WO2019230568A1 - Method for producing resin-clad metal foil, and resin-clad metal foil - Google Patents

Method for producing resin-clad metal foil, and resin-clad metal foil Download PDF

Info

Publication number
WO2019230568A1
WO2019230568A1 PCT/JP2019/020533 JP2019020533W WO2019230568A1 WO 2019230568 A1 WO2019230568 A1 WO 2019230568A1 JP 2019020533 W JP2019020533 W JP 2019020533W WO 2019230568 A1 WO2019230568 A1 WO 2019230568A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal foil
resin
polymer
group
resin layer
Prior art date
Application number
PCT/JP2019/020533
Other languages
French (fr)
Japanese (ja)
Inventor
敦美 山邊
細田 朋也
達也 寺田
渉 笠井
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to CN201980035404.5A priority Critical patent/CN112203844B/en
Priority to KR1020207029078A priority patent/KR20210016327A/en
Priority to JP2020522145A priority patent/JP7167983B2/en
Publication of WO2019230568A1 publication Critical patent/WO2019230568A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2327/00Polyvinylhalogenides
    • B32B2327/12Polyvinylhalogenides containing fluorine
    • B32B2327/18PTFE, i.e. polytetrafluoroethylene

Definitions

  • the present invention relates to a method for producing a metal foil with resin and a metal foil with resin.
  • a resin-attached metal foil having an insulating resin layer on the surface of the metal foil is used as a printed board by processing the metal foil by etching or the like.
  • a printed circuit board used for high-frequency signal transmission is required to have excellent transmission characteristics.
  • Fluoropolymers such as polytetrafluoroethylene (PTFE) are known as resins having a small relative dielectric constant and dielectric loss tangent.
  • Patent Documents 1 and 2 As a material for forming a resin-coated metal foil having a resin layer containing a fluoropolymer, a powder dispersion in which a fluoropolymer powder is dispersed in a solvent has been proposed (see Patent Documents 1 and 2).
  • This powder dispersion has an advantage that various physical properties of the resulting resin-coated metal foil can be arbitrarily adjusted by blending another insulating resin and its varnish.
  • this powder dispersion has an advantage that a resin-coated metal foil can be formed simply by coating and drying on the surface of the metal foil.
  • another substrate is laminated on the surface of a resin layer (insulating resin layer) containing a fluoropolymer, and a metal foil with resin is multilayered, or on the surface of the resin layer.
  • a resin layer insulating resin layer
  • a metal foil with resin is multilayered, or on the surface of the resin layer.
  • another substrate coverlay film or the like
  • a method is known in which a resin-coated metal foil having a resin layer containing a fluoropolymer is subjected to surface treatment (plasma treatment, corona treatment, electron beam treatment, etc.) and the warpage of the resin layer is controlled.
  • the surface treatment may induce temporal modification or shape change of the resin layer, and may impair the homogeneity of the resin layer.
  • the present inventors diligently studied to produce a metal foil with a resin which has a highly homogeneous resin layer containing a fluoropolymer and hardly warps from a powder dispersion containing a powder of a fluoropolymer. As a result, it has been found that the resin-coated metal foil can be efficiently produced by adjusting the physical properties of the fluoropolymer and the production conditions of the resin-coated metal foil.
  • the present invention provides a metal foil with a resin having a highly homogeneous resin layer containing a fluoropolymer, which has electrical characteristics and mechanical strength, and is useful for manufacturing a printed circuit board, and hardly warps. A simple manufacturing method is provided.
  • a method for producing a resin-attached metal foil having a resin layer on the surface of the metal foil having a temperature range showing a storage elastic modulus of 0.1 to 5.0 MPa at 260 ° C. or lower and a melting point of 260 ° C.
  • a powder dispersion containing super tetrafluoroethylene polymer powder and solvent is applied to the surface of the metal foil, the metal foil is held at a temperature within the temperature range, and tetrafluoro at a temperature above the temperature range.
  • a method for producing a resin-coated metal foil comprising baking a ethylene-based polymer to form a resin layer containing a tetrafluoroethylene-based polymer on the surface of the metal foil.
  • [2] The manufacturing method according to [1], wherein a warp rate of the metal foil with resin is 7% or less.
  • [3] The production method according to [1] or [2], wherein the thickness of the metal foil is 2 to 40 ⁇ m.
  • [4] The production method according to any one of [1] to [3], wherein the resin layer has a thickness of 1 to 50 ⁇ m.
  • [5] The production method according to any one of [1] to [4], wherein the thickness of the metal foil is 2 to 20 ⁇ m and the thickness of the resin layer is 1 ⁇ m or more and less than 10 ⁇ m.
  • [6] The production method according to any one of [1] to [5], wherein the powder has a volume-based cumulative 50% diameter of 0.05 to 6.0 ⁇ m.
  • the tetrafluoroethylene-based polymer is a polymer comprising units based on tetrafluoroethylene and units based on at least one monomer selected from the group consisting of perfluoro (alkyl vinyl ether), hexafluoropropylene and fluoroalkylethylene.
  • the production method according to any one of [1] to [6].
  • the tetrafluoroethylene-based polymer has at least one functional group selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group, an amide group, an amino group, and an isocyanate group, [1] to [7 ]
  • the manufacturing method in any one of.
  • the production method according to any one of [1] to [9], wherein the time for holding the metal foil in the temperature region is 30 seconds to 5 minutes.
  • a metal foil with a resin having a high homogeneity resin layer containing a fluoropolymer which has electrical characteristics and mechanical strength, and is useful for manufacturing a printed circuit board, is less likely to warp. Can be manufactured.
  • D50 of powder is a volume-based cumulative 50% diameter of powder determined by a laser diffraction / scattering method. That is, the particle size distribution of the powder is measured by the laser diffraction / scattering method, the cumulative curve is obtained with the total volume of the particle population as 100%, and the particle diameter is the point where the cumulative volume is 50% on the cumulative curve.
  • D90 of powder is a volume-based cumulative 90% diameter of powder determined by a laser diffraction / scattering method.
  • the particle size distribution of the powder is measured by the laser diffraction / scattering method, the cumulative curve is obtained by setting the total volume of the particle population as 100%, and the particle diameter is the point where the cumulative volume is 90% on the cumulative curve.
  • Storage modulus of polymer is a value measured based on ISO 6721-4: 1994 (JIS K7244-4: 1999).
  • Polymer melting point is a temperature corresponding to the maximum value of the melting peak measured by the differential scanning calorimetry (DSC) method.
  • “Wrapping ratio of metal foil with resin” is a measurement method defined in JIS C6471: 1995 (corresponding international standard IEC 249-1: 1982) for a test piece obtained by cutting a 180 mm square test piece from the metal foil with resin.
  • the “dimensional change rate of the metal foil with resin” is a value obtained as follows. A metal foil with resin is cut out at 150 mm square, holes are drilled at four corners using a 0.3 mm drill, and the positions of the holes are measured with a three-dimensional measuring instrument. The metal foil with resin is removed by etching and dried at 130 ° C. for 30 minutes. Measure the positions of the holes in the four corners with a three-dimensional measuring instrument. The dimensional change rate is calculated from the difference between the positions of the holes before and after etching. “Arithmetic average roughness Ra” is an arithmetic average roughness measured based on JIS B0601: 2013 (ISO 4287: 1997, Amd. 1: 2009).
  • Heat resistant resin means a polymer compound having a melting point of 280 ° C. or higher, or a polymer compound having a maximum continuous use temperature defined by JIS C4003: 2010 (IEC 60085: 2007) of 121 ° C. or higher.
  • (Meth) acrylate is a general term for acrylate and methacrylate.
  • a specific powder dispersion is applied to the surface of a metal foil, the metal foil is heated and held stepwise in a specific temperature atmosphere, and a specific tetrafluoroethylene polymer (hereinafter referred to as “TFE”).
  • TFE tetrafluoroethylene polymer
  • the reason why the metal foil with resin obtained by the present invention has a resin layer (hereinafter, also referred to as “F resin layer”) having excellent homogeneity and containing a TFE-based polymer is not necessarily clear. It is considered as follows.
  • the TFE-based polymer in the present invention has a predetermined meltability (having a melting point of more than 260 ° C.) and a predetermined elasticity (having a temperature range showing a storage elastic modulus of 0.1 to 5.0 MPa at 260 ° C. or less). And a certain elastic state is formed in the temperature range.
  • the powder When a dispersion containing such TFE polymer powder is applied to the surface of a metal foil and kept at a temperature within the above temperature range, the powder is not easily lost due to adhesiveness derived from elasticity, and is a densely packed film It is thought to form a state.
  • the FFE layer is formed by firing the TFE polymer above the temperature range, so that a dense F resin layer with high homogeneity is formed as a result. It is considered that a metal foil with a resin which is difficult to warp was obtained.
  • the metal foil with resin in the present invention has an F resin layer on at least one surface of the metal foil. That is, the metal foil with resin may have an F resin layer only on one side of the metal foil, or may have an F resin layer on both sides of the metal foil.
  • the warp rate of the metal foil with resin is preferably 7% or less, and particularly preferably 5% or less. The lower limit of the warp rate is usually 0%. In this case, the handling property when processing the resin-coated metal foil into a printed board and the transmission characteristics of the obtained printed board are excellent.
  • the dimensional change rate of the resin-coated metal foil is preferably ⁇ 1% or less, particularly preferably ⁇ 0.2% or less. In this case, the printed board obtained from the resin-attached metal foil is easily multi-layered.
  • Examples of the material of the metal foil in the present invention include copper, copper alloy, stainless steel, nickel, nickel alloy (including 42 alloy), aluminum, aluminum alloy, titanium, titanium alloy and the like.
  • Examples of the metal foil include rolled copper foil and electrolytic copper foil.
  • a rust preventive layer oxide film such as chromate
  • a heat-resistant layer or the like may be formed on the surface of the metal foil.
  • the ten-point average roughness of the surface of the metal foil is preferably 0.2 to 1.5 ⁇ m. In this case, the adhesiveness with the F resin layer becomes good, and a printed board having excellent transmission characteristics is easily obtained.
  • the thickness of metal foil should just be the thickness which can exhibit a function in the use of metal foil with a resin, 2 micrometers or more are preferable and 3 micrometers or more are especially preferable. Further, the thickness of the metal foil is preferably 40 ⁇ m or less, more preferably 20 ⁇ m or less, and particularly preferably 15 ⁇ m or less. Specific examples of the thickness of the metal foil include 2 to 40 ⁇ m, 2 to 20 ⁇ m, and 2 to 15 ⁇ m.
  • the surface of the metal foil may be treated with a silane coupling agent, the entire surface of the metal foil may be treated with a silane coupling agent, or a part of the surface of the metal foil is treated with a silane coupling agent. May be.
  • the F resin layer in the present invention is a resin layer containing a TFE polymer formed from the powder dispersion in the present invention by the production method of the present invention.
  • the water contact angle on the surface of the F resin layer is preferably 70 to 100 °, particularly preferably 70 to 90 °. If the said range is below an upper limit, the adhesiveness of F resin layer and another base material will be more excellent. If the said range is more than a minimum, the electrical property (low dielectric loss and low dielectric constant) of F resin layer will be more excellent.
  • the thickness of the F resin layer is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, and particularly preferably 5 ⁇ m or more.
  • the thickness of the F resin layer is preferably 50 ⁇ m or less, more preferably 15 ⁇ m or less, and particularly preferably less than 10 ⁇ m. In this range, it is easy to balance the transmission characteristics of the printed circuit board and the warpage suppression of the metal foil with resin.
  • the composition and thickness of each F resin layer are preferably the same from the viewpoint of suppressing warpage of the metal foil with resin.
  • the thickness of the F resin layer include 1 to 50 ⁇ m, and examples include 1 to 15 ⁇ m, 1 to less than 10 ⁇ m, and 5 to 15 ⁇ m.
  • a preferred embodiment of the thickness of the metal foil and the thickness of the F resin layer in the present invention includes an embodiment in which the former is 2 to 20 ⁇ m and the latter is 1 ⁇ m or more and less than 10 ⁇ m.
  • the relative dielectric constant of the F resin layer is preferably 2.0 to 3.5, more preferably 2.0 to 3.0.
  • the resin-coated metal foil can be suitably used for a printed circuit board or the like that is excellent in both the electrical characteristics and adhesiveness of the F resin layer and requires a low dielectric constant.
  • Ra of the surface of the F resin layer is less than the thickness of the F resin layer, and is preferably 2.2 to 8 ⁇ m. In this range, it is easy to balance the adhesion and workability of other substrates.
  • the powder containing the TFE polymer in the present invention may contain components other than the TFE polymer as long as the effects of the present invention are not impaired.
  • the main component is preferable. 80 mass% or more is preferable and, as for content of TFE type polymer in F powder, 100 mass% is especially preferable.
  • the D50 of the F powder is preferably 0.05 to 6.0 ⁇ m, more preferably 0.1 to 3.0 ⁇ m, and particularly preferably 0.2 to 3.0 ⁇ m. In this range, the fluidity and dispersibility of the F powder are improved, and the electrical characteristics (low dielectric constant, etc.) and heat resistance of the TFE polymer in the resin-coated metal foil are most easily developed.
  • the D90 of the F powder is preferably 8 ⁇ m or less, more preferably 6 ⁇ m or less, and particularly preferably 5 ⁇ m or less.
  • the D90 of the powder is preferably 0.3 ⁇ m or more, particularly preferably 0.8 ⁇ m or more. In this range, the fluidity and dispersibility of the F powder are good, and the electric characteristics (low dielectric constant, etc.) and heat resistance of the F resin layer are most easily developed.
  • the bulk density of the F powder is preferably 0.05 g / mL or more, particularly preferably 0.08 to 0.5 g / mL.
  • the densely packed bulk density of the F powder is preferably 0.05 g / mL or more, particularly preferably 0.1 to 0.8 g / mL.
  • the method for producing F powder is not particularly limited, and the methods described in [0065] to [0069] of International Publication No. 2016/017801 can be employed. In addition, as long as desired powder is marketed, you may use F powder.
  • the TFE polymer in the present invention has a melting point of more than 260 ° C., preferably 260 to 320 ° C., particularly preferably 275 to 320 ° C., and most preferably 295 to 310 ° C. In this case, the TFE-based polymer is baked while maintaining the adhesiveness based on its elasticity, and it is easier to form a dense F resin layer.
  • the TFE polymer in the present invention has a temperature range showing a storage elastic modulus of 0.1 to 5.0 MPa at 260 ° C. or less.
  • the TFE polymer has a storage elastic modulus at 260 ° C. of 0.1 to 5.0 MPa.
  • the storage elastic modulus of the TFE polymer is preferably 0.2 to 4.4 MPa, and particularly preferably 0.5 to 3.0 MPa.
  • the temperature range in which the TFE polymer exhibits such storage elastic modulus is preferably in the range of 180 to 260 ° C., particularly preferably in the range of 200 to 260 ° C. In this case, in the temperature range, the F powder tends to effectively exhibit elasticity based on elasticity.
  • the TFE-based polymer is a polymer including units (TFE units) based on tetrafluoroethylene (TFE).
  • TFE tetrafluoroethylene
  • the TFE-based polymer may be a TFE homopolymer or a copolymer of TFE and another monomer copolymerizable with TFE (hereinafter also referred to as a comonomer).
  • the TFE-based polymer preferably contains 75 to 100 mol% of TFE units and 0 to 25 mol% of units based on a comonomer with respect to all units contained in the polymer.
  • TFE polymers include polytetrafluoroethylene (PTFE), copolymers of TFE and ethylene, copolymers of TFE and propylene, copolymers of TFE and perfluoro (alkyl vinyl ether) (PAVE), PFE, and TFE and hexafluoropropylene (HFP).
  • PTFE polytetrafluoroethylene
  • PAVE perfluoro (alkyl vinyl ether)
  • HFP hexafluoropropylene
  • Copolymer of HFE copolymer of TFE and fluoroalkylethylene (FAE)
  • FEE fluoroalkylethylene
  • a polymer including a TFE unit and a unit based on at least one monomer selected from the group consisting of PAVE, HFP, and FAE (hereinafter also referred to as “comonomer unit F”) is also included. It is done.
  • the polymer preferably contains 90 to 99 mol% of TFE units and 1 to 10 mol% of comonomer units F with respect to all units contained in the polymer.
  • the polymer may be composed of only TFE units and comonomer units F, and may further contain other units.
  • the TFE polymer As a preferred embodiment of the TFE polymer, at least one functional group selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group, an amide group, an amino group and an isocyanate group (hereinafter also referred to as “functional group”). And a polymer containing TFE units (hereinafter also referred to as “polymer F1”).
  • the functional group may be contained in a unit in the TFE polymer, or may be contained in a terminal group of the main chain of the polymer F1. Examples of the latter polymer include polymers having a functional group as a terminal group derived from a polymerization initiator, a chain transfer agent, or the like.
  • the polymer F1 a polymer including a unit having a functional group and a TFE unit is preferable. Further, the polymer F1 in this case preferably further includes other units, and particularly preferably includes the comonomer unit F.
  • a carbonyl group-containing group is preferable from the viewpoint of adhesion between the F resin layer and the metal foil. Examples of the carbonyl group-containing group include a carbonate group, a carboxy group, a haloformyl group, an alkoxycarbonyl group, an acid anhydride residue (—C (O) OC (O) —), a fatty acid residue, and the like. An anhydride residue is preferred.
  • the unit having a functional group is preferably a unit based on a monomer having a functional group, a unit based on a monomer having a carbonyl group-containing group, a unit based on a monomer having a hydroxy group, a unit based on a monomer having an epoxy group, and an isocyanate group
  • a unit based on a monomer having a carbonyl group is more preferred, and a unit based on a monomer having a carbonyl group-containing group is particularly preferred.
  • a cyclic monomer having an acid anhydride residue a monomer having a carboxy group, a vinyl ester or (meth) acrylate is preferable, and a cyclic monomer having an acid anhydride residue is particularly preferable.
  • a cyclic monomer itaconic anhydride, citraconic anhydride, 5-norbornene-2,3-dicarboxylic anhydride (also referred to as hymic anhydride, hereinafter also referred to as “NAH”) or maleic anhydride is preferable.
  • polymer F1 a polymer containing a functional group-containing unit, a TFE unit, and a PAVE unit or an HFP unit is preferable.
  • Specific examples of the polymer F1 include the polymer (X) described in International Publication No. 2018/16644.
  • the proportion of TFE units in the polymer F1 is preferably 90 to 99 mol% of all units contained in the polymer F1.
  • the proportion of PAVE units in the polymer F1 is preferably 0.5 to 9.97 mol% of all units contained in the polymer F1.
  • the proportion of the units having a functional group in the polymer F1 is preferably 0.01 to 3 mol% of all units contained in the polymer F1.
  • the solvent in the present invention is a dispersion medium, a solvent compound that is liquid at 25 ° C. and does not react with F powder, has a lower boiling point than components other than the solvent contained in the powder dispersion, and is heated or the like.
  • Solvent compounds that can be volatilized and removed are preferred. Solvent compounds include water, alcohol (methanol, ethanol, isopropanol, etc.), nitrogen-containing compounds (N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, etc.), sulfur-containing compounds (dimethyl).
  • ether diethyl ether, dioxane etc.
  • ester ethyl lactate, ethyl acetate etc.
  • ketone methyl ethyl ketone, methyl isopropyl ketone, cyclopentanone, cyclohexanone etc.
  • glycol ether ethylene glycol monoisopropyl ether etc.
  • cellosolve methyl cellosolve, ethyl cellosolve, etc.
  • a solvent compound may be used individually by 1 type, and may use 2 or more types together.
  • the solvent compound a solvent which does not volatilize instantaneously is preferable, a solvent compound having a boiling point of 80 to 275 ° C. is preferable, and a solvent compound having a boiling point of 125 to 250 ° C. is particularly preferable.
  • the stability of the wet film (film containing a solvent) formed from the powder dispersion applied to the surface of the metal foil is high.
  • the solvent in the wet film is removed by the end of the baking of the TFE polymer. Dissipation of the solvent from the wet film may occur before reaching the temperature range showing the specific storage elastic modulus, or may occur while being held in the temperature range showing the specific storage elastic modulus. Good. In some cases, it may occur during firing of the TFE polymer.
  • the solvent in the above boiling range is used to diffuse at least a part of the solvent in the wet film in a state where the TFE-based polymer is held in the temperature region showing the specific storage elastic modulus.
  • the solvent compound is preferably an organic compound, such as cyclohexane (boiling point: 81 ° C.), 2-propanol (boiling point: 82 ° C.), 1-propanol (boiling point: 97 ° C.), 1-butanol (boiling point: 117 ° C.), 1- Methoxy-2-propanol (boiling point: 119 ° C), N-methylpyrrolidone (boiling point: 202 ° C), ⁇ -butyrolactone (boiling point: 204 ° C), cyclohexanone (boiling point: 156 ° C) and cyclopentanone (boiling point: 131 ° C) N-methylpyrroli
  • the proportion of F powder in the powder dispersion is preferably 5 to 60% by mass, particularly preferably 35 to 50% by mass. In this range, it is easy to control the relative dielectric constant and dielectric loss tangent of the F resin layer low. Moreover, the uniform dispersion of the powder dispersion is high, and the mechanical strength of the F resin layer is excellent.
  • the proportion of the solvent in the powder dispersion is preferably 15 to 65% by mass, particularly preferably 25 to 50 parts by mass. In this range, the applicability of the powder dispersion is excellent, and poor appearance of the resin layer hardly occurs.
  • the powder dispersion in the present invention may contain other materials as long as the effects of the present invention are not impaired. Other materials may or may not dissolve in the powder dispersion.
  • the powder dispersant preferably contains a dispersant from the viewpoint of improving the dispersion stability of the powder dispersion.
  • a compound having a hydrophobic site and a hydrophilic site is particularly preferable from the viewpoint of imparting adhesiveness to the surface properties of the F resin layer.
  • the proportion of the dispersant in the powder dispersion is preferably from 0.1 to 30% by mass, particularly preferably from 5 to 10 parts by mass. In this range, it is easy to balance the uniform dispersibility of the F powder with the hydrophilicity and electrical characteristics of the surface of the F resin layer.
  • a polyol, polyoxyalkylene glycol, polycaprolactam and a polymer polyol are preferable, and a polymer polyol is more preferable.
  • the polymeric polyol refers to a polymer having a unit based on a monomer having a carbon-carbon unsaturated double bond and two or more hydroxyl groups.
  • polymer polyol polyvinyl alcohol, polyvinyl butyral and fluoropolyol are particularly preferable, and fluoropolyol is most preferable.
  • the fluoropolyol is not a TFE-based polymer but a polymer having a hydroxyl group and a fluorine atom.
  • the fluoropolyol may be modified by chemically modifying a part of the hydroxyl group.
  • the fluoropolyol is a (meth) acrylate having a polyfluoroalkyl group or a polyfluoroalkenyl group (hereinafter also referred to as “(meth) acrylate F”) and a (meth) acrylate having a polyoxyalkylene monool group (hereinafter, “ A copolymer (hereinafter also referred to as “dispersion polymer F”) with (meth) acrylate AO ”is particularly preferred.
  • (Meth) acrylate F is preferably a compound represented by the formula CH 2 ⁇ CR 1 C (O) O—X 1 —R F.
  • R 1 represents a hydrogen atom or a methyl group.
  • X 1 is — (CH 2 ) 2 —, — (CH 2 ) 3 —, — (CH 2 ) 4 —, — (CH 2 ) 2 NHC (O) —, — (CH 2 ) 3 NHC (O) — Or —CH 2 CH (CH 3 ) NHC (O) — is shown.
  • R F represents —OCF (CF 3 ) (C (CF (CF 3 ) 2 ) ( ⁇ C (CF 3 ) 2 ), —OC (CF 3 ) ( ⁇ C (CF (CF 3 ) 2 ) (CF ( CF 3 ) 2 ), —OCH (CH 2 OCH 2 CH 2 (CF 2 ) 4 F) 2, —OCH (CH 2 OCH 2 CH 2 (CF 2 ) 6 F) 2 , — (CF 2 ) 4 F or -(CF 2 ) 6 F is shown.
  • (Meth) acrylate AO is preferably a compound represented by the formula CH 2 ⁇ CR 2 C (O) O—Q 2 —OH.
  • R 2 represents a hydrogen atom or a methyl group.
  • Q 2 represents — (CH 2 ) m (OCH 2 CH 2 ) n —, — (CH 2 ) m (OCH 2 CH (CH 3 )) n — or — (CH 2 ) m (OCH 2 CH 2 CH 2 CH 2 ) n — (m represents an integer of 1 to 4, n represents an integer of 2 to 100, and n is preferably an integer of 2 to 20).
  • the ratio of units based on (meth) acrylate F to the total units contained in dispersion polymer F is preferably 20 to 60 mol%, particularly preferably 20 to 40 mol%.
  • the ratio of units based on (meth) acrylate AO to the total units contained in the dispersion polymer F is preferably 40 to 80 mol%, particularly preferably 60 to 80 mol%.
  • the dispersion polymer F may consist of only a unit based on (meth) acrylate AO and a unit based on (meth) acrylate AO, and may further include other units.
  • the fluorine content of the dispersion polymer F is preferably 10 to 45% by mass, particularly preferably 15 to 40% by mass.
  • the dispersion polymer F is preferably nonionic.
  • the weight average molecular weight of the dispersion polymer F is preferably 2000 to 80000, particularly preferably 6000 to 20000.
  • the powder dispersion in the present invention may further contain other materials other than the dispersant.
  • Such other material may be a non-curable resin or a curable resin.
  • the non-curable resin include a heat-meltable resin and a non-meltable resin.
  • the heat-meltable resin include thermoplastic polyimide.
  • the non-meltable resin include a cured product of a curable resin.
  • the curable resin include a polymer having a reactive group, an oligomer having a reactive group, a low molecular compound, and a low molecular compound having a reactive group.
  • the reactive group include a carbonyl group-containing group, a hydroxy group, an amino group, and an epoxy group.
  • curable resin examples include epoxy resin, thermosetting polyimide, polyamic acid which is a polyimide precursor, thermosetting acrylic resin, phenol resin, thermosetting polyester resin, thermosetting polyolefin resin, thermosetting modified polyphenylene ether resin.
  • polyfunctional cyanate resin polyfunctional maleimide-cyanate resin, polyfunctional maleimide resin, vinyl ester resin, urea resin, diallyl phthalate resin, melamine resin, guanamine resin, and melamine-urea cocondensation resin.
  • thermosetting resin is preferably a thermosetting polyimide, a polyimide precursor, an epoxy resin, a thermosetting acrylic resin, a bismaleimide resin, and a thermosetting polyphenylene ether resin.
  • Epoxy resins and thermosetting polyphenylene ether resins are particularly preferred.
  • the epoxy resin examples include naphthalene type epoxy resin, cresol novolac type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, alicyclic epoxy resin, aliphatic chain epoxy resin, Cresol novolac epoxy resin, phenol novolac epoxy resin, alkylphenol novolac epoxy resin, aralkyl epoxy resin, biphenol epoxy resin, dicyclopentadiene epoxy resin, trishydroxyphenylmethane epoxy compound, phenol and phenolic hydroxyl group Epoxides of condensates with aromatic aldehydes, diglycidyl ethers of bisphenol, diglycidyl ethers of naphthalenediol, phenols Glycidyl etherified product, diglycidyl ethers of alcohols, triglycidyl isocyanurate.
  • the bismaleimide resin a resin composition (BT resin) using a bisphenol A type cyanate ester resin and a bismaleimide compound described in JP-A-7-70315, described in International Publication No. 2013/008667. And those described in the background art thereof.
  • the polyamic acid usually has a reactive group that can react with the functional group of the polymer F1.
  • Examples of the diamine and polycarboxylic dianhydride forming the polyamic acid include, for example, [0020] of Japanese Patent No. 5766125, [0019] of Japanese Patent No. 5766125, and [0055] of Japanese Patent Application Laid-Open No. 2012-145676. , [0057] and the like.
  • aromatic diamines such as 4,4′-diaminodiphenyl ether and 2,2-bis [4- (4-aminophenoxy) phenyl] propane, pyromellitic dianhydride, 3,3 ′, 4,4
  • a polyamic acid comprising a combination with an aromatic polyvalent carboxylic dianhydride such as '-biphenyltetracarboxylic dianhydride and 3,3', 4,4'-benzophenonetetracarboxylic dianhydride is preferred.
  • thermoplastic resins such as thermoplastic polyimide, and heat-meltable cured products of curable resins.
  • thermoplastic resins polyester resin, polyolefin resin, styrene resin, polycarbonate, thermoplastic polyimide, polyarylate, polysulfone, polyarylsulfone, aromatic polyamide, aromatic polyetheramide, polyphenylene sulfide, polyaryletherketone, polyamide
  • examples include imide, liquid crystalline polyester, polyphenylene ether, and the like, and thermoplastic polyimide, liquid crystalline polyester, and polyphenylene ether are preferable.
  • binders As other materials that can be included in the powder dispersion in the present invention, binders, thixotropic agents, antifoaming agents, inorganic fillers, reactive alkoxysilanes, dehydrating agents, plasticizers, weathering agents, antioxidants , Heat stabilizers, lubricants, antistatic agents, brighteners, colorants, conductive agents, mold release agents, surface treatment agents, viscosity modifiers, flame retardants, and the like.
  • the powder dispersion liquid in the present invention includes a binder, it is possible to suppress the omission (powder omission) of the F powder from the metal foil when forming the F resin layer.
  • the binder include thermoplastic organic binders and thermosetting organic binders.
  • the binder is preferably a compound that decomposes and volatilizes in the temperature range where the TFE polymer is fired.
  • a binder include an acrylic resin binder, a cellulose resin binder, a vinyl alcohol resin binder, a wax resin binder, and gelatin.
  • a binder may be used individually by 1 type and may use 2 or more types together.
  • the powder dispersion is applied to the surface of the metal foil.
  • the coating method may be any method as long as it is a method for forming a stable wet film made of a powder dispersion on the surface of the metal foil after coating, spray method, roll coating method, spin coating method, gravure coating method, micro gravure coating method, Examples include a gravure offset method, a knife coat method, a kiss coat method, a bar coat method, a die coat method, a fountain Mayer bar method, and a slot die coat method.
  • the state of the wet film is adjusted by heating the metal foil at a temperature lower than the temperature range. May be.
  • preparation is performed to such an extent that a solvent does not volatilize completely, and it is usually performed to the extent that a 50 mass% or less solvent is volatilized.
  • the temperature within the temperature range where the TFE polymer exhibits a storage elastic modulus of 0.1 to 5.0 MPa (hereinafter also referred to as “holding temperature”). ) Hold the metal foil.
  • the holding temperature indicates the temperature of the atmosphere. Holding may be performed in one stage or in two or more stages at different temperatures. Examples of the holding method include a method using an oven, a method using a ventilation drying furnace, and a method of irradiating heat rays such as infrared rays.
  • the atmosphere in holding may be in a state of normal pressure or reduced pressure.
  • the holding atmosphere may be any of an oxidizing gas (oxygen gas, etc.) atmosphere, a reducing gas (hydrogen gas, etc.) atmosphere, and an inert gas (helium gas, neon gas, argon gas, nitrogen gas, etc.) atmosphere. It may be.
  • the atmosphere in the holding is preferably an atmosphere containing oxygen gas from the viewpoint of improving the adhesiveness of the F resin layer.
  • the oxygen gas concentration (volume basis) in the atmosphere containing oxygen gas is preferably 1 ⁇ 10 2 to 3 ⁇ 10 5 ppm, particularly preferably 0.5 ⁇ 10 3 to 1 ⁇ 10 4 ppm. In this range, it is easy to balance the adhesion of the F resin layer and the suppression of oxidation of the metal foil.
  • the holding temperature is preferably 150 to 260 ° C, particularly preferably 200 to 260 ° C.
  • the holding time at the holding temperature is preferably 0.1 to 10 minutes, and particularly preferably 0.5 to 5 minutes.
  • the FFE layer is formed on the surface of the metal foil by firing the TFE polymer at a temperature exceeding the above temperature range (hereinafter also referred to as “calcination temperature”).
  • the firing temperature indicates the temperature of the atmosphere.
  • the powder dispersion contains a thermomeltable resin, an F resin layer made of a mixture of a TFE polymer and a soluble resin is formed.
  • the powder dispersion contains a thermosetting resin, the TFE polymer and a thermosetting resin are formed.
  • An F resin layer made of a cured resin is formed.
  • the heating method include a method using an oven, a method using a ventilation drying furnace, and a method of irradiating heat rays such as infrared rays.
  • pressurization may be performed with a heating plate, a heating roll, or the like.
  • a heating method a method of irradiating far infrared rays is preferable because firing can be performed in a short time and the far infrared furnace is relatively compact.
  • the heating method may be a combination of infrared heating and hot air heating.
  • the effective wavelength band of far infrared rays is preferably 2 to 20 ⁇ m, more preferably 3 to 7 ⁇ m from the viewpoint of promoting uniform fusion of the TFE polymer.
  • the atmosphere in firing may be any state under normal pressure or reduced pressure.
  • the atmosphere in the firing is any of an oxidizing gas (oxygen gas, etc.) atmosphere, a reducing gas (hydrogen gas, etc.) atmosphere, and an inert gas (helium gas, neon gas, argon gas, nitrogen gas, etc.) atmosphere. From the viewpoint of suppressing oxidative deterioration of the metal foil and the F resin layer to be formed, a reducing gas atmosphere or an inert gas atmosphere is preferable.
  • the atmosphere in the firing is preferably a gas atmosphere composed of an inert gas and having a low oxygen gas concentration, and a gas atmosphere composed of nitrogen gas and having an oxygen gas concentration (volume basis) of less than 500 ppm is preferred.
  • the oxygen gas concentration (volume basis) is particularly preferably 300 ppm or less.
  • the oxygen gas concentration (volume basis) is usually 1 ppm or more.
  • the firing temperature is preferably more than 320 ° C., particularly preferably 330 to 380 ° C.
  • the TFE polymer can more easily form a dense F resin layer.
  • the time for maintaining the firing temperature is preferably 30 seconds to 5 minutes, and more preferably 1 to 2 minutes.
  • the resin layer in the metal foil with resin is a conventional insulating material (cured product of thermosetting resin such as polyimide)
  • heating for a long time is required to cure the thermosetting resin.
  • the resin layer can be formed by heating in a short time by fusing the TFE polymer.
  • a powder dispersion liquid contains a thermosetting resin, a calcination temperature can be made low.
  • the manufacturing method of this invention is a method with a small heat load to the metal foil at the time of forming a resin layer in metal foil with resin, and is a method with little damage to metal foil.
  • the metal foil with resin in the present invention may be subjected to a surface treatment on the surface of the F resin layer in order to control the linear expansion coefficient of the F resin layer or to further improve the adhesion of the F resin layer.
  • Surface treatment methods for the surface of the F resin layer include annealing treatment, corona discharge treatment, atmospheric pressure plasma treatment, vacuum plasma treatment, UV ozone treatment, excimer treatment, chemical etching, silane coupling treatment, fine surface roughening treatment, etc. Is mentioned.
  • the temperature in the annealing treatment is preferably from 80 to 190 ° C, particularly preferably from 120 to 180 ° C.
  • the pressure in the annealing treatment is preferably 0.001 to 0.030 MPa, and particularly preferably 0.005 to 0.015 MPa.
  • the annealing treatment time is preferably 10 to 300 minutes, particularly preferably 30 to 120 minutes.
  • the plasma irradiation apparatus in the plasma treatment include a high frequency induction method, a capacitively coupled electrode method, a corona discharge electrode-plasma jet method, a parallel plate type, a remote plasma type, an atmospheric pressure plasma type, an ICP type high density plasma type, and the like.
  • the gas used for the plasma treatment include oxygen gas, nitrogen gas, rare gas (such as argon), hydrogen gas, ammonia gas, and the like, and rare gas or nitrogen gas is preferable.
  • Specific examples of the gas used for the plasma treatment include argon gas, a mixed gas of hydrogen gas and nitrogen gas, and a mixed gas of hydrogen gas, nitrogen gas and argon gas.
  • an atmosphere having a volume fraction of a rare gas or nitrogen gas of 70% by volume or more is preferable, and an atmosphere of 100% by volume is particularly preferable.
  • Ra on the surface of the F resin layer is adjusted to 2.0 ⁇ m or less, and fine irregularities are easily formed on the surface of the F resin layer.
  • the metal foil with resin obtained in the present invention can be easily laminated with another substrate because the surface of the F resin layer is excellent in homogeneity and hardly warps.
  • the other substrate include a heat resistant resin film, a prepreg as a precursor of a fiber reinforced resin plate, a laminate having a heat resistant resin film layer, and a laminate having a prepreg layer.
  • a prepreg is a sheet-like substrate obtained by impregnating a base material (tow, woven fabric, etc.) of a reinforcing fiber (glass fiber, carbon fiber, etc.) with a thermosetting resin or a thermoplastic resin.
  • the heat resistant resin film is a film including one or more kinds of heat resistant resins, and may be a single layer film or a multilayer film.
  • heat resistant resin examples include polyimide, polyarylate, polysulfone, polyarylsulfone, aromatic polyamide, aromatic polyetheramide, polyphenylene sulfide, polyaryletherketone, polyamideimide, and liquid crystalline polyester.
  • Examples of the method of laminating another base material on the surface of the F resin layer of the resin-coated metal foil in the present invention include a method of hot pressing the resin-coated metal foil and another substrate.
  • the press temperature is preferably not higher than the melting point of the TFE polymer, more preferably 120 to 300 ° C, and particularly preferably 160 to 220 ° C. In this range, the F resin layer and the prepreg can be firmly bonded while suppressing thermal degradation of the prepreg.
  • the pressing temperature is preferably 310 to 400 ° C. In this range, the F resin layer and the heat resistant resin film can be firmly bonded while suppressing the thermal deterioration of the heat resistant resin film.
  • the hot pressing is preferably performed under a reduced pressure atmosphere, and particularly preferably performed at a vacuum degree of 20 kPa or less. In this range, air bubbles can be prevented from entering the interfaces of the F resin layer, the substrate, and the metal foil in the laminate, and deterioration due to oxidation can be suppressed. Moreover, it is preferable to raise the temperature after reaching the vacuum degree during hot pressing. If the temperature is raised before reaching the degree of vacuum, the F resin layer is compressed in a softened state, that is, in a state with a certain degree of fluidity and adhesion, which causes bubbles.
  • the pressure in the hot press is preferably 0.2 MPa or more. The upper limit of the pressure is preferably 10 MPa or less. In this range, the F resin layer and the substrate can be firmly adhered while suppressing breakage of the substrate.
  • the metal foil with resin and the laminate thereof in the present invention can be used as a flexible copper-clad laminate or a rigid copper-clad laminate for the production of printed boards.
  • an interlayer insulating film may be formed on the pattern circuit, and a pattern circuit may be further formed on the interlayer insulating film.
  • the interlayer insulating film can be formed by, for example, the powder dispersion in the present invention.
  • a solder resist may be laminated on the pattern circuit.
  • a solder resist can be formed with the powder dispersion liquid in this invention, for example.
  • a coverlay film may be laminated on the pattern circuit.
  • the coverlay film can be formed by, for example, the powder dispersion in the present invention.
  • ⁇ Melting point of polymer> Using a differential scanning calorimeter (Seiko Instruments, DSC-7020), the TFE polymer was heated at a rate of 10 ° C./min and measured.
  • ⁇ Storage modulus of polymer> Based on ISO 6721-4: 1994 (JIS K7244-4: 1999), using a dynamic viscoelasticity measuring device (DMS6100, manufactured by SII Nanotechnology), frequency 10 Hz, static force 0.98 N, dynamic displacement 0 The temperature was increased from 20 ° C. at a rate of 2 ° C./min under the condition of 0.035%, and the storage elastic modulus at 260 ° C. was measured.
  • ⁇ D50 and D90 of powder> Using a laser diffraction / scattering particle size distribution measuring device (LA-920 measuring instrument, manufactured by Horiba, Ltd.), the powder was dispersed in water and measured.
  • LA-920 measuring instrument manufactured by Horiba, Ltd.
  • ⁇ Homogeneity of resin layer> The resin layer irradiated with light was visually observed from above and evaluated according to the following criteria. ⁇ : The pattern is not confirmed. ⁇ : Yuzu skin pattern is confirmed. X: The pattern of a yuzu skin is confirmed and resin omission is confirmed centering on an edge part. ⁇ Curved ratio of metal foil with resin> A 180 mm square test piece was cut out from the metal foil with resin, and the test piece was measured according to the measurement method defined in JIS C6471: 1995. (Circle): The curvature rate of metal foil with resin is 5% or less. (Triangle
  • TFE polymer Polymer 1: a copolymer containing 97.9 mol%, 0.1 mol%, and 2.0 mol% of units based on TFE, NAH, and PPVE in this order, and has a melting point of 300 ° C. A polymer having a storage elastic modulus at 260 ° C. of 1.1 MPa. Polymer 2: A polymer containing 98 mol% and 2 mol% of units based on TFE and PPVE in this order, a melting point of 310 ° C, and a storage modulus at 260 ° C of 4.8 MPa.
  • Polymer 3 A copolymer having 82 mol% and 18 mol% of units based on TFE and HFP in this order, a melting point of 265 ° C., and a storage elastic modulus at 260 ° C. of 0.5 MPa.
  • Polymer 4 A polymer containing 99.5 mol% or more of units based on TFE, a melting point of over 320 ° C., and a storage elastic modulus at 260 ° C. of over 5.0 MPa.
  • Dispersant 1 A copolymer of an acrylate having a perfluoroalkenyl group, an acrylate having a polyoxyethylene group and an alcoholic hydroxyl group (nonionic surfactant).
  • Method 1 Copper foil 1: Low-roughened copper foil having a thickness of 12 ⁇ m (10-point average roughness of the surface is 0.6 ⁇ m).
  • Powder 1 Powder of polymer 1 having D50 of 1.7 ⁇ m and D90 of 3.8 ⁇ m (sparsely packed bulk density 0.269 g / mL, densely packed bulk density 0.315 g / mL).
  • Powder 2 Powder of polymer 2 having D50 of 2.4 ⁇ m and D90 of 5.5 ⁇ m.
  • Powder 3 Powder of polymer 3 having D50 of 3.1 ⁇ m and D90 of 5.9 ⁇ m.
  • Powder 4 Powder of polymer 4 having D50 of 0.3 ⁇ m and D90 of 0.6 ⁇ m.
  • Dispersion 1 was prepared by mixing 50 parts by mass of powder 1, 5 parts by mass of dispersant 1, and 45 parts by mass of N-methylpyrrolidone. Dispersion 1 is applied to the surface of copper foil 1 using a die coater, and the copper foil 1 is passed through a ventilation drying oven (atmosphere temperature: 260 ° C., atmosphere gas: nitrogen gas having an oxygen gas concentration of 8000 ppm) and held for 1 minute.
  • a ventilation drying oven atmosphere temperature: 260 ° C., atmosphere gas: nitrogen gas having an oxygen gas concentration of 8000 ppm
  • Example 2 to 5 Except changing the atmosphere temperature of a powder and a ventilation drying furnace, it carried out similarly to Example 1, obtained the copper foil with resin, and evaluated each. The results are summarized in Table 1 below.
  • the production method of the present invention is a method suitable for production of a metal foil with resin having a highly homogeneous resin layer containing a fluoropolymer and hardly warping, and is useful for production of a printed circuit board or the like.

Abstract

Provided are: a method for efficiently producing a resin-clad metal foil that has electrical characteristics and mechanical strength, is useful for producing printed circuit boards, comprises a highly homogenous resin layer containing a fluoropolymer, and is less likely to warp; and a resin-clad metal foil obtained by the method. The method is for producing a resin-clad metal foil having a resin layer on the surface of a metal foil. In the method for producing a resin-clad metal foil: the surface of the metal foil is coated with a powder dispersion liquid containing a solvent and a powder of a tetrafluoroethylene polymer, the polymer having a melting point of greater than 260°C and the temperature range at which the polymer exhibits a storage modulus of 0.1-5.0 MPa being at 260°C or lower; the metal foil is held at a temperature in the aforementioned temperature range; and the tetrafluoroethylene polymer is fired at a temperature exceeding the aforementioned temperature range to form a resin layer containing the tetrafluoroethylene polymer on the surface of the metal foil.

Description

樹脂付金属箔の製造方法及び樹脂付金属箔Manufacturing method of metal foil with resin and metal foil with resin
 本発明は、樹脂付金属箔の製造方法及び樹脂付金属箔に関する。 The present invention relates to a method for producing a metal foil with resin and a metal foil with resin.
 金属箔の表面に絶縁樹脂層を有する樹脂付金属箔は、金属箔をエッチング等によって加工することによってプリント基板として用いられる。
 高周波信号の伝送に用いられるプリント基板には、伝送特性に優れることが要求される。伝送特性を高めるには、プリント基板の絶縁樹脂層として、比誘電率及び誘電正接が低い樹脂を用いる必要がある。比誘電率及び誘電正接が小さい樹脂としては、ポリテトラフルオロエチレン(PTFE)等のフルオロポリマーが知られている。
 フルオロポリマーを含む樹脂層を有する樹脂付金属箔を形成する材料として、フルオロポリマーのパウダーが溶媒に分散したパウダー分散液が提案されている(特許文献1及び2参照。)。
 このパウダー分散液は、他の絶縁樹脂及びそのワニスを配合すれば、得られる樹脂付金属箔の諸物性を任意に調整できる利点がある。また、このパウダー分散液は金属箔の表面に塗布乾燥するだけで樹脂付金属箔を形成できる利点もある。
A resin-attached metal foil having an insulating resin layer on the surface of the metal foil is used as a printed board by processing the metal foil by etching or the like.
A printed circuit board used for high-frequency signal transmission is required to have excellent transmission characteristics. In order to improve the transmission characteristics, it is necessary to use a resin having a low relative dielectric constant and dielectric loss tangent as the insulating resin layer of the printed board. Fluoropolymers such as polytetrafluoroethylene (PTFE) are known as resins having a small relative dielectric constant and dielectric loss tangent.
As a material for forming a resin-coated metal foil having a resin layer containing a fluoropolymer, a powder dispersion in which a fluoropolymer powder is dispersed in a solvent has been proposed (see Patent Documents 1 and 2).
This powder dispersion has an advantage that various physical properties of the resulting resin-coated metal foil can be arbitrarily adjusted by blending another insulating resin and its varnish. In addition, this powder dispersion has an advantage that a resin-coated metal foil can be formed simply by coating and drying on the surface of the metal foil.
国際公開第2017/222027号International Publication No. 2017/222027 国際公開第2016/159102号International Publication No. 2016/159102
 プリント基板の製造態様として、フルオロポリマーを含む樹脂層(絶縁樹脂層)の表面に他の基板(プリプレグ等。)を積層し、樹脂付金属箔を多層化する態様や、前記樹脂層の表面に他の基板(カバーレイフィルム等。)を積層してパッケージングする態様がある。この場合、プリント基板の電気特性や生産性の観点から、樹脂付金属箔の反らすことなく前記樹脂層と他の基板とを積層する必要がある。
 フルオロポリマーを含む樹脂層を有する樹脂付金属箔を表面処理(プラズマ処理、コロナ処理、電子線処理等。)に供し、前記樹脂層の反りをコントロールする方法が知られているが、この方法は、別途、樹脂付金属箔を表面処理に供する必要がある。また、表面処理は前記樹脂層の経時的変性や形状変化等を誘引し、前記樹脂層の均質性を損なう場合もある。
As a printed circuit board production mode, another substrate (prepreg, etc.) is laminated on the surface of a resin layer (insulating resin layer) containing a fluoropolymer, and a metal foil with resin is multilayered, or on the surface of the resin layer. There is an aspect in which another substrate (coverlay film or the like) is stacked and packaged. In this case, it is necessary to laminate the resin layer and another substrate without warping the resin-coated metal foil from the viewpoint of electrical characteristics and productivity of the printed board.
A method is known in which a resin-coated metal foil having a resin layer containing a fluoropolymer is subjected to surface treatment (plasma treatment, corona treatment, electron beam treatment, etc.) and the warpage of the resin layer is controlled. Separately, it is necessary to subject the metal foil with resin to surface treatment. In addition, the surface treatment may induce temporal modification or shape change of the resin layer, and may impair the homogeneity of the resin layer.
 本発明者らは、フルオロポリマーのパウダーを含むパウダー分散液から、フルオロポリマーを含む高均質性な樹脂層を有し、反りにくい樹脂付金属箔を製造するべく、鋭意検討した。その結果、フルオロポリマーの物性と樹脂付金属箔の製造条件とを調整すれば、かかる樹脂付金属箔を効率よく製造できることを見出した。
 本発明は、電気特性と機械的強度を具備し、プリント基板を製造するために有用な、フルオロポリマーを含む、高均質性な樹脂層を有し、反りにくい樹脂付金属箔と、その効率的な製造方法を提供する。
The present inventors diligently studied to produce a metal foil with a resin which has a highly homogeneous resin layer containing a fluoropolymer and hardly warps from a powder dispersion containing a powder of a fluoropolymer. As a result, it has been found that the resin-coated metal foil can be efficiently produced by adjusting the physical properties of the fluoropolymer and the production conditions of the resin-coated metal foil.
The present invention provides a metal foil with a resin having a highly homogeneous resin layer containing a fluoropolymer, which has electrical characteristics and mechanical strength, and is useful for manufacturing a printed circuit board, and hardly warps. A simple manufacturing method is provided.
 本発明は、下記の態様を有する。
[1]金属箔の表面に樹脂層を有する樹脂付金属箔の製造方法であり、0.1~5.0MPaの貯蔵弾性率を示す温度領域を260℃以下に有し、かつ融点が260℃超のテトラフルオロエチレン系ポリマーのパウダーと溶媒とを含むパウダー分散液を金属箔の表面に塗布し、前記温度領域内の温度に金属箔を保持し、さらに前記温度領域超の温度にてテトラフルオロエチレン系ポリマーを焼成させて金属箔の表面にテトラフルオロエチレン系ポリマーを含む樹脂層を形成する、樹脂付金属箔の製造方法。
The present invention has the following aspects.
[1] A method for producing a resin-attached metal foil having a resin layer on the surface of the metal foil, having a temperature range showing a storage elastic modulus of 0.1 to 5.0 MPa at 260 ° C. or lower and a melting point of 260 ° C. A powder dispersion containing super tetrafluoroethylene polymer powder and solvent is applied to the surface of the metal foil, the metal foil is held at a temperature within the temperature range, and tetrafluoro at a temperature above the temperature range. A method for producing a resin-coated metal foil, comprising baking a ethylene-based polymer to form a resin layer containing a tetrafluoroethylene-based polymer on the surface of the metal foil.
[2]樹脂付金属箔の反り率が、7%以下である、[1]に記載の製造方法。
[3]金属箔の厚さが、2~40μmである、[1]又は[2]に記載の製造方法。
[4]樹脂層の厚さが、1~50μmである、[1]~[3]のいずれかに記載の製造方法。
[5]金属箔の厚さが2~20μmであり、樹脂層の厚さが1μm以上10μm未満である、[1]~[4]のいずれかに記載の製造方法。
[6]パウダーの体積基準累積50%径が、0.05~6.0μmである、[1]~[5]のいずれかに記載の製造方法。
[7]テトラフルオロエチレン系ポリマーが、テトラフルオロエチレンに基づく単位と、ペルフルオロ(アルキルビニルエーテル)、ヘキサフルオロプロピレン及びフルオロアルキルエチレンからなる群から選ばれる少なくとも1種のモノマーに基づく単位とを含むポリマーである、[1]~[6]のいずれかに記載の製造方法。
[2] The manufacturing method according to [1], wherein a warp rate of the metal foil with resin is 7% or less.
[3] The production method according to [1] or [2], wherein the thickness of the metal foil is 2 to 40 μm.
[4] The production method according to any one of [1] to [3], wherein the resin layer has a thickness of 1 to 50 μm.
[5] The production method according to any one of [1] to [4], wherein the thickness of the metal foil is 2 to 20 μm and the thickness of the resin layer is 1 μm or more and less than 10 μm.
[6] The production method according to any one of [1] to [5], wherein the powder has a volume-based cumulative 50% diameter of 0.05 to 6.0 μm.
[7] The tetrafluoroethylene-based polymer is a polymer comprising units based on tetrafluoroethylene and units based on at least one monomer selected from the group consisting of perfluoro (alkyl vinyl ether), hexafluoropropylene and fluoroalkylethylene. The production method according to any one of [1] to [6].
[8]テトラフルオロエチレン系ポリマーが、カルボニル基含有基、ヒドロキシ基、エポキシ基、アミド基、アミノ基及びイソシアネート基からなる群から選ばれる少なくとも1種の官能基を有する、[1]~[7]のいずれかに記載の製造方法。
[9]パウダー分散液が、ポリマー状ポリオールを含む、[1]~[8]のいずれかに記載の製造方法。
[10]前記温度領域に金属箔を保持する時間が、30秒~5分である、[1]~[9]のいずれかに記載の製造方法。
[11]前記温度領域に金属箔を保持する際の雰囲気が、酸素ガスを含む雰囲気である、[1]~[10]のいずれかに記載の製造方法。
[12]テトラフルオロエチレン系ポリマーを焼成させる際の温度が、320℃超である、[1]~[11]のいずれかに記載の製造方法。
[8] The tetrafluoroethylene-based polymer has at least one functional group selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group, an amide group, an amino group, and an isocyanate group, [1] to [7 ] The manufacturing method in any one of.
[9] The production method according to any one of [1] to [8], wherein the powder dispersion contains a polymeric polyol.
[10] The production method according to any one of [1] to [9], wherein the time for holding the metal foil in the temperature region is 30 seconds to 5 minutes.
[11] The manufacturing method according to any one of [1] to [10], wherein the atmosphere when holding the metal foil in the temperature region is an atmosphere containing oxygen gas.
[12] The production method according to any one of [1] to [11], wherein the temperature at which the tetrafluoroethylene-based polymer is baked is over 320 ° C.
[13]厚さが2~20μmの金属箔の表面に厚さが1μm以上10μm未満の樹脂層を有し、前記樹脂層がテトラフルオロエチレンに基づく単位とペルフルオロ(アルキルビニルエーテル)、ヘキサフルオロプロピレン及びフルオロアルキルエチレンからなる群から選ばれる少なくとも1種のモノマーに基づく単位とを含むポリマーを含み、反り率が7%以下である、樹脂付金属箔。
[14]反り率が、5%以下である、[13]に記載の樹脂付金属箔。
[15]前記[1]~[12]のいずれかに記載の製造方法で樹脂付金属箔を製造し、前記金属箔をエッチングしてパターン回路を形成する、プリント基板の製造方法。
[13] having a resin layer having a thickness of 1 μm or more and less than 10 μm on the surface of a metal foil having a thickness of 2 to 20 μm, wherein the resin layer is composed of units based on tetrafluoroethylene, perfluoro (alkyl vinyl ether), hexafluoropropylene, and A resin-coated metal foil comprising a polymer containing a unit based on at least one monomer selected from the group consisting of fluoroalkylethylenes and having a warpage rate of 7% or less.
[14] The metal foil with resin according to [13], wherein a warpage rate is 5% or less.
[15] A method for producing a printed circuit board, wherein a resin-coated metal foil is produced by the production method according to any one of [1] to [12], and a patterned circuit is formed by etching the metal foil.
 本発明によれば、電気特性と機械的強度を具備し、プリント基板を製造するために有用な、フルオロポリマーを含む、高均質性な樹脂層を有し、反りにくい樹脂付金属箔を、効率的に製造できる。 According to the present invention, a metal foil with a resin having a high homogeneity resin layer containing a fluoropolymer, which has electrical characteristics and mechanical strength, and is useful for manufacturing a printed circuit board, is less likely to warp. Can be manufactured.
 以下の用語は、以下の意味を有する。
 「パウダーのD50」は、レーザー回折・散乱法によって求められる、パウダーの体積基準累積50%径である。すなわち、レーザー回折・散乱法によってパウダーの粒度分布を測定し、その粒子の集団の全体積を100%として累積カーブを求め、その累積カーブ上で累積体積が50%となる点の粒子径である。
 「パウダーのD90」は、レーザー回折・散乱法によって求められる、パウダーの体積基準累積90%径である。すなわち、レーザー回折・散乱法によってパウダーの粒度分布を測定し、その粒子の集団の全体積を100%として累積カーブを求め、その累積カーブ上で累積体積が90%となる点の粒子径である。
 「ポリマーの貯蔵弾性率」は、ISO 6721-4:1994(JIS K7244-4:1999)に基づき測定される値である。
 「ポリマーの融点」は、示差走査熱量測定(DSC)法で測定した融解ピークの最大値に対応する温度である。
 「樹脂付金属箔の反り率」は、樹脂付金属箔から180mm角の四角い試験片を切り出し、試験片についてJIS C6471:1995(対応国際規格IEC 249-1:1982)に規定される測定方法にしたがって測定される値である。
 「樹脂付金属箔の寸法変化率」は、次のようにして求められる値である。樹脂付金属箔を150mm角で切り出し、0.3mmのドリルを用いて四隅に穴を空けて三次元測定器で穴の位置を測定する。樹脂付金属箔の金属箔をエッチングで取り除き、130℃で30分間乾燥する。四隅に空けた穴の位置を三次元測定器で測定する。エッチング前後の穴の位置の差から寸法変化率を算出する。
 「算術平均粗さRa」は、JIS B0601:2013(ISO4287:1997,Amd.1:2009)に基づき測定される算術平均粗さである。Raを求める際の、粗さ曲線用の基準長さlr(カットオフ値λc)は0.8mmとした。
 「耐熱性樹脂」とは、融点が280℃以上の高分子化合物、又はJIS C4003:2010(IEC 60085:2007)で規定される最高連続使用温度が121℃以上の高分子化合物を意味する。
 「(メタ)アクリレート」は、アクリレートとメタクリレートの総称である。
The following terms have the following meanings:
“D50 of powder” is a volume-based cumulative 50% diameter of powder determined by a laser diffraction / scattering method. That is, the particle size distribution of the powder is measured by the laser diffraction / scattering method, the cumulative curve is obtained with the total volume of the particle population as 100%, and the particle diameter is the point where the cumulative volume is 50% on the cumulative curve. .
“D90 of powder” is a volume-based cumulative 90% diameter of powder determined by a laser diffraction / scattering method. That is, the particle size distribution of the powder is measured by the laser diffraction / scattering method, the cumulative curve is obtained by setting the total volume of the particle population as 100%, and the particle diameter is the point where the cumulative volume is 90% on the cumulative curve. .
“Storage modulus of polymer” is a value measured based on ISO 6721-4: 1994 (JIS K7244-4: 1999).
“Polymer melting point” is a temperature corresponding to the maximum value of the melting peak measured by the differential scanning calorimetry (DSC) method.
“Wrapping ratio of metal foil with resin” is a measurement method defined in JIS C6471: 1995 (corresponding international standard IEC 249-1: 1982) for a test piece obtained by cutting a 180 mm square test piece from the metal foil with resin. Therefore, it is a measured value.
The “dimensional change rate of the metal foil with resin” is a value obtained as follows. A metal foil with resin is cut out at 150 mm square, holes are drilled at four corners using a 0.3 mm drill, and the positions of the holes are measured with a three-dimensional measuring instrument. The metal foil with resin is removed by etching and dried at 130 ° C. for 30 minutes. Measure the positions of the holes in the four corners with a three-dimensional measuring instrument. The dimensional change rate is calculated from the difference between the positions of the holes before and after etching.
“Arithmetic average roughness Ra” is an arithmetic average roughness measured based on JIS B0601: 2013 (ISO 4287: 1997, Amd. 1: 2009). The reference length lr (cut-off value λc) for the roughness curve when determining Ra was 0.8 mm.
“Heat resistant resin” means a polymer compound having a melting point of 280 ° C. or higher, or a polymer compound having a maximum continuous use temperature defined by JIS C4003: 2010 (IEC 60085: 2007) of 121 ° C. or higher.
“(Meth) acrylate” is a general term for acrylate and methacrylate.
 本発明の製造方法は、特定のパウダー分散液を金属箔の表面に塗布し、その金属箔を特定の温度雰囲気で段階的に加熱保持して、特定のテトラフルオロエチレン系ポリマー(以下、「TFE系ポリマー」とも記す。)を含む樹脂層を金属箔の表面に形成する方法である。なお、使用するパウダー分散液は、TFE系ポリマーのパウダーが粒子状に分散している分散液である。 In the production method of the present invention, a specific powder dispersion is applied to the surface of a metal foil, the metal foil is heated and held stepwise in a specific temperature atmosphere, and a specific tetrafluoroethylene polymer (hereinafter referred to as “TFE”). This is a method of forming a resin layer containing “based polymer” on the surface of the metal foil. The powder dispersion to be used is a dispersion in which TFE polymer powder is dispersed in the form of particles.
 本発明により得られる樹脂付金属箔が、均質性に優れた、TFE系ポリマーを含む樹脂層(以下、「F樹脂層」とも記す。)を有し、反りにくい理由は、必ずしも明確ではないが、以下の様に考えられる。
 本発明におけるTFE系ポリマーは、所定の溶融性(260℃超の融点を有する。)と所定の弾性(0.1~5.0MPaの貯蔵弾性率を示す温度領域を260℃以下に有する。)を有し、前記温度領域において一定の弾性状態を形成する。かかるTFE系ポリマーのパウダーを含む分散液を金属箔の表面に塗布し、前記温度領域内の温度に保持した場合、前記パウダーは、弾性に由来する粘着性により欠損しにくく、密にパッキングした被膜状態を形成すると考えられる。本発明においては、この被膜状態を形成した後に、前記温度領域超にてTFE系ポリマーを焼成してF樹脂層を形成するため、そのまま均質性が高く緻密なF樹脂層が形成され、その結果、反りにくい樹脂付金属箔が得られたと考えられる。
The reason why the metal foil with resin obtained by the present invention has a resin layer (hereinafter, also referred to as “F resin layer”) having excellent homogeneity and containing a TFE-based polymer is not necessarily clear. It is considered as follows.
The TFE-based polymer in the present invention has a predetermined meltability (having a melting point of more than 260 ° C.) and a predetermined elasticity (having a temperature range showing a storage elastic modulus of 0.1 to 5.0 MPa at 260 ° C. or less). And a certain elastic state is formed in the temperature range. When a dispersion containing such TFE polymer powder is applied to the surface of a metal foil and kept at a temperature within the above temperature range, the powder is not easily lost due to adhesiveness derived from elasticity, and is a densely packed film It is thought to form a state. In the present invention, after forming this coating state, the FFE layer is formed by firing the TFE polymer above the temperature range, so that a dense F resin layer with high homogeneity is formed as a result. It is considered that a metal foil with a resin which is difficult to warp was obtained.
 本発明における樹脂付金属箔は、金属箔の少なくとも一方の表面に、F樹脂層を有する。つまり、樹脂付金属箔は、金属箔の片面のみにF樹脂層を有していてもよく、金属箔の両面にF樹脂層を有していてもよい。
 樹脂付金属箔の反り率は、7%以下が好ましく、5%以下が特に好ましい。反り率の下限は、通常、0%である。この場合、樹脂付金属箔をプリント基板に加工する際のハンドリング性と、得られるプリント基板の伝送特性が優れる。
 樹脂付金属箔の寸法変化率は、±1%以下が好ましく、±0.2%以下が特に好ましい。この場合、樹脂付金属箔から得られるプリント基板を多層化しやすい。
The metal foil with resin in the present invention has an F resin layer on at least one surface of the metal foil. That is, the metal foil with resin may have an F resin layer only on one side of the metal foil, or may have an F resin layer on both sides of the metal foil.
The warp rate of the metal foil with resin is preferably 7% or less, and particularly preferably 5% or less. The lower limit of the warp rate is usually 0%. In this case, the handling property when processing the resin-coated metal foil into a printed board and the transmission characteristics of the obtained printed board are excellent.
The dimensional change rate of the resin-coated metal foil is preferably ± 1% or less, particularly preferably ± 0.2% or less. In this case, the printed board obtained from the resin-attached metal foil is easily multi-layered.
 本発明における金属箔の材質としては、銅、銅合金、ステンレス鋼、ニッケル、ニッケル合金(42合金も含む)、アルミニウム、アルミニウム合金、チタン、チタン合金等が挙げられる。
 金属箔としては、圧延銅箔、電解銅箔等が挙げられる。金属箔の表面には、防錆層(クロメート等の酸化物皮膜等)、耐熱層等が形成されていてもよい。
Examples of the material of the metal foil in the present invention include copper, copper alloy, stainless steel, nickel, nickel alloy (including 42 alloy), aluminum, aluminum alloy, titanium, titanium alloy and the like.
Examples of the metal foil include rolled copper foil and electrolytic copper foil. On the surface of the metal foil, a rust preventive layer (oxide film such as chromate), a heat-resistant layer or the like may be formed.
 金属箔の表面の十点平均粗さは、0.2~1.5μmが好ましい。この場合、F樹脂層との接着性が良好となり、伝送特性に優れたプリント基板が得られやすい。
 金属箔の厚さは、樹脂付金属箔の用途において機能が発揮できる厚さであればよく、2μm以上が好ましく、3μm以上が特に好ましい。また、金属箔の厚さは、40μm以下が好ましく、20μm以下がより好ましく、15μm以下が特に好ましい。金属箔の厚さの具体的な態様としては、2~40μm、2~20μm、2~15μm等の態様が挙げられる。
 金属箔の表面はシランカップリング剤により処理されていてもよく、金属箔の表面の全体がシランカップリング剤により処理されていてもよく、金属箔の表面の一部がシランカップリング剤により処理されていてもよい。
The ten-point average roughness of the surface of the metal foil is preferably 0.2 to 1.5 μm. In this case, the adhesiveness with the F resin layer becomes good, and a printed board having excellent transmission characteristics is easily obtained.
The thickness of metal foil should just be the thickness which can exhibit a function in the use of metal foil with a resin, 2 micrometers or more are preferable and 3 micrometers or more are especially preferable. Further, the thickness of the metal foil is preferably 40 μm or less, more preferably 20 μm or less, and particularly preferably 15 μm or less. Specific examples of the thickness of the metal foil include 2 to 40 μm, 2 to 20 μm, and 2 to 15 μm.
The surface of the metal foil may be treated with a silane coupling agent, the entire surface of the metal foil may be treated with a silane coupling agent, or a part of the surface of the metal foil is treated with a silane coupling agent. May be.
 本発明におけるF樹脂層は、本発明の製造方法により、本発明におけるパウダー分散液から形成される、TFE系ポリマーを含む樹脂層である。 The F resin layer in the present invention is a resin layer containing a TFE polymer formed from the powder dispersion in the present invention by the production method of the present invention.
 F樹脂層の表面の水接触角は、70~100°が好ましく、70~90°が特に好ましい。前記範囲が上限以下であれば、F樹脂層と他の基材との接着性がより優れる。前記範囲が下限以上であれば、F樹脂層の電気特性(低誘電損失と低誘電率)がより優れる。 The water contact angle on the surface of the F resin layer is preferably 70 to 100 °, particularly preferably 70 to 90 °. If the said range is below an upper limit, the adhesiveness of F resin layer and another base material will be more excellent. If the said range is more than a minimum, the electrical property (low dielectric loss and low dielectric constant) of F resin layer will be more excellent.
 F樹脂層の厚さは、1μm以上が好ましく、2μm以上がより好ましく、5μm以上が特に好ましい。また、F樹脂層の厚さは50μm以下が好ましく、15μm以下がより好ましく、10μm未満が特に好ましい。この範囲において、プリント基板の伝送特性と樹脂付金属箔の反り抑制とをバランスさせやすい。樹脂付金属箔が金属箔の両面にF樹脂層を有する場合、それぞれのF樹脂層の組成及び厚さは、樹脂付金属箔の反りを抑制する点から、それぞれ同じであることが好ましい。
 F樹脂層の厚さの具体的な態様としては、1~50μmが挙げられ、1~15μm、1μm以上10μm未満、5~15μm等の態様が挙げられる。
 本発明における金属箔の厚さとF樹脂層の厚さとの好適な態様としては、前者が2~20μmであり、後者が1μm以上10μm未満である態様が挙げられる。本発明の製造方法では、上述した通り、均質性が高く緻密なF樹脂層が形成されるため、かかる薄い構成の樹脂付金属箔でも、反りを抑制できる。
The thickness of the F resin layer is preferably 1 μm or more, more preferably 2 μm or more, and particularly preferably 5 μm or more. The thickness of the F resin layer is preferably 50 μm or less, more preferably 15 μm or less, and particularly preferably less than 10 μm. In this range, it is easy to balance the transmission characteristics of the printed circuit board and the warpage suppression of the metal foil with resin. When the metal foil with resin has F resin layers on both surfaces of the metal foil, the composition and thickness of each F resin layer are preferably the same from the viewpoint of suppressing warpage of the metal foil with resin.
Specific examples of the thickness of the F resin layer include 1 to 50 μm, and examples include 1 to 15 μm, 1 to less than 10 μm, and 5 to 15 μm.
A preferred embodiment of the thickness of the metal foil and the thickness of the F resin layer in the present invention includes an embodiment in which the former is 2 to 20 μm and the latter is 1 μm or more and less than 10 μm. In the production method of the present invention, as described above, a dense F resin layer having high homogeneity is formed, and thus warpage can be suppressed even with such a thin metal foil with resin.
 F樹脂層の比誘電率は、2.0~3.5が好ましく、2.0~3.0がより好ましい。この場合、F樹脂層の電気特性及び接着性の双方が優れ、低誘電率が求められるプリント基板等に樹脂付金属箔を好適に使用できる。
 F樹脂層の表面のRaは、F樹脂層の厚さ未満であり、2.2~8μmが好ましい。この範囲において、他の基板の接着性と加工性とをバランスさせやすい。
The relative dielectric constant of the F resin layer is preferably 2.0 to 3.5, more preferably 2.0 to 3.0. In this case, the resin-coated metal foil can be suitably used for a printed circuit board or the like that is excellent in both the electrical characteristics and adhesiveness of the F resin layer and requires a low dielectric constant.
Ra of the surface of the F resin layer is less than the thickness of the F resin layer, and is preferably 2.2 to 8 μm. In this range, it is easy to balance the adhesion and workability of other substrates.
 本発明におけるTFE系ポリマーを含むパウダー(以下、「Fパウダー」とも記す。)は、本発明の効果を損なわない範囲において、TFE系ポリマー以外の成分を含んでいてもよいが、TFE系ポリマーを主成分とするのが好ましい。FパウダーにおけるTFE系ポリマーの含有量は、80質量%以上が好ましく、100質量%が特に好ましい。
 FパウダーのD50は、0.05~6.0μmが好ましく、0.1~3.0μmがより好ましく、0.2~3.0μmが特に好ましい。この範囲において、Fパウダーの流動性と分散性が良好となり、樹脂付金属箔におけるTFE系ポリマーの電気特性(低誘電率等)や耐熱性が最も発現しやすい。
 FパウダーのD90は、8μm以下が好ましく、6μm以下がより好ましく、5μm以下が特に好ましい。パウダーのD90は、0.3μm以上が好ましく、0.8μm以上が特に好ましい。この範囲において、Fパウダーの流動性と分散性が良好となり、F樹脂層の電気特性(低誘電率等)や耐熱性が最も発現しやすい。
 Fパウダーの疎充填嵩密度は、0.05g/mL以上が好ましく、0.08~0.5g/mLが特に好ましい。
 Fパウダーの密充填嵩密度は、0.05g/mL以上が好ましく、0.1~0.8g/mLが特に好ましい。
The powder containing the TFE polymer in the present invention (hereinafter also referred to as “F powder”) may contain components other than the TFE polymer as long as the effects of the present invention are not impaired. The main component is preferable. 80 mass% or more is preferable and, as for content of TFE type polymer in F powder, 100 mass% is especially preferable.
The D50 of the F powder is preferably 0.05 to 6.0 μm, more preferably 0.1 to 3.0 μm, and particularly preferably 0.2 to 3.0 μm. In this range, the fluidity and dispersibility of the F powder are improved, and the electrical characteristics (low dielectric constant, etc.) and heat resistance of the TFE polymer in the resin-coated metal foil are most easily developed.
D90 of the F powder is preferably 8 μm or less, more preferably 6 μm or less, and particularly preferably 5 μm or less. The D90 of the powder is preferably 0.3 μm or more, particularly preferably 0.8 μm or more. In this range, the fluidity and dispersibility of the F powder are good, and the electric characteristics (low dielectric constant, etc.) and heat resistance of the F resin layer are most easily developed.
The bulk density of the F powder is preferably 0.05 g / mL or more, particularly preferably 0.08 to 0.5 g / mL.
The densely packed bulk density of the F powder is preferably 0.05 g / mL or more, particularly preferably 0.1 to 0.8 g / mL.
 Fパウダーの製造方法としては、特に限定されず、国際公開第2016/017801号の[0065]~[0069]に記載の方法を採用できる。なお、Fパウダーは、所望のパウダーが市販されていればそれを用いてもよい。
 本発明におけるTFE系ポリマーは、融点が260℃超であり、260~320℃が好ましく、275~320℃であるのが特に好ましく、295~310℃であるのが最も好ましい。この場合、TFE系ポリマーが、その弾性に基づく粘着性を保持しつつ焼成されて、緻密なF樹脂層をより形成しやすい。
The method for producing F powder is not particularly limited, and the methods described in [0065] to [0069] of International Publication No. 2016/017801 can be employed. In addition, as long as desired powder is marketed, you may use F powder.
The TFE polymer in the present invention has a melting point of more than 260 ° C., preferably 260 to 320 ° C., particularly preferably 275 to 320 ° C., and most preferably 295 to 310 ° C. In this case, the TFE-based polymer is baked while maintaining the adhesiveness based on its elasticity, and it is easier to form a dense F resin layer.
 本発明におけるTFE系ポリマーは、0.1~5.0MPaの貯蔵弾性率を示す温度領域を260℃以下に有する。例えば、TFEポリマーは、260℃における貯蔵弾性率が0.1~5.0MPaである。
 TFE系ポリマーが示す貯蔵弾性率は、0.2~4.4MPaであるのが好ましく、0.5~3.0MPaであるのが特に好ましい。また、TFE系ポリマーがかかる貯蔵弾性率を示す温度領域としては、180~260℃の範囲が好ましく、200~260℃の範囲が特に好ましい。この場合、前記温度領域においてFパウダーが弾性に基づく粘着性を効果的に発現しやすい。
The TFE polymer in the present invention has a temperature range showing a storage elastic modulus of 0.1 to 5.0 MPa at 260 ° C. or less. For example, the TFE polymer has a storage elastic modulus at 260 ° C. of 0.1 to 5.0 MPa.
The storage elastic modulus of the TFE polymer is preferably 0.2 to 4.4 MPa, and particularly preferably 0.5 to 3.0 MPa. Further, the temperature range in which the TFE polymer exhibits such storage elastic modulus is preferably in the range of 180 to 260 ° C., particularly preferably in the range of 200 to 260 ° C. In this case, in the temperature range, the F powder tends to effectively exhibit elasticity based on elasticity.
 TFE系ポリマーは、テトラフルオロエチレン(TFE)に基づく単位(TFE単位)を含むポリマーである。TFE系ポリマーは、TFEのホモポリマーであってもよく、TFEとTFEと共重合可能な他のモノマー(以下、コモノマーとも記す。)とのコポリマーであってもよい。TFE系ポリマーは、ポリマーに含まれる全単位に対して、TFE単位を75~100モル%含み、コモノマーに基づく単位を0~25モル%含むのが好ましい。
 TFE系ポリマーとしては、ポリテトラフルオロエチレン(PTFE)、TFEとエチレンのコポリマー、TFEとプロピレンのコポリマー、TFEとペルフルオロ(アルキルビニルエーテル)(PAVE)のコポリマー(PFA)、TFEとヘキサフルオロプロピレン(HFP)のコポリマー(HFP)、TFEとフルオロアルキルエチレン(FAE)のコポリマー、TFEとクロロトリフルオロエチレンのコポリマーが挙げられる。
The TFE-based polymer is a polymer including units (TFE units) based on tetrafluoroethylene (TFE). The TFE-based polymer may be a TFE homopolymer or a copolymer of TFE and another monomer copolymerizable with TFE (hereinafter also referred to as a comonomer). The TFE-based polymer preferably contains 75 to 100 mol% of TFE units and 0 to 25 mol% of units based on a comonomer with respect to all units contained in the polymer.
TFE polymers include polytetrafluoroethylene (PTFE), copolymers of TFE and ethylene, copolymers of TFE and propylene, copolymers of TFE and perfluoro (alkyl vinyl ether) (PAVE), PFE, and TFE and hexafluoropropylene (HFP). Copolymer of HFE, copolymer of TFE and fluoroalkylethylene (FAE), copolymer of TFE and chlorotrifluoroethylene.
 PAVEとしては、CF=CFOCF、CF=CFOCFCF、CF=CFOCFCFCF(PPVE)、CF=CFOCFCFCFCF、CF=CFO(CFFが挙げられる。
 FAEとしては、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CF(CFH、CH=CF(CFHが挙げられる。
 TFE系ポリマーの好適な態様としては、TFE単位と、PAVE、HFP及びFAEからなる群から選ばれる少なくとも1種のモノマーに基づく単位(以下、「コモノマー単位F」とも記す。)を含むポリマーも挙げられる。
The PAVE, CF 2 = CFOCF 3, CF 2 = CFOCF 2 CF 3, CF 2 = CFOCF 2 CF 2 CF 3 (PPVE), CF 2 = CFOCF 2 CF 2 CF 2 CF 3, CF 2 = CFO (CF 2 ) 8 F is mentioned.
The FAE, CH 2 = CH (CF 2) 2 F, CH 2 = CH (CF 2) 3 F, CH 2 = CH (CF 2) 4 F, CH 2 = CF (CF 2) 3 H, CH 2 = CF (CF 2 ) 4 H.
As a preferable embodiment of the TFE-based polymer, a polymer including a TFE unit and a unit based on at least one monomer selected from the group consisting of PAVE, HFP, and FAE (hereinafter also referred to as “comonomer unit F”) is also included. It is done.
 前記ポリマーは、ポリマーに含まれる全単位に対して、TFE単位を90~99モル%含み、コモノマー単位Fを1~10モル%含むのが好ましい。前記ポリマーは、TFE単位とコモノマー単位Fのみからなっていてもよく、さらに他の単位を含んでいてもよい。 The polymer preferably contains 90 to 99 mol% of TFE units and 1 to 10 mol% of comonomer units F with respect to all units contained in the polymer. The polymer may be composed of only TFE units and comonomer units F, and may further contain other units.
 TFE系ポリマーの好適な態様としては、カルボニル基含有基、ヒドロキシ基、エポキシ基、アミド基、アミノ基及びイソシアネート基からなる群から選ばれる少なくとも1種の官能基(以下、「官能基」とも記す。)を有する、TFE単位を含むポリマー(以下、「ポリマーF1」とも記す。)も挙げられる。
 官能基は、TFE系ポリマー中の単位に含まれていてもよく、ポリマーF1の主鎖の末端基に含まれていてもよい。後者のポリマーとしては、官能基を、重合開始剤、連鎖移動剤等に由来する末端基として有するポリマーが挙げられる。
 ポリマーF1としては、官能基を有する単位とTFE単位とを含むポリマーが好ましい。また、この場合のポリマーF1としては、さらに他の単位を含むのが好ましく、コモノマー単位Fを含むのが特に好ましい。
 官能基としては、F樹脂層と金属箔の接着性の観点から、カルボニル基含有基が好ましい。カルボニル基含有基としては、カーボネート基、カルボキシ基、ハロホルミル基、アルコキシカルボニル基、酸無水物残基(-C(O)OC(O)-)、脂肪酸残基等が挙げられ、カルボキシ基及び酸無水物残基が好ましい。
As a preferred embodiment of the TFE polymer, at least one functional group selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group, an amide group, an amino group and an isocyanate group (hereinafter also referred to as “functional group”). And a polymer containing TFE units (hereinafter also referred to as “polymer F1”).
The functional group may be contained in a unit in the TFE polymer, or may be contained in a terminal group of the main chain of the polymer F1. Examples of the latter polymer include polymers having a functional group as a terminal group derived from a polymerization initiator, a chain transfer agent, or the like.
As the polymer F1, a polymer including a unit having a functional group and a TFE unit is preferable. Further, the polymer F1 in this case preferably further includes other units, and particularly preferably includes the comonomer unit F.
As the functional group, a carbonyl group-containing group is preferable from the viewpoint of adhesion between the F resin layer and the metal foil. Examples of the carbonyl group-containing group include a carbonate group, a carboxy group, a haloformyl group, an alkoxycarbonyl group, an acid anhydride residue (—C (O) OC (O) —), a fatty acid residue, and the like. An anhydride residue is preferred.
 官能基を有する単位としては、官能基を有するモノマーに基づく単位が好ましく、カルボニル基含有基を有するモノマーに基づく単位、ヒドロキシ基を有するモノマーに基づく単位、エポキシ基を有するモノマーに基づく単位及びイソシアネート基を有するモノマーに基づく単位がより好ましく、カルボニル基含有基を有するモノマーに基づく単位が特に好ましい。
 カルボニル基含有基を有するモノマーとしては、酸無水物残基を有する環状モノマー、カルボキシ基を有するモノマー、ビニルエステル又は(メタ)アクリレートが好ましく、酸無水物残基を有する環状モノマーが特に好ましい。
 前記環状モノマーとしては、無水イタコン酸、無水シトラコン酸、5-ノルボルネン-2,3-ジカルボン酸無水物(別称:無水ハイミック酸。以下、「NAH」とも記す。)又は無水マレイン酸が好ましい。
 ポリマーF1としては、官能基を有する単位とTFE単位と、PAVE単位又はHFP単位とを含むポリマーが好ましい。かかるポリマーF1の具体例としては、国際公開第2018/16644号に記載された重合体(X)が挙げられる。
The unit having a functional group is preferably a unit based on a monomer having a functional group, a unit based on a monomer having a carbonyl group-containing group, a unit based on a monomer having a hydroxy group, a unit based on a monomer having an epoxy group, and an isocyanate group A unit based on a monomer having a carbonyl group is more preferred, and a unit based on a monomer having a carbonyl group-containing group is particularly preferred.
As the monomer having a carbonyl group-containing group, a cyclic monomer having an acid anhydride residue, a monomer having a carboxy group, a vinyl ester or (meth) acrylate is preferable, and a cyclic monomer having an acid anhydride residue is particularly preferable.
As the cyclic monomer, itaconic anhydride, citraconic anhydride, 5-norbornene-2,3-dicarboxylic anhydride (also referred to as hymic anhydride, hereinafter also referred to as “NAH”) or maleic anhydride is preferable.
As the polymer F1, a polymer containing a functional group-containing unit, a TFE unit, and a PAVE unit or an HFP unit is preferable. Specific examples of the polymer F1 include the polymer (X) described in International Publication No. 2018/16644.
 ポリマーF1におけるTFE単位の割合は、ポリマーF1に含まれる全単位のうち、90~99モル%が好ましい。
 ポリマーF1におけるPAVE単位の割合は、ポリマーF1に含まれる全単位のうち、0.5~9.97モル%が好ましい。
 ポリマーF1における官能基を有する単位の割合は、ポリマーF1に含まれる全単位のうち、0.01~3モル%が好ましい。
The proportion of TFE units in the polymer F1 is preferably 90 to 99 mol% of all units contained in the polymer F1.
The proportion of PAVE units in the polymer F1 is preferably 0.5 to 9.97 mol% of all units contained in the polymer F1.
The proportion of the units having a functional group in the polymer F1 is preferably 0.01 to 3 mol% of all units contained in the polymer F1.
 本発明における溶媒は、分散媒であり、25℃で液状の不活性かつFパウダーと反応しない溶媒化合物であり、パウダー分散液に含まれる溶媒の以外の成分よりも低沸点であり、加熱等によって揮発し除去できる溶媒化合物が好ましい。
 溶媒化合物としては、水、アルコール(メタノール、エタノール、イソプロパノール等)、含窒素化合物(N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等)、含硫黄化合物(ジメチルスルホキシド等)、エーテル(ジエチルエーテル、ジオキサン等)、エステル(乳酸エチル、酢酸エチル等)、ケトン(メチルエチルケトン、メチルイソプロピルケトン、シクロペンタノン、シクロヘキサノン等)、グリコールエーテル(エチレングリコールモノイソプロピルエーテル等)、セロソルブ(メチルセロソルブ、エチルセロソルブ等)等が挙げられる。溶媒化合物は、1種を単独で用いてもよく、2種以上を併用してもよい。
 溶媒化合物としては、瞬間的に揮発しない溶媒が好ましく、沸点80~275℃の溶媒化合物が好ましく、沸点125~250℃の溶媒化合物が特に好ましい。この範囲において、金属箔の表面に塗布したパウダー分散液から形成されるウェット膜(溶媒を含む膜)の安定性が高い。
 ウエット膜中の溶媒は、TFE系ポリマーの焼成が終了するまでに除去される。ウエット膜からの溶媒の気散消失は、前記特定の貯蔵弾性率を示す温度領域に達する前に生じてもよく、前記特定の貯蔵弾性率を示す温度領域に保持している状態で生じてもよい。場合により、TFE系ポリマーの焼成の際に生じてもよい。好ましくは、上記沸点範囲の溶媒を使用して、ウエット膜中の溶媒の少なくとも一部を、TFE系ポリマーを前記特定の貯蔵弾性率を示す温度領域に保持している状態で気散させる。
 溶媒化合物としては、有機化合物が好ましく、シクロヘキサン(沸点:81℃)、2-プロパノール(沸点:82℃)、1-プロパノール(沸点:97℃)、1-ブタノール(沸点:117℃)、1-メトキシ-2-プロパノール(沸点:119℃)、N-メチルピロリドン(沸点:202℃)、γ-ブチロラクトン(沸点:204℃)、シクロヘキサノン(沸点:156℃)及びシクロペンタノン(沸点:131℃)がより好ましく、N-メチルピロリドン、γ-ブチロラクトン、シクロヘキサノン及びシクロペンタノンが特に好ましい。
The solvent in the present invention is a dispersion medium, a solvent compound that is liquid at 25 ° C. and does not react with F powder, has a lower boiling point than components other than the solvent contained in the powder dispersion, and is heated or the like. Solvent compounds that can be volatilized and removed are preferred.
Solvent compounds include water, alcohol (methanol, ethanol, isopropanol, etc.), nitrogen-containing compounds (N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, etc.), sulfur-containing compounds (dimethyl). Sulfoxide etc.), ether (diethyl ether, dioxane etc.), ester (ethyl lactate, ethyl acetate etc.), ketone (methyl ethyl ketone, methyl isopropyl ketone, cyclopentanone, cyclohexanone etc.), glycol ether (ethylene glycol monoisopropyl ether etc.), Examples include cellosolve (methyl cellosolve, ethyl cellosolve, etc.). A solvent compound may be used individually by 1 type, and may use 2 or more types together.
As the solvent compound, a solvent which does not volatilize instantaneously is preferable, a solvent compound having a boiling point of 80 to 275 ° C. is preferable, and a solvent compound having a boiling point of 125 to 250 ° C. is particularly preferable. In this range, the stability of the wet film (film containing a solvent) formed from the powder dispersion applied to the surface of the metal foil is high.
The solvent in the wet film is removed by the end of the baking of the TFE polymer. Dissipation of the solvent from the wet film may occur before reaching the temperature range showing the specific storage elastic modulus, or may occur while being held in the temperature range showing the specific storage elastic modulus. Good. In some cases, it may occur during firing of the TFE polymer. Preferably, the solvent in the above boiling range is used to diffuse at least a part of the solvent in the wet film in a state where the TFE-based polymer is held in the temperature region showing the specific storage elastic modulus.
The solvent compound is preferably an organic compound, such as cyclohexane (boiling point: 81 ° C.), 2-propanol (boiling point: 82 ° C.), 1-propanol (boiling point: 97 ° C.), 1-butanol (boiling point: 117 ° C.), 1- Methoxy-2-propanol (boiling point: 119 ° C), N-methylpyrrolidone (boiling point: 202 ° C), γ-butyrolactone (boiling point: 204 ° C), cyclohexanone (boiling point: 156 ° C) and cyclopentanone (boiling point: 131 ° C) N-methylpyrrolidone, γ-butyrolactone, cyclohexanone and cyclopentanone are particularly preferable.
 パウダー分散液中のFパウダーの割合は、5~60質量%が好ましく、35~50質量%が特に好ましい。この範囲において、F樹脂層の比誘電率及び誘電正接を低く制御しやすい。また、パウダー分散液の均一分散性が高く、F樹脂層の機械的強度に優れる。
 パウダー分散液中の溶媒の割合は、15~65質量%が好ましく、25~50質量部が特に好ましい。この範囲において、パウダー分散液の塗布性が優れ、かつ樹脂層の外観不良が起こりにくい。
The proportion of F powder in the powder dispersion is preferably 5 to 60% by mass, particularly preferably 35 to 50% by mass. In this range, it is easy to control the relative dielectric constant and dielectric loss tangent of the F resin layer low. Moreover, the uniform dispersion of the powder dispersion is high, and the mechanical strength of the F resin layer is excellent.
The proportion of the solvent in the powder dispersion is preferably 15 to 65% by mass, particularly preferably 25 to 50 parts by mass. In this range, the applicability of the powder dispersion is excellent, and poor appearance of the resin layer hardly occurs.
 本発明におけるパウダー分散液は、本発明の効果を損なわない範囲で、他の材料を含んでいてもよい。他の材料は、パウダー分散液に溶解してもよく、溶解しなくてもよい。
 パウダー分散剤は、パウダー分散液の分散安定性を向上させる観点から、分散剤を含むのが好ましい。分散剤としては、F樹脂層の表面性状に接着性を付与する観点から、疎水部位と親水部位を有する化合物(界面活性剤)が特に好ましい。
 パウダー分散液が分散剤を含む場合、パウダー分散液中の分散剤の割合は、0.1~30質量%が好ましく、5~10質量部が特に好ましい。この範囲において、Fパウダーの均一分散性と、F樹脂層の表面の親水性及び電気特性とをバランスさせやすい。
The powder dispersion in the present invention may contain other materials as long as the effects of the present invention are not impaired. Other materials may or may not dissolve in the powder dispersion.
The powder dispersant preferably contains a dispersant from the viewpoint of improving the dispersion stability of the powder dispersion. As the dispersant, a compound having a hydrophobic site and a hydrophilic site (surfactant) is particularly preferable from the viewpoint of imparting adhesiveness to the surface properties of the F resin layer.
When the powder dispersion contains a dispersant, the proportion of the dispersant in the powder dispersion is preferably from 0.1 to 30% by mass, particularly preferably from 5 to 10 parts by mass. In this range, it is easy to balance the uniform dispersibility of the F powder with the hydrophilicity and electrical characteristics of the surface of the F resin layer.
 本発明における分散剤としては、ポリオール、ポリオキシアルキレングリコール、ポリカプロラクタム及びポリマー状ポリオールが好ましく、ポリマー状ポリオールがより好ましい。
 ポリマー状ポリオールとは、炭素-炭素不飽和二重結合を有するモノマーに基づく単位と2以上の水酸基を有するポリマーをいう。ポリマー状ポリオールとしては、ポリビニルアルコール、ポリビニルブチラール及びフルオロポリオールが特に好ましく、フルオロポリオールが最も好ましい。ただし、フルオロポリオールとは、TFE系ポリマーではない、水酸基とフッ素原子とを有するポリマーである。また、フルオロポリオールは、水酸基の一部が化学修飾され、変性されていてもよい。
As the dispersant in the present invention, a polyol, polyoxyalkylene glycol, polycaprolactam and a polymer polyol are preferable, and a polymer polyol is more preferable.
The polymeric polyol refers to a polymer having a unit based on a monomer having a carbon-carbon unsaturated double bond and two or more hydroxyl groups. As the polymer polyol, polyvinyl alcohol, polyvinyl butyral and fluoropolyol are particularly preferable, and fluoropolyol is most preferable. However, the fluoropolyol is not a TFE-based polymer but a polymer having a hydroxyl group and a fluorine atom. The fluoropolyol may be modified by chemically modifying a part of the hydroxyl group.
 フルオロポリオールは、ポリフルオロアルキル基又はポリフルオロアルケニル基を有する(メタ)アクリレート(以下、「(メタ)アクリレートF」とも記す。)とポリオキシアルキレンモノオール基を有する(メタ)アクリレート(以下、「(メタ)アクリレートAO」とも記す。)とのコポリマー(以下、「分散ポリマーF」とも記す。)が特に好ましい。
 (メタ)アクリレートFとしては、式CH=CRC(O)O-X-Rで表される化合物が好ましい。
 Rは、水素原子又はメチル基を示す。
 Xは、-(CH-、-(CH-、-(CH-、-(CHNHC(O)-、-(CHNHC(O)-又は-CHCH(CH)NHC(O)-を示す。
 Rは、-OCF(CF)(C(CF(CF)(=C(CF)、-OC(CF)(=C(CF(CF)(CF(CF)、-OCH(CHOCHCH(CFF)2、-OCH(CHOCHCH(CFF)、-(CFF又は-(CFFを示す。
 (メタ)アクリレートAOとしては、式CH=CRC(O)O-Q-OHで表される化合物が好ましい。
 Rは、水素原子又はメチル基を示す。
 Qは、-(CH(OCHCH-、-(CH(OCHCH(CH))-又は-(CH(OCHCHCHCH-を示す(mは1~4の整数を、nは2~100の整数を示し、nとしては2~20の整数が好ましい。)。
The fluoropolyol is a (meth) acrylate having a polyfluoroalkyl group or a polyfluoroalkenyl group (hereinafter also referred to as “(meth) acrylate F”) and a (meth) acrylate having a polyoxyalkylene monool group (hereinafter, “ A copolymer (hereinafter also referred to as “dispersion polymer F”) with (meth) acrylate AO ”is particularly preferred.
(Meth) acrylate F is preferably a compound represented by the formula CH 2 ═CR 1 C (O) O—X 1 —R F.
R 1 represents a hydrogen atom or a methyl group.
X 1 is — (CH 2 ) 2 —, — (CH 2 ) 3 —, — (CH 2 ) 4 —, — (CH 2 ) 2 NHC (O) —, — (CH 2 ) 3 NHC (O) — Or —CH 2 CH (CH 3 ) NHC (O) — is shown.
R F represents —OCF (CF 3 ) (C (CF (CF 3 ) 2 ) (═C (CF 3 ) 2 ), —OC (CF 3 ) (═C (CF (CF 3 ) 2 ) (CF ( CF 3 ) 2 ), —OCH (CH 2 OCH 2 CH 2 (CF 2 ) 4 F) 2, —OCH (CH 2 OCH 2 CH 2 (CF 2 ) 6 F) 2 , — (CF 2 ) 4 F or -(CF 2 ) 6 F is shown.
(Meth) acrylate AO is preferably a compound represented by the formula CH 2 ═CR 2 C (O) O—Q 2 —OH.
R 2 represents a hydrogen atom or a methyl group.
Q 2 represents — (CH 2 ) m (OCH 2 CH 2 ) n —, — (CH 2 ) m (OCH 2 CH (CH 3 )) n — or — (CH 2 ) m (OCH 2 CH 2 CH 2 CH 2 ) n — (m represents an integer of 1 to 4, n represents an integer of 2 to 100, and n is preferably an integer of 2 to 20).
 (メタ)アクリレートFの具体例としては、CH=CHCOO(CHOCF(CF)(C(CF(CF)(=C(CF)、CH=CHCOO(CHOC(CF)(=C(CF(CF)(CF(CF)、CH=C(CH)COO(CHNHCOOCH(CHOCHCH(CFF)、CH=C(CH)COO(CHNHCOOCH(CHOCHCH(CFF)、CH=C(CH)COO(CHNHCOOCH(CHOCH(CFF)、CH=C(CH)COO(CHNHCOOCH(CHOCH(CFF)、CH=C(CH)COO(CHNHCOOCH(CHOCH(CFF)、CH=C(CH)COO(CHNHCOOCH(CHOCH(CFF)が挙げられる。
 (メタ)アクリレートAOの具体例としては、CH=CHCOO(CHCHO)OH、CH=CHCOO(CHCHO)10OH、CH=CHCOO(CHCHO)12OH、CH=C(CH)COO(CHCH(CH)O)OH、CH=C(CH)COO(CHCH(CH)O)12OH、CH=C(CH)COO(CHCH(CH)O)16OHが挙げられる。
Specific examples of (meth) acrylate F include CH 2 ═CHCOO (CH 2 ) 4 OCF (CF 3 ) (C (CF (CF 3 ) 2 ) (= C (CF 3 ) 2 ), CH 2 ═CHCOO ( CH 2) 4 OC (CF 3 ) (= C (CF (CF 3) 2) (CF (CF 3) 2), CH 2 = C (CH 3) COO (CH 2) 2 NHCOOCH (CH 2 OCH 2 CH 2 (CF 2) 6 F) 2, CH 2 = C (CH 3) COO (CH 2) 2 NHCOOCH (CH 2 OCH 2 CH 2 (CF 2) 4 F) 2, CH 2 = C (CH 3) COO (CH 2) 2 NHCOOCH (CH 2 OCH 2 (CF 2) 6 F) 2, CH 2 = C (CH 3) COO (CH 2) 2 NHCOOCH (CH 2 OCH 2 (CF 2) 4 F) 2, CH 2 = C (CH 3) COO ( CH 2) 3 NHCOOCH (CH 2 OCH 2 (CF 2) 6 F) 2, CH 2 = C (CH 3) COO (CH 2) 3 NHCOOCH (CH 2 OCH 2 (CF 2 ) 4 F) 2
As specific examples of (meth) acrylate AO, CH 2 ═CHCOO (CH 2 CH 2 O) 8 OH, CH 2 ═CHCOO (CH 2 CH 2 O) 10 OH, CH 2 ═CHCOO (CH 2 CH 2 O) 12 OH, CH 2 = C (CH 3 ) COO (CH 2 CH (CH 3 ) O) 8 OH, CH 2 = C (CH 3 ) COO (CH 2 CH (CH 3 ) O) 12 OH, CH 2 = C (CH 3) COO (CH 2 CH (CH 3) O) 16 OH and the like.
 分散ポリマーFに含まれる全単位に対する(メタ)アクリレートFに基づく単位の割合は、20~60モル%が好ましく、20~40モル%が特に好ましい。
 分散ポリマーFに含まれる全単位に対する(メタ)アクリレートAOに基づく単位の割合は、40~80モル%が好ましく、60~80モル%が特に好ましい。
 分散ポリマーFは、(メタ)アクリレートAOに基づく単位と(メタ)アクリレートAOに基づく単位のみからなっていてもよく、さらに他の単位をさらに含んでいてもよい。
 分散ポリマーFのフッ素含有量は、10~45質量%が好ましく、15~40質量%が特に好ましい。
 分散ポリマーFは、ノニオン性であるのが好ましい。
 分散ポリマーFの質量平均分子量は、2000~80000が好ましく、6000~20000が特に好ましい。
The ratio of units based on (meth) acrylate F to the total units contained in dispersion polymer F is preferably 20 to 60 mol%, particularly preferably 20 to 40 mol%.
The ratio of units based on (meth) acrylate AO to the total units contained in the dispersion polymer F is preferably 40 to 80 mol%, particularly preferably 60 to 80 mol%.
The dispersion polymer F may consist of only a unit based on (meth) acrylate AO and a unit based on (meth) acrylate AO, and may further include other units.
The fluorine content of the dispersion polymer F is preferably 10 to 45% by mass, particularly preferably 15 to 40% by mass.
The dispersion polymer F is preferably nonionic.
The weight average molecular weight of the dispersion polymer F is preferably 2000 to 80000, particularly preferably 6000 to 20000.
 本発明におけるパウダー分散液は、かかる分散剤以外の他の材料を、さらに含んでいてもよい。かかる他の材料は、非硬化性樹脂であってもよく、硬化性樹脂であってもよい。
 非硬化性樹脂としては、熱溶融性樹脂、非溶融性樹脂が挙げられる。熱溶融性樹脂としては、熱可塑性ポリイミド等が挙げられる。非溶融性樹脂としては、硬化性樹脂の硬化物等が挙げられる。
 硬化性樹脂としては、反応性基を有するポリマー、反応性基を有するオリゴマー、低分子化合物、反応性基を有する低分子化合物等が挙げられる。反応性基としては、カルボニル基含有基、ヒドロキシ基、アミノ基、エポキシ基等が挙げられる。
The powder dispersion in the present invention may further contain other materials other than the dispersant. Such other material may be a non-curable resin or a curable resin.
Examples of the non-curable resin include a heat-meltable resin and a non-meltable resin. Examples of the heat-meltable resin include thermoplastic polyimide. Examples of the non-meltable resin include a cured product of a curable resin.
Examples of the curable resin include a polymer having a reactive group, an oligomer having a reactive group, a low molecular compound, and a low molecular compound having a reactive group. Examples of the reactive group include a carbonyl group-containing group, a hydroxy group, an amino group, and an epoxy group.
 硬化性樹脂としては、エポキシ樹脂、熱硬化性ポリイミド、ポリイミド前駆体であるポリアミック酸、熱硬化性アクリル樹脂、フェノール樹脂、熱硬化性ポリエステル樹脂、熱硬化性ポリオレフィン樹脂、熱硬化性変性ポリフェニレンエーテル樹脂、多官能シアン酸エステル樹脂、多官能マレイミド-シアン酸エステル樹脂、多官能性マレイミド樹脂、ビニルエステル樹脂、尿素樹脂、ジアリルフタレート樹脂、メラミン樹脂、グアナミン樹脂、メラミン-尿素共縮合樹脂が挙げられる。なかでも、プリント基板用途に有用な点から、熱硬化性樹脂としては、熱硬化性ポリイミド、ポリイミド前駆体、エポキシ樹脂、熱硬化性アクリル樹脂、ビスマレイミド樹脂及び熱硬化性ポリフェニレンエーテル樹脂が好ましく、エポキシ樹脂及び熱硬化性ポリフェニレンエーテル樹脂が特に好ましい。 Examples of the curable resin include epoxy resin, thermosetting polyimide, polyamic acid which is a polyimide precursor, thermosetting acrylic resin, phenol resin, thermosetting polyester resin, thermosetting polyolefin resin, thermosetting modified polyphenylene ether resin. And polyfunctional cyanate resin, polyfunctional maleimide-cyanate resin, polyfunctional maleimide resin, vinyl ester resin, urea resin, diallyl phthalate resin, melamine resin, guanamine resin, and melamine-urea cocondensation resin. Among these, from the point useful for printed circuit board applications, the thermosetting resin is preferably a thermosetting polyimide, a polyimide precursor, an epoxy resin, a thermosetting acrylic resin, a bismaleimide resin, and a thermosetting polyphenylene ether resin. Epoxy resins and thermosetting polyphenylene ether resins are particularly preferred.
 エポキシ樹脂の具体例としては、ナフタレン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、アルキルフェノールノボラック型エポキシ樹脂、アラルキル型エポキシ樹脂、ビフェノール型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリスヒドロキシフェニルメタン型エポキシ化合物、フェノールとフェノール性水酸基を有する芳香族アルデヒドとの縮合物のエポキシ化物、ビスフェノールのジグリシジルエーテル化物、ナフタレンジオールのジグリシジルエーテル化物、フェノールのグリシジルエーテル化物、アルコールのジグリシジルエーテル化物、トリグリシジルイソシアヌレート等が挙げられる。
 ビスマレイミド樹脂としては、特開平7-70315号公報に記載される、ビスフェノールA型シアン酸エステル樹脂とビスマレイミド化合物とを併用した樹脂組成物(BTレジン)、国際公開第2013/008667号に記載の発明、その背景技術に記載のものが挙げられる。
 ポリアミック酸は、通常、ポリマーF1の官能基と反応しうる反応性基を有している。
 ポリアミック酸を形成するジアミン、多価カルボン酸二無水物としては、例えば、特許第5766125号公報の[0020]、特許第5766125号公報の[0019]、特開2012-145676号公報の[0055]、[0057]等に記載のものが挙げられる。なかでも、4,4’-ジアミノジフェニルエーテル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン等の芳香族ジアミンと、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物等の芳香族多価カルボン酸二無水物との組合せからなるポリアミック酸が好ましい。
Specific examples of the epoxy resin include naphthalene type epoxy resin, cresol novolac type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, alicyclic epoxy resin, aliphatic chain epoxy resin, Cresol novolac epoxy resin, phenol novolac epoxy resin, alkylphenol novolac epoxy resin, aralkyl epoxy resin, biphenol epoxy resin, dicyclopentadiene epoxy resin, trishydroxyphenylmethane epoxy compound, phenol and phenolic hydroxyl group Epoxides of condensates with aromatic aldehydes, diglycidyl ethers of bisphenol, diglycidyl ethers of naphthalenediol, phenols Glycidyl etherified product, diglycidyl ethers of alcohols, triglycidyl isocyanurate.
As the bismaleimide resin, a resin composition (BT resin) using a bisphenol A type cyanate ester resin and a bismaleimide compound described in JP-A-7-70315, described in International Publication No. 2013/008667. And those described in the background art thereof.
The polyamic acid usually has a reactive group that can react with the functional group of the polymer F1.
Examples of the diamine and polycarboxylic dianhydride forming the polyamic acid include, for example, [0020] of Japanese Patent No. 5766125, [0019] of Japanese Patent No. 5766125, and [0055] of Japanese Patent Application Laid-Open No. 2012-145676. , [0057] and the like. Among them, aromatic diamines such as 4,4′-diaminodiphenyl ether and 2,2-bis [4- (4-aminophenoxy) phenyl] propane, pyromellitic dianhydride, 3,3 ′, 4,4 A polyamic acid comprising a combination with an aromatic polyvalent carboxylic dianhydride such as '-biphenyltetracarboxylic dianhydride and 3,3', 4,4'-benzophenonetetracarboxylic dianhydride is preferred.
 熱溶融性の樹脂としては、熱可塑性ポリイミド等の熱可塑性樹脂、硬化性の樹脂の熱溶融性の硬化物が挙げられる。
 熱可塑性樹脂としては、ポリエステル樹脂、ポリオレフィン樹脂、スチレン樹脂、ポリカーボネート、熱可塑性ポリイミド、ポリアリレート、ポリスルホン、ポリアリールスルホン、芳香族ポリアミド、芳香族ポリエーテルアミド、ポリフェニレンスルファイド、ポリアリールエーテルケトン、ポリアミドイミド、液晶性ポリエステル、ポリフェニレンエーテル等が挙げられ、熱可塑性ポリイミド、液晶性ポリエステル及びポリフェニレンエーテルが好ましい。
Examples of the heat-meltable resin include thermoplastic resins such as thermoplastic polyimide, and heat-meltable cured products of curable resins.
As thermoplastic resins, polyester resin, polyolefin resin, styrene resin, polycarbonate, thermoplastic polyimide, polyarylate, polysulfone, polyarylsulfone, aromatic polyamide, aromatic polyetheramide, polyphenylene sulfide, polyaryletherketone, polyamide Examples include imide, liquid crystalline polyester, polyphenylene ether, and the like, and thermoplastic polyimide, liquid crystalline polyester, and polyphenylene ether are preferable.
 また、さらに、本発明におけるパウダー分散液に含まれ得る他の材料として、バインダー、チキソ性付与剤、消泡剤、無機フィラー、反応性アルコキシシラン、脱水剤、可塑剤、耐候剤、酸化防止剤、熱安定剤、滑剤、帯電防止剤、増白剤、着色剤、導電剤、離型剤、表面処理剤、粘度調節剤、難燃剤等も挙げられる。
 本発明におけるパウダー分散液がバインダーを含めば、F樹脂層の形成に際するFパウダーの金属箔からの欠落(粉落ち)を抑制できる。バインダーとしては、熱可塑性の有機バインダーや熱硬化性の有機バインダーが挙げられる。バインダーとしては、TFE系ポリマーを焼成させる温度領域において分解して揮発する化合物が好ましい。かかるバインダーとしては、アクリル系樹脂バインダー、セルロース系樹脂バインダー、ビニルアルコール系樹脂バインダー、ワックス系樹脂バインダー、ゼラチン等が挙げられる。バインダーは、1種を単独で使用してもよく、2種以上を併用してもよい。
Furthermore, as other materials that can be included in the powder dispersion in the present invention, binders, thixotropic agents, antifoaming agents, inorganic fillers, reactive alkoxysilanes, dehydrating agents, plasticizers, weathering agents, antioxidants , Heat stabilizers, lubricants, antistatic agents, brighteners, colorants, conductive agents, mold release agents, surface treatment agents, viscosity modifiers, flame retardants, and the like.
If the powder dispersion liquid in the present invention includes a binder, it is possible to suppress the omission (powder omission) of the F powder from the metal foil when forming the F resin layer. Examples of the binder include thermoplastic organic binders and thermosetting organic binders. The binder is preferably a compound that decomposes and volatilizes in the temperature range where the TFE polymer is fired. Examples of such a binder include an acrylic resin binder, a cellulose resin binder, a vinyl alcohol resin binder, a wax resin binder, and gelatin. A binder may be used individually by 1 type and may use 2 or more types together.
 本発明においては、パウダー分散液を金属箔の表面に塗布する。
 塗布方法は、塗布後の金属箔の表面にパウダー分散液からなる安定したウェット膜を形成する方法であればよく、スプレー法、ロールコート法、スピンコート法、グラビアコート法、マイクログラビアコート法、グラビアオフセット法、ナイフコート法、キスコート法、バーコート法、ダイコート法、ファウンテンメイヤーバー法、スロットダイコート法等が挙げられる。
 また、TFE系ポリマーが0.1~5.0MPaの貯蔵弾性率を示す温度領域に金属箔を供する前に、前記温度領域未満の温度にて金属箔を加熱して、ウェット膜の状態を調整してもよい。なお、調製は、溶媒が完全に揮発しない程度にておこなわれ、50質量%以下の溶媒を揮発させる程度に通常はおこなわれる。
In the present invention, the powder dispersion is applied to the surface of the metal foil.
The coating method may be any method as long as it is a method for forming a stable wet film made of a powder dispersion on the surface of the metal foil after coating, spray method, roll coating method, spin coating method, gravure coating method, micro gravure coating method, Examples include a gravure offset method, a knife coat method, a kiss coat method, a bar coat method, a die coat method, a fountain Mayer bar method, and a slot die coat method.
In addition, before providing the metal foil to a temperature range where the TFE polymer exhibits a storage elastic modulus of 0.1 to 5.0 MPa, the state of the wet film is adjusted by heating the metal foil at a temperature lower than the temperature range. May be. In addition, preparation is performed to such an extent that a solvent does not volatilize completely, and it is usually performed to the extent that a 50 mass% or less solvent is volatilized.
 本発明においては、パウダー分散液を金属箔の表面に塗布した後に、TFE系ポリマーが0.1~5.0MPaの貯蔵弾性率を示す温度領域内の温度(以下、「保持温度」とも示す。)にて金属箔を保持する。保持温度は、雰囲気の温度を示す。
 保持は、1段階で実施してもよく、異なる温度にて2段階以上で実施してもよい。
 保持の方法としては、オーブンを用いる方法、通風乾燥炉を用いる方法、赤外線等の熱線を照射する方法等が挙げられる。
 保持における雰囲気は、常圧下、減圧下のいずれの状態であってよい。また、前記保持における雰囲気は、酸化性ガス(酸素ガス等。)雰囲気、還元性ガス(水素ガス等。)雰囲気、不活性ガス(ヘリウムガス、ネオンガス、アルゴンガス、窒素ガス等。)雰囲気のいずれであってもよい。
 保持における雰囲気は、F樹脂層の接着性が向上する観点から、酸素ガスを含む雰囲気であることが好ましい。
 酸素ガスを含む雰囲気における酸素ガス濃度(体積基準)は、1×10~3×10ppmが好ましく、0.5×10~1×10ppmが特に好ましい。この範囲において、F樹脂層の接着性と金属箔の酸化抑制とをバランスさせやすい。
 保持温度は、150~260℃が好ましく、200~260℃が特に好ましい。
 保持温度に保持する時間は、0.1~10分間が好ましく、0.5~5分間が特に好ましい。
In the present invention, after the powder dispersion is applied to the surface of the metal foil, the temperature within the temperature range where the TFE polymer exhibits a storage elastic modulus of 0.1 to 5.0 MPa (hereinafter also referred to as “holding temperature”). ) Hold the metal foil. The holding temperature indicates the temperature of the atmosphere.
Holding may be performed in one stage or in two or more stages at different temperatures.
Examples of the holding method include a method using an oven, a method using a ventilation drying furnace, and a method of irradiating heat rays such as infrared rays.
The atmosphere in holding may be in a state of normal pressure or reduced pressure. The holding atmosphere may be any of an oxidizing gas (oxygen gas, etc.) atmosphere, a reducing gas (hydrogen gas, etc.) atmosphere, and an inert gas (helium gas, neon gas, argon gas, nitrogen gas, etc.) atmosphere. It may be.
The atmosphere in the holding is preferably an atmosphere containing oxygen gas from the viewpoint of improving the adhesiveness of the F resin layer.
The oxygen gas concentration (volume basis) in the atmosphere containing oxygen gas is preferably 1 × 10 2 to 3 × 10 5 ppm, particularly preferably 0.5 × 10 3 to 1 × 10 4 ppm. In this range, it is easy to balance the adhesion of the F resin layer and the suppression of oxidation of the metal foil.
The holding temperature is preferably 150 to 260 ° C, particularly preferably 200 to 260 ° C.
The holding time at the holding temperature is preferably 0.1 to 10 minutes, and particularly preferably 0.5 to 5 minutes.
 本発明においては、さらに、前記温度領域超の温度(以下、「焼成温度」とも記す。)にてTFE系ポリマーを焼成させて金属箔の表面にF樹脂層を形成する。焼成温度は、雰囲気の温度を示す。本発明においては、Fパウダーが密にパッキングした状態でTFE系ポリマーの融着が進行するため、均質性に優れるF樹脂層が形成され、樹脂付金属箔が反りにくい。なお、パウダー分散液が熱溶融性樹脂を含めばTFE系ポリマーと溶解性樹脂との混合物からなるF樹脂層が形成され、パウダー分散液が熱硬化性樹脂を含めばTFE系ポリマーと熱硬化性樹脂の硬化物とからなるF樹脂層が形成される。
 加熱の方法としては、オーブンを用いる方法、通風乾燥炉を用いる方法、赤外線等の熱線を照射する方法等が挙げられる。F樹脂層の表面の平滑性を高めるために、加熱板、加熱ロール等で加圧してもよい。加熱の方法としては、短時間で焼成でき、遠赤外線炉が比較的コンパクトである点から、遠赤外線を照射する方法が好ましい。加熱の方法は、赤外線加熱と熱風加熱とを組み合わせてもよい。
 遠赤外線の有効波長帯は、TFE系ポリマーの均質な融着を促す点から、2~20μmが好ましく、3~7μmがより好ましい。
In the present invention, the FFE layer is formed on the surface of the metal foil by firing the TFE polymer at a temperature exceeding the above temperature range (hereinafter also referred to as “calcination temperature”). The firing temperature indicates the temperature of the atmosphere. In the present invention, since the fusion of the TFE polymer proceeds in a state where the F powder is densely packed, an F resin layer having excellent homogeneity is formed, and the resin-coated metal foil is less likely to warp. If the powder dispersion contains a thermomeltable resin, an F resin layer made of a mixture of a TFE polymer and a soluble resin is formed. If the powder dispersion contains a thermosetting resin, the TFE polymer and a thermosetting resin are formed. An F resin layer made of a cured resin is formed.
Examples of the heating method include a method using an oven, a method using a ventilation drying furnace, and a method of irradiating heat rays such as infrared rays. In order to improve the smoothness of the surface of the F resin layer, pressurization may be performed with a heating plate, a heating roll, or the like. As a heating method, a method of irradiating far infrared rays is preferable because firing can be performed in a short time and the far infrared furnace is relatively compact. The heating method may be a combination of infrared heating and hot air heating.
The effective wavelength band of far infrared rays is preferably 2 to 20 μm, more preferably 3 to 7 μm from the viewpoint of promoting uniform fusion of the TFE polymer.
 焼成における雰囲気は、常圧下、減圧下のいずれの状態であってよい。また、前記焼成における雰囲気は、酸化性ガス(酸素ガス等。)雰囲気、還元性ガス(水素ガス等。)雰囲気、不活性ガス(ヘリウムガス、ネオンガス、アルゴンガス、窒素ガス等。)雰囲気のいずれであってもよく、金属箔、形成されるF樹脂層それぞれの酸化劣化を抑制する観点から、還元性ガス雰囲気又は不活性ガス雰囲気であることが好ましい。
 焼成における雰囲気としては、不活性ガスから構成され酸素ガス濃度が低いガス雰囲気が好ましく、窒素ガスから構成され酸素ガス濃度(体積基準)が500ppm未満のガス雰囲気が好ましい。酸素ガス濃度(体積基準)は、300ppm以下が特に好ましい。また、酸素ガス濃度(体積基準)は、通常、1ppm以上である。
The atmosphere in firing may be any state under normal pressure or reduced pressure. The atmosphere in the firing is any of an oxidizing gas (oxygen gas, etc.) atmosphere, a reducing gas (hydrogen gas, etc.) atmosphere, and an inert gas (helium gas, neon gas, argon gas, nitrogen gas, etc.) atmosphere. From the viewpoint of suppressing oxidative deterioration of the metal foil and the F resin layer to be formed, a reducing gas atmosphere or an inert gas atmosphere is preferable.
The atmosphere in the firing is preferably a gas atmosphere composed of an inert gas and having a low oxygen gas concentration, and a gas atmosphere composed of nitrogen gas and having an oxygen gas concentration (volume basis) of less than 500 ppm is preferred. The oxygen gas concentration (volume basis) is particularly preferably 300 ppm or less. The oxygen gas concentration (volume basis) is usually 1 ppm or more.
 焼成温度は、320℃超が好ましく、330~380℃が特に好ましい。この場合、TFE系ポリマーが、緻密なF樹脂層をより形成しやすい。
 焼成温度に保持する時間は、30秒~5分間が好ましく、1~2分間が特に好ましい。
 樹脂付金属箔における樹脂層が従来の絶縁材料(ポリイミド等の熱硬化性樹脂の硬化物。)の場合、熱硬化性樹脂を硬化させるために長時間の加熱が必要である。一方、本発明においては、TFE系ポリマーの融着により短時間の加熱で樹脂層を形成できる。また、パウダー分散液が熱硬化性樹脂を含む場合、焼成温度を低くできる。このように、本発明の製造方法は、樹脂付金属箔に樹脂層を形成する際の金属箔への熱負荷が小さい方法であり、金属箔へのダメージが小さい方法である。
The firing temperature is preferably more than 320 ° C., particularly preferably 330 to 380 ° C. In this case, the TFE polymer can more easily form a dense F resin layer.
The time for maintaining the firing temperature is preferably 30 seconds to 5 minutes, and more preferably 1 to 2 minutes.
When the resin layer in the metal foil with resin is a conventional insulating material (cured product of thermosetting resin such as polyimide), heating for a long time is required to cure the thermosetting resin. On the other hand, in the present invention, the resin layer can be formed by heating in a short time by fusing the TFE polymer. Moreover, when a powder dispersion liquid contains a thermosetting resin, a calcination temperature can be made low. Thus, the manufacturing method of this invention is a method with a small heat load to the metal foil at the time of forming a resin layer in metal foil with resin, and is a method with little damage to metal foil.
 本発明における樹脂付金属箔には、F樹脂層の線膨張係数を制御したり、F樹脂層の接着性をさらに改善したりするために、F樹脂層の表面に表面処理をしてもよい。
 F樹脂層の表面にする表面処理方法としては、アニール処理、コロナ放電処理、大気圧プラズマ処理、真空プラズマ処理、UVオゾン処理、エキシマ処理、ケミカルエッチング、シランカップリング処理、微粗面化処理等が挙げられる。
 アニール処理における温度は、80~190℃が好ましく、120~180℃が特に好ましい。
 アニール処理における圧力は、0.001~0.030MPaが好ましく、0.005~0.015MPaが特に好ましい。
 アニール処理の時間は、10~300分間が好ましく、30~120分間が特に好ましい。
 プラズマ処理におけるプラズマ照射装置としては、高周波誘導方式、容量結合型電極方式、コロナ放電電極-プラズマジェット方式、平行平板型、リモートプラズマ型、大気圧プラズマ型、ICP型高密度プラズマ型等が挙げられる。
 プラズマ処理に用いるガスとしては、酸素ガス、窒素ガス、希ガス(アルゴン等)、水素ガス、アンモニアガス等が挙げられ、希ガス又は窒素ガスが好ましい。プラズマ処理に用いるガスの具体例としては、アルゴンガス、水素ガスと窒素ガスの混合ガス、水素ガスと窒素ガスとアルゴンガスの混合ガスが挙げられる。
 プラズマ処理における雰囲気としては、希ガス又は窒素ガスの体積分率が70体積%以上の雰囲気が好ましく、100体積%の雰囲気が特に好ましい。この範囲において、F樹脂層の表面のRaを2.0μm以下に調整して、F樹脂層の表面に微細凹凸を形成しやすい。
The metal foil with resin in the present invention may be subjected to a surface treatment on the surface of the F resin layer in order to control the linear expansion coefficient of the F resin layer or to further improve the adhesion of the F resin layer. .
Surface treatment methods for the surface of the F resin layer include annealing treatment, corona discharge treatment, atmospheric pressure plasma treatment, vacuum plasma treatment, UV ozone treatment, excimer treatment, chemical etching, silane coupling treatment, fine surface roughening treatment, etc. Is mentioned.
The temperature in the annealing treatment is preferably from 80 to 190 ° C, particularly preferably from 120 to 180 ° C.
The pressure in the annealing treatment is preferably 0.001 to 0.030 MPa, and particularly preferably 0.005 to 0.015 MPa.
The annealing treatment time is preferably 10 to 300 minutes, particularly preferably 30 to 120 minutes.
Examples of the plasma irradiation apparatus in the plasma treatment include a high frequency induction method, a capacitively coupled electrode method, a corona discharge electrode-plasma jet method, a parallel plate type, a remote plasma type, an atmospheric pressure plasma type, an ICP type high density plasma type, and the like. .
Examples of the gas used for the plasma treatment include oxygen gas, nitrogen gas, rare gas (such as argon), hydrogen gas, ammonia gas, and the like, and rare gas or nitrogen gas is preferable. Specific examples of the gas used for the plasma treatment include argon gas, a mixed gas of hydrogen gas and nitrogen gas, and a mixed gas of hydrogen gas, nitrogen gas and argon gas.
As an atmosphere in the plasma treatment, an atmosphere having a volume fraction of a rare gas or nitrogen gas of 70% by volume or more is preferable, and an atmosphere of 100% by volume is particularly preferable. Within this range, Ra on the surface of the F resin layer is adjusted to 2.0 μm or less, and fine irregularities are easily formed on the surface of the F resin layer.
 本発明で得られる樹脂付金属箔は、F樹脂層の表面が均質性に優れ、反りにくいため、他の基板と容易に積層できる。
 他の基板としては、耐熱性樹脂フィルム、繊維強化樹脂板の前駆体であるプリプレグ、耐熱性樹脂フィルム層を有する積層体、プリプレグ層を有する積層体等が挙げられる。
 プリプレグは、強化繊維(ガラス繊維、炭素繊維等。)の基材(トウ、織布等。)に熱硬化性樹脂又は熱可塑性樹脂を含浸させたシート状の基板である。
 耐熱性樹脂フィルムは、耐熱性樹脂の1種以上を含むフィルムであり、単層フィルムであっても多層フィルムであってもよい。
 耐熱性樹脂としては、ポリイミド、ポリアリレート、ポリスルホン、ポリアリールスルホン、芳香族ポリアミド、芳香族ポリエーテルアミド、ポリフェニレンスルフィド、ポリアリールエーテルケトン、ポリアミドイミド、液晶性ポリエステル等が挙げられる。
The metal foil with resin obtained in the present invention can be easily laminated with another substrate because the surface of the F resin layer is excellent in homogeneity and hardly warps.
Examples of the other substrate include a heat resistant resin film, a prepreg as a precursor of a fiber reinforced resin plate, a laminate having a heat resistant resin film layer, and a laminate having a prepreg layer.
A prepreg is a sheet-like substrate obtained by impregnating a base material (tow, woven fabric, etc.) of a reinforcing fiber (glass fiber, carbon fiber, etc.) with a thermosetting resin or a thermoplastic resin.
The heat resistant resin film is a film including one or more kinds of heat resistant resins, and may be a single layer film or a multilayer film.
Examples of the heat resistant resin include polyimide, polyarylate, polysulfone, polyarylsulfone, aromatic polyamide, aromatic polyetheramide, polyphenylene sulfide, polyaryletherketone, polyamideimide, and liquid crystalline polyester.
 本発明における樹脂付金属箔のF樹脂層の表面に他の基材を積層する方法としては、樹脂付金属箔と他の基板とを熱プレスする方法が挙げられる。
 他の基板がプリプレグの場合のプレス温度は、TFE系ポリマーの融点以下が好ましく、120~300℃がより好ましく、160~220℃が特に好ましい。この範囲において、プリプレグの熱劣化を抑制しつつ、F樹脂層とプリプレグを強固に接着できる。
 基板が耐熱性樹脂フィルムの場合のプレス温度は、310~400℃が好ましい。この範囲において、耐熱性樹脂フィルムの熱劣化を抑制しつつ、F樹脂層と耐熱性樹脂フィルムを強固に接着できる。
Examples of the method of laminating another base material on the surface of the F resin layer of the resin-coated metal foil in the present invention include a method of hot pressing the resin-coated metal foil and another substrate.
When the other substrate is a prepreg, the press temperature is preferably not higher than the melting point of the TFE polymer, more preferably 120 to 300 ° C, and particularly preferably 160 to 220 ° C. In this range, the F resin layer and the prepreg can be firmly bonded while suppressing thermal degradation of the prepreg.
When the substrate is a heat resistant resin film, the pressing temperature is preferably 310 to 400 ° C. In this range, the F resin layer and the heat resistant resin film can be firmly bonded while suppressing the thermal deterioration of the heat resistant resin film.
 熱プレスは、減圧雰囲気下で行うことが好ましく、20kPa以下の真空度で行うのが特に好ましい。この範囲において、積層体におけるF樹脂層、基板、金属箔それぞれの界面への気泡混入が抑制でき、酸化による劣化を抑制できる。
 また、熱プレス時は前記真空度に到達した後に昇温することが好ましい。前記真空度に到達する前に昇温すると、F樹脂層が軟化した状態、すなわち一定程度の流動性、密着性がある状態にて圧着されてしまい、気泡の原因となる。
 熱プレスにおける圧力は、0.2MPa以上が好ましい。また、圧力の上限は、10MPa以下が好ましい。この範囲において、基板の破損を抑制しつつ、F樹脂層と基板とを強固に密着できる。
The hot pressing is preferably performed under a reduced pressure atmosphere, and particularly preferably performed at a vacuum degree of 20 kPa or less. In this range, air bubbles can be prevented from entering the interfaces of the F resin layer, the substrate, and the metal foil in the laminate, and deterioration due to oxidation can be suppressed.
Moreover, it is preferable to raise the temperature after reaching the vacuum degree during hot pressing. If the temperature is raised before reaching the degree of vacuum, the F resin layer is compressed in a softened state, that is, in a state with a certain degree of fluidity and adhesion, which causes bubbles.
The pressure in the hot press is preferably 0.2 MPa or more. The upper limit of the pressure is preferably 10 MPa or less. In this range, the F resin layer and the substrate can be firmly adhered while suppressing breakage of the substrate.
 本発明における樹脂付金属箔やその積層体は、フレキシブル銅張積層板やリジッド銅張積層板として、プリント基板の製造に使用できる。
 例えば、本発明における樹脂付金属箔の金属箔をエッチング等によって所定のパターンの導体回路(パターン回路)に加工する方法や、本発明における樹脂付金属箔を電解めっき法(セミアディティブ法(SAP法)、モディファイドセミアディティブ法(MSAP法)等。)によってパターン回路に加工する方法を使用すれば、本発明における樹脂付金属箔からプリント基板を製造できる。
 プリント基板の製造においては、パターン回路を形成した後に、パターン回路上に層間絶縁膜を形成し、層間絶縁膜上にさらにパターン回路を形成してもよい。層間絶縁膜は、例えば、本発明におけるパウダー分散液によって形成できる。
 プリント基板の製造においては、パターン回路上にソルダーレジストを積層してもよい。ソルダーレジストは、例えば、本発明におけるパウダー分散液によって形成できる。
 プリント基板の製造においては、パターン回路上にカバーレイフィルムを積層してもよい。カバーレイフィルムは、例えば、本発明におけるパウダー分散液によって形成できる。
The metal foil with resin and the laminate thereof in the present invention can be used as a flexible copper-clad laminate or a rigid copper-clad laminate for the production of printed boards.
For example, a method for processing a metal foil of a resin-coated metal foil in the present invention into a conductor circuit (pattern circuit) having a predetermined pattern by etching or the like, or an electroplating method (semi-additive method (SAP method) for resin-coated metal foil in the present invention. ), A modified semi-additive method (MSAP method, etc.)), a printed circuit board can be produced from the resin-coated metal foil in the present invention.
In manufacturing a printed circuit board, after forming a pattern circuit, an interlayer insulating film may be formed on the pattern circuit, and a pattern circuit may be further formed on the interlayer insulating film. The interlayer insulating film can be formed by, for example, the powder dispersion in the present invention.
In the production of a printed circuit board, a solder resist may be laminated on the pattern circuit. A solder resist can be formed with the powder dispersion liquid in this invention, for example.
In manufacturing a printed circuit board, a coverlay film may be laminated on the pattern circuit. The coverlay film can be formed by, for example, the powder dispersion in the present invention.
 以下、実施例によって本発明を詳細に説明するが、本発明はこれらに限定されない。
 各種測定方法を以下に示す。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these.
Various measurement methods are shown below.
 <ポリマーの融点>
 示差走査熱量計(セイコーインスツル社製、DSC-7020)を用い、TFE系ポリマーを10℃/分の速度で昇温させて測定した。
 <ポリマーの貯蔵弾性率>
 ISO 6721-4:1994(JIS K7244-4:1999)に基づき、動的粘弾性測定装置(DMS6100、SIIナノテクノロジー社製。)を用い、周波数10Hz、静的力0.98N、動的変位0.035%の条件にて、2℃/分の速度で、温度を20℃から上昇させ、260℃における貯蔵弾性率を測定した。
 <パウダーのD50及びD90>
 レーザー回折・散乱式粒度分布測定装置(堀場製作所社製、LA-920測定器)を用い、パウダーを水中に分散させて測定した。
<Melting point of polymer>
Using a differential scanning calorimeter (Seiko Instruments, DSC-7020), the TFE polymer was heated at a rate of 10 ° C./min and measured.
<Storage modulus of polymer>
Based on ISO 6721-4: 1994 (JIS K7244-4: 1999), using a dynamic viscoelasticity measuring device (DMS6100, manufactured by SII Nanotechnology), frequency 10 Hz, static force 0.98 N, dynamic displacement 0 The temperature was increased from 20 ° C. at a rate of 2 ° C./min under the condition of 0.035%, and the storage elastic modulus at 260 ° C. was measured.
<D50 and D90 of powder>
Using a laser diffraction / scattering particle size distribution measuring device (LA-920 measuring instrument, manufactured by Horiba, Ltd.), the powder was dispersed in water and measured.
 <樹脂層の均質性>
 光照射した樹脂層を斜め上方から目視し、下記基準で評価した。
 ○:模様が確認されない。
 △:ゆず肌の模様が確認される。
 ×:ゆず肌の模様が確認され、端部を中心に樹脂欠落が確認される。
 <樹脂付金属箔の反り率>
 樹脂付金属箔から180mm角の四角い試験片を切り出し、試験片についてJIS C6471:1995に規定される測定方法にしたがって測定した。
 ○:樹脂付金属箔の反り率が、5%以下である。
 △:樹脂付金属箔の反り率が、5%超7%以下である。
 ×:樹脂付金属箔の反り率が、7%超である。
<Homogeneity of resin layer>
The resin layer irradiated with light was visually observed from above and evaluated according to the following criteria.
○: The pattern is not confirmed.
Δ: Yuzu skin pattern is confirmed.
X: The pattern of a yuzu skin is confirmed and resin omission is confirmed centering on an edge part.
<Curved ratio of metal foil with resin>
A 180 mm square test piece was cut out from the metal foil with resin, and the test piece was measured according to the measurement method defined in JIS C6471: 1995.
(Circle): The curvature rate of metal foil with resin is 5% or less.
(Triangle | delta): The curvature rate of metal foil with resin is more than 5% and 7% or less.
X: The curvature rate of the resin-attached metal foil is more than 7%.
[TFE系ポリマー]
 ポリマー1:TFEに基づく単位、NAHに基づく単位及びPPVEに基づく単位を、この順に97.9モル%、0.1モル%、2.0モル%含むコポリマーであり、融点が300℃であり、260℃における貯蔵弾性率が1.1MPaである、ポリマー。
 ポリマー2:TFEに基づく単位及びPPVEに基づく単位を、この順に98モル%、2モル%含むコポリマーであり、融点310℃であり、260℃における貯蔵弾性率が4.8MPaである、ポリマー。
 ポリマー3:TFEに基づく単位及びHFPに基づく単位を、この順に82モル%、18モル%含むコポリマーであり、融点265℃であり、260℃における貯蔵弾性率が0.5MPaである、ポリマー。
 ポリマー4:TFEに基づく単位を99.5モル%以上含むポリマーであり、融点320℃超であり、260℃における貯蔵弾性率が5.0MPa超であるポリマー。
[TFE polymer]
Polymer 1: a copolymer containing 97.9 mol%, 0.1 mol%, and 2.0 mol% of units based on TFE, NAH, and PPVE in this order, and has a melting point of 300 ° C. A polymer having a storage elastic modulus at 260 ° C. of 1.1 MPa.
Polymer 2: A polymer containing 98 mol% and 2 mol% of units based on TFE and PPVE in this order, a melting point of 310 ° C, and a storage modulus at 260 ° C of 4.8 MPa.
Polymer 3: A copolymer having 82 mol% and 18 mol% of units based on TFE and HFP in this order, a melting point of 265 ° C., and a storage elastic modulus at 260 ° C. of 0.5 MPa.
Polymer 4: A polymer containing 99.5 mol% or more of units based on TFE, a melting point of over 320 ° C., and a storage elastic modulus at 260 ° C. of over 5.0 MPa.
[分散剤]
 分散剤1:ペルフルオロアルケニル基を有するアクリレートとポリオキシエチレン基及びアルコール性水酸基を有するアクリレートのコポリマー(ノニオン性界面活性剤)。
[金属箔]
 銅箔1:厚さ12μmの低粗化銅箔(表面の十点平均粗さ0.6μm)。
[Dispersant]
Dispersant 1: A copolymer of an acrylate having a perfluoroalkenyl group, an acrylate having a polyoxyethylene group and an alcoholic hydroxyl group (nonionic surfactant).
[Metal foil]
Copper foil 1: Low-roughened copper foil having a thickness of 12 μm (10-point average roughness of the surface is 0.6 μm).
[パウダー]
 パウダー1:D50が1.7μm、D90が3.8μmのポリマー1のパウダー(疎充填嵩密度0.269g/mL、密充填嵩密度0.315g/mL。)。
 パウダー2:D50が2.4μm、D90が5.5μmのポリマー2のパウダー。
 パウダー3:D50が3.1μm、D90が5.9μmのポリマー3のパウダー。
 パウダー4:D50が0.3μm、D90が0.6μmのポリマー4のパウダー。
[powder]
Powder 1: Powder of polymer 1 having D50 of 1.7 μm and D90 of 3.8 μm (sparsely packed bulk density 0.269 g / mL, densely packed bulk density 0.315 g / mL).
Powder 2: Powder of polymer 2 having D50 of 2.4 μm and D90 of 5.5 μm.
Powder 3: Powder of polymer 3 having D50 of 3.1 μm and D90 of 5.9 μm.
Powder 4: Powder of polymer 4 having D50 of 0.3 μm and D90 of 0.6 μm.
[例1]
 パウダー1の50質量部、分散剤1の5質量部、N-メチルピロリドンの45質量部を混合して分散液1を調製した。
 銅箔1の表面にダイコーターを用いて分散液1を塗布し、銅箔1を通風乾燥炉(雰囲気温度:260℃、雰囲気ガス:酸素ガス濃度8000ppmの窒素ガス。)に通して1分間保持し、遠赤外線炉(温度:340℃、ガス:酸素ガス濃度100ppm未満の窒素ガス。)にさらに通して1分間保持し、銅箔1の表面にポリマー1の樹脂層(厚さ5μm)を有する樹脂付銅箔を得た。樹脂層の均質性、樹脂付金属箔の反り率に関する評価結果を、下表1に示す。
[Example 1]
Dispersion 1 was prepared by mixing 50 parts by mass of powder 1, 5 parts by mass of dispersant 1, and 45 parts by mass of N-methylpyrrolidone.
Dispersion 1 is applied to the surface of copper foil 1 using a die coater, and the copper foil 1 is passed through a ventilation drying oven (atmosphere temperature: 260 ° C., atmosphere gas: nitrogen gas having an oxygen gas concentration of 8000 ppm) and held for 1 minute. Then, it is further passed through a far-infrared furnace (temperature: 340 ° C., gas: nitrogen gas having an oxygen gas concentration of less than 100 ppm) and held for 1 minute, and has a resin layer (thickness 5 μm) of polymer 1 on the surface of copper foil A copper foil with resin was obtained. The evaluation results regarding the homogeneity of the resin layer and the warpage rate of the metal foil with resin are shown in Table 1 below.
[例2~5]
 パウダー、通風乾燥炉の雰囲気温度を変更する以外は、例1と同様にして樹脂付銅箔を得て、それぞれの評価をした。結果をまとめて下表1に示す。
Figure JPOXMLDOC01-appb-T000001
[Examples 2 to 5]
Except changing the atmosphere temperature of a powder and a ventilation drying furnace, it carried out similarly to Example 1, obtained the copper foil with resin, and evaluated each. The results are summarized in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
 本発明の製造方法は、フルオロポリマーを含む、高均質性な樹脂層を有し、反りにくい樹脂付金属箔の製造に適した方法であり、プリント基板等の製造に有用である。
 なお、2018年05月30日に出願された日本特許出願2018-104010号の明細書、特許請求の範囲及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The production method of the present invention is a method suitable for production of a metal foil with resin having a highly homogeneous resin layer containing a fluoropolymer and hardly warping, and is useful for production of a printed circuit board or the like.
The entire contents of the specification, claims and abstract of Japanese Patent Application No. 2018-104010 filed on May 30, 2018 are incorporated herein by reference as the disclosure of the specification of the present invention. It is.

Claims (15)

  1.  金属箔の表面に樹脂層を有する樹脂付金属箔の製造方法であり、0.1~5.0MPaの貯蔵弾性率を示す温度領域を260℃以下に有し、かつ融点が260℃超のテトラフルオロエチレン系ポリマーのパウダーと溶媒とを含むパウダー分散液を金属箔の表面に塗布し、前記温度領域内の温度に金属箔を保持し、さらに前記温度領域超の温度にてテトラフルオロエチレン系ポリマーを焼成させて金属箔の表面にテトラフルオロエチレン系ポリマーを含む樹脂層を形成する、樹脂付金属箔の製造方法。 A process for producing a resin-coated metal foil having a resin layer on the surface of the metal foil, having a temperature region showing a storage elastic modulus of 0.1 to 5.0 MPa at 260 ° C. or less and having a melting point of more than 260 ° C. A powder dispersion containing a powder of fluoroethylene polymer and a solvent is applied to the surface of the metal foil, the metal foil is held at a temperature within the temperature range, and the tetrafluoroethylene polymer is further maintained at a temperature above the temperature range. A method for producing a metal foil with a resin, in which a resin layer containing a tetrafluoroethylene-based polymer is formed on the surface of the metal foil by baking the resin.
  2.  樹脂付金属箔の反り率が、7%以下である、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the warp rate of the resin-attached metal foil is 7% or less.
  3.  金属箔の厚さが、2~40μmである、請求項1又は2に記載の製造方法。 The manufacturing method according to claim 1 or 2, wherein the thickness of the metal foil is 2 to 40 µm.
  4.  樹脂層の厚さが、1~50μmである、請求項1~3のいずれか1項に記載の製造方法。 4. The production method according to claim 1, wherein the resin layer has a thickness of 1 to 50 μm.
  5.  金属箔の厚さが2~20μmであり、樹脂層の厚さが1μm以上10μm未満である、請求項1~4のいずれか1項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 4, wherein the thickness of the metal foil is 2 to 20 µm, and the thickness of the resin layer is 1 µm or more and less than 10 µm.
  6.  パウダーの体積基準累積50%径が、0.05~6.0μmである、請求項1~5のいずれか1項に記載の製造方法。 6. The production method according to claim 1, wherein the powder has a volume-based cumulative 50% diameter of 0.05 to 6.0 μm.
  7.  テトラフルオロエチレン系ポリマーが、テトラフルオロエチレンに基づく単位と、ペルフルオロ(アルキルビニルエーテル)、ヘキサフルオロプロピレン及びフルオロアルキルエチレンからなる群から選ばれる少なくとも1種のモノマーに基づく単位とを含むポリマーである、請求項1~6のいずれか1項に記載の製造方法。 The tetrafluoroethylene-based polymer is a polymer comprising units based on tetrafluoroethylene and units based on at least one monomer selected from the group consisting of perfluoro (alkyl vinyl ether), hexafluoropropylene and fluoroalkylethylene. Item 7. The production method according to any one of Items 1 to 6.
  8.  テトラフルオロエチレン系ポリマーが、カルボニル基含有基、ヒドロキシ基、エポキシ基、アミド基、アミノ基及びイソシアネート基からなる群から選ばれる少なくとも1種の官能基を有する、請求項1~7のいずれか1項に記載の製造方法。 The tetrafluoroethylene-based polymer has at least one functional group selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group, an amide group, an amino group, and an isocyanate group. The production method according to item.
  9.  パウダー分散液が、ポリマー状ポリオールを含む、請求項1~8のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 8, wherein the powder dispersion contains a polymeric polyol.
  10.  前記温度領域に金属箔を保持する時間が、30秒~5分である、請求項1~9のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 9, wherein a time for holding the metal foil in the temperature region is 30 seconds to 5 minutes.
  11.  前記温度領域に金属箔を保持する際の雰囲気が、酸素ガスを含む雰囲気である、請求項1~10のいずれか1項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 10, wherein the atmosphere when holding the metal foil in the temperature region is an atmosphere containing oxygen gas.
  12.  テトラフルオロエチレン系ポリマーを焼成させる際の温度が、320℃超である、請求項1~11のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 11, wherein a temperature at which the tetrafluoroethylene-based polymer is calcined is more than 320 ° C.
  13.  厚さが2~20μmの金属箔の表面に厚さが1μm以上10μm未満の樹脂層を有し、前記樹脂層がテトラフルオロエチレンに基づく単位とペルフルオロ(アルキルビニルエーテル)、ヘキサフルオロプロピレン及びフルオロアルキルエチレンからなる群から選ばれる少なくとも1種のモノマーに基づく単位とを含むポリマーを含み、反り率が7%以下である、樹脂付金属箔。 A metal foil having a thickness of 2 to 20 μm has a resin layer with a thickness of 1 μm or more and less than 10 μm, and the resin layer is composed of units based on tetrafluoroethylene, perfluoro (alkyl vinyl ether), hexafluoropropylene and fluoroalkylethylene. A resin-attached metal foil comprising a polymer containing a unit based on at least one monomer selected from the group consisting of: and a warpage rate of 7% or less.
  14.  反り率が、5%以下である、請求項13に記載の樹脂付金属箔。 The metal foil with a resin according to claim 13, wherein the warpage rate is 5% or less.
  15.  請求項1~12のいずれか1項に記載の製造方法で樹脂付金属箔を製造し、前記金属箔をエッチングしてパターン回路を形成する、プリント基板の製造方法。 A method for producing a printed circuit board, wherein a metal foil with resin is produced by the production method according to any one of claims 1 to 12, and the metal foil is etched to form a pattern circuit.
PCT/JP2019/020533 2018-05-30 2019-05-23 Method for producing resin-clad metal foil, and resin-clad metal foil WO2019230568A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980035404.5A CN112203844B (en) 2018-05-30 2019-05-23 Method for producing resin-coated metal foil and resin-coated metal foil
KR1020207029078A KR20210016327A (en) 2018-05-30 2019-05-23 Manufacturing method of metal foil with resin and metal foil with resin
JP2020522145A JP7167983B2 (en) 2018-05-30 2019-05-23 METHOD FOR MANUFACTURING METAL FOIL WITH RESIN AND METAL FOIL WITH RESIN

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018104010 2018-05-30
JP2018-104010 2018-05-30

Publications (1)

Publication Number Publication Date
WO2019230568A1 true WO2019230568A1 (en) 2019-12-05

Family

ID=68698818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020533 WO2019230568A1 (en) 2018-05-30 2019-05-23 Method for producing resin-clad metal foil, and resin-clad metal foil

Country Status (5)

Country Link
JP (1) JP7167983B2 (en)
KR (1) KR20210016327A (en)
CN (1) CN112203844B (en)
TW (1) TWI820138B (en)
WO (1) WO2019230568A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022230566A1 (en) * 2021-04-27 2022-11-03 国立大学法人 東京大学 Bonded body, substrate, method for producing bonded body, and method for producing substrate
US11781004B2 (en) 2019-11-04 2023-10-10 3M Innovative Properties Company Electronic telecommunications articles comprising crosslinked fluoropolymers and methods
US11866602B2 (en) 2018-06-12 2024-01-09 3M Innovative Properties Company Fluoropolymer compositions comprising fluorinated additives, coated substrates and methods

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008018400A1 (en) * 2006-08-09 2008-02-14 Sumitomo Electric Fine Polymer, Inc. Fluororesin membrane, fluororesin composite, porous fluororesin composite, processes for production of them, and separation membrane element
WO2015182696A1 (en) * 2014-05-29 2015-12-03 住友電気工業株式会社 Fluororesin base material and flexible printed circuit board
WO2017030190A1 (en) * 2015-08-20 2017-02-23 旭硝子株式会社 Multilayer base and method for producing molded body of same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5719014B1 (en) * 2013-12-06 2015-05-13 共栄社化学株式会社 Dispersant for fluoropolymer
WO2016159102A1 (en) 2015-04-01 2016-10-06 三菱鉛筆株式会社 Nonaqueous dispersion containing fluorine-based resin; polyimide precursor solution composition containing fluorine-based resin; polyimide, polyimide film and adhesive composition for circuit boards, each using said polyimide precursor solution composition containing fluorine-based resin; and production methods thereof
JP6904347B2 (en) * 2016-06-23 2021-07-14 Agc株式会社 Method for Producing Liquid Composition Containing Fluororesin Powder
EP3489299A4 (en) * 2016-07-22 2020-01-08 Agc Inc. Liquid composition, and method for manufacturing film and layered body using same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008018400A1 (en) * 2006-08-09 2008-02-14 Sumitomo Electric Fine Polymer, Inc. Fluororesin membrane, fluororesin composite, porous fluororesin composite, processes for production of them, and separation membrane element
WO2015182696A1 (en) * 2014-05-29 2015-12-03 住友電気工業株式会社 Fluororesin base material and flexible printed circuit board
WO2017030190A1 (en) * 2015-08-20 2017-02-23 旭硝子株式会社 Multilayer base and method for producing molded body of same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11866602B2 (en) 2018-06-12 2024-01-09 3M Innovative Properties Company Fluoropolymer compositions comprising fluorinated additives, coated substrates and methods
US11781004B2 (en) 2019-11-04 2023-10-10 3M Innovative Properties Company Electronic telecommunications articles comprising crosslinked fluoropolymers and methods
WO2022230566A1 (en) * 2021-04-27 2022-11-03 国立大学法人 東京大学 Bonded body, substrate, method for producing bonded body, and method for producing substrate
JP2022169444A (en) * 2021-04-27 2022-11-09 国立大学法人 東京大学 Joined body, substrate, method for manufacturing joined body, and method for manufacturing substrate
JP7191350B2 (en) 2021-04-27 2022-12-19 国立大学法人 東京大学 Bonded body, substrate, bonded body manufacturing method, and substrate manufacturing method

Also Published As

Publication number Publication date
JPWO2019230568A1 (en) 2021-07-08
JP7167983B2 (en) 2022-11-09
TW202003234A (en) 2020-01-16
CN112203844A (en) 2021-01-08
TWI820138B (en) 2023-11-01
CN112203844B (en) 2023-07-28
KR20210016327A (en) 2021-02-15

Similar Documents

Publication Publication Date Title
JP7396403B2 (en) Liquid composition and method for producing films and laminates using the liquid composition
JP7234921B2 (en) HOT PRESS LAMINATED AND METHOD FOR MANUFACTURING HOT PRESS LAMINATED
JP7435462B2 (en) dispersion liquid
JP7196914B2 (en) METAL FOIL WITH RESIN, METHOD FOR MANUFACTURING LAMINATED BOARD, LAMINATED BOARD AND PRINTED BOARD
JP7363818B2 (en) Powder dispersion, laminate and printed circuit board
CN112236473B (en) Dispersion liquid, method for producing resin-containing metal foil, and method for producing printed board
JP7167983B2 (en) METHOD FOR MANUFACTURING METAL FOIL WITH RESIN AND METAL FOIL WITH RESIN
JP7243724B2 (en) metal foil with resin
JP7400722B2 (en) Laminate, printed circuit board and manufacturing method thereof
JP7176533B2 (en) Method for manufacturing resin-coated metal foil
JP2020070401A (en) Dispersion liquid
JP2020083990A (en) Manufacturing method of composite, and composite
JPWO2020171024A1 (en) Laminated body and manufacturing method of the laminated body
JP2020093196A (en) Method of manufacturing treated metal substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19811646

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020522145

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19811646

Country of ref document: EP

Kind code of ref document: A1