WO2019230728A1 - Production method for crystal-based solar cell - Google Patents

Production method for crystal-based solar cell Download PDF

Info

Publication number
WO2019230728A1
WO2019230728A1 PCT/JP2019/021120 JP2019021120W WO2019230728A1 WO 2019230728 A1 WO2019230728 A1 WO 2019230728A1 JP 2019021120 W JP2019021120 W JP 2019021120W WO 2019230728 A1 WO2019230728 A1 WO 2019230728A1
Authority
WO
WIPO (PCT)
Prior art keywords
passivation film
opening
electrode
paste composition
solar cell
Prior art date
Application number
PCT/JP2019/021120
Other languages
French (fr)
Japanese (ja)
Inventor
マルワン ダムリン
紹太 鈴木
Original Assignee
東洋アルミニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋アルミニウム株式会社 filed Critical 東洋アルミニウム株式会社
Priority to CN201980036778.9A priority Critical patent/CN112424952A/en
Priority to JP2020522214A priority patent/JPWO2019230728A1/en
Publication of WO2019230728A1 publication Critical patent/WO2019230728A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a crystalline solar cell having a passivation film on one or both sides of a silicon substrate.
  • a cell having a structure having an insulating film (passivation film) on both sides of a silicon solar cell has been actively developed.
  • a PERC (passivated emitter and rear cell) type cell in which a passivation film and an electrode are formed on both sides using a p-type silicon substrate, and a passivation film and an electrode on both sides using an n-type silicon substrate.
  • a cell having a PERT (passivated emitter and rear totally diffused) type structure in which is formed is known.
  • a passivating contact type cell in which the passivation effect is enhanced by forming an oxide thin film and a silicon thin film between the passivation film and the silicon substrate, and these PERC type and PERT type.
  • a back contact type cell in which surface (front surface) electrodes in a type and passivating contact type cell are integrated on the back surface of the cell is also known.
  • the double-sided light-receiving solar cell can increase the amount of incident light by reducing the area of the back surface aluminum electrode.
  • fine lines by screen printing using an aluminum-containing paste composition (paste composition) for forming a back electrode.
  • paste composition paste composition
  • fine lines that can be formed by screen printing have a width of about 200 ⁇ m. It is considered the limit. That is, conventionally, it is difficult to form a straight back electrode composed of a thin line having a width of less than 200 ⁇ m.
  • the electrode is formed using the electrode forming paste composition as described above, for example, in the case of a PERC type cell, 1 or 2 is applied to the back surface passivation film formed on the back surface of the silicon substrate with a laser or the like.
  • the back surface aluminum electrode is formed by forming the above opening and printing and baking the aluminum-containing paste composition in a region covering the opening.
  • the paste composition that exists in a form that fills the opening reacts with the silicon substrate during firing to form an electric field layer (aluminum-silicon (Al—Si) alloy layer, p + layer, etc.) to form a BSF (back surface field). ) Bring effects.
  • the back surface aluminum electrode having a width several times the width of the opening is formed, so that light incident from the back surface cannot be used efficiently.
  • the present invention has been completed in order to improve the above-described problems of the prior art, and is a method for manufacturing a crystalline solar cell having a passivation film on one or both sides of a silicon substrate.
  • Another object of the present invention is to provide a manufacturing method in which one or more electrodes are formed on the passivation film, in the case of the both surfaces, on one or both of the passivation films with a size close to the width of the opening.
  • the present inventor has found that the above object can be achieved by the method for producing a crystalline solar cell having a specific process, and has completed the present invention.
  • this invention relates to the manufacturing method of the following crystalline solar cell.
  • a method for producing a crystalline solar cell having a passivation film on one or both sides of a silicon substrate (1) When the passivation film has a passivation film on one side, the passivation film is a passivation film A having one or more openings, and when the passivation film has a passivation film on both sides, one or both of the passivation films are 1 Or a passivation film A having two or more openings, and forming a coating film made of an electrode-forming paste composition in a region covering the openings of the passivation film A, (2) Step 2 of firing the silicon substrate and the coating film, and (3) Remaining at least the fired product formed in a mode of filling the concave portion of the opening, of the fired product formed in the other mode Step 3 for removing part or all of the above,
  • the manufacturing method of a crystalline solar cell characterized by the above-mentioned.
  • Item 3 The crystalline solar cell according to Item 1 or 2, wherein the electrode-forming paste composition is an aluminum-containing paste composition and contains 0.1 to 15 parts by mass of glass powder with respect to 100 parts by mass of aluminum powder. Battery cell manufacturing method. 4).
  • the aluminum-containing paste composition includes 1) a glass powder containing at least one metal oxide selected from the group consisting of bismuth oxide, lead oxide, zinc oxide, silicon oxide and aluminum oxide, 2) metal oxide, and 3)
  • the firing product formed in a manner to fill the concave portion of the opening is left at least, and by having a step of removing a part or all of the firing product formed in other embodiments, the width of the opening
  • One or more types of electrodes can be formed with close sizes. By forming the electrode with a size close to the width of the opening, a wide light receiving area can be secured, incident light can be used more effectively, and power generation characteristics can be improved.
  • FIG. (A) It is an upper surface observation image by the laser microscope of the back surface aluminum electrode in the photovoltaic cell sample produced by the comparative example 2.
  • FIG. (B) It is an upper surface observation image by the laser microscope of the back surface aluminum electrode in the photovoltaic cell sample produced in Example 1.
  • FIG. (A) It is a cross-sectional observation image by SEM (scanning electron microscope) of the back surface aluminum electrode in the photovoltaic cell sample produced by the comparative example 2.
  • FIG. (B) It is a cross-sectional observation image by SEM of the back surface aluminum electrode in the photovoltaic cell sample produced in Example 1.
  • FIG. It is a figure which shows typically the silicon substrate 1 which has the two openings 6 in the back surface passivation film 5.
  • FIG. 4 it is the schematic diagram after removing the baked product 7 of the aluminum containing paste composition which exists in the outer side (part which is not the aspect which fills a recessed part).
  • the Al—Si layer 8 acts as a back surface aluminum electrode.
  • the production method of the present invention is a method for producing a crystalline solar cell having a passivation film on one or both sides of a silicon substrate, (1) When the passivation film has a passivation film on one side, the passivation film is a passivation film A having one or more openings, and when the passivation film has a passivation film on both sides, one or both of the passivation films are 1 Or a passivation film A having two or more openings, and forming a coating film made of an electrode-forming paste composition in a region covering the openings of the passivation film A, (2) Step 2 of firing the silicon substrate and the coating film, and (3) Remaining at least the fired product formed in a mode of filling the concave portion of the opening, of the fired product formed in the other mode Step 3 for removing part or all of the above, In order.
  • the manufacturing method of the present invention among the fired products of the coating film of the electrode forming paste composition applied to the region covering the opening of the passivation film A having one or more openings among the passivation films, it is a kind with a size close to the width of the opening.
  • the above electrodes can be formed. By forming the electrode with a size close to the width of the opening, a wide light receiving area can be secured, incident light can be used more effectively, and power generation characteristics can be improved.
  • the method for manufacturing a crystalline solar cell according to the present invention is a method for manufacturing a crystalline solar cell having a passivation film on one or both sides of a silicon substrate, and the passivation is applied when the passivation film is provided on the one side.
  • the film is a passivation film A having one or more openings, and when the film has a passivation film on both surfaces, one or both of the passivation films are the passivation film A having one or more openings.
  • the passivation film other than the passivation film A means a passivation film having no opening.
  • the passivation film A is a back surface passivation film, and forms a back electrode (for example, a back surface aluminum electrode) having a size close to the width of the opening.
  • a back surface electrode for example, a back surface aluminum electrode
  • the passivation film A is provided on both surfaces of the silicon substrate, for example, a back surface electrode (for example, a back surface aluminum electrode) is formed on the back surface passivation film with a size close to the width of the opening, and the front surface (front surface)
  • a mode in which a surface electrode for example, a silver electrode, a copper electrode, or an aluminum electrode
  • a surface electrode for example, a silver electrode, a copper electrode, or an aluminum electrode
  • the modes to which the manufacturing method of the present invention can be applied vary widely depending on the type of electrode and the surface on which the electrode is provided.
  • one or more of the electrodes are provided on either the front surface and / or the back surface of the silicon substrate.
  • An electrode-forming paste composition (aluminum-containing paste composition, silver-containing paste composition, copper-containing paste composition, etc., depending on the type of electrode) is applied to a region covering the opening of the passivation film A having a plurality of openings.
  • One or more electrodes can be formed with a size close to the width of the opening by forming a film (step 1 described later) and processing the fired product along steps 2 and 3 described later.
  • a post-process 1 for the surface passivation film A (further post-process 2 and 3) and a post-process 1 for the back-surface passivation film A (further post-process).
  • Steps 2 and 3) may be performed simultaneously on both sides, or may be performed separately on the front and back instead of simultaneously.
  • a mode in which a back surface aluminum electrode is formed with a size close to the width of the opening in the opening portion of the back surface passivation film A among the front and back surface passivation films, particularly in the cell of the PERC type structure (also referred to as “this mode”).
  • Step 1 forms a coating film made of an electrode-forming paste composition in a region covering the opening of the passivation film A.
  • the silicon substrate for example, a p-type silicon substrate, an n-type silicon substrate, a silicon substrate combining them, or the like can be used.
  • this embodiment will be described with reference to FIGS. 3 to 5 using a p-type silicon substrate (p-type Si) 1.
  • the thickness of the silicon substrate 1 is not limited, but a thickness of 180 to 250 ⁇ m is preferable.
  • a film provided with a back surface passivation film 5 as a laminated film of an aluminum oxide film and a silicon nitride film can be used on the side (back surface) opposite to the surface including the silver electrode 4.
  • the back surface passivation film 5 is provided with one or more openings 6. That is, in this embodiment, the back surface passivation film 5 is the passivation film A.
  • the opening 6 is an opening for making contact with the silicon substrate 1 and can be formed by laser irradiation, etching, or the like.
  • the form of the opening 6 is not limited, and a straight line shape, a curved line shape, a broken line shape, a dot shape, or the like can be appropriately employed.
  • the arrangement is not limited, and a regular arrangement or a random arrangement can be adopted.
  • each opening 6 has a linear shape with a width of 20 to 100 ⁇ m. From the viewpoint of controlling the electrode pattern, the openings 6 can be regularly formed vertically and horizontally in the plan view of the silicon substrate 1. preferable.
  • the paste composition may be any paste composition for electrode formation.
  • the paste composition is an aluminum-containing paste composition for forming a back surface aluminum electrode.
  • the paste composition is a paste in which aluminum powder is dispersed in an organic solvent. .
  • composition of the aluminum powder is not particularly limited, and pure aluminum having a purity of 99 wt% or more can be used, but an aluminum alloy powder can also be used as appropriate.
  • the form of the aluminum powder includes a spherical shape and an ellipsoid, but is not particularly limited. Of these, spherical ones are preferable because they have good printability and good reaction with silicon.
  • the average particle size of the aluminum powder is preferably 1 ⁇ m or more and 20 ⁇ m or less from the viewpoint of printability, reactivity, and the like. More preferably, it is 1 ⁇ m or more and 6 ⁇ m or less.
  • the paste composition preferably contains 0.1 to 15 parts by weight of glass powder with respect to 100 parts by weight of aluminum powder.
  • the composition of the glass powder is not particularly limited.
  • B 2 O 3 , Bi 2 O 3 , ZnO, SiO 2 , Al 2 O 3 , BaO, CaO, SrO, V 2 O 5 , Sb 2 O 3 , WO 3 A glass powder containing one or more components selected from the group consisting of P 2 O 5 and TeO 2 can be used.
  • glass powder (bismuth-based glass powder) containing a B 2 O 3 component it is preferable for improving the reactivity between silicon and aluminum.
  • the paste composition in order to remove part of the fired product of the paste composition in Step 3 to be described later, contains glass powder, oxide, hydroxide, etc. that suppresses sintering in order to enhance removability. It is preferable to do.
  • the glass powder containing 60% by weight or more of any one metal oxide of bismuth oxide, lead oxide, zinc oxide, silicon oxide and aluminum oxide can be used as the glass powder for suppressing the sintering.
  • the oxide that suppresses the sintering include silicon oxide, aluminum oxide, calcium oxide, bismuth oxide, lead oxide, zinc oxide, and germanium oxide.
  • the hydroxide that suppresses the sintering include aluminum hydroxide and zinc hydroxide.
  • the paste composition generally contains an organic solvent, resin, glass powder, etc. in addition to aluminum powder.
  • the composition is not limited, in 100% by mass of the paste composition, the aluminum powder is 60% by weight to 90% by weight, the organic solvent is 2% by weight to 20% by weight, and the balance is 2% by weight to 20% by weight. It can be as follows.
  • organic solvent is not limited, for example, diethylene glycol monobutyl ether, terpineol, or the like can be used.
  • a coating film made of the paste composition is formed in a region covering one or more openings of the passivation film A, but the application method is not limited, and for example, a screen printing or dispensing method is used. Can do.
  • the paste composition is applied so as to fill (fill) the concave portion of the opening, and is spread over the region covering the passivation film A in the range of 1 ⁇ m to 1000 ⁇ m from the end of the opening.
  • the coating film thickness (coating film thickness on the passivation film A) of a paste composition 10 micrometers or more and 40 micrometers or less are preferable. After application, it is dried at room temperature or under heating.
  • Step 2 firing process
  • the silicon substrate and the coating film are baked.
  • the firing treatment can be performed in an air atmosphere or a nitrogen atmosphere.
  • the firing temperature is preferably 500 ° C. or higher and 1000 ° C. or lower, and more preferably 650 ° C. or higher and 850 ° C. or lower.
  • the firing time can be adjusted by the firing temperature, but can be 3 seconds or more and 300 seconds or less.
  • the firing treatment in this embodiment, aluminum and silicon react with each other in the portion where the aluminum contained in the paste composition for the concave portion of the opening is in contact with the silicon substrate, and the electric field layer (Al—Si alloy layer 8, p + A layer 9) is formed, and a fired product 7 of the paste composition is formed outside the concave portion of the opening (see FIG. 4).
  • the presence of the p + layer 9 prevents the recombination of electrons and provides a BSF effect that improves the collection efficiency of the generated carriers.
  • Step 3 Partial removal treatment of the fired product
  • step 3 at least the fired product formed in such a manner as to fill the concave portion of the opening is left, and a part or all of the fired product formed in other modes is removed.
  • step 3 at least the fired product (alloy layer 8 and p + layer 9 in FIG. 4) formed so as to fill the concave portion of the opening is left, and the fired product formed in other modes (outside the opening).
  • the fired product 7 When part or all of the fired product 7 is removed, acid etching, polishing, or the like can be used.
  • the paste composition contains glass powder, oxide, hydroxide or the like that suppresses sintering, a part or all of the fired product 7 can be naturally peeled without polishing or the like. .
  • the removal rate can be set as appropriate.
  • the back surface aluminum electrode can be formed with a size substantially the same as or close to the width of the opening of the passivation film by passing through the above steps 1 to 3 (particularly step 3), and is incident from the back surface. Light can be used more effectively.
  • the resistance value of the electrode can be lowered while maintaining the electrode area.
  • the present invention is not limited to the above-described embodiment, and in various types of cells of PERC type, PERT type, passivating contact type, and back contact type, the width of the opening is formed in the passivation film A on the front surface and / or back surface of the silicon substrate.
  • the present invention can be widely applied when forming one or more kinds of electrodes with a size close to.
  • the back surface aluminum electrode is as described above, but for other types of electrodes, a known electrode in this field can be produced by applying a known electrode forming paste composition to the production method of the present invention. it can.
  • Example 1 A paste composition was prepared by adding 3 parts by weight of bismuth-based glass powder and 29 parts by weight of an organic vehicle to 100 parts by weight of aluminum powder and mixing them with a known mixer.
  • a screen mask with an opening width of 60 ⁇ m on the back surface of a solar cell having a linear film opening of 45 ⁇ m width on the back surface passivation film (passivation film A) of a PERC type solar cell having a wafer size of 156 mm square It apply
  • FIG. 1B shows an upper surface observation image of the back surface aluminum electrode in the solar cell sample prepared in Example 1 with a laser microscope. Moreover, the cross-sectional observation image by SEM of the back surface aluminum electrode in the photovoltaic cell sample produced in Example 1 is shown in FIG.2 (b).
  • Example 2 A solar battery cell sample was obtained in the same manner as in Example 1 except that the paste composition was applied by screen printing to a region covering the backside passivation film opening width using a screen mask having an opening width of 100 ⁇ m.
  • Example 3 A solar cell sample was obtained in the same manner as in Example 1 except that the paste composition was applied by screen printing to a region covering the opening width of the backside passivation film using a screen mask having an opening width of 150 ⁇ m.
  • Comparative Example 1 A paste composition was prepared by adding 3 parts by weight of bismuth-based glass powder and 29 parts by weight of an organic vehicle to 100 parts by weight of aluminum powder and mixing them with a known mixer.
  • Comparative Example 2 A solar cell sample was obtained in the same manner as in Comparative Example 1 except that the paste composition was applied by screen printing to a region covering the backside passivation film opening width using a screen mask having an opening width of 60 ⁇ m.
  • FIG. 1 (a) shows an upper surface observation image of the back surface aluminum electrode in the solar cell sample produced in Comparative Example 2 by a laser microscope. Moreover, the cross-sectional observation image by SEM (scanning electron microscope) of the back surface aluminum electrode in the photovoltaic cell sample produced by the comparative example 2 is shown to Fig.2 (a).
  • Comparative Example 3 A solar cell sample was obtained in the same manner as in Comparative Example 1 except that the paste composition was applied by screen printing to a region covering the backside passivation film opening width using a screen mask having an opening width of 100 ⁇ m.
  • Comparative Example 4 A solar cell sample was obtained in the same manner as in Comparative Example 1 except that the paste composition was applied to a region covering the backside passivation film opening width by screen printing using a screen mask having an opening width of 150 ⁇ m.
  • Test example 1 The back surface aluminum electrode of the obtained photovoltaic cell sample was observed using a laser microscope (manufactured by Keyence Corporation), and the line width was measured. Further, the power generation characteristic Isc on the back side was measured under the light of a solar simulator (manufactured by Wacom Denso Co., Ltd.).
  • Table 1 shows the measured electrode width and Isc characteristics.
  • the paste composition by screen printing it is preferable to use a screen plate having a width of 60 ⁇ m or more because disconnection was observed in the coated film when a screen plate having a width of 50 ⁇ m was used.
  • the formed electrode spreads to about 130 ⁇ m, and it is difficult to form an electrode of 60 ⁇ m or less by the conventional method.
  • the final electrode width was 60 ⁇ m or less regardless of the screen printing line width. Therefore, an arbitrary screen width of 60 ⁇ m to several 100 ⁇ m can be used.

Abstract

In order to form at least one type of electrode in a size closer to the width of an opening, on a passivation film of a crystal-based solar cell having said passivation film on one surface or both surfaces of a silicon substrate, this method for producing a crystal-based solar cell having a passivation film on one surface or both surfaces of a silicon substrate comprises: step 1 for forming a coating film composed of an electrode-forming paste composition in a region covering an opening of the passivation film, the passivation film being, when provided on one surface of the silicon substrate, a passivation film A having at least one opening or being, when provided on both surfaces of the silicon substrate, passivation films A each having at least one opening; step 2 for baking the silicon substrate and the coating film; and step 3 for, while leaving behind baking products (8, 9) formed in such a manner as to fill recessed portions of the opening, removing a part or the whole of a baking product (7) formed in other manners.

Description

結晶系太陽電池セルの製造方法Method for manufacturing crystalline solar cell
 本発明は、シリコン基板の片面又は両面にパッシベーション膜を有する結晶系太陽電池セルの製造方法に関する。 The present invention relates to a method for manufacturing a crystalline solar cell having a passivation film on one or both sides of a silicon substrate.
 近年、高変換効率の結晶系太陽電池セルとして、シリコン太陽電池セルの両面に絶縁膜(パッシベーション膜)を有する構造のセルの開発が盛んに行われている。具体的には、p型シリコン基板を用いて両面にパッシベーション膜と電極とが形成されたPERC(passivated emitter and rear cell)型構造のセル、n型シリコン基板を用いて両面にパッシベーション膜と電極とが形成されたPERT(passivated emitter and rear totally diffused)型構造のセルが知られている。 In recent years, as a crystalline solar cell with high conversion efficiency, a cell having a structure having an insulating film (passivation film) on both sides of a silicon solar cell has been actively developed. Specifically, a PERC (passivated emitter and rear cell) type cell in which a passivation film and an electrode are formed on both sides using a p-type silicon substrate, and a passivation film and an electrode on both sides using an n-type silicon substrate. A cell having a PERT (passivated emitter and rear totally diffused) type structure in which is formed is known.
 また、PERC型、PERT型のセルにおいて、パッシベーション膜とシリコン基板との間に酸化薄膜とシリコン薄膜とを形成することによりパッシベーション効果を高めたパッシベーティングコンタクト型のセル、これらのPERC型、PERT型、パッシベーティングコンタクト型のセルにおける表面(おもて面)電極をセルの裏面に集約したバックコンタクト型のセル等も知られている。 Further, in PERC type and PERT type cells, a passivating contact type cell in which the passivation effect is enhanced by forming an oxide thin film and a silicon thin film between the passivation film and the silicon substrate, and these PERC type and PERT type. A back contact type cell in which surface (front surface) electrodes in a type and passivating contact type cell are integrated on the back surface of the cell is also known.
 更に、PERC型構造のセルにおいて裏面アルミニウム電極を直線状に印刷することにより、裏面からも太陽光を入射できるようにして特性を向上させた構造である両面受光型太陽電池セルの開発も進んできている(非特許文献1、Fig.4、Fig.7等)。 Furthermore, the development of double-sided light receiving solar cells with a structure that improves the characteristics by allowing sunlight to enter from the back side by printing the back side aluminum electrode in a straight line in the PERC type cell. (Non-patent Document 1, FIG. 4, FIG. 7, etc.).
 両面受光型の太陽電池は、裏面アルミニウム電極の面積を減らすことにより、入射する光の量を増加させることができる。しかしながら、従来、裏面電極形成用のアルミニウム含有ペースト組成物(ペースト組成物)を使用してスクリーン印刷により細線を形成することは困難であり、一般にスクリーン印刷により形成可能な細線は幅200μm程度迄が限界とされている。つまり、従来、幅200μm未満の細線からなる直線状の裏面電極を形成することは困難である。 The double-sided light-receiving solar cell can increase the amount of incident light by reducing the area of the back surface aluminum electrode. However, conventionally, it has been difficult to form fine lines by screen printing using an aluminum-containing paste composition (paste composition) for forming a back electrode. Generally, fine lines that can be formed by screen printing have a width of about 200 μm. It is considered the limit. That is, conventionally, it is difficult to form a straight back electrode composed of a thin line having a width of less than 200 μm.
 上記のように電極形成用ペースト組成物を用いて電極を形成する場合には、例えば、PERC型構造のセルであれば、シリコン基板の裏面に形成された裏面パッシベーション膜にレーザーなどで1又は2以上の開口を形成し、その開口を覆う領域にアルミニウム含有ペースト組成物を印刷、焼成することで裏面アルミニウム電極が形成される。また、開口を埋める態様で存在するペースト組成物は焼成時にシリコン基板と反応して電界層(アルミニウム-シリコン(Al-Si))合金層、p層等)を形成してBSF(back surface field)効果をもたらす。 When the electrode is formed using the electrode forming paste composition as described above, for example, in the case of a PERC type cell, 1 or 2 is applied to the back surface passivation film formed on the back surface of the silicon substrate with a laser or the like. The back surface aluminum electrode is formed by forming the above opening and printing and baking the aluminum-containing paste composition in a region covering the opening. Also, the paste composition that exists in a form that fills the opening reacts with the silicon substrate during firing to form an electric field layer (aluminum-silicon (Al—Si) alloy layer, p + layer, etc.) to form a BSF (back surface field). ) Bring effects.
 ここで、開口を覆う一部の領域のみにペースト組成物を印刷することにより線状の裏面アルミニウム電極どうしの間からも光が入射する両面受光型とすることができる。なお、裏面から入射する光の量は裏面アルミニウム電極の面積に依存するため、裏面アルミニウム電極をパッシベーション膜の開口の幅に近い大きさで形成することが求められる。 Here, by printing the paste composition only on a part of the region covering the opening, a double-sided light-receiving type in which light enters between the linear backside aluminum electrodes can be obtained. Since the amount of light incident from the back surface depends on the area of the back surface aluminum electrode, it is required to form the back surface aluminum electrode with a size close to the width of the opening of the passivation film.
 しかしながら、ペースト組成物をスクリーン印刷する方法では、開口の幅に対して数倍の幅の裏面アルミニウム電極が形成されるため、裏面から入射する光を効率的に利用することができない。 However, in the method of screen-printing the paste composition, the back surface aluminum electrode having a width several times the width of the opening is formed, so that light incident from the back surface cannot be used efficiently.
 よって、本発明は、上記従来技術の問題を改善するために完成されたものであり、シリコン基板の片面又は両面にパッシベーション膜を有する結晶系太陽電池セルの製造方法であって、前記片面の場合には当該パッシベーション膜に、前記両面の場合には片方又は両方のパッシベーション膜に、開口の幅に近い大きさで一種以上の電極を形成する製造方法を提供することを目的とする。開口の幅に近い大きさで電極を形成することにより受光面積を広く確保して入射光をより有効利用し、発電特性を向上させることができる。 Therefore, the present invention has been completed in order to improve the above-described problems of the prior art, and is a method for manufacturing a crystalline solar cell having a passivation film on one or both sides of a silicon substrate. Another object of the present invention is to provide a manufacturing method in which one or more electrodes are formed on the passivation film, in the case of the both surfaces, on one or both of the passivation films with a size close to the width of the opening. By forming the electrode with a size close to the width of the opening, a wide light receiving area can be secured, incident light can be used more effectively, and power generation characteristics can be improved.
 本発明者は上記目的を達成すべく鋭意研究を重ねた結果、特定の工程を有する結晶系太陽電池セルの製造方法によれば上記目的を達成できることを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the present inventor has found that the above object can be achieved by the method for producing a crystalline solar cell having a specific process, and has completed the present invention.
 すなわち、本発明は、下記の結晶系太陽電池セルの製造方法に関する。
1.シリコン基板の片面又は両面にパッシベーション膜を有する結晶系太陽電池セルの製造方法であって、
(1)前記片面にパッシベーション膜を有する場合には当該パッシベーション膜が1又は2以上の開口を有するパッシベーション膜Aであり、前記両面にパッシベーション膜を有する場合には当該パッシベーション膜の片方又は両方が1又は2以上の開口を有するパッシベーション膜Aであり、前記パッシベーション膜Aの前記開口を覆う領域に電極形成用ペースト組成物からなる塗膜を形成する工程1、
(2)前記シリコン基板及び前記塗膜を焼成処理する工程2、及び
(3)前記開口の凹部分を埋める態様で形成された焼成物は少なくとも残し、それ以外の態様で形成された焼成物の一部又は全部を除去する工程3、
を順に備えることを特徴とする、結晶系太陽電池セルの製造方法。
2.前記開口は、1つあたり幅20~100μmの直線状である、上記項1に記載の結晶系太陽電池セルの製造方法。
3.前記電極形成用ペースト組成物は、アルミニウム含有ペースト組成物であり、アルミニウム粉末100質量部に対して、ガラス粉末を0.1~15質量部含有する、上記項1又は2に記載の結晶系太陽電池セルの製造方法。
4.前記アルミニウム含有ペースト組成物は、1)酸化ビスマス、酸化鉛、酸化亜鉛、酸化ケイ素及び酸化アルミニウムからなる群から選択される少なくとも一種の金属酸化物を含有するガラス粉末、2)金属酸化物、並びに、3)金属水酸化物からなる群から選択される少なくとも一種を含有する、上記項3に記載の結晶系太陽電池セルの製造方法。
That is, this invention relates to the manufacturing method of the following crystalline solar cell.
1. A method for producing a crystalline solar cell having a passivation film on one or both sides of a silicon substrate,
(1) When the passivation film has a passivation film on one side, the passivation film is a passivation film A having one or more openings, and when the passivation film has a passivation film on both sides, one or both of the passivation films are 1 Or a passivation film A having two or more openings, and forming a coating film made of an electrode-forming paste composition in a region covering the openings of the passivation film A,
(2) Step 2 of firing the silicon substrate and the coating film, and (3) Remaining at least the fired product formed in a mode of filling the concave portion of the opening, of the fired product formed in the other mode Step 3 for removing part or all of the above,
In order, The manufacturing method of a crystalline solar cell characterized by the above-mentioned.
2. 2. The method for producing a crystalline solar cell according to item 1, wherein each of the openings is linear with a width of 20 to 100 μm.
3. Item 3. The crystalline solar cell according to Item 1 or 2, wherein the electrode-forming paste composition is an aluminum-containing paste composition and contains 0.1 to 15 parts by mass of glass powder with respect to 100 parts by mass of aluminum powder. Battery cell manufacturing method.
4). The aluminum-containing paste composition includes 1) a glass powder containing at least one metal oxide selected from the group consisting of bismuth oxide, lead oxide, zinc oxide, silicon oxide and aluminum oxide, 2) metal oxide, and 3) The method for producing a crystalline solar battery cell according to Item 3, comprising at least one selected from the group consisting of metal hydroxides.
 本発明の結晶系太陽電池セルの製造方法によれば、パッシベーション膜の中でも1又は2以上の開口を有するパッシベーション膜Aの前記開口を覆う領域に塗布した電極形成用ペースト組成物の塗膜の焼成物のうち、前記開口の凹部分を埋める態様で形成された焼成物は少なくとも残し、それ以外の態様で形成された焼成物の一部又は全部を除去する工程を有することにより、開口の幅に近い大きさで一種以上の電極を形成することができる。開口の幅に近い大きさで電極を形成することにより受光面積を広く確保して入射光をより有効利用し、発電特性を向上させることができる。 According to the method for manufacturing a crystalline solar cell of the present invention, baking of a coating film of an electrode forming paste composition applied to a region covering the opening of the passivation film A having one or more openings in the passivation film. Among the products, the firing product formed in a manner to fill the concave portion of the opening is left at least, and by having a step of removing a part or all of the firing product formed in other embodiments, the width of the opening One or more types of electrodes can be formed with close sizes. By forming the electrode with a size close to the width of the opening, a wide light receiving area can be secured, incident light can be used more effectively, and power generation characteristics can be improved.
(a)比較例2で作製した太陽電池セルサンプルにおける裏面アルミニウム電極のレーザー顕微鏡による上面観察像である。(b)実施例1で作製した太陽電池セルサンプルにおける裏面アルミニウム電極のレーザー顕微鏡による上面観察像である。(A) It is an upper surface observation image by the laser microscope of the back surface aluminum electrode in the photovoltaic cell sample produced by the comparative example 2. FIG. (B) It is an upper surface observation image by the laser microscope of the back surface aluminum electrode in the photovoltaic cell sample produced in Example 1. FIG. (a)比較例2で作製した太陽電池セルサンプルにおける裏面アルミニウム電極のSEM(走査型電子顕微鏡)による断面観察像である。(b)実施例1で作製した太陽電池セルサンプルにおける裏面アルミニウム電極のSEMによる断面観察像である。(A) It is a cross-sectional observation image by SEM (scanning electron microscope) of the back surface aluminum electrode in the photovoltaic cell sample produced by the comparative example 2. FIG. (B) It is a cross-sectional observation image by SEM of the back surface aluminum electrode in the photovoltaic cell sample produced in Example 1. FIG. 裏面パッシベーション膜5に2つの開口6を有するシリコン基板1を模式的に示す図である。It is a figure which shows typically the silicon substrate 1 which has the two openings 6 in the back surface passivation film 5. FIG. 裏面パッシベーション膜5の2つの開口6を覆う領域にアルミニウム含有ペースト組成物を塗布し、乾燥及び焼成を行った後の断面の模式図である。ここで、符号7はアルミニウム含有ペースト組成物の焼成物であり、符号8はAl-Si合金層であり、符号9はp層である。It is a schematic diagram of the cross section after apply | coating an aluminum containing paste composition to the area | region which covers the two openings 6 of the back surface passivation film 5, and drying and baking. Here, reference numeral 7 is a fired product of the aluminum-containing paste composition, reference numeral 8 is an Al—Si alloy layer, and reference numeral 9 is a p + layer. 図4中、開口の外側(凹部分を埋める態様ではない部分)に存在するアルミニウム含有ペースト組成物の焼成物7を除去した後の模式図である。この模式図では、Al-Si層8が裏面アルミニウム電極として作用する。In FIG. 4, it is the schematic diagram after removing the baked product 7 of the aluminum containing paste composition which exists in the outer side (part which is not the aspect which fills a recessed part). In this schematic diagram, the Al—Si layer 8 acts as a back surface aluminum electrode.
 以下、本発明の結晶系太陽電池セルの製造方法(「本発明の製造方法」ともいう)について詳細に説明する。 Hereinafter, a method for producing a crystalline solar battery cell of the present invention (also referred to as “manufacturing method of the present invention”) will be described in detail.
 本発明の製造方法は、シリコン基板の片面又は両面にパッシベーション膜を有する結晶系太陽電池セルの製造方法であって、
(1)前記片面にパッシベーション膜を有する場合には当該パッシベーション膜が1又は2以上の開口を有するパッシベーション膜Aであり、前記両面にパッシベーション膜を有する場合には当該パッシベーション膜の片方又は両方が1又は2以上の開口を有するパッシベーション膜Aであり、前記パッシベーション膜Aの前記開口を覆う領域に電極形成用ペースト組成物からなる塗膜を形成する工程1、
(2)前記シリコン基板及び前記塗膜を焼成処理する工程2、及び
(3)前記開口の凹部分を埋める態様で形成された焼成物は少なくとも残し、それ以外の態様で形成された焼成物の一部又は全部を除去する工程3、
を順に備えることを特徴とする。
The production method of the present invention is a method for producing a crystalline solar cell having a passivation film on one or both sides of a silicon substrate,
(1) When the passivation film has a passivation film on one side, the passivation film is a passivation film A having one or more openings, and when the passivation film has a passivation film on both sides, one or both of the passivation films are 1 Or a passivation film A having two or more openings, and forming a coating film made of an electrode-forming paste composition in a region covering the openings of the passivation film A,
(2) Step 2 of firing the silicon substrate and the coating film, and (3) Remaining at least the fired product formed in a mode of filling the concave portion of the opening, of the fired product formed in the other mode Step 3 for removing part or all of the above,
In order.
 上記本発明の製造方法によれば、パッシベーション膜の中でも1又は2以上の開口を有するパッシベーション膜Aの前記開口を覆う領域に塗布した電極形成用ペースト組成物の塗膜の焼成物のうち、前記開口の凹部分を埋める態様で形成された焼成物は少なくとも残し、それ以外の態様で形成された焼成物の一部又は全部を除去する工程を有することにより、開口の幅に近い大きさで一種以上の電極を形成することができる。開口の幅に近い大きさで電極を形成することにより受光面積を広く確保して入射光をより有効利用し、発電特性を向上させることができる。 According to the manufacturing method of the present invention, among the fired products of the coating film of the electrode forming paste composition applied to the region covering the opening of the passivation film A having one or more openings among the passivation films, By leaving the fired product formed in a manner to fill the concave portion of the opening at least, and having a step of removing a part or all of the fired product formed in other modes, it is a kind with a size close to the width of the opening. The above electrodes can be formed. By forming the electrode with a size close to the width of the opening, a wide light receiving area can be secured, incident light can be used more effectively, and power generation characteristics can be improved.
 以下、本発明の製造方法を図面を参照しながら工程毎に説明する。 Hereinafter, the manufacturing method of the present invention will be described step by step with reference to the drawings.
 なお、本発明の結晶系太陽電池セルの製造方法は、シリコン基板の片面又は両面にパッシベーション膜を有する結晶系太陽電池セルの製造方法であって、前記片面にパッシベーション膜を有する場合には当該パッシベーション膜が1又は2以上の開口を有するパッシベーション膜Aであり、前記両面にパッシベーション膜を有する場合には当該パッシベーション膜の片方又は両方が1又は2以上の開口を有するパッシベーション膜Aである。ここで、パッシベーション膜Aではないパッシベーション膜は、開口を有していないパッシベーション膜を意味する。 The method for manufacturing a crystalline solar cell according to the present invention is a method for manufacturing a crystalline solar cell having a passivation film on one or both sides of a silicon substrate, and the passivation is applied when the passivation film is provided on the one side. The film is a passivation film A having one or more openings, and when the film has a passivation film on both surfaces, one or both of the passivation films are the passivation film A having one or more openings. Here, the passivation film other than the passivation film A means a passivation film having no opening.
 シリコン基板の片面にパッシベーション膜Aを有する場合には、例えば、パッシベーション膜Aは裏面パッシベーション膜であって、開口の幅に近い大きさで裏面電極(例えば裏面アルミニウム電極)を形成する態様が挙げられる。また、シリコン基板の両面にパッシベーション膜Aを有する場合には、例えば、裏面パッシベーション膜には開口の幅に近い大きさで裏面電極(例えば裏面アルミニウム電極)を形成するとともに、表面(おもて面;以下同様)パッシベーション膜には開口の幅に近い大きさで表面電極(例えば銀電極、銅電極又はアルミニウム電極)を形成する態様が挙げられる。 When the passivation film A is provided on one surface of the silicon substrate, for example, the passivation film A is a back surface passivation film, and forms a back electrode (for example, a back surface aluminum electrode) having a size close to the width of the opening. . Further, when the passivation film A is provided on both surfaces of the silicon substrate, for example, a back surface electrode (for example, a back surface aluminum electrode) is formed on the back surface passivation film with a size close to the width of the opening, and the front surface (front surface) The same applies to the passivation film. A mode in which a surface electrode (for example, a silver electrode, a copper electrode, or an aluminum electrode) is formed with a size close to the width of the opening can be mentioned.
 このように、本発明の製造方法が適用できる態様は電極の種類や電極を設ける面に応じて多岐にわたるが、シリコン基板の表面及び/又は裏面のいずれに電極を設ける場合でも、1又は2以上の開口を有するパッシベーション膜Aの前記開口を覆う領域に電極形成用ペースト組成物(電極の種類に応じて、アルミニウム含有ペースト組成物、銀含有ペースト組成物、銅含有ペースト組成物等)からなる塗膜を形成し(後記工程1)、更に後記する工程2,3に沿って焼成物を加工することにより開口の幅に近い大きさで一種以上の電極を形成することができる。なお、シリコン基板の両面(表面及び裏面)にパッシベーション膜Aを有する場合には、表面パッシベーション膜Aに対する後記工程1(更に後記工程2、3)と、裏面パッシベーション膜Aに対する後記工程1(更に後記工程2、3)は両面同時に行ってもよく、同時ではなく表裏別々に行ってもよい。以下では、特にPERC型構造のセルにおいて、表裏のパッシベーション膜のうち裏面パッシベーション膜Aの開口部分に、開口の幅に近い大きさで裏面アルミニウム電極を形成する態様(「本態様」ともいう)を例示的に示しながら本発明を説明する。 As described above, the modes to which the manufacturing method of the present invention can be applied vary widely depending on the type of electrode and the surface on which the electrode is provided. However, one or more of the electrodes are provided on either the front surface and / or the back surface of the silicon substrate. An electrode-forming paste composition (aluminum-containing paste composition, silver-containing paste composition, copper-containing paste composition, etc., depending on the type of electrode) is applied to a region covering the opening of the passivation film A having a plurality of openings. One or more electrodes can be formed with a size close to the width of the opening by forming a film (step 1 described later) and processing the fired product along steps 2 and 3 described later. In the case where the passivation film A is provided on both surfaces (front and back surfaces) of the silicon substrate, a post-process 1 for the surface passivation film A (further post-process 2 and 3) and a post-process 1 for the back-surface passivation film A (further post-process). Steps 2 and 3) may be performed simultaneously on both sides, or may be performed separately on the front and back instead of simultaneously. In the following, a mode in which a back surface aluminum electrode is formed with a size close to the width of the opening in the opening portion of the back surface passivation film A among the front and back surface passivation films, particularly in the cell of the PERC type structure (also referred to as “this mode”). The invention will now be described by way of example.
 工程1(開口を覆う領域へのペースト組成物の塗布)
 工程1は、前記パッシベーション膜Aの前記開口を覆う領域に電極形成用ペースト組成物からなる塗膜を形成する。
Process 1 (application | coating of the paste composition to the area | region which covers opening)
Step 1 forms a coating film made of an electrode-forming paste composition in a region covering the opening of the passivation film A.
 シリコン基板としては、例えば、p型シリコン基板、n型シリコン基板、それらを組み合わせたシリコン基板等を用いることができる。以下では、本態様についてp型シリコン基板(p-type Si)1を用いた図3~5を参照しながら説明する。 As the silicon substrate, for example, a p-type silicon substrate, an n-type silicon substrate, a silicon substrate combining them, or the like can be used. Hereinafter, this embodiment will be described with reference to FIGS. 3 to 5 using a p-type silicon substrate (p-type Si) 1. FIG.
 シリコン基板1(p型シリコン基板)の厚みは限定的ではないが、180~250μmのものが好適である。 The thickness of the silicon substrate 1 (p-type silicon substrate) is not limited, but a thickness of 180 to 250 μm is preferable.
 シリコン基板1の一方の面(おもて面)には、例えば、厚みが0.3~0.6μmのn型シリコン層3と、窒化シリコン膜からなる反射防止膜としての表面パッシベーション膜2と、グリッド電極としての銀(Ag)電極4とを備えるものを用いることができる。 On one surface (front surface) of the silicon substrate 1, for example, an n-type silicon layer 3 having a thickness of 0.3 to 0.6 μm, and a surface passivation film 2 as an antireflection film made of a silicon nitride film, And a silver (Ag) electrode 4 as a grid electrode can be used.
 銀電極4を備える面とは反対側(裏面)には、例えば、酸化アルミニウム膜及び窒化シリコン膜の積層膜として裏面パッシベーション膜5を備えるものを用いることができる。 For example, a film provided with a back surface passivation film 5 as a laminated film of an aluminum oxide film and a silicon nitride film can be used on the side (back surface) opposite to the surface including the silver electrode 4.
 裏面パッシベーション膜5には1又は2以上の開口6が設けられている。すなわち、本態様では裏面パッシベーション膜5がパッシベーション膜Aである。開口6は、シリコン基板1とコンタクトを取るための開口であり、レーザー照射、エッチング等により形成することができる。開口6の形態は限定されず、直線状、曲線状、破線状、点状等を適宜採用することができる。また、開口6を複数形成する場合にはその配列は限定されず、規則的な配列又はランダムな配列を採用することができる。 The back surface passivation film 5 is provided with one or more openings 6. That is, in this embodiment, the back surface passivation film 5 is the passivation film A. The opening 6 is an opening for making contact with the silicon substrate 1 and can be formed by laser irradiation, etching, or the like. The form of the opening 6 is not limited, and a straight line shape, a curved line shape, a broken line shape, a dot shape, or the like can be appropriately employed. When a plurality of openings 6 are formed, the arrangement is not limited, and a regular arrangement or a random arrangement can be adopted.
 本発明では、開口6は1つあたり幅20~100μmの直線状であることが好ましく、電極パターンの制御の点では、開口6はシリコン基板1の平面視において縦横に規則的に形成することが好ましい。 In the present invention, it is preferable that each opening 6 has a linear shape with a width of 20 to 100 μm. From the viewpoint of controlling the electrode pattern, the openings 6 can be regularly formed vertically and horizontally in the plan view of the silicon substrate 1. preferable.
 ペースト組成物は、電極形成用ペースト組成物であればよいが、本態様では裏面アルミニウム電極を形成するためのアルミニウム含有ペースト組成物であり、詳細にはアルミニウム粉末を有機溶剤に分散したペーストである。 The paste composition may be any paste composition for electrode formation. In this embodiment, the paste composition is an aluminum-containing paste composition for forming a back surface aluminum electrode. Specifically, the paste composition is a paste in which aluminum powder is dispersed in an organic solvent. .
 アルミニウム粉末の組成は特に限定されず、純度99wt%以上の純アルミニウムを用いることができるが、適宜アルミニウム合金粉末を用いることもできる。 The composition of the aluminum powder is not particularly limited, and pure aluminum having a purity of 99 wt% or more can be used, but an aluminum alloy powder can also be used as appropriate.
 アルミニウム粉末の形態は、球状、楕円体等があるが特に限定されない。その中でも、球状のものは印刷性が良く、シリコンとの反応が良いため好ましい。アルミニウム粉末の大きさは、平均粒子径が1μm以上20μm以下が印刷性、反応性等の観点で好ましい。より好適には1μm以上6μm以下である。 The form of the aluminum powder includes a spherical shape and an ellipsoid, but is not particularly limited. Of these, spherical ones are preferable because they have good printability and good reaction with silicon. The average particle size of the aluminum powder is preferably 1 μm or more and 20 μm or less from the viewpoint of printability, reactivity, and the like. More preferably, it is 1 μm or more and 6 μm or less.
 ペースト組成物は、アルミニウム粉末100重量部に対して、ガラス粉末を0.1~15重量部含むことが好ましい。 The paste composition preferably contains 0.1 to 15 parts by weight of glass powder with respect to 100 parts by weight of aluminum powder.
 ガラス粉末の組成は特に限定されないが、例えば、B、Bi、ZnO、SiO、Al、BaO、CaO、SrO、V、Sb、WO、P及びTeOからなる群から選択される一種以上の成分を含むガラス粉末を用いることができる。これらの中でも、B成分を含むガラス粉末(ビスマス系ガラス粉末)を用いる場合には、シリコンとアルミニウムの反応性向上のため好ましい。 The composition of the glass powder is not particularly limited. For example, B 2 O 3 , Bi 2 O 3 , ZnO, SiO 2 , Al 2 O 3 , BaO, CaO, SrO, V 2 O 5 , Sb 2 O 3 , WO 3 A glass powder containing one or more components selected from the group consisting of P 2 O 5 and TeO 2 can be used. Among these, when glass powder (bismuth-based glass powder) containing a B 2 O 3 component is used, it is preferable for improving the reactivity between silicon and aluminum.
 本発明では、後述する工程3においてペースト組成物の焼成物の一部を除去するため、除去性を高めるためにペースト組成物に焼結を抑制するガラス粉末、酸化物、水酸化物等を含有することが好ましい。 In the present invention, in order to remove part of the fired product of the paste composition in Step 3 to be described later, the paste composition contains glass powder, oxide, hydroxide, etc. that suppresses sintering in order to enhance removability. It is preferable to do.
 上記焼結を抑制するガラス粉末は、酸化ビスマス、酸化鉛、酸化亜鉛、酸化ケイ素及び酸化アルミニウムのいずれか一つの酸化金属を60重量%以上含むガラス粉末を用いることができる。上記焼結を抑制する酸化物は、酸化ケイ素、酸化アルミニウム、酸化カルシウム、酸化ビスマス、酸化鉛、酸化亜鉛、酸化ゲルマニウム等が挙げられる。上記焼結を抑制する水酸化物は、水酸化アルミニウム、水酸化亜鉛等が挙げられる。 The glass powder containing 60% by weight or more of any one metal oxide of bismuth oxide, lead oxide, zinc oxide, silicon oxide and aluminum oxide can be used as the glass powder for suppressing the sintering. Examples of the oxide that suppresses the sintering include silicon oxide, aluminum oxide, calcium oxide, bismuth oxide, lead oxide, zinc oxide, and germanium oxide. Examples of the hydroxide that suppresses the sintering include aluminum hydroxide and zinc hydroxide.
 ペースト組成物には、一般にアルミニウム粉末の他、有機溶剤、樹脂、ガラス粉末等が含まれている。その組成は限定的ではないが、ペースト組成物100質量%において、アルミニウム粉末が60重量%以上90重量%以下、有機溶剤が2重量%以上20重量%以下、残部が2重量%以上20重量%以下とすることができる。 The paste composition generally contains an organic solvent, resin, glass powder, etc. in addition to aluminum powder. Although the composition is not limited, in 100% by mass of the paste composition, the aluminum powder is 60% by weight to 90% by weight, the organic solvent is 2% by weight to 20% by weight, and the balance is 2% by weight to 20% by weight. It can be as follows.
 有機溶剤としては限定的ではないが、例えば、ジエチレングリコールモノブチルエーテル、テルピネオール等を用いることができる。 Although the organic solvent is not limited, for example, diethylene glycol monobutyl ether, terpineol, or the like can be used.
 工程1では、パッシベーション膜Aの1又は2以上の開口を覆う領域にペースト組成物からなる塗膜を形成するが、塗布方法としては限定されず、例えば、スクリーン印刷又はディスペンシングの方法を用いることができる。このとき、ペースト組成物は開口の凹部分を埋める(充填される)態様で塗布されるとともに、開口の端部から1μm以上1000μm以下の範囲でパッシベーション膜Aを覆う領域に塗り広がる。なお、ペースト組成物の塗布膜厚(パッシベーション膜A上の塗布膜厚)は10μm以上40μm以下が好ましい。塗布後は常温又は加温下で乾燥させる。 In Step 1, a coating film made of the paste composition is formed in a region covering one or more openings of the passivation film A, but the application method is not limited, and for example, a screen printing or dispensing method is used. Can do. At this time, the paste composition is applied so as to fill (fill) the concave portion of the opening, and is spread over the region covering the passivation film A in the range of 1 μm to 1000 μm from the end of the opening. In addition, as for the coating film thickness (coating film thickness on the passivation film A) of a paste composition, 10 micrometers or more and 40 micrometers or less are preferable. After application, it is dried at room temperature or under heating.
 工程2(焼成処理)
 工程2は、前記シリコン基板及び前記塗膜を焼成処理する。
Step 2 (firing process)
In step 2, the silicon substrate and the coating film are baked.
 焼成処理は、空気雰囲気又は窒素雰囲気下で行うことができる。焼成温度は500℃以上1000℃以下が好ましく、特に650℃以上850℃以下がより好ましい。焼成時間は焼成温度により調整できるが、3秒以上300秒以下とすることができる。 The firing treatment can be performed in an air atmosphere or a nitrogen atmosphere. The firing temperature is preferably 500 ° C. or higher and 1000 ° C. or lower, and more preferably 650 ° C. or higher and 850 ° C. or lower. The firing time can be adjusted by the firing temperature, but can be 3 seconds or more and 300 seconds or less.
 焼成処理によって、本態様では開口の凹部分のペースト組成物に含まれるアルミニウムとシリコン基板とが接している部分ではアルミニウムとシリコンとが反応して、電界層(Al-Si合金層8、p層9)が形成され、開口の凹部分の外側でペースト組成物の焼成物7が形成される(図4参照)。そして、上記p層9の存在により、電子の再結合を防止し、生成キャリアの収集効率を向上させるBSF効果が得られる。 By the firing treatment, in this embodiment, aluminum and silicon react with each other in the portion where the aluminum contained in the paste composition for the concave portion of the opening is in contact with the silicon substrate, and the electric field layer (Al—Si alloy layer 8, p + A layer 9) is formed, and a fired product 7 of the paste composition is formed outside the concave portion of the opening (see FIG. 4). The presence of the p + layer 9 prevents the recombination of electrons and provides a BSF effect that improves the collection efficiency of the generated carriers.
 工程3(焼成物の一部除去処理)
 工程3は、前記開口の凹部分を埋める態様で形成された焼成物は少なくとも残し、それ以外の態様で形成された焼成物の一部又は全部を除去する。
Step 3 (Partial removal treatment of the fired product)
In step 3, at least the fired product formed in such a manner as to fill the concave portion of the opening is left, and a part or all of the fired product formed in other modes is removed.
 工程3では、前記開口の凹部分を埋める態様で形成された焼成物(図4の合金層8及びp層9)は少なくとも残し、それ以外の態様で形成された焼成物(開口の外部に形成されたペースト組成物の焼成物:図4の焼成物7)の一部又は全部を除去する。 In step 3, at least the fired product (alloy layer 8 and p + layer 9 in FIG. 4) formed so as to fill the concave portion of the opening is left, and the fired product formed in other modes (outside the opening). The fired product of the formed paste composition: A part or all of the fired product 7) of FIG. 4 is removed.
 焼成物7の一部又は全部を除去する際は、酸エッチング、研磨等が利用できる。また、ペースト組成物に焼結を抑制するガラス粉末、酸化物、水酸化物等を含有する場合には、研磨等をせずとも焼成物7の一部又は全部を自然に剥離することもできる。本態様では、裏面から入射する光を最も有効利用するためには、開口の外部に形成された焼成物7の全てを除去すればよいが、少なくとも一部を除去することにより従来よりも光の利用率を高めることができるため除去の割合は適宜設定することができる。 When part or all of the fired product 7 is removed, acid etching, polishing, or the like can be used. In addition, when the paste composition contains glass powder, oxide, hydroxide or the like that suppresses sintering, a part or all of the fired product 7 can be naturally peeled without polishing or the like. . In this aspect, in order to make the most effective use of the light incident from the back surface, it is only necessary to remove all of the fired product 7 formed outside the opening. Since the utilization rate can be increased, the removal rate can be set as appropriate.
 本態様では、上記工程1~3(特に工程3)を経ることにより、裏面アルミニウム電極をパッシベーション膜の開口の幅と実質的に同じか又は近い大きさで形成することができ、裏面から入射する光をより有効利用することができる。 In this embodiment, the back surface aluminum electrode can be formed with a size substantially the same as or close to the width of the opening of the passivation film by passing through the above steps 1 to 3 (particularly step 3), and is incident from the back surface. Light can be used more effectively.
 また、本態様で形成された裏面アルミニウム電極上に、公知の技術で銀、銅、ニッケル等の金属メッキを形成することにより、電極面積を維持したまま電極の抵抗値を下げることもできる。 In addition, by forming a metal plating such as silver, copper, or nickel on the back surface aluminum electrode formed in this mode by a known technique, the resistance value of the electrode can be lowered while maintaining the electrode area.
 なお、本発明は上記本態様に限定されず、PERC型、PERT型、パッシベーティングコンタクト型、バックコンタクト型の各種セルにおいて、シリコン基板の表面及び/又は裏面のパッシベーション膜Aに、開口の幅に近い大きさで一種以上の電極を形成する際に幅広く適用することができる。裏面アルミニウム電極については上記説明の通りであるが、他の種類の電極については本分野で公知の電極を、公知の電極形成用ペースト組成物を本発明の製造方法に適用して作製することができる。 The present invention is not limited to the above-described embodiment, and in various types of cells of PERC type, PERT type, passivating contact type, and back contact type, the width of the opening is formed in the passivation film A on the front surface and / or back surface of the silicon substrate. The present invention can be widely applied when forming one or more kinds of electrodes with a size close to. The back surface aluminum electrode is as described above, but for other types of electrodes, a known electrode in this field can be produced by applying a known electrode forming paste composition to the production method of the present invention. it can.
 以下に実施例及び比較例を示して本発明を具体的に説明する。但し、本発明は実施例に限定されない。 Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples. However, the present invention is not limited to the examples.
 実施例1
 アルミニウム粉末100質量部に対して、ビスマス系ガラス粉末を3質量部、及び有機ビヒクルを29質量部加えて、周知の混合機にて混合しペースト組成物を作製した。
Example 1
A paste composition was prepared by adding 3 parts by weight of bismuth-based glass powder and 29 parts by weight of an organic vehicle to 100 parts by weight of aluminum powder and mixing them with a known mixer.
 ウェハサイズ156mm四方のPERC型太陽電池の裏面パッシベーション膜(パッシベーション膜A)に45μm幅の線状の膜開口を持つ太陽電池セル裏面に、ペースト組成物を開口幅60μm幅のスクリーンマスクを使用して裏面パッシベーション膜開口幅を覆う領域にスクリーン印刷により塗布し100℃10分にて乾燥、及び700℃以上4秒以下で焼成を行った。焼成後に太陽電池セルを酸エッチングすることにより開口部を埋める態様以外のペースト組成物の焼成物を除去し太陽電池セルサンプルを得た。 Using a screen mask with an opening width of 60 μm on the back surface of a solar cell having a linear film opening of 45 μm width on the back surface passivation film (passivation film A) of a PERC type solar cell having a wafer size of 156 mm square It apply | coated by the screen printing to the area | region which covers a back surface passivation film opening width, it dried at 100 degreeC for 10 minutes, and baked at 700 to 4 second. The fired product of the paste composition other than the aspect of filling the opening was removed by acid etching of the solar battery cell after firing to obtain a solar battery cell sample.
 図1(b)に実施例1で作製した太陽電池セルサンプルにおける裏面アルミニウム電極のレーザー顕微鏡による上面観察像を示す。また、図2(b)に実施例1で作製した太陽電池セルサンプルにおける裏面アルミニウム電極のSEMによる断面観察像を示す。 FIG. 1B shows an upper surface observation image of the back surface aluminum electrode in the solar cell sample prepared in Example 1 with a laser microscope. Moreover, the cross-sectional observation image by SEM of the back surface aluminum electrode in the photovoltaic cell sample produced in Example 1 is shown in FIG.2 (b).
 実施例2
 ペースト組成物を開口幅100μm幅のスクリーンマスクを使用して裏面パッシベーション膜開口幅を覆う領域にスクリーン印刷により塗布する以外は、実施例1と同様にして太陽電池セルサンプルを得た。
Example 2
A solar battery cell sample was obtained in the same manner as in Example 1 except that the paste composition was applied by screen printing to a region covering the backside passivation film opening width using a screen mask having an opening width of 100 μm.
 実施例3
 ペースト組成物を開口幅150μm幅のスクリーンマスクを使用して裏面パッシベーション膜開口幅を覆う領域にスクリーン印刷により塗布する以外は、実施例1と同様にして太陽電池セルサンプルを得た。
Example 3
A solar cell sample was obtained in the same manner as in Example 1 except that the paste composition was applied by screen printing to a region covering the opening width of the backside passivation film using a screen mask having an opening width of 150 μm.
 比較例1
 アルミニウム粉末100質量部に対して、ビスマス系ガラス粉末を3質量部、及び有機ビヒクルを29質量部加えて、周知の混合機にて混合しペースト組成物を作製した。
Comparative Example 1
A paste composition was prepared by adding 3 parts by weight of bismuth-based glass powder and 29 parts by weight of an organic vehicle to 100 parts by weight of aluminum powder and mixing them with a known mixer.
 ウェハサイズ156mm四方のPERC型太陽電池の裏面パッシベーション膜(パッシベーション膜A)に45μm幅の線状の膜開口を持つ太陽電池セル裏面に、ペースト組成物を開口幅50μm幅のスクリーンマスクを使用して裏面パッシベーション膜開口幅を覆う領域にスクリーン印刷により塗布し100℃10分にて乾燥、及び700℃以上4秒以下で焼成を行うことにより太陽電池セルサンプルを得た。 Using a screen mask with an opening width of 50 μm on the back surface of a solar cell having a linear film opening of 45 μm width on the back surface passivation film (passivation film A) of a PERC type solar cell having a wafer size of 156 mm square The solar battery cell sample was obtained by apply | coating to the area | region which covers a back surface passivation film opening width by screen printing, drying at 100 degreeC for 10 minutes, and baking at 700 to 4 second.
 比較例2
 ペースト組成物を開口幅60μm幅のスクリーンマスクを使用して裏面パッシベーション膜開口幅を覆う領域にスクリーン印刷により塗布する以外は、比較例1と同様にして太陽電池セルサンプルを得た。
Comparative Example 2
A solar cell sample was obtained in the same manner as in Comparative Example 1 except that the paste composition was applied by screen printing to a region covering the backside passivation film opening width using a screen mask having an opening width of 60 μm.
 図1(a)に比較例2で作製した太陽電池セルサンプルにおける裏面アルミニウム電極のレーザー顕微鏡による上面観察像を示す。また、図2(a)に比較例2で作製した太陽電池セルサンプルにおける裏面アルミニウム電極のSEM(走査型電子顕微鏡)による断面観察像を示す。 FIG. 1 (a) shows an upper surface observation image of the back surface aluminum electrode in the solar cell sample produced in Comparative Example 2 by a laser microscope. Moreover, the cross-sectional observation image by SEM (scanning electron microscope) of the back surface aluminum electrode in the photovoltaic cell sample produced by the comparative example 2 is shown to Fig.2 (a).
 比較例3
 ペースト組成物を開口幅100μm幅のスクリーンマスクを使用して裏面パッシベーション膜開口幅を覆う領域にスクリーン印刷により塗布する以外は、比較例1と同様にして太陽電池セルサンプルを得た。
Comparative Example 3
A solar cell sample was obtained in the same manner as in Comparative Example 1 except that the paste composition was applied by screen printing to a region covering the backside passivation film opening width using a screen mask having an opening width of 100 μm.
 比較例4
 ペースト組成物を開口幅150μm幅のスクリーンマスクを使用して裏面パッシベーション膜開口幅を覆う領域にスクリーン印刷により塗布する以外は、比較例1と同様にして太陽電池セルサンプルを得た。
Comparative Example 4
A solar cell sample was obtained in the same manner as in Comparative Example 1 except that the paste composition was applied to a region covering the backside passivation film opening width by screen printing using a screen mask having an opening width of 150 μm.
 試験例1
 得られた太陽電池セルサンプルの裏面アルミニウム電極をレーザー顕微鏡(キーエンス社製)を用いて観察し、線幅を測定した。また、ソーラーシミュレーター(株式会社ワコム電創社製)光下にて、裏面側の発電特性Iscを測定した。
Test example 1
The back surface aluminum electrode of the obtained photovoltaic cell sample was observed using a laser microscope (manufactured by Keyence Corporation), and the line width was measured. Further, the power generation characteristic Isc on the back side was measured under the light of a solar simulator (manufactured by Wacom Denso Co., Ltd.).
 測定した電極幅とIsc特性の結果を表1に示す。 Table 1 shows the measured electrode width and Isc characteristics.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果から明らかな通り、本発明の方法によって製造された太陽電池セルサンプルは、電極幅が狭くなり、かつ裏面側の発電特性Iscが向上することを確認した。 As is clear from the results in Table 1, it was confirmed that the solar cell sample produced by the method of the present invention had a narrow electrode width and improved power generation characteristics Isc on the back side.
 スクリーン印刷にてペースト組成物を塗布する場合、50μm幅のスクリーン版を使用した場合に印刷後の塗膜に断線が認められたため60μm以上の幅のスクリーン版を使用することが好ましい。従来の方法による電極形成では60μm幅のスクリーン版を使用した場合でも形成される電極は130μm程度まで広がることから、従来の方法により60μm以下の電極を形成することは困難である。 When applying the paste composition by screen printing, it is preferable to use a screen plate having a width of 60 μm or more because disconnection was observed in the coated film when a screen plate having a width of 50 μm was used. In the electrode formation by the conventional method, even when a screen plate having a width of 60 μm is used, the formed electrode spreads to about 130 μm, and it is difficult to form an electrode of 60 μm or less by the conventional method.
 パッシベーション膜Aの開口部を埋める態様以外のペースト組成物の焼成物を除去する工程を含むサンプル(実施例1~3)ではスクリーン印刷の線幅によらず最終の電極幅が60μm以下の結果であるため、60μmから数100μmの任意の幅のスクリーン幅を用いることができる。 In the samples (Examples 1 to 3) including the step of removing the fired product of the paste composition other than the mode of filling the opening of the passivation film A, the final electrode width was 60 μm or less regardless of the screen printing line width. Therefore, an arbitrary screen width of 60 μm to several 100 μm can be used.
1.シリコン基板
2.表面パッシベーション膜
3.n型シリコン層(nエミッター層)
4.銀電極
5.裏面パッシベーション膜(パッシベーション膜A)
6.レーザー開口
7.ペースト組成物の焼成物
8.Al-Si合金層
9.p
1. 1. Silicon substrate 2. Surface passivation film n-type silicon layer (n + emitter layer)
4). 4. Silver electrode Back surface passivation film (passivation film A)
6). 6. Laser aperture 7. Baked product of paste composition 8. Al—Si alloy layer p + layer

Claims (4)

  1.  シリコン基板の片面又は両面にパッシベーション膜を有する結晶系太陽電池セルの製造方法であって、
    (1)前記片面にパッシベーション膜を有する場合には当該パッシベーション膜が1又は2以上の開口を有するパッシベーション膜Aであり、前記両面にパッシベーション膜を有する場合には当該パッシベーション膜の片方又は両方が1又は2以上の開口を有するパッシベーション膜Aであり、前記パッシベーション膜Aの前記開口を覆う領域に電極形成用ペースト組成物からなる塗膜を形成する工程1、
    (2)前記シリコン基板及び前記塗膜を焼成処理する工程2、及び
    (3)前記開口の凹部分を埋める態様で形成された焼成物は少なくとも残し、それ以外の態様で形成された焼成物の一部又は全部を除去する工程3、
    を順に備えることを特徴とする、結晶系太陽電池セルの製造方法。
    A method for producing a crystalline solar cell having a passivation film on one or both sides of a silicon substrate,
    (1) When the passivation film has a passivation film on one side, the passivation film is a passivation film A having one or more openings, and when the passivation film has a passivation film on both sides, one or both of the passivation films are 1 Or a passivation film A having two or more openings, and forming a coating film made of an electrode-forming paste composition in a region covering the openings of the passivation film A,
    (2) Step 2 of firing the silicon substrate and the coating film, and (3) Remaining at least the fired product formed in a mode of filling the concave portion of the opening, of the fired product formed in the other mode Step 3 for removing part or all of the above,
    In order, The manufacturing method of a crystalline solar cell characterized by the above-mentioned.
  2.  前記開口は、1つあたり幅20~100μmの直線状である、請求項1に記載の結晶系太陽電池セルの製造方法。 2. The method for manufacturing a crystalline solar cell according to claim 1, wherein each of the openings is linear with a width of 20 to 100 μm.
  3.  前記電極形成用ペースト組成物は、アルミニウム含有ペースト組成物であり、アルミニウム粉末100質量部に対して、ガラス粉末を0.1~15質量部含有する、請求項1又は2に記載の結晶系太陽電池セルの製造方法。 The crystalline solar system according to claim 1 or 2, wherein the electrode-forming paste composition is an aluminum-containing paste composition and contains 0.1 to 15 parts by mass of glass powder with respect to 100 parts by mass of aluminum powder. Battery cell manufacturing method.
  4.  前記アルミニウム含有ペースト組成物は、1)酸化ビスマス、酸化鉛、酸化亜鉛、酸化ケイ素及び酸化アルミニウムからなる群から選択される少なくとも一種の金属酸化物を含有するガラス粉末、2)金属酸化物、並びに、3)金属水酸化物からなる群から選択される少なくとも一種を含有する、請求項3に記載の結晶系太陽電池セルの製造方法。 The aluminum-containing paste composition includes 1) a glass powder containing at least one metal oxide selected from the group consisting of bismuth oxide, lead oxide, zinc oxide, silicon oxide and aluminum oxide, 2) metal oxide, and 3) The method for producing a crystalline solar cell according to claim 3, comprising at least one selected from the group consisting of metal hydroxides.
PCT/JP2019/021120 2018-05-30 2019-05-28 Production method for crystal-based solar cell WO2019230728A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980036778.9A CN112424952A (en) 2018-05-30 2019-05-28 Method for manufacturing crystalline solar cell
JP2020522214A JPWO2019230728A1 (en) 2018-05-30 2019-05-28 Manufacturing method of crystalline solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-103297 2018-05-30
JP2018103297 2018-05-30

Publications (1)

Publication Number Publication Date
WO2019230728A1 true WO2019230728A1 (en) 2019-12-05

Family

ID=68698213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021120 WO2019230728A1 (en) 2018-05-30 2019-05-28 Production method for crystal-based solar cell

Country Status (4)

Country Link
JP (1) JPWO2019230728A1 (en)
CN (1) CN112424952A (en)
TW (1) TWI807034B (en)
WO (1) WO2019230728A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011165668A (en) * 2010-02-12 2011-08-25 Giga Solar Materials Corp Conductive aluminum paste and its manufacturing method, solar cell, and its module
CN202796971U (en) * 2012-08-17 2013-03-13 苏州阿特斯阳光电力科技有限公司 Back side structure of crystalline silicon solar cell
JP2013512546A (en) * 2009-11-25 2013-04-11 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Aluminum paste and its use in the manufacture of passivating emitters and back contact silicon solar cells.
JP2013219355A (en) * 2012-04-04 2013-10-24 Samsung Sdi Co Ltd Method for manufacturing photoelectric element
JP2016025353A (en) * 2014-07-24 2016-02-08 茂迪股▲分▼有限公司 Solar cell and solar cell module
KR20160122467A (en) * 2015-04-14 2016-10-24 엘지전자 주식회사 Method for manufacturing solar cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013512546A (en) * 2009-11-25 2013-04-11 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Aluminum paste and its use in the manufacture of passivating emitters and back contact silicon solar cells.
JP2011165668A (en) * 2010-02-12 2011-08-25 Giga Solar Materials Corp Conductive aluminum paste and its manufacturing method, solar cell, and its module
JP2013219355A (en) * 2012-04-04 2013-10-24 Samsung Sdi Co Ltd Method for manufacturing photoelectric element
CN202796971U (en) * 2012-08-17 2013-03-13 苏州阿特斯阳光电力科技有限公司 Back side structure of crystalline silicon solar cell
JP2016025353A (en) * 2014-07-24 2016-02-08 茂迪股▲分▼有限公司 Solar cell and solar cell module
KR20160122467A (en) * 2015-04-14 2016-10-24 엘지전자 주식회사 Method for manufacturing solar cell

Also Published As

Publication number Publication date
TWI807034B (en) 2023-07-01
TW202005102A (en) 2020-01-16
JPWO2019230728A1 (en) 2021-07-15
CN112424952A (en) 2021-02-26

Similar Documents

Publication Publication Date Title
JP3963924B2 (en) Chalcopyrite solar cell
EP2149155B1 (en) Formation of high quality back contact with screen-printed local back surface field
KR101144810B1 (en) Electrode paste for solar cell, solar cell using the paste, and manufacturing method of the solar cell
CN105247686B (en) Solar battery cell and its manufacture method, solar module
US20140261666A1 (en) Methods of manufacturing a low cost solar cell device
TW201924073A (en) Interdigitated back-contacted solar cell with p-type conductivity
TWI725035B (en) Electric conductive paste, solar cell and method for manufacturing solar cell
RU2462788C2 (en) Paste-like composition and solar cell
US20130095604A1 (en) Method for producing a metal contact structure of a photovoltaic solar cell
SG190520A1 (en) Thick film conductive composition and use thereof
KR20180116424A (en) Conductive paste and solar cell
US20130025677A1 (en) Solar cell element and process for production thereof
CN109313957B (en) Conductive paste and solar cell
JP2015050277A (en) Solar cell and process of manufacturing the same
US10475938B2 (en) Process for producing conductive pastes for forming solar cell electrodes
RU2690091C1 (en) Aluminum paste for making back contact of silicon solar cells with rear dielectric passivation
TWI714897B (en) Conductive paste for electrode of solar cell, glass frit included in the same, and solar cell
WO2019230728A1 (en) Production method for crystal-based solar cell
US11746957B2 (en) Interdigitated back contact metal-insulator-semiconductor solar cell with printed oxide tunnel junctions
WO2011163534A1 (en) Process for the formation of a silver back anode of a silicon solar cell
JP2017139351A (en) Manufacturing method of solar cell element, and solar cell element
JP2011066044A (en) Method for manufacturing solar cell device
DE102011086302A1 (en) Method for producing contact grid on surface of e.g. photovoltaic solar cell for converting incident electromagnetic radiation into electrical energy, involves electrochemically metalizing contact region with metal, which is not aluminum
JP6266079B2 (en) Conductive paste for electrode formation of solar cell and method for manufacturing solar cell
WO2023190282A1 (en) Electrically conductive paste, solar cell, and method for manufacturing solar cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19812528

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020522214

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19812528

Country of ref document: EP

Kind code of ref document: A1