WO2019232976A1 - 直流升压电路及直流升压方法 - Google Patents

直流升压电路及直流升压方法 Download PDF

Info

Publication number
WO2019232976A1
WO2019232976A1 PCT/CN2018/106338 CN2018106338W WO2019232976A1 WO 2019232976 A1 WO2019232976 A1 WO 2019232976A1 CN 2018106338 W CN2018106338 W CN 2018106338W WO 2019232976 A1 WO2019232976 A1 WO 2019232976A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
output
terminal
electrically connected
input terminal
Prior art date
Application number
PCT/CN2018/106338
Other languages
English (en)
French (fr)
Inventor
常勃彪
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US16/096,694 priority Critical patent/US11074857B2/en
Publication of WO2019232976A1 publication Critical patent/WO2019232976A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45475Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using IC blocks as the active amplifying circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/217Class D power amplifiers; Switching amplifiers
    • H03F3/2173Class D power amplifiers; Switching amplifiers of the bridge type
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0204Compensation of DC component across the pixels in flat panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/351Pulse width modulation being used in an amplifying circuit

Definitions

  • the present invention relates to the field of display technology, and in particular, to a DC boost circuit and a DC boost method.
  • OLED display devices have self-luminous, low driving voltage, high luminous efficiency, short response time, high definition and contrast, near 180 ° viewing angle, wide operating temperature range, and can achieve flexible display and Many advantages such as large-area full-color display are recognized by the industry as the most promising display devices.
  • OLED display devices can be divided into passive matrix OLED (PMOLED) and active matrix OLED (AMOLED) according to the driving method, namely direct addressing and thin film transistors (Thin Film Transistor, TFT) matrix addressing two types.
  • PMOLED passive matrix OLED
  • AMOLED active matrix OLED
  • TFT thin film transistors
  • AMOLED has pixels arranged in an array, belongs to an active display type, and has high light emitting efficiency, and is generally used as a high-resolution large-sized display device.
  • AMOLED is a current-driven device. When a current flows through the organic light emitting diode, the organic light emitting diode emits light, and the light emission brightness is determined by the current flowing through the organic light emitting diode itself.
  • Most existing integrated circuits Integrated Circuits, ICs only transmit voltage signals, so the pixel driving circuit of AMOLED needs to complete the task of converting voltage signals into current signals.
  • the traditional AMOLED pixel drive circuit is usually 2T1C, that is, the structure of two thin film transistors plus a capacitor, which converts voltage into current.
  • a positive power supply voltage (OVDD) needs to be input into an AMOLED pixel driving circuit to drive the organic light emitting diodes in each pixel to emit light, and the light emitting brightness of the organic light emitting diodes is related to the magnitude of the positive power supply voltage.
  • the positive power supply voltage is generally provided by a DC boost circuit.
  • FIG. 1 is a conventional DC boost circuit for providing a positive voltage of a power supply, including an inductor L10, a field effect transistor Q10, a diode D10, and a capacitor C10. A first end of the inductor L10 is connected to an input voltage.
  • the second terminal is electrically connected to the anode of the diode D10, the cathode of the diode D10 is electrically connected to the load 900, and a positive power supply voltage OVDD is output to the load 900.
  • the gate of the field effect transistor Q10 is connected to the control signal PWM, and the source is grounded and drained.
  • the pole is electrically connected to the second terminal of the inductor L10, the first terminal of the capacitor C10 is electrically connected to the cathode of the diode D10, and the second terminal is grounded.
  • the inductor L10 is charged by the capacitor C10. At this time, the diode D10 is charged.
  • the positive power supply voltage OVDD transmitted from the anode to the load 900 is higher than the input voltage Vin, which realizes the function of boosting.
  • the impedance of the DC boost circuit is connected to the load (including the output impedance of the DC boost circuit itself and the impedance of the printed circuit board (PCB) layout). The larger the voltage drop of the positive voltage of the output power, the smaller the positive voltage of the power received by the pixel driving circuit.
  • the load current of the DC boost circuit is different, so the positive voltage of the power received by the pixel driving circuit is different, which will affect the current of the organic light emitting diodes flowing through each pixel, and then affect the display quality of the OLED display.
  • the purpose of the present invention is to provide a DC boost circuit, which can compensate the voltage drop of the output voltage caused by the existence of the impedance, and ensure that the voltage level of the output voltage is stable.
  • Another object of the present invention is to provide a direct current step-up method, which can compensate the voltage drop of the output voltage of the direct-current step-up circuit caused by the existence of impedance, and ensure that the voltage level of the output voltage is stable.
  • the present invention first provides a DC boost circuit including an inductor, a diode, a first capacitor, a first field effect tube, a first voltage conversion unit, a voltage drop detection module, a reference voltage adjustment module, and a control module. ;
  • the first terminal of the inductor is connected to the input voltage, and the second terminal is electrically connected to the anode of the diode; the cathode of the diode is electrically connected to the load and transmits the output voltage to the load; the first terminal of the first capacitor is electrically connected The cathode of the diode and the second terminal are grounded; the drain of the first field effect transistor is electrically connected to the second terminal of the inductor, the gate is electrically connected to the output terminal of the control module, and the source is electrically connected to the voltage drop detection module.
  • the input end; the input end of the first voltage conversion unit is electrically connected to the cathode of the diode, and the output end is electrically connected to the first input end of the control module; the output end of the voltage drop detection module is electrically connected to the reference voltage adjustment module The first input terminal of the reference voltage adjustment module is connected to the original reference voltage, and the output terminal is electrically connected to the second input terminal of the control module;
  • the first voltage conversion unit is configured to convert an output voltage to obtain a corresponding first voltage and output the corresponding first voltage to a first input terminal of a control module;
  • the voltage drop detection module is configured to obtain a current flowing through the first field effect transistor, convert the current to obtain a corresponding second voltage, and output the second voltage to the first input terminal of the reference voltage adjustment module;
  • the reference voltage adjustment module is configured to sum the original reference voltage and the second voltage to obtain an adjusted reference voltage and output the adjusted reference voltage to the second input terminal of the control module;
  • the control module is configured to output a corresponding control signal when the voltage difference between the second input terminal and the first input terminal is greater than a preset standard deviation value to control the first field-effect transistor to conduct during a period of time when the on-time and off-time are completed.
  • the ratio of the on-time to the off-time increases, increasing the voltage value of the output voltage until the voltage difference between the second input terminal and the first input terminal of the control module is equal to a preset standard deviation value, and the control module outputs a corresponding control signal to control the first
  • the ratio of the on-time to the off-time of a field-effect transistor during the period of completion of one turn-on and turn-off period remains unchanged.
  • the first voltage conversion unit includes a first resistor and a second resistor.
  • a first terminal of the first resistor is electrically connected to a cathode of a diode, and a second terminal of the first resistor is electrically connected to a first terminal of a second resistor.
  • the second terminal is grounded; the first terminal and the second terminal of the first resistor are respectively an input terminal and an output terminal of the first voltage conversion unit;
  • the voltage drop detection module includes a third resistor, a current operational amplifier, and a second voltage conversion unit; a first terminal of the third resistor is electrically connected to a source of the first field effect transistor, and a second terminal is grounded; The non-inverting input terminal and the inverting input terminal of the current operational amplifier are electrically connected to the first terminal and the second terminal of the third resistor, respectively, and the output terminal is electrically connected to the input terminal of the second voltage conversion unit; the second voltage conversion The output end of the unit is electrically connected to the first input end of the reference voltage adjustment module; the input end and output end of the voltage drop detection module are the first end of the third resistor and the output end of the second voltage conversion unit;
  • the control module includes an error amplifier, a PWM controller, and a driving unit; a non-inverting input terminal of the error amplifier is electrically connected to an output terminal of the reference voltage adjustment module, and an inverting input terminal is electrically connected to an output terminal of the first voltage conversion unit.
  • the output end is electrically connected to the input end of the PWM controller; the output end of the PWM controller is electrically connected to the input end of the drive unit; the output end of the drive unit is electrically connected to the gate of the first field effect transistor; the The first input of the control module is the inverting input of the error amplifier, the second input is the non-inverting input of the error amplifier, and the output is the output of the drive unit;
  • the current operational amplifier is used to obtain a voltage difference across the third resistor and output it to the second voltage conversion unit;
  • the second voltage conversion unit is configured to multiply the voltage difference across the third resistor and a preset conversion coefficient to generate a second voltage and output the second voltage to the first input terminal of the reference voltage adjustment module;
  • the reference voltage adjustment module is a voltage adder
  • the error amplifier is used to generate a corresponding control voltage according to the voltage difference between the non-inverting input terminal and the inverting input terminal, and output the corresponding control voltage to the PWM controller;
  • the PWM controller is used for outputting a pulse signal to the driving unit under the control of the control voltage
  • the driving unit is configured to control the first field-effect transistor to be turned on when the pulse signal output by the PWM controller is high, and to be turned off when the pulse signal output is low;
  • the error amplifier When the voltage difference between the non-inverting input terminal and the inverting input terminal of the error amplifier is greater than a preset standard deviation value, the error amplifier outputs a corresponding control voltage to control the PWM controller to change the duty cycle of the pulse signal it outputs, so that the The time during which a field-effect transistor is turned on in a period of the pulse signal increases, thereby increasing the output voltage until the voltage difference between the non-inverting input terminal and the inverting input terminal of the error amplifier is a preset standard deviation value, and the error amplifier output correspondingly The control voltage controls the PWM controller to keep the duty cycle of the output pulse signal unchanged.
  • Vo is a preset standard value of the output voltage
  • R1 is the resistance value of the first resistor
  • R2 is the resistance value of the second resistor
  • Vref is the original reference voltage
  • the conversion coefficient is Wherein, R3 is the resistance value of the third resistor, and R is the output impedance of the DC boost circuit plus the trace impedance between the DC boost circuit and the load.
  • the diode is a Schottky diode.
  • the driving unit includes a second N-type FET and a third P-type FET.
  • the gate of the second N-type FET is electrically connected to the output of the PWM controller, and the source is connected to the power supply voltage.
  • the drain is electrically connected to the drain of the third P-type FET; the gate of the third P-type FET is electrically connected to the output of the PWM controller, and the drain is electrically connected to the gate of the first FET Ground, source ground
  • the first FET is an N-type FET.
  • the DC boost circuit further includes a second capacitor and a third capacitor; a first terminal of the second capacitor is electrically connected to a first terminal of the inductor, and a second terminal is grounded; and a first terminal of the third capacitor is electrically Connected to the cathode of the diode, and the second terminal is electrically connected to the output terminal of the first voltage conversion unit.
  • the DC boost circuit further includes a band gap reference voltage unit electrically connected to the second input terminal of the reference voltage adjustment module, and the original reference voltage is provided by the band gap reference voltage unit.
  • the output voltage is a positive voltage of the power supply, and the load is a pixel driving circuit of the OLED display.
  • the present invention also provides a DC boost method, which is applied to the DC boost circuit described above, and includes:
  • the first voltage conversion unit converts the output voltage to obtain a corresponding first voltage and outputs the corresponding first voltage to the first input terminal of the control module;
  • the voltage drop detection module obtains a current flowing through the first field effect tube, converts the current to obtain a corresponding second voltage, and outputs the corresponding second voltage to the first input terminal of the reference voltage adjustment module;
  • the reference voltage adjustment module sums the original reference voltage and the second voltage to obtain an adjusted reference voltage and outputs the adjusted reference voltage to the second input terminal of the control module;
  • the control module When the voltage difference between the second input terminal and the first input terminal of the control module is greater than a preset standard deviation value, the control module outputs a corresponding control signal to control the first field-effect transistor to be turned on within a period of time when the turn-on and turn-off are completed.
  • the ratio of the duration to the cut-off duration increases, causing the voltage value of the output voltage to increase;
  • the control module When the voltage difference between the second input terminal and the first input terminal of the control module is equal to a preset standard deviation value, the control module outputs a corresponding control signal to control the first field-effect transistor to be turned on during a period of time when the on-state and the off-time are completed. The ratio of the duration to the cut-off duration remains unchanged.
  • a DC boost circuit provided by the present invention includes an inductor, a diode, a first capacitor, a first field effect tube, a first voltage conversion unit, a voltage drop detection module, a reference voltage adjustment module, and a control module. .
  • the voltage drop detection module obtains the current flowing through the diode and outputs the corresponding second voltage to the reference voltage adjustment module, so that the voltage output by the reference voltage adjustment module is greater than the original reference voltage, and the control module controls the first field at this time.
  • the effect transistor's turn-on time and turn-off time ratio increase during the completion of one turn-on and turn-off period increases the voltage value of the output voltage, thereby compensating the voltage drop of the output voltage due to impedance, and ensuring the voltage level of the output voltage is stable.
  • the DC boost method provided by the present invention can compensate the voltage drop of the output voltage of the DC boost circuit caused by the existence of the impedance, and ensure that the voltage level of the output voltage is stable.
  • FIG. 1 is a conventional DC boost circuit for providing a positive voltage of a power source
  • FIG. 2 is a circuit diagram of a DC boost circuit of the present invention
  • FIG. 3 is a flowchart of a DC boost method of the present invention.
  • a DC boost circuit provided by the present invention includes an inductor L1, a diode D1, a first capacitor C1, a first field effect transistor Q1, a first voltage conversion unit 10, a voltage drop detection module 20, and a reference voltage.
  • the adjustment module 30 and the control module 40 are included in the DC boost circuit.
  • the first terminal of the inductor L1 is connected to the input voltage Vin, and the second terminal is electrically connected to the anode of the diode D1.
  • the cathode of the diode D1 is electrically connected to the load 2 and transmits an output voltage Vout to the load 2.
  • a first terminal of the first capacitor C1 is electrically connected to a cathode of the diode D1, and a second terminal of the first capacitor C1 is grounded.
  • the drain of the first field effect transistor Q1 is electrically connected to the second terminal of the inductor L1, the gate is electrically connected to the output terminal of the control module 40, and the source is electrically connected to the input terminal of the voltage drop detection module 20.
  • An input terminal of the first voltage conversion unit 10 is electrically connected to a cathode of the diode D1, and an output terminal is electrically connected to a first input terminal of the control module 40.
  • An output terminal of the voltage drop detection module 20 is electrically connected to a first input terminal of the reference voltage adjustment module 30.
  • the second input terminal of the reference voltage adjustment module 30 is connected to the original reference voltage Vref, and the output terminal is electrically connected to the second input terminal of the control module 40.
  • the first voltage conversion unit 10 is configured to convert the output voltage Vout to obtain a corresponding first voltage and output the corresponding first voltage to the first input terminal of the control module 40.
  • the voltage drop detection module 20 is configured to obtain a current flowing through the first field effect transistor Q1, convert the current to obtain a corresponding second voltage Vs ', and output the second voltage Vs' to the first input terminal of the reference voltage adjustment module 30.
  • the reference voltage adjustment module 30 is configured to add the original reference voltage Vref and the second voltage Vs' to obtain an adjusted reference voltage Vref 'and output the adjusted reference voltage Vref' to the second input terminal of the control module 40.
  • the control module 40 is configured to output a corresponding control signal when the voltage difference between the second input terminal and the first input terminal is greater than a preset standard deviation value to control the first field effect transistor Q1 to complete a period of on and off.
  • the ratio between the on-time and the off-time is increased to increase the voltage value of the output voltage Vout until the voltage difference between the second input terminal and the first input terminal of the control module 40 is equal to a preset standard deviation, and the control module 40 outputs a corresponding
  • the control signal controls the ratio of the on-time to the off-time of the first field-effect transistor Q1 during the period of completing one turn-on and turn-off period.
  • the first voltage conversion unit 10 includes a first resistor R1 and a second resistor R2, and a first terminal of the first resistor R1 is electrically connected to a diode.
  • the second terminal of the cathode of D1 is electrically connected to the first terminal of the second resistor R2, and the second terminal of the second resistor R2 is grounded.
  • a first terminal and a second terminal of the first resistor R1 are respectively an input terminal and an output terminal of the first voltage conversion unit 10.
  • the voltage drop detection module 20 includes a third resistor R3, a current operational amplifier 21, and a second voltage conversion unit 22.
  • a first terminal of the third resistor R3 is electrically connected to a source of the first field effect transistor Q1, and a second terminal of the third resistor R3 is grounded.
  • the non-inverting input terminal and the inverting input terminal of the current operational amplifier 21 are electrically connected to the first terminal and the second terminal of the third resistor R3, respectively, and the output terminal is electrically connected to the input terminal of the second voltage conversion unit 22;
  • An output terminal of the two voltage conversion units 22 is electrically connected to a first input terminal of the reference voltage adjustment module 30.
  • the input terminal and the output terminal of the voltage drop detection module 20 are the first terminal of the third resistor R3 and the output terminal of the second voltage conversion unit 22, respectively.
  • the control module 40 includes an error amplifier 41, a PWM controller 42, and a driving unit 43.
  • the non-inverting input terminal of the error amplifier 41 is electrically connected to the output terminal of the reference voltage adjustment module 30, the inverting input terminal is electrically connected to the output terminal of the first voltage conversion unit 10, and the output terminal is electrically connected to the input terminal of the PWM controller 42. .
  • An output terminal of the PWM controller 42 is electrically connected to an input terminal of the driving unit 43.
  • the output terminal of the driving unit 43 is electrically connected to the gate of the first field effect transistor Q1.
  • a first input terminal of the control module 40 is an inverting input terminal of the error amplifier 41, a second input terminal is a non-inverting input terminal of the error amplifier 41, and an output terminal is an output terminal of the driving unit 43.
  • the current operational amplifier 21 is configured to obtain a voltage difference Vs across the third resistor R3 and output the voltage difference Vs to the second voltage conversion unit 22.
  • the second voltage conversion unit 22 is configured to multiply the voltage difference Vs across the third resistor R3 by a preset conversion coefficient to generate a second voltage Vs ′ and output the second voltage Vs ′ to the first input terminal of the reference voltage adjustment module 30.
  • the reference voltage adjustment module 30 is a voltage adder.
  • the error amplifier 41 is configured to generate a corresponding control voltage according to the voltage difference between the non-inverting input terminal and the inverting input terminal and output the corresponding control voltage to the PWM controller 42.
  • the PWM controller 42 is configured to output a pulse signal to the driving unit 43 under the control of the control voltage Vc.
  • the driving unit 43 is configured to control the first field effect transistor Q1 to be turned on when the pulse signal output by the PWM controller 42 is at a high potential, and to control the first field effect transistor Q1 to be turned off when it is at
  • the error amplifier 41 when the voltage difference between the non-inverting input terminal and the inverting input terminal of the error amplifier 41 is greater than a preset standard deviation value, the error amplifier 41 outputs a corresponding control voltage Vc to control the PWM controller 42 to change its output pulse signal.
  • the duty cycle of the first field-effect transistor Q1 increases during a period of the pulse signal, thereby increasing the output voltage Vout until the voltage difference between the non-inverting input terminal and the inverting input terminal of the error amplifier 41 is With a set standard deviation value, the error amplifier 41 outputs a corresponding control voltage Vc to control the PWM controller 42 to keep the duty ratio of the pulse signal output by it unchanged.
  • the preset standard deviation value is Wherein, Vo is a preset standard value of output voltage, R1 is a resistance value of a first resistor R1, R2 is a resistance value of a second resistor R2, and Vref is an original reference voltage.
  • the diode D1 is a Schottky diode.
  • the driving unit 43 includes a second N-type field effect tube Q2 and a third P-type field effect tube Q3, and the second N-type field effect tube Q3
  • the gate of Q2 is electrically connected to the output of the PWM controller 42, the source is connected to the supply voltage VCC, and the drain is electrically connected to the drain of the third P-type field effect transistor Q3; the third P-type field effect transistor Q3
  • the gate is electrically connected to the output terminal of the PWM controller 42, the drain is electrically connected to the gate of the first field effect transistor Q1, and the source is grounded.
  • the first field effect transistor Q1 is an N-type field effect transistor. Therefore, the first field effect transistor Q1 is controlled to be turned on when the pulse signal output from the PWM controller 42 is high, and the first field effect transistor Q1 is controlled to be turned off when the pulse signal is low.
  • the output voltage Vout can be applied to the OLED display as a positive voltage of the power supply, that is, the DC boost circuit of the present invention can be used as a DC boost circuit for outputting a positive voltage of the power supply.
  • Pixel driving circuit for OLED display
  • the conversion coefficient is Wherein, R3 is the resistance value of the third resistor R3, and R is the output impedance of the DC boost circuit plus the trace impedance between the DC boost circuit and the load 2.
  • the DC boost circuit further includes a second capacitor C2 and a third capacitor C3.
  • the first terminal of the second capacitor C2 is electrically connected to the first terminal of the inductor L1, and the second terminal is grounded.
  • a first terminal of the third capacitor C3 is electrically connected to a cathode of the diode D1, and a second terminal of the third capacitor C3 is electrically connected to an output terminal of the first voltage conversion unit 10, that is, a second terminal of the first resistor R1.
  • the DC boost circuit further includes a bandgap reference voltage unit 70 electrically connected to the second input terminal of the reference voltage adjustment module 30. Therefore, The original reference voltage Vref is provided by the band gap reference voltage unit 70.
  • the working process of the DC boost circuit of the present invention is as follows:
  • the load current is 0.
  • the output voltage of the cathode of the diode D1 is an output voltage without a voltage drop.
  • the output voltage without a voltage drop is preset to be The output voltage is a standard value Vo.
  • the first voltage output from the output terminal of the first voltage conversion unit 10, that is, the voltage of the second terminal of the first resistor R1 is The first voltage is output to the first input terminal of the control module 40, that is, the inverting input terminal of the error amplifier 41, and the second input terminal of the control module 40, that is, the non-inverting input terminal of the error amplifier 41 is Vref.
  • the DC boost circuit of the present invention When the DC boost circuit of the present invention is connected to the load 2, there will be a trace impedance on the connection trace, and the DC boost circuit also has an output impedance, which causes the output voltage Vout output from the cathode of the diode D1 to be output to the load 2. A voltage drop will occur, and the voltage drop will increase with the increase of the load current, which needs to be compensated. Since the current flowing through the first field effect transistor Q1 is close to the load current, the voltage drop detection module 20 can use the third The resistor R3 obtains the current flowing through the first field effect transistor Q1, that is, the load current, and uses the current operational amplifier 21 to obtain the voltage difference Vs across the third resistor R3.
  • the voltage difference Vs is R3 ⁇ Io, where Io is the load current. Then it is output to the second voltage conversion unit 22, and the second voltage conversion unit 22 multiplies the voltage difference Vs across the third resistor R3 by a preset conversion coefficient to generate a second voltage Vs '.
  • the second voltage Vs' is The second voltage Vs' is then output to the reference voltage adjustment module 30.
  • the reference voltage adjustment module 30 adds the original reference voltage Vref and the second voltage Vs' to obtain a modified reference voltage Vref ', and the modified reference voltage
  • the modified reference voltage Vref ' is then output to the second input terminal of the control module 40, that is, the non-inverting input terminal of the error amplifier 41.
  • the inversion of the error amplifier 41 The voltage at the input is still when the load is not connected.
  • the voltage at the non-inverting input is The voltage difference between the non-inverting input and the inverting input is more than the
  • the error amplifier 41 outputs a corresponding control voltage Vc to the PWM controller 42 and controls the PWM controller 42 to change the duty cycle of the pulse signal that it outputs to the driving unit 43 so that the driving unit 43 controls the first field effect transistor Q1 to pulse.
  • the output voltage Vout increases, and the voltage at the output terminal of the first voltage conversion unit 10, that is, the second terminal of the first resistor R1, increases until the non-inverting input terminal of the error amplifier 41 is inverse to The voltage difference to the input is again equal to
  • the error amplifier 41 outputs a corresponding control voltage Vc to the PWM controller 42 to control the PWM controller 42 to keep the duty ratio of the pulse signal output by it unchanged.
  • the first voltage is the voltage at the second terminal of the first resistor R1.
  • the voltage of the inverting input terminal of the error amplifier 41 becomes The output voltage Vout becomes That is, the difference between the output voltage Vout and the standard output voltage Vo is Io ⁇ R, which is the product of the sum of the output impedance of the DC boost circuit plus the trace impedance between the DC boost circuit and the load 2 and the load current. It is the value of the voltage drop of the output voltage Vout due to the impedance. In this way, the voltage drop of the output voltage of the DC boost circuit caused by the impedance is compensated to ensure that the voltage level of the output voltage is stable.
  • a DC boost circuit is applied to an OLED display to provide a positive power voltage for a pixel driving circuit, the output positive voltage of the power supply maintains a stable value regardless of the load of the display screen, which can improve the display quality of the OLED display.
  • the present invention also provides a DC boost method, which is applied to the above DC boost circuit and includes the following steps:
  • Step S1 The first voltage conversion unit 10 converts the output voltage Vout to obtain a corresponding first voltage and outputs the corresponding first voltage to the first input terminal of the control module 40.
  • step S1 the voltage of the second terminal of the first resistor R1 is output as the first voltage to the first input terminal of the control module 40, that is, the inverting input terminal of the error amplifier 41.
  • Step S2 the voltage drop detection module 20 obtains a current flowing through the first field effect transistor Q1, converts the current to obtain a corresponding second voltage Vs ', and outputs the corresponding second voltage Vs' to the first input terminal of the reference voltage adjustment module 30.
  • step S2 the voltage drop detection module 20 uses the third resistor R3 to obtain the current flowing through the first field effect transistor Q1, that is, the load current, and uses the current operational amplifier 21 to obtain the voltage across the third resistor R3.
  • the difference Vs, the voltage difference Vs is R3 ⁇ Io, where Io is the load current, and then output to the second voltage conversion unit 22, and the voltage difference Vs across the third resistor R3 and the preset voltage
  • the conversion coefficients are multiplied to generate a second voltage Vs ', where the second voltage Vs' is The second voltage Vs ′ is then output to the reference voltage adjustment module 30.
  • step S3 the reference voltage adjustment module 30 sums the original reference voltage Vref and the second voltage Vs' to obtain an adjusted reference voltage Vref 'and outputs the adjusted reference voltage Vref' to the second input terminal of the control module 40.
  • Step S4 When the voltage difference between the second input terminal and the first input terminal of the control module 40 is greater than a preset standard deviation value, the control module 40 outputs a corresponding control signal to control the first field effect transistor Q1 to complete a turn-on and The ratio of the on-time to the off-time increases during the off-period, which increases the voltage value of the output voltage Vout.
  • the DC boost circuit After the DC boost circuit is connected to the load 2, there will be a trace impedance on the connection trace, and the DC boost circuit also has an output impedance, which causes the output voltage Vout output from the cathode of the diode D1 to be output to the load 2.
  • the reference voltage adjustment module 30 adds the original reference voltage Vref and the second voltage Vs ′ to obtain a corrected reference voltage Vref ′ Voltage of the second terminal of the first resistor R1 when the load 2 is not connected
  • the difference is greater than the preset standard deviation That is, the voltage difference between the second input terminal and the first input terminal of the control module 40 at this time, that is, the voltage difference between the non-inverting input terminal and the inverting input terminal of the error amplifier 41 is greater than a preset standard deviation value.
  • the error amplifier 41 outputs a corresponding control voltage Vc to the PWM controller 42, and controls the PWM controller 42 to change the duty cycle of the pulse signal that it outputs to the driving unit 43, so that the driving unit 43 controls the first field effect transistor.
  • the time during which Q1 is turned on within one period of the pulse signal increases, the output voltage Vout increases, and the voltage at the output terminal of the first voltage conversion unit 10, that is, the second terminal of the first resistor R1, increases.
  • Step S5 When the voltage difference between the second input terminal and the first input terminal of the control module 40 is equal to a preset standard deviation, the control module 40 outputs a corresponding control signal to control the first field effect transistor Q1 to complete a turn-on and The ratio of the on-time to the off-time remains unchanged during the cut-off period.
  • step S4 the output voltage Vout increases, and the voltage at the output terminal of the first voltage conversion unit 10, that is, the second terminal of the first resistor R1, increases until the non-inverting input terminal of the error amplifier 41 and the reverse direction
  • the voltage difference at the input is again equal to Go to step S5, the error amplifier 41 outputs the corresponding control voltage Vc to the PWM controller 42 to control the PWM controller 42 to keep the duty ratio of the pulse signal output by it unchanged.
  • the first voltage is the first resistor R1.
  • the voltage at the second terminal that is, the voltage at the inverting input terminal of the error amplifier 41 becomes The output voltage Vout becomes That is, the difference between the output voltage Vout and the standard output voltage Vo is Io ⁇ R, which is the product of the sum of the output impedance of the DC boost circuit plus the trace impedance between the DC boost circuit and the load 2 and the load current. It is the value of the voltage drop of the output voltage Vout due to the impedance. In this way, the voltage drop of the output voltage of the DC boost circuit caused by the existence of the impedance is compensated to ensure that the voltage level of the output voltage is stable.
  • the OLED display is used to provide a positive power supply voltage for the pixel driving circuit, the positive voltage of the power supply output by the DC boost circuit remains stable regardless of the load of the display screen, which can improve the display quality of the OLED display.
  • the DC boost circuit of the present invention includes an inductor, a diode, a first capacitor, a first field effect tube, a first voltage conversion unit, a voltage drop detection module, a reference voltage adjustment module, and a control module.
  • the voltage drop detection module obtains the current flowing through the diode and outputs the corresponding second voltage to the reference voltage adjustment module, so that the voltage output by the reference voltage adjustment module is greater than the original reference voltage, and the control module controls the first field at this time.
  • the effect transistor's turn-on time and turn-off time ratio increase during the completion of one turn-on and turn-off period increases the voltage value of the output voltage, thereby compensating the voltage drop of the output voltage due to impedance, and ensuring the voltage level of the output voltage is stable.
  • the DC boost method of the present invention can compensate the voltage drop of the output voltage of the DC boost circuit caused by the existence of the impedance, and ensure that the voltage level of the output voltage is stable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种直流升压电路及直流升压方法,该直流升压电路包括电感(L1)、二极管(D1)、第一电容(C1)、第一场效应管(Q1)、第一电压转换单元(10)、压降侦测模块(20)、参考电压调整模块(30)以及控制模块(40)。接入负载(2)后,压降侦测模块(20)获取流过二极管(D1)的电流并输出对应的第二电压(Vs')至参考电压调整模块(30),使得参考电压调整模块(30)输出的电压(Vref')大于原始参考电压(Vref),控制模块(40)此时控制第一场效应管(Q1)在完成一次导通及截止的时段内导通时长与截止时长的比值增加使输出电压(Vout)的电压值增加,从而补偿了由于阻抗导致的输出电压(Vout)的压降,保证输出电压(Vout)的电压准位稳定。

Description

直流升压电路及直流升压方法 技术领域
本发明涉及显示技术领域,尤其涉及一种直流升压电路及直流升压方法。
背景技术
有机发光二极管(Organic Light Emitting Display,OLED)显示装置具有自发光、驱动电压低、发光效率高、响应时间短、清晰度与对比度高、近180°视角、使用温度范围宽,可实现柔性显示与大面积全色显示等诸多优点,被业界公认为是最有发展潜力的显示装置。
OLED显示装置按照驱动方式可以分为无源矩阵型OLED(Passive Matrix OLED,PMOLED)和有源矩阵型OLED(Active Matrix OLED,AMOLED)两大类,即直接寻址和薄膜晶体管(Thin Film Transistor,TFT)矩阵寻址两类。其中,AMOLED具有呈阵列式排布的像素,属于主动显示类型,发光效能高,通常用作高清晰度的大尺寸显示装置。
AMOLED是电流驱动器件,当有电流流经有机发光二极管时,有机发光二极管发光,且发光亮度由流经有机发光二极管自身的电流决定。大部分已有的集成电路(Integrated Circuit,IC)都只传输电压信号,故AMOLED的像素驱动电路需要完成将电压信号转变为电流信号的任务。传统的AMOLED像素驱动电路通常为2T1C,即两个薄膜晶体管加一个电容的结构,将电压变换为电流。
现有技术中,需要向AMOLED像素驱动电路中输入电源正电压(OVDD)以驱动各个像素中的有机发光二极管发光,且有机发光二极管的发光亮度与电源正电压的大小有关。电源正电压一般由直流升压(Boost)电路来提供。请参阅图1,为现有的一种用于提供电源正电压的直流升压电路,包括电感L10、场效应管Q10、二极管D10及电容C10,所述电感L10的第一端接入输入电压Vin,第二端电性连接二极管D10的阳极,二极管D10的阴极电性连接负载900,向负载900输出电源正电压OVDD,场效应管Q10的栅极接入控制信号PWM,源级接地,漏极电性连接电感L10的第二端,电容C10的第一端电性连接二极管D10的阴极,第二端接地。工作时,当场效应管Q10受控制信号PWM控制导通时,输入电压Vin为电感L10及电容C10充电,当场效应管Q10受控制信号PWM控制截止时, 电感L10为电容C10充电,此时二极管D10阳极向负载900传输的电源正电压OVDD高于输入电压Vin,实现升压的功能。直流升压电路工作时,其连接的负载电流越大,由于直流升压电路与负载连接存在阻抗(包括直流升压电路本身的输出阻抗及印刷电路板(PCB)走线(Layout)阻抗等),其输出的电源正电压的压降越大,像素驱动电路接收到的电源正电压越小。在OLED显示器显示不同画面时直流升压电路的负载电流不同,因而像素驱动电路接收到的电源正电压不同,会影响流经各个像素的有机发光二极管的电流大小,进而影响OLED显示器显示质量。
发明内容
本发明的目的在于提供一种直流升压电路,能够对因阻抗的存在导致的输出电压的压降进行补偿,保证输出电压的电压准位稳定。
本发明的另一目的在于提供一种直流升压方法,能够对因阻抗的存在导致的直流升压电路的输出电压的压降进行补偿,保证输出电压的电压准位稳定。
为实现上述目的,本发明首先提供一种直流升压电路,包括电感、二极管、第一电容、第一场效应管、第一电压转换单元、压降侦测模块、参考电压调整模块以及控制模块;
所述电感的第一端接入输入电压,第二端电性连接二极管的阳极;所述二极管的阴极电性连接负载并向负载传输输出电压;所述第一电容的第一端电性连接二极管的阴极,第二端接地;所述第一场效应管的漏极电性连接电感的第二端,栅极电性连接控制模块的输出端,源极电性连接压降侦测模块的输入端;所述第一电压转换单元的输入端电性连接二极管的阴极,输出端电性连接控制模块的第一输入端;所述压降侦测模块的输出端电性连接参考电压调整模块的第一输入端;所述参考电压调整模块的第二输入端接入原始参考电压,输出端电性连接控制模块的第二输入端;
所述第一电压转换单元用于对输出电压进行转换得到对应的第一电压并输出至控制模块的第一输入端;
所述压降侦测模块用于获取流经第一场效应管的电流,并对该电流进行转换得到对应的第二电压并输出至参考电压调整模块的第一输入端;
所述参考电压调整模块用于将原始参考电压与第二电压进行求和得到调整后的参考电压并输出至控制模块的第二输入端;
所述控制模块用于在其第二输入端与第一输入端的电压差值大于预设的标准差值时输出对应的控制信号控制第一场效应管在完成一次导通及截 止的时段内导通时长与截止时长的比值增加,使输出电压的电压值增加,直至控制模块的第二输入端与第一输入端的电压差值等于预设的标准差值,控制模块输出对应的控制信号控制第一场效应管在完成一次导通及截止的时段内导通时长与截止时长的比值保持不变。
所述第一电压转换单元包括第一电阻及第二电阻,所述第一电阻的第一端电性连接二极管的阴极,第二端电性连接第二电阻的第一端,第二电阻的第二端接地;所述第一电阻的第一端及第二端分别为所述第一电压转换单元的输入端及输出端;
所述压降侦测模块包括第三电阻、电流运算放大器及第二电压转换单元;所述第三电阻的第一端电性连接所述第一场效应管的源极,第二端接地;所述电流运算放大器的同相输入端及反相输入端分别电性连接第三电阻的第一端及第二端,输出端电性连接第二电压转换单元的输入端;所述第二电压转换单元的输出端电性连接参考电压调整模块的第一输入端;所述压降侦测模块的输入端及输出端分别为第三电阻的第一端及第二电压转换单元的输出端;
所述控制模块包括误差放大器、PWM控制器及驱动单元;所述误差放大器的同相输入端电性连接参考电压调整模块的输出端,反相输入端电性连接第一电压转换单元的输出端,输出端电性连接PWM控制器的输入端;所述PWM控制器的输出端电性连接驱动单元的输入端;所述驱动单元的输出端电性连接第一场效应管的栅极;所述控制模块的第一输入端为误差放大器的反相输入端,第二输入端为误差放大器的同相输入端,输出端为驱动单元的输出端;
所述电流运算放大器用于获取第三电阻两端的电压差并输出至第二电压转换单元;
所述第二电压转换单元用于将第三电阻两端的电压差及一预设的转换系数相乘产生第二电压并输出至参考电压调整模块的第一输入端;
所述参考电压调整模块为电压加法器;
所述误差放大器用于根据其同相输入端与反向输入端的电压差值,产生相应的控制电压并输出至PWM控制器;
所述PWM控制器用于受控制电压控制向驱动单元输出脉冲信号;
所述驱动单元用于在PWM控制器输出的脉冲信号为高电位时控制第一场效应管导通,为低电位时控制第一场效应管截止;
当误差放大器的同相输入端与反向输入端的电压差值大于预设的标准差值时,所述误差放大器输出相应的控制电压控制PWM控制器改变其输出 的脉冲信号的占空比,使第一场效应管在脉冲信号的一个周期内导通的时长增加,从而使输出电压增加,直至误差放大器的同相输入端与反向输入端的电压差值为预设的标准差值,误差放大器输出相应的控制电压控制PWM控制器保持其输出的脉冲信号的占空比不变。
所述预设的标准差值为
Figure PCTCN2018106338-appb-000001
其中,所述Vo为预设的输出电压标准值,R1为第一电阻的电阻值,R2为第二电阻的电阻值,Vref为原始参考电压。
所述转换系数为
Figure PCTCN2018106338-appb-000002
其中,R3为第三电阻的电阻值,R为所述直流升压电路的输出阻抗加直流升压电路与负载之间的走线阻抗。
所述二极管为肖特基二极管。
所述驱动单元包括第二N型场效应管及第三P型场效应管,所述第二N型场效应管的栅极电性连接PWM控制器的输出端,源极接入供电电压,漏极电性连接第三P型场效应管的漏极;所述第三P型场效应管的栅极电性连接PWM控制器的输出端,漏极电性连接第一场效应管的栅极,源极接地;
所述第一场效应管为N型场效应管。
所述直流升压电路还包括第二电容及第三电容;所述第二电容的第一端电性连接电感的第一端,第二端接地;所述第三电容的第一端电性连接二极管的阴极,第二端电性连接第一电压转换单元的输出端。
所述直流升压电路还包括与所述参考电压调整模块的第二输入端电性连接的带隙基准电压单元,所述原始参考电压由所述带隙基准电压单元提供。
所述输出电压为电源正电压,所述负载为OLED显示器的像素驱动电路。
本发明还提供一种直流升压方法,应用于上述的直流升压电路,包括:
第一电压转换单元对输出电压进行转换得到对应的第一电压并输出至控制模块的第一输入端;
压降侦测模块获取流经第一场效应管的电流,并对该电流进行转换得到对应的第二电压并输出至参考电压调整模块的第一输入端;
参考电压调整模块将原始参考电压与第二电压进行求和得到调整后的参考电压并输出至控制模块的第二输入端;
当控制模块的第二输入端与第一输入端的电压差值大于预设的标准差 值时,控制模块输出对应的控制信号控制第一场效应管在完成一次导通及截止的时段内导通时长与截止时长的比值增加,使输出电压的电压值增加;
当控制模块的第二输入端与第一输入端的电压差值等于预设的标准差值时,控制模块输出对应的控制信号控制第一场效应管在完成一次导通及截止的时段内导通时长与截止时长的比值保持不变。
本发明的有益效果:本发明提供的一种直流升压电路包括电感、二极管、第一电容、第一场效应管、第一电压转换单元、压降侦测模块、参考电压调整模块以及控制模块。接入负载后,压降侦测模块获取流过二极管的电流并输出对应的第二电压至参考电压调整模块,使得参考电压调整模块输出的电压大于原始参考电压,控制模块此时控制第一场效应管在完成一次导通及截止的时段内导通时长与截止时长的比值增加使输出电压的电压值增加,从而补偿了由于阻抗导致的输出电压的压降,保证输出电压的电压准位稳定。本发明提供的一种直流升压方法能够对因阻抗的存在导致的直流升压电路的输出电压的压降进行补偿,保证输出电压的电压准位稳定。
附图说明
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图中,
图1为现有的用于提供电源正电压的直流升压电路;
图2为本发明的直流升压电路的电路图;
图3为本发明的直流升压方法的流程图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图2,本发明提供的一种直流升压电路包括电感L1、二极管D1、第一电容C1、第一场效应管Q1、第一电压转换单元10、压降侦测模块20、参考电压调整模块30以及控制模块40。
所述电感L1的第一端接入输入电压Vin,第二端电性连接二极管D1 的阳极。所述二极管D1的阴极电性连接负载2并向负载2传输输出电压Vout。所述第一电容C1的第一端电性连接二极管D1的阴极,第二端接地。所述第一场效应管Q1的漏极电性连接电感L1的第二端,栅极电性连接控制模块40的输出端,源极电性连接压降侦测模块20的输入端。所述第一电压转换单元10的输入端电性连接二极管D1的阴极,输出端电性连接控制模块40的第一输入端。所述压降侦测模块20的输出端电性连接参考电压调整模块30的第一输入端。所述参考电压调整模块30的第二输入端接入原始参考电压Vref,输出端电性连接控制模块40的第二输入端。
具体地,所述第一电压转换单元10用于对输出电压Vout进行转换得到对应的第一电压并输出至控制模块40的第一输入端。所述压降侦测模块20用于获取流经第一场效应管Q1的电流,并对该电流进行转换得到对应的第二电压Vs’并输出至参考电压调整模块30的第一输入端。所述参考电压调整模块30用于将原始参考电压Vref与第二电压Vs’进行求和得到调整后的参考电压Vref’并输出至控制模块40的第二输入端。所述控制模块40用于在其第二输入端与第一输入端的电压差值大于预设的标准差值时输出对应的控制信号控制第一场效应管Q1在完成一次导通及截止的时段内导通时长与截止时长的比值增加,使输出电压Vout的电压值增加,直至控制模块40的第二输入端与第一输入端的电压差值等于预设的标准差值,控制模块40输出对应的控制信号控制第一场效应管Q1在完成一次导通及截止的时段内导通时长与截止时长的比值保持不变。
具体地,请参阅图2,在本发明的优选实施例中,所述第一电压转换单元10包括第一电阻R1及第二电阻R2,所述第一电阻R1的第一端电性连接二极管D1的阴极,第二端电性连接第二电阻R2的第一端,第二电阻R2的第二端接地。所述第一电阻R1的第一端及第二端分别为所述第一电压转换单元10的输入端及输出端。
所述压降侦测模块20包括第三电阻R3、电流运算放大器21及第二电压转换单元22。所述第三电阻R3的第一端电性连接所述第一场效应管Q1的源极,第二端接地。所述电流运算放大器21的同相输入端及反相输入端分别电性连接第三电阻R3的第一端及第二端,输出端电性连接第二电压转换单元22的输入端;所述第二电压转换单元22的输出端电性连接参考电压调整模块30的第一输入端。所述压降侦测模块20的输入端及输出端分别为第三电阻R3的第一端及第二电压转换单元22的输出端。
所述控制模块40包括误差放大器41、PWM控制器42及驱动单元43。所述误差放大器41的同相输入端电性连接参考电压调整模块30的输出端, 反相输入端电性连接第一电压转换单元10的输出端,输出端电性连接PWM控制器42的输入端。所述PWM控制器42的输出端电性连接驱动单元43的输入端。所述驱动单元43的输出端电性连接第一场效应管Q1的栅极。所述控制模块40的第一输入端为误差放大器41的反相输入端,第二输入端为误差放大器41的同相输入端,输出端为驱动单元43的输出端。
所述电流运算放大器21用于获取第三电阻R3两端的电压差Vs并输出至第二电压转换单元22。所述第二电压转换单元22用于将第三电阻R3两端的电压差Vs及一预设的转换系数相乘产生第二电压Vs’并输出至参考电压调整模块30的第一输入端。所述参考电压调整模块30为电压加法器。所述误差放大器41用于根据其同相输入端与反向输入端的电压差值,产生相应的控制电压并输出至PWM控制器42。所述PWM控制器42用于受控制电压Vc控制向驱动单元43输出脉冲信号。所述驱动单元43用于在PWM控制器42输出的脉冲信号为高电位时控制第一场效应管Q1导通,为低电位时控制第一场效应管Q1截止。
进一步地,当误差放大器41的同相输入端与反向输入端的电压差值大于预设的标准差值时,所述误差放大器41输出相应的控制电压Vc控制PWM控制器42改变其输出的脉冲信号的占空比,使第一场效应管Q1在脉冲信号的一个周期内导通的时长增加,从而使输出电压Vout增加,直至误差放大器41的同相输入端与反向输入端的电压差值为预设的标准差值,误差放大器41输出相应的控制电压Vc控制PWM控制器42保持其输出的脉冲信号的占空比不变。
具体地,在图2所示的实施例中,所述预设的标准差值为
Figure PCTCN2018106338-appb-000003
其中,所述Vo为预设的输出电压标准值,R1为第一电阻R1的电阻值,R2为第二电阻R2的电阻值,Vref为原始参考电压。
具体地,请参阅图2,在本发明的优选实施例中,所述二极管D1为肖特基二极管。
具体地,请参阅图2,在本发明的优选实施例中,所述驱动单元43包括第二N型场效应管Q2及第三P型场效应管Q3,所述第二N型场效应管Q2的栅极电性连接PWM控制器42的输出端,源极接入供电电压VCC,漏极电性连接第三P型场效应管Q3的漏极;所述第三P型场效应管Q3的栅极电性连接PWM控制器42的输出端,漏极电性连接第一场效应管Q1的栅极,源极接地。所述第一场效应管Q1为N型场效应管。从而在PWM控制器42输出的脉冲信号为高电位时控制第一场效应管Q1导通,为低电 位时控制第一场效应管Q1截止。
具体地,所述输出电压Vout可以作为电源正电压应用于OLED显示器中,也即本发明的直流升压电路可以作为用于输出电源正电压的直流升压电路,此时,所述负载2可以为OLED显示器的像素驱动电路。
具体地,所述转换系数为
Figure PCTCN2018106338-appb-000004
其中,R3为第三电阻R3的电阻值,R为所述直流升压电路的输出阻抗加直流升压电路与负载2之间的走线阻抗。
具体地,请参阅图2,在本发明的优选实施例中,所述直流升压电路还包括第二电容C2及第三电容C3。所述第二电容C2的第一端电性连接电感L1的第一端,第二端接地。所述第三电容C3的第一端电性连接二极管D1的阴极,第二端电性连接第一电压转换单元10的输出端也即第一电阻R1的第二端。
具体地,请参阅图2,在本发明的优选实施例中,所述直流升压电路还包括与所述参考电压调整模块30的第二输入端电性连接的带隙基准电压单元70,所述原始参考电压Vref由所述带隙基准电压单元70提供。
结合图2的实施例,本发明的直流升压电路的工作过程如下:
当本发明的直流升压电路不连接任何负载时,负载电流为0,此时二极管D1的阴极输出的输出电压是为未经过压降的输出电压,预设该未经过压降的输出电压为输出电压标准值Vo,此时,第一电压转换单元10的输出端输出的第一电压也即第一电阻R1的第二端的电压为
Figure PCTCN2018106338-appb-000005
该第一电压输出至控制模块40的第一输入端也即误差放大器41的反相输入端,而控制模块40的第二输入端也即误差放大器41的同相输入端此时的电压为Vref。当本发明的直流升压电路与负载2连接后,连接走线上会存在走线阻抗,并且直流升压电路也具有输出阻抗,这导致二极管D1的阴极输出的输出电压Vout输出至负载2后会产生压降,同时该压降随着负载电流的增加不断增加,需要对其进行补偿,由于流过第一场效应管Q1的电流与负载电流接近,压降侦测模块20能够利用第三电阻R3对流过第一场效应管Q1的电流即负载电流进行获取,并利用电流运算放大器21获取第三电阻R3两端的电压差Vs,该电压差Vs为R3×Io,其中Io为负载电流,而后输出至第二电压转换单元22,并通过第二电压转换单元22将第三电阻R3两端的电压差Vs与预设的转换系数相乘产生第二电压Vs’,该第二电压Vs’为
Figure PCTCN2018106338-appb-000006
Figure PCTCN2018106338-appb-000007
之后将该第二电压Vs’输出至参考电压调整模块30, 参考电压调整模块30将原始参考电压Vref与第二电压Vs’相加后得到修正后的参考电压Vref’,该修正后的参考电压
Figure PCTCN2018106338-appb-000008
之后将该修正后的参考电压Vref’输出至控制模块40的第二输入端也即误差放大器41的同相输入端,此时,由于还未对输出电压Vout进行调整,因此误差放大器41的反相输入端的电压仍为未接负载时的
Figure PCTCN2018106338-appb-000009
同相输入端的电压为
Figure PCTCN2018106338-appb-000010
其同相输入端与反相输入端之间的电压差值为
Figure PCTCN2018106338-appb-000011
大于
Figure PCTCN2018106338-appb-000012
误差放大器41输出相应的控制电压Vc至PWM控制器42,控制所述PWM控制器42改变其输出至驱动单元43的脉冲信号的占空比,使驱动单元43控制第一场效应管Q1在脉冲信号的一个周期内导通的时长增加,输出电压Vout增大,第一电压转换单元10的输出端也即第一电阻R1的第二端的电压增大,直至误差放大器41的同相输入端与反向输入端的电压差值再次等于
Figure PCTCN2018106338-appb-000013
误差放大器41输出相应的控制电压Vc至PWM控制器42控制所述PWM控制器42保持其输出的脉冲信号的占空比不变,此时,第一电压也即第一电阻R1第二端的电压也即误差放大器41的反相输入端的电压变为了
Figure PCTCN2018106338-appb-000014
输出电压Vout变为了
Figure PCTCN2018106338-appb-000015
Figure PCTCN2018106338-appb-000016
也即输出电压Vout与输出电压标准值Vo的差值为Io×R,为直流升压电路的输出阻抗加直流升压电路与负载2之间的走线阻抗之和与负载电流的乘积,也即为输出电压Vout因阻抗所产生的压降的值,通过这种方式,对阻抗的存在导致的直流升压电路的输出电压的压降进行补偿,保证输出电压的电压准位稳定,将该直流升压电路应用于OLED显示器中用于为像素驱动电路提供电源正电压时,不论显示画面的负载的大小如何,其输出的电源正电压均保持稳定的值,能够提升OLED显示器的显示质量。
请参阅图3,并结合图2,基于同一发明构思,本发明还提供一种直流升压方法,应用于上述的直流升压电路,包括如下步骤:
步骤S1、第一电压转换单元10对输出电压Vout进行转换得到对应的第一电压并输出至控制模块40的第一输入端。
具体地,所述步骤S1中,第一电阻R1的第二端的电压作为第一电压输出至控制模块40的第一输入端也即误差放大器41的反相输入端。
步骤S2、压降侦测模块20获取流经第一场效应管Q1的电流,并对该电流进行转换得到对应的第二电压Vs’并输出至参考电压调整模块30的第一输入端。
具体地,所述步骤S2中,压降侦测模块20利用第三电阻R3对流过第一场效应管Q1的电流即负载电流进行获取,并利用电流运算放大器21获取第三电阻R3两端的电压差Vs,该电压差Vs为R3×Io,其中Io为负载电流,而后输出至第二电压转换单元22,并通过第二电压转换单元22将第三电阻R3两端的电压差Vs与预设的转换系数相乘产生第二电压Vs’,该第二电压Vs’为
Figure PCTCN2018106338-appb-000017
之后将该第二电压Vs’输出至参考电压调整模块30。
步骤S3、参考电压调整模块30将原始参考电压Vref与第二电压Vs’进行求和得到调整后的参考电压Vref’并输出至控制模块40的第二输入端。
步骤S4、当控制模块40的第二输入端与第一输入端的电压差值大于预设的标准差值时,控制模块40输出对应的控制信号控制第一场效应管Q1在完成一次导通及截止的时段内导通时长与截止时长的比值增加,使输出电压Vout的电压值增加。
具体地,当该直流升压电路与负载2连接后,连接走线上会存在走线阻抗,并且直流升压电路也具有输出阻抗,这导致二极管D1的阴极输出的输出电压Vout输出至负载2后会产生压降,且此时对应产生负载电流,并且有与负载电流相同的电流流过第一场效应管Q1,使得第二电压Vs’的值
Figure PCTCN2018106338-appb-000018
大于零,进而使得参考电压调整模块30将原始参考电压Vref与第二电压Vs’相加后得到修正后的参考电压Vref’的值
Figure PCTCN2018106338-appb-000019
与未接负载2时第一电阻R1的第二端的电压
Figure PCTCN2018106338-appb-000020
的差值大于预设的标准差值
Figure PCTCN2018106338-appb-000021
也即此时控制模块40的第二输入端与第一输端之间的电压差值也即误差放大器41的同相输入端与反相输入端之间的电压差值大于预设的标准差值
Figure PCTCN2018106338-appb-000022
此时,误差放大器41输出相应的控制电压Vc至 PWM控制器42,控制所述PWM控制器42改变其输出至驱动单元43的脉冲信号的占空比,使驱动单元43控制第一场效应管Q1在脉冲信号的一个周期内导通的时长增加,输出电压Vout增大,第一电压转换单元10的输出端也即第一电阻R1的第二端的电压增大。
步骤S5、当控制模块40的第二输入端与第一输入端的电压差值等于预设的标准差值时,控制模块40输出对应的控制信号控制第一场效应管Q1在完成一次导通及截止的时段内导通时长与截止时长的比值保持不变。
具体地,当进行完步骤S4后,输出电压Vout增大,第一电压转换单元10的输出端也即第一电阻R1的第二端的电压增大,直至误差放大器41的同相输入端与反向输入端的电压差值再次等于
Figure PCTCN2018106338-appb-000023
进行步骤S5,误差放大器41输出相应的控制电压Vc至PWM控制器42控制所述PWM控制器42保持其输出的脉冲信号的占空比不变,此时,第一电压也即第一电阻R1第二端的电压也即误差放大器41的反相输入端的电压变为了
Figure PCTCN2018106338-appb-000024
输出电压Vout变为了
Figure PCTCN2018106338-appb-000025
Figure PCTCN2018106338-appb-000026
也即输出电压Vout与输出电压标准值Vo的差值为Io×R,为直流升压电路的输出阻抗加直流升压电路与负载2之间的走线阻抗之和与负载电流的乘积,也即为输出电压Vout因阻抗所产生的压降的值,通过这种方式,对阻抗的存在导致的直流升压电路的输出电压的压降进行补偿,保证输出电压的电压准位稳定,应用于OLED显示器中用于为像素驱动电路提供电源正电压时,不论显示画面的负载的大小如何,直流升压电路输出的电源正电压均保持稳定的值,能够提升OLED显示器的显示质量。
综上所述,本发明的直流升压电路包括电感、二极管、第一电容、第一场效应管、第一电压转换单元、压降侦测模块、参考电压调整模块以及控制模块。接入负载后,压降侦测模块获取流过二极管的电流并输出对应的第二电压至参考电压调整模块,使得参考电压调整模块输出的电压大于原始参考电压,控制模块此时控制第一场效应管在完成一次导通及截止的时段内导通时长与截止时长的比值增加使输出电压的电压值增加,从而补偿了由于阻抗导致的输出电压的压降,保证输出电压的电压准位稳定。本发明的直流升压方法能够对因阻抗的存在导致的直流升压电路的输出电压的压降进行补偿,保证输出电压的电压准位稳定。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术 方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

Claims (10)

  1. 一种直流升压电路,包括电感、二极管、第一电容、第一场效应管、第一电压转换单元、压降侦测模块、参考电压调整模块以及控制模块;
    所述电感的第一端接入输入电压,第二端电性连接二极管的阳极;所述二极管的阴极电性连接负载并向负载传输输出电压;所述第一电容的第一端电性连接二极管的阴极,第二端接地;所述第一场效应管的漏极电性连接电感的第二端,栅极电性连接控制模块的输出端,源极电性连接压降侦测模块的输入端;所述第一电压转换单元的输入端电性连接二极管的阴极,输出端电性连接控制模块的第一输入端;所述压降侦测模块的输出端电性连接参考电压调整模块的第一输入端;所述参考电压调整模块的第二输入端接入原始参考电压,输出端电性连接控制模块的第二输入端;
    所述第一电压转换单元用于对输出电压进行转换得到对应的第一电压并输出至控制模块的第一输入端;
    所述压降侦测模块用于获取流经第一场效应管的电流,并对该电流进行转换得到对应的第二电压并输出至参考电压调整模块的第一输入端;
    所述参考电压调整模块用于将原始参考电压与第二电压进行求和得到调整后的参考电压并输出至控制模块的第二输入端;
    所述控制模块用于在其第二输入端与第一输入端的电压差值大于预设的标准差值时输出对应的控制信号控制第一场效应管在完成一次导通及截止的时段内导通时长与截止时长的比值增加,使输出电压的电压值增加,直至控制模块的第二输入端与第一输入端的电压差值等于预设的标准差值,控制模块输出对应的控制信号控制第一场效应管在完成一次导通及截止的时段内导通时长与截止时长的比值保持不变。
  2. 如权利要求1所述的直流升压电路,其中,所述第一电压转换单元包括第一电阻及第二电阻,所述第一电阻的第一端电性连接二极管的阴极,第二端电性连接第二电阻的第一端,第二电阻的第二端接地;所述第一电阻的第一端及第二端分别为所述第一电压转换单元的输入端及输出端;
    所述压降侦测模块包括第三电阻、电流运算放大器及第二电压转换单元;所述第三电阻的第一端电性连接所述第一场效应管的源极,第二端接地;所述电流运算放大器的同相输入端及反相输入端分别电性连接第三电阻的第一端及第二端,输出端电性连接第二电压转换单元的输入端;所述第二电压转换单元的输出端电性连接参考电压调整模块的第一输入端;所 述压降侦测模块的输入端及输出端分别为第三电阻的第一端及第二电压转换单元的输出端;
    所述控制模块包括误差放大器、PWM控制器及驱动单元;所述误差放大器的同相输入端电性连接参考电压调整模块的输出端,反相输入端电性连接第一电压转换单元的输出端,输出端电性连接PWM控制器的输入端;所述PWM控制器的输出端电性连接驱动单元的输入端;所述驱动单元的输出端电性连接第一场效应管的栅极;所述控制模块的第一输入端为误差放大器的反相输入端,第二输入端为误差放大器的同相输入端,输出端为驱动单元的输出端;
    所述电流运算放大器用于获取第三电阻两端的电压差并输出至第二电压转换单元;
    所述第二电压转换单元用于将第三电阻两端的电压差及一预设的转换系数相乘产生第二电压并输出至参考电压调整模块的第一输入端;
    所述参考电压调整模块为电压加法器;
    所述误差放大器用于根据其同相输入端与反向输入端的电压差值,产生相应的控制电压并输出至PWM控制器;
    所述PWM控制器用于受控制电压控制向驱动单元输出脉冲信号;
    所述驱动单元用于在PWM控制器输出的脉冲信号为高电位时控制第一场效应管导通,为低电位时控制第一场效应管截止;
    当误差放大器的同相输入端与反向输入端的电压差值大于预设的标准差值时,所述误差放大器输出相应的控制电压控制PWM控制器改变其输出的脉冲信号的占空比,使第一场效应管在脉冲信号的一个周期内导通的时长增加,从而使输出电压增加,直至误差放大器的同相输入端与反向输入端的电压差值为预设的标准差值,误差放大器输出相应的控制电压控制PWM控制器保持其输出的脉冲信号的占空比不变。
  3. 如权利要求2所述的直流升压电路,其中,所述预设的标准差值为
    Figure PCTCN2018106338-appb-100001
    其中,所述Vo为预设的输出电压标准值,R1为第一电阻的电阻值,R2为第二电阻的电阻值,Vref为原始参考电压。
  4. 如权利要求2所述的直流升压电路,其中,所述转换系数为
    Figure PCTCN2018106338-appb-100002
    其中,R3为第三电阻的电阻值,R为所述直流升压电路的输出阻抗加直流升压电路与负载之间的走线阻抗。
  5. 如权利要求1所述的直流升压电路,其中,所述二极管为肖特基二 极管。
  6. 如权利要求2所述的直流升压电路,其中,所述驱动单元包括第二N型场效应管及第三P型场效应管,所述第二N型场效应管的栅极电性连接PWM控制器的输出端,源极接入供电电压,漏极电性连接第三P型场效应管的漏极;所述第三P型场效应管的栅极电性连接PWM控制器的输出端,漏极电性连接第一场效应管的栅极,源极接地;
    所述第一场效应管为N型场效应管。
  7. 如权利要求1所述的直流升压电路,还包括第二电容及第三电容;所述第二电容的第一端电性连接电感的第一端,第二端接地;所述第三电容的第一端电性连接二极管的阴极,第二端电性连接第一电压转换单元的输出端。
  8. 如权利要求1所述的直流升压电路,还包括与所述参考电压调整模块的第二输入端电性连接的带隙基准电压单元,所述原始参考电压由所述带隙基准电压单元提供。
  9. 如权利要求1所述的直流升压电路,其中,所述输出电压为电源正电压,所述负载为OLED显示器的像素驱动电路。
  10. 一种直流升压方法,应用于如权利要求1所述的直流升压电路,包括:
    第一电压转换单元对输出电压进行转换得到对应的第一电压并输出至控制模块的第一输入端;
    压降侦测模块获取流经第一场效应管的电流,并对该电流进行转换得到对应的第二电压并输出至参考电压调整模块的第一输入端;
    参考电压调整模块将原始参考电压与第二电压进行求和得到调整后的参考电压并输出至控制模块的第二输入端;
    当控制模块的第二输入端与第一输入端的电压差值大于预设的标准差值时,控制模块输出对应的控制信号控制第一场效应管在完成一次导通及截止的时段内导通时长与截止时长的比值增加,使输出电压的电压值增加;
    当控制模块的第二输入端与第一输入端的电压差值等于预设的标准差值时,控制模块输出对应的控制信号控制第一场效应管在完成一次导通及截止的时段内导通时长与截止时长的比值保持不变。
PCT/CN2018/106338 2018-06-06 2018-09-18 直流升压电路及直流升压方法 WO2019232976A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/096,694 US11074857B2 (en) 2018-06-06 2018-09-18 DC boost circuit and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810575298.7A CN108809088B (zh) 2018-06-06 2018-06-06 直流升压电路及直流升压方法
CN201810575298.7 2018-06-06

Publications (1)

Publication Number Publication Date
WO2019232976A1 true WO2019232976A1 (zh) 2019-12-12

Family

ID=64087424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/106338 WO2019232976A1 (zh) 2018-06-06 2018-09-18 直流升压电路及直流升压方法

Country Status (3)

Country Link
US (1) US11074857B2 (zh)
CN (1) CN108809088B (zh)
WO (1) WO2019232976A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112037730A (zh) * 2020-10-12 2020-12-04 北京集创北方科技股份有限公司 驱动装置及电子设备
CN113922661A (zh) * 2021-09-28 2022-01-11 智新科技股份有限公司 一种boost升压电路及其控制方法
CN114337268A (zh) * 2021-12-30 2022-04-12 合肥市芯海电子科技有限公司 一种升压电路、芯片及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7268526B1 (en) * 2004-04-21 2007-09-11 National Semiconductor Corporation Switch mode power supply control circuit
CN101064470A (zh) * 2006-04-25 2007-10-31 乐金电子(昆山)电脑有限公司 直流电压/直流电压转换器的输出电压控制设备
US20130162226A1 (en) * 2011-12-21 2013-06-27 Chih-Heng Su Dynamic Voltage Adjustment Device and Power Transmission System Using the Same
CN107508461A (zh) * 2017-07-18 2017-12-22 深圳市华星光电半导体显示技术有限公司 直流电压转换电路及液晶显示装置
CN107735933A (zh) * 2017-03-02 2018-02-23 香港应用科技研究院有限公司 用于dc‑dc转换器的电流均衡电路

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4823070A (en) * 1986-11-18 1989-04-18 Linear Technology Corporation Switching voltage regulator circuit
JP5493296B2 (ja) * 2008-06-10 2014-05-14 株式会社リコー スイッチングレギュレータ
JP6042091B2 (ja) * 2011-05-13 2016-12-14 ローム株式会社 スイッチングレギュレータの制御回路、スイッチングレギュレータおよび電子機器、スイッチング電源装置、テレビ
KR101981281B1 (ko) * 2011-11-03 2019-05-23 삼성디스플레이 주식회사 유기 전계 발광 표시 장치
JP2016511553A (ja) * 2013-03-15 2016-04-14 レイセオン カンパニー バッテリー動作のレーザーシステム用のダイオードドライバー
US11005365B2 (en) * 2014-06-25 2021-05-11 Semiconductor Components Industries, Llc Power converter using hysteretic boost architecture and method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7268526B1 (en) * 2004-04-21 2007-09-11 National Semiconductor Corporation Switch mode power supply control circuit
CN101064470A (zh) * 2006-04-25 2007-10-31 乐金电子(昆山)电脑有限公司 直流电压/直流电压转换器的输出电压控制设备
US20130162226A1 (en) * 2011-12-21 2013-06-27 Chih-Heng Su Dynamic Voltage Adjustment Device and Power Transmission System Using the Same
CN107735933A (zh) * 2017-03-02 2018-02-23 香港应用科技研究院有限公司 用于dc‑dc转换器的电流均衡电路
CN107508461A (zh) * 2017-07-18 2017-12-22 深圳市华星光电半导体显示技术有限公司 直流电压转换电路及液晶显示装置

Also Published As

Publication number Publication date
CN108809088A (zh) 2018-11-13
CN108809088B (zh) 2019-07-02
US11074857B2 (en) 2021-07-27
US20210110768A1 (en) 2021-04-15

Similar Documents

Publication Publication Date Title
US10380941B2 (en) OLED pixel circuit and display device thereof
CN106782319B (zh) 一种像素电路、像素驱动方法、显示装置
US8564587B2 (en) Organic light emitting diode display
WO2018133144A1 (zh) Amoled像素驱动系统及amoled像素驱动方法
KR101894768B1 (ko) 액티브 매트릭스 디스플레이 장치 및 그 구동 방법
WO2018210051A1 (zh) 像素驱动电路及像素驱动方法、显示装置
KR101382001B1 (ko) 화소 유닛 회로 및 oled 표시 장치
US10297181B2 (en) System of sensing AMOLED pixel driving property and AMOLED display device
US10997920B2 (en) Pixel drive circuit and drive method, and display apparatus
WO2016123855A1 (zh) Amoled像素驱动电路及像素驱动方法
WO2020181512A1 (zh) 像素电路及其驱动方法、显示装置
WO2019232976A1 (zh) 直流升压电路及直流升压方法
US10748480B2 (en) Method of compensating AMOLED pixel difference
WO2019196402A1 (zh) 像素补偿电路及像素驱动电路补偿方法、显示装置
US20180174512A1 (en) Pixel circuit and method for driving pixel circuit
US10762840B2 (en) Pixel circuit and driving method thereof, display device
US10902776B2 (en) Pixel circuit, driving method thereof and display device thereof
US20110084953A1 (en) Organic light emitting display having a power saving mechanism
US11263938B1 (en) Light-emitting panel and display device
WO2019114573A1 (zh) 电路驱动补偿方法、电路驱动方法及装置、显示装置
JP6593899B2 (ja) Oled表示パネルのコントラスト比向上方法及びそのシステム
WO2016180110A1 (zh) 驱动电路及其驱动方法、显示基板及其驱动方法、显示装置
JP2018531425A6 (ja) Oled表示パネルのコントラスト比向上方法及びそのシステム
CN108335666B (zh) 一种补偿驱动管阈值电压漂移的硅基oled像素电路及其方法
US20160029456A1 (en) Power supply device and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18921559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18921559

Country of ref document: EP

Kind code of ref document: A1