WO2019230696A1 - 地中レーダ装置とその方法 - Google Patents

地中レーダ装置とその方法 Download PDF

Info

Publication number
WO2019230696A1
WO2019230696A1 PCT/JP2019/021028 JP2019021028W WO2019230696A1 WO 2019230696 A1 WO2019230696 A1 WO 2019230696A1 JP 2019021028 W JP2019021028 W JP 2019021028W WO 2019230696 A1 WO2019230696 A1 WO 2019230696A1
Authority
WO
WIPO (PCT)
Prior art keywords
array antenna
antenna
fulcrum
ground
radar apparatus
Prior art date
Application number
PCT/JP2019/021028
Other languages
English (en)
French (fr)
Inventor
章志 望月
岡 宗一
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US17/058,366 priority Critical patent/US11953588B2/en
Publication of WO2019230696A1 publication Critical patent/WO2019230696A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/064Two dimensional planar arrays using horn or slot aerials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/885Radar or analogous systems specially adapted for specific applications for ground probing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • G01S7/032Constructional details for solid-state radar subsystems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/12Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/04Adaptation for subterranean or subaqueous use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • H01Q3/04Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying one co-ordinate of the orientation

Definitions

  • the present invention relates to a ground penetrating radar apparatus and method for exploring buried objects buried in the ground.
  • Underground radar devices are used for the purpose of investigating the presence, size, position, and shape of buried objects and cavities from the ground surface.
  • the frequency band of electromagnetic waves used for ground penetrating radar equipment is generally in the range from several hundred MHZ to several GHZ.
  • the frequency band is determined by the size, shape, distance from the ground surface, and soil type of the object to be explored. For example, the buried pipes that make up the lifeline do not change depending on the type of road (sidewalk, roadway), so the same frequency band is often used.
  • Non-Patent Document 1 discloses a plurality of transmission / reception antennas having different widths.
  • Patent Document 1 discloses a search method in which a transmission / reception antenna having a width smaller than the width of a road is used to scan a plurality of times while shifting a search line, and a plurality of scanned results are combined.
  • Non-Patent Document 1 it is necessary to purchase a plurality of types of antennas corresponding to the width of the road, and the initial introduction cost becomes high. In addition, it is necessary to replace and adjust the transmitting / receiving antenna in accordance with the width of the road, resulting in poor work efficiency.
  • Patent Document 1 requires the search to be repeated a plurality of times, resulting in poor work efficiency.
  • the conventional ground penetrating radar apparatus and its method have a problem that the working efficiency is poor.
  • the present invention has been made in view of this problem, and it is not necessary to replace the transmitting and receiving antennas in accordance with the width of the road, and the exploration of the buried object can be performed by one scan, thereby improving work efficiency. It is an object of the present invention to provide a ground penetrating radar apparatus and a method thereof.
  • a ground penetrating radar apparatus is a ground penetrating radar apparatus including a transmitting array antenna and a receiving array antenna. All the distances between the antenna elements of the transmitting array antenna and the receiving array antenna are all.
  • the gist of the present invention is to provide a position variable mechanism that is variable at equal intervals.
  • An underground exploration method is an underground exploration method executed by the above-described underground radar apparatus, and calculates a distance between each antenna element of the transmitting array antenna and the receiving array antenna.
  • the gist is to explore the ground in a variable manner with all being equally spaced.
  • the underground radar apparatus and method thereof that can perform the exploration of the buried object by one scan and improve the work efficiency. Can be provided.
  • FIG. 1 It is a figure which shows the function structural example of the underground radar apparatus which concerns on embodiment of this invention. It is a perspective view which shows the specific example of the position variable mechanism which concerns on 1st Embodiment of the underground radar apparatus shown in FIG. It is a figure which shows typically the example which changed the position of the transmission antenna shown in FIG. It is a perspective view which shows a part of position variable mechanism of the modification which provided with two or more drive parts. It is a perspective view which shows a part of position variable mechanism of the other modification which was provided with two or more drive parts. It is a perspective view which shows a part of specific example of the position variable mechanism which concerns on 2nd Embodiment of the underground radar apparatus shown in FIG.
  • FIG. 6 It is a perspective view which shows the example which rotated each antenna element shown in FIG. 6 90 degree
  • FIG. 1 is a diagram illustrating a functional configuration example of a ground penetrating radar apparatus according to an embodiment of the present invention.
  • a ground radar device 100 shown in FIG. 1 is a device that searches for an embedded object using electromagnetic waves.
  • the underground radar apparatus 100 includes a transmission unit 10, a position variable mechanism 20, a plurality of transmission antenna elements 30 1 to 30 n , a plurality of reception antenna elements 40 1 to 40 n , a reception unit 50, a calculation unit 60, and a display unit 70. Is provided.
  • the plurality of transmitting antenna elements 30 1 to 30 n and the plurality of receiving antenna elements 40 1 to 40 n are arranged in a line to constitute an array antenna.
  • the plurality of transmission antenna elements 30 1 to 30 n are referred to as the transmission array antenna 30 and the plurality of reception antenna elements 40 1 to 40 n are referred to as the reception array antenna 40.
  • the plurality of transmission antenna elements 30 1 to 30 n and the plurality of reception antenna elements 40 1 to 40 n may be collectively referred to as a transmission / reception antenna.
  • a transmission / reception antenna reference numerals are omitted.
  • Each functional component excluding the position variable mechanism 20, the transmission array antenna 30, and the reception array antenna 40 can be realized by a computer including a ROM, a RAM, a CPU, and the like, for example.
  • a computer including a ROM, a RAM, a CPU, and the like, for example.
  • the processing content of the function that each functional component should have is described by a program.
  • the ground penetrating radar apparatus 100 is different from the conventional ground penetrating radar apparatus in that the position varying mechanism 20 is provided. Therefore, the position variable mechanism 20 will be described in detail.
  • FIG. 2 is a perspective view showing a specific example of the position variable mechanism 20 according to the first embodiment of the present invention.
  • the position variable mechanism 20 is a mechanism that varies the distances between the antenna elements of the transmission array antenna 30 and the reception array antenna 40 while keeping all the distances equal.
  • the position variable mechanism 20 includes a driving unit 21, a plurality of crossbars 22, and a plurality of connecting units 23, and bellows 24 1 and 24 2 that extend and contract in the left-right direction around the driving unit 21. Composed.
  • the horizontal direction is the x direction
  • the vertical direction is the y direction
  • the depth direction perpendicular to the xy plane is the z direction.
  • the bellows 24 1 and the bellows 24 2 are symmetric (laterally symmetric) in the x direction around the drive unit 21.
  • the drive unit 21 varies the distance between the first fulcrum 21a and the second fulcrum 21b that are arranged above and below.
  • the drive unit 21 rotates an internal motor (not shown) based on a drive signal input from the control unit 80 to vary the interval between the first fulcrum 21a and the second fulcrum 21b.
  • a third fulcrum 21c (not shown) and a fourth fulcrum 21d (not shown) are provided on the surface opposite to the surface of the drive unit 21 where the first fulcrum 21a and the second fulcrum 21b are provided. Similar to the first fulcrum 21a and the second fulcrum 21b, the distance between the third fulcrum 21c and the fourth fulcrum 21d is varied based on the drive signal from the control unit 80. The distance between the third fulcrum 21c and the fourth fulcrum 21d is the same as the distance between the first fulcrum 21a and the second fulcrum 21b.
  • the bellows 24 1 includes a plurality of crossbars 22 1 to 22 10 and a plurality of connecting portions 23 1 to 23 13 .
  • One end of the cross bar 22 1 is connected to the upper first fulcrum 21a so that the cross bar 22 1 forms a slope of a valley in a diagonally downward direction.
  • one end of the cross bar 22 2 is connected to the lower second fulcrum 21b so that the cross bar 22 2 forms a slope of a mountain and intersects the intermediate point of the cross bar 22 1 .
  • the other end of the crossbar 22 1 is connected by a connecting portion 23 2 and one end of the crossbar 22 3, forming the bottom of the 1 th valley counted from the drive unit 21.
  • the other end of the crossbar 22 2 is connected by a connecting portion 23 3 and one end of the crossbar 22 4, to form the top of the 1 th mountain counted from the drive unit 21.
  • 3 th valley counted from the drive unit 21 includes a crossbar 22 6 connected at one end to the other end of the crossbar 22 3, it is connected by a connecting portion 23 8 to the other end of the crossbar 22 6 formed by the crossbar 22 7 that.
  • 3 th mountain counted from the drive unit 21 includes a cross bar 22 5 connected at one end to the other end of the crossbar 22 4, a cross that is connected by a connecting portion 23 9 the other end of the crossbar 22 5 formed by the bar 22 8.
  • the connecting portion 23 7 connected. Position from the driving portion 21 of the joint 23 7, like the connecting portions 23 1 and the connecting portion 23 4, away or close in correspondence to the distance between the first pivot 21a and the second supporting point 21b.
  • the intervals between the bottoms of the valleys and the tops of the peaks formed by the crossbar 22 and the intervals between the portions where the crossbars 22 intersect with each other are equally spaced. It is possible to vary.
  • transmission antenna elements 30 1 , 30 2 , 30 3 are arranged at the respective positions of the connecting portions 23 1 , 23 4 , 23 7 , 23 10 , and 23 13 of the bellows 24 1 of the position variable mechanism 20.
  • 30 4 , 30 5 and receiving antenna elements 40 1 , 40 2 , 40 3 , 40 4 , 40 5 are arranged, and the transmitting array antenna 30 and the receiving array antenna 40 are configured. The same applies to the bellows 24 2.
  • FIG. 3 is a diagram schematically showing how the intervals between the antenna elements are changed to equal intervals when the transmission array antenna 30 and the reception array antenna 40 are configured as described above.
  • 3a corresponds to the connecting portion 23 1
  • 3a corresponds to the connecting portion 23 4
  • 5a corresponds to the connecting portion 23 7
  • 7a corresponds to the connecting portion 23 10
  • 9a corresponds to the connecting portion 23 13 .
  • 0 represents the position of the drive unit 21.
  • the lower ⁇ column represents the position of each antenna element obtained by extending the distance between the antenna elements outward by 2 ⁇ a as compared with the case of the upper column.
  • the distances between the antenna elements of the transmission array antenna 30 and the reception array antenna 40 can be varied while being equally spaced in accordance with the width of the road. can do. Therefore, there is no need to prepare a transmission / reception antenna corresponding to the width of the road in advance. Moreover, it is not necessary to replace the transmission / reception antenna in accordance with the width of the road. Therefore, the buried object can be searched by one scan by the underground radar apparatus 100, and work efficiency can be improved.
  • a third fulcrum 21c (not shown) and a fourth fulcrum 21d (not shown) provided on the surface opposite to the surface of the drive unit 21 provided with the first fulcrum 21a and the second fulcrum 21b. 1
  • a bellows (without reference symbol) having the same shape as the bellows 24 1 is extended, and the connecting portion 23 of the bellows and the bellows 24 1 is connected by a connecting rod. There is no need for the bellows.
  • the position variable mechanism 20 may be configured by only the bellows 24 1 (and the bellows 24 2 ).
  • the transmitting antenna elements 30 1 to 30 5 and the receiving antenna elements 40 1 to 40 5 are arranged on the bottom 23 2 , 23 5 , 23 8 , and 23 11 of the bellows 24 1 , for example.
  • variable position mechanism 20 includes the drive 21 portion that varies the distance between the first fulcrum 21a and the second fulcrum 21b that are arranged above and below, the first fulcrum 21a, and the second fulcrum 21b.
  • the one end is connected to each other to form a valley and a mountain, the other end forming the valley and the other end forming the mountain are connected to each other, and the distance between the first fulcrum 21a and the second fulcrum 21b
  • a plurality of connecting portions 23 that connect the two crossbars 22 forming the top to each other so that the inclination angles of the valley and the mountain can be varied, and each antenna element is arranged in the connecting portion 23.
  • FIG. 4 is a perspective view showing a part of a variable position mechanism 220 according to a modification in which a plurality of drive units are provided.
  • the position variable mechanism 220 of Modification 1 shown in FIG. 4 is different from the position variable mechanism 20 in that a second drive unit 221 is provided. Between the drive unit 21 and two first drive unit 221 is connected in bellows 24 1. Therefore, by changing the interval between the first fulcrum 21a and the second fulcrum 21b of the drive unit 21, the interval between the drive unit 21 and the drive unit 221 can be changed.
  • the x-direction of the driving unit 221 is further connected configured bellows 24 3 by a plurality of cross bars. Expansion and contraction of the bellows 24 3, the drive unit 221 is performed.
  • the driving unit may be provided for each bellows constituted by a predetermined number of crossbars. According to this configuration, it is possible to change, for example, the interval between the antenna elements of the transmission array antenna 30 for each bellows. That is, various antenna arrangements are possible.
  • the bellows 24 1 , the bellows 24 3 , and the drive unit 221 may be lowered in the ⁇ y direction because they are affected by gravity. In order to prevent this, it is preferable to provide a rail (not shown) for holding each of them in the vertical direction.
  • FIG. 5 is a perspective view showing a part of another position variable mechanism 230 according to another modification in which a plurality of drive units are provided.
  • the position variable mechanism 230 of Modification 2 shown in FIG. 5 is configured such that, for example, the distance between the antenna elements of the transmission array antenna 30 and the reception array antenna 40 can be varied separately.
  • the transmitting antenna elements 30 1 to 30 4 and the receiving antenna elements 40 1 to 40 4 shown in FIG. 5 are shown as examples of patch antennas.
  • the transmission / reception antenna shown in FIG. 2 is an example of a tapered slot antenna. As is clear from the reference numerals, the tapered slot antenna and the patch antenna have the same function although they have different shapes.
  • the intervals between the transmitting antenna elements 30 1 to 30 4 are varied by the driving unit 222. Further, the interval between the receiving antenna elements 40 1 to 40 4 is varied by the driving unit 223.
  • the distance between the antenna elements of the transmitting array antenna 30 and the receiving array antenna 40 may be individually varied.
  • FIG. 6 is a perspective view showing a part of a specific example of the position variable mechanism according to the second embodiment of the underground radar apparatus 100 of the present invention.
  • the position variable mechanism 240 shown in FIG. 6 shows an example in which, for example, four electric actuators 241 1 to 241 5 are connected in cascade.
  • FIG. 6 is intended to show a configuration that can be expanded and contracted, and has no particular relationship with the position variable mechanism.
  • Electric actuator 241 1 can stretch in the longitudinal direction (x). Expansion and contraction is performed by extending and contracting the extending portion 244 1 like a piston from the main body of the electric actuator 241 1 . Then, on each of both end portions of the expansion and contraction direction, the antenna holder 242 1 of the rod-shaped orthogonal directions (z), 242 2 are provided.
  • Stretched portion 244 1 is as piston, by expansion and contraction from the electric actuator 241 1 of the body, it is possible to change the distance between the transmitting antenna elements 30 6 and 30 7.
  • the interval between the receiving antenna elements 40 6 and 40 7 changes with the same width simultaneously with the transmitting antenna elements 30 6 and 30 7 .
  • the plurality of electric actuators 241 are connected via a connecting portion.
  • an LA33 actuator manufactured by LINAC or the like can be used as the electric actuator 241.
  • the position variable mechanism 240 may be configured by a plurality of electric actuators 241 that expand and contract and a connecting portion that connects the electric actuators 241.
  • the actuator may be driven hydraulically or pneumatically, and the drive source is not limited to electric.
  • FIG. 7 is a perspective view showing an example in which each antenna element shown in FIG. 6 is rotated by 90 degrees. In this way, the polarization direction of the electromagnetic wave radiated from each antenna element may be changed.
  • the polarization direction can be changed in the direction once set, or for example, the above rotating unit 243 may be rotated by a motor and continuously rotated. This idea of changing the polarization direction can also be applied to the phase variable mechanism 20 (first embodiment) as it is.
  • each antenna element is arranged in each of the connecting parts via a rotating part that rotates each antenna element. As a result, it is possible to perform a search by changing the polarization direction of the electromagnetic wave irradiated from each antenna element.
  • FIG. 8 and FIG. 9 are diagrams schematically showing a state in which a buried object on a road is searched using the underground radar apparatus 100 according to the first embodiment of the present invention.
  • FIG. 8 is a view of the situation from the side.
  • FIG. 9 is a plan view of this state.
  • FIG. 8 shows a state in which the ground radar apparatus 100 is mounted on the vehicle 90, the position variable mechanism 20 and the antenna are provided so as to protrude from the rear portion of the vehicle 90, and the vehicle 90 moves to search for an embedded object.
  • An electromagnetic wave 91 is irradiated from the transmission array antenna 30 toward the ground surface 0, and a reflected wave from the buried pipe 92 and the cavity 93 is received by the reception array antenna 40.
  • the position variable mechanism 20 is set to a width corresponding to the width of the road, and the antenna elements are arranged at equal intervals.
  • the moving means of the underground radar apparatus 100 is not limited to a car. It may be placed on a handcart (cart) and pushed to move, or placed on a rear car and pulled to move. Since the width of the road in the traveling direction of the vehicle is narrowed, when the vehicle travels, the width of the position variable mechanism 20 is narrowed corresponding to the narrowed width of the road (not shown). Even in this case, according to the underground radar apparatus 100, the antenna elements are arranged at equal intervals.
  • the underground exploration method executed by the underground radar apparatus 100 performs the exploration by changing the intervals of the antenna elements of the transmission array antenna 30 and the reception array antenna 40 all at equal intervals. To do.
  • the underground radar apparatus 100 may include a sensor 85 (FIG. 8) that detects the width of the road.
  • the sensor 85 is a camera that captures, for example, an image in the traveling direction of the vehicle 90 or images on both sides of the vehicle 90, and detects the width of the road. Based on the sensor information (road width) detected by the sensor 85, the distance between the antenna elements of the position variable mechanism 20 is controlled via the control unit 80. In this way, the width of the road may be detected, and the intervals between the antenna elements of the transmission array antenna 30 and the reception array antenna 40 may be automatically varied in accordance with the width of the road.
  • the underground radar apparatus and its method of the present embodiment it is possible to search for an embedded object by one scan even if the width of the road is different. Therefore, the working efficiency of the underground exploration method can be improved. In addition, since it is not necessary to prepare a plurality of transmission / reception antennas having different widths, it is possible to reduce the initial introduction cost related to underground exploration.
  • position variable mechanism 20 grade
  • the number of antenna elements is not limited to this example. Any number may be used as long as there are a plurality.
  • the drive part 21 demonstrated in the example driven electrically for example, it does not need to have a drive source.
  • the interval between the first fulcrum 21a and the second fulcrum 21b may be manually set by an operator, and the intervals between the antenna elements of the transmission / reception antennas may be all made equal and variable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

道路の幅に対応させて送受信用アンテナを取り替える必要がなく、また、1回の走査で埋設物の探査が行える地中レーダ装置とその方法を提供する。送信アレイアンテナ30と受信アレイアンテナ40を備える地中レーダ装置100において、送信アレイアンテナ30と受信アレイアンテナ40の各アンテナ素子間のそれぞれの間隔を、全て等間隔としつつ可変とする位置可変機構20を備え、位置可変機構20は、駆動部と、ジャバラを構成する複数のクロスバーと、ジャバラの谷及び山の傾斜角度を可変できるようにそれぞれ連結させる複数の連結部とを備える。

Description

地中レーダ装置とその方法
 本発明は、地中に埋設された埋設物を探査する地中レーダ装置とその方法に関する。
 歩道及び車道等の道路の下には多くの埋設物が存在する。また、陥没等の原因となる空洞なども存在する。埋設物及び空洞の有無、大きさ、位置、及び形状を地表面から調査する目的で地中レーダ装置が用いられる。
 地中レーダ装置に利用される電磁波の周波数帯は、一般には、数百MHZ~数GHZまでの範囲である。周波数帯域は、探査対象の埋設物の大きさ、形状、地表面からの距離、及び土壌の種類によって決定される。ライフラインを構成する例えば埋設管に関しては、道路の種類(歩道、車道)によって変わらないため、同じ周波数帯が用いられることが多い。
 よって、従来は、地中レーダ装置の本体としての機能はそのままで、道路の幅に対応させて大きさの異なる送受信用アンテナを取り替えていた。例えば非特許文献1には、幅の異なる複数の送受信アンテナが開示されている。
 また、例えば特許文献1には、道路の幅よりも小さい幅の送受信アンテナを用いて、探査するラインをずらしながら複数回走査し、走査した複数の結果を合成する探査方法が開示されている。
特許第3936472号公報
Multi-Channel, Ground-Coupled Antenna Arrays for GPR. 〔平成30年5月11日検索〕、インターネット(URL: http://WWW.3d-radar.com/?page id=51)
 しかしながら、非特許文献1に開示された方法では、道路の幅に対応させて複数種類のアンテナを購入する必要があり、初期導入コストが高くなる。また、道路の幅に対応させて送受信用アンテナを取り替えて調整する必要があり作業効率が悪くなる。
 また、特許文献1に開示された方法では、探査を複数回繰り返す必要があり作業効率が悪くなる。このように従来の地中レーダ装置とその方法では、作業効率が悪いという課題がある。
 本発明は、この課題に鑑みてなされたものであり、道路の幅に対応させて送受信用アンテナを取り替える必要がなく、また、1回の走査で埋設物の探査が行え、作業効率を改善させられる地中レーダ装置とその方法を提供することを目的とする。
 本実施形態の一態様に係る地中レーダ装置は、送信アレイアンテナと受信アレイアンテナを備える地中レーダ装置において、前記送信アレイアンテナと前記受信アレイアンテナの各アンテナ素子間のそれぞれの距離を、全て等間隔としつつ可変とする位置可変機構を備えることを要旨とする。
 本実施形態の一態様に係る地中探査方法は、上記の地中レーダ装置が実行する地中探査方法であって、前記送信アレイアンテナと前記受信アレイアンテナの各アンテナ素子間のそれぞれの距離を、全て等間隔としつつ可変して地中を探査することを要旨とする。
 本発明によれば、道路の幅に対応させて送受信用アンテナを取り替える必要がなく、また、1回の走査で埋設物の探査が行え、作業効率を改善させられる地中レーダ装置とその方法を提供することができる。
本発明の実施の形態に係る地中レーダ装置の機能構成例を示す図である。 図1に示す地中レーダ装置の第1実施形態に係る位置可変機構の具体例を示す斜視図である。 図1に示す送信アンテナの位置を変更した例を模式的に示す図である。 駆動部を複数個備えるようにした変形例の位置可変機構の一部分を示す斜視図である。 駆動部を複数個備えるようにした他の変形例の位置可変機構の一部を示す斜視図である。 図1に示す地中レーダ装置の第2実施形態に係る位置可変機構の具体例の一部を示す斜視図である。 図6に示す各アンテナ素子を90度回転させた例を示す斜視図である。 図1に示す地中レーダ装置を用いて埋設物を探査する方法を模式的に示す図である。 図8に示す埋設物を探査する方法を平面視した様子を模式的に示す図である。
 以下、本発明の実施形態について図面を用いて説明する。複数の図面中同一のものには同じ参照符号を付し、説明は繰り返さない。
 図1は、本発明の実施の形態に係る地中レーダ装置の機能構成例を示す図である。図1に示す地中レーダ装置100は、電磁波を用いて埋設物を探査する装置である。
 地中レーダ装置100は、送信部10、位置可変機構20、複数の送信アンテナ素子30~30、複数の受信アンテナ素子40~40、受信部50、演算部60、及び表示部70を備える。複数の送信アンテナ素子30~30と複数の受信アンテナ素子40~40は、一列に配列されてアレイアンテナを構成する。以降において、配列されたアレイアンテナを指す場合、複数の送信アンテナ素子30~30を送信アレイアンテナ30、及び複数の受信アンテナ素子40~40を受信アレイアンテナ40と称する。又は、複数の送信アンテナ素子30~30と複数の受信アンテナ素子40~40を合わせて送受信アンテナと称する場合もある。送受信アンテナと称する場合は、参照符号の表記は省略する。
 位置可変機構20、送信アレイアンテナ30、及び受信アレイアンテナ40を除いた各機能構成部は、例えば、ROM、RAM、CPU等からなるコンピュータで実現することができる。各機能構成部をコンピュータによって実現する場合、各機能構成部が有すべき機能の処理内容はプログラムによって記述される。
 地中レーダ装置100は、位置可変機構20を備える点で従来の地中レーダ装置と異なる。よって、位置可変機構20について詳しく説明する。
 〔第1実施形態〕
 (位置可変機構)
 図2は、本発明の第1実施形態に係る位置可変機構20の具体例を示す斜視図である。位置可変機構20は、送信アレイアンテナ30と受信アレイアンテナ40の各アンテナ素子間のそれぞれの距離を、全て等間隔としつつ可変する機構である。
 図2に示すように、位置可変機構20は、駆動部21、複数のクロスバー22、及び複数の連結部23を備え、駆動部21を中心として左右方向に伸縮するジャバラ24,24で構成される。左右方向をx方向、上下方向をy方向、x-y平面に直交する奥行き方向をz方向とする。この例では、ジャバラ24とジャバラ24は、駆動部21を中心にx方向で対称(左右対称)である。
 図2では、+x方向のジャバラ24を構成する部品にのみ参照符号を表記し、その構成を説明する。-x方向のジャバラ24は、ジャバラ24と同じ構成である。よって、その説明は省略する。
 駆動部21は、上下に配置される第1支点21aと第2支点21bとの間隔を可変させる。駆動部21は、制御部80から入力される駆動信号に基づいて内部のモータ(図示せず)を回転させて第1支点21aと第2支点21bの間隔を可変する。
 第1支点21aと第2支点21bが設けられた駆動部21の面と反対側の面には、第3支点21c(図示せず)と第4支点21d(図示せず)が設けられる。第3支点21cと第4支点21dは、第1支点21aと第2支点21bと同様に制御部80からの駆動信号に基づいて、その間隔を可変させる。第3支点21cと第4支点21dの間隔は、第1支点21aと第2支点21bの間隔と同じである。
 ジャバラ24は、複数のクロスバー22~2210と複数の連結部23~2313で構成される。
 上側の第1支点21aに、クロスバー22の一端が、クロスバー22が斜め下方向に谷の斜面を形成するように接続される。また、下側の第2支点21bに、クロスバー22の一端が、クロスバー22が山の斜面を形成し、クロスバー22の中間点と交差するように接続される。
 クロスバー22とクロスバー22の交差する部分は、クロスバー22の谷の斜面とクロスバー22の山の斜面の角度が変えられるように連結部23で連結される。よって、第1支点21aと第2支点21bの間隔が近いと谷及び山の傾斜は緩くなり、連結部23の位置は駆動部21から遠ざかる。また、第1支点21aと第2支点21bの間隔が離れると谷及び山の傾斜はきつくなり、連結部23の位置は駆動部21に近づくことになる。
 クロスバー22の他端は、クロスバー22の一端と連結部23で連結され、駆動部21から数えて1個目の谷の底を形成する。クロスバー22の他端は、クロスバー22の一端と連結部23で連結され、駆動部21から数えて1個目の山の頂を形成する。
 つまり、クロスバー22は、駆動部21から数えて2個目の山を形成し、クロスバー22と平行になるようにその一端を、クロスバー22の他端に連結する。また、クロスバー22は、駆動部21から数えて2個目の谷を形成し、クロスバー22と平行になるようにその一端を、クロスバー22の他端に連結する。
 クロスバー22とクロスバー22の交差する部分は、クロスバー22の山の斜面及びクロスバー22の谷の斜面の角度が変えられるように連結部23で連結される。よって、駆動部21から数えて2個目の交差する部分の連結部23の位置は、駆動部21から数えて1個目の交差する部分の連結部23と同様に、第1支点21aと第2支点21bの間隔に対応させて近づき又遠ざかる。
 以降同様に、駆動部21から数えて3個目の谷は、クロスバー22の他端に一端を接続するクロスバー22と、クロスバー22の他端と連結部23で連結されるクロスバー22とで形成される。また、駆動部21から数えて3個目の山は、クロスバー22の他端に一端を接続するクロスバー22と、クロスバー22の他端と連結部23で連結されるクロスバー22とで形成される。
 また、駆動部21から数えて3個目の山を形成するクロスバー22と、駆動部21から数えて3個目の谷を形成するクロスバー22とが交差する部分は、連結部23で連結される。連結部23の駆動部21からの位置は、連結部23及び連結部23と同様に、第1支点21aと第2支点21bの間隔に対応させて近づき又遠ざかる。
 クロスバー22,22及び連結部23以降の説明は、上記の繰り返しであるので省略する。以降において、クロスバー及び連結部について特に場所を特定する必要が無い場合は、参照符号の添え字の表記は省略する。
 上記のようにクロスバー22を連結部23で連結することでジャバラ24を延長させることができる。ジャバラ24の長さは、連結部23におけるフリクションによる力のロスが無いと仮定すると無限に延長することが可能である。
 本実施形態に係る位置可変機構20によれば、クロスバー22が形成する谷の底と山の頂のそれぞれの間隔、及びクロスバー22同士が交差する部分のそれぞれの間隔は、等間隔としつつ可変することが可能である。
 図2に示すように、位置可変機構20のジャバラ24の連結部23、23、23、2310、及び2313のそれぞれの位置に、送信アンテナ素子30,30,30,30,30と、受信アンテナ素子40,40,40,40,40が配置され、送信アレイアンテナ30と受信アレイアンテナ40が構成される。ジャバラ24についても同様である。
 図3は、上記のように送信アレイアンテナ30と受信アレイアンテナ40が構成された場合に、それぞれのアンテナ素子の間隔が等間隔に変更される様子を模式的に示す図である。図3に示すaは連結部23、同3aは連結部23、同5aは連結部23、同7aは連結部2310、同9aは連結部2313にそれぞれ対応する。そして、0は駆動部21の位置を表す。
 図3に示す上側の△の列は、駆動部21の第1支点21aと第2支点21bの間隔が、その可動範囲内のある値(間隔)に設定された場合の各アンテナ素子の位置を表す。下側の△の列は、上側の列の場合よりも、アンテナ素子のそれぞれ間隔を外側に2δa伸張した各アンテナ素子の位置を表す。
 この上側の△の位置と、下側の△の位置は、駆動部21の第1支点21aと第2支点21bの間隔を変更することで可逆的に設定することができる。上側の△の位置から下側の△の位置にアンテナ素子を移動させる場合は、第1支点21aと第2支点21bの間隔を狭くする。また、その逆の場合は、第1支点21aと第2支点21bの間隔を広くする。
 このように本実施形態に係る位置可変機構20によれば、道路の幅に対応させて送信アレイアンテナ30と受信アレイアンテナ40の各アンテナ素子間のそれぞれの距離を、全て等間隔としつつ可変とすることができる。したがって、道路の幅に対応させた送受信用アンテナを予め用意する必要がない。また、道路の幅に対応させて送受信様アンテナを取り替える必要がない。よって、地中レーダ装置100による1回の走査で埋設物の探査が行え、作業効率を改善することができる。
 なお、図2では、第1支点21aと第2支点21bが設けられた駆動部21の面と反対側の面に設けられた第3支点21c(図示せず)と第4支点21d(図示せず)から、ジャバラ24と同じ形状のジャバラ(参照符号なし)が延伸され、当該ジャバラとジャバラ24の連結部23が連結棒で連結される例を示したが、この参照符号なしで表記したジャバラは無くても構わない。
 つまり、位置可変機構20は、ジャバラ24(とジャバラ24)のみで構成してもよい。また、その場合、送信アンテナ素子30~30と受信アンテナ素子40~40は、ジャバラ24の例えば谷の底23、23、23、及び2311にそれぞれ配置する。
 以上説明したように本実施形態に係る位置可変機構20は、上下に配置される第1支点21aと第2支点21bとの間隔を可変させる駆動21部と、第1支点21aと第2支点21bに、それぞれの一端を接続させて谷及び山を形成し、該谷を形成する他端及び該山を形成する他端にそれぞれ一端を接続させ、第1支点21aと第2支点21bとの間隔に対応するように谷及び山の傾斜角度を変えて伸縮するジャバラ24,24を構成する複数のクロスバー22と、複数のクロスバー22が交差する交差部分、谷の底、及び山の頂を形成する部分の2つのクロスバー22を、谷及び山の傾斜角度を可変できるようにそれぞれ連結させる複数の連結部23とを備え、連結部23に、各アンテナ素子が配置される。
 これによれば、道路の幅に対応させて地中レーダ装置100の送信アレイアンテナ30と受信アレイアンテナ40を取り替える必要がない。また、1回の走査で埋設物の探査が行えるので、地中探査の作業効率を向上させることができる。また、道路に対応させて複数の送受信用アンテナを用意する必要がないので、地中レーダ装置による探査費用のコストを削減することもできる。
 (変形例1)
 上記の実施形態では、駆動部21を1個、備える例で説明を行ったが、駆動部21は複数備えるようにしてもよい。図4は、駆動部を複数個備えるようにした変形例の位置可変機構220の一部分を示す斜視図である。
 図4に示す変形例1の位置可変機構220は、位置可変機構20に対して2個目の駆動部221を備える点で異なる。駆動部21と2個目の駆動部221の間は、ジャバラ24で接続される。よって、駆動部21の第1支点21aと第2支点21bの間隔を可変することで、駆動部21と駆動部221の間隔を可変することができる。
 駆動部221のx方向には、更に複数のクロスバーで構成されるジャバラ24が接続される。ジャバラ24の伸縮は、駆動部221が行う。
 このように、駆動部は、所定の数のクロスバーで構成されるジャバラごとに設けるようにしてもよい。この構成によれば、ジャバラごとに例えば送信アレイアンテナ30の各々のアンテナ素子の間隔を変更することが可能である。つまり、様々なアンテナの配置が可能になる。
 なお、ジャバラ24、ジャバラ24、及び駆動部221は、重力の影響を受けるので-y方向に下がる場合がある。それを防止するために、それぞれを上下方向に保持するレール(図示せず)を設けるとよい。
 (変形例2)
 図5は、駆動部を複数個備えるようにした他の変形例の位置可変機構230の一部を示す斜視図である。図5に示す変形例2の位置可変機構230は、例えば、送信アレイアンテナ30及び受信アレイアンテナ40のそれぞれのアンテナ素子の間隔を別々に可変できるようにしたものである。
 図5に示す送信アンテナ素子30~30と受信アンテナ素子40~40は、パッチアンテナの例で示す。図2に示した送受信アンテナは、テーパードスロットアンテナの例を示した。なお、参照符号から明らかなように、テーパードスロットアンテナとパッチアンテナは、形状は異なるが作用は同じである。
 図5に示すように、送信アンテナ素子30~30のそれぞれの間隔は駆動部222によって可変される。また、受信アンテナ素子40~40のそれぞれの間隔は駆動部223によって可変される。
 このように送信アレイアンテナ30及び受信アレイアンテナ40のそれぞれのアンテナ素子の間隔を個別に可変させるようにしてもよい。
 〔第2実施形態〕
 図6は、本発明の地中レーダ装置100の第2実施形態に係る位置可変機構の具体例の一部を示す斜視図である。図6に示す位置可変機構240は、例えば4個の電動アクチュエータ241~241を縦続に接続させた例を示す。図6は、伸縮可能な構成を示すことを目的としたものであり、上記の位置可変機構との対応関係は特にない。
 電動アクチュエータ241は、その長さ方向(x)に伸縮が可能である。伸縮は、電動アクチュエータ241の本体から延伸部244がピストンの様に伸び縮みすることで行われる。そして、伸縮方向の両端部のそれぞれに、直交する方向(z)の棒状のアンテナ保持部242,242が設けられる。
 延伸部244側(根本)のアンテナ保持部242のz方向の両端に、それぞれ回転部243,243が設けられる。回転部243の-y方向の先端部分に送信アンテナ素子30が配置され、回転部243の-y方向の先端部分に受信アンテナ素子40が配置される。この例では、短冊形状の送信アンテナ素子30と受信アンテナ素子40は、電動アクチュエータ241の長さ方向と平行する向きに配置されている。
 電動アクチュエータ241の本体側(先端)も、延伸部244側と同様に、アンテナ保持部242、回転部243、回転部243、送信アンテナ素子30、及び受信アンテナ素子40が配置される。
 延伸部244がピストンの様に、電動アクチュエータ241の本体から伸び縮みすることで、送信アンテナ素子30と30の間隔を変えることができる。この例の場合は、受信アンテナ素子40と40の間隔は、送信アンテナ素子30,30と同時に同じ幅で変化する。
 以上説明した構成を複数縦続させることで、送信アレイアンテナ30と受信アレイアンテナ40のそれぞれのアンテナ素子の間隔を任意に設定することが可能である。複数の電動アクチュエータ241は、連結部を介して連結させる。電動アクチュエータ241には、例えばリナック社製LA33アクチュエータ等を用いることができる。
 このように、位置可変機構240は、伸縮する複数の電動アクチュエータ241と、電動アクチュエータ241を連結させる連結部とで構成してもよい。なお、アクチュエータの駆動は油圧又は空気圧で行っても良く、駆動源は電動に限られない。
 なお、図6の送信アレイアンテナ30と受信アレイアンテナ40の各アンテナ素子の向きは変えてもよい。図7は、図6に示す各アンテナ素子を90度回転させた例を示す斜視図である。このように、各アンテナ素子から放射される電磁波の偏波方向を変えてもよい。
 なお、偏波方向の可変は、一度設定した方向に固定しても良いし、例えば上記の回転部243をモータで回転させるようにし、連続的に回転させるようにしてもよい。この偏波方向を変える考えは、位相可変機構20(第1実施形態)にそのまま適用することも可能である。
 つまり、各アンテナ素子は、各アンテナ素子のそれぞれを回転させる回転部を介して、連結部のそれぞれに配置される。これにより各アンテナ素子から照射される電磁波の偏波方向を変えた探査を行うことができる。
 (地中探査方法)
 図8と図9は、本発明の第1実施形態に係る地中レーダ装置100を用いて、道路の埋設物の探査を行う様子を模式的に示す図である。図8は側面からその様子を見た図である。図9はその様子を平面視した図である。
 図8は、車両90に地中レーダ装置100が載せられ、位置可変機構20とアンテナが車両90の後部から突出して設けられ、車両90が移動して埋設物を探査する様子を示す。送信アレイアンテナ30から地表0に向けて電磁波91が照射され、埋設管92、空洞93からの反射波を受信アレイアンテナ40で受信する。この場合、図9に示すように位置可変機構20は、道路の幅に対応させた幅に設定され、各アンテナ素子は等間隔で配置される。
 なお、地中レーダ装置100の移動手段は車に限定されない。手押し車(カート)に載せ、押して移動させてもよいし、リヤカーに載せて引いて移動させてもよい。 車両の進行方向の道路の幅は狭くなるので、車両が進行すると位置可変機構20の幅は、狭くなった道路の幅に対応させて狭くなる(図示せず)。その場合でも地中レーダ装置100によれば各アンテナ素子は等間隔で配置される。
 このように本実施形態に係る地中レーダ装置100が実行する地中探査方法は、送信アレイアンテナ30と受信アレイアンテナ40の各アンテナ素子のそれぞれの間隔を、全て等間隔としつつ可変して探査する。
 また、地中レーダ装置100は、道路の幅を検出するセンサ85(図8)を備えてもよい。センサ85は、例えば車両90の走行方向の画像、又は車両90の両側面の画像を撮像するカメラであり、道路の幅を検出する。センサ85で検出したセンサ情報(道路の幅)に基づいて、制御部80を介して位置可変機構20の各アンテナ素子の間隔を制御する。このように道路の幅を検出し、道路の幅に対応させて送信アレイアンテナ30と受信アレイアンテナ40の各アンテナ素子のそれぞれの間隔を自動的に可変するようにしてもよい。
 以上説明したように本実施形態の地中レーダ装置及びその方法によれば、道路の幅が異なっていても1回の走査で埋設物の探査を行うことができる。よって、地中探査方法の作業効率を向上させることができる。また、幅の異なる複数の送受信アンテナを用意する必要が無くなるので、地中探査に関わる初期導入コストを下げることができる。
 なお、位置可変機構20等は、その具体例としてジャバラ24で構成した例と、電動アクチュエータ241で構成した例を示したが、送信アレイアンテナ30及び受信アレイアンテナ40のそれぞれのアンテナ素子の間隔を全て等間隔としつつ可変とできれば、どのように構成してもよい。
 また、一つのジャバラ24に5個の送受信アンテナを配置する例を示したが、アンテナ素子の数はこの例に限定されない。複数であれば何個でもよい。また、駆動部21は、例えば電動で駆動する例で説明したが、駆動源を持たなくてもよい。第1支点21aと第2支点21bの間隔を作業者が手動で設定し、送受信アンテナのアンテナ素子の間隔を全て等間隔としつつ可変としてもよい。
 このように、本発明はここでは記載していない様々な実施形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
10:送信部
20、220、230、240:位置可変機構
21、221:駆動部
21a:第1支点
21b:第2支点
22、22~22:クロスバー
23、23~2313:連結部
24、24~24:ジャバラ
30:送信アレイアンテナ
30~30:送信アンテナ素子
40:受信アレイアンテナ
40~40:受信アンテナ素子
50:受信部
60:演算部
70:表示部
80:制御部
85:センサ
90:車両
91:電磁波
92:埋設管
93:空洞
100:地中レーダ装置
241、241~241:電動アクチュエータ(アクチュエータ)
242、242~242:アンテナ保持部
243、243~24310:回転部
244、244~244:延伸部

Claims (6)

  1.  送信アレイアンテナと受信アレイアンテナを備える地中レーダ装置において、
     前記送信アレイアンテナと前記受信アレイアンテナの各アンテナ素子間のそれぞれの間隔を、全て等間隔としつつ可変とする位置可変機構を
     備えることを特徴とする地中レーダ装置。
  2.  前記位置可変機構は、
     上下に配置される第1支点と第2支点との間隔を可変させる駆動部と、
     前記第1支点と前記第2支点に、それぞれの一端を接続させて谷及び山を形成し、該谷を形成する他端及び該山を形成する他端にそれぞれ一端を接続させ、前記間隔に対応するように前記谷及び前記山の傾斜角度を変えて伸縮するジャバラを構成する複数のクロスバーと、
     複数の前記クロスバーが交差する交差部分、前記谷の底、及び前記山の頂を形成する部分の2つの前記クロスバーを、前記谷及び前記山の傾斜角度を可変できるようにそれぞれ連結させる複数の連結部と
     を備え、
     前記連結部に、前記各アンテナ素子が配置されることを特徴とする請求項1に記載の地中レーダ装置。
  3.  前記駆動部は、
     所定の数の前記クロスバーで構成されるジャバラごとに設けられることを特徴とする請求項2に記載の地中レーダ装置。
  4.  前記位置可変機構は、
     複数の伸縮するアクチュエータと、
     前記アクチュエータを連結させる連結部と
     を備えることを特徴とする請求項1に記載の地中レーダ装置。
  5.  前記各アンテナ素子は、
     前記各アンテナ素子のそれぞれを回転させる回転部を介して、前記連結部のそれぞれに配置されることを特徴とする請求項2又は4に記載の地中レーダ装置。
  6.  送信アレイアンテナと受信アレイアンテナを備える地中レーダ装置が実行する地中探査方法であって、
     前記送信アレイアンテナと前記受信アレイアンテナの各アンテナ素子間のそれぞれの距離を、全て等間隔としつつ可変して地中を探査する地中探査方法。
PCT/JP2019/021028 2018-05-28 2019-05-28 地中レーダ装置とその方法 WO2019230696A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/058,366 US11953588B2 (en) 2018-05-28 2019-05-28 Ground-penetrating radar device and method for same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-101262 2018-05-28
JP2018101262A JP6928266B2 (ja) 2018-05-28 2018-05-28 地中レーダ装置

Publications (1)

Publication Number Publication Date
WO2019230696A1 true WO2019230696A1 (ja) 2019-12-05

Family

ID=68697010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021028 WO2019230696A1 (ja) 2018-05-28 2019-05-28 地中レーダ装置とその方法

Country Status (3)

Country Link
US (1) US11953588B2 (ja)
JP (1) JP6928266B2 (ja)
WO (1) WO2019230696A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240019382A1 (en) * 2020-11-12 2024-01-18 Sony Group Corporation Sensor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006047132A (ja) * 2004-08-05 2006-02-16 Tohoku Univ 地中レーダ装置および地中レーダ装置を用いた測定方法
JP2008275591A (ja) * 2007-04-05 2008-11-13 Mitsubishi Heavy Ind Ltd 検査方法及び検査装置
JP2012120144A (ja) * 2010-11-10 2012-06-21 Mitsubishi Electric Corp アレーアンテナ装置
US20130050008A1 (en) * 2011-08-30 2013-02-28 Massachusetts Institute Of Technology Mobile coherent change detection ground penetrating radar
JP2017215185A (ja) * 2016-05-31 2017-12-07 株式会社東芝 埋設物探査装置及び埋設物探査方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3936472B2 (ja) 1998-06-12 2007-06-27 ジオ・サーチ株式会社 地中探査方法
US6970133B2 (en) * 2003-06-04 2005-11-29 Lockheed Martin Corporation Antenna system and method of using same
JP6312031B2 (ja) * 2015-04-02 2018-04-18 パナソニックIpマネジメント株式会社 ワイヤレス給電方法
DE102015005468A1 (de) * 2015-04-29 2016-11-03 Kathrein-Werke Kg Antenne
US10148008B2 (en) * 2015-12-10 2018-12-04 Proxim Wireless Corporation Steerable antenna system and method
DE102018200751A1 (de) * 2018-01-18 2019-07-18 Robert Bosch Gmbh Radarvorrichtung und Verfahren zum Betreiben einer Radarvorrichtung
EP3521852B1 (en) * 2018-01-31 2021-07-14 Sivers Wireless AB Radar beamforming method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006047132A (ja) * 2004-08-05 2006-02-16 Tohoku Univ 地中レーダ装置および地中レーダ装置を用いた測定方法
JP2008275591A (ja) * 2007-04-05 2008-11-13 Mitsubishi Heavy Ind Ltd 検査方法及び検査装置
JP2012120144A (ja) * 2010-11-10 2012-06-21 Mitsubishi Electric Corp アレーアンテナ装置
US20130050008A1 (en) * 2011-08-30 2013-02-28 Massachusetts Institute Of Technology Mobile coherent change detection ground penetrating radar
JP2017215185A (ja) * 2016-05-31 2017-12-07 株式会社東芝 埋設物探査装置及び埋設物探査方法

Also Published As

Publication number Publication date
JP2019207110A (ja) 2019-12-05
US20210199795A1 (en) 2021-07-01
JP6928266B2 (ja) 2021-09-01
US11953588B2 (en) 2024-04-09

Similar Documents

Publication Publication Date Title
US20210320432A1 (en) Intelligent metamaterial radar having a dynamically controllable antenna
CN108780953B (zh) 一种天线及调整天线的覆盖区域的方法
JP6778283B2 (ja) 偏波回転層を含むアンテナおよびレーダシステム
US11005179B2 (en) Feed structure for a metamaterial antenna system
WO2019230696A1 (ja) 地中レーダ装置とその方法
KR102227590B1 (ko) 메타물질-기반의 물체-검출 시스템
CN111480263A (zh) 用于自主驾驶的适应性极化雷达架构
US11515639B2 (en) Method and apparatus for an active radiating and feed structure
US11217902B2 (en) Analog beamforming antenna for millimeter wave applications
US11152701B2 (en) Phase compensated multi-layer, multi-steering antenna array for millimeter wave applications
KR20200035394A (ko) 슬롯 안테나 및 슬롯 어레이 안테나
JP7023566B2 (ja) アレーアンテナ装置
CN107076844A (zh) 模块化平面多扇区90度视场雷达天线结构
JP3936472B2 (ja) 地中探査方法
JP6767171B2 (ja) 埋設物探査装置及び埋設物探査方法
US20190393616A1 (en) Multi-layer, multi-steering antenna array for millimeter wave applications
DE2335792A1 (de) Funknavigations-, insbesondere landesystem
Goode et al. A four element phased patch antenna array using fluidic phase shifter
KR101679553B1 (ko) 빔 틸트 편차를 개선한 진행파 안테나
US20170018829A1 (en) Dielectric slab interlocking device of a phase shifter
CN206431292U (zh) 透镜雷达及交通工具
CA2939996C (en) An array antenna with shaped beam pattern for toll road collection system applications
RU2008136048A (ru) Способ проведения сейсмической разведки
CN115441180A (zh) 用于天线阵列的波形状接地结构
JPWO2020028866A5 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19812448

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19812448

Country of ref document: EP

Kind code of ref document: A1