WO2019231001A1 - Bog 재액화 시스템 및 이를 이용한 bog 재액화 방법 - Google Patents

Bog 재액화 시스템 및 이를 이용한 bog 재액화 방법 Download PDF

Info

Publication number
WO2019231001A1
WO2019231001A1 PCT/KR2018/006084 KR2018006084W WO2019231001A1 WO 2019231001 A1 WO2019231001 A1 WO 2019231001A1 KR 2018006084 W KR2018006084 W KR 2018006084W WO 2019231001 A1 WO2019231001 A1 WO 2019231001A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquefied gas
bog
reliquefaction
storage tank
drum
Prior art date
Application number
PCT/KR2018/006084
Other languages
English (en)
French (fr)
Inventor
이동인
이재익
Original Assignee
주식회사 엔케이
서미영
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엔케이, 서미영 filed Critical 주식회사 엔케이
Priority to CN201880094053.0A priority Critical patent/CN112219079A/zh
Publication of WO2019231001A1 publication Critical patent/WO2019231001A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • F25J1/0025Boil-off gases "BOG" from storages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C6/00Methods and apparatus for filling vessels not under pressure with liquefied or solidified gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0045Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/005Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/007Primary atmospheric gases, mixtures thereof
    • F25J1/0072Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0204Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a single flow SCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0277Offshore use, e.g. during shipping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0146Two-phase
    • F17C2225/0153Liquefied gas, e.g. LPG, GPL
    • F17C2225/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0339Heat exchange with the fluid by cooling using the same fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0341Heat exchange with the fluid by cooling using another fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/02Mixing fluids
    • F17C2265/022Mixing fluids identical fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/033Treating the boil-off by recovery with cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/033Treating the boil-off by recovery with cooling
    • F17C2265/034Treating the boil-off by recovery with cooling with condensing the gas phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/90Mixing of components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/02Mixing or blending of fluids to yield a certain product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/34Details about subcooling of liquids

Definitions

  • This technology is mainly related to the storage and transportation of liquefied gas, which is highly related to the ship sector, and specifically, the technology in the field of reliquefying Boil Off Gs (BOG) generated in a liquefied gas storage tank such as LNG. to be.
  • BOG Boil Off Gs
  • LNG off-shore storage tanks of LNG are naturally produced at about 0.5 vol% / day. Efforts to reliquefy and recover these BOGs have been made consistently in terms of efficient use of resources and various reliquefaction systems are known.
  • C3MR system is more efficient than SMR system
  • SMR systems have the disadvantage that their preparation is relatively easy while their efficiency is low.
  • N2 system is a relatively safe process, the efficiency is very low, the weight is heavy and the manufacturing cost is expensive.
  • Another object of the present invention is to provide a method for efficiently reliquefying BOG using the above reliquefaction system.
  • an object of this invention is to provide the LNG conveying apparatus or storage apparatus provided with the said reliquefaction system, or employing the said reliquefaction method.
  • BOG reliquefaction system comprises cooling means for cooling the liquefied gas discharged from the liquefied gas storage tank; And a reliquefaction drum for reliquefying the BOG by mixing the liquefied gas and the BOG cooled via the cooling means.
  • the reliquefaction system may include a recovery line for recovering the reliquefied BOG to the liquefied gas storage tank, and a separate transfer line may be provided to use the recovered reliquefied gas for other purposes such as engine fuel. Can be.
  • the cooling means is a cooling device using nitrogen gas as a refrigerant and is operated by a cooling cycle including compression and expansion.
  • the reliquefaction drum may include a spray device for spraying the cooled liquefied gas into the reliquefaction drum, and the arrangement, operation manner of the spray device may be variously designed.
  • the pressure inside the reliquefaction drum can be controlled to be lower than the pressure inside the liquefied gas storage tank, it is possible to implement a smooth natural transfer of the BOG.
  • BOG reliquefaction system includes a liquefied gas storage tank and a reliquefaction drum, BOG line for transferring the BOG discharged from the liquefied gas storage tank to the reliquefaction drum; And a liquefied gas line for cooling the liquefied gas discharged from the liquefied gas storage tank and transferring the liquefied gas to the reliquefaction drum.
  • the BOG line is composed of a conveying pipe for transporting the BOG, and does not include a separate device such as a compressor.
  • a liquefied gas heat exchanger for heat exchange between the liquefied gas and an external cold heat source is disposed in at least one region.
  • the external cold heat source includes cooled nitrogen gas.
  • the BOG reliquefaction system includes a cooling device for generating an external cold heat source, and the cooling device further includes a nitrogen gas heat exchanger for heat-exchanging the heated nitrogen gas and the compressed nitrogen gas via the liquefied gas heat exchanger.
  • the cooling device further includes a nitrogen gas heat exchanger for heat-exchanging the heated nitrogen gas and the compressed nitrogen gas via the liquefied gas heat exchanger.
  • the reliquefaction system may further include a recovery line for recovering the BOG re-liquefied in the reliquefaction drum to the liquefied gas storage tank.
  • the reliquefaction system may have a residual BOG line for discharging the residual BOG that has not been reliquefied out of the reliquefaction drum to discharge the residual BOG from the reliquefaction drum.
  • Emitted residual BOG can be incinerated or utilized in the fuel system.
  • the liquefied gas may be LNG, and the application of the system is not limited to a specific liquefied gas.
  • the BOG reliquefaction method includes the step of cooling the liquefied gas supplied from the liquefied gas storage tank and using it as a cold heat source for reliquefying the BOG discharged from the liquefied gas storage tank.
  • the temperature of the cold heat source is equal to or less than the temperature of the liquefied gas in the liquefied gas storage tank, and in this aspect, the cold heat source is a supercooled liquefied gas.
  • the reliquefaction may be performed outside the liquefied gas storage tank. That is, reliquefaction may be performed in a separate space outside the liquefied gas storage tank.
  • BOG reliquefaction method comprises the steps of transferring the discharged BOG from the liquefied gas storage tank to the reliquefaction drum; Cooling the liquefied gas discharged from the liquefied gas storage tank by exchanging heat with an external cold heat source; Transferring the cooled liquefied gas to the reliquefaction drum; And mixing the BOG and the cooled liquefied gas introduced into the reliquefaction drum.
  • the mixing step means a step in which substantially reliquefaction takes place.
  • the method may further include recovering the BOG liquefied by mixing the BOG and the cooled liquefied gas to a liquefied gas storage tank.
  • the BOG may be transferred by a natural transfer method by the pressure difference between the liquefied gas storage tank and the pressure of the reliquefaction drum.
  • cooled nitrogen gas may be used as the external cold heat source.
  • the LNG transport apparatus includes a BOG reliquefaction system that cools LNG supplied from an LNG storage tank and uses BOG discharged from the LNG storage tank as a cold heat source.
  • the LNG storage device includes a BOG reliquefaction system that cools LNG supplied from an LNG fuel tank and uses the BOG discharged from the LNG fuel tank as a cold heat source.
  • the reliquefaction system according to the present invention is a novel BOG reliquefaction system that can replace the conventional reliquefaction system, which is advantageous for miniaturization and modularization.
  • the present invention may provide a more simplified system implementation if the path of the line inside the system is minimized in the future and a more efficient cooling system is introduced.
  • reliquefaction is performed by direct contact of BOG and cooled reliquefaction gas in the reliquefaction drum, so that the heat exchange efficiency is excellent and further the reliquefaction efficiency is very excellent.
  • further improvement of the reliquefaction efficiency may be achieved by further realizing component improvements in order to improve the heat exchange efficiency in the reliquefaction drum.
  • the reliquefaction system according to the present invention may be employed in a transport device such as an LNG transport ship or in various types of LNG storage devices.
  • this system is a system suitable for operating mainly during the operation period, such as anchoring the engine operation of the vessel stopped.
  • FIG. 1 is a view for conceptually explaining a reliquefaction system according to an embodiment of the present invention.
  • the BOG reliquefaction system is a system for cooling a liquefied gas supplied from a liquefied gas storage tank and using it as a cold heat source for reliquefying the BOG discharged from various storage tanks.
  • the liquefied gas may include a variety of gases, such as LNG, LPG, ethane
  • the BOG reliquefaction system of the present invention can be applied to a variety of liquefied gas.
  • a change in the refrigerant system for cooling the liquefied gas may be required according to the type of the liquefied gas. This is because the inherent liquefaction point is different for each liquefied gas.
  • FIG. 1 is a view for conceptually explaining a reliquefaction system according to an embodiment of the present invention.
  • the BOG reliquefaction system largely includes a liquefied gas storage tank 100, a reliquefaction drum 200, and a cooling device 300.
  • the heat insulation structure of the outer wall of the storage tank 100 is important. Since the liquefied gas in the storage tank 100 has a relatively high temperature near the surface due to the convection of the liquid, Boil Off Gas (BOG) is continuously generated at the top of the liquefied gas. Although not shown, the liquefied gas in the lower portion of the storage tank 100 is circulated to the upper passage 121 so as to suppress the generation of BOG due to an imbalance phenomenon in which the temperature of the upper portion is higher than the temperature of the lower portion of the liquefied gas. The liquefied gas may be injected by 110).
  • BOG Boil Off Gas
  • the injection means 110 is a device employing a kind of shower method, the number of injection nozzles or the arrangement position of the injection means 110 may be appropriately modified in consideration of the size of the storage tank 100 or the level of the liquefied gas. .
  • the upper portion of the storage tank 100 is formed with a BOG flow path 122 for discharging BOG, and in addition to the plurality of preliminary flow paths 123, the BOG flow path 122, the liquefied gas flow path 124 to be described later, etc. If there is a limitation in the function of the spare passage 123 can be used instead.
  • the BOG discharged through the BOG flow path 122 is transferred to the reliquefaction drum 200 through the BOG line L1.
  • the route, shape, thickness, length, material, etc. of the BOG line L1 may be appropriately determined in consideration of the scale and efficiency of the reliquefaction system.
  • the discharged BOG is transferred directly to the reliquefaction drum 200 directly through the BOG line L1 without passing through a separate compressor or heat exchange means as shown in FIG. 1. Therefore, in order to smoothly flow the BOG, the pressure of the reliquefaction drum 200 is preferably controlled to be lower than the pressure inside the liquefied gas storage tank 100. That is, the BOG may be transferred in a natural transfer method by the pressure difference in the storage tank 100 and the pressure in the reliquefaction drum 200.
  • the liquefied gas discharged through the lower liquefied gas flow path 124 of the liquefied gas storage tank 100 has a propulsion force transferred to the reliquefaction drum 200 by being pressurized by the pumping device 30.
  • the liquefied gas is transferred to the reliquefaction drum 200 along the liquefied gas line (L2).
  • the liquefied gas via the pumping device 30 is changed to a pressurized pressure state by the pumping pressure and is accompanied by a slight temperature rise due to compression.
  • the liquefied gas heat exchanger 50 is disposed on the liquefied gas line L2, and the liquefied gas supplied from the storage tank 100 is cooled by heat exchange with the nitrogen gas refrigerant cooled from the cooling device 300.
  • the temperature of the liquefied gas cooled by heat exchange with nitrogen gas is lowered below the temperature of the first liquefied gas existing in the storage tank 100. That is, the liquefied gas via the liquefied gas heat exchanger 50 can be said to be a liquefied gas in a supercooled state.
  • the cooled liquefied gas acts as a cold heat source to reliquefy the BOG.
  • the liquefied gas cooled via the liquefied gas heat exchanger 50 is supplied to the reliquefaction drum 200, and heat exchanges with the BOG by physical contact or mixing with the BOG contained in the reliquefaction drum 200. Reliquefy the BOG.
  • the reliquefaction drum 200 eventually functions as a mixing drum for receiving and mixing BOG and cooled liquefied gas.
  • the liquefied gas in the cooling state supplied to the reliquefaction drum 200 may be sprayed or sprayed by a spray device or the like installed on the inner wall of the reliquefaction drum 200, thereby maximizing mixing efficiency and heat exchange efficiency with BOG.
  • the structure or arrangement of the spraying device may be appropriately changed according to the shape or size of the reliquefaction drum 200.
  • the liquefied gas may be connected to a plurality of points of the reliquefaction drum 200 and sprayed at various points at the same time.
  • the reliquefaction drum 200 may be provided with a separate means for separation of the re-liquefied BOG and the non-reliquefied gas state BOG.
  • the reliquefaction drum 200 may include a layered structure composed of various functional layers to increase heat exchange efficiency.
  • the liquefied gas supplied to the re-liquefaction drum 200 has been described as a method of flowing into the re-liquefaction drum 200 in a manner that is sprayed, of course, various other liquefied gas supply form is possible.
  • the liquefied gas and the liquefied BOG as the cold heat source may be recovered to the liquefied gas storage tank 100 through a recovery line L3 connected to the lower portion of the reliquefied drum 200.
  • the reliquefaction drum 200 is disposed higher than the liquefied gas storage tank 100, so that the liquefied gas and the reliquefaction BOG introduced into the recovery line L3 may be naturally recovered to the liquefied gas storage tank 100 by gravity. Alternatively, it may be recovered to the liquefied gas storage tank 100 through a separate pumping device.
  • the liquefied gas and the liquefied BOG has been described as being recovered to the liquefied gas storage tank 100, but alternatively, the liquefied gas and the liquefied BOG may be supplied to a separate storage tank or device. .
  • the residual BOG that is not reliquefied may be transferred to the incineration system or the fuel system through the residual BOG line L4 connected to the upper portion of the reliquefaction drum 200.
  • the cooling device 300 has a cooling cycle in which nitrogen gas is used as a refrigerant. As described above, the cooled nitrogen gas exchanges heat with the liquefied gas through the liquefied gas heat exchanger 50 while the liquefied gas discharged from the liquefied gas storage tank 100 transfers the liquefied gas line L2. It functions as a refrigerant for cooling liquefied gas.
  • the cooling device 300 includes an N2 buffer tank 310, a plurality of compressors 321, 323, and 325 sequentially arranged, a plurality of precooling heat exchangers 331, 333, and 335, and a plurality of cooling water devices 341. , 343, 345). Cooling water devices 341, 343 and 345 are means for supplying cooling water to cool the compressed nitrogen gas.
  • the cooling apparatus 300 includes a nitrogen gas heat exchanger 350 arranged for additional preliminary cooling by heat exchange with the heated nitrogen gas via the liquefied gas heat exchanger 50.
  • it includes an expander 370 disposed to rapidly lower the temperature of the pre-cooled nitrogen gas.
  • the compressed nitrogen is at a high pressure and high temperature via a plurality of compressors. It has a temperature low enough to cool the gas. That is, for preliminary cooling of the compressed nitrogen gas, the cold heat of the nitrogen gas recovered through the liquefied gas heat exchanger 50 may be further utilized.
  • Nitrogen gas passes through the N2 buffer tank 310.
  • the N2 buffer tank 310 serves to lower the load of the compressor 320 by preventing damage to the compressor 320 due to the continuous supply of nitrogen gas to the compressor 320 and buffering the pressure of the nitrogen gas moving through the cooling cycle. do.
  • the nitrogen gas passing through the N2 buffer tank 310 is converted into nitrogen gas under a high pressure and high temperature state by the compressor 320, and the compressed nitrogen gas is cooled with precooled water supplied from the cooling water devices 341, 343, and 345.
  • the heat may be lowered by heat exchange in the heat exchanger 330.
  • the compression 320 and the cooling 330 means has been described as being repeated three times, but the number of repetition is properly adjusted in consideration of the required cooling temperature of the refrigerant nitrogen gas and the driving efficiency of the cooling device 300. Can be determined.
  • the BOG reliquefaction system of the present invention can maximize the stability of the overall BOG reliquefaction system by employing a high stability N2 cooling cycle.
  • the liquefied gas itself is used as a cold heat source for BOG reliquefaction, it is possible to simplify the reliquefaction process and reduce the process cost.
  • the BOG reliquefaction system can be introduced into a variety of transport devices, such as ships carrying LNG or ships propelled by LNG.
  • the LNG supplied from the LNG storage tank may be cooled and used as a cold heat source for reliquefying the BOG discharged from the LNG storage tank.
  • the LNG supplied from the LNG fuel tank may be cooled and used as a cold heat source for reliquefying the BOG discharged from the LNG fuel tank.
  • the BOG reliquefaction system according to the present invention is applied to the vessel, it is expected that it can be used in various ways in conjunction with various small-size liquefied gas storage facilities or devices other than the vessel. Further, by miniaturizing and integrating the BOG reliquefaction system, it will be possible to develop a portable reliquefaction system in the form of a module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Ocean & Marine Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

본 발명은 액화가스 저장탱크로부터 배출되는 액화가스를 냉각하기 위한 냉각수단; 및 상기 냉각수단을 경유하여 냉각된 액화가스 및 BOG를 혼합하여 상기 BOG를 재액화하는 재액화 드럼을 포함하는 BOG 재액화 시스템을 제공한다. 상기 시스템은 액화가스 자체를 BOG 재액화를 위한 냉열원으로 활용함으로써 효율적이며, 나아가 재액화 시스템의 구조가 단순하여 소형화 및 모듈화 환경에 적합한 시스템이다.

Description

BOG 재액화 시스템 및 이를 이용한 BOG 재액화 방법
본 기술은 주로 선박 분야와 관련성이 높은 액화가스 저장 및 운반에 관한 기술로서, 구체적으로는 LNG 등의 액화가스 저장탱크에서 발생하는 보일 오프 가스(Boil Off Gs; BOG)를 재액화 하는 분야의 기술이다.
통상적으로 LNG(Liquefied Natural Gas)기지의 LNG 저장탱크에서 BOG(Boil Off Gas)가 약 0.5 vol%/day로 자연적으로 생성된다. 이러한 BOG를 재액화하여 회수하기 위한 노력은 자원의 효율적 사용이라는 측면에서 꾸준히 이루어져 왔고 다양한 재액화 시스템이 알려져 있다.
이러한 재액화 시스템으로서는, C3MR 시스템, SMR 시스템, N2 시스템 등을 들 수 있다. C3MR 시스템은 SMR 시스템 대비 효율이 우수한 반면, 냉매를 예비로 준비하고 있어야 하는 단점이 있다. SMR 시스템은 냉매 준비가 비교적 용이한 반면 효율이 낮은 단점이 있다. 또한, N2 시스템은 비교적 안전한 공정임에 반하여 효율이 아주 낮고 무게가 무거우며 제작비가 비싼 단점이 있다.
최근, LNG 사용의 증가에 따라 소형 LNG 위성기지의 수요가 증가하고 있다. 전통적인 LNG 개발보다는 소규모 지역적 개발이 증대되고 있는 추세이다. 선박 배출가스 환경규제 강화로 선박에서의 LNG 사용량이 증가하고 있으며, 원양 선박의 경우 LNG 연료탱크에서 발생하는 증발가스 처리가 중요하다. 또한, LNG 벙커링을 위하여 육상에 소형 LNG 벙커링 기지의 건립이 대두되고 있다.
이러한 상황에서, 50Kg/h~200kg/h급 이내의 최소규모 액화플랜트가 요구되나 증발가스 회수설비가 국내에는 전무하며, 유럽 등의 국가에서 기술을 독점하고 있다. 종래 선도 업체가 독점하고 있는 전통적인 재액화 시스템을 대체함과 더불어, 소형화 및 모듈화 추세에 대응하기 위한 효율적이고 새로운 재액화 시스템이 요구되고 있다.
본 발명은 종래의 전통적인 재액화 시스템을 대체할 수 있고, 소형화 및 모듈화가 용이하고 효율적으로 운용할 수 있는 BOG 재액화 시스템을 제공하는 것을 목적으로 한다.
또한, 본 발명은 상기 재액화 시스템을 이용하여 BOG를 효율적으로 재액화할 수 있는 방법을 제공하는 것을 목적으로 한다.
아울러, 본 발명은 상기 재액화 시스템을 구비하거나, 상기 재액화 방법을 채용한 LNG 운반 장치 또는 저장 장치를 제공하는 것을 목적으로 한다.
본 발명의 일 실시예에 따른 BOG 재액화 시스템은 액화가스 저장탱크로부터 배출되는 액화가스를 냉각하기 위한 냉각수단; 및 상기 냉각수단을 경유하여 냉각된 액화가스 및 BOG를 혼합하여 상기 BOG를 재액화하는 재액화 드럼을 포함한다.
상기 재액화 시스템은 재액화된 BOG를 상기 액화가스 저장탱크로 회수하기 위한 회수 라인을 포함할 수 있으며, 회수된 재액화가스를 엔진 연료 등 다른 목적으로 사용하기 위하여는 별도의 이송 라인을 구비할 수 있다.
상기 냉각수단은 질소가스를 냉매로 하는 냉각장치이며 압축 및 팽창을 포함한 냉각 사이클에 의하여 작동한다.
상기 재액화 드럼은 냉각된 액화가스를 상기 재액화 드럼 내로 분무하는 분무 장치를 포함할 수 있으며, 분무 장치의 배치, 운용 방식은 다양하게 변형 설계될 수 있다.
한편, 상기 재액화 드럼 내부의 압력은 상기 액화가스 저장탱크 내부의 압력보다 낮게 제어될 수 있으며, 이를 통하여 BOG의 원활한 자연 이송을 구현할 수 있다.
본 발명의 다른 실시예에 따른 BOG 재액화 시스템은 액화가스 저장탱크 및 재액화 드럼을 포함하고, 상기 액화가스 저장탱크로부터 배출된 BOG를 상기 재액화 드럼으로 이송하기 위한 BOG 라인; 상기 액화가스 저장탱크로부터 배출된 액화가스를 냉각하여 재액화 드럼으로 이송하기 위한 액화가스 라인을 포함한다.
상기 BOG 라인은 BOG를 이송하기 위한 이송관으로 이루어져 있어, 압축기 등 별도의 장치를 구비하지 않는다. 상기 액화가스 라인은 적어도 일 영역에, 상기 액화가스와 외부의 냉열원과의 열교환을 위한 액화가스 열교환기가 배치되어 있다. 상기 외부 냉열원은 냉각된 질소가스를 포함한다.
따라서 상기 BOG 재액화 시스템은 외부 냉열원을 발생하기 위한 냉각장치를 포함하며, 상기 냉각장치는 상기 액화가스 열교환기를 경유하여 가열된 질소가스와 압축된 질소가스를 열교환 하는 질소가스 열교환기를 더 포함할 수 있다. 이를 통하여, 액화가스와 열교환 후의 질소가스 내에 잔존하는 냉열 에너지를 추가로 활용할 수 있다.
상기 재액화 시스템은 상기 재액화 드럼에서 재액화된 BOG를 상기 액화가스 저장탱크로 회수하기 위한 회수 라인을 더 포함할 수 있다.
상기 재액화 시스템은 재액화되지 않은 잔여 BOG를 재액화 드럼 외부로 배출하기 위한 잔여 BOG 라인을 구비하여, 상기 재액화 드럼으로부터 상기 잔여 BOG를 배출할 수 있다. 배출된 잔여 BOG는 소각되거나 연료시스템에서 활용될 수 있다.
전술한 재액화 시스템에서, 상기 액화가스는 LNG일 수 있으며, 본 시스템의 적용은 특정 액화가스에 제한되지 않는다.
본 발명의 일 실시예에 따른 BOG 재액화 방법은 액화가스 저장탱크로부터 공급된 액화가스를 냉각시켜 상기 액화가스 저장탱크로부터 배출된 BOG를 재액화하는 냉열원으로 이용하는 단계를 포함한다.
상기 냉열원의 온도는 상기 액화가스 저장탱크 내 액화가스의 온도 이하이며, 이러한 측면에서 상기 냉열원은 과냉각된 액화가스이다.
상기 재액화는 상기 액화가스 저장탱크의 외부에서 이루어질 수 있다. 즉, 재액화는 액화가스 저장탱크 외의 별도의 공간에서 이루어질 수 있다.
본 발명의 다른 실시예에 따른 BOG 재액화 방법은 액화가스 저장탱크로부터 재액화 드럼으로 배출된 BOG를 이송하는 단계; 액화가스 저장탱크로부터 배출된 액화가스를 외부 냉열원과 열교환하여 냉각시키는 단계; 냉각된 액화가스를 상기 재액화 드럼으로 이송하는 단계; 및 상기 재액화 드럼 내로 유입된 상기 BOG 및 냉각된 액화가스를 혼합하는 단계를 포함한다. 상기 혼합 단계는 실질적으로 재액화가 이루어지는 단계를 의미한다.
상기 방법은 상기 BOG 및 냉각된 액화가스의 혼합에 의하여 재액화된 BOG를 액화가스 저장탱크로 회수하는 단계를 더 포함할 수 있다.
상기 BOG의 이송은 액화가스 저장탱크의 압력과 재액화 드럼의 압력차에 의한 자연 이송 방식에 의하여 이루어질 수 있다.
한편, 상기 외부 냉열원으로는 냉각된 질소가스를 사용할 수 있다.
본 발명의 일 실시예에 따른 LNG 운반 장치는 LNG 저장탱크로부터 공급된 LNG를 냉각시켜 상기 LNG 저장탱크로부터 배출된 BOG를 재액화하는 냉열원으로 이용하는 BOG 재액화 시스템을 구비한다.
본 발명의 일 실시예에 따른 LNG 저장장치는 LNG 연료탱크로부터 공급된 LNG를 냉각시켜 상기 LNG 연료탱크로부터 배출된 BOG를 재액화하는 냉열원으로 이용하는 BOG 재액화 시스템을 구비한다.
본 발명에 따른 재액화 시스템은 종래의 재액화 시스템을 대체할 수 있는 신규 BOG 재액화 시스템으로서, 소형화 및 모듈화에 유리한 시스템이다.
또한, 본 발명은 향후 시스템 내부의 라인의 이동 경로를 최소화하고 더욱 효율적인 냉각시스템을 도입한다면 더욱 간소화된 시스템 구현을 제공할 수 있다.
본 시스템은 재액화 드럼 내에서 BOG와 냉각된 재액화가스의 직접 접촉에 의한 재액화가 이루어지므로, 열교환 효율이 우수하고 나아가 재액화 효율이 매우 우수하다. 향후, 재액화 드럼 내의 열교환 효율을 개선하기 위하여 부품 개선을 추가적으로 실현한다면 재액화 효율을 더욱 향상시킬 수 있을 것이다.
본 발명에 따른 재액화 시스템은 LNG 운반 선박 등의 운반장치나 다양한 형태의 LNG 저장장치에 채용될 수 있다.
한편, 상기 재액화 시스템이 LNG 연료 추진 선박에 적용될 경우, 본 시스템은 주로 선박의 엔진 가동이 멈춘 정박 등의 운휴기에 운용되기에 적합한 시스템이다.
도 1은 본 발명의 일 실시예에 따른 재액화 시스템을 개념적으로 설명하기 위하여 도시한 도면이다.
이하에서는 첨부된 도면을 참조하여, 본 발명의 일 실시예에 따른 BOG 재액화 시스템을 구체적으로 설명하도록 한다. 그러나 하기 설명들은 본 발명의 BOG 재액화 시스템을 예시하기 위한 것이며, 하기 설명과 다른 다양한 변형 실시예들이 가능함은 물론이다. 또한, 도면에 기재된 각 구성 요소들의 크기는 설명을 위하여 개념적으로 도시된 것으로서 실제 스케일은 이와 다를 수 있다. 본 발명의 기술사상은 아래 설명들에 의하여 제한되지 않으며, 오직 후술하는 청구범위에 의하여 해석되고 제한될 수 있다.
본 발명의 일 실시예에 따른 BOG 재액화 시스템은 기본적으로 액화가스 저장탱크로부터 공급된 액화가스를 냉각시켜 각종 저장탱크로부터 배출된 BOG를 재액화하는 냉열원으로 이용하는 시스템이다. 또한, 상기 액화가스는 LNG, LPG, 에탄 등 다양한 가스를 포함할 수 있으며, 본 발명의 BOG 재액화 시스템은 다양한 액화가스에 적용될 수 있다. 다만, 효율성을 고려하여 액화가스의 종류에 따라, 액화가스를 냉각하는 냉매 시스템의 변화가 요구될 수 있다. 액화가스마다 고유의 액화점이 상이하기 때문이다.
도 1은 본 발명의 일 실시예에 따른 재액화 시스템을 개념적으로 설명하기 위하여 도시한 도면이다.
도 1을 참조하면, BOG 재액화 시스템은 크게 액화가스 저장탱크(100), 재액화 드럼(200) 및 냉각장치(300)를 포함한다.
상기 액화가스 저장탱크(100)는 액화가스의 액화점 이하로 유지되어야 하기 때문에 저장탱크(100) 외벽의 단열 구조가 중요하다. 저장탱크(100) 내의 액화가스는 액체의 대류 현상으로 인하여 상대적으로 표면 근처의 온도가 높기 때문에 액화가스의 상부에서 보일 오프 가스(Boil Off Gas; BOG)가 지속적으로 발생된다. 액화가스 하부의 온도보다 상부의 온도가 높은 불균형 현상으로 인한 BOG의 발생을 억제하기 위하여, 도시하지는 않았으나, 저장탱크(100) 하부의 액화가스를 상부 유로(121)로 순환시켜 액화가스 분사 수단(110)에 의하여 액화가스를 분사할 수 있다. 이때, 액화가스 분사는 BOG의 재액화와는 무관하며, 저장탱크(100) 내부의 BOG 발생을 억제하는 기능을 수행한다. 상기 분사 수단(110)은 일종의 샤워 방식을 채용한 장치로서 분사 노즐의 개수나 분사 수단(110)의 배치 위치는 저장탱크(100)의 크기나 액화가스의 수위 등을 고려하여 적절히 변형될 수 있다.
상기 저장탱크(100)의 상부에는 BOG 배출을 위한 BOG 유로(122)가 형성되어 있고, 이외에도 복수의 예비 유로(123)들을 구비함으로써, BOG 유로(122)나 후술할 액화가스 유로(124) 등의 기능에 제한이 있을 경우 상기 예비 유로(123)로 대체하여 사용할 수 있다.
상기 BOG 유로(122)를 통하여 배출된 BOG는 BOG 라인(L1)을 통하여 재액화 드럼(200)까지 이송된다. BOG 라인(L1)의 노선, 형상, 두께, 길이, 소재 등은 재액화 시스템의 규모와 효율을 고려하여 적절히 결정될 수 있다. 본 실시예에서, 배출된 BOG는 도 1에서 보는 바와 같이 별도의 압축기나 열교환 수단을 경유하지 않고 바로 BOG 라인(L1)을 통하여 재액화 드럼(200)까지 직접적으로 이송된다. 따라서, 이러한 BOG의 원활한 유동을 위하여 재액화 드럼(200)의 압력은 상기 액화가스 저장탱크(100) 내부의 압력보다 낮도록 제어하는 것이 바람직하다. 즉, 상기 BOG는 저장탱크(100) 내부의 압력과 재액화 드럼(200) 내부의 압력 차에 의한 자연 이송 방식으로 이송될 수 있다.
액화가스 저장탱크(100)의 하부 액화가스 유로(124)를 통하여 배출된 액화가스는 펌핑장치(30)에 의하여 가압됨으로써 재액화 드럼(200)까지 이송되는 추진력을 갖는다. 상기 액화가스는 액화가스 라인(L2)을 따라 재액화 드럼(200)까지 이송된다. 상기 펌핑장치(30)를 경유한 액화가스는 펌핑압력에 의하여 가압된 압력 상태로 변경되며 압축에 따른 다소의 온도 상승도 동반된다.
액화가스 라인(L2) 상에는 액화가스 열교환기(50)가 배치되어 있어, 저장탱크(100)으로부터 공급된 액화가스는 냉각장치(300)로부터 냉각된 질소가스 냉매와 열교환함으로써 냉각된다. 질소가스와의 열교환을 통하여 냉각된 액화가스의 온도는 저장탱크(100) 내부에 존재하는 최초 액화가스의 온도 이하로 낮아진다. 즉, 액화가스 열교환기(50)를 경유한 액화가스는 과냉각 상태의 액화가스라고 할 수 있다. 냉각된 액화가스는 냉열원으로 작용하여 BOG를 재액화하는 역할을 한다. 상기 액화가스 열교환기(50)를 경유하여 냉각된 액화가스는 재액화 드럼(200)으로 공급되어, 재액화 드럼(200) 내부에 수용되어 있는 BOG와의 물리적 접촉 또는 혼합에 의하여 BOG와 열교환하고 결국 BOG를 재액화 한다. 재액화 드럼(200)은 결국 BOG와 냉각된 액화가스를 수용하여 혼합하는 믹싱 드럼으로서 기능하는 것이다.
도시하지는 않았으나, 재액화 드럼(200)에 공급된 냉각 상태의 액화가스는 재액화 드럼(200)의 내벽에 설치된 분무 장치 등에 의하여 분무 또는 분사됨으로써 BOG와의 혼합 효율 및 열교환 효율이 극대화될 수 있다. 상기 분무 장치의 구조나 배치 형태는 재액화 드럼(200)의 형상이나 크기에 따라 적절히 변경될 수 있다. 예를 들어, 상기 액화가스는 재액화 드럼(200)의 복수의 지점과 연결되어 동시에 여러 지점에서 분무될 수도 있다. 한편, 상기 재액화 드럼(200)은 재액화된 BOG 및 재액화 되지 않은 기체 상태의 BOG의 분리를 위한 별도의 수단을 구비할 수 있다. 이와 같이, 상기 재액화 드럼(200) 내부에는 열교환 효율 증대를 위하여 다양한 기능층들로 이루어진 층상구조를 포함할 수 있다. 본 실시예에서는, 재액화 드럼(200)으로 공급된 액화가스가 분무되는 방식으로 재액화 드럼(200)으로 유입되는 방식을 설명하였으나, 이와 다른 다양한 액화가스 공급 형태가 가능함은 물론이다.
냉열원으로서의 액화가스 및 재액화된 BOG는 재액화 드럼(200)의 하부와 연결된 회수라인(L3)을 통하여 액화가스 저장탱크(100)로 회수될 수 있다. 상기 재액화 드럼(200)은 액화가스 저장탱크(100)보다 높게 배치됨으로써, 회수라인(L3)으로 유입된 액화가스 및 재액화 BOG는 중력에 의하여 자연적으로 액화가스 저장탱크(100)로 회수될 수도 있으며, 별도의 펌핑 장치를 통하여 액화가스 저장탱크(100)로 회수될 수도 있다. 본 실시예에서, 액화가스 및 재액화된 BOG는 액화가스 저장탱크(100)로 회수되는 것으로 설명하였으나, 이와 다르게 상기 액화가스 및 재액화된 BOG는 별도의 저장탱크나 장치 등으로 공급될 수도 있다.
한편, 재액화 되지 않은 잔여 BOG는 재액화 드럼(200) 상부와 연결된 잔여 BOG 라인(L4)을 통하여 소각 시스템으로 이송되거나 연료 시스템으로 이송될 수 있다.
상기 재액화 드럼(200)의 내 외부 구조 및 부가 장치 등의 도입은 냉각된 액화가스와 BOG의 열교환 효율과 밀접한 관련성을 갖기에, 향후 재액화 드럼(200)의 구조나 기능에 대한 추가적인 연구가 지속될 예정이다.
본 실시예에서, 냉각 장치(300)는 질소 가스를 냉매로 하는 냉각 사이클을 구비한다. 냉각된 질소가스는 전술한 바와 같이 액화가스 저장탱크(100)로부터 배출된 액화가스가 액화가스 라인(L2)을 이송하는 도중 액화가스 열교환기(50)를 매개로 상기 액화가스와 열교환함으로써, 상기 액화가스를 냉각하는 냉매로서 기능한다.
냉매인 질소가스는 냉매 라인(L5)을 순환한다. 상기 냉각 장치(300)는 N2 버퍼 탱크(310), 순차적으로 배치된 복수의 압축기(321, 323, 325), 복수의 예냉용 열교환기(331, 333, 335)) 및 복수의 냉각수 장치(341, 343, 345)를 포함한다. 냉각수 장치(341, 343, 345))는 쿨링 워터를 공급하여 압축된 질소가스를 냉각하기 수단이다. 또한, 상기 냉각장치(300)는, 액화가스 열교환기(50)를 경유하여 가열된 질소가스와 열교환함으로써 추가적으로 예비냉각을 위하여 배치된 질소가스 열교환기(350)를 포함한다. 또한, 예비 냉각된 질소가스의 온도를 급격히 낮추기 위하여 배치된 팽창기(370)를 포함한다. 상기 액화가스 열교환기(50)를 경유하여 질소가스 복귀라인(L6)을 유동하는 질소가스는 비록 액화가스와의 열교환을 통하여 가열된 상태이기는 하나, 복수의 압축기를 경유하여 고압 고온 상태인 압축 질소 가스를 냉각하기에는 충분히 낮은 온도를 갖는다. 즉, 압축된 질소가스의 예비 냉각을 위하여, 액화가스 열교환기(50)를 경유하여 회수되는 질소가스의 냉열을 추가적으로 활용할 수 있는 것이다.
이하에서는, 질소가스 냉매의 이동 사이클을 설명하도록 한다. 질소가스는 N2 버퍼탱크(310)을 경유한다. N2 버퍼탱크(310)는 압축기(320)에 지속적인 질소가스의 공급에 따른 압축기(320) 손상을 방지하고, 냉각 사이클을 이동하는 질소가스의 압력을 버퍼링함으로써 압축기(320)의 부하를 낮추는 역할을 한다.
N2 버퍼탱크(310)를 경유한 질소가서는 압축기(320)를 경유함으로써 고압 고온 상태의 질소가스로 변화하며, 압축된 질소가스는 냉각수 장치(341, 343, 345)에서 공급된 쿨링워터와 예냉용 열교환기(330)에서 열교환됨으로써 온도가 낮아질 수 있다. 본 실시예에서, 이러한 압축(320) 및 냉각(330) 수단은 3회 반복되는 것으로 설명하였으나 반복 회수는 냉매인 질소가스의 요구되는 냉각 온도와 냉각장치(300)의 구동 효율을 고려하여 적절히 조절하여 결정될 수 있다.
고온 고압의 압축 상태인 질소가스는 팽창기(370)를 통과하면서 급격히 냉각되기 전에, 전술한 바와 같이, 액화가스 열교환기(50)를 경유하여 질소가스 복귀라인(L6)으로 회수되는 가열된 질소가스와 열교환함으로써 팽창기(370)를 통과하기 전 최종 예비 냉각 과정을 거친다.
본 발명의 BOG 재액화 시스템은 안정성이 우수한 N2 냉각 사이클을 채용함으로써, 전체적인 BOG 재액화 시스템의 안정성을 극대화할 수 있다.
전술한 BOG 재액화 시스템을 이용하여 BOG를 재액화하는 방법은, 액화가스 저장탱크로부터 재액화 드럼으로 배출된 BOG를 이송하는 단계, 액화가스 저장탱크로부터 배출된 액화가스를 외부 냉열원과 열교환하여 냉각시키는 단계, 냉각된 액화가스를 상기 재액화 드럼으로 이송하는 단계, 및 상기 재액화 드럼내로 유입된 상기 BOG 및 냉각된 액화가스를 혼합하는 단계를 포함한다. 결국, 액화가스 자체를 BOG 재액화를 위한 냉열원으로 사용하기 때문에, 재액화 공정을 간소화하고 공정 단가를 줄일 수 있다.
전술한, BOG 재액화 시스템은 LNG를 운반하는 선박 또는 LNG로 추진되는 선박 등 다양한 운반 장치에 도입될 수 있다. 예를 들어, LNG 운반선의 경우, LNG 저장탱크로부터 공급된 LNG를 냉각시켜 상기 LNG 저장탱크로부터 배출된 BOG를 재액화하는 냉열원으로 사용할 수 있다. 만약, LNG를 추진 연료로 사용하는 선박에 적용될 경우에는, LNG 연료탱크로부터 공급된 LNG를 냉각시켜 상기 LNG 연료탱크로부터 배출된 BOG를 재액화하는 냉열원으로 사용할 수 있다.
이상에서는 본 발명에 따른 BOG 재액화 시스템이 선박에 적용되는 것을 예시하였으나, 선박 이외의 다양한 소규모 액화가스 저장 설비 또는 장치와 연동되어 다양하게 활용될 수 있을 것으로 기대하고 있다. 나아가, 상기 BOG 재액화 시스템을 보다 소형화하고 집적화함으로써, 이동 가능한 모듈 형태의 재액화 시스템으로 개발할 수 있을 것이다.

Claims (22)

  1. 액화가스 저장탱크로부터 배출되는 액화가스를 냉각하기 위한 냉각수단; 및
    상기 냉각수단을 경유하여 냉각된 액화가스 및 BOG를 혼합하여 상기 BOG를 재액화하는 재액화 드럼을 포함하는 BOG 재액화 시스템.
  2. 제1항에 있어서,
    상기 재액화된 BOG를 상기 액화가스 저장탱크로 회수하기 위한 회수 라인을 포함하는 것을 특징으로 하는 BOG 재액화 시스템.
  3. 제1항에 있어서,
    상기 냉각수단은 질소가스를 냉매로 하는 냉각장치인 것을 특징으로 하는 BOG 재액화 시스템.
  4. 제1항에 있어서,
    상기 재액화 드럼은 냉각된 액화가스를 상기 재액화 드럼 내로 분무하는 분무 장치를 포함하는 것을 특징으로 하는 BOG 재액화 시스템.
  5. 제1항에 있어서,
    상기 재액화 드럼 내부의 압력은 상기 액화가스 저장탱크 내부의 압력보다 낮은 것을 특징으로 하는 BOG 재액화 시스템.
  6. 액화가스 저장탱크 및 재액화 드럼을 포함하고,
    상기 액화가스 저장탱크로부터 배출된 BOG를 상기 재액화 드럼으로 이송하기 위한 BOG 라인; 및
    상기 액화가스 저장탱크로부터 배출된 액화가스를 냉각하여 재액화 드럼으로 이송하기 위한 액화가스 라인을 포함하는 BOG 재액화 시스템.
  7. 제6항에 있어서,
    상기 BOG 라인은 BOG를 이송하기 위한 이송관으로 이루어진 것을 특징으로 하는 BOG 재액화 시스템.
  8. 제6항에 있어서,
    상기 액화가스 라인은 적어도 일 영역에, 상기 액화가스와 외부의 냉열원과의 열교환을 위한 액화가스 열교환기가 배치되어 있는 것을 특징으로 하는 BOG 재액화 시스템.
  9. 제8항에 있어서,
    상기 외부 냉열원은 냉각된 질소가스를 포함하는 것을 특징으로 하는 BOG 재액화 시스템.
  10. 제9항에 있어서,
    상기 외부 냉열원을 발생하기 위한 냉각장치를 포함하고,
    상기 냉각장치는 상기 액화가스 열교환기를 경유하여 가열된 질소가스와 압축된 질소가스를 열교환 하는 질소가스 열교환기를 더 포함하는 것을 특징으로 하는 BOG 재액화 시스템.
  11. 제6항에 있어서,
    상기 재액화 드럼에서 재액화된 BOG를 상기 액화가스 저장탱크로 회수하기 위한 회수 라인을 더 포함하는 것을 특징으로 하는 BOG 재액화 시스템.
  12. 제6항에 있어서,
    재액화되지 않은 잔여 BOG를 재액화 드럼 외부로 배출하기 위한 잔여 BOG 라인을 더 포함하는 것을 특징으로 하는 BOG 재액화 시스템.
  13. 제1항 또는 제6항에 있어서,
    상기 액화가스는 LNG를 포함하는 것을 특징으로 하는 BOG 재액화 시스템.
  14. 액화가스 저장탱크로부터 공급된 액화가스를 냉각시켜 BOG를 재액화하는 냉열원으로 이용하는 단계를 포함하는 BOG 재액화 방법.
  15. 제14항에 있어서,
    상기 냉열원의 온도는 상기 액화가스 저장탱크 내 액화가스의 온도 이하인 것을 특징으로 하는 BOG 재액화 방법.
  16. 제14항에 있어서,
    상기 재액화는 상기 액화가스 저장탱크의 외부에서 이루어지도록 하는 것을 특징으로 하는 BOG 재액화 방법.
  17. 액화가스 저장탱크로부터 배출된 BOG를 재액화 드럼으로 이송하는 단계;
    액화가스 저장탱크로부터 배출된 액화가스를 외부 냉열원과 열교환하여 냉각시키는 단계;
    냉각된 액화가스를 상기 재액화 드럼으로 이송하는 단계; 및
    상기 재액화 드럼내로 유입된 상기 BOG 및 냉각된 액화가스를 혼합하는 단계를 포함하는 BOG 재액화 방법.
  18. 제 17항에 있어서,
    상기 BOG 및 냉각된 액화가스의 혼합에 의하여 재액화된 BOG를 액화가스 저장탱크로 회수하는 단계를 더 포함하는 것을 특징으로 하는 BOG 재액화 방법.
  19. 제17항에 있어서,
    상기 BOG의 이송은 액화가스 저장탱크의 압력과 재액화 드럼의 압력차에 의한 자연 이송 방식에 의하여 이루어지는 것을 특징으로 하는 BOG 재액화 방법.
  20. 제17항에 있어서,
    상기 외부 냉열원은 냉각된 질소가스인 것을 특징으로 하는 BOG 재액화 방법.
  21. 액화가스 저장탱크로부터 공급된 액화가스를 냉각시켜 발생된 BOG를 재액화하는 냉열원으로 이용하는 BOG 재액화 시스템이 구비된 액화가스 운반 장치.
  22. 액화가스 저장탱크로부터 공급된 액화가스를 냉각시켜 발생된 BOG를 재액화하는 냉열원으로 이용하는 BOG 재액화 시스템이 구비된 액화가스 저장 장치.
PCT/KR2018/006084 2018-05-29 2018-05-29 Bog 재액화 시스템 및 이를 이용한 bog 재액화 방법 WO2019231001A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880094053.0A CN112219079A (zh) 2018-05-29 2018-05-29 蒸发气体再液化系统及利用其的蒸发气体再液化方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180060950A KR102096902B1 (ko) 2018-05-29 2018-05-29 Bog 재액화 시스템 및 이를 이용한 bog 재액화 방법
KR10-2018-0060950 2018-05-29

Publications (1)

Publication Number Publication Date
WO2019231001A1 true WO2019231001A1 (ko) 2019-12-05

Family

ID=68697646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/006084 WO2019231001A1 (ko) 2018-05-29 2018-05-29 Bog 재액화 시스템 및 이를 이용한 bog 재액화 방법

Country Status (3)

Country Link
KR (1) KR102096902B1 (ko)
CN (1) CN112219079A (ko)
WO (1) WO2019231001A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200243921Y1 (ko) * 2001-05-28 2001-10-29 한일원자력(주) 중력 및 압력차에 의한 유체 이송원리를 적용한액체이산화탄소세탁제염기
JP2007155060A (ja) * 2005-12-07 2007-06-21 Chubu Electric Power Co Inc ボイルオフガスの再液化方法
KR20080081436A (ko) * 2007-03-05 2008-09-10 신영중공업주식회사 Lng bog 재액화 장치 및 방법
KR101741790B1 (ko) * 2015-07-22 2017-06-15 대우조선해양 주식회사 증발가스 처리 시스템
KR101751331B1 (ko) * 2015-10-07 2017-06-27 삼성중공업 주식회사 연료가스 공급시스템

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100761973B1 (ko) * 2005-07-19 2007-10-04 신영중공업주식회사 작동유체의 유량조절수단을 이용하여 부하 변동 조절이가능한 천연가스 액화장치
CN101881549B (zh) * 2010-06-25 2014-02-12 华南理工大学 一种液化天然气接收站蒸发气体再冷凝回收系统及其回收方法
JP2013087911A (ja) * 2011-10-20 2013-05-13 Mitsubishi Heavy Ind Ltd 貯蔵槽の圧力上昇抑制装置、これを備えた圧力上昇抑制システム、この抑制方法、これを備えた液化ガス運搬船およびこれを備えた液化ガス貯蔵設備
KR101767548B1 (ko) * 2015-04-29 2017-08-11 대우조선해양 주식회사 증발가스 재액화 시스템 및 방법
KR20160133682A (ko) * 2015-05-13 2016-11-23 대우조선해양 주식회사 선박용 천연가스 액화 시스템
CN105444523B (zh) * 2015-10-23 2018-01-05 中国空分工程有限公司 采用bog自身压缩膨胀液化bog的再液化系统及工艺
KR101864150B1 (ko) * 2017-07-07 2018-06-05 삼성중공업 주식회사 액화천연가스 이송 시스템
CN107702430B (zh) * 2017-09-20 2019-12-24 国鸿液化气机械工程(大连)有限公司 船舶再液化系统及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200243921Y1 (ko) * 2001-05-28 2001-10-29 한일원자력(주) 중력 및 압력차에 의한 유체 이송원리를 적용한액체이산화탄소세탁제염기
JP2007155060A (ja) * 2005-12-07 2007-06-21 Chubu Electric Power Co Inc ボイルオフガスの再液化方法
KR20080081436A (ko) * 2007-03-05 2008-09-10 신영중공업주식회사 Lng bog 재액화 장치 및 방법
KR101741790B1 (ko) * 2015-07-22 2017-06-15 대우조선해양 주식회사 증발가스 처리 시스템
KR101751331B1 (ko) * 2015-10-07 2017-06-27 삼성중공업 주식회사 연료가스 공급시스템

Also Published As

Publication number Publication date
CN112219079A (zh) 2021-01-12
KR20190135669A (ko) 2019-12-09
KR102096902B1 (ko) 2020-05-27

Similar Documents

Publication Publication Date Title
WO2021015399A1 (ko) 선박의 연료가스 관리시스템
WO2015130122A1 (ko) 증발가스 처리 시스템
US9933119B2 (en) Floating LNG plant
WO2018139753A1 (ko) 액화천연가스 연료 선박의 연료 공급 시스템 및 방법
US10197220B2 (en) Integrated storage/offloading facility for an LNG production plant
CN104302540A (zh) 包括第一改装lng船和第二改装lng船的浮式lng工厂和获得浮式lng工厂的方法
JPS59216785A (ja) Lngの輸送システム
Gu et al. LNG-FPSO: Offshore LNG solution
WO2017099317A1 (ko) 엔진을 포함하는 선박
KR20100111363A (ko) 가스연료를 엔진에 공급하기 위한 장치 및 방법
WO2021167245A1 (ko) 중소형 lng 연료 추진선용 lng 증발가스 재액화 시스템 및 이를 이용한 lng 증발가스 재액화 방법
AU2012207059B2 (en) Linked LNG production facility
WO2021256644A1 (ko) 액화가스 운반선의 연료공급시스템 및 방법
WO2019231001A1 (ko) Bog 재액화 시스템 및 이를 이용한 bog 재액화 방법
AU2007233572B2 (en) LNG production facility
AU2008219347B2 (en) Linked LNG production facility
WO2019098490A1 (ko) 액화연료 발전 및 물류 시스템, 및 그 시스템을 이용한 입하역 방법
WO2017069520A1 (ko) 증발가스 재액화 장치 및 방법
WO2024085316A1 (ko) 선박의 증발가스 재액화시스템
WO2023075024A1 (ko) 선박용 재액화 시스템의 누수 감지 시스템
WO2023282415A1 (ko) 선박의 증발가스 재액화 시스템 및 방법
KR20160020788A (ko) 해상 천연가스 액화 및 저장 구조물 및 방법
KR20150030938A (ko) 증발가스 재액화장치
KR20200046532A (ko) 혼합냉매 조성물을 포함하는 bog 재액화 시스템 및 이를 이용한 bog 재액화 방법
WO2023075023A1 (ko) 선박의 증발가스 재액화 시스템 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18921143

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18921143

Country of ref document: EP

Kind code of ref document: A1