WO2019231043A1 - 탄환 - Google Patents

탄환 Download PDF

Info

Publication number
WO2019231043A1
WO2019231043A1 PCT/KR2018/007870 KR2018007870W WO2019231043A1 WO 2019231043 A1 WO2019231043 A1 WO 2019231043A1 KR 2018007870 W KR2018007870 W KR 2018007870W WO 2019231043 A1 WO2019231043 A1 WO 2019231043A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
bullet
alloy
jacket
tail
Prior art date
Application number
PCT/KR2018/007870
Other languages
English (en)
French (fr)
Inventor
정인
Original Assignee
Jung In
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jung In filed Critical Jung In
Publication of WO2019231043A1 publication Critical patent/WO2019231043A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B10/00Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
    • F42B10/32Range-reducing or range-increasing arrangements; Fall-retarding means
    • F42B10/38Range-increasing arrangements
    • F42B10/42Streamlined projectiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B10/00Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
    • F42B10/32Range-reducing or range-increasing arrangements; Fall-retarding means
    • F42B10/38Range-increasing arrangements
    • F42B10/42Streamlined projectiles
    • F42B10/44Boat-tails specially adapted for drag reduction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/72Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material
    • F42B12/74Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material of the core or solid body

Definitions

  • the present invention relates to a bullet, and more particularly to a bullet having a structure that can reduce the base drag (base drag) of the bullet.
  • Drag includes air drag that affects the front of the bullet and base drag that affects the back of the bullet.
  • the front of the warhead was made conical (or streamlined) to reduce air drag affecting the front of the bullet.
  • a boat tail shape is introduced.
  • an object of the present invention is to solve such a conventional problem, and to provide a bullet having a structure capable of reducing the base drag of the bullet.
  • a bullet including a head portion, an intermediate portion and a tail portion, comprising: a first core constituting the head portion; and a second core constituting the tail portion; And a jacket disposed between the first core and the second core to constitute the intermediate portion, wherein the weight of the first core is equal to the weight of the second core such that the center of gravity of the bullet is located ahead of the length center. It is achieved by a bullet characterized in that it is set relatively large relative to.
  • the first core includes a nose, a first insertion portion extending axially from a rear end of the nose, and an annular first coupling groove recessed in an outer circumferential surface of the first insertion portion
  • the second core includes: It is preferable to include a boat tail, a second insertion portion extending axially from the tip of the boat tail so as to surround the outer surface of the first insertion portion, and a first coupling protrusion inserted into the first coupling groove.
  • the jacket preferably includes a first accommodating part into which the first inserting part is inserted and a second accommodating part into which the second inserting part is inserted.
  • a stepped portion in which an end portion of the second insertion portion is in close contact is provided at the boundary between the first accommodation portion and the second accommodation portion of the inner circumferential surface of the jacket, and the boundary between the first accommodation portion and the second accommodation portion is the first coupling groove. It is preferable to be provided at a position corresponding to
  • a depression is formed at a position corresponding to the first coupling groove among the outer circumferential surfaces of the jacket.
  • an outer circumferential surface of the end portion connected to the boat tail of the second insertion portion has an annular second coupling groove recessed, and an end portion of the second accommodation portion has a second coupling protrusion inserted into the second coupling groove. It is preferable.
  • the first core is made of a first material composed of a metal or non-metallic material
  • the second core is made of a second material composed of a metal or non-metallic material having a relatively low specific gravity compared to the first material. desirable.
  • the first core is an iron (Fe) -carbon (C) alloy, tungsten carbide (WC) alloy, alloy steel (alloy steel), aluminum (Al) alloy, copper (Cu), copper (Cu) Alloy, stainless steel, cast iron, tungsten (W) alloy, chromium (Cr) steel, molybdenum (Mo) alloy, Ni-Cr-Mo alloy, uranium (U) alloy It is preferable that it is made of at least one material selected from the group consisting of 5Cr-Mo-V-based alloy, 5Ni-Cr-Mo-V-based alloy.
  • the second core may include the first material in an aluminum (Al) alloy, stainless steel, carbon (C), reinforced plastic, reinforced resin, nonferrous metal or acrylonitrile-butadiene-styrene (ABS). It is preferable that it is made of at least one material having a relatively low specific gravity.
  • first core and the jacket is preferably configured integrally.
  • the first core and the second core may be integrally formed, and a hollow part may be provided inside the second core.
  • the base drag (base drag) of the bullet is significantly reduced, thereby providing a bullet with improved range, penetration and stopping force of the bullet.
  • FIG. 1 is a perspective view of a bullet according to a first embodiment of the present invention
  • FIG. 1 is an exploded perspective view of FIG. 1;
  • FIG. 3 is a cross-sectional view of FIG.
  • FIG. 4 is a cross-sectional view showing an assembly process of part “A” of FIG. 4;
  • FIG. 5 is a cross-sectional view illustrating an assembly process of a portion “B” of FIG. 5;
  • FIG. 6 is a cross-sectional view of a bullet according to a second embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of a bullet according to a third embodiment of the present invention.
  • FIG. 8 is a perspective view of a bullet according to a fourth embodiment of the present invention.
  • FIG. 9 is a cross-sectional view showing the configuration of a bullet according to a fourth embodiment of the present invention.
  • FIG. 10 is a cross-sectional view showing the configuration of a bullet according to a fifth embodiment of the present invention.
  • 11 and 12 are a perspective view of a bullet according to a sixth embodiment of the present invention.
  • FIG. 13 and 14 are cross-sectional views showing the action of the bullet according to the sixth embodiment of the present invention.
  • FIG. 15 is a perspective view of a bullet according to a seventh embodiment of the present invention.
  • FIG. 16 is a cross-sectional view showing the configuration of a bullet according to a seventh embodiment of the present invention.
  • FIG. 17 is a perspective view of a bullet according to an eighth embodiment of the present invention.
  • FIG. 18 is a cross-sectional view showing the configuration of a bullet according to an eighth embodiment of the present invention.
  • FIG. 19 is a perspective view of a bullet according to a ninth embodiment of the present invention.
  • FIG. 20 is a cross-sectional view showing a configuration of a bullet according to a ninth embodiment of the present invention.
  • 21 is a perspective view of a bullet according to a tenth embodiment of the present invention.
  • FIG. 22 is a cross-sectional view showing the configuration of a bullet according to a tenth embodiment of the present invention.
  • 127 insertion groove
  • 127a locking jaw
  • 128, 128 ' ring step
  • 129 air passage
  • 129a first passage
  • 129b second passage
  • 140 combustion material
  • 150 moving body
  • 151 first body
  • the present invention is for example used in small guns such as pistols, rifles, machine guns, small guns, cannons, howitzers, mortars, and tanks, fighters, battleships, submarines, etc. It is applied to relatively large caliber bullets used in large guns such as weapons or artillery weapons.
  • examples of bullets include bullets, shells, and materials fired from weapons using propellants.
  • the invention is also applicable to bullets fired from weapons such as rail guns using magnetic fields, as well as weapons using gunpowder as propellants.
  • Conventional bullets employ a boat tail structure in the tail section of the bullet to reduce base drag.
  • the conventional bullet has a limitation in employing a structure that can reduce the drag on the bottom, since the copper jacket is wrapped around the middle portion and the tail portion.
  • FIG. 1 is a perspective view of a bullet according to a first embodiment of the present invention
  • FIG. 2 is an exploded perspective view of FIG. 1
  • FIG. 3 is a sectional view of FIG. 1.
  • the bullet according to the first embodiment of the present invention as shown in the drawings includes a head portion, an intermediate portion and a tail portion.
  • the head portion and the intermediate portion may be wrapped, for example, with a jacket made of copper, and the tail portion has a structure in which at least a portion thereof is not wrapped by the copper jacket.
  • the bullet may have various structures.
  • a one-stage structure in which the head portion, the middle portion, and the tail portion are integrally formed a two-stage structure in which the head portion and the intermediate portion are integrally formed, and the tail portion is independently formed and joined
  • the The head portion, the middle portion, and the tape portion may each have a three-stage structure that is formed independently of each other. It may also have a four-stage or more structure.
  • the present invention is not limited by the structure of the bullet, and can be applied to various structures.
  • the head portion has an ovive shape with a substantially streamlined nose to reduce air resistance or drag of air.
  • the intermediate part may be a straight part of full diameter.
  • the diameter of the bullet corresponds to the diameter of the intermediate portion.
  • the intermediate part may include a cannelure formed on an outer surface near the tail part. The shell restrains or prevents the forward loss of gas around the bullet with the barrel's rifling.
  • the tail portion may have a boat tail shape whose diameter gradually decreases.
  • the prior art bullet experiences an irregular air flow, such as the bottom drag occurring behind the tail, resulting in a reduction in the flight power of the bullet.
  • the tail part may include a plurality of grooves 126 as shown in FIG. 1.
  • the grooves may be formed by machining or pressurizing, but in the case of machining, the grooves may be expensive, and thus, the grooves may be formed by pressing and fixing.
  • the groove in the conventional structure in which the tail part is covered by the copper jacket, when the groove is formed by the pressing process, the groove may be irregularly formed, or a gap may occur between the jacket and the inner core.
  • the groove can be easily formed by pressing or casting.
  • the groove may be formed through a pressing process, in which case the tail portion is not wrapped by the copper jacket, so that the groove is irregularly formed or a gap is prevented between the jacket and the inner core. Can be.
  • the tail portion since at least a part of the tail portion is not wrapped by the copper jacket, a structure as described below in which the tail portion can be positioned at the center of gravity of the bullet in front of the bullet can be adopted. High degree of freedom
  • the bullet of the present embodiment is formed to surround the first core 110 having the head portion, the second core 120 having the tail portion, and the first core 110 and the second core 120.
  • the jacket 130 is configured to include. A portion of the first core 110 and a portion of the second core 120 that are wrapped by the jacket 130 correspond to the intermediate portion.
  • the pressure center of the bullet is in the relative forward position and the center of gravity is in the relative rear position. Since the length of the bullet depends on the purpose of the bullet, the longer the length of the bullet, the greater the distance between the center of gravity and the center of gravity. As the distance between the pressure center and the center of gravity increases, the yaw angle increases.
  • the bullet fired from the muzzle causes a rotating precession, in which the bullet rotates around the axis centered on the yaw angle. Rotating precession with a large yaw angle reduces the range, hit rate, and breaking power of the bullet. Therefore, the bullet is eventually conducted in the advancing direction, and the tail portion of the bullet is forwardly positioned to hardly impact the target.
  • the bullet of the present embodiment may adjust the weight of the first core 110 and the weight of the second core 120 so that the center of gravity CG is located ahead of the length center CL.
  • the length center CL means a point that is 1/2 of the total length L on the center axis of the bullet.
  • the first core 110 is a cone or parabolic nose 111, the first insertion portion 112 extending in the axial direction from the nose 111 and the outer peripheral surface of the first insertion portion 112 And a first coupling groove 113 recessed in the circumferential direction.
  • the second core 120 has a boat tail 121 having a taper formed on an outer circumferential surface thereof so as to decrease in diameter as it proceeds to the rear end, and a second insertion portion 122 extending in an axial direction from a tip end of the boat tail 121.
  • the accommodation groove 123 recessed in the axial direction from the tip of the second insertion portion 122 so that the first insertion portion 112 can be inserted, the second insertion portion 122 and the boat tail 121.
  • the second coupling groove 124 formed in the outer circumferential surface of the second insertion portion 122 at the boundary portion of the second insertion portion and the first insertion portion 112 is bent from the second insertion portion 122. It includes a first coupling protrusion 125 is inserted into the coupling groove 113.
  • the second coupling groove 124 is formed to be inclined to be parallel to the outer peripheral surface taper of the boat tail 121.
  • the jacket 130 is formed in the form of a cylindrical pipe, one end of which is formed a first accommodating portion 131 surrounding the first inserting portion 112 of the first core 110, the other end of the second core A second accommodation portion 132 surrounding the second insertion portion 122 of the 120 is formed.
  • a stepped portion 134 is formed at a boundary between the first accommodating part 131 and the second accommodating part 132 among the inner circumferential surfaces of the jacket 130, and the first accommodating part among the outer circumferential surfaces of the jacket 130.
  • a bullet band 135 is recessed.
  • a second coupling protrusion 133 is formed at the distal end of the second accommodation portion 132 to be inserted into the second coupling groove 124 of the second insertion portion 122.
  • the length of the second accommodating part 132 is set to correspond to the length of the second inserting part 122. Therefore, as shown in FIG. 4A, when the second inserting portion 122 is inserted into the second receiving portion 132, the tip of the second inserting portion 122 is formed at the end of the jacket 130. It is in close contact with the jaw portion 134, the tip of the second receiving portion 132 is in close contact with the leading edge of the boat tail 121. Subsequently, when the outer peripheral surface of the tip of the second accommodating part 132 is pressed through a pressing process using a die or the like as shown in FIG. 4B, the second coupling protrusion 133 is released from the second accommodating part 132 by pressing force.
  • the second coupling groove 124 is inclined in parallel with the outer circumferential surface of the boat tail 121, the outer circumferential surface of the distal end of the second accommodating portion 132 forms the same tapered surface as the outer circumferential surface of the boat tail 121. Done. That is, since the second coupling protrusion 133 of the jacket 130 is positioned at the outermost side of the entire tapered surface forming the boat tail 121, the boat tail 121 of the second core 120 is barreled. Direct contact with the rifling can be prevented.
  • the second coupling protrusion 133 is bent from the second accommodating portion 132 and is described as being inserted into the second coupling groove 124, but the second coupling groove 124 is formed. It may not be. That is, in the above example, a part of the tail part, that is, a part of the boat tail 121 is surrounded by a copper jacket, but the tail part, that is, the entire structure of the boat tail 121 may not be wrapped by the copper jacket. .
  • the boundary between the first accommodating part 131 and the second accommodating part 132 of the jacket 130 is the first insertion part 112 of the first core 110.
  • the first inserting portion 112 of the jacket 130 is inserted into the first receiving portion 131 and the tip of the first receiving portion 131 is in close contact with the edge of the rear end side of the nose 111, It is set to a position corresponding to the first coupling groove 113. Therefore, in the state where the first insertion portion 112 is inserted into the first accommodation portion 131, the front ends of the stepped portion 134 and the second insertion portion 122 correspond to the first coupling groove 113. Is placed in position.
  • the first inserting portion 122 may be pressed by the pressing force.
  • the coupling protrusion 125 is bent and inserted into the first coupling groove 113 at the same time.
  • the assembled state of the first core 110 and the second core 120 is It can be kept firm.
  • a plurality of grooves 126 are formed at regular intervals, for example, such grooves 126 may be formed by a machining process, a grinding process, a pressing process or a casting process using a die. Can be. However, the boat tail 121 may not have the groove 126.
  • the first core 110 may be made of tungsten or molybdenum
  • the second core 120 may be made of aluminum
  • the jacket 130 may be made of copper.
  • the material constituting the first core 110 is selected as a material having a higher specific gravity than the material constituting the second core 120, so that the weight of the first core 110 is the weight of the second core 120. By setting it relatively relatively heavy, the center of gravity of the bullet can be located ahead of the center of length.
  • the first core 110 is a metal or non-metal material, for example, iron (Fe) -carbon (C) -based alloy, tungsten carbide (WC) -based alloy, alloy steel (alloy steel), aluminum (Al) -based Alloy, copper (Cu), copper (Cu) alloy, stainless steel, cast iron, tungsten (W) alloy, chromium (Cr) steel, molybdenum (Mo) alloy, Ni-Cr It may be made of at least one material selected from the group consisting of -Mo alloy, uranium (U) alloy, 5Cr-Mo-V-based alloy, 5Ni-Cr-Mo-V-based alloy.
  • iron (Fe) -carbon (C) -based alloy tungsten carbide (WC) -based alloy, alloy steel (alloy steel), aluminum (Al) -based Alloy, copper (Cu), copper (Cu) alloy, stainless steel, cast iron, tungsten (W) alloy, chromium (C
  • the second core 120 is a metal or non-metallic material having a lower specific gravity than the first core 110, for example, aluminum (Al) -based alloy, stainless steel, carbon, reinforced plastic, reinforced resin, nonferrous metal or acrylic It may be made of one or more materials having a specific gravity lower than that of the first material in acrylonitrile-butadiene-styrene (ABS).
  • Al aluminum
  • ABS acrylonitrile-butadiene-styrene
  • the jacket 130 may be made of copper or a plating metal (gilding metal).
  • FIG. 6 is a cross-sectional view showing the configuration of a bullet according to a second embodiment of the present invention.
  • the bullet according to the second embodiment of the present invention as shown in FIG. 6 differs from the first embodiment in that the first core 110 and the jacket 130 of the first embodiment are integrally formed.
  • the first core 110 and the jacket 130 are integrally formed of copper
  • the second core 120 may be made of aluminum. Even in this case, the center of gravity of the bullet is located ahead of the length center due to the difference in specific gravity of the materials constituting the first core 110 and the second core 120, thereby improving the range, penetration and stopping force of the bullet. Can be.
  • the nose 111 ′ disposed at the front end of the first core 110 may be separated from the first core 110 and may be formed of a material having a higher hardness or specific gravity than the first core 110. .
  • a second inserting portion 122 and a second coupling groove 124 are formed in the second core 120, and a second accommodating portion into which the second inserting portion 122 is inserted into the jacket 130. 132 and the second coupling protrusion 133 is inserted into the second coupling groove 124 may be formed.
  • the combination of the second core 120 and the jacket 130 is made in the same form as the first embodiment, a detailed description thereof will be omitted.
  • FIG. 7 is a cross-sectional view showing the configuration of a bullet according to a third embodiment of the present invention.
  • the bullet according to the third embodiment of the present invention as shown in FIG. 7 differs from the first embodiment in that the first core 110 and the second core 120 of the first embodiment are integrally formed.
  • the first inserting portion 112 of the first core 110 and the second inserting portion 122 of the second core 120 are mutually different. It is made in a connected form, the jacket 130 is disposed in a form surrounding the first inserting portion 112 and the second inserting portion (122).
  • a second coupling groove 124 is formed in the second insertion portion 122, and a second coupling protrusion 133 is inserted into the second coupling groove 124 in the jacket 130, thereby forming the
  • the second core 120 and the jacket 130 may be assembled in the same form as the first embodiment.
  • the integrally formed first core 110 and the second core 120 may be made of a tungsten material
  • the jacket 130 may be made of a copper material
  • the center of gravity of the bullet is located in front of the length center.
  • the hollow part 120a is formed in the second core 120.
  • the center of gravity of the bullet is located ahead of the center of length, it is possible to prevent the precession and fall, thereby improving the range, penetration and stopping force of the bullet. Can be.
  • the present invention is not limited to the bullet center of gravity of the bullet is located in front of the center of gravity, the structure is not covered by the jacket portion of the boat tail is also applied to the bullet center of gravity is located behind the center of gravity It is possible.
  • FIG 8 is a perspective view of a bullet according to a fourth embodiment of the present invention
  • Figure 9 is a cross-sectional view showing the configuration of a bullet according to a fourth embodiment of the present invention.
  • a bullet according to a fourth embodiment of the present invention includes a first core 110 having a first inserting portion 112 and a second core having a second inserting portion 122 formed therein. 120, a jacket 140 having a first accommodating part 131 surrounding the first inserting part 112 and a second accommodating part 132 surrounding the second inserting part 122 is formed.
  • the first core 110 is made of a material having a relatively high specific gravity than the second core 120, or by designing relatively heavy than the second core 120, the center of gravity of the bullet than the center of length It is desirable to be located forward.
  • a gunpowder capable of exploding when colliding with a target may be accommodated in the nose 111 constituting the front end of the first core 110.
  • an insertion groove 127 into which the combustion material 140 may be inserted is recessed in the rear surface of the boat tail 121 of the second core 120, and in the insertion groove 127 when a bullet is flying.
  • the combustion material 140 which can be burned for about 0.5 to 1 second, is filled.
  • the combustion material 140 may be prepared by, for example, mixing a powder, a retardant, and an ignition agent with a viscous coagulant, for example, silicon, a pore bond, starch powder, an epoxy, or a varnish.
  • the combustion gas generated in the combustion process of the combustion material 140 is discharged from the insertion groove 127 formed in the rear surface of the second core 120, generated in the rear of the boat tail 121 in the flight process of the bullet. Since the bottom drag is reduced, it is possible to remarkably reduce the bottom drag that impedes the flight power of the bullet, thereby improving the range, penetration and stopping force of the bullet.
  • the combustion material 140 is selected as a material emitting light in the combustion process
  • the movement path of the bullet may be visually observed.
  • the light comes from the back of the bullet, which also serves as a tracer, allowing his colleagues to know the enemy's location.
  • Such a preliminary coal function may be implemented by mixing a fluorescent material and a paint having excellent reflectance in a structure without the insertion groove 127 and applying it to the back surface of the bullet.
  • Fluorescent materials emit light by the light generated by the explosives, which makes it possible to identify the final destination of the bullet at night and to reflect sunlight by day with a high reflectivity paint. It becomes identifiable.
  • a delay material (not shown) may be provided in the insertion groove 140 to delay the ignition by about 0.2 seconds. Can be.
  • the retardant prevents the combustion material 140 from being burned in the barrel, thereby preventing the life of the barrel from being shortened due to soot generated during the combustion process of the combustion material 140.
  • FIG. 10 is a cross-sectional view showing the configuration of a bullet according to a fifth embodiment of the present invention.
  • the first inserting portion 112 of the first core 110 and the second inserting portion of the second core 120 of the fourth embodiment ( 122 is connected to each other and integrally formed, and the jacket 130 is disposed in a form surrounding the first inserting portion 112 and the second inserting portion 122, the difference between the configuration and the fourth embodiment Has
  • the insertion groove 127 formed on the back of the boat tail 121 of the second core 120 and the combustion material 140 disposed in the insertion groove 127 is made in the same manner as in the fourth embodiment, Detailed description thereof will be omitted.
  • the first core 110 and the second core 120 are made of the same material, but the insertion groove 127 is inserted into the boat tail 121 of the second core 120. Since it is formed, the center of gravity of the bullet is located ahead of the center of length.
  • FIGS. 11 and 12 are perspective views of a bullet according to a sixth embodiment of the present invention
  • FIGS. 13 and 14 are sectional views showing the action of the bullet according to the sixth embodiment of the present invention.
  • the bullet according to the sixth embodiment of the present invention, the first core 110 and the jacket 130 is integrally formed, the rear of the second core 120 of the bullet
  • An insertion groove 127 is formed in a direction parallel to the axial direction, and the movable body 150 is accommodated in the insertion groove 127 so as to be slidable in the axial direction of the bullet.
  • the second core 120 includes an insertion groove 127 recessed in the axial direction from the center of the rear surface of the boat tail 121 and the insertion groove 127 in contact with the rear surface of the boat tail 121.
  • a latching jaw 127a formed at an opening edge of the boat tail, and the outer edge of the rear end of the boat tail 121 may be rounded to reduce irregular air flow at the rear surface of the boat tail 121.
  • the locking jaw 127a may be formed by a pressing process after the movable body 150 is inserted into the insertion groove 127.
  • the second core may have a cylindrical structure with both ends open as shown in FIG. 13.
  • the movable body 150 is provided at the rear end of the first body 151 and the first body 151 provided to be movable in the axial direction inside the insertion groove 127, and the diameter decreases as it proceeds backward.
  • the second body 152 in the form of a cone or a pyramid.
  • the movable body 150 has the second body 152 inserted into the insertion groove 127 in a state where the first body 151 is moved toward the front side of the bullet in the insertion groove 127. 12 and 14, the second body 152 is inserted into the insertion groove 127 in the state where the first body 151 is moved to the rear side of the bullet in the insertion groove 127 as shown in FIGS. 12 and 14. Protrude outward through the opening. At this time, since the locking step 127a formed at the opening side edge of the insertion groove 127 is in close contact with the outer surface of the second body 152, the movable body 150 is prevented from being separated from the insertion groove 127. .
  • the explosion pressure of the charge for firing the bullet is completely applied to the rear of the bullet.
  • the driving force of can be obtained smoothly.
  • the second body 152 protrudes to the rear side of the boat tail 121 while the first body 151 of the movable body 150 moves to the rear side in the insertion groove 127 by inertia.
  • the smooth air flow is guided from the rear of the boat tail 121, it is possible to significantly reduce the bottom drag that inhibits the flight force of the bullet.
  • 13 to 14 has a two-stage structure, but may have a three-stage or more structure.
  • the inside of the insertion groove 127 is compressed by the explosive force during the explosion of the charge and elastically restored, for example, such as a spring for pushing the mobile unit 150 to the outside
  • An elastic member 153 having a urging force may be added.
  • the insertion groove 127 extending from the bottom surface of the bullet in Figures 13 to 14 is preferably formed so as not to reach the second coupling groove (124). Because, when the second coupling protrusion 133 is bent and inserted into the second coupling groove 124 in the pressing process, the insertion groove 127 may be pressed to hinder the movement of the movable body 150. Because. However, it is also preferable that the thickness of the second core 120 corresponding to the insertion groove 127 can withstand the pressing force in the pressing process.
  • FIG. 15 is a perspective view of a bullet according to a seventh embodiment of the present invention
  • FIG. 16 is a cross-sectional view showing a configuration of a bullet according to a seventh embodiment of the present invention.
  • the first core 110 and the jacket 130 are integrally formed, and the boat tail of the second core 120 is formed.
  • 121 is formed in the shape of a truncated cone (circular truncated cone) becomes smaller as it proceeds to the rear, the outer circumferential surface is formed in a stepped cross-sectional shape as a plurality of ring-shaped step 128 is formed on the outer circumferential surface of the truncated cone.
  • 15 and 16 show an example in which the number of the ring steps 128 is three, but the number of the ring steps 128 may be two or less or four or more.
  • the boat tail 121 of the bullet is formed in the shape of a truncated cone as the diameter decreases as it proceeds backward, the bottom drag force is suppressed by suppressing irregular air flow that may occur in the rear of the boat tail 121 during flight of the bullet. Can be reduced.
  • the boat tail 121 of the bullet is formed in a stepped cross-sectional shape in which a plurality of ring-shaped steps 128 are formed on the outer circumferential surface thereof, the boat tail 121 is configured in a truncated cone shape to reduce the bottom drag and at the same time.
  • the explosion pressure of the charge for firing may be applied to the back of the bullet intact.
  • the surface facing the rear of the bullet among the ring stepped 128 constituting the stepped cross-section is preferably formed in a concave shape. something to do.
  • the ring-shaped step 128 has a concave shape, the area to which the explosion explosion pressure is applied increases compared to the existing bullet.
  • the bullet shown in Figs. 15 to 16 has a two-stage structure, but may have a three-stage or more structure.
  • FIG. 17 is a perspective view of a bullet according to an eighth embodiment of the present invention
  • FIG. 18 is a cross-sectional view showing the configuration of a bullet according to an eighth embodiment of the present invention.
  • the first core 110 and the jacket 130 are integrally formed, and the boat tail of the second core 120 is formed.
  • 121 is formed in the shape of a truncated cone (circular truncated cone) becomes smaller as it proceeds to the rear, the outer circumferential surface is formed in a stepped cross-sectional shape as a plurality of ring-shaped step 128 is formed on the outer circumferential surface of the truncated cone.
  • the bullet according to the eighth embodiment of the present invention has a configuration difference from that of the seventh embodiment in that the surface facing the rear surface of the bullet among the ring-shaped step 128 constituting the stepped cross section is made of a flat surface, Since the rest of the configuration is the same as in the seventh embodiment, a description of the same configuration is omitted.
  • the ring-shaped step 128 has a flat surface, the area to which the explosion explosion pressure is applied is almost the same as the existing bullet.
  • the bullet shown in Figs. 17 to 18 has a two-stage structure, but may have a three-stage or more structure.
  • FIG. 19 is a perspective view of a bullet according to a ninth embodiment of the present invention
  • FIG. 20 is a sectional view showing the configuration of a bullet according to a ninth embodiment of the present invention.
  • the bullet according to the ninth embodiment of the present invention, the boat tail 121 of the second core 120 is made in the shape of a truncated cone, the diameter decreases as it proceeds to the rear, It differs from the seventh embodiment described above in that one ring-shaped step 128 'is formed on the outer circumferential surface of the truncated cone.
  • the boat tail 121 of the bullet is formed in the shape of a truncated cone as the diameter decreases as it proceeds backward, the bottom drag force is suppressed by suppressing irregular air flow that may occur in the rear of the boat tail 121 during flight of the bullet. Can be reduced.
  • the boat tail 121 of the bullet is formed with a ring-shaped step 128 'on the outer circumferential surface
  • the boat tail 128 is configured in a truncated cone shape to reduce the drag on the bottom, and at the same time, the explosion pressure of the charge for firing the bullet. It can be applied to the back of the bullet intact.
  • the area of the ring step 128 'occupying the outer circumferential surface of the boat tail 121 is preferably set in consideration of the shape for securing the area for the application of the explosion pressure and the shape of the bottom drag.
  • the surface facing the rear of the bullet of the ring step (128 ') is made of a concave shape.
  • the surface of the ring-shaped step 128 ′ facing the rear surface of the bullet may be a flat surface.
  • the bullet shown in Figs. 19 to 20 has a two-stage structure, but may have a three-stage or more structure.
  • FIG. 21 is a perspective view of a bullet according to a tenth embodiment of the present invention
  • FIG. 22 is a cross-sectional view showing the configuration of a bullet according to the tenth embodiment of the present invention.
  • the bullet according to the tenth embodiment of the present invention as shown in FIGS. 21 and 22 includes a first core 110, a second core 120, and the first core 110 and the second core 120.
  • the second core 120 is formed with an air passage 129 for connecting the rear surface and the outer peripheral surface of the second core (120).
  • the air passage 129 is formed in parallel with the axial direction of the bullet from the rear of the boat tail 121 of the second core 120 and the second core 120
  • the boat tail 121 includes a second passage 129b which is formed in a direction crossing the axial direction of the bullet from the outer circumferential surface and connects the outer circumferential surface of the boat tail 121 and the first passage 129a.
  • a plurality of such air passages 129 may be provided and arranged in a symmetrical manner with respect to the central axis of the second core 120.
  • a high pressure air flow is formed on the outer circumferential surface of the boat tail 121, and the pressure of the boat tail 121 is relatively pressured compared to the outer circumferential surface of the boat tail 121 by an irregular air flow such as a vortex. This lowers the base drag.
  • the plurality of air passages 129 formed in the second core 120 is configured to connect the rear and outer circumferential surface of the boat tail 121 so that the air can communicate, due to the pressure difference between the outer circumferential surface and the rear of the boat tail Air flows from the outer circumferential surface of the boat tail 121 through the second passage 129b and air is discharged to the rear surface of the boat tail 121 through the first passage 129a.
  • the bottom drag acting on the rear surface of the boat tail 121 is reduced by the air discharged from the first passage 129a located at the rear of the boat tail 121 during flight of the bullet, so that the flight force of the bullet It is possible to significantly reduce the drag on the bottom.
  • the bullet according to the present disclosure has a structure in which at least a part of the tail portion is not wrapped by the copper jacket. Therefore, various structures such as a structure that can reduce the drag on the bottom, a structure that allows the center of gravity (CG) to be positioned in front of the bullet, and a structure that has a tracer function that can indicate the destination of the bullet can be easily added to the tail portion. Can be formed.
  • various structures such as a structure that can reduce the drag on the bottom, a structure that allows the center of gravity (CG) to be positioned in front of the bullet, and a structure that has a tracer function that can indicate the destination of the bullet can be easily added to the tail portion. Can be formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

본 발명은 탄환에 관한 것으로서, 본 발명에 따른 탄환은 헤드부와 중간부 및 테일부를 포함하는 탄환에 있어서, 상기 헤드부를 구성하는 제1코어;와, 상기 테일부를 구성하는 제2코어; 및 상기 제1코어와 제2코어의 사이에 배치되어 상기 중간부를 구성하는 자켓;을 포함하며, 탄환의 무게중심이 길이중심보다 전방에 위치하도록 상기 제1코어의 중량이 상기 제2코어의 중량에 비해 상대적으로 크게 설정되는 것을 특징으로 한다.

Description

탄환
본 발명은 탄환에 관한 것으로서, 보다 상세하게는 탄환의 밑면 항력(base drag)을 줄일 수 있는 구조를 가진 탄환에 관한 것이다.
비행하는 탄환에 작용하는 힘에는 크게 중력(gravity), 항력(drag), 및 바람(wind)이 있다. 이중, 중력과 바람은 인간이 제어할 수 있는 힘이 아니기 때문에, 탄환의 성능개선을 위해 항력을 줄이기 위한 시도가 있어 왔다. 항력에는 탄환의 앞부분에 영향을 주는 공기 항력(air drag)과 탄환의 뒷부분에 영향을 주는 밑면 항력(base drag)이 있다.
탄환의 앞부분에 영향을 주는 공기 항력(air drag)을 줄이기 위해 탄두 앞쪽을 원추형(혹은 유선형)으로 제조하였다. 그러나, 밑면 항력을 줄이기 위해서는 겨우 보트 테일(boat tail) 형상을 도입하고 있는 실정이다.
따라서, 본 발명의 목적은 이와 같은 종래의 문제점을 해결하기 위한 것으로서, 탄환의 밑면 항력(base drag)을 줄일 수 있는 구조를 가진 탄환을 제공함에 있다.
상기 목적은, 본 발명에 따라, 헤드부와 중간부 및 테일부를 포함하는 탄환에 있어서, 상기 헤드부를 구성하는 제1코어;와, 상기 테일부를 구성하는 제2코어; 및 상기 제1코어와 제2코어의 사이에 배치되어 상기 중간부를 구성하는 자켓;을 포함하며, 탄환의 무게중심이 길이중심보다 전방에 위치하도록 상기 제1코어의 중량이 상기 제2코어의 중량에 비해 상대적으로 크게 설정되는 것을 특징으로 하는 탄환에 의해 달성된다.
여기서, 상기 제1코어는 노우즈와, 상기 노우즈의 후단으로부터 축방향으로 연장되는 제1삽입부와, 상기 제1삽입부의 외주면에 함몰되는 환형의 제1결합홈을 포함하고, 상기 제2코어는 보트 테일과, 상기 제1삽입부의 외면을 감싸도록 상기 보트 테일의 선단으로부터 축방향으로 연장되는 제2삽입부와, 상기 제1결합홈으로 삽입되는 제1결합돌기를 포함하는 것이 바람직하다.
또한, 상기 자켓은 상기 제1삽입부가 삽입되는 제1수용부와, 상기 제2삽입부가 삽입되는 제2수용부를 포함하는 것이 바람직하다.
또한, 상기 자켓의 내주면 중 상기 제1수용부와 제2수용부의 경계에는 상기 제2삽입부의 단부가 밀착하는 단턱부가 마련되고, 상기 제1수용부와 제2수용부의 경계는 상기 제1결합홈에 대응하는 위치에 마련되는 것이 바람직하다.
또한, 상기 자켓의 외주면 중 상기 제1결합홈에 대응하는 위치에는 탄대(cannelure)가 함몰 형성되는 것이 바람직하다.
또한, 상기 제2삽입부의 상기 보트 테일과 연결되는 단부의 외주면에는 환형의 제2결합홈이 함몰 형성되고, 상기 제2수용부의 단부에는 상기 제2결합홈에 삽입되는 제2결합돌기가 형성되는 것이 바람직하다.
또한, 상기 제1코어는 금속 또는 비금속 물질로 구성되는 제1물질로 이루어지고, 상기 제2코어는 상기 제1물질에 비해 상대적으로 비중이 낮은 금속 또는 비금속 물질로 구성되는 제2물질로 이루어지는 것이 바람직하다.
또한, 상기 제1코어는, 철(Fe)-탄소(C)계 합금, 텅스텐 카바이드(WC)계 합금, 합금강(alloy steel), 알루미늄(Al)계 합금, 구리(Cu), 구리(Cu)계 합금, 스테인리스 스틸, 주철(cast iron), 텅스텐(W)계 합금, 크롬 강(chromium(Cr) steel), 몰리브덴(Mo)계 합금, Ni-Cr-Mo계 합금, 우라늄(U)계 합금, 5Cr-Mo-V계 합금, 5Ni-Cr-Mo-V계 합금으로 이루어진 군으로부터 선택되는 1종 이상의 물질로 이루어지는 것이 바람직하다.
또한, 상기 제2코어는, 알루미늄(Al)계 합금, 스테인리스 스틸, 탄소(C), 강화 플라스틱, 강화 수지, 비철금속 또는 아크릴로니트릴 부타디엔 스티렌(acrylonitrile-butadiene-styrene;ABS) 중 상기 제1물질에 비해 상대적으로 비중이 낮은 1종 이상의 물질로 이루어지는 것이 바람직하다.
또한, 상기 제1코어와 자켓은 일체로 구성되는 것이 바람직하다.
또한, 상기 제1코어와 제2코어는 일체로 구성되고, 상기 제2코어의 내부에는 중공부가 마련되는 것이 바람직하다.
본 발명에 따르면, 탄환의 밑면 항력(base drag)을 줄일 수 있는 구조를 채용함으로써 밑면 항력(base drag)이 현저하게 감소되고 따라서 탄환의 사정거리, 관통력 및 저지력이 향상된 탄환을 제공함에 있다.
도 1은 본 발명의 제1실시예에 따른 탄환의 사시도,
도 2는 도 1의 분해사시도,
도 3은 도 1의 단면도,
도 4는 도 4의 "A"부분의 조립공정을 나타내는 단면도,
도 5는 도 5의 "B"부분의 조립공정을 나타내는 단면도,
도 6은 본 발명의 제2실시예에 따른 탄환의 단면도,
도 7은 본 발명의 제3실시예에 따른 탄환의 단면도,
도 8은 본 발명의 제4실시예에 따른 탄환의 사시도,
도 9는 본 발명의 제4실시예에 따른 탄환의 구성을 나타내는 단면도,
도 10은 본 발명의 제5실시예에 따른 탄환의 구성을 나타내는 단면도,
도 11 및 도 12는 본 발명의 제6실시예에 따른 탄환의 사시도,
도 13 및 도 14는 본 발명의 제6실시예에 따른 탄환의 작용을 나타내는 단면도,
도 15는 본 발명의 제7실시예에 따른 탄환의 사시도,
도 16은 본 발명의 제7실시예에 따른 탄환의 구성을 나타내는 단면도,
도 17은 본 발명의 제8실시예에 따른 탄환의 사시도,
도 18은 본 발명의 제8실시예에 따른 탄환의 구성을 나타내는 단면도,
도 19는 본 발명의 제9실시예에 따른 탄환의 사시도
도 20은 본 발명의 제9실시예에 따른 탄환의 구성을 나타내는 단면도,
도 21은 본 발명의 제10실시예에 따른 탄환의 사시도이고,
도 22는 본 발명의 제10실시예에 따른 탄환의 구성을 나타내는 단면도이다.
* 부호의 설명
110:제1코어, 111,111':노우즈, 112:제1삽입부,
113:제1결합홈, 120:제2코어, 120a:중공부,
121:보트 테일, 122:제2삽입부, 123:수용홈,
124:제2결합홈, 125:제1결합돌기, 126:홈,
127:삽입홈, 127a:걸림턱, 128,128':링형 단차,
129:공기 통로, 129a:제1통로, 129b:제2통로,
130:자켓, 131:제1수용부, 132:제2수용부,
133:제2결합돌기, 134:단턱부, 135:탄대,
140:연소재, 150:이동체, 151:제1몸체,
152:제2몸체
설명에 앞서, 여러 실시예에 있어서, 동일한 구성을 가지는 구성요소에 대해서는 동일한 부호를 사용하여 대표적으로 제1실시예에서 설명하고, 그 외의 실시예에서는 제1실시예와 다른 구성에 대해서 설명하기로 한다.
이하, 첨부한 도면을 참조하여 본 발명의 제1실시예에 따른 탄환에 대하여 상세하게 설명한다.
본 발명은 예를 들면 권총, 소총, 기관총과 같은 작은 총들에서 사용되는 상대적을 소 구경의 탄환, 대포(cannons), 곡사포(howitzers), 박격포(mortars), 및 탱크, 전투기, 전함, 잠수함에 설치된 무기 등과 같이 큰 총들 또는 포계열 무기(artillery weapon)등에서 사용되는 상대적으로 대구경의 탄환에 적용된다. 본 명세서에서, 탄환의 예로는 총탄(bullet), 포탄(shells), 및 추진체를 사용하여 무기로부터 발사된 물질을 들 수 있다. 또한, 본 발명은 화약을 추진제로 사용하는 무기뿐만 아니라 자기장을 사용하는 레일 건과 같은 무기로부터 발사되는 탄환에도 적용될 수 있다.
종래의 탄환에서는 밑면 항력(base drag)을 줄이기 위해 탄환의 테일부에 보트 테일(boat tail) 구조를 채용하고 있다. 그러나, 종래의 탄환은 중간부와 테일부를 구리 자켓이 감싸고 있으므로, 밑면 항력을 줄일 수 있는 구조를 채용하는 데 한계가 있었다.
첨부도면 중, 도 1은 본 발명의 제1실시예에 따른 탄환의 사시도이고, 도 2는 도 1의 분해사시도이고, 도 3는 도 1의 단면도이다.
상기 도면에 도시된 바와 같은 본 발명의 제1실시예에 따른 탄환은, 헤드부와 중간부 및 테일부를 포함한다. 상기 헤드부와 상기 중간부는 예를 들면, 구리로 만들어진 자켓으로 감싸질 수 있으며, 상기 테일부는 적어도 일부가 구리 자켓에 의해 감싸지지 않는 구조를 가지고 있다.
하기에 설명하는 다양한 실시예에서, 탄환은 여러가지 구조를 가질 수 있다. 예를 들면, 상기 헤드부, 상기 중간부, 및 상기 테일부가 일체로 형성되는 1단 구조, 상기 헤드부와 상기 중간부가 일체로 형성되고, 상기 테일부가 독립적으로 형성되어 결합되는 2단구조, 상기 헤드부, 상기 중간부, 및 상기 테이부가 각각 독립적으로 형성되어 결합되는 3단 구조를 가질 수 있다. 또한, 4단 또는 그 이상의 구조를 가질 수 도 있다. 본 발명은 탄환의 구조에 의해 한정되지 않으며, 다양한 구조에 적용될 수 있다.
상기 헤드부는 공기 저항 또는 공기의 항력을 감소시키기 위해 실질적으로 유선형의 노우즈(nose)를 갖는 오자이브(ogive) 형상을 갖는다.
상기 중간부는 완전한 직경의 직선부일 수 있다. 탄환의 구경은 상기 중간부의 직경에 대응한다. 상기 중간부는 상기 테일부 부근의 외면에 형성된 탄대(cannelure)를 구비할 수 있다. 상기 탄대는 배럴의 강선(rifling)과 함께 탄환 주위의 가스의 순방향 손실을 제한하거나 방지한다.
상기 테일부는 그 직경이 점차적으로 감소하는 보트 테일(boat tail) 형상을 가질 수 있다.
종래 기술의 탄환은 테일부 뒤에서 발생하는 밑면 항력과 같은 불규칙한 공기 흐름을 겪게 되어 탄환의 비행력은 감소하게된다.
그러나, 본 실시예의 탄환은 테일부의 적어도 일부가 구리 자켓에 의해 감싸지지 않으므로, 밑면 항력을 줄일 수 있는 후술하는 바와 같은 여러가지 구조를 테일부에 채용할 수 있는 자유도가 높다.
예를 들면, 상기 테일부는 도 1에 도시된 바와 같이 복수의 홈(126)을 포함할 수 있다. 비행시 복수의 홈을 따라 탄환의 저면으로 공기가 유입되고, 와류와 같은 불규칙한 공기의 흐름을 줄일 수 있게 된다.
상기 테일부에 복수의 홈을 형성하는 경우, 상기 홈은 기계가공이나 가압을 통해 형성할 수 있는데, 기계가공의 경우엔 비용이 비싸므로 가압고정을 통해 형성하는 것이 바람직하다. 그러나, 상기 테일부가 구리 자켓에 의해 감싸지는 종래와 같은 구조에서는, 가압공정에 의해 홈을 형성하면, 홈이 불규칙하게 형성되거나, 자켓과 내부 코어 사이에 간극(gap)이 생길 수 있다.
그러나, 본 실시예에서는, 상기 테일부의 적어도 일부가 구리 자켓에 의해 감싸지지 않으므로, 상기 홈을 가압이나 주조(casting)에 의해 용이하게 형성할 수 있다. 또한, 가압공정을 통해 상기 홈을 형성할 수 도 있으며, 이 경우 상기 테일부가 구리 자켓에 의해 감싸지지 않기 때문에 홈이 불규칙하게 형성되거나, 자켓과 내부 코어 사이에 간극(gap)이 생기는 것이 방지될 수 있다.
또한, 본 실시예의 탄환은 테일부의 적어도 일부가 구리 자켓에 의해 감싸지지 않으므로, 테일부가 탄환의 무게중심(center of gravity)을 탄환의 앞쪽에 위치할 수 있는 후술하는 바와 같은 구조를 채용할 수 있는 자유도가 높다.
상세히 설명하면, 본 실시예의 탄환은 상기 헤드부를 가지는 제1코어(110), 상기 테일부를 가지는 제2코어(120), 및 상기 제1코어(110)와 제2코어(120)를 감싸도록 형성된 자켓(130);을 포함하여 구성된다. 상기 자켓(130)에 의해 감싸지는 상기 제1코어(110)의 일부와 상기 제 2코어(120)의 일부가 상기 중간부에 해당한다.
일반적으로 탄환의 압력중심은 상대적 전방 위치에 있고 무게중심은 상대적인 후방 위치에 있다. 탄환의 길이가 탄환의 용도에 따라 달라지기 때문에 탄환의 길이가 길어질수록 압력중심과 무게중심 사이의 거리가 증가한다. 압력중심과 무게중심 사이의 거리가 길어질수록 요각이 증가한다. 총구에서 발사된 탄환은 탄환이 요각을 가지고 축을 무게중심으로 회전하는 회전 세차운동을 하게 된다. 큰 요각으로 회전 세차운동을 하게 되면, 탄환의 사정거리, 적중률 및 파괴력은 감소하게 된다. 따라서, 결국에는 탄환이 진행방향으로 전도되고, 탄환의 테일부가 앞으로 위치하게 되어 표적에 거의 충격을 주지 못하게 된다.
이에 대하여, 본 실시예의 탄환은 무게중심(CG)이 길이중심(CL)보다 전방에 위치하도록, 상기 제1코어(110)의 중량과 상기 제2코어(120)의 중량을 조절할 수 있다. 여기서, 상기 길이중심(CL)은 탄환의 중심축 상에서 전체 길이(L)의 1/2이 되는 지점을 의미한다.
상기 제1코어(110)는 원뿔 또는 포물선 형태의 노우즈(111)와, 상기 노우즈(111)로부터 축방향으로 연장되는 제1삽입부(112)와, 상기 제1삽입부(112)의 외주면에 원주 방향으로 함몰 형성되는 제1결합홈(113)을 포함한다.
상기 제2코어(120)는 후단으로 진행할수록 직경이 작아지도록 외주면에 테이퍼가 형성된 보트 테일(121)과, 상기 보트 테일(121)의 선단부로부터 축방향으로 연장되는 제2삽입부(122)와, 상기 제1삽입부(112)가 삽입될 수 있도록 상기 제2삽입부(122)의 선단으로부터 축방향으로 함몰되는 수용홈(123)과, 상기 제2삽입부(122)와 보트 테일(121)의 경계부분에서 상기 제2삽입부(122)의 외주면에 함몰 형성되는 제2결합홈(124)과, 상기 제2삽입부(122)로부터 절곡되어 상기 제1삽입부(112)의 제1결합홈(113)에 삽입되는 제1결합돌기(125)를 포함한다. 상기 제2결합홈(124)은 상기 보트 테일(121)의 외주면 테이퍼와 나란하도록 경사지게 형성된다.
상기 자켓(130)은 원통형 파이프의 형태로 이루어지고, 일단에는 상기 제1코어(110)의 제1삽입부(112)를 감싸는 제1수용부(131)가 형성되고, 타단에는 상기 제2코어(120)의 제2삽입부(122)를 감싸는 제2수용부(132)가 형성된다. 상기 자켓(130)의 내주면 중 상기 제1수용부(131)와 제2수용부(132)의 경계에는 단턱부(134)가 형성되고, 상기 자켓(130)의 외주면 중 상기 제1수용부(131)와 제2수용부(132)의 경계에는 탄대(135)가 함몰 형성된다. 또한, 상기 제2수용부(132)의 말단부에는 상기 제2삽입부(122)의 제2결합홈(124)에 삽입되는 제2결합돌기(133)가 형성된다.
상기 제2수용부(132)의 길이는 상기 제2삽입부(122)의 길이에 대응하도록 설정된다. 따라서, 도 4의 (a)와 같이 상기 제2삽입부(122)가 제2수용부(132)에 삽입된 상태에서는, 상기 제2삽입부(122)의 선단이 상기 자켓(130)의 단턱부(134)에 밀착되고, 상기 제2수용부(132)의 선단이 보트 테일(121)의 선단 테두리에 밀착된다. 이어, 도 4의 (b)와 같이 다이를 이용한 가압공정 등을 통해 상기 제2수용부(132)의 선단 외주면을 가압하면, 가압력에 의해 제2수용부(132)로부터 제2결합돌기(133)가 절곡 형성됨과 동시에 상기 제2결합홈(124)으로 삽입된다. 이때, 상기 제2결합홈(124)이 보트 테일(121)의 외주면과 나란하게 경사져 있으므로, 상기 제2수용부(132)의 선단부 외주면이 상기 보트 테일(121)의 외주면과 동일한 테이퍼 면을 형성하게 된다. 즉, 보트 테일(121)의 형상을 이루는 전체 테이퍼 면 중, 최외곽에는 자켓(130)의 제2결합돌기(133)가 위치하게 되므로, 제2코어(120)의 보트 테일(121)이 배럴의 강선(rifling)에 직접 접촉하는 것을 방지할 수 있다.
상기 예에서는 상기 제2수용부(132)로부터 제2결합돌기(133)가 절곡 형성됨과 동시에 상기 제2결합홈(124)으로 삽입되는 것으로 설명되어 있지만, 상기 제 2결합홈(124)가 형성되지 않을 수도 있다. 즉, 상기 예에서는 상기 테일부의 일부, 즉 보트 테일(121)의 일부가 구리자켓에 의해 감싸지지만, 상기 테일부, 즉, 보트 테일(121) 전체가 구리자켓에 의해 감싸지지 않는 구성도 가능하다.
또한, 도 5의 (a)와 같이 상기 자켓(130)의 제1수용부(131)와 제2수용부(132)의 경계는, 상기 제1코어(110)의 제1삽입부(112)가 자켓(130)의 제1수용부(131)에 삽입되어 상기 제1수용부(131)의 선단이 노우즈(111)의 후단측 테두리에 밀착한 상태에서, 상기 제1삽입부(112)의 제1결합홈(113)에 대응하는 위치로 설정된다. 따라서, 상기 제1삽입부(112)가 제1수용부(131)에 삽입된 상태에서는, 단턱부(134) 및 제2삽입부(122)의 선단이 제1결합홈(113)에 대응하는 위치에 배치된다. 이어, 도 5의 (b)와 같이 다이를 이용한 가압공정 등을 통해 상기 자켓(130)의 외주면을 가압하여 탄대(135)를 형성하면, 가압력에 의해 상기 제2삽입부(122)로부터 제1결합돌기(125)가 절곡 형성됨과 동시에 상기 제1결합홈(113)에 삽입된다. 이때, 상기 자켓(130)의 내주면이 상기 제1결합돌기(125)의 외주면과 제1결합홈(113)에 밀착됨에 따라, 제1코어(110)와 제2코어(120)의 조립상태가 견고하게 유지되도록 할 수 있다.
상기 보트 테일(121)의 외주면에는, 예를 들면, 일정한 간격으로 복수의 홈(126)이 형성되며, 이러한 홈(126)은 기계가공, 연마, 다이를 이용한 가압 공정 또는 주조 공정을 통해 형성할 수 있다. 그러나, 상기 보트 테일(121)은 홈(126)을 가지지 않을 수 도 있다.
본 실시예에 따르면, 상기 제1코어(110)는 텅스텐 또는 몰리브덴, 상기 제2코어(120)는 알루미늄, 상기 자켓(130)은 구리로 만들어질 수 있다. 이와 같이 제1코어(110)를 구성하는 물질을 제2코어(120)를 구성하는 물질보다 높은 비중을 갖는 물질로 선택하여 상기 제1코어(110)의 중량을 제2코어(120)의 중량보다 상대적으로 무겁게 설정함으로써, 탄환의 무게중심이 길이중심보다 전방에 위치하도록 할 수 있다.
구체적으로, 상기 제1코어(110)는 금속 또는 비금속 물질, 예를 들어 철(Fe)-탄소(C)계 합금, 텅스텐 카바이드(WC)계 합금, 합금강(alloy steel), 알루미늄(Al)계 합금, 구리(Cu), 구리(Cu)계 합금, 스테인리스 스틸, 주철(cast iron), 텅스텐(W)계 합금, 크롬 강(chromium(Cr) steel), 몰리브덴(Mo)계 합금, Ni-Cr-Mo계 합금, 우라늄(U)계 합금, 5Cr-Mo-V계 합금, 5Ni-Cr-Mo-V계 합금으로 이루어진 군으로부터 선택되는 1종 이상의 물질로 만들어질 수 있다.
상기 제2코어(120)는 상기 제1코어(110)보다 상대적으로 비중이 낮은 금속 또는 비금속 물질, 예를 들어 알루미늄(Al)계 합금, 스테인리스 스틸, 탄소, 강화 플라스틱, 강화 수지, 비철금속 또는 아크릴로니트릴 부타디엔 스티렌(acrylonitrile-butadiene-styrene;ABS) 중 상기 제1물질에 비해 상대적으로 비중이 낮은 1종 이상의 물질로 만들어질 수 있다.
한편, 상기 자켓(130)은 구리 또는 도금용 합금(gilding metal)으로 만들어질 수 있다.
이러한 물질들은 후술하는 여러 실시예에도 적용될 수 있다.
도 6은 본 발명의 제2실시예에 따른 탄환의 구성을 나타내는 단면도이다.
도 6에 도시된 바와 같은 본 발명의 제2실시예에 따른 탄환은, 제1실시예의 제1코어(110)와 자켓(130)이 일체로 구성되는 점에서 제1실시예와 차이를 갖는다.
구체적으로, 일체로 구성된 제1코어(110) 및 자켓(130)은 구리, 제2코어(120)는 알루미늄으로 만들어질 수 있다. 이 경우에도 제1코어(110)와 제2코어(120)를 구성하는 물질의 비중차이로 인해 탄환의 무게중심이 길이중심보다 전방에 위치하게 되므로, 탄환의 사정거리, 관통력 및 저지력을 향상시킬 수 있다. 아울러, 상기 제1코어(110)의 선단에 배치되는 노우즈(111’)는 제1코어(110)와 분리 구성되고, 상기 제1코어(110)보다 경도 또는 비중이 높은 물질로 구성될 수 있다.
한편, 상기 제2코어(120)에는 제2삽입부(122)와 제2결합홈(124)이 형성되고, 상기 자켓(130)에는 상기 제2삽입부(122)가 삽입되는 제2수용부(132)와 상기 제2결합홈(124)에 삽입되는 제2결합돌기(133)가 형성될 수 있다. 아울러 상기 제2코어(120)와 자켓(130)의 결합은 제1실시예와 동일한 형태로 이루어지므로, 이에 대한 구체적인 설명은 생략한다.
도 7은 본 발명의 제3실시예에 따른 탄환의 구성을 나타내는 단면도이다.
도 7에 도시된 바와 같은 본 발명의 제3실시예에 따른 탄환은, 제1실시예의 제1코어(110)와 제2코어(120)가 일체로 구성되는 점에서 제1실시예와 차이를 갖는다.
구체적으로, 상기 제1코어(110)와 제2코어(120)는, 제1코어(110)의 제1삽입부(112)와 제2코어(120)의 제2삽입부(122)가 서로 연결된 형태로 이루어지고, 상기 자켓(130)은 상기 제1삽입부(112)와 제2삽입부(122)를 감싸는 형태로 배치된다. 또한, 상기 제2삽입부(122)에는 제2결합홈(124)이 형성되고, 상기 자켓(130)에는 상기 제2결합홈(124)에 삽입되는 제2결합돌기(133)가 형성되어 상기 제2코어(120)와 자켓(130)이 제1실시예와 같은 형태로 조립될 수 있다.
여기서, 일체로 구성된 제1코어(110)와 제2코어(120)는 텅스텐 재질로 구성되고, 상기 자켓(130)은 구리 재질로 구성될 수 있으며, 탄환의 무게중심이 길이중심보다 전방에 위치할 수 있도록, 상기 제2코어(120)의 내부에는 중공부(120a)가 형성된다.
상기와 같이, 본 발명의 여러 실시예에 따르면, 탄환의 무게중심이 길이중심보다 전방에 위치하게 되므로, 세차운동과 전도를 방지할 수 있으며, 이로 인해 탄환의 사정거리, 관통력 및 저지력을 향상시킬 수 있다.
그러나, 본 발명은 탄환의 무게중심이 길이중심보다 전방에 위치한 탄환에 제한되는 것은 아니며, 상기 보트 테일의 일부가 상기 자켓에 의해 감싸지지 않는 구조는 무게 중심이 길이중심보다 후방에 위치한 탄환에도 적용가능하다.
도 8은 본 발명의 제4실시예에 따른 탄환의 사시도이고, 도 9는 본 발명의 제4실시예에 따른 탄환의 구성을 나타내는 단면도이다.
도 8 및 도 9에 도시된 바와 같은 본 발명의 제4실시예에 따른 탄환은, 제1삽입부(112)가 형성된 제1코어(110), 제2삽입부(122)가 형성된 제2코어(120), 상기 제1삽입부(112)를 감싸는 제1수용부(131)와 상기 제2삽입부(122)를 감싸는 제2수용부(132)가 형성된 자켓(140)을 포함한다.
여기서, 상기 제1코어(110)는 제2코어(120)에 비해 상대적으로 비중이 높은 물질로 구성하거나, 제2코어(120)에 비해 상대적으로 무겁게 설계함으로써, 탄환의 무게중심이 길이중심보다 전방에 위치하도록 하는 것이 바람직하다.
또한, 상기 제1코어(110)의 선단을 구성하는 노우즈(111)의 내부에는 필요에 따라 목표물과의 충돌시 의해 폭발할 수 있는 화약이 수용될 수 있다.
아울러, 상기 제2코어(120)의 보트 테일(121) 후면에는, 연소재(140)를 삽입할 수 있는 삽입홈(127)이 함몰 형성되고, 상기 삽입홈(127) 내에는 탄환의 비행시 대략 0.5~1초 정도 연소될 수 있는 연소재(140)가 충진된다. 상기 연소재(140)는 예를 들면, 화약, 지연제, 점화제를 점도가 있는 응고제, 예를 들면, 실리콘, 오공본드, 녹말가루, 에폭시, 또는 바니시(varnish) 등과 섞어서 제조할 수 있다.
즉, 상기 연소재(140)의 연소과정에서 발생하는 연소가스가 제2코어(120)의 후면에 형성된 삽입홈(127)으로부터 배출되면서, 탄환의 비행과정에서 보트 테일(121)의 후면에서 생성되는 밑면 항력을 저감시키므로, 탄환의 비행력을 저해하는 밑면 항력을 현저하게 줄일 수 있으며, 이로 인해, 탄환의 사정거리, 관통력 및 저지력을 향상시킬 수 있다.
아울러, 상기 연소재(140)가 연소과정에서 발광하는 물질로 선택되는 경우에는 탄환의 이동 경로가 시각적으로 관찰되도록 할 수 있다. 이경우, 적을 최초로 발견한 사람이 사격을 할 경우, 탄환의 뒷면에서 불빛이 나오므로 그의 동료들도 적의 위치를 알 수 있게 하는 예광탄(tracer)의 역할 도 하게 된다.
이러한 예광탄 기능은 상기 삽입홈(127)이 없는 구조에서 형광물질과, 반사율가 우수한 도료를 혼합하여 탄환의 뒷면에 도포하여 구현할 수도 있다. 화약의 폭발 시 발생한 빛에 의해 형광물질이 빛을 방출하게 되어 밤에는 이 빛의 의해 탄환의 최종 목적지가 식별 가능하게 되고, 낮에는 반사율이 우수한 도료에 의해 햇빛이 반사하게 되므로 탄환의 최종 목적지가 식별 가능하게 된다.
한편, 탄환의 발사와 동시에 상기 연소재(140)가 배럴 내에서 발화하는 것을 방지하기 위해, 상기 삽입홈(140) 내에는 대략 0.2초 정도 발화를 지연시킬 수 있는 지연재(미도시)가 마련될 수 있다. 이러한 지연재는 상기 연소재(140)가 배럴 내에서 연소되는 것을 방지함으로써, 연소재(140)의 연소과정에서 발생하는 그을음 등에 의해 배럴의 수명이 단축되는 것을 방지할 수 있다.
도 10은 본 발명의 제5실시예에 따른 탄환의 구성을 나타내는 단면도이다.
도 10에 도시된 바와 같은 본 발명의 제5실시예에 따른 탄환은, 제4실시예의 제1코어(110)의 제1삽입부(112)와 제2코어(120)의 제2삽입부(122)가 서로 연결되어 일체로 구성되고, 상기 자켓(130)이 상기 제1삽입부(112)와 제2삽입부(122)를 둘러싸는 형태로 배치되는 점에서 제4실시예와 구성의 차이를 갖는다. 한편, 제2코어(120)의 보트 테일(121) 후면에 형성되는 삽입홈(127)과, 상기 삽입홈(127) 내에 배치되는 연소재(140)는 제4실시예와 동일하게 이루어지므로, 이에 대한 구체적인 설명은 생략한다.
한편, 제5실시예에 따른 탄환은, 제1코어(110)와 제2코어(120)가 동일 재질로 구성되나, 제2코어(120)의 보트 테일(121)에 삽입홈(127)이 형성되므로, 탄환의 무게중심이 길이중심보다 전방에 위치하게 된다.
도 11 및 도 12는 본 발명의 제6실시예에 따른 탄환의 사시도이고, 도 13 및 도 14는 본 발명의 제6실시예에 따른 탄환의 작용을 나타내는 단면도이다.
도 11 내지 도 14에 도시된 바와 같은 본 발명의 제6실시예에 따른 탄환은, 제1코어(110)와 자켓(130)이 일체로 구성되고, 제2코어(120)의 후면에는 탄환의 축방향과 나란한 방향으로 삽입홈(127)이 형성되고, 상기 삽입홈(127)에는 이동체(150)가 탄환의 축방향으로 슬라이딩 가능한 상태로 수용된다.
구체적으로, 상기 제2코어(120)는, 보트 테일(121)의 후면 중앙으로부터 축방향으로 함몰 형성되는 삽입홈(127)과, 상기 보트 테일(121)의 후면과 접하는 상기 삽입홈(127)의 개구측 테두리에 형성되는 걸림턱(127a)을 포함하며, 상기 보트 테일(121)의 후단부 외측 모서리는 상기 보트 테일(121)의 후면에서의 불규칙한 공기 흐름을 감소시키기 위해 라운딩 처리될 수 있다.
상기 걸림턱(127a)는 상기 이동체(150)이 상기 삽입홈(127)에 삽입된 후 가압공정에 의해 형성될 수도 있다.
또한, 상기 제 2코어는 도 13에 나타낸 바와 같이 양단이 개방된 원통형구조를 가질수 도 있다.
상기 이동체(150)는 상기 삽입홈(127)의 내부에서 축방향으로 이동 가능하게 마련되는 제1몸체(151)와, 상기 제1몸체(151)의 후단에 마련되며 후방으로 진행할수록 직경이 감소하는 형태, 예를 들면, 원뿔 또는 각뿔 형태의 제2몸체(152)를 포함한다.
이러한 이동체(150)는, 도 11 및 도 13과 같이 상기 제1몸체(151)가 삽입홈(127) 내에서 탄환의 전방 측으로 이동한 상태에서는 상기 제2몸체(152)가 삽입홈(127)의 내부로 완전하게 수용되고, 도 12 및 도 14와 같이 상기 제1몸체(151)가 삽입홈(127) 내에서 탄환의 후방 측으로 이동한 상태에서는 상기 제2몸체(152)가 삽입홈(127)의 개구를 통해 외부로 돌출된다. 이때, 상기 삽입홈(127)의 개구측 테두리에 형성된 걸림턱(127a)이 제2몸체(152)의 외측면에 밀착하게 되므로, 이동체(150)가 삽입홈(127)으로부터 이탈하는 것이 방지된다.
즉, 상기 탄환은 상기 이동체(150)의 제2몸체(152)가 삽입홈(127) 내에 완전하게 수용된 상태로 장전되므로 탄환의 발사를 위한 장약의 폭발 압력이 탄환의 후면에 온전하게 인가되어 탄환의 추진력을 원활하게 얻을 수 있다. 또한, 탄환의 발사 이후에는 상기 이동체(150)의 제1몸체(151)가 관성에 의해 삽입홈(127) 내에서 후방 측으로 이동하면서 제2몸체(152)가 보트 테일(121)의 후면으로 돌출됨에 따라, 보트 테일(121)의 후방에서 원활한 공기 흐름을 안내하므로, 탄환의 비행력을 저해하는 밑면 항력을 현저하게 줄일 수 있다.
도 13 내지 도 14에 나타낸 탄환은 2단구조를 가지고 있지만, 3단 또는 그 이상의 구조를 가질 수 도 있다.
또한, 도 13 내지 도 14에 도시된 바와 같이 삽입홈(127)의 내부에는 장약의 폭발시 폭발력에 의해 압축되었다가 탄성복원되면서 상기 이동체(150)를 외부로 밀어내는 예를 들면 스프링과 같은 부세력(urging force)을 가진 탄성부재(153)가 추가될 수도 있다.
또한, 도 13내지 도 14에서 상기 탄환의 바닥면으로부터 연장되는 상기 삽입홈(127)은 상기 제2결합홈(124)에 다다르지 않도록 형성되는 것이 바람직하다. 왜냐하면, 가압공정에서 상기 제2결합돌기(133)가 절곡되어 상기 제2결합홈(124)으로 삽입될 때, 상기 삽입홈(127)이 눌러져서 상기 이동체(150)의 이동을 방해할 수도 있기 때문이다. 그러나, 상기 삽입홈(127)에 해당하는 상기 제2코어(120)의 두께가 상기 가압공정에서의 가압력을 견딜 수 있는 것도 바람직하다.
도 15는 본 발명의 제7실시예에 따른 탄환의 사시도이고, 도 16은 본 발명의 제7실시예에 따른 탄환의 구성을 나타내는 단면도이다.
도 15 및 도 16에 도시된 바와 같은 본 발명의 제7실시예에 따른 탄환은, 제1코어(110)와 자켓(130)이 일체로 구성되고, 상기 제2코어(120)의 보트 테일(121)은 후방으로 진행할수록 직경이 작아지는 원뿔대(circular truncated cone)의 형상으로 이루어지며, 상기 원뿔대의 외주면에는 다수의 링형 단차(128)가 형성됨에 따라 외주면이 계단형의 단면 형태로 이루어진다.
이러한, 도 15 및 도 16에는 링형 단차(128)의 수가 세 개인 예를 나타내고 있지만, 링형 단차(128)의 수는 2이하 또는 4이상일 수도 있다.
즉, 상기 탄환의 보트 테일(121)은 후방으로 진행할수록 직경이 감소하는 원뿔대의 형상으로 이루어지므로 탄환의 비행시 보트 테일(121)의 후방에서 발생할 수 있는 불규칙적인 공기의 흐름을 억제하여 밑면 항력을 줄일 수 있다.
또한, 상기 탄환의 보트 테일(121)은 외주면에 다수의 링형 단차(128)가 형성된 계단형 단면 형태로 이루어지므로, 보트 테일(121)을 원뿔대 형상으로 구성하여 밑면 항력을 감소시키는 동시에, 탄환의 발사를 위한 장약의 폭발 압력이 탄환의 후면에 온전하게 인가되도록 할 수 있다.
한편, 장약의 폭발 압력이 상기 보트 테일(121)의 후면에 더욱 효과적으로 전달될 수 있도록, 계단형 단면을 구성하는 링형 단차(128) 중 탄환의 후면과 마주하는 면은 오목한 형태로 구성되는 것이 바람직할 것이다.
따라서, 상기 링형 단차(128)가 오목한 형태를 가지고 있으므로, 장약의 폭발 압력이 인가되는 면적은 기존의 탄환에 비해 증가하게 된다.
도 15 내지 도 16에 나타낸 탄환은 2단구조를 가지고 있지만, 3단 또는 그 이상의 구조를 가질 수 도 있다.
도 17은 본 발명의 제8실시예에 따른 탄환의 사시도이고, 도 18은 본 발명의 제8실시예에 따른 탄환의 구성을 나타내는 단면도이다.
도 17 및 도 18에 도시된 바와 같은 본 발명의 제8실시예에 따른 탄환은, 제1코어(110)와 자켓(130)이 일체로 구성되고, 상기 제2코어(120)의 보트 테일(121)은 후방으로 진행할수록 직경이 작아지는 원뿔대(circular truncated cone)의 형상으로 이루어지며, 상기 원뿔대의 외주면에는 다수의 링형 단차(128)가 형성됨에 따라 외주면이 계단형의 단면 형태로 이루어진다.
이러한 본 발명의 제8실시예에 따른 탄환은, 계단형 단면을 구성하는 링형 단차(128) 중 탄환의 후면과 마주하는 면이 평탄면으로 이루어지는 점에서 제7실시예와 구성의 차이를 가지며, 이를 제외한 나머지 구성은 제7실시예와 동일하게 이루어지므로, 동일 구성에 대한 설명은 생략한다.
따라서, 상기 링형단차(128)가 평탄면을 가지고 있으므로, 장약의 폭발 압력이 인가되는 면적은 기존의 탄환과 거의 동일한 면적이 된다.
도 17 내지 도 18에 나타낸 탄환은 2단구조를 가지고 있지만, 3단 또는 그 이상의 구조를 가질 수 도 있다.
도 19는 본 발명의 제9실시예에 따른 탄환의 사시도이고, 도 20은 본 발명의 제9실시예에 따른 탄환의 구성을 나타내는 단면도이다.
도 19 및 도 20에 도시된 바와 같은 본 발명의 제9실시예에 따른 탄환은, 제2코어(120)의 보트 테일(121)이 후방으로 진행할수록 직경이 작아지는 원뿔대의 형상으로 이루어지고, 원뿔대의 외주면에 하나의 링형 단차(128')가 형성되는 점에서 상술한 제7실시예와 차이를 갖는다.
즉, 상기 탄환의 보트 테일(121)은 후방으로 진행할수록 직경이 감소하는 원뿔대의 형상으로 이루어지므로 탄환의 비행시 보트 테일(121)의 후방에서 발생할 수 있는 불규칙적인 공기의 흐름을 억제하여 밑면 항력을 줄일 수 있다.
또한, 상기 탄환의 보트 테일(121)은 외주면에 링형 단차(128')가 형성되므로, 보트 테일(128)을 원뿔대 형상으로 구성하여 밑면 항력을 감소시키는 동시에, 탄환의 발사를 위한 장약의 폭발 압력이 탄환의 후면에 온전하게 인가되도록 할 수 있다. 이때, 상기 보트 테일(121)의 외주면에서 차지하는 링형 단차(128')의 면적은 폭발 압력의 인가를 위한 면적 확보와 밑면 항력의 방지를 위한 형상을 고려하여 설정되는 것이 바람직하다.
한편, 장약의 폭발 압력이 상기 보트 테일(121)의 후면에 더욱 효과적으로 전달될 수 있도록, 상기 링형 단차(128') 중 탄환의 후면과 마주하는 면은 오목한 형태로 이루어지는 것이 바람직할 것이다.
그러나, 상기 링형 단차(128') 중 탄환의 후면과 마주하는 면은 평탄한 면이 될 수도 있다.
도 19 내지 도 20에 나타낸 탄환은 2단구조를 가지고 있지만, 3단 또는 그 이상의 구조를 가질 수 도 있다.
도 21은 본 발명의 제10실시예에 따른 탄환의 사시도이고, 도 22는 본 발명의 제10실시예에 따른 탄환의 구성을 나타내는 단면도이다.
도 21 및 도 22에 도시된 바와 같은 본 발명의 제10실시예에 따른 탄환은, 제1코어(110)와, 제2코어(120) 및 상기 제1코어(110)와 제2코어(120)를 연결하는 자켓(130)을 포함하며, 상기 제2코어(120)에는 제2코어(120)의 후면과 외주면을 연결하는 공기 통로(129)가 형성된다.
구체적으로, 상기 공기 통로(129)는 상기 제2코어(120)의 보트 테일(121) 후면에서 탄환의 축방향과 나란하게 형성되는 제1통로(129a)와, 상기 제2코어(120)의 보트 테일(121) 외주면에서 탄환의 축방향과 교차하는 방향으로 형성되어 보트 테일(121)의 외주면과 상기 제1통로(129a)를 연결하는 제2통로(129b)를 포함한다.
이러한 공기 통로(129)는 다수 마련되고 제2코어(120)의 중심축을 기준으로 대칭되는 형태로 배치될 수 있다.
탄환의 비행시, 보트 테일(121)의 외주면에는 높은 압력의 공기 흐름이 형성되고, 보트 테일(121)의 후면에는 와류와 같은 불규칙한 공기흐름에 의해 보트 테일(121)의 외주면에 비해 상대적으로 압력이 낮아지면서 밑면 항력이 발생하게 된다.
이때, 제2코어(120)에 형성된 다수의 공기 통로(129)는 보트 테일(121)의 후면과 외주면을 연결하여 공기가 연통할 수 있도록 구성되므로, 보트 테일의 외주면과 후면의 압력차에 의해 상기 제2통로(129b)를 통해 보트 테일(121)의 외주면으로부터 공기가 유입되고, 상기 제1통로(129a)를 통해 보트 테일(121)의 후면으로 공기가 배출된다.
따라서, 탄환의 비행시 상기 보트 테일(121)의 후면에 위치하는 제1통로(129a)로부터 배출되는 공기에 의해 상기 보트 테일(121)의 후면에서 작용하는 밑면 항력이 저감되므로, 탄환의 비행력을 저하시키는 밑면 항력을 현저하게 줄일 수 있다.
상술한 바와 같이, 본 개시에 따른 탄환은 테일부의 적어도 일부가 구리 자켓에 의해 감싸지지 않는 구조를 가지고 있다. 따라서, 밑면 항력을 줄일 수 있는 다양한 구조, 무게중심(CG)을 탄환의 전방에 위치시킬 수 있는 구조, 탄환의 목적지를 나태 낼 수 있는 예광탄 기능을 가지는 구조 등 여러가지 다양한 구조를 용이하게 테일부에 형성할 수 있다.
본 발명의 권리범위는 상술한 실시예에 한정되는 것이 아니라 첨부된 특허청구범위 내에서 다양한 형태의 실시예로 구현될 수 있다. 특허청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 누구든지 변형 가능한 다양한 범위까지 본 발명의 청구범위 기재의 범위 내에 있는 것으로 본다.

Claims (11)

  1. 헤드부와 중간부 및 테일부를 포함하는 탄환에 있어서,
    상기 헤드부를 구성하는 제1코어;
    상기 테일부를 구성하는 제2코어; 및
    상기 제1코어와 제2코어의 사이에 배치되어 상기 중간부를 구성하는 자켓;을 포함하며,
    탄환의 무게중심이 길이중심보다 전방에 위치하도록 상기 제1코어의 중량이 상기 제2코어의 중량에 비해 상대적으로 크게 설정되는 것을 특징으로 하는 탄환.
  2. 제 1항에 있어서,
    상기 제1코어는 노우즈와, 상기 노우즈의 후단으로부터 축방향으로 연장되는 제1삽입부와, 상기 제1삽입부의 외주면에 함몰되는 환형의 제1결합홈을 포함하고,
    상기 제2코어는 보트 테일과, 상기 제1삽입부의 외면을 감싸도록 상기 보트 테일의 선단으로부터 축방향으로 연장되는 제2삽입부와, 상기 제1결합홈으로 삽입되는 제1결합돌기를 포함하는 것을 특징으로 하는 탄환.
  3. 제 2항에 있어서,
    상기 자켓은 상기 제1삽입부가 삽입되는 제1수용부와, 상기 제2삽입부가 삽입되는 제2수용부를 포함하는 것을 특징으로 하는 탄환.
  4. 제 3항에 있어서,
    상기 자켓의 내주면 중 상기 제1수용부와 제2수용부의 경계에는 상기 제2삽입부의 단부가 밀착하는 단턱부가 마련되고, 상기 제1수용부와 제2수용부의 경계는 상기 제1결합홈에 대응하는 위치에 마련되는 것을 특징으로 하는 탄환.
  5. 제 4항에 있어서,
    상기 자켓의 외주면 중 상기 제1결합홈에 대응하는 위치에는 탄대(cannelure)가 함몰 형성되는 것을 특징으로 하는 탄환.
  6. 제 3항에 있어서,
    상기 제2삽입부의 상기 보트 테일과 연결되는 단부의 외주면에는 환형의 제2결합홈이 함몰 형성되고, 상기 제2수용부의 단부에는 상기 제2결합홈에 삽입되는 제2결합돌기가 형성되는 것을 특징으로 하는 탄환.
  7. 제 1항에 있어서,
    상기 제1코어는 금속 또는 비금속 물질로 구성되는 제1물질로 이루어지고, 상기 제2코어는 상기 제1물질에 비해 상대적으로 비중이 낮은 금속 또는 비금속 물질로 구성되는 제2물질로 이루어지는 것을 특징으로 하는 탄환.
  8. 제 7항에 있어서,
    상기 제1코어는, 철(Fe)-탄소(C)계 합금, 텅스텐 카바이드(WC)계 합금, 합금강(alloy steel), 알루미늄(Al)계 합금, 구리(Cu), 구리(Cu)계 합금, 스테인리스 스틸, 주철(cast iron), 텅스텐(W)계 합금, 크롬 강(chromium(Cr) steel), 몰리브덴(Mo)계 합금, Ni-Cr-Mo계 합금, 우라늄(U)계 합금, 5Cr-Mo-V계 합금, 5Ni-Cr-Mo-V계 합금으로 이루어진 군으로부터 선택되는 1종 이상의 물질로 이루어지는 것을 특징으로 하는 탄환.
  9. 제 7항에 있어서,
    상기 제2코어는, 알루미늄(Al)계 합금, 스테인리스 스틸, 탄소(C), 강화 플라스틱, 강화 수지, 비철금속 또는 아크릴로니트릴 부타디엔 스티렌(acrylonitrile-butadiene-styrene;ABS) 중 상기 제1물질에 비해 상대적으로 비중이 낮은 1종 이상의 물질로 이루어지는 것을 특징으로 하는 탄환.
  10. 제 1항에 있어서,
    상기 제1코어와 자켓은 일체로 구성되는 것을 특징으로 하는 탄환.
  11. 제 1항에 있어서,
    상기 제1코어와 제2코어는 일체로 구성되고, 상기 제2코어의 내부에는 중공부가 마련되는 것을 특징으로 하는 탄환.
PCT/KR2018/007870 2018-05-31 2018-07-11 탄환 WO2019231043A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180062700A KR20190136686A (ko) 2018-05-31 2018-05-31 탄환
KR10-2018-0062700 2018-05-31

Publications (1)

Publication Number Publication Date
WO2019231043A1 true WO2019231043A1 (ko) 2019-12-05

Family

ID=68698603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/007870 WO2019231043A1 (ko) 2018-05-31 2018-07-11 탄환

Country Status (2)

Country Link
KR (1) KR20190136686A (ko)
WO (1) WO2019231043A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019116283A1 (de) * 2019-06-14 2020-12-17 Ruag Ammotec Gmbh Projektil, Verfahren zum Herstellen eines Projektils und Munition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080114293A (ko) * 2007-06-27 2008-12-31 공주대학교 산학협력단 권총용 비독성 탄환
KR20110000621A (ko) * 2008-01-18 2011-01-04 비에이이 시스템즈 보포즈 아베 빠르고 용이한 조립을 위해 구성된 탄환
US20140311372A1 (en) * 2011-07-26 2014-10-23 Ra Brands, L.L.C. Multi-component bullet with core retention feature and method of manufacturing the bullet
KR20150031425A (ko) * 2012-05-29 2015-03-24 리버티 애뮤니션 인코포레이티드 고 체적의 다수의 요소의 발사체 조립체
KR101702955B1 (ko) * 2016-11-03 2017-02-09 주식회사 두레텍 유효 사거리가 향상된 탄두

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080114293A (ko) * 2007-06-27 2008-12-31 공주대학교 산학협력단 권총용 비독성 탄환
KR20110000621A (ko) * 2008-01-18 2011-01-04 비에이이 시스템즈 보포즈 아베 빠르고 용이한 조립을 위해 구성된 탄환
US20140311372A1 (en) * 2011-07-26 2014-10-23 Ra Brands, L.L.C. Multi-component bullet with core retention feature and method of manufacturing the bullet
KR20150031425A (ko) * 2012-05-29 2015-03-24 리버티 애뮤니션 인코포레이티드 고 체적의 다수의 요소의 발사체 조립체
KR101702955B1 (ko) * 2016-11-03 2017-02-09 주식회사 두레텍 유효 사거리가 향상된 탄두

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019116283A1 (de) * 2019-06-14 2020-12-17 Ruag Ammotec Gmbh Projektil, Verfahren zum Herstellen eines Projektils und Munition
US11156441B2 (en) 2019-06-14 2021-10-26 Ruag Ammotec Gmbh Projectile, method of manufacturing a projectile and ammunition

Also Published As

Publication number Publication date
KR20190136686A (ko) 2019-12-10

Similar Documents

Publication Publication Date Title
US11402187B2 (en) Polymer projectile having an integrated driving band
US4142467A (en) Projectile with sabot
US3762332A (en) Projectile sabot
US4408538A (en) Launching mechanism for subcalibre projectile
US7568433B1 (en) Aerodynamically stable finless projectile
WO2009113773A2 (ko) 탄약
WO2018080199A2 (en) Projectile
US3349708A (en) Rocket projectile
US4653404A (en) High velocity notched ammunition sabot
US4384528A (en) Duplex round
US20080257192A1 (en) High Muzzle Velocity Projectiles and Barrels
US4878432A (en) Multistage kinetic energy penetrator
WO2019231043A1 (ko) 탄환
US2996992A (en) Projectile
US2798433A (en) Stable sabot
US20230384070A1 (en) Firearm ammunition component and method of use
US8434394B1 (en) Apparatus for adapting a rocket-assisted projectile for launch from a smooth bore tube
KR100331776B1 (ko) 소구경발사체를위한부품들이조절분리되는탄환발사장치
EP1196735B1 (en) Ramming brake for gun-launched projectiles
US5063852A (en) Forward full caliber control tube for a cased telescoped ammunition round
US20070234925A1 (en) Sabot allowing .17-caliber projectile use in a .22-caliber weapon
USH1999H1 (en) Tuning saboted projectile performance through bourrelet modification
US4258625A (en) Ball-actuated tubular projectile
JP5305378B2 (ja) オブチュレータ及び弾丸
US10345086B1 (en) MOUT projectile with sabot integrated shot start

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18920714

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18920714

Country of ref document: EP

Kind code of ref document: A1