、用于扫描加速后的所述粒子束并将其偏转形成动态三维粒子阵列的偏转线圈组、用于产生激发磁场的激发线圈组、以及用于控制所述粒子源、所述偏转线圈组及所述激发线圈组的扫描控制机构,通过所述激发线圈组产生的激发磁场激发所述动态三维粒子阵列中的粒子,且所述粒子受激辐射后产生发光效应并生成像素点,利用人眼视觉残留形成空间立体图像;位于所述激发磁场内的三维粒子阵列区域为显示区域。
  2. 如权利要求1所述的粒子投射空间成像系统,其特征在于:所述偏转线圈组包括一对沿第一方向设置的场偏转线圈、以及一对沿第二方向设置的行偏转线圈,所述第一方向和所述第二方向呈第一预定夹角设置。
  3. 如权利要求1所述的粒子投射空间成像系统,其特征在于:所述粒子源为电子枪、第一粒子加速器或者储存环。
  4. 如权利要求1所述的粒子投射空间成像系统,其特征在于:还包括设于所述偏转线圈组和所述显示区域之间的第二粒子加速器。
  5. 如权利要求4所述的粒子投射空间成像系统,其特征在于:所述第二粒子加速器可为电场加速器、激光加速器、漂移管加速器、行波管加速器或者驻波管加速器,所述第二粒子加速器用于补偿粒子束经所述偏转线圈组偏转后所损失的能量。
  6. 如权利要求1所述的粒子投射空间成像系统,其特征在于:所述显示区域具有用于接收所述粒子束的背面、与所述背面相对应的正面、以及与所述背面相邻的侧面,所述激发线圈组设于所述显示区域的侧面或者正面。
  7. 如权利要求1所述的粒子投射空间成像系统,其特征在于:还包括内部真空的真空外壳,所述粒子源、所述第二粒子加速器均设于所述真空外壳内。
  8. 如权利要求1所述的粒子投射空间成像系统,其特征在于:所述激发线圈组产生的所述激发磁场的方向与所述粒子束飞行方向呈第二预定夹角设置。
  9. 如权利要求8所述的粒子投射空间成像系统,其特征在于:所述第二预定夹角为90º。
  10. 如权利要求1所述的粒子投射空间成像系统,其特征在于:所述粒子束为非相对论性粒子束时,所述显示区域为长方体。
  11. 如权利要求1所述的粒子投射空间成像系统,其特征在于:所述粒子束为相对论性粒子束时,所述显示区域为方锥形。
  12. 如权利要求1所述的粒子投射空间成像系统,其特征在于:所述激发线圈组为偏转电磁铁或者波荡器。
  13. 如权利要求1所述的粒子投射空间成像系统,其特征在于:所述粒子束为电子束。
  14. 如权利要求1所述的粒子投射空间成像系统,其特征在于:粒子束以粒子团的形态并以脉冲方式从所述粒子源中射出。
  15. 如权利要求1所述的粒子投射空间成像系统,其特征在于:在扫描控制机构的控制下,使若干组粒子束团同时到达其各自的预定像素点,以单个磁脉冲同时点亮若干个像素点。
PCT/CN2018/119809 2018-06-08 2018-12-07 粒子投射空间成像系统 WO2019233070A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810587120.4A CN109709760A (zh) 2018-06-08 2018-06-08 粒子投射空间成像系统
CN201810587120.4 2018-06-08

Publications (1)

Publication Number Publication Date
WO2019233070A1 true WO2019233070A1 (zh) 2019-12-12

Family

ID=66253680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/119809 WO2019233070A1 (zh) 2018-06-08 2018-12-07 粒子投射空间成像系统

Country Status (3)

Country Link
US (1) US10652530B2 (zh)
CN (1) CN109709760A (zh)
WO (1) WO2019233070A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111427165A (zh) * 2020-03-04 2020-07-17 李超 空间成像系统
CN112577859B (zh) * 2020-12-02 2023-05-30 苏州海狸生物医学工程有限公司 一种测量磁性微球基本物理参数的实验装置及测量方法
CN113391461A (zh) * 2021-06-30 2021-09-14 宁波Gqy视讯股份有限公司 一种成像方法和系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1088356A (zh) * 1992-09-10 1994-06-22 巴里·乔治·勃伦·黛尔 三维显示系统
US20060266135A1 (en) * 2005-05-31 2006-11-30 Fuji Xerox Co., Ltd. Three-dimensional volumetric display apparatus and method
CN2929889Y (zh) * 2006-07-05 2007-08-01 李溢雯 三维可视显示装置
CN102243770A (zh) * 2011-07-19 2011-11-16 南昌航空大学 一种基于osg的虚拟海战场真实感图形快速绘制方法
CN102495252A (zh) * 2011-12-12 2012-06-13 江苏绿扬电子仪器集团有限公司 一种高速波形更新速率数字荧光处理方法
US20130341508A1 (en) * 2012-06-20 2013-12-26 Hitachi Consumer Electronics Co., Ltd. Three-dimensional image projector

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3555349A (en) * 1968-07-17 1971-01-12 Otto John Munz Three-dimensional television system
US4063233A (en) * 1975-12-04 1977-12-13 William Guy Rowe Three-dimensional display devices
CN101013202A (zh) * 2006-07-04 2007-08-08 李溢雯 三维可视显示方法及其装置
CN102487445A (zh) * 2010-12-06 2012-06-06 韩石修 空间扫描式全方位3d显示设备和方法
US20170214909A1 (en) * 2017-01-27 2017-07-27 Desaraju Sai Satya Subrahmanyam Method and Apparatus for Displaying a Still or Moving Scene in Three Dimensions

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1088356A (zh) * 1992-09-10 1994-06-22 巴里·乔治·勃伦·黛尔 三维显示系统
US20060266135A1 (en) * 2005-05-31 2006-11-30 Fuji Xerox Co., Ltd. Three-dimensional volumetric display apparatus and method
CN2929889Y (zh) * 2006-07-05 2007-08-01 李溢雯 三维可视显示装置
CN102243770A (zh) * 2011-07-19 2011-11-16 南昌航空大学 一种基于osg的虚拟海战场真实感图形快速绘制方法
CN102495252A (zh) * 2011-12-12 2012-06-13 江苏绿扬电子仪器集团有限公司 一种高速波形更新速率数字荧光处理方法
US20130341508A1 (en) * 2012-06-20 2013-12-26 Hitachi Consumer Electronics Co., Ltd. Three-dimensional image projector

Also Published As

Publication number Publication date
CN109709760A (zh) 2019-05-03
US10652530B2 (en) 2020-05-12
US20190379886A1 (en) 2019-12-12

Similar Documents

Publication Publication Date Title
WO2019233070A1 (zh) 粒子投射空间成像系统
US4870485A (en) Three dimensional image generating apparatus having a phosphor chamber
US7348569B2 (en) Acceleration of charged particles using spatially and temporally shaped electromagnetic radiation
KR102202454B1 (ko) 박막형 시야 범위 조절 백 라이트 유닛 및 이를 이용한 박막 평판형 시야 범위 조절 표시장치
US20180267326A1 (en) Methods and systems for controlling angular intensity patterns in a real space 3d image
CN104487877A (zh) 定向显示设备
KR20140009938A (ko) 공간 입체영상 디스플레이 장치 및 그 작동 방법
JP2013068886A6 (ja) 映像表示装置
WO2023280199A1 (zh) 三维显示装置及其控制方法
WO2018171542A1 (zh) 一种投影装置及空间成像方法
JP5767531B2 (ja) Ip立体ディスプレイ
WO2017152519A1 (zh) 立体显示装置
US9508525B2 (en) Apparatus and a method for generating a flattening x-ray radiation field
KR20140138688A (ko) 주사 x-선 빔을 생성하기 위한 전자기 주사 장치
CN111427165A (zh) 空间成像系统
JPS5854784Y2 (ja) 立体走査電子顕微鏡
CN110891169B (zh) 一种基于光泳捕获的可交互体三维显示装置及其控制方法
Biretta et al. The jet of M 87
KR20160051445A (ko) 입체 표시 장치
JP2793470B2 (ja) 立体画像表示方法およびその装置
CN118131501A (zh) 成像装置
Esirkepov et al. High-power laser-driven source of ultra-short X-ray and gamma-ray pulses
KR101607901B1 (ko) 2d 모드와 3d 모드 전환 영상표시장치
Motoyama et al. Directional control of light-emitting-device emission via sub-micron dielectric structures
KR20240039963A (ko) 광학 장치 및 이를 이용한 가상 이미지 형성 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18921399

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18921399

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/05/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18921399

Country of ref document: EP

Kind code of ref document: A1