WO2019230836A1 - Wall material nonwoven fabric and method of manufacturing same - Google Patents

Wall material nonwoven fabric and method of manufacturing same Download PDF

Info

Publication number
WO2019230836A1
WO2019230836A1 PCT/JP2019/021384 JP2019021384W WO2019230836A1 WO 2019230836 A1 WO2019230836 A1 WO 2019230836A1 JP 2019021384 W JP2019021384 W JP 2019021384W WO 2019230836 A1 WO2019230836 A1 WO 2019230836A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
fibers
less
wall covering
woven fabric
Prior art date
Application number
PCT/JP2019/021384
Other languages
French (fr)
Japanese (ja)
Inventor
松浦 博幸
仁 溝上
羽根 亮一
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2020522266A priority Critical patent/JP7160094B2/en
Priority to CN201980035637.5A priority patent/CN112204193A/en
Publication of WO2019230836A1 publication Critical patent/WO2019230836A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
    • D04H3/147Composite yarns or filaments
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N7/00Flexible sheet materials not otherwise provided for, e.g. textile threads, filaments, yarns or tow, glued on macromolecular material

Definitions

  • the present invention relates to a non-woven fabric for wall coverings installed on a wall surface or ceiling of a building and a method for manufacturing the same.
  • the wall covering material using polyvinyl chloride is an excellent material in terms of price, workability, and printing characteristics, but has a serious problem in disposal after use.
  • a non-woven fabric for wall coverings comprising a melt blown nonwoven fabric composed of biodegradable fibers laminated and integrated on at least one surface of a spunbond nonwoven fabric composed of biodegradable fibers.
  • a wall covering material characterized in that all of the constituent materials are polylactic acid resins (see Patent Document 1).
  • a non-woven fabric for wallpaper backing has been proposed that has good dimensional stability, has low peel strength when peeling the wallpaper from the wall surface, has excellent peel characteristics, and has printability and coating suitability (see Patent Document 3). ).
  • Patent Document 1 the technology disclosed in Patent Document 1 is embossing, and when the problem is inferior in printability or the melt blown layer is applied to the wall side, the melt blown nonwoven fabric is torn and remains on the wall when peeled off, which is very useful for cleaning work. There is a problem that it takes time and effort.
  • Patent Document 2 does not emboss, but is a non-woven fabric having a high packing density and high rigidity, inferior in unevenness to the wall, poor workability, and easy to peel off from the wall surface. There is a problem.
  • Patent Document 3 since the technology disclosed in Patent Document 3 is a paper-made nonwoven fabric, the tear tearing strength is weak, and when it is peeled off from the wall surface, there is a problem that it is inferior in workability.
  • an object of the present invention is to provide a non-woven fabric for wall covering material that is excellent in resin processability and workability.
  • the present inventors have found a non-woven fabric that is suitable for wall covering, has less fuzzing, and has excellent resin processability and workability, and a method for producing the same.
  • the present invention is to solve the above problems, and the nonwoven fabric for wall covering material according to an embodiment of the present invention is a nonwoven fabric composed of fibers mainly composed of a thermoplastic resin, and the nonwoven fabric described above. On the surface of the sheet, the fibers are fused at the intersection of the fibers, and the fibers other than the intersection are separated from each other. Further, the surface roughness SMD of at least one side of the sheet by the KES method is 1.
  • the vertical tear strength per unit weight is 0.50 N / (g / m 2 ) or more.
  • the weight of the nonwoven fabric for wall covering is 80 g / m 2 or more and 130 g / m 2 or less, and the thickness of the nonwoven fabric for wall covering is 0.00. It is 18 mm or more and 0.31 mm or less, and the air permeability of the nonwoven fabric for wall covering material is 30 cc / cm 2 / sec or more and 60 cc / cm 2 / sec or less.
  • the non-woven fabric is a spunbonded non-woven fabric made of long fibers.
  • a nonwoven fabric composed of fibers mainly composed of a thermoplastic resin, the intersections of the surface fibers on at least one surface of the nonwoven fabric are all fused, and at least the surface roughness of the sheet on one surface by the KES method.
  • SMD is 1.2 ⁇ m or less, and the vertical tear strength per unit weight is 0.50 N / (g / m 2 ) or more, so that the non-woven fabric for wall coverings has less fuzz and is excellent in resin processability and workability. Can be obtained.
  • the nonwoven fabric for wall covering material is a nonwoven fabric composed of fibers mainly composed of a thermoplastic resin, and all the intersections of the surface fibers on at least one surface of the nonwoven fabric are fused, and at least It is a non-woven fabric for wall coverings having a surface roughness SMD of 1.2 ⁇ m or less by a KES method (Kawabata Evaluation System) on one side of the sheet and a vertical tear strength per unit weight of 0.50 N / (g / m 2 ) or more .
  • KES method Kawabata Evaluation System
  • the non-woven fabric for wall covering material of one embodiment of the present invention is a non-woven fabric composed of fibers mainly composed of a thermoplastic resin.
  • thermoplastic resin examples include polyesters, polyamides, polyolefins, and mixtures and copolymers thereof. Of these, polyester is preferred because it is more excellent in durability such as mechanical strength, heat resistance, water resistance and chemical resistance.
  • Polyester consists of an acid component and an alcohol component.
  • the acid component include aromatic carboxylic acids such as terephthalic acid, isophthalic acid and phthalic acid, aliphatic dicarboxylic acids such as adipic acid and sebacic acid, and alicyclic dicarboxylic acids such as cyclohexanecarboxylic acid.
  • the alcohol component ethylene glycol, diethylene glycol, polyethylene glycol, or the like can be used.
  • polyesters include polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, polyethylene naphthalate, polylactic acid, polybutylene succinate, and copolymers thereof.
  • a crystal nucleating agent in the nonwoven fabric for wall covering according to one embodiment of the present invention, a crystal nucleating agent, a matting agent, a lubricant, a pigment, an antifungal agent, an antibacterial agent, a flame retardant, a hydrophilic agent and the like may be added.
  • metal oxides such as titanium oxide have the effect of improving the adhesion of long fiber nonwoven fabrics by increasing the thermal conductivity, and the mold release property between the thermocompression roll and web.
  • an aliphatic bisamide such as ethylenebisstearic acid amide and / or an alkyl-substituted aliphatic monoamide, which has an effect of improving the adhesion stability by increasing the number.
  • these various additives may be present in the thermoplastic continuous fiber, or may be present on the surface of the thermoplastic continuous fiber.
  • the fiber mainly composed of the thermoplastic resin in the present invention is preferably a composite fiber in which a low melting point polymer having a melting point lower than the melting point of the high melting point polymer is arranged around the high melting point polymer. .
  • thermoplastic continuous fiber can be firmly bonded in the nonwoven fabric by thermocompression bonding, and surface smoothness can be obtained. Further, as a nonwoven fabric used for suppressing fuzz and for wall covering materials The mechanical strength can be improved.
  • the number of adhesion points in the nonwoven fabric is increased as compared to those obtained by mixing fibers having different melting points in addition to the strong adhesion between the filaments constituting the nonwoven fabric. Moreover, the dimensional stability and durability as a nonwoven fabric for wall covering materials are also improved.
  • the main component is a component occupying 50% by mass or more of the components of the composite fiber.
  • the difference in melting point between the high melting point polymer and the low melting point polymer is preferably 10 ° C. or higher and 140 ° C. or lower. Desirable thermal adhesiveness can be obtained by setting the difference in melting point to 10 ° C. or higher, more preferably 20 ° C. or higher, and further preferably 30 ° C. or higher. In addition, by controlling the temperature to 140 ° C. or lower, more preferably 120 ° C. or lower, and further preferably 100 ° C. or lower, it is possible to prevent the low melting point polymer component from fusing to the thermocompression-bonding roll during thermocompression bonding, thereby reducing productivity. Can do.
  • the melting point of the high melting point polymer in the composite fiber is preferably 160 ° C. or higher and 320 ° C. or lower.
  • the temperature is preferably 160 ° C. or higher, more preferably 170 ° C. or higher, and further preferably 180 ° C. or higher.
  • the shape stability is excellent even in a processing step where heat is applied.
  • it suppresses that productivity is reduced by consuming a great deal of heat energy for melting at the time of producing the long-fiber nonwoven fabric by setting it to 320 ° C. or less, more preferably 300 ° C. or less, and even more preferably 280 ° C. or less.
  • the melting point of the low-melting polymer in the composite fiber is preferably 150 ° C. or more and 310 ° C. or less after ensuring the difference in melting point between the high-melting polymer and the low-melting polymer.
  • the temperature is preferably 150 ° C. or higher, more preferably 160 ° C. or higher, and more preferably 170 ° C. or higher, the shape stability is excellent even in a processing step in which heat is applied.
  • it is 310 degrees C or less, More preferably, it is 290 degrees C or less, More preferably, it suppresses that a heat energy for melting at the time of long-fiber nonwoven fabric manufacture is consumed greatly, and productivity falls. Can do.
  • high melting point polymer / low melting point polymer examples include polyethylene terephthalate / polybutylene terephthalate, polyethylene terephthalate / polytrimethylene terephthalate, polyethylene terephthalate / polylactic acid, Examples thereof include polyethylene terephthalate / copolymerized polyethylene terephthalate.
  • a copolymerization component of copolymerized polyethylene terephthalate isophthalic acid or the like is preferable.
  • the value measured as follows is adopted as the melting point of the thermoplastic resin.
  • the average value of the endothermic peak apex temperatures is calculated as the melting point of the measurement object.
  • the peak apex temperature on the highest temperature side is set.
  • the endothermic peak due to the composite fiber is the endothermic peak on the highest temperature side (A) and the endothermic peak that appears on the side with the shorter elapsed time (the side on which the peak appears earlier), next to the endothermic peak on the highest temperature side.
  • the proportion of the low melting point polymer in the composite fiber is preferably 10% by mass or more and 70% by mass or less in the composite fiber. Desirable thermal adhesiveness can be obtained by setting the content to 10% by mass or more, more preferably 15% by mass or more, and further preferably 20% by mass or more. Moreover, 70 mass% or less, More preferably, it is 60 mass% or less, More preferably, it can suppress that fusion
  • Examples of the composite form of such a composite fiber include a concentric core-sheath type, an eccentric core-sheath type, and a sea-island type.
  • a concentric core-sheath type particularly an embodiment in which a low-melting-point polymer is a sheath component is preferable in that the fibers can be firmly bonded to each other by thermocompression bonding.
  • examples of the cross-sectional shape of the fiber mainly composed of a thermoplastic resin include a circular shape, a flat shape, a polygonal shape, a multi-leaf shape such as an X shape and a Y shape, and a hollow shape.
  • the low melting point polymer component is present in the vicinity of the outer peripheral portion of the fiber cross-section so that it can contribute to thermocompression bonding.
  • the fibers mainly composed of the thermoplastic resin according to the present invention preferably have an average single fiber diameter of 10 ⁇ m to 24 ⁇ m.
  • the average single fiber diameter preferably 10 ⁇ m or more, more preferably 11 ⁇ m or more, and further preferably 12 ⁇ m or more, a nonwoven fabric excellent in basis weight uniformity and mechanical strength can be obtained.
  • the resin when the average single fiber diameter is preferably 24 ⁇ m or less, more preferably 23 ⁇ m or less, and even more preferably 22 ⁇ m or less, the resin can be prevented from excessive permeation in post-processing such as resin impregnation.
  • the average single fiber diameter ( ⁇ m) of the fiber mainly composed of the thermoplastic resin is a value calculated by the following procedure.
  • Ten small piece samples (100 ⁇ 100 mm) are taken at random from the nonwoven fabric for wall covering material.
  • (2) Take a surface photograph of 500 times or more and 3000 times or less with a microscope, and measure the diameter of 100 single fibers, 10 from each sample.
  • (3) The average single fiber diameter ( ⁇ m) is calculated by rounding the arithmetic average value of the 100 measured values to the first decimal place.
  • Nonwoven fabric for wall coverings In the nonwoven fabric for wall covering material according to an embodiment of the present invention, on the surface of the nonwoven fabric, the fibers are fused at the intersection of the fibers, and the fibers other than the intersection are separated from each other. is important. That the fibers are separated from each other means that the fibers are not fused. By virtue of such a state, that is, the fibers are not excessively fused to form a film-like portion, air permeability suitable as a non-woven fabric for wall covering material can be ensured. In addition, even after heat fusion, except for the intersection of the fibers, the fibers are not melted to form a film, and the shape of the fiber is maintained, so that it can withstand long-term use as wallpaper. Excellent strength. Furthermore, since fusing is performed only at the intersections, fuzz of the nonwoven fabric can be suppressed, and a nonwoven fabric for wall covering material having excellent printability can be obtained.
  • the presence or absence of fusion between fibers other than the intersections on the surface of the nonwoven fabric for wall covering material is evaluated as follows. (1) Ten small piece samples (100 ⁇ 100 mm) are taken at random from the nonwoven fabric for wall covering material. (2) The surface of each sample is photographed with a microscope at a magnification of 500 to 3000 times. (3) In the above micrograph, all the fibers are observed, two or more fibers are fused at a portion other than the intersection, and the fibers are not separated from each other, forming a film-like portion. The thing shall have fusion of fibers other than an intersection.
  • the nonwoven fabric for wall covering of one embodiment of the present invention has a surface roughness SMD of 1.2 ⁇ m or less by the KES method on one side of the sheet.
  • the surface roughness SMD by the KES method on one side of the sheet is 1.2 ⁇ m or less, preferably 1.1 ⁇ m or less, and more preferably 1.0 ⁇ m or less. , Design properties can be improved.
  • the surface roughness SMD by the KES method is achieved by not providing unevenness by embossing, and can be controlled by appropriately adjusting the conditions for processing the fiber web with a pair of flat rolls.
  • the surface roughness SMD by the KES method adopts a value measured as follows.
  • test pieces having a width of 200 mm ⁇ 200 mm are collected from the nonwoven fabric at equal intervals in the width direction of the nonwoven fabric.
  • a test piece is set on a sample stage with a load of 400 g.
  • the surface of the test piece is scanned with a contact for measuring surface roughness (material: ⁇ 0.5 mm piano wire, contact length: 5 mm) applied with a load of 10 gf, and the average deviation of the uneven shape on the surface is measured. To do.
  • the above measurement is carried out in the longitudinal direction (longitudinal direction of the nonwoven fabric) and the lateral direction (width direction of the nonwoven fabric) of all the test pieces, and the average deviation of these 6 points is averaged to obtain the second decimal place. Is rounded off to obtain the surface roughness SMD ( ⁇ m).
  • the vertical tear strength per unit weight is 0.50 N / (g / m 2 ) or more.
  • the vertical tear strength per unit weight is 0.50 N / (g / m 2 ) or more, preferably 0.60 N / (g / m 2 ) or more, more preferably 0.70 N / (g / m 2 ).
  • it has excellent mechanical strength, and it is excellent not only in durability after construction but also in workability because it is not easily broken when peeled off by reattachment or the like.
  • the above-mentioned vertical tear strength is 6.4 “tear strength” of JIS L1913: 2010 “General nonwoven fabric test method” using a low-speed extension type tensile tester (for example, “RTG-1250” manufactured by Baldwin). a) In accordance with the trapezoid method, values measured as follows shall be adopted.
  • Ten specimens having a length of 150 mm and a width of 75 mm are collected in the transverse direction of the nonwoven fabric (width direction of the nonwoven fabric).
  • (3) The test piece is attached to the gripper along the mark by tightening the short side of the trapezoid and loosening the long side with a constant speed extension type tensile tester with a grip interval of 25 mm.
  • the nonwoven fabric for wall covering material of one embodiment of the present invention preferably has a basis weight of 80 g / m 2 or more and 130 g / m 2 or less.
  • the basis weight of the nonwoven fabric preferably 130 g / m 2 or less, more preferably 125 g / m 2 or less, and even more preferably 120 g / m 2 or less, the texture of the nonwoven fabric is hard to prevent it from peeling off from the wall during construction. It is possible to obtain a non-woven fabric excellent in unevenness to the wall.
  • the texture of the nonwoven fabric is not too soft and has sufficient whiteness.
  • a nonwoven fabric excellent in concealability can be obtained.
  • the fabric weight of a laminated nonwoven fabric shall employ
  • the thickness of the nonwoven fabric is preferably 0.18 mm or more and 0.31 mm or less.
  • the thickness of the nonwoven fabric is preferably 0.18 mm or more and 0.31 mm or less.
  • the thickness of the nonwoven fabric is 0.18 mm or more, more preferably 0.19 mm or more, and even more preferably 0.20 mm or more. Excellent design properties can be improved.
  • the thickness (mm) of a nonwoven fabric shall employ
  • a pressurizer having a diameter of 10 mm is used, and a thickness of 10 points per 1 m is measured in units of 0.01 mm at equal intervals in the width direction of the nonwoven fabric with a load of 10 kPa.
  • the nonwoven fabric for wall covering material of one embodiment of the present invention preferably has an air permeability of 30 cc / cm 2 / second or more and 60 cc / cm 2 / second or less.
  • the air flow rate of the nonwoven fabric By setting the air flow rate of the nonwoven fabric to 60 cc / cm 2 / second or less, more preferably 55 cc / cm 2 / second or less, and even more preferably 50 cc / cm 2 / second or less, Excessive penetration can be prevented.
  • the surface of the nonwoven fabric is not formed into a film by setting the air flow rate of the nonwoven fabric to 30 cc / cm 2 / second or more, more preferably 35 cc / cm 2 / second or more, and further preferably 40 cc / cm 2 / second or more. Since the surface is smooth, the printability is excellent and the design property can be enhanced.
  • the value measured by the following procedure in accordance with “6.8.1 Frazier method” of JIS L1913: 2010 is adopted as the air permeability of the nonwoven fabric.
  • Examples of the method for producing the wall covering nonwoven fabric according to one embodiment of the present invention include a spunbond method, a flash spinning method, a wet method, a card method, and an airlaid method.
  • spunbond nonwoven fabric produced by the spunbond method is an example of a preferred embodiment.
  • Spunbond nonwoven fabric which is a long-fiber nonwoven fabric composed of thermoplastic filaments, has excellent productivity and can suppress fuzz that tends to occur when using a short-fiber nonwoven fabric when used as a nonwoven fabric for wallpaper. In particular, it is possible to prevent the occurrence of defective bonding and processing defects.
  • the spunbonded nonwoven fabric is preferably used from the viewpoint that it is excellent in mechanical strength and can be used to obtain a processed product having excellent durability when used as a nonwoven fabric for wall covering materials.
  • a composite fiber such as a core-sheath type is used as the fiber constituting the nonwoven fabric
  • a normal composite method can be adopted for manufacturing the composite fiber.
  • thermoplastic polymer After the thermoplastic polymer is melt extruded from the spinneret, it is pulled and drawn by an ejector to form a thermoplastic continuous filament, which is sent out from the nozzle, charged and opened, and then deposited on the moving collection surface to form a fiber web Is done.
  • the nozzle is continuously swung at a predetermined angle of 15 degrees or more, more preferably 20 degrees or more, and further preferably 25 degrees or more to the left and right with respect to the web traveling direction.
  • the filament passes through the continuously oscillating nozzle and is then charged and opened by the charging means to form a fiber web, so that bundle fibers are reduced and the web has a large inclination with respect to the longitudinal direction. More specifically, the filament has a fiber orientation degree of 35 degrees to 70 degrees.
  • the rocking angle of the nozzle is 60 degrees or less, more preferably 55 degrees or less, and further preferably 50 degrees or less with respect to the web traveling direction, so that the fiber web is deposited on the moving collection surface.
  • the rocking angle of the nozzle is 60 degrees or less, more preferably 55 degrees or less, and further preferably 50 degrees or less with respect to the web traveling direction, so that the fiber web is deposited on the moving collection surface.
  • thermoplastic continuous filament is not limited at all, but charging by a corona discharge method or charging by frictional charging with a metal is preferable.
  • the above-mentioned fiber web is pressed with one flat roll, and then pressed against one flat roll for a predetermined time to smooth one side, thereby forming a nonwoven fabric for wall covering.
  • the smoothing treatment by the flat roll is not limited as long as the flat roll is brought into contact with the fiber web, but heat treatment is preferably performed in which the flat roll heated to a predetermined temperature is brought into contact with the fiber web.
  • the surface temperature of the flat roll in this heat treatment is preferably 30 ° C. or more and 120 ° C. or less lower than the melting point of the polymer having the lowest melting point constituting the filament existing on the surface of the fiber web, and 40 ° C. or more and 110 ° More preferably, the temperature is lower by 50 ° C. or less, and most preferably by 50 ° C. or more and 100 ° C. or less. That is, when this melting point is (Tm), the surface temperature of the flat roll is preferably (Tm-30) ° C. or higher and (Tm-120) ° C. or lower, and (Tm-40) ° C. or higher (Tm-110). ) ° C. or lower, more preferably (Tm-50) ° C. or higher and (Tm-100) ° C. or lower.
  • the time for heat treatment by bringing the flat roll into contact with the fiber web is preferably in the range of 0.01 seconds to 10 seconds. If the time for heat treatment is 0.01 seconds or more, the heat treatment effect of the nonwoven fabric can be sufficiently obtained, the heat treatment is not excessively strong, and sufficient mechanical strength can be obtained. If the heat treatment time is 10 seconds or less, the heat treatment will not be too strong, and the tear strength will not be reduced. A more preferable heat treatment time is 0.02 seconds or more and 9 seconds or less, and a more preferable heat treatment time is 0.03 seconds or more and 8 seconds or less.
  • the smoothing treatment using the flat roll is performed by heating and press-contacting the fiber web with a pair of flat rolls in order to smooth one side of the sheet.
  • the nonwoven fabric is continuously brought into contact with one of the flat rolls from the heat-pressing portion. That is, a method of performing heat treatment by forming a nonwoven fabric by heating and press-contacting a fiber web with a pair of flat rolls at a heat-pressing portion, and continuously contacting one side of the nonwoven fabric with one flat roll from the heat-pressing portion is important. .
  • the method of contacting with the above flat roll is not limited to a specific method as long as it can be continuously brought into contact with one flat roll from the heating and press-contacting portion and heat-treated.
  • a method in which a fiber web is heated and pressed between a pair of flat rolls at a heating and pressing portion and then brought into contact with one flat roll at a contact portion having a predetermined length For example, as shown in FIG.
  • a method of winding the fiber web around the flat roll in an S shape (or an inverted S shape) may be used.
  • the linear pressure when the fiber web is pressed by a pair of flat rolls is preferably in the range of 500 N / cm to 1100 N / cm, more preferably in the range of 510 N / cm to 1090 N / cm.
  • the linear pressure is 500 N / cm or more, a linear pressure sufficient for sheet formation can be obtained.
  • the linear pressure is 1100 N / cm or less, the adhesion between the fibers does not become too strong, and therefore the tear strength of the obtained nonwoven fabric does not decrease.
  • the contact with the continuous flat roll from the heat-welded part of the nonwoven fabric is performed in a state where a tension of 5 N / m or more and 200 N / m or less is applied in the running direction of the nonwoven fabric.
  • a tension of 5 N / m or more is preferable because the tendency of the nonwoven fabric to be wound around the flat roll is reduced. If the tension is 200 N / m or less, the nonwoven fabric is less likely to be cut, which is a preferred direction.
  • a more preferable tension range is 8 N / m or more and 180 N / m or less.
  • the contact distance is preferably in the range of 40 cm to 250 cm.
  • the contact distance is 40 cm or more, the smoothing effect is sufficient, and a nonwoven fabric excellent in printing processability is obtained.
  • the contact distance is 250 cm or less, the heat treatment becomes too strong and the tear strength does not decrease.
  • a more preferable contact distance is in the range of 50 cm to 200 cm.
  • the non-woven fabric for wall covering material according to one embodiment of the present invention and a method for producing the same will be specifically described based on Examples.
  • those not specifically described are those measured based on the above method.
  • Intrinsic viscosity (IV) The intrinsic viscosity (IV) of the polyethylene terephthalate resin was measured by the following method. 8 g of a sample was dissolved in 100 ml of orthochlorophenol, and the relative viscosity ⁇ r was determined by the following formula using an Ostwald viscometer at a temperature of 25 ° C.
  • Aeration rate of non-woven fabric for wall covering material (cc / cm 2 / sec):
  • an air permeability tester FX3300 manufactured by Textex was used.
  • Example 1 (Fiber web) A composite fiber composed of a core component and a sheath component was used as a fiber mainly composed of a thermoplastic resin. Below, it shows about the used thermoplastic resin.
  • Core component high melting point long fiber: an intrinsic viscosity (IV) of 0.65, a melting point of 260 ° C., and a polyethylene terephthalate resin containing 0.3% by mass of titanium oxide dried to a moisture content of 50 ppm or less.
  • Sheath component low melting long fiber: intrinsic viscosity (IV) 0.66, isophthalic acid copolymerization rate 10 mol%, melting point 230 ° C., and copolymer polyethylene terephthalate resin containing 0.2% by mass of titanium oxide Dried to 50 ppm or less.
  • the core component was melted at 295 ° C. and the sheath component was melted at 280 ° C., and the composite ratio of core / sheath was 80/20 in mass ratio to form a concentric core-sheath type with a circular cross section.
  • spinning with an air soccer at a spinning speed of 4300 m / min was made into a thermoplastic continuous filament.
  • this filament is passed through a nozzle that swings at 36 degrees to the left and right with respect to the web traveling direction, and the filament collides with a metal collision plate installed at the nozzle outlet to charge and open the fiber by friction charging. It was collected as a fiber web on a moving net conveyor. The moving speed of the net conveyor was adjusted so that the collected fiber web had a basis weight of 90 g / m 2 .
  • the fiber web is thermocompression-bonded with a pair of upper and lower flat rolls at a flat roll surface temperature of 160 ° C. and a linear pressure of 588 kg / cm, and the pressure-bonded sheet is continuously transferred from the heating pressure contact portion to the surface of one flat roll. Contact was made for 2.9 seconds over 120 cm.
  • a spunbonded nonwoven fabric having a fiber diameter of 14 ⁇ m and a basis weight of 90 g / m 2 was obtained.
  • the obtained non-woven fabric for wall covering material has an air permeability of 50 cc / cm 2 / sec, a thickness of 0.20 mm, a smooth surface roughness SMD of 0.75 ⁇ m, and a vertical tear strength per unit weight of 0.96 N / It was (g / m 2 ), and the portion where the fibers other than the intersection were fused to the surface to form a film (film) was not seen.
  • Example 2 In Example 1, the fiber web was obtained by the same method as Example 1 except having adjusted the moving speed of the net conveyor so that a fabric weight might be 100 g / m ⁇ 2 >.
  • the fiber web is thermocompression bonded with a pair of upper and lower flat rolls at a flat roll surface temperature of 160 ° C. and a linear pressure of 588 N / cm, and the pressure-bonded sheet is continuously transferred from the heating pressure contact portion to the surface of one flat roll. Contact was made over 120 cm for 3.2 seconds.
  • the obtained nonwoven fabric for wall covering of Example 2 has an air permeability of 45 cc / cm 2 / sec, a thickness of 0.23 mm, a smooth surface roughness SMD of 0.80 ⁇ m, and a vertical tear strength per unit area.
  • the portion was 0.88 N / (g / m 2 ), and a portion where fibers other than the intersections were fused on the surface to form a film (film shape) was not seen.
  • Example 3 In Example 1, the fiber web was obtained by the same method as Example 1 except having adjusted the moving speed of the net conveyor so that a fabric weight might be 110 g / m ⁇ 2 >.
  • the fiber web is thermocompression bonded with a pair of upper and lower flat rolls at a flat roll surface temperature of 160 ° C. and a linear pressure of 588 N / cm, and the pressure-bonded sheet is continuously transferred from the heating pressure contact portion to the surface of one flat roll. Contact was made over 120 cm for 3.5 seconds.
  • the obtained nonwoven fabric for wall covering of Example 3 has an air permeability of 41 cc / cm 2 / sec, a thickness of 0.26 mm, a smooth surface roughness SMD of 0.84 ⁇ m, and a vertical tear strength per unit area.
  • the portion was 0.87 N / (g / m 2 ), and a portion in which fibers other than the intersections were fused on the surface to form a film (film shape) was not seen.
  • Example 1 A fiber web was obtained in the same manner as in Example 1. The fiber web was thermocompression bonded with a pair of upper and lower flat rolls at a flat roll surface temperature of 180 ° C. and a linear pressure of 588 N / cm. By the above treatment, a spunbonded nonwoven fabric having a fiber diameter of 14 ⁇ m and a basis weight of 90 g / m 2 was obtained.
  • the obtained non-woven fabric for wall covering material has an air permeability of 2 cc / cm 2 / sec, a thickness of 0.11 mm, a smooth surface roughness SMD of 0.98 ⁇ m, and a vertical tear strength per unit weight of 0.06 N / (G / m 2 ), and a portion where fibers other than the intersection were fused to form a film (film) was observed.
  • Example 2 A fiber web was obtained in the same manner as in Example 1. The fiber web is thermocompression bonded with a pair of upper and lower flat rolls at a flat roll surface temperature of 160 ° C. and a linear pressure of 60 kg / cm, and the pressure-bonded sheet is continuously transferred from the heating pressure contact portion to the surface of one flat roll. After contacting for 120 seconds over 120 cm, partial thermocompression bonding with an embossing roll was performed to obtain a spunbonded nonwoven fabric having a fiber diameter of 14 ⁇ m and a basis weight of 90 g / m 2 .
  • the obtained non-woven fabric for wall covering has an air permeability of 50 cc / cm 2 / sec, a thickness of 0.32 mm, a smooth surface roughness SMD of 2.32 ⁇ m, and a vertical tear strength per unit area of 0.99 N / It was (g / m 2 ), and a portion where fibers other than the intersection were fused to form a film (film shape) was not seen.
  • the nonwoven fabric is composed of fibers mainly composed of a thermoplastic resin, and the fibers are fused at the intersection of the fibers on the surface of the nonwoven fabric, and other than the intersection Fibers are spaced apart from each other, and at least the surface roughness SMD of the sheet on one side by the KES method is 1.2 ⁇ m or less, and the vertical tear strength per unit weight is 0.50 N / (g / m 2 ) or more.
  • the nonwoven fabric for wall covering materials excellent in resin workability and workability was obtained.
  • the non-woven fabric for wall covering material of Comparative Example 1 had a smooth surface roughness SMD by the KES method, but the fibers other than the intersections were fused to form a film. As a result, the vertical tear strength per unit weight was low and the mechanical strength was inferior.
  • the nonwoven fabric for wall covering material of Comparative Example 2 had a high vertical tear strength per unit area and an excellent mechanical strength, but was inferior to the surface roughness of the smooth surface.
  • the nonwoven fabric for wall covering material according to one embodiment of the present invention has less fuzz and is excellent in resin processability and workability, and particularly in a wide range of fields including nonwoven fabrics installed on the walls and ceilings of buildings. Can be suitably used.
  • Fiber web 2 Heat-bonding part 3: Non-woven fabric and flat roll contact part 4a: Upper roll 4b: Lower roll 5: Arrow indicating the traveling direction of the fiber web

Abstract

A wall material nonwoven fabric according to an embodiment of the present invention comprises fiber mainly composed of a thermoplastic resin and is characterized in that, on the surface of the nonwoven fabric, fibers are fused together at intersections of the fibers and are separated from each other at locations other than the intersections, and in that at least one side of the sheet has a surface roughness SMD obtained by the KES method of 1.2 μm or less and a vertical tear strength per basis weight of 0.50 N/(g/m2) or more.

Description

壁装材用不織布およびその製造方法Non-woven fabric for wall covering and manufacturing method thereof
 本発明は、建築物の壁面や天井等に設置される壁装材用不織布およびその製造方法に関するものである。 The present invention relates to a non-woven fabric for wall coverings installed on a wall surface or ceiling of a building and a method for manufacturing the same.
 従来の壁装材のうち最も多く使用されているものは、ポリ塩化ビニル系樹脂からなるシートを紙等に積層したものである。このポリ塩化ビニルを使用した壁装材は、価格、施工性、さらには印刷特性などの点で優れた材料であるが、使用後の廃棄に大きな問題を有するものであった。 Among the conventional wall covering materials, the most frequently used one is a laminate of sheets made of polyvinyl chloride resin on paper or the like. The wall covering material using polyvinyl chloride is an excellent material in terms of price, workability, and printing characteristics, but has a serious problem in disposal after use.
 そこで、近年では環境志向の高まりとともに、種々の生分解性を有する壁装材が提案されている。例えば、生分解性を有する繊維から構成されるスパンボンド不織布の少なくとも片面に、生分解性を有する繊維から構成されるメルトブロー不織布が積層一体化されてなることを特徴とする壁装材用不織布であり、構成材の全てがポリ乳酸系樹脂であることを特徴とした壁装材が開示されている(特許文献1参照)。 Therefore, in recent years, wall covering materials having various biodegradability have been proposed with an increase in environmental orientation. For example, a non-woven fabric for wall coverings comprising a melt blown nonwoven fabric composed of biodegradable fibers laminated and integrated on at least one surface of a spunbond nonwoven fabric composed of biodegradable fibers. There is disclosed a wall covering material characterized in that all of the constituent materials are polylactic acid resins (see Patent Document 1).
 一方、エンボス品ではなく、剛性と表面平滑性に優れる壁紙用不織布も提案されている(特許文献2参照)。 On the other hand, a non-embossed product and a non-woven fabric for wallpaper having excellent rigidity and surface smoothness have also been proposed (see Patent Document 2).
 さらに、寸法安定性が良好であると共に、壁紙を壁面から剥がす際の剥離強度が弱い、ピール特性に優れ、印刷適性やコーティング適正をも有する壁紙裏打ち用不織布が提案されている(特許文献3参照)。 Furthermore, a non-woven fabric for wallpaper backing has been proposed that has good dimensional stability, has low peel strength when peeling the wallpaper from the wall surface, has excellent peel characteristics, and has printability and coating suitability (see Patent Document 3). ).
日本国特開2004-270081号公報Japanese Unexamined Patent Publication No. 2004-270081 日本国特開2007-284859号公報Japanese Unexamined Patent Publication No. 2007-284859 日本国特開2016-141922号公報Japanese Unexamined Patent Publication No. 2016-141922
 しかしながら、特許文献1が開示する技術はエンボス加工を施すものであり、印刷性に劣る問題やメルトブロー層を壁側に施工した場合、剥がすとメルトブロー不織布が破れて壁に残り、清掃作業に非常に手間がかかるという課題がある。 However, the technology disclosed in Patent Document 1 is embossing, and when the problem is inferior in printability or the melt blown layer is applied to the wall side, the melt blown nonwoven fabric is torn and remains on the wall when peeled off, which is very useful for cleaning work. There is a problem that it takes time and effort.
 また、特許文献2が開示する技術は、エンボス加工を施さないが、充填密度が大きく、剛性が高い不織布であり、壁への不陸性に劣り、施工性が悪く、また、壁面から剥がれやすいという課題がある。 Further, the technology disclosed in Patent Document 2 does not emboss, but is a non-woven fabric having a high packing density and high rigidity, inferior in unevenness to the wall, poor workability, and easy to peel off from the wall surface. There is a problem.
 さらに、特許文献3が開示する技術は、抄造不織布であるため、タテ引裂強力が弱く、壁面から剥がす際に容易に破れてしまい、作業性に劣る課題がある。 Furthermore, since the technology disclosed in Patent Document 3 is a paper-made nonwoven fabric, the tear tearing strength is weak, and when it is peeled off from the wall surface, there is a problem that it is inferior in workability.
 そこで本発明の目的は、樹脂加工性や施工性に優れた壁装材用不織布を提供することにある。 Therefore, an object of the present invention is to provide a non-woven fabric for wall covering material that is excellent in resin processability and workability.
 本発明者らは、上記目的を達成するべく鋭意検討した結果、壁装材に好適な、毛羽立ちが少なく、樹脂加工性や施工性に優れた不織布、およびその製造方法を見出した。 As a result of intensive studies to achieve the above object, the present inventors have found a non-woven fabric that is suitable for wall covering, has less fuzzing, and has excellent resin processability and workability, and a method for producing the same.
 すなわち、本発明は、上記の課題を解決せんとするものであり、本発明の一実施態様の壁装材用不織布は、熱可塑性樹脂を主成分とする繊維からなる不織布であって、前記不織布の表面において、前記繊維の交点では該繊維同士が融着していて、かつ、該交点以外の繊維同士は互いに離間しており、さらに、少なくともシート片面のKES法による表面粗さSMDが1.2μm以下であり、目付当たりのタテ引裂強力が0.50N/(g/m)以上である。 That is, the present invention is to solve the above problems, and the nonwoven fabric for wall covering material according to an embodiment of the present invention is a nonwoven fabric composed of fibers mainly composed of a thermoplastic resin, and the nonwoven fabric described above. On the surface of the sheet, the fibers are fused at the intersection of the fibers, and the fibers other than the intersection are separated from each other. Further, the surface roughness SMD of at least one side of the sheet by the KES method is 1. The vertical tear strength per unit weight is 0.50 N / (g / m 2 ) or more.
 本発明の壁装材用不織布の好ましい態様によれば、前記壁装材用不織布の目付が80g/m以上130g/m以下であって、該壁装材用不織布の厚さが0.18mm以上0.31mm以下であり、かつ、該壁装材用不織布の通気量が30cc/cm/sec以上60cc/cm/sec以下である。 According to a preferred embodiment of the nonwoven fabric for wall covering of the present invention, the weight of the nonwoven fabric for wall covering is 80 g / m 2 or more and 130 g / m 2 or less, and the thickness of the nonwoven fabric for wall covering is 0.00. It is 18 mm or more and 0.31 mm or less, and the air permeability of the nonwoven fabric for wall covering material is 30 cc / cm 2 / sec or more and 60 cc / cm 2 / sec or less.
 本発明の壁装材用不織布の好ましい態様によれば、前記不織布が、長繊維からなるスパンボンド不織布である。 According to a preferred aspect of the non-woven fabric for wall covering material of the present invention, the non-woven fabric is a spunbonded non-woven fabric made of long fibers.
 本発明の一実施態様の壁装材用不織布の製造方法は、前記繊維の表面を構成する最も低融点の熱可塑性樹脂の融点に対し、30℃以上120℃以下の低い温度に加熱された一対のフラットロールで線圧500N/cm以上1100N/cm以下で熱圧着させた後、連続的に所定時間フラットロールに接触させる工程を有する。 In the method for producing a nonwoven fabric for wall covering material according to an embodiment of the present invention, a pair heated to a low temperature of 30 ° C. or higher and 120 ° C. or lower with respect to the melting point of the lowest melting point thermoplastic resin constituting the surface of the fiber. After the thermocompression bonding with the flat roll at a linear pressure of 500 N / cm or more and 1100 N / cm or less, the film is continuously brought into contact with the flat roll for a predetermined time.
 本発明によれば、熱可塑性樹脂を主成分とする繊維からなる不織布であって、前記不織布の少なくとも片面の表面繊維の交点が全て融着しており、かつ少なくともシート片面のKES法による表面粗さSMDが1.2μm以下であり、目付当たりのタテ引裂強力が0.50N/(g/m)以上であることで、毛羽立ちが少なく、樹脂加工性や施工性に優れる壁装材用不織布を得ることができる。 According to the present invention, a nonwoven fabric composed of fibers mainly composed of a thermoplastic resin, the intersections of the surface fibers on at least one surface of the nonwoven fabric are all fused, and at least the surface roughness of the sheet on one surface by the KES method. SMD is 1.2 μm or less, and the vertical tear strength per unit weight is 0.50 N / (g / m 2 ) or more, so that the non-woven fabric for wall coverings has less fuzz and is excellent in resin processability and workability. Can be obtained.
フラットロールによる繊維ウェブの熱処理加工を示す概略図である。It is the schematic which shows the heat processing of the fiber web by a flat roll.
 本発明の一実施態様の壁装材用不織布は、熱可塑性樹脂を主成分とする繊維からなる不織布であって、前記不織布の少なくとも片面の表面繊維の交点が全て融着しており、かつ少なくともシート片面のKES法(Kawabata Evaluation System)による表面粗さSMDが1.2μm以下であり、目付当たりのタテ引裂強力が0.50N/(g/m)以上である壁装材用不織布である。
 以下に、この詳細を示す。
The nonwoven fabric for wall covering material according to one embodiment of the present invention is a nonwoven fabric composed of fibers mainly composed of a thermoplastic resin, and all the intersections of the surface fibers on at least one surface of the nonwoven fabric are fused, and at least It is a non-woven fabric for wall coverings having a surface roughness SMD of 1.2 μm or less by a KES method (Kawabata Evaluation System) on one side of the sheet and a vertical tear strength per unit weight of 0.50 N / (g / m 2 ) or more .
The details are shown below.
 (熱可塑性樹脂)
 本発明の一実施態様の壁装材用不織布は、熱可塑性樹脂を主成分とする繊維からなる不織布であることが重要である。
(Thermoplastic resin)
It is important that the non-woven fabric for wall covering material of one embodiment of the present invention is a non-woven fabric composed of fibers mainly composed of a thermoplastic resin.
 上記の熱可塑性樹脂としては、例えばポリエステル、ポリアミド、ポリオレフィン、あるいはこれらの混合物や共重合体等を挙げることができる。なかでもポリエステルが、より機械的強度や耐熱性、耐水性、耐薬品性等の耐久性に優れることから好ましい。 Examples of the thermoplastic resin include polyesters, polyamides, polyolefins, and mixtures and copolymers thereof. Of these, polyester is preferred because it is more excellent in durability such as mechanical strength, heat resistance, water resistance and chemical resistance.
 ポリエステルは酸成分とアルコール成分とからなる。酸成分としては、テレフタル酸、イソフタル酸、フタル酸などの芳香族カルボン酸、アジピン酸、セバシン酸などの脂肪族ジカルボン酸、シクロヘキサンカルボン酸等の脂環族ジカルボン酸などを用いることができる。また、アルコール成分としては、エチレングリコール、ジエチレングリコール、ポリエチレングリコールなどを用いることができる。 Polyester consists of an acid component and an alcohol component. Examples of the acid component include aromatic carboxylic acids such as terephthalic acid, isophthalic acid and phthalic acid, aliphatic dicarboxylic acids such as adipic acid and sebacic acid, and alicyclic dicarboxylic acids such as cyclohexanecarboxylic acid. As the alcohol component, ethylene glycol, diethylene glycol, polyethylene glycol, or the like can be used.
 ポリエステルの例としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリエチレンナフタレート、ポリ乳酸、ポリブチレンサクシネート、また、これらの共重合体等を挙げることができる。 Examples of polyesters include polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, polyethylene naphthalate, polylactic acid, polybutylene succinate, and copolymers thereof.
 本発明の一実施態様の壁装材用不織布には、結晶核剤や艶消し剤、滑剤、顔料、防カビ剤、抗菌剤、難燃剤、親水剤等を添加してもよい。特に長繊維不織布の熱圧着成形の際、熱伝導性を増すことで長繊維不織布の接着性を向上させる効果がある酸化チタン等の金属酸化物や、熱圧着ロールとウェブ間の離型性を増すことで接着安定性を向上させる効果があるエチレンビスステアリン酸アミド等の脂肪族ビスアミド、および/またはアルキル置換型の脂肪族モノアミドを添加することが好ましい。これら各種の添加剤は、熱可塑性連続繊維中に存在させてもよいし、熱可塑性連続繊維の表面に存在させてもよい。 In the nonwoven fabric for wall covering according to one embodiment of the present invention, a crystal nucleating agent, a matting agent, a lubricant, a pigment, an antifungal agent, an antibacterial agent, a flame retardant, a hydrophilic agent and the like may be added. Especially when thermocompression molding of long fiber nonwoven fabrics, metal oxides such as titanium oxide have the effect of improving the adhesion of long fiber nonwoven fabrics by increasing the thermal conductivity, and the mold release property between the thermocompression roll and web. It is preferable to add an aliphatic bisamide such as ethylenebisstearic acid amide and / or an alkyl-substituted aliphatic monoamide, which has an effect of improving the adhesion stability by increasing the number. These various additives may be present in the thermoplastic continuous fiber, or may be present on the surface of the thermoplastic continuous fiber.
 (熱可塑性樹脂を主成分とする繊維)
 また、本発明における熱可塑性樹脂を主成分とする繊維は、高融点重合体の周りに当該高融点重合体の融点よりも低い融点を有する低融点重合体を配した複合繊維であることが好ましい。
(Fiber mainly composed of thermoplastic resin)
Further, the fiber mainly composed of the thermoplastic resin in the present invention is preferably a composite fiber in which a low melting point polymer having a melting point lower than the melting point of the high melting point polymer is arranged around the high melting point polymer. .
 このような複合繊維とすることにより、熱圧着により熱可塑性連続繊維が不織布内において強固に接着し、表面平滑性を得ることができ、また、毛羽立の抑制や、壁装材に用いる不織布としての、機械的強度を向上することができる。 By using such a composite fiber, the thermoplastic continuous fiber can be firmly bonded in the nonwoven fabric by thermocompression bonding, and surface smoothness can be obtained. Further, as a nonwoven fabric used for suppressing fuzz and for wall covering materials The mechanical strength can be improved.
 また、このような複合繊維とすることにより、不織布を構成するフィラメント同士が強固に接着することに加え、融点の異なる繊維同士を混繊させたものに比べ不織布における接着点の数も多くなるため、壁装材用不織布としての寸法安定性、耐久性も向上する。 Further, by using such a composite fiber, the number of adhesion points in the nonwoven fabric is increased as compared to those obtained by mixing fibers having different melting points in addition to the strong adhesion between the filaments constituting the nonwoven fabric. Moreover, the dimensional stability and durability as a nonwoven fabric for wall covering materials are also improved.
 ここで主成分とは複合繊維の成分のうち、50質量%以上を占める成分のことである。 Here, the main component is a component occupying 50% by mass or more of the components of the composite fiber.
 上記の高融点重合体と低融点重合体との融点の差としては10℃以上140℃以下が好ましい。融点の差を10℃以上、より好ましくは20℃以上、さらに好ましくは30℃以上とすることで、所望の熱接着性を得ることができる。また、140℃以下、より好ましくは120℃以下、さらに好ましくは100℃以下とすることで、熱圧着時に熱圧着ロールに低融点重合体成分が融着し生産性が低下することを抑制することができる。 The difference in melting point between the high melting point polymer and the low melting point polymer is preferably 10 ° C. or higher and 140 ° C. or lower. Desirable thermal adhesiveness can be obtained by setting the difference in melting point to 10 ° C. or higher, more preferably 20 ° C. or higher, and further preferably 30 ° C. or higher. In addition, by controlling the temperature to 140 ° C. or lower, more preferably 120 ° C. or lower, and further preferably 100 ° C. or lower, it is possible to prevent the low melting point polymer component from fusing to the thermocompression-bonding roll during thermocompression bonding, thereby reducing productivity. Can do.
 また、上記複合繊維における高融点重合体の融点としては、160℃以上320℃以下が好ましい。160℃以上、より好ましくは170℃以上、さらに好ましくは180℃以上とすることで、熱が加わる加工工程においても形態安定性に優れる。また、320℃以下、より好ましくは300℃以下、さらに好ましくは280℃以下とすることで、長繊維不織布製造時に溶融するための熱エネルギーを多大に消費し生産性が低下するのを抑制することができる。 In addition, the melting point of the high melting point polymer in the composite fiber is preferably 160 ° C. or higher and 320 ° C. or lower. By setting the temperature to 160 ° C. or higher, more preferably 170 ° C. or higher, and further preferably 180 ° C. or higher, the shape stability is excellent even in a processing step where heat is applied. Moreover, it suppresses that productivity is reduced by consuming a great deal of heat energy for melting at the time of producing the long-fiber nonwoven fabric by setting it to 320 ° C. or less, more preferably 300 ° C. or less, and even more preferably 280 ° C. or less. Can do.
 一方、上記複合繊維における低融点重合体の融点としては、前記の高融点重合体と低融点重合体の融点の差を確保した上で、150℃以上310℃以下であることが好ましい。150℃以上、より好ましくは160℃以上、さらに好ましくは170℃以上とすることで、熱が加わる加工工程においても形態安定性に優れる。また、310℃以下、より好ましくは290℃以下、さらに好ましくは270℃以下とすることで、長繊維不織布製造時に溶融するための熱エネルギーを多大に消費し生産性が低下するのを抑制することができる。 On the other hand, the melting point of the low-melting polymer in the composite fiber is preferably 150 ° C. or more and 310 ° C. or less after ensuring the difference in melting point between the high-melting polymer and the low-melting polymer. By setting the temperature to 150 ° C. or higher, more preferably 160 ° C. or higher, and more preferably 170 ° C. or higher, the shape stability is excellent even in a processing step in which heat is applied. Moreover, it is 310 degrees C or less, More preferably, it is 290 degrees C or less, More preferably, it suppresses that a heat energy for melting at the time of long-fiber nonwoven fabric manufacture is consumed greatly, and productivity falls. Can do.
 かかる高融点重合体および低融点重合体の組み合わせ(高融点重合体/低融点重合体)の具体例としては、ポリエチレンテレフタレート/ポリブチレンテレフタレート、ポリエチレンテレフタレート/ポリトリメチレンテレフタレート、ポリエチレンテレフタレート/ポリ乳酸、ポリエチレンテレフタレート/共重合ポリエチレンテレフタレート等が挙げられる。共重合ポリエチレンテレフタレートの共重合成分としては、イソフタル酸等が好ましい。 Specific examples of the combination of the high melting point polymer and the low melting point polymer (high melting point polymer / low melting point polymer) include polyethylene terephthalate / polybutylene terephthalate, polyethylene terephthalate / polytrimethylene terephthalate, polyethylene terephthalate / polylactic acid, Examples thereof include polyethylene terephthalate / copolymerized polyethylene terephthalate. As a copolymerization component of copolymerized polyethylene terephthalate, isophthalic acid or the like is preferable.
 なお、本発明において熱可塑性樹脂の融点は、以下のように測定される値を採用するものとする。 In the present invention, the value measured as follows is adopted as the melting point of the thermoplastic resin.
(1)示差走査熱量計を用いて、次の条件で1回測定を行う。なお、示差走査熱量計としては、TA Instruments社製「Q100」等が用いられる。
・測定雰囲気:窒素流(150ml/分)
・温度範囲 :30~350℃
・昇温速度 :20℃/分
・試料量  :5mg
(1) Using a differential scanning calorimeter, measurement is performed once under the following conditions. As the differential scanning calorimeter, “Q100” manufactured by TA Instruments is used.
・ Measurement atmosphere: Nitrogen flow (150ml / min)
・ Temperature range: 30-350 ℃
・ Temperature increase rate: 20 ° C./min ・ Sample amount: 5 mg
(2)吸熱ピーク頂点温度の平均値を算出して、測定対象の融点とする。ただし、繊維形成前の樹脂において吸熱ピークが複数存在する場合は、最も高温側のピーク頂点温度とする。また、繊維を測定対象とする場合には、同様に測定し、複数の吸熱ピークから各成分の融点を推定する。その際、複合繊維による吸熱ピークは、最も高温側の吸熱ピーク(A)と、経過時間の小さい側(早くピークが現れる側)に現れる吸熱ピークであって、最も高温側の吸熱ピークの次に高いピーク(吸熱ピーク(B))を示すピーク群であり、前記の吸熱ピーク(A)が高融点重合体の融点を示すものであるのに対し、前記の吸熱ピーク(B)が低融点重合体の融点を示すものである。 (2) The average value of the endothermic peak apex temperatures is calculated as the melting point of the measurement object. However, when a plurality of endothermic peaks exist in the resin before fiber formation, the peak apex temperature on the highest temperature side is set. Moreover, when making a fiber into a measuring object, it measures similarly and estimates melting | fusing point of each component from several endothermic peaks. At that time, the endothermic peak due to the composite fiber is the endothermic peak on the highest temperature side (A) and the endothermic peak that appears on the side with the shorter elapsed time (the side on which the peak appears earlier), next to the endothermic peak on the highest temperature side. It is a peak group showing a high peak (endothermic peak (B)), and the endothermic peak (A) indicates the melting point of the high melting point polymer, whereas the endothermic peak (B) has a low melting point weight. It indicates the melting point of the coalescence.
 かかる複合繊維における低融点重合体の占める割合としては、複合繊維中10質量%以上70質量%以下であることが好ましい。10質量%以上、より好ましくは15質量%以上、さらに好ましくは20質量%以上とすることで、所望の熱接着性を得ることができる。また、70質量%以下、より好ましくは60質量%以下、さらに好ましくは50質量%以下とすることで、融着が進みすぎて引裂強力が低下することを抑制することができる。 The proportion of the low melting point polymer in the composite fiber is preferably 10% by mass or more and 70% by mass or less in the composite fiber. Desirable thermal adhesiveness can be obtained by setting the content to 10% by mass or more, more preferably 15% by mass or more, and further preferably 20% by mass or more. Moreover, 70 mass% or less, More preferably, it is 60 mass% or less, More preferably, it can suppress that fusion | bonding advances too much and tearing strength falls by setting it as 50 mass% or less.
 かかる複合繊維の複合形態としては例えば、同心芯鞘型、偏心芯鞘型、海島型等を挙げることができる。なかでも同心芯鞘型、特に低融点重合体が鞘成分となる態様が、熱圧着により繊維同士を強固に接着させることができる点で好ましい。 Examples of the composite form of such a composite fiber include a concentric core-sheath type, an eccentric core-sheath type, and a sea-island type. Among these, a concentric core-sheath type, particularly an embodiment in which a low-melting-point polymer is a sheath component is preferable in that the fibers can be firmly bonded to each other by thermocompression bonding.
 また、熱可塑性樹脂を主成分とする繊維の断面形状としては、円形、扁平、多角形、X型やY型等の多葉型、中空型等を挙げることができる。前記のような複合繊維で異形型の断面形状を採用する場合は、低融点重合体成分が熱圧着に寄与できるように繊維断面の外周部近傍に存在するのが好ましい。 Also, examples of the cross-sectional shape of the fiber mainly composed of a thermoplastic resin include a circular shape, a flat shape, a polygonal shape, a multi-leaf shape such as an X shape and a Y shape, and a hollow shape. In the case of adopting a deformed cross-sectional shape in the composite fiber as described above, it is preferable that the low melting point polymer component is present in the vicinity of the outer peripheral portion of the fiber cross-section so that it can contribute to thermocompression bonding.
 本発明に係る熱可塑性樹脂を主成分とする繊維は、その平均単繊維径が10μm以上24μm以下であることが好ましい。平均単繊維径を好ましくは10μm以上とし、より好ましくは11μm以上とし、さらに好ましくは12μm以上とすることにより、目付均一性、および機械的強度に優れた不織布とすることができる。 The fibers mainly composed of the thermoplastic resin according to the present invention preferably have an average single fiber diameter of 10 μm to 24 μm. By setting the average single fiber diameter to preferably 10 μm or more, more preferably 11 μm or more, and further preferably 12 μm or more, a nonwoven fabric excellent in basis weight uniformity and mechanical strength can be obtained.
 一方、平均単繊維径を好ましくは24μm以下とし、より好ましくは23μm以下とし、さらに好ましくは22μm以下とすることにより、樹脂含浸加工等の後加工において、樹脂の過浸透を防ぐことができる。 On the other hand, when the average single fiber diameter is preferably 24 μm or less, more preferably 23 μm or less, and even more preferably 22 μm or less, the resin can be prevented from excessive permeation in post-processing such as resin impregnation.
 なお、本発明においては、前記の熱可塑性樹脂を主成分とする繊維の平均単繊維直径(μm)は、以下の手順によって算出される値を採用するものとする。 In the present invention, the average single fiber diameter (μm) of the fiber mainly composed of the thermoplastic resin is a value calculated by the following procedure.
(1)壁装材用不織布からランダムに小片サンプル(100×100mm)10個を採取する。
(2)マイクロスコープで500倍以上3000倍以下の表面写真を撮影し、各サンプルから10本ずつ、計100本の単繊維の直径を測定する。
(3)測定した100本の値の算術平均値を、小数点以下第一位を四捨五入して平均単繊維直径(μm)を算出する。
(1) Ten small piece samples (100 × 100 mm) are taken at random from the nonwoven fabric for wall covering material.
(2) Take a surface photograph of 500 times or more and 3000 times or less with a microscope, and measure the diameter of 100 single fibers, 10 from each sample.
(3) The average single fiber diameter (μm) is calculated by rounding the arithmetic average value of the 100 measured values to the first decimal place.
 (壁装材用不織布)
 本発明の一実施態様の壁装材用不織布は、前記不織布の表面において、前記繊維の交点では該繊維同士が融着していて、かつ、該交点以外の繊維同士は互いに離間していることが重要である。繊維同士が互いに離間しているとは、繊維同士が融着していないことを意味する。このような状態、すなわち、繊維同士が過度に融着して膜状の部分を形成しないことによって、壁装材用不織布として好適な通気性を確保することができる。また、熱融着後においても、前記繊維同士の交点以外は、繊維同士が溶融して膜状とならず、繊維の形態を維持していることによって、壁紙として長期の使用に耐えうる機械的強度に優れたものとなる。さらには、交点においてのみ融着していることから、不織布の毛羽立ちを抑えることができ、印刷性に優れた壁装材用不織布とすることができる。
(Nonwoven fabric for wall coverings)
In the nonwoven fabric for wall covering material according to an embodiment of the present invention, on the surface of the nonwoven fabric, the fibers are fused at the intersection of the fibers, and the fibers other than the intersection are separated from each other. is important. That the fibers are separated from each other means that the fibers are not fused. By virtue of such a state, that is, the fibers are not excessively fused to form a film-like portion, air permeability suitable as a non-woven fabric for wall covering material can be ensured. In addition, even after heat fusion, except for the intersection of the fibers, the fibers are not melted to form a film, and the shape of the fiber is maintained, so that it can withstand long-term use as wallpaper. Excellent strength. Furthermore, since fusing is performed only at the intersections, fuzz of the nonwoven fabric can be suppressed, and a nonwoven fabric for wall covering material having excellent printability can be obtained.
 なお、本発明においては、前記の壁装材用不織布の表面における交点以外の繊維同士の融着の有無は、以下のように評価することとする。
(1)壁装材用不織布からランダムに小片サンプル(100×100mm)10個を採取する。
(2)各サンプルの表面をマイクロスコープで500倍以上3000倍以下の倍率で顕微鏡写真を撮影する。
(3)前記の顕微鏡写真内において、全ての繊維を観察し、繊維2本以上が交点以外の部分で融着し、繊維同士が互いに離間しておらず、膜状の部分を形成しているものが、交点以外の繊維同士の融着が有るものとする。
In the present invention, the presence or absence of fusion between fibers other than the intersections on the surface of the nonwoven fabric for wall covering material is evaluated as follows.
(1) Ten small piece samples (100 × 100 mm) are taken at random from the nonwoven fabric for wall covering material.
(2) The surface of each sample is photographed with a microscope at a magnification of 500 to 3000 times.
(3) In the above micrograph, all the fibers are observed, two or more fibers are fused at a portion other than the intersection, and the fibers are not separated from each other, forming a film-like portion. The thing shall have fusion of fibers other than an intersection.
 本発明の一実施態様の壁装材用不織布は、シート片面のKES法による表面粗さSMDが1.2μm以下であることが重要である。 It is important that the nonwoven fabric for wall covering of one embodiment of the present invention has a surface roughness SMD of 1.2 μm or less by the KES method on one side of the sheet.
 シート片面のKES法による表面粗さSMDが1.2μm以下、好ましくは1.1μm以下、さらに好ましくは1.0μm以下とすることにより、毛羽立ちがなく、表面平滑であることから、印刷性に優れ、意匠性を高めることができる。 The surface roughness SMD by the KES method on one side of the sheet is 1.2 μm or less, preferably 1.1 μm or less, and more preferably 1.0 μm or less. , Design properties can be improved.
 KES法による表面粗さSMDは、エンボス加工による凹凸を設けないことで達成され、さらに、繊維ウェブを一対のフラットロールで加工する条件を適切に調整することにより制御することができる。 The surface roughness SMD by the KES method is achieved by not providing unevenness by embossing, and can be controlled by appropriately adjusting the conditions for processing the fiber web with a pair of flat rolls.
 なお、本発明においてKES法による表面粗さSMDは、以下のように測定される値を採用するものとする。 In the present invention, the surface roughness SMD by the KES method adopts a value measured as follows.
(1)不織布から幅200mm×200mmの試験片を、不織布の幅方向等間隔に3枚採取する。
(2)試験片を試料台に400gの荷重をかけてセットする。
(3)10gfの荷重をかけた表面粗さ測定用接触子(素材:φ0.5mmピアノ線、接触長さ:5mm)で試験片の表面を走査して、表面の凹凸形状の平均偏差を測定する。
(4)上記の測定を、すべての試験片の縦方向(不織布の長手方向)と横方向(不織布の幅方向)で行い、これらの計6点の平均偏差を平均して小数点以下第二位を四捨五入し、表面粗さSMD(μm)とする。
(1) Three test pieces having a width of 200 mm × 200 mm are collected from the nonwoven fabric at equal intervals in the width direction of the nonwoven fabric.
(2) A test piece is set on a sample stage with a load of 400 g.
(3) The surface of the test piece is scanned with a contact for measuring surface roughness (material: φ0.5 mm piano wire, contact length: 5 mm) applied with a load of 10 gf, and the average deviation of the uneven shape on the surface is measured. To do.
(4) The above measurement is carried out in the longitudinal direction (longitudinal direction of the nonwoven fabric) and the lateral direction (width direction of the nonwoven fabric) of all the test pieces, and the average deviation of these 6 points is averaged to obtain the second decimal place. Is rounded off to obtain the surface roughness SMD (μm).
 本発明の一実施態様の壁装材用不織布は、目付当たりのタテ引裂強力が0.50N/(g/m)以上であることが重要である。目付当たりのタテ引裂強力が0.50N/(g/m)以上、好ましくは0.60N/(g/m)以上、さらに好ましくは0.70N/(g/m)とすることにより、機械的強度に優れ、壁紙として使用した場合には、施工後の耐久性に優れるばかりでなく、貼り替え等で剥がす際に容易に破れないことから作業性に優れるものである。 In the nonwoven fabric for wall covering material of one embodiment of the present invention, it is important that the vertical tear strength per unit weight is 0.50 N / (g / m 2 ) or more. By setting the vertical tear strength per unit weight to 0.50 N / (g / m 2 ) or more, preferably 0.60 N / (g / m 2 ) or more, more preferably 0.70 N / (g / m 2 ). When used as wallpaper, it has excellent mechanical strength, and it is excellent not only in durability after construction but also in workability because it is not easily broken when peeled off by reattachment or the like.
 なお、上記のタテ引裂強力は、低速伸長型引張試験機(例えば、ボールドウィン社製「RTG-1250」)を用い、JIS L1913:2010「一般不織布試験方法」の6.4「引裂強さ」のa)トラペゾイド法に準拠して、以下のように測定される値を採用するものとする。 In addition, the above-mentioned vertical tear strength is 6.4 “tear strength” of JIS L1913: 2010 “General nonwoven fabric test method” using a low-speed extension type tensile tester (for example, “RTG-1250” manufactured by Baldwin). a) In accordance with the trapezoid method, values measured as follows shall be adopted.
(1)不織布の横方向(不織布の幅方向)について、長さ150mm×幅75mmの試験片を10点採取する。
(2)試験片に等脚台形の印をつけ、この印の短辺の中央に短辺と直角に15mmの切り込みを入れる。
(3)試験片を定速伸長型引張試験機にて、つかみ間隔25mmとして台形の短辺は張り、長辺は緩めて、印に沿ってつかみ具に取付ける。
(4)引張速度100±10mm/minの条件で、引き裂く時の最大荷重(N)を引裂強さ(N)とし、10点の平均値を算出する。
(5)算出した引裂強さ(N)を目付(g/m)で除し、小数点以下第一位を四捨五入する。
(1) Ten specimens having a length of 150 mm and a width of 75 mm are collected in the transverse direction of the nonwoven fabric (width direction of the nonwoven fabric).
(2) Mark the test piece with an isosceles trapezoid, and make a 15 mm notch in the middle of the short side of the mark at right angles to the short side.
(3) The test piece is attached to the gripper along the mark by tightening the short side of the trapezoid and loosening the long side with a constant speed extension type tensile tester with a grip interval of 25 mm.
(4) Under the condition of a tensile speed of 100 ± 10 mm / min, the maximum load (N) at the time of tearing is taken as the tear strength (N), and an average value of 10 points is calculated.
(5) Divide the calculated tear strength (N) by the basis weight (g / m 2 ) and round off to the first decimal place.
 本発明の一実施態様の壁装材用不織布は、不織布の目付が80g/m以上130g/m以下であることが好ましい。不織布の目付を好ましくは130g/m以下、より好ましくは125g/m以下、さらに好ましくは120g/m以下とすることにより、不織布の風合いが硬く、施工時に壁から剥がれやすくなることを防止でき、壁への不陸性に優れる不織布を得ることができる。 The nonwoven fabric for wall covering material of one embodiment of the present invention preferably has a basis weight of 80 g / m 2 or more and 130 g / m 2 or less. By making the basis weight of the nonwoven fabric preferably 130 g / m 2 or less, more preferably 125 g / m 2 or less, and even more preferably 120 g / m 2 or less, the texture of the nonwoven fabric is hard to prevent it from peeling off from the wall during construction. It is possible to obtain a non-woven fabric excellent in unevenness to the wall.
 一方、不織布の目付を好ましくは80g/m以上、より好ましくは85g/m以上、さらに好ましくは90g/m以上とすることにより、不織布の風合いが柔らか過ぎず、また十分な白色度となり、隠蔽性に優れる不織布を得ることができる。 On the other hand, by setting the basis weight of the nonwoven fabric to preferably 80 g / m 2 or more, more preferably 85 g / m 2 or more, and further preferably 90 g / m 2 or more, the texture of the nonwoven fabric is not too soft and has sufficient whiteness. A nonwoven fabric excellent in concealability can be obtained.
 なお、本発明において、積層不織布の目付は、JIS L1913:2010「6.2 単位面積当たりの質量」に準拠して、以下の手順によって測定される値を採用するものとする。 In addition, in this invention, the fabric weight of a laminated nonwoven fabric shall employ | adopt the value measured by the following procedures based on JIS L1913: 2010 "6.2 mass per unit area."
(1)25cm×25cmの試験片を、試料の幅1m当たり3枚採取する。
(2)標準状態におけるそれぞれの質量(g)を量る。
(3)その平均値を1m当たりの質量(g/m)で表する。
(1) Three test pieces of 25 cm × 25 cm are collected per 1 m width of the sample.
(2) Weigh each mass (g) in the standard state.
(3) The average value is expressed in terms of mass per 1 m 2 (g / m 2 ).
 本発明の一実施態様の壁装材用不織布は、不織布の厚さが0.18mm以上0.31mm以下であることが好ましい。不織布の厚さを0.31mm以下、より好ましくは0.30mm以下、さらに好ましくは0.29mm以下とすることで、毛羽立ちがなく、表面平滑であることから、印刷性に優れ、意匠性を高めることができる。 In the nonwoven fabric for wall covering material of one embodiment of the present invention, the thickness of the nonwoven fabric is preferably 0.18 mm or more and 0.31 mm or less. By setting the thickness of the nonwoven fabric to 0.31 mm or less, more preferably 0.30 mm or less, and even more preferably 0.29 mm or less, there is no fuzz and the surface is smooth. be able to.
 一方、不織布の厚さを0.18mm以上、より好ましくは0.19mm以上、さらに好ましくは0.20mm以上とすることで、不織布の表面がフィルム化することなく、表面平滑であることから、印刷性に優れ、意匠性を高めることができる。 On the other hand, the thickness of the nonwoven fabric is 0.18 mm or more, more preferably 0.19 mm or more, and even more preferably 0.20 mm or more. Excellent design properties can be improved.
 なお、本発明において、不織布の厚さ(mm)は、JIS L1906:2000の「5.1」に準じ、以下の手順によって測定される値を採用するものとする。 In addition, in this invention, the thickness (mm) of a nonwoven fabric shall employ | adopt the value measured by the following procedures according to "5.1" of JISL1906: 2000.
(1)直径10mmの加圧子を使用し、荷重10kPaで不織布の幅方向等間隔に1mあたり10点の厚さを0.01mm単位で測定する。
(2)上記10点の平均値の小数点以下第四位を四捨五入する。
(1) A pressurizer having a diameter of 10 mm is used, and a thickness of 10 points per 1 m is measured in units of 0.01 mm at equal intervals in the width direction of the nonwoven fabric with a load of 10 kPa.
(2) Round the fourth decimal place of the average value of the above 10 points.
 本発明の一実施態様の壁装材用不織布は、不織布の通気量が30cc/cm/秒以上60cc/cm/秒以下であることが好ましい。 The nonwoven fabric for wall covering material of one embodiment of the present invention preferably has an air permeability of 30 cc / cm 2 / second or more and 60 cc / cm 2 / second or less.
 不織布の通気量を60cc/cm/秒以下、より好ましくは55cc/cm/秒以下、さらに好ましくは50cc/cm/秒以下とすることで、樹脂含浸加工等の後加工において、樹脂の過浸透を防ぐことができる。 By setting the air flow rate of the nonwoven fabric to 60 cc / cm 2 / second or less, more preferably 55 cc / cm 2 / second or less, and even more preferably 50 cc / cm 2 / second or less, Excessive penetration can be prevented.
 一方、不織布の通気量を30cc/cm/秒以上、より好ましくは35cc/cm/秒以上、さらに好ましくは40cc/cm/秒以上とすることで、不織布の表面がフィルム化することなく、表面平滑であることから、印刷性に優れ、意匠性を高めることができる。 On the other hand, the surface of the nonwoven fabric is not formed into a film by setting the air flow rate of the nonwoven fabric to 30 cc / cm 2 / second or more, more preferably 35 cc / cm 2 / second or more, and further preferably 40 cc / cm 2 / second or more. Since the surface is smooth, the printability is excellent and the design property can be enhanced.
 なお、本発明において、不織布の通気量は、JIS L1913:2010の「6.8.1 フラジール形法」に準じ、以下の手順によって測定される値を採用するものとする。 In the present invention, the value measured by the following procedure in accordance with “6.8.1 Frazier method” of JIS L1913: 2010 is adopted as the air permeability of the nonwoven fabric.
(1)不織布から15cm×15cmの試験片10枚を切り出す。
(2)気圧計の圧力125Paで、試験片において測定する。
(3)得られた値の平均値について、小数点以下第一位を四捨五入して算出する。
(1) 10 test pieces of 15 cm × 15 cm are cut out from the nonwoven fabric.
(2) Measurement is performed on a test piece at a pressure of 125 Pa of a barometer.
(3) The average value obtained is calculated by rounding off the first decimal place.
 (壁装材用不織布の製造方法)
 次に、本発明の一実施態様の壁装材用不織布の製造方法について説明する。
(Method for producing non-woven fabric for wall coverings)
Next, the manufacturing method of the nonwoven fabric for wall covering materials of one embodiment of this invention is demonstrated.
 本発明の一実施態様の壁装材用不織布の製造方法としては、スパンボンド法、フラッシュ紡糸法、湿式法、カード法およびエアレイド法等を挙げることができる。 Examples of the method for producing the wall covering nonwoven fabric according to one embodiment of the present invention include a spunbond method, a flash spinning method, a wet method, a card method, and an airlaid method.
 中でも、スパンボンド法により製造されるスパンボンド不織布は好ましい態様の一例である。熱可塑性フィラメントから構成された長繊維不織布であるスパンボンド不織布は、生産性に優れる他、壁紙用不織布として使用する際に短繊維不織布を用いたときに起こりやすい毛羽立ちを抑制することができ、部分的に接着不良や加工不良が発生することを防ぐことができる。また、スパンボンド不織布は、機械的強度により優れていて、壁装材用不織布として使用した際に耐久性に優れる加工品を得ることもできるという観点からも好ましく用いられる。 Among these, a spunbond nonwoven fabric produced by the spunbond method is an example of a preferred embodiment. Spunbond nonwoven fabric, which is a long-fiber nonwoven fabric composed of thermoplastic filaments, has excellent productivity and can suppress fuzz that tends to occur when using a short-fiber nonwoven fabric when used as a nonwoven fabric for wallpaper. In particular, it is possible to prevent the occurrence of defective bonding and processing defects. In addition, the spunbonded nonwoven fabric is preferably used from the viewpoint that it is excellent in mechanical strength and can be used to obtain a processed product having excellent durability when used as a nonwoven fabric for wall covering materials.
 本発明において、不織布を構成する繊維として芯鞘型等の複合型繊維を用いる場合、複合型繊維の製造には通常の複合方法を採用することができる。 In the present invention, when a composite fiber such as a core-sheath type is used as the fiber constituting the nonwoven fabric, a normal composite method can be adopted for manufacturing the composite fiber.
 熱可塑性重合体を紡糸口金から溶融押し出し後、これをエジェクターにより牽引、延伸して熱可塑性連続フィラメントとし、ノズルから送り出して帯電開繊したのち、移動捕集面上に堆積させ、繊維ウェブに形成される。 After the thermoplastic polymer is melt extruded from the spinneret, it is pulled and drawn by an ejector to form a thermoplastic continuous filament, which is sent out from the nozzle, charged and opened, and then deposited on the moving collection surface to form a fiber web Is done.
 このとき、ノズルは、ウェブ進行方向に対し左右それぞれへ15度以上、より好ましくは20度以上、さらに好ましくは25度以上の所定の角度で、連続して揺動させる。上記のフィラメントは、この連続揺動するノズルを通過したのち上記の帯電手段で帯電開繊されて繊維ウェブとなることで、束状の繊維が少なくなるとともに、ウェブの長手方向に対する傾斜が大きいヨコ配向傾向となり、より具体的には、フィラメントの繊維配向度が35度以上70度以下となる。これにより単位重量当たりの繊維の表面積が広くなり、不織布とした際に目付均一性が向上し、また、タテ引裂強力が向上する。 At this time, the nozzle is continuously swung at a predetermined angle of 15 degrees or more, more preferably 20 degrees or more, and further preferably 25 degrees or more to the left and right with respect to the web traveling direction. The filament passes through the continuously oscillating nozzle and is then charged and opened by the charging means to form a fiber web, so that bundle fibers are reduced and the web has a large inclination with respect to the longitudinal direction. More specifically, the filament has a fiber orientation degree of 35 degrees to 70 degrees. As a result, the surface area of the fiber per unit weight is increased, and the fabric weight uniformity is improved when the nonwoven fabric is formed, and the vertical tear strength is improved.
 なお、上記のノズルの揺動角度は、ウェブ進行方向に対して60度以下、より好ましくは55度以下、さらに好ましくは50度以下とすることで、移動捕集面上に堆積させて繊維ウェブを形成する際に、ウェブが捲れる欠点等の発生を抑制することができる。 In addition, the rocking angle of the nozzle is 60 degrees or less, more preferably 55 degrees or less, and further preferably 50 degrees or less with respect to the web traveling direction, so that the fiber web is deposited on the moving collection surface. When forming, it is possible to suppress the occurrence of defects such as web curling.
 前記熱可塑性連続フィラメントの帯電方法は何ら制限されるものではないが、コロナ放電法による帯電や、金属との摩擦帯電による帯電が好ましいものである。 The charging method of the thermoplastic continuous filament is not limited at all, but charging by a corona discharge method or charging by frictional charging with a metal is preferable.
 上記の繊維ウェブは、一のフラットロールで圧接処理されたのち、一方のフラットロールに所定時間押し当てられて片面が平滑化され、壁装材用不織布に形成される。 The above-mentioned fiber web is pressed with one flat roll, and then pressed against one flat roll for a predetermined time to smooth one side, thereby forming a nonwoven fabric for wall covering.
 上記のフラットロールによる平滑処理は、フラットロールを繊維ウェブに接触させるものであれば何ら制限されるものではないが、所定温度に加熱したフラットロールを繊維ウェブに接触させる熱処理加工が好ましい。 The smoothing treatment by the flat roll is not limited as long as the flat roll is brought into contact with the fiber web, but heat treatment is preferably performed in which the flat roll heated to a predetermined temperature is brought into contact with the fiber web.
 この熱処理加工におけるフラットロールの表面温度は、繊維ウェブの表面に存在するフィラメントを構成する、最も融点の低い重合体の融点に対して、30℃以上120℃以下低いことが好ましく、40℃以上110℃以下低いことがより好ましく、50℃以上100℃以下低いことが最も好ましい。即ち、この融点を(Tm)とした場合、フラットロールの表面温度は、(Tm-30)℃以上(Tm-120)℃以下であることが好ましく、(Tm-40)℃以上(Tm-110)℃以下がより好ましく、(Tm-50)℃以上(Tm-100)℃以下が最も好ましい。 The surface temperature of the flat roll in this heat treatment is preferably 30 ° C. or more and 120 ° C. or less lower than the melting point of the polymer having the lowest melting point constituting the filament existing on the surface of the fiber web, and 40 ° C. or more and 110 ° More preferably, the temperature is lower by 50 ° C. or less, and most preferably by 50 ° C. or more and 100 ° C. or less. That is, when this melting point is (Tm), the surface temperature of the flat roll is preferably (Tm-30) ° C. or higher and (Tm-120) ° C. or lower, and (Tm-40) ° C. or higher (Tm-110). ) ° C. or lower, more preferably (Tm-50) ° C. or higher and (Tm-100) ° C. or lower.
 フラットロールの表面温度が(Tm-120)℃よりも低い場合は、繊維ウェブの熱処理が不十分となって、目的のシート厚さが得られない問題や、接着が不十分となり、表面平滑性が得られず好ましくない。また、フラットロールの表面温度が(Tm-30)℃よりも高い場合には、熱処理が強くなりすぎ、表層部の構成繊維が融着状態となり、十分な機械的強度を得られず好ましくない。 When the surface temperature of the flat roll is lower than (Tm−120) ° C., the heat treatment of the fiber web becomes insufficient, and the target sheet thickness cannot be obtained, the adhesion becomes insufficient, and the surface smoothness Is not preferable. On the other hand, when the surface temperature of the flat roll is higher than (Tm-30) ° C., the heat treatment becomes too strong, and the constituent fibers in the surface layer portion are in a fused state, so that sufficient mechanical strength cannot be obtained.
 また、フラットロールを繊維ウェブに接触させて熱処理する時間は、0.01秒以上10秒以下が好ましい範囲である。熱処理する時間が0.01秒以上であれば、不織布の熱処理効果が十分に得られ、熱処理が強くなりすぎず、十分な機械的強度を得られる。また熱処理の時間が10秒以下であれば、熱処理が強くなりすぎることがなく、引裂強力が低下することがない。より好ましい熱処理時間は0.02秒以上9秒以下であり、さらに好ましい熱処理時間は0.03秒以上8秒以下である。 Also, the time for heat treatment by bringing the flat roll into contact with the fiber web is preferably in the range of 0.01 seconds to 10 seconds. If the time for heat treatment is 0.01 seconds or more, the heat treatment effect of the nonwoven fabric can be sufficiently obtained, the heat treatment is not excessively strong, and sufficient mechanical strength can be obtained. If the heat treatment time is 10 seconds or less, the heat treatment will not be too strong, and the tear strength will not be reduced. A more preferable heat treatment time is 0.02 seconds or more and 9 seconds or less, and a more preferable heat treatment time is 0.03 seconds or more and 8 seconds or less.
 また、本発明の一実施態様の壁装材用不織布の製造方法における、前記フラットロールによる平滑処理は、シート片面を平滑にするために、前記繊維ウェブを一対のフラットロールにより加熱圧接して不織布を形成し、この不織布を加熱圧接部から連続的に一方のフラットロールに接触させる方法が最も好ましい。即ち、一対のフラットロールにより加熱圧接部で繊維ウェブを加熱圧接して不織布を形成し、この不織布の片面を一方のフラットロールに加熱圧接部から連続的に接触させ、熱処理する方法が重要である。 In the method for producing a nonwoven fabric for wall covering material according to an embodiment of the present invention, the smoothing treatment using the flat roll is performed by heating and press-contacting the fiber web with a pair of flat rolls in order to smooth one side of the sheet. Most preferably, the nonwoven fabric is continuously brought into contact with one of the flat rolls from the heat-pressing portion. That is, a method of performing heat treatment by forming a nonwoven fabric by heating and press-contacting a fiber web with a pair of flat rolls at a heat-pressing portion, and continuously contacting one side of the nonwoven fabric with one flat roll from the heat-pressing portion is important. .
 上記のフラットロールと接触させる方法としては、前記の加熱圧接部から一方のフラットロールに連続的に接触させ、熱処理することが可能であればよく、特定の方法に限定されない。繊維ウェブを加熱圧接部で一対のフラットロール間で加熱圧接したのち、所定長さの接触部で一方のフラットロールに接触させる方法が一般的であるが、例えば、図1に示すように一対のフラットロールに繊維ウェブをS字型(または、逆S字型)に巻き付ける様な方法であってもよい。 The method of contacting with the above flat roll is not limited to a specific method as long as it can be continuously brought into contact with one flat roll from the heating and press-contacting portion and heat-treated. A method in which a fiber web is heated and pressed between a pair of flat rolls at a heating and pressing portion and then brought into contact with one flat roll at a contact portion having a predetermined length. For example, as shown in FIG. A method of winding the fiber web around the flat roll in an S shape (or an inverted S shape) may be used.
 繊維ウェブを一対のフラットロールにより圧接する際の線圧は、500N/cm以上1100N/cm以下の範囲が好ましく、より好ましくは510N/cm以上1090N/cm以下の範囲である。線圧が500N/cm以上の場合であれば、シート形成に十分な線圧が得られる。線圧が1100N/cm以下の場合には、繊維同士の接着が強くなり過ぎることなく、したがって、得られた不織布の引裂強力が低下することがない。 The linear pressure when the fiber web is pressed by a pair of flat rolls is preferably in the range of 500 N / cm to 1100 N / cm, more preferably in the range of 510 N / cm to 1090 N / cm. When the linear pressure is 500 N / cm or more, a linear pressure sufficient for sheet formation can be obtained. When the linear pressure is 1100 N / cm or less, the adhesion between the fibers does not become too strong, and therefore the tear strength of the obtained nonwoven fabric does not decrease.
 また、前記不織布の加熱圧接部からの連続的なフラットロールによる接触は、不織布の走行方向に5N/m以上200N/m以下の張力をかけた状態で実施することが好ましい。張力が5N/m以上であれば、フラットロールに不織布が巻き付いたりする傾向が少なくなり好ましい。張力が200N/m以下であれば、不織布の切断が発生しにくくなり、好ましい方向である。より好ましい張力の範囲は8N/m以上180N/m以下である。 Further, it is preferable that the contact with the continuous flat roll from the heat-welded part of the nonwoven fabric is performed in a state where a tension of 5 N / m or more and 200 N / m or less is applied in the running direction of the nonwoven fabric. A tension of 5 N / m or more is preferable because the tendency of the nonwoven fabric to be wound around the flat roll is reduced. If the tension is 200 N / m or less, the nonwoven fabric is less likely to be cut, which is a preferred direction. A more preferable tension range is 8 N / m or more and 180 N / m or less.
 またさらに、前記不織布を加熱圧接部から連続的にフラットロールに接触させるにおいて、その接触距離は、40cm以上250cm以下の範囲が好ましい。接触距離が40cm以上であると平滑処理効果が十分となり、印刷加工性に優れる不織布が得られる。接触距離が250cm以下であれば、熱処理が強くなり過ぎて引裂強力が低下することがない。より好ましい接触距離は50cm以上200cm以下の範囲である。 Furthermore, when the non-woven fabric is continuously brought into contact with the flat roll from the heat-pressing portion, the contact distance is preferably in the range of 40 cm to 250 cm. When the contact distance is 40 cm or more, the smoothing effect is sufficient, and a nonwoven fabric excellent in printing processability is obtained. When the contact distance is 250 cm or less, the heat treatment becomes too strong and the tear strength does not decrease. A more preferable contact distance is in the range of 50 cm to 200 cm.
 次に、実施例に基づき本発明の一実施態様の壁装材用不織布とその製造方法について、具体的に説明する。各物性の測定において、特段の記載がないものは、前記の方法に基づいて測定を行ったものである。 Next, the non-woven fabric for wall covering material according to one embodiment of the present invention and a method for producing the same will be specifically described based on Examples. In the measurement of each physical property, those not specifically described are those measured based on the above method.
 [測定方法]
 (1)固有粘度(IV):
 ポリエチレンテレフタレート樹脂の固有粘度(IV)は、次の方法で測定した。オルソクロロフェノール100mlに対し試料8gを溶解し、温度25℃においてオストワルド粘度計を用いて相対粘度ηを、下記式により求めた。
・η=η/η=(t×d)/(t×d
(ここで、ηはポリマー溶液の粘度、ηはオルソクロロフェノールの粘度、tは溶液の落下時間(秒)、dは溶液の密度(g/cm)、 t:はオルソクロロフェノールの落下時間(秒)、dはオルソクロロフェノールの密度(g/cm)を、それぞれ表す。)
 次いで、上記の相対粘度ηから、下記式により、固有粘度(IV)を算出した。
・固有粘度(IV)=0.0242η+0.2634
[Measuring method]
(1) Intrinsic viscosity (IV):
The intrinsic viscosity (IV) of the polyethylene terephthalate resin was measured by the following method. 8 g of a sample was dissolved in 100 ml of orthochlorophenol, and the relative viscosity η r was determined by the following formula using an Ostwald viscometer at a temperature of 25 ° C.
Η r = η / η 0 = (t × d) / (t 0 × d 0 )
(Where η is the viscosity of the polymer solution, η 0 is the viscosity of the orthochlorophenol, t is the drop time of the solution (seconds), d is the density of the solution (g / cm 3 ), t 0 is the orthochlorophenol Drop time (seconds), d 0 represents the density (g / cm 3 ) of orthochlorophenol, respectively.
Next, the intrinsic viscosity (IV) was calculated from the above relative viscosity η r by the following formula.
Intrinsic viscosity (IV) = 0.0242 η r +0.2634
 (2)融点(℃):
 使用した熱可塑性樹脂の融点は、示差走査熱量計(TA Instruments社製Q100)を用いて、上記の条件で測定し、吸熱ピーク頂点温度の平均値を算出して、測定対象の融点とした。
(2) Melting point (° C):
The melting point of the thermoplastic resin used was measured under the above conditions using a differential scanning calorimeter (TA Instruments Q100), and the average value of the endothermic peak apex temperatures was calculated as the melting point of the measurement object.
 (3)壁装材用不織布のKES法による表面粗さSMD(μm):
 カトーテック社製KES-FB4-AUTO-A自動化表面試験機を用いて、非捕集ネット面の表面粗さを測定した。
(3) Surface roughness SMD (μm) of wall covering nonwoven fabric by KES method:
The surface roughness of the uncollected net surface was measured using a KES-FB4-AUTO-A automated surface tester manufactured by Kato Tech.
 (4)壁装材用不織布の引裂強力(N):
 低速伸長型引張試験機として、ボールドウィン社製「RTG-1250」を用いた。
(4) Tear strength of nonwoven fabric for wall covering (N):
“RTG-1250” manufactured by Baldwin was used as a low-speed extension type tensile tester.
 (5)壁装材用不織布の通気量(cc/cm/秒):
 通気量試験には、テクステスト社製の通気性試験機FX3300を用いた。
(5) Aeration rate of non-woven fabric for wall covering material (cc / cm 2 / sec):
For the air flow test, an air permeability tester FX3300 manufactured by Textex was used.
 [実施例1]
 (繊維ウェブ)
 熱可塑性樹脂を主成分とする繊維として、芯成分、鞘成分からなる複合繊維を用いた。以下に、用いた熱可塑性樹脂について示す。
芯成分(高融点長繊維):固有粘度(IV)0.65、融点260℃であり、酸化チタンを0.3質量%含むポリエチレンテレフタレート樹脂を水分率50ppm以下に乾燥したもの。
鞘成分(低融点長繊維):固有粘度(IV)0.66、イソフタル酸共重合率10モル%、融点230℃であり、酸化チタンを0.2質量%含む共重合ポリエチレンテレフタレート樹脂を水分率50ppm以下に乾燥したもの。
[Example 1]
(Fiber web)
A composite fiber composed of a core component and a sheath component was used as a fiber mainly composed of a thermoplastic resin. Below, it shows about the used thermoplastic resin.
Core component (high melting point long fiber): an intrinsic viscosity (IV) of 0.65, a melting point of 260 ° C., and a polyethylene terephthalate resin containing 0.3% by mass of titanium oxide dried to a moisture content of 50 ppm or less.
Sheath component (low melting long fiber): intrinsic viscosity (IV) 0.66, isophthalic acid copolymerization rate 10 mol%, melting point 230 ° C., and copolymer polyethylene terephthalate resin containing 0.2% by mass of titanium oxide Dried to 50 ppm or less.
 上記の芯成分を295℃、鞘成分を280℃で溶融し、芯/鞘の複合比を質量比で80/20として円形断面の同心芯鞘型に複合し、口金温度300℃で細孔より紡出した後、エアサッカーにより紡糸速度4300m/分で紡糸して、熱可塑性連続フィラメントとした。そしてこのフィラメントを、ウェブ進行方向に対し左右へそれぞれ36度で揺動するノズルに通過させ、ノズル出口に設置された金属衝突板へフィラメントを衝突させて摩擦帯電により繊維を帯電して開繊させ、移動するネットコンベアー上に、繊維ウェブとして捕集した。このとき捕集した繊維ウェブが目付90g/mとなるように、ネットコンベアーの移動速度を調整した。 The core component was melted at 295 ° C. and the sheath component was melted at 280 ° C., and the composite ratio of core / sheath was 80/20 in mass ratio to form a concentric core-sheath type with a circular cross section. After spinning, spinning with an air soccer at a spinning speed of 4300 m / min was made into a thermoplastic continuous filament. Then, this filament is passed through a nozzle that swings at 36 degrees to the left and right with respect to the web traveling direction, and the filament collides with a metal collision plate installed at the nozzle outlet to charge and open the fiber by friction charging. It was collected as a fiber web on a moving net conveyor. The moving speed of the net conveyor was adjusted so that the collected fiber web had a basis weight of 90 g / m 2 .
 (熱圧着)
 上記繊維ウェブを上下1対のフラットロールにてフラットロール表面温度160℃、線圧588kg/cmで熱圧着し、この圧着されたシートをこの加熱圧接部から連続して一方のフラットロールの表面へ120cmにわたって2.9秒間接触させた。
(Thermo-compression bonding)
The fiber web is thermocompression-bonded with a pair of upper and lower flat rolls at a flat roll surface temperature of 160 ° C. and a linear pressure of 588 kg / cm, and the pressure-bonded sheet is continuously transferred from the heating pressure contact portion to the surface of one flat roll. Contact was made for 2.9 seconds over 120 cm.
 上記の処理により、繊維径14μm、目付90g/mのスパンボンド不織布を得た。
 得られた壁装材用不織布は、通気量が50cc/cm/秒、厚さが0.20mm、平滑面の表面粗さSMDが0.75μm、目付当たりのタテ引裂強力が0.96N/(g/m)であり、表面に交点以外の繊維同士が融着して膜状(フィルム状)となった部分は見られなかった。
By the above treatment, a spunbonded nonwoven fabric having a fiber diameter of 14 μm and a basis weight of 90 g / m 2 was obtained.
The obtained non-woven fabric for wall covering material has an air permeability of 50 cc / cm 2 / sec, a thickness of 0.20 mm, a smooth surface roughness SMD of 0.75 μm, and a vertical tear strength per unit weight of 0.96 N / It was (g / m 2 ), and the portion where the fibers other than the intersection were fused to the surface to form a film (film) was not seen.
 [実施例2]
 実施例1において、目付が100g/mとなるように、ネットコンベアーの移動速度を調整したこと以外は、実施例1と同じ方法で繊維ウェブを得た。この繊維ウェブを上下1対のフラットロールにてフラットロール表面温度160℃、線圧588N/cmで熱圧着し、この圧着されたシートをこの加熱圧接部から連続して一方のフラットロールの表面へ120cmにわたって3.2秒間接触させた。
[Example 2]
In Example 1, the fiber web was obtained by the same method as Example 1 except having adjusted the moving speed of the net conveyor so that a fabric weight might be 100 g / m < 2 >. The fiber web is thermocompression bonded with a pair of upper and lower flat rolls at a flat roll surface temperature of 160 ° C. and a linear pressure of 588 N / cm, and the pressure-bonded sheet is continuously transferred from the heating pressure contact portion to the surface of one flat roll. Contact was made over 120 cm for 3.2 seconds.
 得られた実施例2の壁装材用不織布は、通気量が45cc/cm/秒、厚さが0.23mm、平滑面の表面粗さSMDが0.80μm、目付当たりのタテ引裂強力が0.88N/(g/m)であり、表面に交点以外の繊維同士が融着して膜状(フィルム状)となった部分は見られなかった。 The obtained nonwoven fabric for wall covering of Example 2 has an air permeability of 45 cc / cm 2 / sec, a thickness of 0.23 mm, a smooth surface roughness SMD of 0.80 μm, and a vertical tear strength per unit area. The portion was 0.88 N / (g / m 2 ), and a portion where fibers other than the intersections were fused on the surface to form a film (film shape) was not seen.
 [実施例3]
 実施例1において、目付が110g/mとなるように、ネットコンベアーの移動速度を調整したこと以外は、実施例1と同じ方法で繊維ウェブを得た。この繊維ウェブを上下1対のフラットロールにてフラットロール表面温度160℃、線圧588N/cmで熱圧着し、この圧着されたシートをこの加熱圧接部から連続して一方のフラットロールの表面へ120cmにわたって3.5秒間接触させた。
[Example 3]
In Example 1, the fiber web was obtained by the same method as Example 1 except having adjusted the moving speed of the net conveyor so that a fabric weight might be 110 g / m < 2 >. The fiber web is thermocompression bonded with a pair of upper and lower flat rolls at a flat roll surface temperature of 160 ° C. and a linear pressure of 588 N / cm, and the pressure-bonded sheet is continuously transferred from the heating pressure contact portion to the surface of one flat roll. Contact was made over 120 cm for 3.5 seconds.
 得られた実施例3の壁装材用不織布は、通気量が41cc/cm/秒、厚さが0.26mm、平滑面の表面粗さSMDが0.84μm、目付当たりのタテ引裂強力が0.87N/(g/m)であり、表面に交点以外の繊維同士が融着して膜状(フィルム状)となった部分は見られなかった。 The obtained nonwoven fabric for wall covering of Example 3 has an air permeability of 41 cc / cm 2 / sec, a thickness of 0.26 mm, a smooth surface roughness SMD of 0.84 μm, and a vertical tear strength per unit area. The portion was 0.87 N / (g / m 2 ), and a portion in which fibers other than the intersections were fused on the surface to form a film (film shape) was not seen.
 [比較例1]
 実施例1同様にして繊維ウェブを得た。この繊維ウェブを上下1対のフラットロールにてフラットロール表面温度180℃、線圧588N/cmで熱圧着した。
 上記の処理により、繊維径14μm、目付90g/mのスパンボンド不織布を得た。
 得られた壁装材用不織布は、通気量が2cc/cm/秒、厚さが0.11mm、平滑面の表面粗さSMDが0.98μm、目付当たりのタテ引裂強力が0.06N/(g/m)であり、交点以外の繊維同士が融着して膜状(フィルム状)となった部分が見られた。
[Comparative Example 1]
A fiber web was obtained in the same manner as in Example 1. The fiber web was thermocompression bonded with a pair of upper and lower flat rolls at a flat roll surface temperature of 180 ° C. and a linear pressure of 588 N / cm.
By the above treatment, a spunbonded nonwoven fabric having a fiber diameter of 14 μm and a basis weight of 90 g / m 2 was obtained.
The obtained non-woven fabric for wall covering material has an air permeability of 2 cc / cm 2 / sec, a thickness of 0.11 mm, a smooth surface roughness SMD of 0.98 μm, and a vertical tear strength per unit weight of 0.06 N / (G / m 2 ), and a portion where fibers other than the intersection were fused to form a film (film) was observed.
 [比較例2]
 実施例1同様にして繊維ウェブを得た。この繊維ウェブを上下1対のフラットロールにてフラットロール表面温度160℃、線圧60kg/cmで熱圧着し、この圧着されたシートをこの加熱圧接部から連続して一方のフラットロールの表面へ120cmに亘って3.2秒間接触させた後、エンボスロールによる部分的熱圧着を行い、繊維径14μm、目付90g/mのスパンボンド不織布を得た。得られた壁装材用不織布は、通気量が50cc/cm/秒、厚さが0.32mm、平滑面の表面粗さSMDが2.32μm、目付当たりのタテ引裂強力が0.99N/(g/m)であり、交点以外の繊維同士が融着して膜状(フィルム状)となった部分は見られなかった。
[Comparative Example 2]
A fiber web was obtained in the same manner as in Example 1. The fiber web is thermocompression bonded with a pair of upper and lower flat rolls at a flat roll surface temperature of 160 ° C. and a linear pressure of 60 kg / cm, and the pressure-bonded sheet is continuously transferred from the heating pressure contact portion to the surface of one flat roll. After contacting for 120 seconds over 120 cm, partial thermocompression bonding with an embossing roll was performed to obtain a spunbonded nonwoven fabric having a fiber diameter of 14 μm and a basis weight of 90 g / m 2 . The obtained non-woven fabric for wall covering has an air permeability of 50 cc / cm 2 / sec, a thickness of 0.32 mm, a smooth surface roughness SMD of 2.32 μm, and a vertical tear strength per unit area of 0.99 N / It was (g / m 2 ), and a portion where fibers other than the intersection were fused to form a film (film shape) was not seen.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 <まとめ>
 表1に示されるように、熱可塑性樹脂を主成分とする繊維からなる不織布であって、前記不織布の表面において、前記繊維の交点では該繊維同士が融着していて、かつ、該交点以外の繊維同士は互いに離間しており、さらに、少なくともシート片面のKES法による表面粗さSMDが1.2μm以下であり、目付当たりのタテ引裂強力が0.50N/(g/m)以上とすることで、樹脂加工性や施工性に優れた壁装材用不織布が得られた。
<Summary>
As shown in Table 1, the nonwoven fabric is composed of fibers mainly composed of a thermoplastic resin, and the fibers are fused at the intersection of the fibers on the surface of the nonwoven fabric, and other than the intersection Fibers are spaced apart from each other, and at least the surface roughness SMD of the sheet on one side by the KES method is 1.2 μm or less, and the vertical tear strength per unit weight is 0.50 N / (g / m 2 ) or more. By doing so, the nonwoven fabric for wall covering materials excellent in resin workability and workability was obtained.
 一方、表1に示されるように、比較例1の壁装材用不織布は平滑面のKES法による表面粗さSMDは良好であったが、交点以外の繊維同士が融着して膜状となった部分が見られ、目付当たりのタテ引裂強力が低く、機械的強度に劣るものであった。
 また、比較例2の壁装材用不織布は、目付当たりのタテ引裂強力は高く、機械的強度に優れるものであったが、平滑面の表面粗さに劣るものであった。
On the other hand, as shown in Table 1, the non-woven fabric for wall covering material of Comparative Example 1 had a smooth surface roughness SMD by the KES method, but the fibers other than the intersections were fused to form a film. As a result, the vertical tear strength per unit weight was low and the mechanical strength was inferior.
The nonwoven fabric for wall covering material of Comparative Example 2 had a high vertical tear strength per unit area and an excellent mechanical strength, but was inferior to the surface roughness of the smooth surface.
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更及び変形が可能であることは、当業者にとって明らかである。なお本出願は、2018年5月31日付で出願された日本特許出願(特願2018-104587)に基づいており、その全体が引用により援用される。 Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on May 31, 2018 (Japanese Patent Application No. 2018-104587), which is incorporated by reference in its entirety.
 本発明の一実施態様の壁装材用不織布は、毛羽立ちが少なく、樹脂加工性や施工性に優れていることから、特に、建築物の壁面や天井等に設置される不織布をはじめ、幅広い分野に好適に使用することができる。 The nonwoven fabric for wall covering material according to one embodiment of the present invention has less fuzz and is excellent in resin processability and workability, and particularly in a wide range of fields including nonwoven fabrics installed on the walls and ceilings of buildings. Can be suitably used.
1:繊維ウェブ
2:加熱圧接部
3:不織布とフラットロールの接触部
4a:上側ロール
4b:下側ロール
5:繊維ウェブの進行方向を示す矢印
1: Fiber web 2: Heat-bonding part 3: Non-woven fabric and flat roll contact part 4a: Upper roll 4b: Lower roll 5: Arrow indicating the traveling direction of the fiber web

Claims (4)

  1.  熱可塑性樹脂を主成分とする繊維からなる不織布であって、前記不織布の表面において、前記繊維の交点では該繊維同士が融着していて、かつ、該交点以外の繊維同士は互いに離間しており、さらに、少なくともシート片面のKES法による表面粗さSMDが1.2μm以下であり、目付当たりのタテ引裂強力が0.50N/(g/m)以上である、壁装材用不織布。 A nonwoven fabric composed of fibers mainly composed of a thermoplastic resin, wherein the fibers are fused at the intersection of the fibers on the surface of the nonwoven fabric, and the fibers other than the intersection are separated from each other. Furthermore, the nonwoven fabric for wall coverings has a surface roughness SMD of at least 1.2 μm or less per sheet and a vertical tear strength per unit area of 0.50 N / (g / m 2 ) or more.
  2.  前記壁装材用不織布の目付が80g/m以上130g/m以下であって、該壁装材用不織布の厚さが0.18mm以上0.31mm以下であり、かつ、該壁装材用不織布の通気量が30cc/cm/sec以上60cc/cm/sec以下である、請求項1に記載の壁装材用不織布。 The basis weight of the nonwoven fabric for wall covering is 80 g / m 2 or more and 130 g / m 2 or less, the thickness of the nonwoven fabric for wall covering is 0.18 mm or more and 0.31 mm or less, and the wall covering The non-woven fabric for wall covering according to claim 1, wherein the air permeability of the non-woven fabric is 30 cc / cm 2 / sec or more and 60 cc / cm 2 / sec or less.
  3.  前記不織布が、長繊維からなるスパンボンド不織布である、請求項1または2に記載の壁装材用不織布。 The non-woven fabric for wall covering according to claim 1 or 2, wherein the non-woven fabric is a spunbonded non-woven fabric made of long fibers.
  4.  前記繊維の表面を構成する最も低融点の熱可塑性樹脂の融点に対し、30℃以上120℃以下の低い温度に加熱された一対のフラットロールで線圧500N/cm以上1100N/cm以下で熱圧着させた後、連続的に所定時間フラットロールに接触させる工程を有する、請求項1~3のいずれか1項に記載の壁装材用不織布の製造方法。 Thermocompression bonding at a linear pressure of 500 N / cm to 1100 N / cm with a pair of flat rolls heated to a low temperature of 30 ° C. or higher and 120 ° C. or lower with respect to the melting point of the lowest melting point thermoplastic resin constituting the surface of the fiber The method for producing a non-woven fabric for wall covering according to any one of claims 1 to 3, further comprising a step of continuously contacting the flat roll for a predetermined time after the step.
PCT/JP2019/021384 2018-05-31 2019-05-29 Wall material nonwoven fabric and method of manufacturing same WO2019230836A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020522266A JP7160094B2 (en) 2018-05-31 2019-05-29 NONWOVEN FABRIC FOR WALL COVERING MATERIAL AND METHOD FOR MANUFACTURING SAME
CN201980035637.5A CN112204193A (en) 2018-05-31 2019-05-29 Non-woven fabric for wall decoration material and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-104587 2018-05-31
JP2018104587 2018-05-31

Publications (1)

Publication Number Publication Date
WO2019230836A1 true WO2019230836A1 (en) 2019-12-05

Family

ID=68698900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021384 WO2019230836A1 (en) 2018-05-31 2019-05-29 Wall material nonwoven fabric and method of manufacturing same

Country Status (4)

Country Link
JP (1) JP7160094B2 (en)
CN (1) CN112204193A (en)
TW (1) TW202012741A (en)
WO (1) WO2019230836A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113174700A (en) * 2021-04-25 2021-07-27 深圳汇信昌供应链有限公司 Processing method of non-woven wall cloth with high air permeability

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0197256A (en) * 1987-07-11 1989-04-14 Asahi Chem Ind Co Ltd Continuous reticulated fiber nonwoven fabric having high tensile strength and high tear strength
JP2007284859A (en) * 2006-03-22 2007-11-01 Toray Ind Inc Nonwoven fabric and underlay material composed of the nonwoven fabric
JP2014040677A (en) * 2012-08-21 2014-03-06 Toray Ind Inc Nonwoven fabric for house wrap material and method for producing the same
WO2016031693A1 (en) * 2014-08-27 2016-03-03 東レ株式会社 Melt-blown nonwoven fabric and method for manufacturing same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8424687B2 (en) * 2007-07-31 2013-04-23 Toray Industries, Inc. Support for separation membrane, and method for production thereof
TWI509122B (en) * 2008-12-25 2015-11-21 Kao Corp Nonwoven and its manufacturing method
JP2010216044A (en) * 2009-03-18 2010-09-30 Toray Ind Inc Nonwoven fabric for phenol resin foam
JP5503816B1 (en) * 2012-08-23 2014-05-28 三井化学株式会社 Meltblown nonwoven fabric and its use
WO2018079635A1 (en) * 2016-10-27 2018-05-03 東レ株式会社 Spunbond nonwoven fabric and method for manufacturing same
JP2019210591A (en) 2018-05-31 2019-12-12 東レ株式会社 Non-woven fabric for sash and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0197256A (en) * 1987-07-11 1989-04-14 Asahi Chem Ind Co Ltd Continuous reticulated fiber nonwoven fabric having high tensile strength and high tear strength
JP2007284859A (en) * 2006-03-22 2007-11-01 Toray Ind Inc Nonwoven fabric and underlay material composed of the nonwoven fabric
JP2014040677A (en) * 2012-08-21 2014-03-06 Toray Ind Inc Nonwoven fabric for house wrap material and method for producing the same
WO2016031693A1 (en) * 2014-08-27 2016-03-03 東レ株式会社 Melt-blown nonwoven fabric and method for manufacturing same

Also Published As

Publication number Publication date
JP7160094B2 (en) 2022-10-25
TW202012741A (en) 2020-04-01
CN112204193A (en) 2021-01-08
JPWO2019230836A1 (en) 2021-07-01

Similar Documents

Publication Publication Date Title
US10655255B2 (en) Laminated nonwoven fabric
JP7070404B2 (en) Manufacturing method of spunbonded non-woven fabric
JP5272315B2 (en) Nonwoven fabric and underlay material comprising the nonwoven fabric
WO2008035775A1 (en) Heat-resistant non-woven fabric
JPWO2018043322A1 (en) Spunbond nonwoven fabric and method for producing the same
WO2019230836A1 (en) Wall material nonwoven fabric and method of manufacturing same
WO2019230837A1 (en) Nonwoven fabric for curtain and method for manufacture thereof
JP2019210591A (en) Non-woven fabric for sash and manufacturing method thereof
JPWO2018043324A1 (en) Spunbond nonwoven fabric and method for producing the same
JP2014040677A (en) Nonwoven fabric for house wrap material and method for producing the same
KR20200126369A (en) Laminated nonwoven
JP6462368B2 (en) Wet nonwovens and shoji paper and products
JP7409566B1 (en) Long-fiber nonwoven fabric, airbag packaging material containing the same, and method for producing long-fiber nonwoven fabric
WO2020116569A1 (en) Long-fiber nonwoven fabric and filter reinforcing material using same
JP2010216044A (en) Nonwoven fabric for phenol resin foam
WO2024024215A1 (en) Long fiber nonwoven fabric, airbag package including same, and method for producing long fiber nonwoven fabric
WO2023149388A1 (en) Non-woven fabric, production method for same, and construction material
JP6962494B1 (en) Spun-bonded non-woven fabric, filter laminated filter media, dust collector pleated filter filter media, dust collector pleated filter and medium air volume pulse jet type dust collector
JP7049842B2 (en) Laminated non-woven fabric sheet and its manufacturing method
US20230046361A1 (en) Spunbond non-woven fabric, filter material for pleated filter for dust collector, pleated filter for dust collector, and large air volume pulse-jet type dust collector
JP2018090928A (en) Spunbonded nonwoven fabric and manufacturing method thereof
JPH09279459A (en) Thermally adhesive filament nonwoven fabric
JP2000256954A (en) Stretchable non-woven fabric
JP2023147960A (en) Non-woven fabric roll and manufacturing method thereof
JP2023094153A (en) Long fiber nonwoven fabric for printing base material and printing base material using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19812186

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020522266

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2020138677

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 19812186

Country of ref document: EP

Kind code of ref document: A1