WO2019230555A1 - Cascode-type amplifier and wireless communication device - Google Patents

Cascode-type amplifier and wireless communication device Download PDF

Info

Publication number
WO2019230555A1
WO2019230555A1 PCT/JP2019/020448 JP2019020448W WO2019230555A1 WO 2019230555 A1 WO2019230555 A1 WO 2019230555A1 JP 2019020448 W JP2019020448 W JP 2019020448W WO 2019230555 A1 WO2019230555 A1 WO 2019230555A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
type
gate
resistor
cascode amplifier
Prior art date
Application number
PCT/JP2019/020448
Other languages
French (fr)
Japanese (ja)
Inventor
真一 堀
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2020522139A priority Critical patent/JP6981548B2/en
Publication of WO2019230555A1 publication Critical patent/WO2019230555A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/08Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements
    • H03F1/22Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements by use of cascode coupling, i.e. earthed cathode or emitter stage followed by earthed grid or base stage respectively
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/217Class D power amplifiers; Switching amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors

Definitions

  • the present invention relates to a cascode amplifier and a radio communication device, and more particularly, to a broadband cascode amplifier.
  • a transmission unit of a wireless communication device such as a mobile phone or a wireless LAN (Local Area Network) is required to operate with low power consumption while ensuring the accuracy of a transmission signal regardless of the magnitude of output power.
  • the power amplifier at the final stage of the transmission unit of the wireless communication device occupies 50% or more of the power consumption of the entire wireless communication device, and thus is required to have high power efficiency.
  • switching amplifiers have attracted attention as power amplifiers that are expected to have high power efficiency.
  • This switching amplifier assumes a pulse waveform signal as an input signal, and can amplify power while maintaining the waveform of the input signal.
  • the pulse waveform signal amplified by the switching amplifier is radiated from the antenna into the air after sufficiently suppressing frequency components other than the desired frequency component by the filter element.
  • Patent Document 1 relates to such a switching amplifier, and is based on a class D amplifier in which two switch elements are inserted in series between a power source and a ground (GND) and a connection point of the switch elements is an output terminal. Switching amplifiers have been proposed. In the switching amplifier of Patent Document 1, complementary pulse signals are input to the two switch elements, and only one of the two switch elements is controlled to be in the ON state. Further, in Patent Document 1, as a circuit technique for improving the withstand voltage of a class D amplifier to be higher than the withstand voltage of a switch element constituting the class D amplifier, it is called a cascode amplifier in which a cascode transistor is inserted between each switch element and an output terminal. A configuration is proposed. However, in Patent Document 1, there is no specific configuration that maintains the voltage applied to the inserted cascode transistor below the breakdown voltage.
  • Non-Patent Document 1 relates to a millimeter-wave high-power DAC (Digital-to-Analog Converter) transmitter, and a D-class CMOS (Complementary Metal-Oxide Semiconductor) amplifier in the output stage has been proposed.
  • CMOS Complementary Metal-Oxide Semiconductor
  • a high gain D is obtained by using circuit elements such as resistors, capacitors, and inductors constituting the class D CMOS amplifier for input signals having frequencies of 45 GHz, 90 GHz, 110 GHz, and 138 GHz.
  • Class CMOS amplifier can be realized.
  • FIG. 18 is a circuit diagram showing an example of a cascode amplifier having a circuit configuration similar to that of the output stage class D CMOS amplifier proposed by Non-Patent Document 1.
  • the cascode amplifier in FIG. 18 is an amplifier that inverts and amplifies a sine wave that changes between 1 V and 0 V, for example, from a signal source.
  • the cascode amplifier in FIG. 18 includes a P-type first transistor MP11 that inputs a signal obtained by level-shifting an input signal by a fourth power supply V4 (V DD ⁇ 3) to the gate, and between the first transistor MP11 and the output terminal.
  • P-type second transistor MP12, third transistor MP13, and fourth transistor MP14 connected in cascade.
  • the 18 includes an N-type first transistor MN11 that inputs an input signal to the gate, an N-type second transistor MN12 that is connected in cascade between the first transistor MN11 and the output terminal, A transistor MN13 and a fourth transistor MN14 are included.
  • the first transistor MP11, the second transistor MP12, the third transistor MP13, the fourth transistor MP14, the first transistor MN11, the second transistor MN12, the third transistor MN13, and the fourth transistor MN14 are connected to the second power source V2 (V DD ⁇ 4) and the third power supply V3 (GND) are connected in cascade.
  • the cascode amplifier of FIG. 18 includes a capacitor connected between the gate terminal of the cascode transistor and GND.
  • a sine wave input signal that changes between 1 V and 0 V, for example, from a signal source is inverted and amplified, and a sine wave output signal that changes between 0 V and 4 V from the output terminal.
  • the voltage applied to the cascode transistors constituting the cascode amplifier can be biased by a resistor connected between the gates of adjacent cascode transistors while maintaining the voltage below the breakdown voltage.
  • the admittance of this capacitance and the drain ⁇ can be designed to an appropriate value so that the potential difference between the drain and gate falls within the breakdown voltage. Note that the admittance of the resistor connected to the gate terminal is required to be designed to a value that is negligibly small compared to each capacitor.
  • Patent Document 2 relates to a traveling wave amplifier in which a plurality of differential amplifiers are connected in parallel to each other with a delay element interposed therebetween, and a collector output of a cascode transistor is fed back to a base input via a resistance voltage dividing circuit. It has been proposed to configure such that.
  • the switching amplifier Assuming application of a switching amplifier to a 5G base station for wireless communication, the switching amplifier is required to be able to amplify a wide band 1-bit modulation signal up to 20 Gbps, for example.
  • the capacitance of a capacitor connected to the gate of each cascode transistor is set to specify a high frequency region.
  • it can be designed so that the potential between terminals of each transistor is within the device breakdown voltage.
  • the admittance of the drain-gate capacitance of the transistor is small, and even if the admittance of the resistor connected to the gate is small, the amplitude of the drain terminal may be large.
  • the amplitude of the gate is small, and a potential that exceeds the device breakdown voltage is generated between the drain and gate terminals.
  • An object of the present invention is to provide a cascode amplifier and a wireless communication device that realize a wide band from a direct current to a high frequency region while maintaining a voltage applied to a component below a withstand voltage.
  • a cascode amplifier comprises: A cascode amplifier including a plurality of transistors, Includes a configuration in which the output signal is divided into resistors and fed back to the gate of the cascode transistor.
  • a wireless communication device The cascode amplifier, and An antenna connected to the output of the cascode amplifier; including.
  • FIG. 1 is a circuit block of the feedback circuit of FIG. 1 and the like
  • (b) is a circuit diagram showing a specific configuration example 1 of the feedback circuit of (a)
  • (c) is a circuit diagram of the feedback circuit of (a).
  • FIG. 2nd Embodiment It is a circuit diagram for demonstrating the cascode type
  • FIG. 1 is a circuit diagram for explaining an embodiment of a cascode amplifier according to a superordinate concept of the present invention.
  • the cascode amplifier 10 in FIG. 1 is a cascode amplifier including a plurality of transistors, and includes a configuration in which an output signal is resistance-divided and fed back to the gate of the cascode transistor.
  • the cascode amplifier 10 of FIG. 1 includes a first conductivity type first transistor M1 in which an input signal from an input terminal is input to a gate, and a first conductivity type cascaded between the first transistor M1 and an output terminal. Second transistor M2. Further, the cascode amplifier 10 of FIG. 1 includes a second conductivity type third transistor M3 whose gate is an input signal from the input terminal, and a second conductivity type connected in cascade between the third transistor M3 and the output terminal. Type fourth transistor M4.
  • the cascode amplifier 10 of FIG. 1 is connected between the first resistor R1 connected between the first node N and the gate of the first transistor M1, and between the gate of the first transistor M1 and the second power supply V2.
  • Second resistor R2. 1 is connected between the first node N and the gate of the third transistor M3, and between the gate of the third transistor M3 and the third power supply V3.
  • a fourth resistor R4 is connected between the first resistor R1 connected between the first node N and the gate of the first transistor M1, and between the gate of the first transistor M1 and the second power supply V2.
  • the cascode amplifier 10 of FIG. 1 includes a configuration in which an output signal is fed back to the gate of the second transistor M2 and the gate of the fourth transistor M4 through a feedback circuit.
  • the feedback circuit is configured by a resistance divider circuit, attenuates the output signal by resistance division, and feeds back to each gate terminal of the second transistor M2 / fourth transistor M4.
  • the feedback circuit may have a circuit configuration as shown in (b) of FIG. 2 or (c) of FIG. 2A is a circuit block of the feedback circuit of FIG. 1 and the like, and FIG. 2B is a circuit diagram showing a specific configuration example 1 of the feedback circuit of FIG. (C) of FIG. 2 is a circuit diagram showing a specific configuration example 2 of the feedback circuit of FIG. 2 (a).
  • the first to fourth resistors R1 to R4 change the gate-source voltages and the gate-to-drain voltages of the first to fourth transistors M1 to M4 included in the cascode amplifier 10, respectively. It can be kept below the element breakdown voltage of the four transistors M4, and the first to fourth transistors M1 to M4 can be prevented from being destroyed.
  • the feedback circuit of the cascode amplifier 10 of FIG. 1, the first resistor R1, the second resistor R2, the third resistor R3, the fourth resistor R4, etc. do not have frequency characteristics.
  • the cascode amplifier can be widened while maintaining the breakdown voltage of the first transistor M1, the second transistor M2, the third transistor M3, and the fourth transistor M4 within an allowable range.
  • FIG. 3 is a circuit diagram for explaining the cascode amplifier according to the first embodiment.
  • FIG. 4 is an explanatory diagram for explaining signal waveforms of the cascode amplifier according to the first embodiment.
  • the cascode amplifier 1 of FIG. 3 includes a P-type first transistor MP11 as an example of a first conductivity type in which an input signal from an input terminal is input to a gate, and a cascade connection between the first transistor MP11 and the output terminal.
  • a P-type second transistor MP12, a third transistor MP13, and a fourth transistor MP14 are connected.
  • it is assumed that one of the two input signals is given to the gate of the P-type first transistor MP11 via the fourth power supply V4.
  • the cascode amplifier 1 of FIG. 3 includes an N-type first transistor MN11 as an example of a second conductivity type in which an input signal from an input terminal is input to the gate, an N-type first transistor MN11, and an output terminal.
  • N-type second transistor MN12, third transistor MN13, and fourth transistor MN14 connected in cascade.
  • the cascode amplifier 1 of FIG. 3 has a configuration in which the output signal of the cascode amplifier 1 is resistance-divided and fed back to the gate of each transistor.
  • the first resistor R11 connected between the output terminal and the first node N, and the first power supply V1 (V DD ⁇ 2) and the first node N are connected.
  • the second resistor R12 is included, and the output signal is divided into resistors and fed back to the gate of the cascode transistor.
  • the cascode amplifier 1 of FIG. 3 includes a third resistor R13, a fourth resistor R14, and a fifth resistor R15 connected in series between the first node N and the gate of the P-type first transistor MP11. Further, the cascode amplifier 1 of FIG. 3 includes a sixth resistor R16 connected between the gate of the P-type first transistor MP11 and the second power supply V2 (V DD ⁇ 4). Further, the cascode amplifier 1 of FIG. 3 includes a seventh resistor R17, an eighth resistor R18, and a ninth resistor R19 connected in series between the first node N and the gate of the N-type first transistor MN11. Further, the cascode amplifier 1 of FIG. 3 includes a tenth resistor R20 connected between the gate of the N-type first transistor MN11 and the third power supply V3 (GND).
  • connection point between the third resistor R13 and the fourth resistor R14 is connected to the gate of the P-type third transistor MP13, and the connection point between the fourth resistor R14 and the fifth resistor R15 is P It is connected to the gate of the second transistor MP12 of the type.
  • connection point between the seventh resistor R17 and the eighth resistor R18 is connected to the gate of the N-type third transistor MN13, and the connection point between the eighth resistor R18 and the ninth resistor R19 is N
  • the second transistor MN12 of the type is connected to the gate.
  • the source of the P-type first transistor MP11 is connected to the second power supply V2 (V DD ⁇ 4), and the source of the N-type first transistor MN11 is connected to the third power supply V3 (GND). Yes.
  • FIG. 4 shows a state in which the signal source 6 is connected to the input terminal of the cascode amplifier 1 of FIG.
  • the signal source 6 outputs a pulse signal of “0” or “1”, which is a 1-bit modulated signal in a wide band up to 20 Gbps, for example.
  • the element breakdown voltages of the P-type first transistor MP11 to the fourth transistor MP14 and the N-type first transistor MN11 to the fourth transistor MN14 are assumed to be 1 V as an example. In the following description, it is assumed that the power supply voltage V DD is set to a value equal to the element breakdown voltage and is 1V.
  • the first power supply V1 to the third power supply V3 output the following voltages with the power supply voltage V DD as a reference. That is, the first power supply V1 outputs a voltage of V DD ⁇ 2 that is twice the power supply voltage V DD .
  • the second power supply V2 outputs a voltage of V DD ⁇ 4 that is four times the power supply voltage V DD .
  • the fourth power supply V4 outputs a voltage of V DD ⁇ 3 that is three times the power supply voltage V DD .
  • the third power supply V3 is GND, and 0 V (V DD ⁇ 0) is given.
  • connection point between the cascaded N-type first transistor MN11 and the second transistor MN12 varies between 1V and 0V
  • the cascaded N-type second transistor MN12 and third transistor MN13 The connecting point of the N-type third transistor MN13 and the fourth transistor MN14 connected in cascade changes between 3V and 0V.
  • the potential at the connection point of the gate of the P-type fourth transistor MP14, the gate of the N-type fourth transistor MN14, the second resistor R12 in FIG. 3, and the first resistor R11 in FIG. 3 is between 3V and 1V. It changes with.
  • the output terminal of the cascode amplifier 1 in FIG. 4 outputs 4 V or 0 V in response to a pulse signal (0 V or 1 V) of “0” or “1” from the signal source 6.
  • the cascode amplifier 1 of FIG. 3 do not have frequency characteristics.
  • the cascode amplifier can be widened from a direct current to a high frequency region while maintaining the voltage applied to the P-type first transistor MP11 to the fourth transistor MP14 and the N-type first transistor MN11 to the fourth transistor MN14 below the breakdown voltage.
  • the cascode amplifier 1 of FIG. 3 three transistors are connected in cascade between the P-type first transistor MP11 and the output terminal, and three transistors are connected between the N-type first transistor MN11 and the output terminal.
  • the number of stages of transistors connected in cascade is not limited to this.
  • a transistor connected in cascade between a P-type first transistor MP11 and an output terminal, an N-type first transistor MN11, an output terminal For example, the number of transistors connected in cascade may be increased.
  • FIG. 5 is a circuit diagram for explaining a cascode amplifier according to the second embodiment.
  • FIG. 6 is an explanatory diagram for explaining a signal waveform of the cascode amplifier according to the second embodiment.
  • the cascode amplifier according to the second embodiment is a modification of the cascode amplifier according to the first embodiment. Elements similar to those of the cascode amplifier of the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the cascode amplifier 2 of FIG. 5 includes a P-type first transistor MP11 as an example of the first conductivity type, and a P-type cascaded connection between the first transistor MP11 and the output terminal.
  • the cascode amplifier 2 of FIG. 5 is connected in cascade between the N-type first transistor MN11 as an example of the second conductivity type, and the N-type first transistor MN11 and the output terminal.
  • the cascode amplifier 2 of FIG. 5 includes a first resistor R11 connected between the output terminal and the first node N, and between the first power supply V1 and the first node N. And a second resistor R12 connected thereto. Further, the cascode amplifier 2 of FIG. 5 includes a third resistor R13, a fourth resistor R14, and a fifth resistor R15 connected in series between the first node N and the gate of the P-type first transistor MP11. Further, the cascode amplifier 2 of FIG. 5 includes a sixth resistor R16 connected between the gate of the P-type first transistor MP11 and the second power supply V2. Further, the cascode amplifier 2 of FIG.
  • the cascode amplifier 2 of FIG. 5 includes a tenth resistor R20 connected between the gate of the N-type first transistor MN11 and the third power supply V3.
  • the first capacitor C1 connected between the gate of the P-type fourth transistor MP14 and GND is connected between the gate of the P-type third transistor MP13 and GND.
  • the fourth capacitor C4 connected between the gate of the N-type fourth transistor MN14 and GND and the gate connected to the gate of the N-type third transistor MN13 and GND.
  • a sixth capacitor C6 connected between the gate of the N-type second transistor MN12 and GND.
  • the first resistor R11 connected between the output terminal and the first node N, the first power supply V1 (V DD ⁇ 2), and the first node And a second resistor R12 connected to N, and realizes a configuration in which the output signal is resistance-divided and fed back to the gate of the cascode transistor.
  • This configuration corresponds to a specific configuration example 1 of the feedback circuit shown in FIG.
  • FIG. 6 shows a state where the signal source 6 is connected to the input terminal of the cascode amplifier 2 of FIG. As in the first embodiment, the signal source 6 outputs a pulse signal of “0” or “1”.
  • the element breakdown voltages of the P-type first transistor MP11 to the fourth transistor MP14 and the N-type first transistor MN11 to the fourth transistor MN14 are assumed to be 1 V as an example. In the following description, it is assumed that the power supply voltage V DD is set to a value equal to the element breakdown voltage and is 1V.
  • the first power supply V1 to the third power supply V3 output the following voltages with the power supply voltage V DD as a reference. That is, the first power supply V1 outputs a voltage of V DD ⁇ 2 that is twice the power supply voltage V DD .
  • the second power supply V2 outputs a voltage of V DD ⁇ 4 that is four times the power supply voltage V DD .
  • the fourth power supply V4 outputs a voltage of V DD ⁇ 3 that is three times the power supply voltage V DD .
  • the third power supply V3 is GND, and 0 V (V DD ⁇ 0) is given.
  • connection point between the cascaded N-type first transistor MN11 and the second transistor MN12 varies between 1V and 0V
  • the cascaded N-type second transistor MN12 and third transistor MN13 The connecting point of the N-type third transistor MN13 and the fourth transistor MN14 connected in cascade changes between 3V and 0V.
  • the potential at the connection point of the gate of the P-type fourth transistor MP14, the gate of the N-type fourth transistor MN14, the second resistor R12, and the first resistor R11 varies between 3V and 1V.
  • the output terminal of the cascode amplifier 2 in FIG. 6 outputs 4 V or 0 V in accordance with the pulse signal (0 V or 1 V) of “0” or “1” from the signal source 6.
  • the cascode amplifier 2 of FIG. 5 do not have frequency characteristics.
  • the cascode amplifier is widened from DC to high frequency while maintaining the element breakdown voltage of the P-type first transistor MP11 to fourth transistor MP14 and the N-type first transistor MN11 to fourth transistor MN14 within an allowable range. be able to.
  • a capacitor is inserted between the gate terminal of each transistor and GND. However, in the high frequency region, this capacitor is similar to the background art shown in FIG.
  • the cascode amplifier of FIG. 6 can cope with a higher frequency region.
  • the first capacitor C1 is connected to the gate of the P-type fourth transistor MP14
  • the second capacitor C2 is connected to the gate of the P-type third transistor MP13
  • a third capacitor C3 is connected to the second capacitor C3.
  • the fourth capacitor C4 is connected to the gate of the N-type fourth transistor MN14
  • the fifth capacitor C5 is connected to the gate of the N-type third transistor MN13
  • the N-type second transistor MN12 is connected.
  • a sixth capacitor C6 is connected to the gate.
  • the third capacitor C3 is connected to the gate of the P-type second transistor MP12 and divides the capacitance from the parasitic capacitance between the gate and the source of the P-type second transistor MP12 and the parasitic capacitance between the gate and the drain.
  • the combination of the resistance division by the fourth resistor R14 and the fifth resistor R15 and the capacitance division by the third capacitor C3 connected to the gate of the P-type second transistor MP12 gives to the gate of the P-type second transistor MP12. Voltage is stabilized.
  • the effect of the third capacitor C3 is the same in the first capacitor C1 connected to the gate of the P-type fourth transistor MP14 and the second capacitor C2 connected to the gate of the P-type third transistor MP13. .
  • the fourth capacitor C4 connected to the gate of the N-type fourth transistor MN14, the fifth capacitor C5 connected to the gate of the N-type third transistor MN13, and the gate of the N-type second transistor MN12 are connected.
  • the overall operation of the cascode amplifier 2 can be stabilized.
  • FIG. 7 is a circuit diagram for explaining the cascode amplifier according to the third embodiment.
  • the cascode amplifier according to the third embodiment is a modification of the cascode amplifier according to the first embodiment. Elements similar to those of the cascode amplifier of the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the cascode amplifier 3 in FIG. 7 includes a P-type first transistor MP11 as an example of the first conductivity type, and a P-type cascaded between the first transistor MP11 and the output terminal.
  • the cascode amplifier 3 of FIG. 7 is connected in cascade between the N-type first transistor MN11 as an example of the second conductivity type, and the N-type first transistor MN11 and the output terminal.
  • the cascode amplifier 3 of FIG. 7 includes a first resistor R11 connected between the output terminal and the first node N, a second resistor R12 connected to the first node N, ,including. Further, the cascode amplifier 3 of FIG. 7 includes a third resistor R13, a fourth resistor R14, and a fifth resistor R15 connected in series between the first node N and the gate of the P-type first transistor MP11. Further, the cascode amplifier 3 of FIG. 7 includes a sixth resistor R16 connected between the gate of the P-type first transistor MP11 and the second power supply V2. Further, the cascode amplifier 3 of FIG.
  • the cascode amplifier 3 in FIG. 7 includes a tenth resistor R20 connected between the gate of the N-type first transistor MN11 and the third power supply V3.
  • the cascode amplifier 3 of FIG. 7 includes an eleventh resistor R21 and a thirteenth resistor R23 connected in series between V DD ⁇ 4 and GND.
  • the second resistor R12 is connected between the first node N and the connection point of the eleventh resistor R21 and the thirteenth resistor R23 connected in series.
  • the cascode amplifier 3 in FIG. 7 includes a first resistor R11, a second resistor R12, an eleventh resistor R21, and a thirteenth resistor R23, and realizes a configuration in which the output signal is divided by resistance and fed back to the gate of the cascode transistor. doing.
  • This configuration corresponds to a specific configuration example 2 of the feedback circuit shown in FIG.
  • the cascode amplifier 3 of FIG. Since the resistor does not have frequency characteristics, the first resistor R11, second resistor R12, third resistor R13, seventh resistor R17, eleventh resistor R21, thirteenth resistor R23, etc. of the cascode amplifier 3 of FIG. Do not have.
  • the element breakdown voltages of the P-type first transistor MP11 to the fourth transistor MP14 and the N-type first transistor MN11 to the fourth transistor MN14 are set as in the first embodiment.
  • the cascode amplifier can be widened while maintaining within an allowable range.
  • the first power supply V1 (V1 (V) of the first embodiment and the second embodiment is obtained by resistance division of the eleventh resistor R21 and the thirteenth resistor R23 connected in series between V DD ⁇ 4 and GND. A voltage corresponding to DD ⁇ 2) is generated. As a result, a dedicated voltage source for the first power supply V1 (V DD ⁇ 2) can be omitted, and the power supply unit can be shared.
  • FIG. 8 is a circuit diagram for explaining a cascode amplifier according to the fourth embodiment.
  • the cascode amplifier according to the fourth embodiment is a modification of the cascode amplifier according to the second embodiment or the third embodiment. Elements similar to those of the cascode amplifiers of the second and third embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the cascode amplifier 4 of FIG. 8 includes a P-type first transistor MP11 as an example of the first conductivity type, and a P-type cascade connected between the first transistor MP11 and the output terminal.
  • the cascode amplifier 4 of FIG. 8 is connected in cascade between the N-type first transistor MN11 as an example of the second conductivity type, and the N-type first transistor MN11 and the output terminal.
  • the cascode amplifier 4 of FIG. 8 includes a first resistor R11 connected between the output terminal and the first node N, and a second resistor R12 connected to the first node N. ,including. Furthermore, the cascode amplifier 4 of FIG. 8 includes a third resistor R13, a fourth resistor R14, and a fifth resistor R15 connected in series between the first node N and the gate of the P-type first transistor MP11. Further, the cascode amplifier 4 of FIG. 8 includes a sixth resistor R16 connected between the gate of the P-type first transistor MP11 and the second power supply V2. Further, the cascode amplifier 4 of FIG.
  • the cascode amplifier 4 of FIG. 8 includes a tenth resistor R20 connected between the gate of the N-type first transistor MN11 and the third power supply V3.
  • the first capacitor C1 connected between the gate of the P-type fourth transistor MP14 and GND, and the P-type third transistor MP13.
  • a second capacitor C2 connected between the gate and GND; and a third capacitor C3 connected between the gate of the P-type second transistor MP12 and GND.
  • the fourth capacitor C4 connected between the gate of the N-type fourth transistor MN14 and GND, and the N-type third transistor MN13.
  • a fifth capacitor C5 connected between the gate and GND, and a sixth capacitor C6 connected between the gate of the N-type second transistor MN12 and GND.
  • the cascode amplifier 4 of FIG. 8 is different from the second embodiment in the connection of the second resistor R12.
  • the cascode amplifier 4 of FIG. 8 includes an eleventh resistor R21 and a thirteenth resistor R23 connected in series between V DD ⁇ 4 and GND.
  • the second resistor R12 is connected between the first node N and the connection point of the eleventh resistor R21 and the thirteenth resistor R23 connected in series.
  • the cascode amplifier 4 of FIG. 8 includes a first resistor R11, a second resistor R12, an eleventh resistor R21, and a thirteenth resistor R23.
  • a configuration for returning to the gate is realized. This configuration corresponds to a specific configuration example 2 of the feedback circuit shown in FIG.
  • the cascode amplifier 4 of FIG. Since the resistor does not have frequency characteristics, the first resistor R11, the second resistor R12, the third resistor R13, the seventh resistor R17, the eleventh resistor R21, the thirteenth resistor R23, etc. of the cascode amplifier 4 of FIG. Do not have.
  • the element breakdown voltages of the P-type first transistor MP11 to the fourth transistor MP14 and the N-type first transistor MN11 to the fourth transistor MN14 are set as in the first embodiment.
  • the cascode amplifier can be widened while maintaining within an allowable range.
  • the first power supply V1 (V1 (V) of the first embodiment and the second embodiment is obtained by resistance division of the eleventh resistor R21 and the thirteenth resistor R23 connected in series between V DD ⁇ 4 and GND. A voltage corresponding to DD ⁇ 2) is generated. As a result, a dedicated voltage source for the first power supply V1 (V DD ⁇ 2) can be omitted, and the power supply unit can be shared.
  • FIG. 9 is a circuit diagram for explaining the cascode amplifier according to the fifth embodiment.
  • the cascode amplifier of the fifth embodiment is a modification of the cascode amplifier of the fourth embodiment. Elements similar to those of the cascode amplifier of the fourth embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the cascode amplifier 5a of FIG. 9 includes a P-type first transistor MP11 as an example of the first conductivity type, and a P-type cascade connected between the first transistor MP11 and the output terminal.
  • the cascode amplifier 5a of FIG. 9 is connected in cascade between the N-type first transistor MN11 as an example of the second conductivity type, and the N-type first transistor MN11 and the output terminal.
  • the cascode amplifier 5a shown in FIG. further includes a feedback circuit connected between the output terminal and the first node N.
  • the cascode amplifier 5a shown in FIG. includes a third resistor R13, a fourth resistor R14, and a fifth resistor R15 connected in series between the first node N and the gate of the P-type first transistor MP11.
  • the cascode amplifier 5a of FIG. 9 includes a sixth resistor R16 connected between the gate of the P-type first transistor MP11 and the second power supply V2.
  • the cascode amplifier 5a of FIG. 9 includes a seventh resistor R17, an eighth resistor R18, and a ninth resistor R19 connected in series between the first node N and the gate of the N-type first transistor MN11.
  • the cascode amplifier 5a of FIG. 9 includes a tenth resistor R20 connected between the gate of the N-type first transistor MN11 and the third power supply V3.
  • the first capacitor C1 connected between the gate of the P-type fourth transistor MP14 and GND, and the P-type amplifier It includes a second capacitor C2 connected between the gate of the third transistor MP13 and GND, and a third capacitor C3 connected between the gate of the P-type second transistor MP12 and GND.
  • a fourth capacitor C4 connected between the gate of the N-type fourth transistor MN14 and GND It includes a fifth capacitor C5 connected between the gate of the third transistor MN13 and GND, and a sixth capacitor C6 connected between the gate of the N-type second transistor MN12 and GND.
  • the cascode amplifier 5a of FIG. 9 has a configuration in which the output signal of the cascode amplifier 5a is resistance-divided and fed back to the gate of the P-type fourth transistor MP14 and the gate of the N-type fourth transistor MN14.
  • the cascode amplifier 5a of FIG. 9 includes a feedback circuit connected between the output terminal and the gate of the P-type fourth transistor MP14 and the gate of the N-type fourth transistor MN14.
  • the feedback circuit shown in FIG. 2C used in the third and fourth embodiments can be used.
  • the cascode amplifier 5a of FIG. 9 includes a latch circuit LATCH1 connected to the gate of the P-type first transistor MP11, and an eleventh capacitor inserted between the input terminal and the gate of the P-type first transistor MP11. And C11.
  • the latch circuit LATCH1 is composed of a pair of inverter circuits in which inputs as shown in FIG. 9 are connected to outputs, for example.
  • the latch circuit LATCH1 holds a high level or low level voltage applied to the gate of the P-type first transistor MP11.
  • the second power supply V2 outputs a voltage of V DD ⁇ 4 that is four times the power supply voltage V DD .
  • the third power supply V3 is GND, and 0 V (V DD ⁇ 0) is given. 4V or 3V is applied to the gate of the P-type first transistor MP11 as a voltage obtained by resistance-dividing the second power supply V2 by the sixth resistor R16 of FIG.
  • connection point between the cascaded N-type first transistor MN11 and the second transistor MN12 varies between 1V and 0V
  • the cascaded N-type second transistor MN12 and third transistor MN13 The connecting point of the N-type third transistor MN13 and the fourth transistor MN14 connected in cascade changes between 3V and 0V.
  • the potential at the connection point of the gate of the P-type fourth transistor MP14, the gate of the N-type fourth transistor MN14, one end of the first capacitor C1, and one end of the fourth capacitor C4 varies between 3V and 1V. To do.
  • the output terminal of the cascode amplifier 5a in FIG. 9 outputs 4V or 0V according to the input “0” or “1” pulse signal (0V or 1V).
  • the feedback circuit of the cascode amplifier 5a of FIG. 9, the third resistor R13, the seventh resistor R17, and the like do not have frequency characteristics.
  • the cascode amplifier 5a can be widened while maintaining the element breakdown voltages of the P-type first transistor MP11 to fourth transistor MP14 and the N-type first transistor MN11 to fourth transistor MN14 within an allowable range. .
  • the latch circuit LATCH1 connected to the gate of the P-type first transistor MP11 and the eleventh capacitor inserted between the input terminal and the gate of the P-type first transistor MP11. C11.
  • a voltage obtained by resistance-dividing the second power supply V2 by the sixth resistor R16 or the like at the gate of the P-type first transistor MP11 in accordance with the change of the pulse signal of “0” or “1” at the input of the cascode amplifier 5a. 4V or 3V can be applied.
  • the latch circuit LATCH1 connected to the gate of the P-type first transistor MP11 improves the follow-up to the input change of the cascode amplifier 5a, and increases the bandwidth while maintaining the element breakdown voltage within the allowable range. Can be realized.
  • FIG. 11 is a circuit diagram for explaining a cascode amplifier according to the sixth embodiment.
  • the cascode amplifier according to the sixth embodiment is a modification of the cascode amplifier according to the fifth embodiment. Elements similar to those of the cascode amplifier of the fifth embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the cascode amplifier 5b of FIG. 11 further includes a thirteenth capacitor C13 in addition to the same configuration as that of the fifth embodiment.
  • the thirteenth capacitor C13 is inserted between one end different from one end connected to the gate of the P-type first transistor MP11 of the latch circuit LATCH1 and a wiring to which a predetermined potential is applied.
  • the latch circuit LATCH1 and the thirteenth capacitor C13 are connected in series between a wiring to which a predetermined potential is applied and the gate of the P-type first transistor MP11.
  • the second power supply V2 outputs a voltage of V DD ⁇ 4 that is four times the power supply voltage V DD .
  • the third power supply V3 is GND, and 0 V (V DD ⁇ 0) is given. It is assumed that a potential obtained by inverting the pulse signal of “0” or “1” of the input of the cascode amplifier 5b is applied to a wiring to which a predetermined potential is connected, one end of which is connected to the thirteenth capacitor C13. 4V or 3V is applied to the gate of the P-type first transistor MP11 as a voltage obtained by resistance-dividing the second power supply V2 with the sixth resistor R16 or the like.
  • connection point between the cascaded N-type first transistor MN11 and the second transistor MN12 varies between 1V and 0V
  • the cascaded N-type second transistor MN12 and third transistor MN13 The connecting point of the N-type third transistor MN13 and the fourth transistor MN14 connected in cascade changes between 3V and 0V.
  • the potential at the connection point of the gate of the P-type fourth transistor MP14, the gate of the N-type fourth transistor MN14, one end of the first capacitor C1, and one end of the fourth capacitor C4 varies between 3V and 1V. To do.
  • the output terminal of the cascode amplifier 5b in FIG. 12 outputs 4V or 0V according to the input “0” or “1” pulse signal (0V or 1V).
  • the feedback circuit of the cascode amplifier 5b, the third resistor R13, the seventh resistor R17, and the like of FIG. 11 do not have frequency characteristics.
  • the cascode amplifier 5b can be widened while maintaining the element breakdown voltages of the P-type first transistor MP11 to fourth transistor MP14 and the N-type first transistor MN11 to fourth transistor MN14 within an allowable range. .
  • the latch circuit LATCH1 connected to the gate of the P-type first transistor MP11 and the input terminal and the gate of the P-type first transistor MP11 are arranged. And an eleventh capacitor C11 inserted into the.
  • a voltage obtained by resistance-dividing the second power supply V2 by the sixth resistor R16 or the like at the gate of the P-type first transistor MP11 in accordance with the change of the pulse signal “0” or “1” at the input of the cascode amplifier 5b. 4V or 3V can be applied.
  • the latch circuit LATCH1 connected to the gate of the P-type first transistor MP11 improves the follow-up to the input change of the cascode amplifier 5b, and increases the bandwidth while maintaining the element breakdown voltage within the allowable range. Can be realized.
  • a potential obtained by inverting the pulse signal of the input “0” or “1” of the cascode amplifier 5b is connected to a wiring to which a predetermined potential is connected to one end of the thirteenth capacitor C13. Is given.
  • the voltage that is held by the latch circuit LATCH1 and applied to the gate of the P-type first transistor MP11 can follow the change of the input “0” or “1” of the cascode-type amplifier 5b. This can be improved over the amplifier 5a.
  • FIG. 13 is a circuit diagram for explaining the cascode amplifier according to the seventh embodiment.
  • the cascode amplifier according to the seventh embodiment is a modification of the cascode amplifier according to the fifth embodiment. Elements similar to those of the cascode amplifier of the fifth embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the cascode amplifier 5c of FIG. 13 has the same configuration as that of the fifth embodiment, a latch circuit LATCH2 connected to the gate of the N-type first transistor MN11, an input terminal, and the gate of the N-type first transistor MN11. And a twelfth capacitor C12 inserted between the first and second capacitors.
  • the latch circuit LATCH2 is composed of a pair of inverter circuits whose inputs are connected to the outputs as shown in FIG. 13, for example.
  • the latch circuit LATCH2 holds a high level or low level voltage applied to the gate of the N-type first transistor MN11.
  • the second power supply V2 outputs a voltage of V DD ⁇ 4 that is four times the power supply voltage V DD .
  • the third power supply V3 is GND, and 0 V (V DD ⁇ 0) is given. 4V or 3V is applied to the gate of the P-type first transistor MP11 as a voltage obtained by resistance-dividing the second power supply V2 with the sixth resistor R16 or the like.
  • connection point between the cascaded N-type first transistor MN11 and the second transistor MN12 varies between 1V and 0V
  • the cascaded N-type second transistor MN12 and third transistor MN13 The connecting point of the N-type third transistor MN13 and the fourth transistor MN14 connected in cascade changes between 3V and 0V.
  • the potential at the connection point of the gate of the P-type fourth transistor MP14, the gate of the N-type fourth transistor MN14, one end of the first capacitor C1, and one end of the fourth capacitor C4 varies between 3V and 1V. To do.
  • the output terminal of the cascode amplifier 5c in FIG. 14 outputs 4V or 0V according to the input “0” or “1” pulse signal (0V or 1V).
  • the feedback circuit of the cascode amplifier 5c of FIG. 13, the third resistor R13, the seventh resistor R17, and the like do not have frequency characteristics.
  • the cascode amplifier 5c can be widened while maintaining the element breakdown voltages of the P-type first transistor MP11 to fourth transistor MP14 and the N-type first transistor MN11 to fourth transistor MN14 within an allowable range. .
  • the latch circuit LATCH1 connected to the gate of the P-type first transistor MP11 and the input terminal and the gate of the P-type first transistor MP11 are arranged. And an eleventh capacitor C11 inserted into the.
  • a voltage obtained by resistance-dividing the second power source V2 with the sixth resistor R16 or the like at the gate of the P-type first transistor MP11 in accordance with the change of the pulse signal of “0” or “1” at the input of the cascode amplifier 5c. 4V or 3V can be applied.
  • the latch circuit LATCH1 connected to the gate of the P-type first transistor MP11 improves the follow-up to the input change of the cascode amplifier 5c, and increases the bandwidth while maintaining the element breakdown voltage within the allowable range. Can be realized.
  • a latch circuit LATCH2 connected to the gate of the N-type first transistor MN11 and a twelfth capacitor inserted between the input terminal and the gate of the N-type first transistor MN11. C12.
  • a voltage obtained by dividing the third power source V3 by a tenth resistor R20 or the like at the gate of the N-type first transistor MN11 in accordance with the change of the pulse signal of “0” or “1” at the input of the cascode amplifier 5c. 1V or 0V can be applied.
  • the latch circuit LATCH2 connected to the gate of the N-type first transistor MN11 improves the follow-up to the input change of the cascode amplifier 5c, and increases the bandwidth while maintaining the element breakdown voltage within the allowable range. Can be realized.
  • the cascode amplifier 5c of FIG. 13 includes a latch circuit LATCH1 connected to the gate of the P-type first transistor MP11 and a latch circuit LATCH2 connected to the gate of the N-type first transistor MN11. This improves the symmetry of the overall circuit configuration of the cascode amplifier 5c.
  • FIG. 15 is a circuit diagram for explaining a cascode amplifier according to an eighth embodiment.
  • the cascode amplifier according to the eighth embodiment is a modification of the cascode amplifier according to the fifth to seventh embodiments. Elements similar to those of the cascode amplifiers of the fifth to seventh embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the latch circuit 15 has a configuration similar to that of the fifth embodiment, a latch circuit LATCH2 connected to the gate of the N-type first transistor MN11, an input terminal, and a gate of the N-type first transistor MN11. And a twelfth capacitor C12 inserted between the first and second capacitors.
  • the latch circuit LATCH2 is composed of a pair of inverter circuits whose inputs are connected to the outputs, for example, as shown in FIG.
  • the latch circuit LATCH2 holds a high level or low level voltage applied to the gate of the N-type first transistor MN11.
  • the second power supply V2 With reference to the power supply voltage V DD , the second power supply V2 outputs a voltage of V DD ⁇ 4 that is four times the power supply voltage V DD .
  • the third power supply V3 is GND, and 0 V (V DD ⁇ 0) is given.
  • connection point between the cascaded N-type first transistor MN11 and the second transistor MN12 varies between 1V and 0V
  • the cascaded N-type second transistor MN12 and third transistor MN13 The connecting point of the N-type third transistor MN13 and the fourth transistor MN14 connected in cascade changes between 3V and 0V.
  • the potential at the connection point of the gate of the P-type fourth transistor MP14, the gate of the N-type fourth transistor MN14, one end of the first capacitor C1, and one end of the fourth capacitor C4 varies between 3V and 1V. To do.
  • the output terminal of the cascode amplifier 5d in FIG. 16 outputs 4V or 0V according to the pulse signal (0V or 1V) of “0” or “1” from the signal source 6.
  • the cascode amplifier 5d can be widened while maintaining the element breakdown voltages of the P-type first transistor MP11 to fourth transistor MP14 and the N-type first transistor MN11 to fourth transistor MN14 within an allowable range. .
  • the latch circuit LATCH1 connected to the gate of the P-type first transistor MP11, the input terminal, and the gate of the P-type first transistor MP11 And an eleventh capacitor C11 inserted therebetween.
  • a voltage obtained by resistance-dividing the second power source V2 by the sixth resistor R16 or the like at the gate of the P-type first transistor MP11 in accordance with the change of the pulse signal “0” or “1” at the input of the cascode amplifier 5d. 4V or 3V can be applied.
  • the latch circuit LATCH1 connected to the gate of the P-type first transistor MP11 improves the follow-up to the input change of the cascode amplifier 5d, and increases the bandwidth while maintaining the element breakdown voltage within the allowable range. Can be realized.
  • the latch circuit LATCH2 connected to the gate of the N-type first transistor MN11 and the twelfth capacitor inserted between the input terminal and the gate of the N-type first transistor MN11. C12.
  • a voltage obtained by resistance-dividing the third power source V3 by the tenth resistor R20 or the like at the gate of the N-type first transistor MN11 in accordance with the change of the pulse signal of “0” or “1” at the input of the cascode amplifier 5d. 1V or 0V can be applied.
  • the latch circuit LATCH2 connected to the gate of the N-type first transistor MN11 improves the follow-up to the input change of the cascode amplifier 5d, and increases the bandwidth while maintaining the element breakdown voltage within the allowable range. Can be realized.
  • a potential obtained by inverting the pulse signal of “0” or “1” input to the input terminal (input 1) of the cascode amplifier 5d is given from the input terminal (input 2).
  • the voltage held by the latch circuit LATCH1 and applied to the gate of the P-type first transistor MP11 and the voltage held by the latch circuit LATCH2 and applied to the gate of the N-type first transistor MN11 are stabilized.
  • the followability with respect to the change of the input “0” or “1” to the input terminal (input 1) of the cascode amplifier 5d can be improved as compared with the cascode amplifier 5a of FIG.
  • the symmetry of the circuit configuration of the cascode amplifier is improved.
  • FIG. 17 is a block diagram for explaining a wireless communication device according to another embodiment.
  • the 17 includes a cascode amplifier 101 that amplifies and outputs an input signal, and an antenna 102 that is connected to the output of the cascode amplifier 101 and transmits a radio signal.
  • the cascode amplifier 101 the cascode amplifiers of the first to eighth embodiments described above can be used.
  • the wireless communication device 100 of FIG. 17 employing this can be miniaturized. Therefore, according to the wireless communication device 100 of FIG.
  • the present invention has been described above, but the present invention is not limited to this.
  • the case where the element withstand voltage of the transistors constituting the cascode amplifier is 1 V has been described, but the present invention is not limited to this.
  • the case where the output level of the signal source 6 is 0V or 1V has been described.
  • the present invention is not limited to this.
  • the specific values of the potentials of the first power supply V1, the second power supply V2, the third power supply V3, the fourth power supply V4 and the like are not limited to the above-described embodiments, and may be set as appropriate while maintaining the mutual magnitude relationship. It goes without saying that various modifications are possible within the scope of the invention described in the claims, and these are also included in the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)
  • Electronic Switches (AREA)

Abstract

Provided are: a cascode-type amplifier in which band widening is achieved while the element withstanding voltage of a constituting element is maintained in an allowable range; and a wireless communication device. The cascode-type amplifier includes a plurality of transistors, and has a configuration in which an output signal is subjected to resistive division to be fed back to gates of cascode transistors.

Description

カスコード型増幅器、及び無線通信機Cascode amplifier and wireless communication device
 本発明は、カスコード型増幅器、及び無線通信機に関し、特にカスコード型増幅器の広帯域化に関する。 The present invention relates to a cascode amplifier and a radio communication device, and more particularly, to a broadband cascode amplifier.
 携帯電話や無線LAN(Local Area Network)等の無線通信機器の送信部には、出力電力の大きさに関係なく、送信信号の精度を確保しつつ、低消費電力で動作することが求められる。特に、無線通信機器の送信部最終段の電力増幅器は、無線通信機器全体の消費電力の50%以上を占めるため、高い電力効率であることが求められる。 A transmission unit of a wireless communication device such as a mobile phone or a wireless LAN (Local Area Network) is required to operate with low power consumption while ensuring the accuracy of a transmission signal regardless of the magnitude of output power. In particular, the power amplifier at the final stage of the transmission unit of the wireless communication device occupies 50% or more of the power consumption of the entire wireless communication device, and thus is required to have high power efficiency.
 近年、高い電力効率を有していると期待される電力増幅器として、スイッチング増幅器が注目されている。このスイッチング増幅器は、入力信号としてパルス波形信号を想定し、入力信号の波形を維持して電力増幅することが可能である。スイッチング増幅器によって増幅されたパルス波形信号は、フィルタ素子により所望の周波数成分以外の周波数成分を十分に抑圧した後、アンテナより空中に放射される。 In recent years, switching amplifiers have attracted attention as power amplifiers that are expected to have high power efficiency. This switching amplifier assumes a pulse waveform signal as an input signal, and can amplify power while maintaining the waveform of the input signal. The pulse waveform signal amplified by the switching amplifier is radiated from the antenna into the air after sufficiently suppressing frequency components other than the desired frequency component by the filter element.
 特許文献1は、このようなスイッチング増幅器に関するものであり、電源とグランド(GND)との間に、2つのスイッチ素子が直列に挿入され、スイッチ素子の接続点を出力端子とするD級増幅器によるスイッチング増幅器が提案されている。特許文献1のスイッチング増幅器では、2つのスイッチ素子には相補的なパルス信号が入力され、2つのスイッチ素子のうちいずれか一方のスイッチ素子のみがON状態となるように制御される。さらに特許文献1ではD級増幅器の耐圧を、D級増幅器を構成するスイッチ素子の耐圧以上に向上させる回路技術として、各スイッチ素子と出力端子との間にカスコードトランジスタを挿入したカスコード型増幅器と呼ばれる構成が、提案されている。しかしながら、特許文献1では挿入されたカスコードトランジスタに印加される電圧を耐圧以下に維持する、具体的な構成は見当たらない。 Patent Document 1 relates to such a switching amplifier, and is based on a class D amplifier in which two switch elements are inserted in series between a power source and a ground (GND) and a connection point of the switch elements is an output terminal. Switching amplifiers have been proposed. In the switching amplifier of Patent Document 1, complementary pulse signals are input to the two switch elements, and only one of the two switch elements is controlled to be in the ON state. Further, in Patent Document 1, as a circuit technique for improving the withstand voltage of a class D amplifier to be higher than the withstand voltage of a switch element constituting the class D amplifier, it is called a cascode amplifier in which a cascode transistor is inserted between each switch element and an output terminal. A configuration is proposed. However, in Patent Document 1, there is no specific configuration that maintains the voltage applied to the inserted cascode transistor below the breakdown voltage.
 非特許文献1は、ミリ波の高出力DAC(Digital to Analog Converter)送信器に関するものであり、出力段のD級CMOS(Complementary Metal Oxide Semiconductor)増幅器が提案されている。非特許文献1のD級CMOS増幅器では、45GHz、90GHz、110GHzや138GHzといった周波数の入力信号に対し、D級CMOS増幅器を構成する抵抗、キャパシタやインダクタなどの回路素子を用いることにより高利得のD級CMOS増幅器を実現することができる。 Non-Patent Document 1 relates to a millimeter-wave high-power DAC (Digital-to-Analog Converter) transmitter, and a D-class CMOS (Complementary Metal-Oxide Semiconductor) amplifier in the output stage has been proposed. In the class D CMOS amplifier of Non-Patent Document 1, a high gain D is obtained by using circuit elements such as resistors, capacitors, and inductors constituting the class D CMOS amplifier for input signals having frequencies of 45 GHz, 90 GHz, 110 GHz, and 138 GHz. Class CMOS amplifier can be realized.
 図18は、非特許文献1が提案する出力段のD級CMOS増幅器と同様な回路構成のカスコード型増幅器の一例を示す回路図である。図18のカスコード型増幅器は、信号源からの例えば1Vと0Vとの間で変化するサイン波を反転して増幅する増幅器である。図18のカスコード型増幅器は、入力信号を第4電源V4(VDD×3)によってレベルシフトした信号をゲートに入力するP型の第1トランジスタMP11と、第1トランジスタMP11と出力端子との間に縦続接続されたP型の第2トランジスタMP12、第3トランジスタMP13、及び第4トランジスタMP14と、を含む。さらに図18のカスコード型増幅器は、入力信号をゲートに入力するN型の第1トランジスタMN11と、第1トランジスタMN11と出力端子との間に縦続接続されたN型の第2トランジスタMN12、第3トランジスタMN13、及び第4トランジスタMN14と、を含む。第1トランジスタMP11、第2トランジスタMP12、第3トランジスタMP13、第4トランジスタMP14、第1トランジスタMN11、第2トランジスタMN12、第3トランジスタMN13、及び第4トランジスタMN14は、第2電源V2(VDD×4)と第3電源V3(GND)との間に縦続接続されている。 FIG. 18 is a circuit diagram showing an example of a cascode amplifier having a circuit configuration similar to that of the output stage class D CMOS amplifier proposed by Non-Patent Document 1. The cascode amplifier in FIG. 18 is an amplifier that inverts and amplifies a sine wave that changes between 1 V and 0 V, for example, from a signal source. The cascode amplifier in FIG. 18 includes a P-type first transistor MP11 that inputs a signal obtained by level-shifting an input signal by a fourth power supply V4 (V DD × 3) to the gate, and between the first transistor MP11 and the output terminal. P-type second transistor MP12, third transistor MP13, and fourth transistor MP14 connected in cascade. 18 includes an N-type first transistor MN11 that inputs an input signal to the gate, an N-type second transistor MN12 that is connected in cascade between the first transistor MN11 and the output terminal, A transistor MN13 and a fourth transistor MN14 are included. The first transistor MP11, the second transistor MP12, the third transistor MP13, the fourth transistor MP14, the first transistor MN11, the second transistor MN12, the third transistor MN13, and the fourth transistor MN14 are connected to the second power source V2 (V DD × 4) and the third power supply V3 (GND) are connected in cascade.
 さらに図18のカスコード型増幅器は、隣接するカスコードトランジスタのゲート間に接続された抵抗を含む。例えば、第3トランジスタMP13のゲートと、第4トランジスタMP14のゲートとの間や、第4トランジスタMP14のゲートと、第4トランジスタMN14のゲートとの間にはそれぞれ抵抗が接続されている。さらに図18のカスコード型増幅器は、カスコードトランジスタのゲート端子とGNDとの間に接続されたキャパシタを含む。 18 further includes a resistor connected between the gates of adjacent cascode transistors. For example, resistors are connected between the gate of the third transistor MP13 and the gate of the fourth transistor MP14, and between the gate of the fourth transistor MP14 and the gate of the fourth transistor MN14, respectively. Further, the cascode amplifier of FIG. 18 includes a capacitor connected between the gate terminal of the cascode transistor and GND.
 図18のカスコード型増幅器によれば、信号源からの例えば1Vから0Vの間で変化するサイン波の入力信号を反転増幅して、出力端子から0Vから4Vの間で変化するサイン波の出力信号を得ることができる。さらに、隣接するカスコードトランジスタのゲート間に接続された抵抗によって、カスコード型増幅器を構成するカスコードトランジスタに印加される電圧を、耐圧以下に維持しながらバイアスすることができる。また、高周波では、ドレイン端子の電位が大きく振れても、カスコードトランジスタとGNDとの間に接続された容量を適切な値に設定しておくことで、本容量のアドミタンスと、各トランジスタのドレイン-ゲート間容量のアドミタンスの比率により、ドレイン-ゲート間の電位差を耐圧内に収めるように、ゲートの振幅を適切な値に設計することができる。なお、ゲート端子に接続された抵抗のアドミタンスは、各容量に比較して、無視できるほど小さくなる値に設計されることが条件である。 According to the cascode amplifier of FIG. 18, a sine wave input signal that changes between 1 V and 0 V, for example, from a signal source is inverted and amplified, and a sine wave output signal that changes between 0 V and 4 V from the output terminal. Can be obtained. Further, the voltage applied to the cascode transistors constituting the cascode amplifier can be biased by a resistor connected between the gates of adjacent cascode transistors while maintaining the voltage below the breakdown voltage. At high frequencies, even if the potential of the drain terminal fluctuates greatly, by setting the capacitance connected between the cascode transistor and GND to an appropriate value, the admittance of this capacitance and the drain − Depending on the admittance ratio of the capacitance between the gates, the gate amplitude can be designed to an appropriate value so that the potential difference between the drain and gate falls within the breakdown voltage. Note that the admittance of the resistor connected to the gate terminal is required to be designed to a value that is negligibly small compared to each capacitor.
 特許文献2は、複数の差動増幅器が遅延素子を介在させて互いに並列に接続された進行波型増幅器に関するものであり、カスコードトランジスタのコレクタ出力がベース入力に抵抗分圧回路を介して帰還されるように構成することが提案されている。 Patent Document 2 relates to a traveling wave amplifier in which a plurality of differential amplifiers are connected in parallel to each other with a delay element interposed therebetween, and a collector output of a cascode transistor is fed back to a base input via a resistance voltage dividing circuit. It has been proposed to configure such that.
国際公開第2016/021092号International Publication No. 2016/021092 特開2014-220770号公報JP 2014-220770 A
 無線通信の5G基地局へのスイッチング増幅器の適用を想定すると、スイッチング増幅器は例えば20Gbpsまでに到る広帯域の1bit変調信号を増幅できることが求められる。本変調信号は、直流(=0Hz)から10GHz以上の高周波帯までの信号成分を持つ。 Assuming application of a switching amplifier to a 5G base station for wireless communication, the switching amplifier is required to be able to amplify a wide band 1-bit modulation signal up to 20 Gbps, for example. This modulation signal has a signal component from a direct current (= 0 Hz) to a high frequency band of 10 GHz or more.
 図18のような回路接続のカスコード型増幅器では、無線通信の5G基地局へのスイッチング増幅器に適用した場合、各カスコードトランジスタのゲートに接続されたキャパシタの容量を設定することにより、高周波領域の特定周波数帯の信号に対しては、各トランジスタの端子間電位が素子耐圧以内に収まるように、設計することができる。 In the case of a cascode amplifier having a circuit connection as shown in FIG. 18, when applied to a switching amplifier for a 5G base station for wireless communication, the capacitance of a capacitor connected to the gate of each cascode transistor is set to specify a high frequency region. For a signal in a frequency band, it can be designed so that the potential between terminals of each transistor is within the device breakdown voltage.
 しかしながら、特に、低周波信号に対しては、トランジスタのドレイン-ゲート間容量のアドミタンスが小さくなり、ゲートに接続された抵抗のアドミタンスに比較しても小さくなると、ドレイン端子の振幅が大きくなっても、ゲートの振幅は小さく、ドレイン-ゲート端子間で、素子耐圧を超えてしまう電位が発生する。 However, particularly for low-frequency signals, the admittance of the drain-gate capacitance of the transistor is small, and even if the admittance of the resistor connected to the gate is small, the amplitude of the drain terminal may be large. The amplitude of the gate is small, and a potential that exceeds the device breakdown voltage is generated between the drain and gate terminals.
 結果として、図18のような回路接続のカスコード型増幅器に、直流から10GHz以上にまでわたる信号成分を持つ20Gbpsまでに到る広帯域の1bit変調信号を入力した場合、各素子において、耐圧以下での動作が保証されなくなる。 As a result, when a broadband 1-bit modulation signal ranging from DC to 20 Gbps having a signal component ranging from DC to 10 GHz or more is input to the circuit-connected cascode amplifier as shown in FIG. Operation is not guaranteed.
 本発明の目的は、構成素子に印加される電圧を耐圧以下に維持しつつ、直流から高周波領域までの広帯域化を実現するカスコード型増幅器、及び無線通信機を提供することにある。 An object of the present invention is to provide a cascode amplifier and a wireless communication device that realize a wide band from a direct current to a high frequency region while maintaining a voltage applied to a component below a withstand voltage.
 前記目的を達成するため、本発明に係るカスコード型増幅器は、
 複数のトランジスタ
  を含む、カスコード型増幅器であって、
 出力信号を抵抗分割してカスコードトランジスタのゲートに帰還する構成
  を含む。
In order to achieve the above object, a cascode amplifier according to the present invention comprises:
A cascode amplifier including a plurality of transistors,
Includes a configuration in which the output signal is divided into resistors and fed back to the gate of the cascode transistor.
 また本発明に係る無線通信機は、
 上記カスコード型増幅器と、
 上記カスコード型増幅器の出力に接続されたアンテナと、
  を含む。
A wireless communication device according to the present invention
The cascode amplifier, and
An antenna connected to the output of the cascode amplifier;
including.
 本発明によれば、構成素子の素子耐圧を許容範囲内に維持しつつ、広帯域化を実現するカスコード型増幅器を提供できる。 According to the present invention, it is possible to provide a cascode amplifier that realizes a wide band while maintaining the element breakdown voltage within the allowable range.
上位概念による実施形態のカスコード型増幅器を説明するための回路図である。It is a circuit diagram for demonstrating the cascode type | mold amplifier of embodiment by a high-order concept. (a)は図1などの帰還回路の回路ブロックであり、(b)は(a)の帰還回路の具体的構成例1を示す回路図であり、(c)は(a)の帰還回路の具体的構成例2を示す回路図である。(A) is a circuit block of the feedback circuit of FIG. 1 and the like, (b) is a circuit diagram showing a specific configuration example 1 of the feedback circuit of (a), and (c) is a circuit diagram of the feedback circuit of (a). It is a circuit diagram which shows the specific structural example 2. FIG. 第1実施形態のカスコード型増幅器を説明するための回路図である。It is a circuit diagram for demonstrating the cascode type | mold amplifier of 1st Embodiment. 第1実施形態のカスコード型増幅器の信号波形を説明するための説明図である。It is explanatory drawing for demonstrating the signal waveform of the cascode type | mold amplifier of 1st Embodiment. 第2実施形態のカスコード型増幅器を説明するための回路図である。It is a circuit diagram for demonstrating the cascode type | mold amplifier of 2nd Embodiment. 第2実施形態のカスコード型増幅器の信号波形を説明するための説明図である。It is explanatory drawing for demonstrating the signal waveform of the cascode type | mold amplifier of 2nd Embodiment. 第3実施形態のカスコード型増幅器を説明するための回路図である。It is a circuit diagram for demonstrating the cascode type | mold amplifier of 3rd Embodiment. 第4実施形態のカスコード型増幅器を説明するための回路図である。It is a circuit diagram for demonstrating the cascode type | mold amplifier of 4th Embodiment. 第5実施形態のカスコード型増幅器を説明するための回路図である。It is a circuit diagram for demonstrating the cascode type | mold amplifier of 5th Embodiment. 第5実施形態のカスコード型増幅器の信号波形を説明するための説明図である。It is explanatory drawing for demonstrating the signal waveform of the cascode type | mold amplifier of 5th Embodiment. 第6実施形態のカスコード型増幅器を説明するための回路図である。It is a circuit diagram for demonstrating the cascode type | mold amplifier of 6th Embodiment. 第6実施形態のカスコード型増幅器の信号波形を説明するための説明図である。It is explanatory drawing for demonstrating the signal waveform of the cascode type | mold amplifier of 6th Embodiment. 第7実施形態のカスコード型増幅器を説明するための回路図である。It is a circuit diagram for demonstrating the cascode type | mold amplifier of 7th Embodiment. 第7実施形態のカスコード型増幅器の信号波形を説明するための説明図である。It is explanatory drawing for demonstrating the signal waveform of the cascode type | mold amplifier of 7th Embodiment. 第8実施形態のカスコード型増幅器を説明するための回路図である。It is a circuit diagram for demonstrating the cascode type | mold amplifier of 8th Embodiment. 第8実施形態のカスコード型増幅器の信号波形を説明するための説明図である。It is explanatory drawing for demonstrating the signal waveform of the cascode type | mold amplifier of 8th Embodiment. 実施形態のカスコード型増幅器を用いた無線通信機を説明するためのブロック図である。It is a block diagram for demonstrating the radio | wireless communication apparatus using the cascode type | mold amplifier of embodiment. 背景技術のカスコード型増幅器を説明するための回路図である。It is a circuit diagram for demonstrating the cascode type | mold amplifier of background art.
 本発明の好ましい実施形態について、図面を参照しながら詳細に説明する。具体的な実施形態を説明する前に、上位概念による実施形態について説明する。図1は、本発明の上位概念による実施形態のカスコード型増幅器を説明するための回路図である。 Preferred embodiments of the present invention will be described in detail with reference to the drawings. Before describing a specific embodiment, an embodiment based on a superordinate concept will be described. FIG. 1 is a circuit diagram for explaining an embodiment of a cascode amplifier according to a superordinate concept of the present invention.
 図1のカスコード型増幅器10は、複数のトランジスタを含むカスコード型増幅器であって、出力信号を抵抗分割してカスコードトランジスタのゲートに帰還する構成を含むものである。 The cascode amplifier 10 in FIG. 1 is a cascode amplifier including a plurality of transistors, and includes a configuration in which an output signal is resistance-divided and fed back to the gate of the cascode transistor.
 図1のカスコード型増幅器10は、入力端子からの入力信号がゲートに入力する第1導電型の第1トランジスタM1と、第1トランジスタM1と出力端子との間に縦続接続された第1導電型の第2トランジスタM2と、を含む。さらに図1のカスコード型増幅器10は、入力端子からの入力信号がゲートにされる第2導電型の第3トランジスタM3と、第3トランジスタM3と出力端子との間に縦続接続された第2導電型の第4トランジスタM4と、を含む。 The cascode amplifier 10 of FIG. 1 includes a first conductivity type first transistor M1 in which an input signal from an input terminal is input to a gate, and a first conductivity type cascaded between the first transistor M1 and an output terminal. Second transistor M2. Further, the cascode amplifier 10 of FIG. 1 includes a second conductivity type third transistor M3 whose gate is an input signal from the input terminal, and a second conductivity type connected in cascade between the third transistor M3 and the output terminal. Type fourth transistor M4.
 さらに図1のカスコード型増幅器10は、第1ノードNと第1トランジスタM1のゲートとの間に接続された第1抵抗R1と、第1トランジスタM1のゲートと第2電源V2との間に接続された第2抵抗R2と、を含む。さらに図1のカスコード型増幅器10は、第1ノードNと第3トランジスタM3のゲートとの間に接続された第3抵抗R3と、第3トランジスタM3のゲートと第3電源V3との間に接続された第4抵抗R4と、を含む。 Further, the cascode amplifier 10 of FIG. 1 is connected between the first resistor R1 connected between the first node N and the gate of the first transistor M1, and between the gate of the first transistor M1 and the second power supply V2. Second resistor R2. 1 is connected between the first node N and the gate of the third transistor M3, and between the gate of the third transistor M3 and the third power supply V3. And a fourth resistor R4.
 さらに図1のカスコード型増幅器10は、出力信号を帰還回路を介して第2トランジスタM2のゲート及び第4トランジスタM4のゲートに帰還する構成を含む。帰還回路は、抵抗分割回路で構成され、出力信号を抵抗分割により減衰させて、第2トランジスタM2/第4トランジスタM4の各ゲート端子に帰還する。帰還回路としては、図2の(b)や図2の(c)のような回路構成とすることができる。図2の(a)は図1などの帰還回路の回路ブロックであり、図2の(b)は図2の(a)の帰還回路の具体的構成例1を示す回路図であり、図2の(c)は図2の(a)の帰還回路の具体的構成例2を示す回路図である。 Further, the cascode amplifier 10 of FIG. 1 includes a configuration in which an output signal is fed back to the gate of the second transistor M2 and the gate of the fourth transistor M4 through a feedback circuit. The feedback circuit is configured by a resistance divider circuit, attenuates the output signal by resistance division, and feeds back to each gate terminal of the second transistor M2 / fourth transistor M4. The feedback circuit may have a circuit configuration as shown in (b) of FIG. 2 or (c) of FIG. 2A is a circuit block of the feedback circuit of FIG. 1 and the like, and FIG. 2B is a circuit diagram showing a specific configuration example 1 of the feedback circuit of FIG. (C) of FIG. 2 is a circuit diagram showing a specific configuration example 2 of the feedback circuit of FIG. 2 (a).
 図1のカスコード型増幅器10では、入力信号を増幅して出力することができる。その際、第1抵抗R1乃至第4抵抗R4により、カスコード型増幅器10に含まれる第1トランジスタM1乃至第4トランジスタM4のゲート・ソース間電圧、ゲート・ドレイン間電圧を、第1トランジスタM1乃至第4トランジスタM4の素子耐圧未満に維持することができ、第1トランジスタM1乃至第4トランジスタM4の破壊を防止することができる。 1 can amplify an input signal and output the amplified signal. At this time, the first to fourth resistors R1 to R4 change the gate-source voltages and the gate-to-drain voltages of the first to fourth transistors M1 to M4 included in the cascode amplifier 10, respectively. It can be kept below the element breakdown voltage of the four transistors M4, and the first to fourth transistors M1 to M4 can be prevented from being destroyed.
 抵抗は周波数特性を持たないので、図1のカスコード型増幅器10の帰還回路、第1抵抗R1、第2抵抗R2、第3抵抗R3、第4抵抗R4などは周波数特性を持たない。これにより第1トランジスタM1、第2トランジスタM2、第3トランジスタM3、第4トランジスタM4の素子耐圧を許容範囲内に維持しつつ、カスコード型増幅器を広帯域化することができる。 Since the resistors do not have frequency characteristics, the feedback circuit of the cascode amplifier 10 of FIG. 1, the first resistor R1, the second resistor R2, the third resistor R3, the fourth resistor R4, etc. do not have frequency characteristics. As a result, the cascode amplifier can be widened while maintaining the breakdown voltage of the first transistor M1, the second transistor M2, the third transistor M3, and the fourth transistor M4 within an allowable range.
 以下、より具体的な実施形態について説明する。 Hereinafter, more specific embodiments will be described.
 〔第1実施形態〕
 次に、第1実施形態によるカスコード型増幅器について、図面を参照しながら説明する。図3は、第1実施形態のカスコード型増幅器を説明するための回路図である。図4は、第1実施形態のカスコード型増幅器の信号波形を説明するための説明図である。
[First Embodiment]
Next, the cascode amplifier according to the first embodiment will be described with reference to the drawings. FIG. 3 is a circuit diagram for explaining the cascode amplifier according to the first embodiment. FIG. 4 is an explanatory diagram for explaining signal waveforms of the cascode amplifier according to the first embodiment.
 図3のカスコード型増幅器1は、入力端子からの入力信号がゲートに入力される第1導電型の一例としてのP型の第1トランジスタMP11と、第1トランジスタMP11と出力端子との間に縦続接続されたP型の第2トランジスタMP12、第3トランジスタMP13、及び第4トランジスタMP14と、を含む。なおここで、2つの入力信号のうち一方の信号は、第4電源V4を介してP型の第1トランジスタMP11のゲートへ与えられるものとする。 The cascode amplifier 1 of FIG. 3 includes a P-type first transistor MP11 as an example of a first conductivity type in which an input signal from an input terminal is input to a gate, and a cascade connection between the first transistor MP11 and the output terminal. A P-type second transistor MP12, a third transistor MP13, and a fourth transistor MP14 are connected. Here, it is assumed that one of the two input signals is given to the gate of the P-type first transistor MP11 via the fourth power supply V4.
 さらに図3のカスコード型増幅器1は、入力端子からの入力信号がゲートに入力される第2導電型の一例としてのN型の第1トランジスタMN11と、N型の第1トランジスタMN11と出力端子との間に縦続接続されたN型の第2トランジスタMN12、第3トランジスタMN13、及び第4トランジスタMN14と、を含む。 Further, the cascode amplifier 1 of FIG. 3 includes an N-type first transistor MN11 as an example of a second conductivity type in which an input signal from an input terminal is input to the gate, an N-type first transistor MN11, and an output terminal. N-type second transistor MN12, third transistor MN13, and fourth transistor MN14 connected in cascade.
 さらに図3のカスコード型増幅器1は、カスコード型増幅器1の出力信号を抵抗分割して、各トランジスタのゲートに帰還する構成を持つ。 Further, the cascode amplifier 1 of FIG. 3 has a configuration in which the output signal of the cascode amplifier 1 is resistance-divided and fed back to the gate of each transistor.
 図3のカスコード型増幅器1では、出力端子と第1ノードNとの間に接続された第1抵抗R11と、第1電源V1(VDD×2)と第1ノードNとの間に接続された第2抵抗R12と、を含んで、出力信号を抵抗分割してカスコードトランジスタのゲートに帰還する構成を実現している。この構成は、図2の(b)に示される帰還回路の具体的構成例1に対応する。 In the cascode amplifier 1 of FIG. 3, the first resistor R11 connected between the output terminal and the first node N, and the first power supply V1 (V DD × 2) and the first node N are connected. The second resistor R12 is included, and the output signal is divided into resistors and fed back to the gate of the cascode transistor. This configuration corresponds to a specific configuration example 1 of the feedback circuit shown in FIG.
 さらに図3のカスコード型増幅器1は、第1ノードNとP型の第1トランジスタMP11のゲートとの間に直列接続された第3抵抗R13、第4抵抗R14、第5抵抗R15を含む。さらに図3のカスコード型増幅器1は、P型の第1トランジスタMP11のゲートと第2電源V2(VDD×4)との間に接続された第6抵抗R16と、を含む。さらに図3のカスコード型増幅器1は、第1ノードNとN型の第1トランジスタMN11のゲートとの間に直列接続された第7抵抗R17、第8抵抗R18、第9抵抗R19を含む。さらに図3のカスコード型増幅器1は、N型の第1トランジスタMN11のゲートと第3電源V3(GND)との間に接続された第10抵抗R20と、を含む。 Further, the cascode amplifier 1 of FIG. 3 includes a third resistor R13, a fourth resistor R14, and a fifth resistor R15 connected in series between the first node N and the gate of the P-type first transistor MP11. Further, the cascode amplifier 1 of FIG. 3 includes a sixth resistor R16 connected between the gate of the P-type first transistor MP11 and the second power supply V2 (V DD × 4). Further, the cascode amplifier 1 of FIG. 3 includes a seventh resistor R17, an eighth resistor R18, and a ninth resistor R19 connected in series between the first node N and the gate of the N-type first transistor MN11. Further, the cascode amplifier 1 of FIG. 3 includes a tenth resistor R20 connected between the gate of the N-type first transistor MN11 and the third power supply V3 (GND).
 なおここで、第3抵抗R13と第4抵抗R14との接続点は、P型の第3トランジスタMP13のゲートに接続されており、第4抵抗R14と第5抵抗R15との接続点は、P型の第2トランジスタMP12のゲートに接続されている。なおここで、第7抵抗R17と第8抵抗R18との接続点は、N型の第3トランジスタMN13のゲートに接続されており、第8抵抗R18と第9抵抗R19との接続点は、N型の第2トランジスタMN12のゲートに接続されている。 Here, the connection point between the third resistor R13 and the fourth resistor R14 is connected to the gate of the P-type third transistor MP13, and the connection point between the fourth resistor R14 and the fifth resistor R15 is P It is connected to the gate of the second transistor MP12 of the type. Here, the connection point between the seventh resistor R17 and the eighth resistor R18 is connected to the gate of the N-type third transistor MN13, and the connection point between the eighth resistor R18 and the ninth resistor R19 is N The second transistor MN12 of the type is connected to the gate.
 さらにP型の第1トランジスタMP11のソースは、第2電源V2(VDD×4)に接続されており、N型の第1トランジスタMN11のソースは、第3電源V3(GND)に接続されている。 Further, the source of the P-type first transistor MP11 is connected to the second power supply V2 (V DD × 4), and the source of the N-type first transistor MN11 is connected to the third power supply V3 (GND). Yes.
 (実施形態の動作)
 次に図3のカスコード型増幅器1の動作について、図4を参照して説明する。図4では、図3のカスコード型増幅器1の入力端子に信号源6が接続された状態を示す。信号源6は、例えば20Gbpsまでに到る広帯域の1bit変調信号である”0”又は”1”のパルス信号を出力するものとする。P型の第1トランジスタMP11~第4トランジスタMP14、N型の第1トランジスタMN11~第4トランジスタMN14の素子耐圧は、一例として1Vであるものとして説明する。また、以下、電源電圧VDDは、素子耐圧と等しい値に設定されており、1Vであるものとして説明する。
(Operation of the embodiment)
Next, the operation of the cascode amplifier 1 of FIG. 3 will be described with reference to FIG. 4 shows a state in which the signal source 6 is connected to the input terminal of the cascode amplifier 1 of FIG. The signal source 6 outputs a pulse signal of “0” or “1”, which is a 1-bit modulated signal in a wide band up to 20 Gbps, for example. The element breakdown voltages of the P-type first transistor MP11 to the fourth transistor MP14 and the N-type first transistor MN11 to the fourth transistor MN14 are assumed to be 1 V as an example. In the following description, it is assumed that the power supply voltage V DD is set to a value equal to the element breakdown voltage and is 1V.
 電源電圧VDDを基準として、第1電源V1乃至第3電源V3は次の電圧を出力するものとする。すなわち、第1電源V1は電源電圧VDDの2倍のVDD×2の電圧を出力する。第2電源V2は、電源電圧VDDの4倍のVDD×4の電圧を出力する。第4電源V4は電源電圧VDDの3倍のVDD×3の電圧を出力する。第3電源V3はGNDであり、0V(VDD×0)が与えられるものとする。 The first power supply V1 to the third power supply V3 output the following voltages with the power supply voltage V DD as a reference. That is, the first power supply V1 outputs a voltage of V DD × 2 that is twice the power supply voltage V DD . The second power supply V2 outputs a voltage of V DD × 4 that is four times the power supply voltage V DD . The fourth power supply V4 outputs a voltage of V DD × 3 that is three times the power supply voltage V DD . The third power supply V3 is GND, and 0 V (V DD × 0) is given.
 信号源6からの”0”又は”1”のパルス信号(0V又は1V)に応じて、P型の第1トランジスタMP11のゲートには4V又は3Vが与えられ、N型の第1トランジスタMN11のゲートには0V又は1Vが与えられる。これに伴って、縦続接続されたP型の第1トランジスタMP11と第2トランジスタMP12との接続点は4Vと3Vとの間で変化し、縦続接続されたP型の第2トランジスタMP12と第3トランジスタMP13との接続点は4Vと2Vとの間で変化し、縦続接続されたP型の第3トランジスタMP13と第4トランジスタMP14との接続点は4Vと1Vとの間で変化する。また、縦続接続されたN型の第1トランジスタMN11と第2トランジスタMN12との接続点は1Vと0Vとの間で変化し、縦続接続されたN型の第2トランジスタMN12と第3トランジスタMN13との接続点は2Vと0Vとの間で変化し、縦続接続されたN型の第3トランジスタMN13と第4トランジスタMN14との接続点は3Vと0Vとの間で変化する。 In response to a pulse signal (0V or 1V) of “0” or “1” from the signal source 6, 4V or 3V is applied to the gate of the P-type first transistor MP11, and the N-type first transistor MN11 0V or 1V is applied to the gate. Accordingly, the connection point between the cascaded P-type first transistor MP11 and the second transistor MP12 changes between 4V and 3V, and the cascade-connected P-type second transistor MP12 and the third transistor MP12 are connected to each other. The connection point with the transistor MP13 changes between 4V and 2V, and the connection point between the cascaded P-type third transistor MP13 and the fourth transistor MP14 changes between 4V and 1V. Also, the connection point between the cascaded N-type first transistor MN11 and the second transistor MN12 varies between 1V and 0V, and the cascaded N-type second transistor MN12 and third transistor MN13 The connecting point of the N-type third transistor MN13 and the fourth transistor MN14 connected in cascade changes between 3V and 0V.
 さらにP型の第4トランジスタMP14のゲート、N型の第4トランジスタMN14のゲート、図3の第2抵抗R12、及び図3の第1抵抗R11の接続点の電位は、3Vと1Vとの間で変化する。その結果、信号源6からの”0”又は”1”のパルス信号(0V又は1V)に応じて、図4のカスコード型増幅器1の出力端子は4V又は0Vを出力する。 Further, the potential at the connection point of the gate of the P-type fourth transistor MP14, the gate of the N-type fourth transistor MN14, the second resistor R12 in FIG. 3, and the first resistor R11 in FIG. 3 is between 3V and 1V. It changes with. As a result, the output terminal of the cascode amplifier 1 in FIG. 4 outputs 4 V or 0 V in response to a pulse signal (0 V or 1 V) of “0” or “1” from the signal source 6.
 (実施形態の効果)
 以上、図3のカスコード型増幅器1の、信号源6からのパルス信号(0Vまたは1V)に応じた動作において、各トランジスタが持つ3つの端子である、ドレイン、ソース、ゲートの、どの端子間の電圧も、1Vもしくは、それ以下になる。すなわち、本カスコード型増幅器1においては、構成素子に印加される電圧は、耐圧以下に維持される。
(Effect of embodiment)
As described above, in the operation according to the pulse signal (0 V or 1 V) from the signal source 6 of the cascode amplifier 1 of FIG. 3, between which of the three terminals of each transistor, the drain, the source, and the gate, The voltage is also 1V or less. That is, in the cascode amplifier 1, the voltage applied to the constituent elements is maintained below the withstand voltage.
 また、抵抗は周波数特性を持たないので、図3のカスコード型増幅器1の第1抵抗R11、第2抵抗R12、第3抵抗R13、第7抵抗R17などは周波数特性を持たない。これによりP型の第1トランジスタMP11~第4トランジスタMP14、N型の第1トランジスタMN11~第4トランジスタMN14に印加される電圧を耐圧以下に維持しつつ、カスコード型増幅器を直流から高周波領域まで広帯域化することができる。 Also, since the resistors do not have frequency characteristics, the first resistor R11, the second resistor R12, the third resistor R13, the seventh resistor R17, etc. of the cascode amplifier 1 of FIG. 3 do not have frequency characteristics. As a result, the cascode amplifier can be widened from a direct current to a high frequency region while maintaining the voltage applied to the P-type first transistor MP11 to the fourth transistor MP14 and the N-type first transistor MN11 to the fourth transistor MN14 below the breakdown voltage. Can be
 なお図3のカスコード型増幅器1では、P型の第1トランジスタMP11と出力端子との間に3つのトランジスタが縦続接続され、N型の第1トランジスタMN11と出力端子との間に3つのトランジスタが縦続接続された場合を示しているが、縦続接続されるトランジスタの段数はこれに限られない。 In the cascode amplifier 1 of FIG. 3, three transistors are connected in cascade between the P-type first transistor MP11 and the output terminal, and three transistors are connected between the N-type first transistor MN11 and the output terminal. Although the case of cascade connection is shown, the number of stages of transistors connected in cascade is not limited to this.
 入力信号に対してより高出力のカスコード型増幅器を構成したいときは、P型の第1トランジスタMP11と出力端子との間に縦続接続されるトランジスタと、N型の第1トランジスタMN11と出力端子との間に縦続接続されるトランジスタの段数を増やすなどすればよい。 When it is desired to configure a higher output cascode amplifier for an input signal, a transistor connected in cascade between a P-type first transistor MP11 and an output terminal, an N-type first transistor MN11, an output terminal, For example, the number of transistors connected in cascade may be increased.
 〔第2実施形態〕
 次に、第2実施形態によるカスコード型増幅器について、図面を参照しながら説明する。図5は、第2実施形態のカスコード型増幅器を説明するための回路図である。図6は、第2実施形態のカスコード型増幅器の信号波形を説明するための説明図である。
[Second Embodiment]
Next, a cascode amplifier according to a second embodiment will be described with reference to the drawings. FIG. 5 is a circuit diagram for explaining a cascode amplifier according to the second embodiment. FIG. 6 is an explanatory diagram for explaining a signal waveform of the cascode amplifier according to the second embodiment.
 第2実施形態のカスコード型増幅器は、第1実施形態のカスコード型増幅器の変形例である。第1実施形態のカスコード型増幅器と同様な要素に対しては、同じ参照番号を付してその詳細な説明を省略することとする。 The cascode amplifier according to the second embodiment is a modification of the cascode amplifier according to the first embodiment. Elements similar to those of the cascode amplifier of the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 図5のカスコード型増幅器2は第1実施形態と同様に、第1導電型の一例としてのP型の第1トランジスタMP11と、第1トランジスタMP11と出力端子との間に縦続接続されたP型の第2トランジスタMP12、第3トランジスタMP13、及び第4トランジスタMP14と、を含む。 As in the first embodiment, the cascode amplifier 2 of FIG. 5 includes a P-type first transistor MP11 as an example of the first conductivity type, and a P-type cascaded connection between the first transistor MP11 and the output terminal. Second transistor MP12, third transistor MP13, and fourth transistor MP14.
 さらに図5のカスコード型増幅器2は第1実施形態と同様に、第2導電型の一例としてのN型の第1トランジスタMN11と、N型の第1トランジスタMN11と出力端子との間に縦続接続されたN型の第2トランジスタMN12、第3トランジスタMN13、及び第4トランジスタMN14と、を含む。 Further, as in the first embodiment, the cascode amplifier 2 of FIG. 5 is connected in cascade between the N-type first transistor MN11 as an example of the second conductivity type, and the N-type first transistor MN11 and the output terminal. N-type second transistor MN12, third transistor MN13, and fourth transistor MN14.
 さらに図5のカスコード型増幅器2は第1実施形態と同様に、出力端子と第1ノードNとの間に接続された第1抵抗R11と、第1電源V1と第1ノードNとの間に接続された第2抵抗R12と、を含む。さらに図5のカスコード型増幅器2は、第1ノードNとP型の第1トランジスタMP11のゲートとの間に直列接続された第3抵抗R13、第4抵抗R14、第5抵抗R15を含む。さらに図5のカスコード型増幅器2は、P型の第1トランジスタMP11のゲートと第2電源V2との間に接続された第6抵抗R16と、を含む。さらに図5のカスコード型増幅器2は、第1ノードNとN型の第1トランジスタMN11のゲートとの間に直列接続された第7抵抗R17、第8抵抗R18、第9抵抗R19を含む。さらに図5のカスコード型増幅器2は、N型の第1トランジスタMN11のゲートと第3電源V3との間に接続された第10抵抗R20と、を含む。 Further, as in the first embodiment, the cascode amplifier 2 of FIG. 5 includes a first resistor R11 connected between the output terminal and the first node N, and between the first power supply V1 and the first node N. And a second resistor R12 connected thereto. Further, the cascode amplifier 2 of FIG. 5 includes a third resistor R13, a fourth resistor R14, and a fifth resistor R15 connected in series between the first node N and the gate of the P-type first transistor MP11. Further, the cascode amplifier 2 of FIG. 5 includes a sixth resistor R16 connected between the gate of the P-type first transistor MP11 and the second power supply V2. Further, the cascode amplifier 2 of FIG. 5 includes a seventh resistor R17, an eighth resistor R18, and a ninth resistor R19 connected in series between the first node N and the gate of the N-type first transistor MN11. Further, the cascode amplifier 2 of FIG. 5 includes a tenth resistor R20 connected between the gate of the N-type first transistor MN11 and the third power supply V3.
 さらに図5のカスコード型増幅器2では、P型の第4トランジスタMP14のゲートとGNDとの間に接続された第1キャパシタC1と、P型の第3トランジスタMP13のゲートとGNDとの間に接続された第2キャパシタC2と、P型の第2トランジスタMP12のゲートとGNDとの間に接続された第3キャパシタC3と、を含む。 Further, in the cascode amplifier 2 of FIG. 5, the first capacitor C1 connected between the gate of the P-type fourth transistor MP14 and GND is connected between the gate of the P-type third transistor MP13 and GND. And a third capacitor C3 connected between the gate of the P-type second transistor MP12 and GND.
 さらに図5のカスコード型増幅器2では、N型の第4トランジスタMN14のゲートとGNDとの間に接続された第4キャパシタC4と、N型の第3トランジスタMN13のゲートとGNDとの間に接続された第5キャパシタC5と、N型の第2トランジスタMN12のゲートとGNDとの間に接続された第6キャパシタC6と、を含む。 Further, in the cascode amplifier 2 of FIG. 5, the fourth capacitor C4 connected between the gate of the N-type fourth transistor MN14 and GND and the gate connected to the gate of the N-type third transistor MN13 and GND. And a sixth capacitor C6 connected between the gate of the N-type second transistor MN12 and GND.
 図5のカスコード型増幅器2では第1実施形態と同様に、出力端子と第1ノードNとの間に接続された第1抵抗R11と、第1電源V1(VDD×2)と第1ノードNとの間に接続された第2抵抗R12と、を含んで、出力信号を抵抗分割してカスコードトランジスタのゲートに帰還する構成を実現している。この構成は、図2の(b)に示される帰還回路の具体的構成例1に対応する。 In the cascode amplifier 2 of FIG. 5, as in the first embodiment, the first resistor R11 connected between the output terminal and the first node N, the first power supply V1 (V DD × 2), and the first node And a second resistor R12 connected to N, and realizes a configuration in which the output signal is resistance-divided and fed back to the gate of the cascode transistor. This configuration corresponds to a specific configuration example 1 of the feedback circuit shown in FIG.
 (実施形態の動作)
 次に図5のカスコード型増幅器2の動作について、図6を参照して説明する。図6では、図5のカスコード型増幅器2の入力端子に信号源6が接続された状態を示す。信号源6は第1実施形態と同様に、”0”又は”1”のパルス信号を出力するものとする。P型の第1トランジスタMP11~第4トランジスタMP14、N型の第1トランジスタMN11~第4トランジスタMN14の素子耐圧は、一例として1Vであるものとして説明する。また、以下、電源電圧VDDは、素子耐圧と等しい値に設定されており、1Vであるものとして説明する。
(Operation of the embodiment)
Next, the operation of the cascode amplifier 2 of FIG. 5 will be described with reference to FIG. FIG. 6 shows a state where the signal source 6 is connected to the input terminal of the cascode amplifier 2 of FIG. As in the first embodiment, the signal source 6 outputs a pulse signal of “0” or “1”. The element breakdown voltages of the P-type first transistor MP11 to the fourth transistor MP14 and the N-type first transistor MN11 to the fourth transistor MN14 are assumed to be 1 V as an example. In the following description, it is assumed that the power supply voltage V DD is set to a value equal to the element breakdown voltage and is 1V.
 電源電圧VDDを基準として、第1電源V1乃至第3電源V3は次の電圧を出力するものとする。すなわち、第1電源V1は電源電圧VDDの2倍のVDD×2の電圧を出力する。第2電源V2は、電源電圧VDDの4倍のVDD×4の電圧を出力する。第4電源V4は電源電圧VDDの3倍のVDD×3の電圧を出力する。第3電源V3はGNDであり、0V(VDD×0)が与えられるものとする。 The first power supply V1 to the third power supply V3 output the following voltages with the power supply voltage V DD as a reference. That is, the first power supply V1 outputs a voltage of V DD × 2 that is twice the power supply voltage V DD . The second power supply V2 outputs a voltage of V DD × 4 that is four times the power supply voltage V DD . The fourth power supply V4 outputs a voltage of V DD × 3 that is three times the power supply voltage V DD . The third power supply V3 is GND, and 0 V (V DD × 0) is given.
 信号源6からの”0”又は”1”のパルス信号(0V又は1V)に応じて、P型の第1トランジスタMP11のゲートには4V又は3Vが与えられ、N型の第1トランジスタMN11のゲートには0V又は1Vが与えられる。これに伴って、縦続接続されたP型の第1トランジスタMP11と第2トランジスタMP12との接続点は4Vと3Vとの間で変化し、縦続接続されたP型の第2トランジスタMP12と第3トランジスタMP13との接続点は4Vと2Vとの間で変化し、縦続接続されたP型の第3トランジスタMP13と第4トランジスタMP14との接続点は4Vと1Vとの間で変化する。また、縦続接続されたN型の第1トランジスタMN11と第2トランジスタMN12との接続点は1Vと0Vとの間で変化し、縦続接続されたN型の第2トランジスタMN12と第3トランジスタMN13との接続点は2Vと0Vとの間で変化し、縦続接続されたN型の第3トランジスタMN13と第4トランジスタMN14との接続点は3Vと0Vとの間で変化する。 In response to a pulse signal (0V or 1V) of “0” or “1” from the signal source 6, 4V or 3V is applied to the gate of the P-type first transistor MP11, and the N-type first transistor MN11 0V or 1V is applied to the gate. Accordingly, the connection point between the cascaded P-type first transistor MP11 and the second transistor MP12 changes between 4V and 3V, and the cascade-connected P-type second transistor MP12 and the third transistor MP12 are connected to each other. The connection point with the transistor MP13 changes between 4V and 2V, and the connection point between the cascaded P-type third transistor MP13 and the fourth transistor MP14 changes between 4V and 1V. Also, the connection point between the cascaded N-type first transistor MN11 and the second transistor MN12 varies between 1V and 0V, and the cascaded N-type second transistor MN12 and third transistor MN13 The connecting point of the N-type third transistor MN13 and the fourth transistor MN14 connected in cascade changes between 3V and 0V.
 さらにP型の第4トランジスタMP14のゲート、N型の第4トランジスタMN14のゲート、第2抵抗R12、及び第1抵抗R11の接続点の電位は、3Vと1Vとの間で変化する。その結果、信号源6からの”0”又は”1”のパルス信号(0V又は1V)に応じて、図6のカスコード型増幅器2の出力端子は4V又は0Vを出力する。 Further, the potential at the connection point of the gate of the P-type fourth transistor MP14, the gate of the N-type fourth transistor MN14, the second resistor R12, and the first resistor R11 varies between 3V and 1V. As a result, the output terminal of the cascode amplifier 2 in FIG. 6 outputs 4 V or 0 V in accordance with the pulse signal (0 V or 1 V) of “0” or “1” from the signal source 6.
 (実施形態の効果)
 以上、図6のカスコード型増幅器2の、信号源6からのパルス信号(0Vまたは1V)に応じた動作において、各トランジスタが持つ3つの端子である、ドレイン、ソース、ゲートの、どの端子間の電圧も、1Vもしくは、それ以下になる。すなわち、本カスコード型増幅器2においては、構成素子に印加される電圧は、耐圧以下に維持される。
(Effect of embodiment)
As described above, in the operation according to the pulse signal (0 V or 1 V) from the signal source 6 of the cascode amplifier 2 of FIG. 6, between which terminals of the drain, source, and gate, which are the three terminals of each transistor. The voltage is also 1V or less. That is, in the cascode amplifier 2, the voltage applied to the constituent elements is maintained below the withstand voltage.
 また、抵抗は周波数特性を持たないので、図5のカスコード型増幅器2の第1抵抗R11、第2抵抗R12、第3抵抗R13、第7抵抗R17などは周波数特性を持たない。これによりP型の第1トランジスタMP11~第4トランジスタMP14、N型の第1トランジスタMN11~第4トランジスタMN14の素子耐圧を許容範囲内に維持しつつ、カスコード型増幅器を直流から高周波まで広帯域化することができる。また、図6のカスコード型増幅器においては、各トランジスタのゲート端子とGND間に容量が挿入されているが、本容量は、高周波領域では、図18に示した背景技術と同様に、各トランジスタのドレイン-ゲート間容量のアドミタンスの比率を適切に設定することで、耐圧以内に収める働きをする。よって、本容量を含まない図3、図4に記載のカスコード型増幅器に比較して、図6のカスコード型増幅器は、より高周波領域まで対応することができる。 Further, since the resistors do not have frequency characteristics, the first resistor R11, the second resistor R12, the third resistor R13, the seventh resistor R17, etc. of the cascode amplifier 2 of FIG. 5 do not have frequency characteristics. As a result, the cascode amplifier is widened from DC to high frequency while maintaining the element breakdown voltage of the P-type first transistor MP11 to fourth transistor MP14 and the N-type first transistor MN11 to fourth transistor MN14 within an allowable range. be able to. Further, in the cascode amplifier of FIG. 6, a capacitor is inserted between the gate terminal of each transistor and GND. However, in the high frequency region, this capacitor is similar to the background art shown in FIG. By properly setting the drain-gate capacitance admittance ratio, it works to keep it within the breakdown voltage. Therefore, as compared with the cascode amplifiers shown in FIGS. 3 and 4 that do not include this capacitor, the cascode amplifier of FIG. 6 can cope with a higher frequency region.
 本実施形態では、P型の第4トランジスタMP14のゲートに第1キャパシタC1が接続され、P型の第3トランジスタMP13のゲートに第2キャパシタC2が接続され、P型の第2トランジスタMP12のゲートに第3キャパシタC3が接続されている。さらに本実施形態では、N型の第4トランジスタMN14のゲートに第4キャパシタC4が接続され、N型の第3トランジスタMN13のゲートに第5キャパシタC5が接続され、N型の第2トランジスタMN12のゲートに第6キャパシタC6が接続されている。 In the present embodiment, the first capacitor C1 is connected to the gate of the P-type fourth transistor MP14, the second capacitor C2 is connected to the gate of the P-type third transistor MP13, and the gate of the P-type second transistor MP12. A third capacitor C3 is connected to the second capacitor C3. Further, in the present embodiment, the fourth capacitor C4 is connected to the gate of the N-type fourth transistor MN14, the fifth capacitor C5 is connected to the gate of the N-type third transistor MN13, and the N-type second transistor MN12 is connected. A sixth capacitor C6 is connected to the gate.
 例えば、第3キャパシタC3はP型の第2トランジスタMP12のゲートに接続されて、P型の第2トランジスタMP12のゲート・ソース間の寄生容量や、ゲート・ドレイン間の寄生容量と容量分割する。第4抵抗R14や第5抵抗R15による抵抗分割と、P型の第2トランジスタMP12のゲートに接続された第3キャパシタC3による容量分割との組合せにより、P型の第2トランジスタMP12のゲートへ与えられる電圧が安定する。この第3キャパシタC3による効果は、P型の第4トランジスタMP14のゲートに接続された第1キャパシタC1や、P型の第3トランジスタMP13のゲートに接続された第2キャパシタC2においても同様である。またN型の第4トランジスタMN14のゲートに接続された第4キャパシタC4、N型の第3トランジスタMN13のゲートに接続された第5キャパシタC5や、N型の第2トランジスタMN12のゲートに接続された第6キャパシタC6においても同様である。これにより、カスコード型増幅器2の全体の動作を安定させることができる。 For example, the third capacitor C3 is connected to the gate of the P-type second transistor MP12 and divides the capacitance from the parasitic capacitance between the gate and the source of the P-type second transistor MP12 and the parasitic capacitance between the gate and the drain. The combination of the resistance division by the fourth resistor R14 and the fifth resistor R15 and the capacitance division by the third capacitor C3 connected to the gate of the P-type second transistor MP12 gives to the gate of the P-type second transistor MP12. Voltage is stabilized. The effect of the third capacitor C3 is the same in the first capacitor C1 connected to the gate of the P-type fourth transistor MP14 and the second capacitor C2 connected to the gate of the P-type third transistor MP13. . The fourth capacitor C4 connected to the gate of the N-type fourth transistor MN14, the fifth capacitor C5 connected to the gate of the N-type third transistor MN13, and the gate of the N-type second transistor MN12 are connected. The same applies to the sixth capacitor C6. As a result, the overall operation of the cascode amplifier 2 can be stabilized.
 なお図5のカスコード型増幅器では、P型の第4トランジスタMP14のゲートとN型の第4トランジスタMN14のゲートはいずれも第1ノードNに接続されているので、第1キャパシタと第4キャパシタとをそれぞれ設ける構成とする代わりに、第1ノードNとGNDとの間に接続された一つのキャパシタを設ける構成としてもよい。 In the cascode amplifier of FIG. 5, since the gate of the P-type fourth transistor MP14 and the gate of the N-type fourth transistor MN14 are both connected to the first node N, the first capacitor, the fourth capacitor, Instead of the configuration in which each is provided, one capacitor connected between the first node N and GND may be provided.
 〔第3実施形態〕
 次に、本発明の第3実施形態によるカスコード型増幅器について、説明する。図7は、第3実施形態のカスコード型増幅器を説明するための回路図である。
[Third Embodiment]
Next, a cascode amplifier according to a third embodiment of the present invention will be described. FIG. 7 is a circuit diagram for explaining the cascode amplifier according to the third embodiment.
 第3実施形態のカスコード型増幅器は、第1実施形態のカスコード型増幅器の変形例である。第1実施形態のカスコード型増幅器と同様な要素に対しては、同じ参照番号を付してその詳細な説明を省略することとする。 The cascode amplifier according to the third embodiment is a modification of the cascode amplifier according to the first embodiment. Elements similar to those of the cascode amplifier of the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 図7のカスコード型増幅器3は第1実施形態と同様に、第1導電型の一例としてのP型の第1トランジスタMP11と、第1トランジスタMP11と出力端子との間に縦続接続されたP型の第2トランジスタMP12、第3トランジスタMP13、及び第4トランジスタMP14と、を含む。 As in the first embodiment, the cascode amplifier 3 in FIG. 7 includes a P-type first transistor MP11 as an example of the first conductivity type, and a P-type cascaded between the first transistor MP11 and the output terminal. Second transistor MP12, third transistor MP13, and fourth transistor MP14.
 さらに図7のカスコード型増幅器3は第1実施形態と同様に、第2導電型の一例としてのN型の第1トランジスタMN11と、N型の第1トランジスタMN11と出力端子との間に縦続接続されたN型の第2トランジスタMN12、第3トランジスタMN13、及び第4トランジスタMN14と、を含む。 Further, as in the first embodiment, the cascode amplifier 3 of FIG. 7 is connected in cascade between the N-type first transistor MN11 as an example of the second conductivity type, and the N-type first transistor MN11 and the output terminal. N-type second transistor MN12, third transistor MN13, and fourth transistor MN14.
 さらに図7のカスコード型増幅器3は第1実施形態と同様に、出力端子と第1ノードNとの間に接続された第1抵抗R11と、第1ノードNに接続された第2抵抗R12と、を含む。さらに図7のカスコード型増幅器3は、第1ノードNとP型の第1トランジスタMP11のゲートとの間に直列接続された第3抵抗R13、第4抵抗R14、第5抵抗R15を含む。さらに図7のカスコード型増幅器3は、P型の第1トランジスタMP11のゲートと第2電源V2との間に接続された第6抵抗R16と、を含む。さらに図7のカスコード型増幅器3は、第1ノードNとN型の第1トランジスタMN11のゲートとの間に直列接続された第7抵抗R17、第8抵抗R18、第9抵抗R19を含む。さらに図7のカスコード型増幅器3は、N型の第1トランジスタMN11のゲートと第3電源V3との間に接続された第10抵抗R20と、を含む。 Further, as in the first embodiment, the cascode amplifier 3 of FIG. 7 includes a first resistor R11 connected between the output terminal and the first node N, a second resistor R12 connected to the first node N, ,including. Further, the cascode amplifier 3 of FIG. 7 includes a third resistor R13, a fourth resistor R14, and a fifth resistor R15 connected in series between the first node N and the gate of the P-type first transistor MP11. Further, the cascode amplifier 3 of FIG. 7 includes a sixth resistor R16 connected between the gate of the P-type first transistor MP11 and the second power supply V2. Further, the cascode amplifier 3 of FIG. 7 includes a seventh resistor R17, an eighth resistor R18, and a ninth resistor R19 connected in series between the first node N and the gate of the N-type first transistor MN11. Further, the cascode amplifier 3 in FIG. 7 includes a tenth resistor R20 connected between the gate of the N-type first transistor MN11 and the third power supply V3.
 さらに図7のカスコード型増幅器3では、VDD×4とGNDとの間に直列接続された第11抵抗R21及び第13抵抗R23を含む。そして第2抵抗R12は、第1ノードNと、直列接続された第11抵抗R21及び第13抵抗R23の接続点との間に接続されている。 Further, the cascode amplifier 3 of FIG. 7 includes an eleventh resistor R21 and a thirteenth resistor R23 connected in series between V DD × 4 and GND. The second resistor R12 is connected between the first node N and the connection point of the eleventh resistor R21 and the thirteenth resistor R23 connected in series.
 図7のカスコード型増幅器3では、第1抵抗R11、第2抵抗R12、第11抵抗R21、及び第13抵抗R23を含んで、出力信号を抵抗分割してカスコードトランジスタのゲートに帰還する構成を実現している。この構成は、図2の(c)に示される帰還回路の具体的構成例2に対応する。 The cascode amplifier 3 in FIG. 7 includes a first resistor R11, a second resistor R12, an eleventh resistor R21, and a thirteenth resistor R23, and realizes a configuration in which the output signal is divided by resistance and fed back to the gate of the cascode transistor. doing. This configuration corresponds to a specific configuration example 2 of the feedback circuit shown in FIG.
 (実施形態の効果)
 抵抗は周波数特性を持たないので、図7のカスコード型増幅器3の第1抵抗R11、第2抵抗R12、第3抵抗R13、第7抵抗R17、第11抵抗R21、第13抵抗R23などは周波数特性を持たない。これにより本実施形態のカスコード型増幅器によれば、第1実施形態と同様に、P型の第1トランジスタMP11~第4トランジスタMP14、N型の第1トランジスタMN11~第4トランジスタMN14の素子耐圧を許容範囲内に維持しつつ、カスコード型増幅器を広帯域化することができる。
(Effect of embodiment)
Since the resistor does not have frequency characteristics, the first resistor R11, second resistor R12, third resistor R13, seventh resistor R17, eleventh resistor R21, thirteenth resistor R23, etc. of the cascode amplifier 3 of FIG. Do not have. Thus, according to the cascode amplifier of the present embodiment, the element breakdown voltages of the P-type first transistor MP11 to the fourth transistor MP14 and the N-type first transistor MN11 to the fourth transistor MN14 are set as in the first embodiment. The cascode amplifier can be widened while maintaining within an allowable range.
 さらに本実施形態では、VDD×4とGNDとの間に直列接続された第11抵抗R21及び第13抵抗R23の抵抗分割によって、第1実施形態や第2実施形態の第1電源V1(VDD×2)に対応する電圧を発生させている。これにより第1電源V1(VDD×2)のための専用の電圧源を省略し、電源ユニットの共有化を図ることができる。 Further, in the present embodiment, the first power supply V1 (V1 (V) of the first embodiment and the second embodiment is obtained by resistance division of the eleventh resistor R21 and the thirteenth resistor R23 connected in series between V DD × 4 and GND. A voltage corresponding to DD × 2) is generated. As a result, a dedicated voltage source for the first power supply V1 (V DD × 2) can be omitted, and the power supply unit can be shared.
 〔第4実施形態〕
 次に、本発明の第4実施形態によるカスコード型増幅器について、説明する。図8は、第4実施形態のカスコード型増幅器を説明するための回路図である。第4実施形態のカスコード型増幅器は、第2実施形態や第3実施形態のカスコード型増幅器の変形例である。第2実施形態や第3実施形態のカスコード型増幅器と同様な要素に対しては、同じ参照番号を付してその詳細な説明を省略することとする。
[Fourth Embodiment]
Next, a cascode amplifier according to a fourth embodiment of the present invention will be described. FIG. 8 is a circuit diagram for explaining a cascode amplifier according to the fourth embodiment. The cascode amplifier according to the fourth embodiment is a modification of the cascode amplifier according to the second embodiment or the third embodiment. Elements similar to those of the cascode amplifiers of the second and third embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.
 図8のカスコード型増幅器4は第2実施形態と同様に、第1導電型の一例としてのP型の第1トランジスタMP11と、第1トランジスタMP11と出力端子との間に縦続接続されたP型の第2トランジスタMP12、第3トランジスタMP13、及び第4トランジスタMP14と、を含む。 As in the second embodiment, the cascode amplifier 4 of FIG. 8 includes a P-type first transistor MP11 as an example of the first conductivity type, and a P-type cascade connected between the first transistor MP11 and the output terminal. Second transistor MP12, third transistor MP13, and fourth transistor MP14.
 さらに図8のカスコード型増幅器4は第2実施形態と同様に、第2導電型の一例としてのN型の第1トランジスタMN11と、N型の第1トランジスタMN11と出力端子との間に縦続接続されたN型の第2トランジスタMN12、第3トランジスタMN13、及び第4トランジスタMN14と、を含む。 Further, as in the second embodiment, the cascode amplifier 4 of FIG. 8 is connected in cascade between the N-type first transistor MN11 as an example of the second conductivity type, and the N-type first transistor MN11 and the output terminal. N-type second transistor MN12, third transistor MN13, and fourth transistor MN14.
 さらに図8のカスコード型増幅器4は第2実施形態と同様に、出力端子と第1ノードNとの間に接続された第1抵抗R11と、第1ノードNに接続された第2抵抗R12と、を含む。さらに図8のカスコード型増幅器4は、第1ノードNとP型の第1トランジスタMP11のゲートとの間に直列接続された第3抵抗R13、第4抵抗R14、第5抵抗R15を含む。さらに図8のカスコード型増幅器4は、P型の第1トランジスタMP11のゲートと第2電源V2との間に接続された第6抵抗R16と、を含む。さらに図8のカスコード型増幅器4は、第1ノードNとN型の第1トランジスタMN11のゲートとの間に直列接続された第7抵抗R17、第8抵抗R18、第9抵抗R19を含む。さらに図8のカスコード型増幅器4は、N型の第1トランジスタMN11のゲートと第3電源V3との間に接続された第10抵抗R20と、を含む。 Further, as in the second embodiment, the cascode amplifier 4 of FIG. 8 includes a first resistor R11 connected between the output terminal and the first node N, and a second resistor R12 connected to the first node N. ,including. Furthermore, the cascode amplifier 4 of FIG. 8 includes a third resistor R13, a fourth resistor R14, and a fifth resistor R15 connected in series between the first node N and the gate of the P-type first transistor MP11. Further, the cascode amplifier 4 of FIG. 8 includes a sixth resistor R16 connected between the gate of the P-type first transistor MP11 and the second power supply V2. Further, the cascode amplifier 4 of FIG. 8 includes a seventh resistor R17, an eighth resistor R18, and a ninth resistor R19 connected in series between the first node N and the gate of the N-type first transistor MN11. Furthermore, the cascode amplifier 4 of FIG. 8 includes a tenth resistor R20 connected between the gate of the N-type first transistor MN11 and the third power supply V3.
 さらに図8のカスコード型増幅器4では、第2実施形態と同様に、P型の第4トランジスタMP14のゲートとGNDとの間に接続された第1キャパシタC1と、P型の第3トランジスタMP13のゲートとGNDとの間に接続された第2キャパシタC2と、P型の第2トランジスタMP12のゲートとGNDとの間に接続された第3キャパシタC3と、を含む。さらに図8のカスコード型増幅器4では、第2実施形態と同様に、N型の第4トランジスタMN14のゲートとGNDとの間に接続された第4キャパシタC4と、N型の第3トランジスタMN13のゲートとGNDとの間に接続された第5キャパシタC5と、N型の第2トランジスタMN12のゲートとGNDとの間に接続された第6キャパシタC6と、を含む。 Further, in the cascode amplifier 4 of FIG. 8, as in the second embodiment, the first capacitor C1 connected between the gate of the P-type fourth transistor MP14 and GND, and the P-type third transistor MP13. A second capacitor C2 connected between the gate and GND; and a third capacitor C3 connected between the gate of the P-type second transistor MP12 and GND. Further, in the cascode amplifier 4 of FIG. 8, as in the second embodiment, the fourth capacitor C4 connected between the gate of the N-type fourth transistor MN14 and GND, and the N-type third transistor MN13. A fifth capacitor C5 connected between the gate and GND, and a sixth capacitor C6 connected between the gate of the N-type second transistor MN12 and GND.
 ここで図8のカスコード型増幅器4は、第2抵抗R12の接続が第2実施形態とは異なる。図8のカスコード型増幅器4では第3実施形態と同様に、VDD×4とGNDとの間に直列接続された第11抵抗R21及び第13抵抗R23を含む。そして第2抵抗R12は、第1ノードNと、直列接続された第11抵抗R21及び第13抵抗R23の接続点との間に接続されている。 Here, the cascode amplifier 4 of FIG. 8 is different from the second embodiment in the connection of the second resistor R12. As in the third embodiment, the cascode amplifier 4 of FIG. 8 includes an eleventh resistor R21 and a thirteenth resistor R23 connected in series between V DD × 4 and GND. The second resistor R12 is connected between the first node N and the connection point of the eleventh resistor R21 and the thirteenth resistor R23 connected in series.
 図8のカスコード型増幅器4では第3実施形態と同様に、第1抵抗R11、第2抵抗R12、第11抵抗R21、及び第13抵抗R23を含んで、出力信号を抵抗分割してカスコードトランジスタのゲートに帰還する構成を実現している。この構成は、図2の(c)に示される帰還回路の具体的構成例2に対応する。 As in the third embodiment, the cascode amplifier 4 of FIG. 8 includes a first resistor R11, a second resistor R12, an eleventh resistor R21, and a thirteenth resistor R23. A configuration for returning to the gate is realized. This configuration corresponds to a specific configuration example 2 of the feedback circuit shown in FIG.
 (実施形態の効果)
 抵抗は周波数特性を持たないので、図8のカスコード型増幅器4の第1抵抗R11、第2抵抗R12、第3抵抗R13、第7抵抗R17、第11抵抗R21、第13抵抗R23などは周波数特性を持たない。これにより本実施形態のカスコード型増幅器によれば、第1実施形態と同様に、P型の第1トランジスタMP11~第4トランジスタMP14、N型の第1トランジスタMN11~第4トランジスタMN14の素子耐圧を許容範囲内に維持しつつ、カスコード型増幅器を広帯域化することができる。
(Effect of embodiment)
Since the resistor does not have frequency characteristics, the first resistor R11, the second resistor R12, the third resistor R13, the seventh resistor R17, the eleventh resistor R21, the thirteenth resistor R23, etc. of the cascode amplifier 4 of FIG. Do not have. Thus, according to the cascode amplifier of the present embodiment, the element breakdown voltages of the P-type first transistor MP11 to the fourth transistor MP14 and the N-type first transistor MN11 to the fourth transistor MN14 are set as in the first embodiment. The cascode amplifier can be widened while maintaining within an allowable range.
 さらに第2実施形態のカスコード型増幅器2と同様に、第1キャパシタC1乃至第6キャパシタC6を接続したことによる容量分割と、第4抵抗R14や第5抵抗R15などによる抵抗分割との組合せによって、カスコードトランジスタのゲートへ与えられる電圧が安定し、カスコード型増幅器4の全体の動作を安定させることができる。 Further, similarly to the cascode amplifier 2 of the second embodiment, by combining the capacitance division by connecting the first capacitor C1 to the sixth capacitor C6 and the resistance division by the fourth resistor R14, the fifth resistor R15, etc., The voltage applied to the gate of the cascode transistor is stabilized, and the entire operation of the cascode amplifier 4 can be stabilized.
 さらに本実施形態では、VDD×4とGNDとの間に直列接続された第11抵抗R21及び第13抵抗R23の抵抗分割によって、第1実施形態や第2実施形態の第1電源V1(VDD×2)に対応する電圧を発生させている。これにより第1電源V1(VDD×2)のための専用の電圧源を省略し、電源ユニットの共有化を図ることができる。 Further, in the present embodiment, the first power supply V1 (V1 (V) of the first embodiment and the second embodiment is obtained by resistance division of the eleventh resistor R21 and the thirteenth resistor R23 connected in series between V DD × 4 and GND. A voltage corresponding to DD × 2) is generated. As a result, a dedicated voltage source for the first power supply V1 (V DD × 2) can be omitted, and the power supply unit can be shared.
 〔第5実施形態〕
 次に、本発明の第5実施形態によるカスコード型増幅器について、説明する。図9は、第5実施形態のカスコード型増幅器を説明するための回路図である。第5実施形態のカスコード型増幅器は、第4実施形態などのカスコード型増幅器の変形例である。第4実施形態などのカスコード型増幅器と同様な要素に対しては、同じ参照番号を付してその詳細な説明を省略することとする。
[Fifth Embodiment]
Next, a cascode amplifier according to a fifth embodiment of the invention will be described. FIG. 9 is a circuit diagram for explaining the cascode amplifier according to the fifth embodiment. The cascode amplifier of the fifth embodiment is a modification of the cascode amplifier of the fourth embodiment. Elements similar to those of the cascode amplifier of the fourth embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 図9のカスコード型増幅器5aは第4実施形態と同様に、第1導電型の一例としてのP型の第1トランジスタMP11と、第1トランジスタMP11と出力端子との間に縦続接続されたP型の第2トランジスタMP12、第3トランジスタMP13、及び第4トランジスタMP14と、を含む。 As in the fourth embodiment, the cascode amplifier 5a of FIG. 9 includes a P-type first transistor MP11 as an example of the first conductivity type, and a P-type cascade connected between the first transistor MP11 and the output terminal. Second transistor MP12, third transistor MP13, and fourth transistor MP14.
 さらに図9のカスコード型増幅器5aは第4実施形態と同様に、第2導電型の一例としてのN型の第1トランジスタMN11と、N型の第1トランジスタMN11と出力端子との間に縦続接続されたN型の第2トランジスタMN12、第3トランジスタMN13、及び第4トランジスタMN14と、を含む。 Further, as in the fourth embodiment, the cascode amplifier 5a of FIG. 9 is connected in cascade between the N-type first transistor MN11 as an example of the second conductivity type, and the N-type first transistor MN11 and the output terminal. N-type second transistor MN12, third transistor MN13, and fourth transistor MN14.
 さらに図9のカスコード型増幅器5aは、出力端子と第1ノードNとの間に接続された帰還回路を含む。さらに図9のカスコード型増幅器5aは、第1ノードNとP型の第1トランジスタMP11のゲートとの間に直列接続された第3抵抗R13、第4抵抗R14、第5抵抗R15を含む。さらに図9のカスコード型増幅器5aは、P型の第1トランジスタMP11のゲートと第2電源V2との間に接続された第6抵抗R16と、を含む。さらに図9のカスコード型増幅器5aは、第1ノードNとN型の第1トランジスタMN11のゲートとの間に直列接続された第7抵抗R17、第8抵抗R18、第9抵抗R19を含む。さらに図9のカスコード型増幅器5aは、N型の第1トランジスタMN11のゲートと第3電源V3との間に接続された第10抵抗R20と、を含む。 9 further includes a feedback circuit connected between the output terminal and the first node N. The cascode amplifier 5a shown in FIG. Further, the cascode amplifier 5a of FIG. 9 includes a third resistor R13, a fourth resistor R14, and a fifth resistor R15 connected in series between the first node N and the gate of the P-type first transistor MP11. Further, the cascode amplifier 5a of FIG. 9 includes a sixth resistor R16 connected between the gate of the P-type first transistor MP11 and the second power supply V2. Further, the cascode amplifier 5a of FIG. 9 includes a seventh resistor R17, an eighth resistor R18, and a ninth resistor R19 connected in series between the first node N and the gate of the N-type first transistor MN11. Further, the cascode amplifier 5a of FIG. 9 includes a tenth resistor R20 connected between the gate of the N-type first transistor MN11 and the third power supply V3.
 さらに図9のカスコード型増幅器5aでは、第2実施形態や第4実施形態と同様に、P型の第4トランジスタMP14のゲートとGNDとの間に接続された第1キャパシタC1と、P型の第3トランジスタMP13のゲートとGNDとの間に接続された第2キャパシタC2と、P型の第2トランジスタMP12のゲートとGNDとの間に接続された第3キャパシタC3と、を含む。さらに図9のカスコード型増幅器5aでは、第2実施形態や第4実施形態と同様に、N型の第4トランジスタMN14のゲートとGNDとの間に接続された第4キャパシタC4と、N型の第3トランジスタMN13のゲートとGNDとの間に接続された第5キャパシタC5と、N型の第2トランジスタMN12のゲートとGNDとの間に接続された第6キャパシタC6と、を含む。 Further, in the cascode amplifier 5a of FIG. 9, as in the second and fourth embodiments, the first capacitor C1 connected between the gate of the P-type fourth transistor MP14 and GND, and the P-type amplifier It includes a second capacitor C2 connected between the gate of the third transistor MP13 and GND, and a third capacitor C3 connected between the gate of the P-type second transistor MP12 and GND. Further, in the cascode amplifier 5a of FIG. 9, as in the second and fourth embodiments, a fourth capacitor C4 connected between the gate of the N-type fourth transistor MN14 and GND, It includes a fifth capacitor C5 connected between the gate of the third transistor MN13 and GND, and a sixth capacitor C6 connected between the gate of the N-type second transistor MN12 and GND.
 さらに図9のカスコード型増幅器5aは、カスコード型増幅器5aの出力信号を抵抗分割してP型の第4トランジスタMP14のゲート及びN型の第4トランジスタMN14のゲートに帰還する構成を持つ。言い換えると、図9のカスコード型増幅器5aでは、出力端子とP型の第4トランジスタMP14のゲート及びN型の第4トランジスタMN14のゲートとの間に接続された帰還回路を含む。この図9のカスコード型増幅器5aの帰還回路としては、第3実施形態や第4実施形態で用いた、図2の(c)に示される帰還回路を用いることができる。 Further, the cascode amplifier 5a of FIG. 9 has a configuration in which the output signal of the cascode amplifier 5a is resistance-divided and fed back to the gate of the P-type fourth transistor MP14 and the gate of the N-type fourth transistor MN14. In other words, the cascode amplifier 5a of FIG. 9 includes a feedback circuit connected between the output terminal and the gate of the P-type fourth transistor MP14 and the gate of the N-type fourth transistor MN14. As the feedback circuit of the cascode amplifier 5a shown in FIG. 9, the feedback circuit shown in FIG. 2C used in the third and fourth embodiments can be used.
 さらに図9のカスコード型増幅器5aは、P型の第1トランジスタMP11のゲートに接続されたラッチ回路LATCH1と、入力端子とP型の第1トランジスタMP11のゲートとの間に挿入された第11キャパシタC11とをさらに含む。ラッチ回路LATCH1は、例えば図9に示すような入力が出力に接続された一対のインバータ回路から構成される。ラッチ回路LATCH1は、P型の第1トランジスタMP11のゲートへ与えられるハイレベル又はローレベルの電圧を保持する。 Further, the cascode amplifier 5a of FIG. 9 includes a latch circuit LATCH1 connected to the gate of the P-type first transistor MP11, and an eleventh capacitor inserted between the input terminal and the gate of the P-type first transistor MP11. And C11. The latch circuit LATCH1 is composed of a pair of inverter circuits in which inputs as shown in FIG. 9 are connected to outputs, for example. The latch circuit LATCH1 holds a high level or low level voltage applied to the gate of the P-type first transistor MP11.
 (実施形態の動作)
 次に図9のカスコード型増幅器5aの動作について、図10を参照して説明する。図9のカスコード型増幅器5aの入力には”0”又は”1”のパルス信号が入力される。P型の第1トランジスタMP11~第4トランジスタMP14、N型の第1トランジスタMN11~第4トランジスタMN14の素子耐圧は、一例として1Vであるものとして説明する。
(Operation of the embodiment)
Next, the operation of the cascode amplifier 5a of FIG. 9 will be described with reference to FIG. A pulse signal of “0” or “1” is input to the input of the cascode amplifier 5a of FIG. The element breakdown voltages of the P-type first transistor MP11 to the fourth transistor MP14 and the N-type first transistor MN11 to the fourth transistor MN14 are assumed to be 1 V as an example.
 電源電圧VDDを基準として、第2電源V2は、電源電圧VDDの4倍のVDD×4の電圧を出力する。第3電源V3はGNDであり、0V(VDD×0)が与えられるものとする。P型の第1トランジスタMP11のゲートには、第2電源V2を図9の第6抵抗R16などで抵抗分割した電圧として、4V又は3Vが与えられる。 With reference to the power supply voltage V DD , the second power supply V2 outputs a voltage of V DD × 4 that is four times the power supply voltage V DD . The third power supply V3 is GND, and 0 V (V DD × 0) is given. 4V or 3V is applied to the gate of the P-type first transistor MP11 as a voltage obtained by resistance-dividing the second power supply V2 by the sixth resistor R16 of FIG.
 入力の”0”又は”1”のパルス信号(0V又は1V)に応じて、P型の第1トランジスタMP11のゲートには4V又は3Vが与えられ、N型の第1トランジスタMN11のゲートには0V又は1Vが与えられる。これに伴って、縦続接続されたP型の第1トランジスタMP11と第2トランジスタMP12との接続点は4Vと3Vとの間で変化し、縦続接続されたP型の第2トランジスタMP12と第3トランジスタMP13との接続点は4Vと2Vとの間で変化し、縦続接続されたP型の第3トランジスタMP13と第4トランジスタMP14との接続点は4Vと1Vとの間で変化する。また、縦続接続されたN型の第1トランジスタMN11と第2トランジスタMN12との接続点は1Vと0Vとの間で変化し、縦続接続されたN型の第2トランジスタMN12と第3トランジスタMN13との接続点は2Vと0Vとの間で変化し、縦続接続されたN型の第3トランジスタMN13と第4トランジスタMN14との接続点は3Vと0Vとの間で変化する。 Depending on the input “0” or “1” pulse signal (0V or 1V), 4V or 3V is applied to the gate of the P-type first transistor MP11, and the gate of the N-type first transistor MN11 is applied to the gate. 0V or 1V is applied. Accordingly, the connection point between the cascaded P-type first transistor MP11 and the second transistor MP12 changes between 4V and 3V, and the cascade-connected P-type second transistor MP12 and the third transistor MP12 are connected to each other. The connection point with the transistor MP13 changes between 4V and 2V, and the connection point between the cascaded P-type third transistor MP13 and the fourth transistor MP14 changes between 4V and 1V. Also, the connection point between the cascaded N-type first transistor MN11 and the second transistor MN12 varies between 1V and 0V, and the cascaded N-type second transistor MN12 and third transistor MN13 The connecting point of the N-type third transistor MN13 and the fourth transistor MN14 connected in cascade changes between 3V and 0V.
 さらにP型の第4トランジスタMP14のゲート、N型の第4トランジスタMN14のゲート、第1キャパシタC1の一端、及び第4キャパシタC4の一端の接続点の電位は、3Vと1Vとの間で変化する。その結果、入力の”0”又は”1”のパルス信号(0V又は1V)に応じて、図9のカスコード型増幅器5aの出力端子は4V又は0Vを出力する。 Furthermore, the potential at the connection point of the gate of the P-type fourth transistor MP14, the gate of the N-type fourth transistor MN14, one end of the first capacitor C1, and one end of the fourth capacitor C4 varies between 3V and 1V. To do. As a result, the output terminal of the cascode amplifier 5a in FIG. 9 outputs 4V or 0V according to the input “0” or “1” pulse signal (0V or 1V).
 (実施形態の効果)
 抵抗は周波数特性を持たないので、図9のカスコード型増幅器5aの帰還回路、第3抵抗R13、第7抵抗R17などは周波数特性を持たない。これによりP型の第1トランジスタMP11~第4トランジスタMP14、N型の第1トランジスタMN11~第4トランジスタMN14の素子耐圧を許容範囲内に維持しつつ、カスコード型増幅器5aを広帯域化することができる。
(Effect of embodiment)
Since the resistor does not have frequency characteristics, the feedback circuit of the cascode amplifier 5a of FIG. 9, the third resistor R13, the seventh resistor R17, and the like do not have frequency characteristics. As a result, the cascode amplifier 5a can be widened while maintaining the element breakdown voltages of the P-type first transistor MP11 to fourth transistor MP14 and the N-type first transistor MN11 to fourth transistor MN14 within an allowable range. .
 さらに図9のカスコード型増幅器5aでは、P型の第1トランジスタMP11のゲートに接続されたラッチ回路LATCH1と、入力端子とP型の第1トランジスタMP11のゲートとの間に挿入された第11キャパシタC11と、を含んでいる。カスコード型増幅器5aの入力の”0”又は”1”のパルス信号の変化に応じて、P型の第1トランジスタMP11のゲートに、第2電源V2を第6抵抗R16などで抵抗分割した電圧として、4V又は3Vを与えることができる。P型の第1トランジスタMP11のゲートに接続されたラッチ回路LATCH1によって、カスコード型増幅器5aの入力変化への追従性が向上し、構成素子の素子耐圧を許容範囲内に維持しつつ、広帯域化を実現することができる。 Further, in the cascode amplifier 5a of FIG. 9, the latch circuit LATCH1 connected to the gate of the P-type first transistor MP11 and the eleventh capacitor inserted between the input terminal and the gate of the P-type first transistor MP11. C11. A voltage obtained by resistance-dividing the second power supply V2 by the sixth resistor R16 or the like at the gate of the P-type first transistor MP11 in accordance with the change of the pulse signal of “0” or “1” at the input of the cascode amplifier 5a. 4V or 3V can be applied. The latch circuit LATCH1 connected to the gate of the P-type first transistor MP11 improves the follow-up to the input change of the cascode amplifier 5a, and increases the bandwidth while maintaining the element breakdown voltage within the allowable range. Can be realized.
 〔第6実施形態〕
 次に、本発明の第6実施形態によるカスコード型増幅器について、説明する。図11は、第6実施形態のカスコード型増幅器を説明するための回路図である。第6実施形態のカスコード型増幅器は、第5実施形態のカスコード型増幅器の変形例である。第5実施形態のカスコード型増幅器と同様な要素に対しては、同じ参照番号を付してその詳細な説明を省略することとする。
[Sixth Embodiment]
Next, a cascode amplifier according to a sixth embodiment of the present invention will be described. FIG. 11 is a circuit diagram for explaining a cascode amplifier according to the sixth embodiment. The cascode amplifier according to the sixth embodiment is a modification of the cascode amplifier according to the fifth embodiment. Elements similar to those of the cascode amplifier of the fifth embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 図11のカスコード型増幅器5bは第5実施形態と同様な構成に加えて、第13キャパシタC13をさらに含む。第13キャパシタC13は、ラッチ回路LATCH1のP型の第1トランジスタMP11のゲートに接続された一端とは別の一端と、所定の電位が与えられる配線との間に挿入されている。言い換えると、所定の電位が与えられる配線とP型の第1トランジスタMP11のゲートとの間に、ラッチ回路LATCH1と第13キャパシタC13とが直列接続されている。 The cascode amplifier 5b of FIG. 11 further includes a thirteenth capacitor C13 in addition to the same configuration as that of the fifth embodiment. The thirteenth capacitor C13 is inserted between one end different from one end connected to the gate of the P-type first transistor MP11 of the latch circuit LATCH1 and a wiring to which a predetermined potential is applied. In other words, the latch circuit LATCH1 and the thirteenth capacitor C13 are connected in series between a wiring to which a predetermined potential is applied and the gate of the P-type first transistor MP11.
 (実施形態の動作)
 次に図11のカスコード型増幅器5bの動作について、図12を参照して説明する。図12のカスコード型増幅器5bの入力には”0”又は”1”のパルス信号が入力される。P型の第1トランジスタMP11~第4トランジスタMP14、N型の第1トランジスタMN11~第4トランジスタMN14の素子耐圧は、一例として1Vであるものとして説明する。
(Operation of the embodiment)
Next, the operation of the cascode amplifier 5b shown in FIG. 11 will be described with reference to FIG. A pulse signal of “0” or “1” is input to the input of the cascode amplifier 5b of FIG. The element breakdown voltages of the P-type first transistor MP11 to the fourth transistor MP14 and the N-type first transistor MN11 to the fourth transistor MN14 are assumed to be 1 V as an example.
 電源電圧VDDを基準として、第2電源V2は、電源電圧VDDの4倍のVDD×4の電圧を出力する。第3電源V3はGNDであり、0V(VDD×0)が与えられるものとする。一端が第13キャパシタC13に接続される所定の電位が与えられる配線には、カスコード型増幅器5bの入力”0”又は”1”のパルス信号を反転した電位が与えられるものとする。P型の第1トランジスタMP11のゲートには、第2電源V2を第6抵抗R16などで抵抗分割した電圧として、4V又は3Vが与えられる。 With reference to the power supply voltage V DD , the second power supply V2 outputs a voltage of V DD × 4 that is four times the power supply voltage V DD . The third power supply V3 is GND, and 0 V (V DD × 0) is given. It is assumed that a potential obtained by inverting the pulse signal of “0” or “1” of the input of the cascode amplifier 5b is applied to a wiring to which a predetermined potential is connected, one end of which is connected to the thirteenth capacitor C13. 4V or 3V is applied to the gate of the P-type first transistor MP11 as a voltage obtained by resistance-dividing the second power supply V2 with the sixth resistor R16 or the like.
 入力の”0”又は”1”のパルス信号(0V又は1V)に応じて、P型の第1トランジスタMP11のゲートには4V又は3Vが与えられ、N型の第1トランジスタMN11のゲートには0V又は1Vが与えられる。これに伴って、縦続接続されたP型の第1トランジスタMP11と第2トランジスタMP12との接続点は4Vと3Vとの間で変化し、縦続接続されたP型の第2トランジスタMP12と第3トランジスタMP13との接続点は4Vと2Vとの間で変化し、縦続接続されたP型の第3トランジスタMP13と第4トランジスタMP14との接続点は4Vと1Vとの間で変化する。また、縦続接続されたN型の第1トランジスタMN11と第2トランジスタMN12との接続点は1Vと0Vとの間で変化し、縦続接続されたN型の第2トランジスタMN12と第3トランジスタMN13との接続点は2Vと0Vとの間で変化し、縦続接続されたN型の第3トランジスタMN13と第4トランジスタMN14との接続点は3Vと0Vとの間で変化する。 Depending on the input “0” or “1” pulse signal (0V or 1V), 4V or 3V is applied to the gate of the P-type first transistor MP11, and the gate of the N-type first transistor MN11 is applied to the gate. 0V or 1V is applied. Accordingly, the connection point between the cascaded P-type first transistor MP11 and the second transistor MP12 changes between 4V and 3V, and the cascade-connected P-type second transistor MP12 and the third transistor MP12 are connected to each other. The connection point with the transistor MP13 changes between 4V and 2V, and the connection point between the cascaded P-type third transistor MP13 and the fourth transistor MP14 changes between 4V and 1V. Also, the connection point between the cascaded N-type first transistor MN11 and the second transistor MN12 varies between 1V and 0V, and the cascaded N-type second transistor MN12 and third transistor MN13 The connecting point of the N-type third transistor MN13 and the fourth transistor MN14 connected in cascade changes between 3V and 0V.
 さらにP型の第4トランジスタMP14のゲート、N型の第4トランジスタMN14のゲート、第1キャパシタC1の一端、及び第4キャパシタC4の一端の接続点の電位は、3Vと1Vとの間で変化する。その結果、入力の”0”又は”1”のパルス信号(0V又は1V)に応じて、図12のカスコード型増幅器5bの出力端子は4V又は0Vを出力する。 Furthermore, the potential at the connection point of the gate of the P-type fourth transistor MP14, the gate of the N-type fourth transistor MN14, one end of the first capacitor C1, and one end of the fourth capacitor C4 varies between 3V and 1V. To do. As a result, the output terminal of the cascode amplifier 5b in FIG. 12 outputs 4V or 0V according to the input “0” or “1” pulse signal (0V or 1V).
 (実施形態の効果)
 抵抗は周波数特性を持たないので、図11のカスコード型増幅器5bの帰還回路、第3抵抗R13、第7抵抗R17などは周波数特性を持たない。これによりP型の第1トランジスタMP11~第4トランジスタMP14、N型の第1トランジスタMN11~第4トランジスタMN14の素子耐圧を許容範囲内に維持しつつ、カスコード型増幅器5bを広帯域化することができる。
(Effect of embodiment)
Since the resistor does not have frequency characteristics, the feedback circuit of the cascode amplifier 5b, the third resistor R13, the seventh resistor R17, and the like of FIG. 11 do not have frequency characteristics. As a result, the cascode amplifier 5b can be widened while maintaining the element breakdown voltages of the P-type first transistor MP11 to fourth transistor MP14 and the N-type first transistor MN11 to fourth transistor MN14 within an allowable range. .
 さらに図11のカスコード型増幅器5bでは第5実施形態と同様に、P型の第1トランジスタMP11のゲートに接続されたラッチ回路LATCH1と、入力端子とP型の第1トランジスタMP11のゲートとの間に挿入された第11キャパシタC11と、を含んでいる。カスコード型増幅器5bの入力の”0”又は”1”のパルス信号の変化に応じて、P型の第1トランジスタMP11のゲートに、第2電源V2を第6抵抗R16などで抵抗分割した電圧として、4V又は3Vを与えることができる。P型の第1トランジスタMP11のゲートに接続されたラッチ回路LATCH1によって、カスコード型増幅器5bの入力変化への追従性が向上し、構成素子の素子耐圧を許容範囲内に維持しつつ、広帯域化を実現することができる。 Further, in the cascode amplifier 5b of FIG. 11, as in the fifth embodiment, the latch circuit LATCH1 connected to the gate of the P-type first transistor MP11 and the input terminal and the gate of the P-type first transistor MP11 are arranged. And an eleventh capacitor C11 inserted into the. A voltage obtained by resistance-dividing the second power supply V2 by the sixth resistor R16 or the like at the gate of the P-type first transistor MP11 in accordance with the change of the pulse signal “0” or “1” at the input of the cascode amplifier 5b. 4V or 3V can be applied. The latch circuit LATCH1 connected to the gate of the P-type first transistor MP11 improves the follow-up to the input change of the cascode amplifier 5b, and increases the bandwidth while maintaining the element breakdown voltage within the allowable range. Can be realized.
 さらに図11のカスコード型増幅器5bでは、一端が第13キャパシタC13に接続される所定の電位が与えられる配線には、カスコード型増幅器5bの入力”0”又は”1”のパルス信号を反転した電位が与えられる。これにより、ラッチ回路LATCH1が保持し、P型の第1トランジスタMP11のゲートへ与えられる電圧について、カスコード型増幅器5bの入力”0”又は”1”の変化への追従性が図9のカスコード型増幅器5aより向上させることができる。 Further, in the cascode amplifier 5b of FIG. 11, a potential obtained by inverting the pulse signal of the input “0” or “1” of the cascode amplifier 5b is connected to a wiring to which a predetermined potential is connected to one end of the thirteenth capacitor C13. Is given. As a result, the voltage that is held by the latch circuit LATCH1 and applied to the gate of the P-type first transistor MP11 can follow the change of the input “0” or “1” of the cascode-type amplifier 5b. This can be improved over the amplifier 5a.
 〔第7実施形態〕
 次に、本発明の第7実施形態によるカスコード型増幅器について、説明する。図13は、第7実施形態のカスコード型増幅器を説明するための回路図である。第7実施形態のカスコード型増幅器は、第5実施形態のカスコード型増幅器の変形例である。第5実施形態のカスコード型増幅器と同様な要素に対しては、同じ参照番号を付してその詳細な説明を省略することとする。
[Seventh Embodiment]
Next, a cascode amplifier according to a seventh embodiment of the present invention will be described. FIG. 13 is a circuit diagram for explaining the cascode amplifier according to the seventh embodiment. The cascode amplifier according to the seventh embodiment is a modification of the cascode amplifier according to the fifth embodiment. Elements similar to those of the cascode amplifier of the fifth embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 図13のカスコード型増幅器5cは第5実施形態と同様な構成に加えて、N型の第1トランジスタMN11のゲートに接続されたラッチ回路LATCH2と、入力端子とN型の第1トランジスタMN11のゲートとの間に挿入された第12キャパシタC12とをさらに含む。ラッチ回路LATCH2は、例えば図13に示すような入力が出力に接続された一対のインバータ回路から構成される。ラッチ回路LATCH2は、N型の第1トランジスタMN11のゲートへ与えられるハイレベル又はローレベルの電圧を保持する。 The cascode amplifier 5c of FIG. 13 has the same configuration as that of the fifth embodiment, a latch circuit LATCH2 connected to the gate of the N-type first transistor MN11, an input terminal, and the gate of the N-type first transistor MN11. And a twelfth capacitor C12 inserted between the first and second capacitors. The latch circuit LATCH2 is composed of a pair of inverter circuits whose inputs are connected to the outputs as shown in FIG. 13, for example. The latch circuit LATCH2 holds a high level or low level voltage applied to the gate of the N-type first transistor MN11.
 (実施形態の動作)
 次に図13のカスコード型増幅器5cの動作について、図14を参照して説明する。図14のカスコード型増幅器5cの入力には”0”又は”1”のパルス信号が入力される。P型の第1トランジスタMP11~第4トランジスタMP14、N型の第1トランジスタMN11~第4トランジスタMN14の素子耐圧は、一例として1Vであるものとして説明する。
(Operation of the embodiment)
Next, the operation of the cascode amplifier 5c shown in FIG. 13 will be described with reference to FIG. A pulse signal of “0” or “1” is input to the input of the cascode amplifier 5c in FIG. The element breakdown voltages of the P-type first transistor MP11 to the fourth transistor MP14 and the N-type first transistor MN11 to the fourth transistor MN14 are assumed to be 1 V as an example.
 電源電圧VDDを基準として、第2電源V2は、電源電圧VDDの4倍のVDD×4の電圧を出力する。第3電源V3はGNDであり、0V(VDD×0)が与えられるものとする。P型の第1トランジスタMP11のゲートには、第2電源V2を第6抵抗R16などで抵抗分割した電圧として、4V又は3Vが与えられる。 With reference to the power supply voltage V DD , the second power supply V2 outputs a voltage of V DD × 4 that is four times the power supply voltage V DD . The third power supply V3 is GND, and 0 V (V DD × 0) is given. 4V or 3V is applied to the gate of the P-type first transistor MP11 as a voltage obtained by resistance-dividing the second power supply V2 with the sixth resistor R16 or the like.
 入力の”0”又は”1”のパルス信号(0V又は1V)に応じて、P型の第1トランジスタMP11のゲートには4V又は3Vが与えられ、N型の第1トランジスタMN11のゲートには0V又は1Vが与えられる。これに伴って、縦続接続されたP型の第1トランジスタMP11と第2トランジスタMP12との接続点は4Vと3Vとの間で変化し、縦続接続されたP型の第2トランジスタMP12と第3トランジスタMP13との接続点は4Vと2Vとの間で変化し、縦続接続されたP型の第3トランジスタMP13と第4トランジスタMP14との接続点は4Vと1Vとの間で変化する。また、縦続接続されたN型の第1トランジスタMN11と第2トランジスタMN12との接続点は1Vと0Vとの間で変化し、縦続接続されたN型の第2トランジスタMN12と第3トランジスタMN13との接続点は2Vと0Vとの間で変化し、縦続接続されたN型の第3トランジスタMN13と第4トランジスタMN14との接続点は3Vと0Vとの間で変化する。 Depending on the input “0” or “1” pulse signal (0V or 1V), 4V or 3V is applied to the gate of the P-type first transistor MP11, and the gate of the N-type first transistor MN11 is applied to the gate. 0V or 1V is applied. Accordingly, the connection point between the cascaded P-type first transistor MP11 and the second transistor MP12 changes between 4V and 3V, and the cascade-connected P-type second transistor MP12 and the third transistor MP12 are connected to each other. The connection point with the transistor MP13 changes between 4V and 2V, and the connection point between the cascaded P-type third transistor MP13 and the fourth transistor MP14 changes between 4V and 1V. Also, the connection point between the cascaded N-type first transistor MN11 and the second transistor MN12 varies between 1V and 0V, and the cascaded N-type second transistor MN12 and third transistor MN13 The connecting point of the N-type third transistor MN13 and the fourth transistor MN14 connected in cascade changes between 3V and 0V.
 さらにP型の第4トランジスタMP14のゲート、N型の第4トランジスタMN14のゲート、第1キャパシタC1の一端、及び第4キャパシタC4の一端の接続点の電位は、3Vと1Vとの間で変化する。その結果、入力の”0”又は”1”のパルス信号(0V又は1V)に応じて、図14のカスコード型増幅器5cの出力端子は4V又は0Vを出力する。 Furthermore, the potential at the connection point of the gate of the P-type fourth transistor MP14, the gate of the N-type fourth transistor MN14, one end of the first capacitor C1, and one end of the fourth capacitor C4 varies between 3V and 1V. To do. As a result, the output terminal of the cascode amplifier 5c in FIG. 14 outputs 4V or 0V according to the input “0” or “1” pulse signal (0V or 1V).
 (実施形態の効果)
 抵抗は周波数特性を持たないので、図13のカスコード型増幅器5cの帰還回路、第3抵抗R13、第7抵抗R17などは周波数特性を持たない。これによりP型の第1トランジスタMP11~第4トランジスタMP14、N型の第1トランジスタMN11~第4トランジスタMN14の素子耐圧を許容範囲内に維持しつつ、カスコード型増幅器5cを広帯域化することができる。
(Effect of embodiment)
Since the resistor does not have frequency characteristics, the feedback circuit of the cascode amplifier 5c of FIG. 13, the third resistor R13, the seventh resistor R17, and the like do not have frequency characteristics. As a result, the cascode amplifier 5c can be widened while maintaining the element breakdown voltages of the P-type first transistor MP11 to fourth transistor MP14 and the N-type first transistor MN11 to fourth transistor MN14 within an allowable range. .
 さらに図13のカスコード型増幅器5cでは第5実施形態と同様に、P型の第1トランジスタMP11のゲートに接続されたラッチ回路LATCH1と、入力端子とP型の第1トランジスタMP11のゲートとの間に挿入された第11キャパシタC11と、を含んでいる。カスコード型増幅器5cの入力の”0”又は”1”のパルス信号の変化に応じて、P型の第1トランジスタMP11のゲートに、第2電源V2を第6抵抗R16などで抵抗分割した電圧として、4V又は3Vを与えることができる。P型の第1トランジスタMP11のゲートに接続されたラッチ回路LATCH1によって、カスコード型増幅器5cの入力変化への追従性が向上し、構成素子の素子耐圧を許容範囲内に維持しつつ、広帯域化を実現することができる。 Further, in the cascode amplifier 5c of FIG. 13, as in the fifth embodiment, the latch circuit LATCH1 connected to the gate of the P-type first transistor MP11 and the input terminal and the gate of the P-type first transistor MP11 are arranged. And an eleventh capacitor C11 inserted into the. A voltage obtained by resistance-dividing the second power source V2 with the sixth resistor R16 or the like at the gate of the P-type first transistor MP11 in accordance with the change of the pulse signal of “0” or “1” at the input of the cascode amplifier 5c. 4V or 3V can be applied. The latch circuit LATCH1 connected to the gate of the P-type first transistor MP11 improves the follow-up to the input change of the cascode amplifier 5c, and increases the bandwidth while maintaining the element breakdown voltage within the allowable range. Can be realized.
 さらに図13のカスコード型増幅器5cでは、N型の第1トランジスタMN11のゲートに接続されたラッチ回路LATCH2と、入力端子とN型の第1トランジスタMN11のゲートとの間に挿入された第12キャパシタC12と、を含んでいる。カスコード型増幅器5cの入力の”0”又は”1”のパルス信号の変化に応じて、N型の第1トランジスタMN11のゲートに、第3電源V3を第10抵抗R20などで抵抗分割した電圧として、1V又は0Vを与えることができる。N型の第1トランジスタMN11のゲートに接続されたラッチ回路LATCH2によって、カスコード型増幅器5cの入力変化への追従性が向上し、構成素子の素子耐圧を許容範囲内に維持しつつ、広帯域化を実現することができる。 Further, in the cascode amplifier 5c of FIG. 13, a latch circuit LATCH2 connected to the gate of the N-type first transistor MN11 and a twelfth capacitor inserted between the input terminal and the gate of the N-type first transistor MN11. C12. A voltage obtained by dividing the third power source V3 by a tenth resistor R20 or the like at the gate of the N-type first transistor MN11 in accordance with the change of the pulse signal of “0” or “1” at the input of the cascode amplifier 5c. 1V or 0V can be applied. The latch circuit LATCH2 connected to the gate of the N-type first transistor MN11 improves the follow-up to the input change of the cascode amplifier 5c, and increases the bandwidth while maintaining the element breakdown voltage within the allowable range. Can be realized.
 さらに図13のカスコード型増幅器5cでは、P型の第1トランジスタMP11のゲートに接続されたラッチ回路LATCH1と、N型の第1トランジスタMN11のゲートに接続されたラッチ回路LATCH2とを含んで構成することにより、カスコード型増幅器5cの全体の回路構成の対称性が向上する。 Further, the cascode amplifier 5c of FIG. 13 includes a latch circuit LATCH1 connected to the gate of the P-type first transistor MP11 and a latch circuit LATCH2 connected to the gate of the N-type first transistor MN11. This improves the symmetry of the overall circuit configuration of the cascode amplifier 5c.
 〔第8実施形態〕
 次に、本発明の第8実施形態によるカスコード型増幅器について、説明する。図15は、第8実施形態のカスコード型増幅器を説明するための回路図である。第8実施形態のカスコード型増幅器は、第5実施形態乃至第7実施形態のカスコード型増幅器の変形例である。第5実施形態乃至第7実施形態のカスコード型増幅器と同様な要素に対しては、同じ参照番号を付してその詳細な説明を省略することとする。
[Eighth Embodiment]
Next, a cascode amplifier according to an eighth embodiment of the present invention will be described. FIG. 15 is a circuit diagram for explaining a cascode amplifier according to an eighth embodiment. The cascode amplifier according to the eighth embodiment is a modification of the cascode amplifier according to the fifth to seventh embodiments. Elements similar to those of the cascode amplifiers of the fifth to seventh embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.
 図15のカスコード型増幅器5dは第5実施形態と同様な構成に加えて、N型の第1トランジスタMN11のゲートに接続されたラッチ回路LATCH2と、入力端子とN型の第1トランジスタMN11のゲートとの間に挿入された第12キャパシタC12とをさらに含む。ラッチ回路LATCH2は、例えば図15に示すような入力が出力に接続された一対のインバータ回路から構成される。ラッチ回路LATCH2は、N型の第1トランジスタMN11のゲートへ与えられるハイレベル又はローレベルの電圧を保持する。 15 has a configuration similar to that of the fifth embodiment, a latch circuit LATCH2 connected to the gate of the N-type first transistor MN11, an input terminal, and a gate of the N-type first transistor MN11. And a twelfth capacitor C12 inserted between the first and second capacitors. The latch circuit LATCH2 is composed of a pair of inverter circuits whose inputs are connected to the outputs, for example, as shown in FIG. The latch circuit LATCH2 holds a high level or low level voltage applied to the gate of the N-type first transistor MN11.
 さらに入力端子(入力2)とラッチ回路LATCH1の一端との間に挿入された第13キャパシタC13と、入力端子(入力2)とラッチ回路LATCH2の一端との間に挿入された第14キャパシタC14と、をさらに含む。 Furthermore, a thirteenth capacitor C13 inserted between the input terminal (input 2) and one end of the latch circuit LATCH1, and a fourteenth capacitor C14 inserted between the input terminal (input 2) and one end of the latch circuit LATCH2; Further included.
 (実施形態の動作)
 次に図15のカスコード型増幅器5dの動作について、図16を参照して説明する。図16のカスコード型増幅器5dの入力端子(入力1)には相補的な2つの入力信号のうち一方の信号が入力され、入力端子(入力2)には相補的な2つの入力信号のうち他方の信号が入力される。図16では入力端子(入力1)には”0”又は”1”のパルス信号が入力され、入力端子(入力2)には”1”又は”0”のパルス信号が入力される。P型の第1トランジスタMP11~第4トランジスタMP14、N型の第1トランジスタMN11~第4トランジスタMN14の素子耐圧は、一例として1Vであるものとして説明する。
(Operation of the embodiment)
Next, the operation of the cascode amplifier 5d shown in FIG. 15 will be described with reference to FIG. One of the two complementary input signals is input to the input terminal (input 1) of the cascode amplifier 5d in FIG. 16, and the other of the two complementary input signals is input to the input terminal (input 2). Signal is input. In FIG. 16, a pulse signal of “0” or “1” is input to the input terminal (input 1), and a pulse signal of “1” or “0” is input to the input terminal (input 2). The element breakdown voltages of the P-type first transistor MP11 to the fourth transistor MP14 and the N-type first transistor MN11 to the fourth transistor MN14 are assumed to be 1 V as an example.
 電源電圧VDDを基準として、第2電源V2は、電源電圧VDDの4倍のVDD×4の電圧を出力する。第3電源V3はGNDであり、0V(VDD×0)が与えられるものとする。 With reference to the power supply voltage V DD , the second power supply V2 outputs a voltage of V DD × 4 that is four times the power supply voltage V DD . The third power supply V3 is GND, and 0 V (V DD × 0) is given.
 入力端子(入力1)への”0”又は”1”のパルス信号(0V又は1V)に応じて、P型の第1トランジスタMP11のゲートには4V又は3Vが与えられ、N型の第1トランジスタMN11のゲートには0V又は1Vが与えられる。これに伴って、縦続接続されたP型の第1トランジスタMP11と第2トランジスタMP12との接続点は4Vと3Vとの間で変化し、縦続接続されたP型の第2トランジスタMP12と第3トランジスタMP13との接続点は4Vと2Vとの間で変化し、縦続接続されたP型の第3トランジスタMP13と第4トランジスタMP14との接続点は4Vと1Vとの間で変化する。また、縦続接続されたN型の第1トランジスタMN11と第2トランジスタMN12との接続点は1Vと0Vとの間で変化し、縦続接続されたN型の第2トランジスタMN12と第3トランジスタMN13との接続点は2Vと0Vとの間で変化し、縦続接続されたN型の第3トランジスタMN13と第4トランジスタMN14との接続点は3Vと0Vとの間で変化する。 Depending on the pulse signal (0V or 1V) of “0” or “1” to the input terminal (input 1), 4V or 3V is applied to the gate of the P-type first transistor MP11, and the N-type first 0V or 1V is applied to the gate of the transistor MN11. Accordingly, the connection point between the cascaded P-type first transistor MP11 and the second transistor MP12 changes between 4V and 3V, and the cascade-connected P-type second transistor MP12 and the third transistor MP12 are connected to each other. The connection point with the transistor MP13 changes between 4V and 2V, and the connection point between the cascaded P-type third transistor MP13 and the fourth transistor MP14 changes between 4V and 1V. Also, the connection point between the cascaded N-type first transistor MN11 and the second transistor MN12 varies between 1V and 0V, and the cascaded N-type second transistor MN12 and third transistor MN13 The connecting point of the N-type third transistor MN13 and the fourth transistor MN14 connected in cascade changes between 3V and 0V.
 さらにP型の第4トランジスタMP14のゲート、N型の第4トランジスタMN14のゲート、第1キャパシタC1の一端、及び第4キャパシタC4の一端の接続点の電位は、3Vと1Vとの間で変化する。その結果、信号源6からの”0”又は”1”のパルス信号(0V又は1V)に応じて、図16のカスコード型増幅器5dの出力端子は4V又は0Vを出力する。 Furthermore, the potential at the connection point of the gate of the P-type fourth transistor MP14, the gate of the N-type fourth transistor MN14, one end of the first capacitor C1, and one end of the fourth capacitor C4 varies between 3V and 1V. To do. As a result, the output terminal of the cascode amplifier 5d in FIG. 16 outputs 4V or 0V according to the pulse signal (0V or 1V) of “0” or “1” from the signal source 6.
 (実施形態の効果)
 抵抗は周波数特性を持たないので、図15のカスコード型増幅器5dの帰還回路、第3抵抗R13、第7抵抗R17などは周波数特性を持たない。これによりP型の第1トランジスタMP11~第4トランジスタMP14、N型の第1トランジスタMN11~第4トランジスタMN14の素子耐圧を許容範囲内に維持しつつ、カスコード型増幅器5dを広帯域化することができる。
(Effect of embodiment)
Since the resistor does not have frequency characteristics, the feedback circuit, the third resistor R13, the seventh resistor R17, and the like of the cascode amplifier 5d in FIG. 15 do not have frequency characteristics. As a result, the cascode amplifier 5d can be widened while maintaining the element breakdown voltages of the P-type first transistor MP11 to fourth transistor MP14 and the N-type first transistor MN11 to fourth transistor MN14 within an allowable range. .
 さらに図15のカスコード型増幅器5dでは第5実施形態などと同様に、P型の第1トランジスタMP11のゲートに接続されたラッチ回路LATCH1と、入力端子とP型の第1トランジスタMP11のゲートとの間に挿入された第11キャパシタC11と、を含んでいる。カスコード型増幅器5dの入力の”0”又は”1”のパルス信号の変化に応じて、P型の第1トランジスタMP11のゲートに、第2電源V2を第6抵抗R16などで抵抗分割した電圧として、4V又は3Vを与えることができる。P型の第1トランジスタMP11のゲートに接続されたラッチ回路LATCH1によって、カスコード型増幅器5dの入力変化への追従性が向上し、構成素子の素子耐圧を許容範囲内に維持しつつ、広帯域化を実現することができる。 Further, in the cascode amplifier 5d of FIG. 15, as in the fifth embodiment, the latch circuit LATCH1 connected to the gate of the P-type first transistor MP11, the input terminal, and the gate of the P-type first transistor MP11 And an eleventh capacitor C11 inserted therebetween. A voltage obtained by resistance-dividing the second power source V2 by the sixth resistor R16 or the like at the gate of the P-type first transistor MP11 in accordance with the change of the pulse signal “0” or “1” at the input of the cascode amplifier 5d. 4V or 3V can be applied. The latch circuit LATCH1 connected to the gate of the P-type first transistor MP11 improves the follow-up to the input change of the cascode amplifier 5d, and increases the bandwidth while maintaining the element breakdown voltage within the allowable range. Can be realized.
 さらに図15のカスコード型増幅器5dでは、N型の第1トランジスタMN11のゲートに接続されたラッチ回路LATCH2と、入力端子とN型の第1トランジスタMN11のゲートとの間に挿入された第12キャパシタC12と、を含んでいる。カスコード型増幅器5dの入力の”0”又は”1”のパルス信号の変化に応じて、N型の第1トランジスタMN11のゲートに、第3電源V3を第10抵抗R20などで抵抗分割した電圧として、1V又は0Vを与えることができる。N型の第1トランジスタMN11のゲートに接続されたラッチ回路LATCH2によって、カスコード型増幅器5dの入力変化への追従性が向上し、構成素子の素子耐圧を許容範囲内に維持しつつ、広帯域化を実現することができる。 Further, in the cascode amplifier 5d of FIG. 15, the latch circuit LATCH2 connected to the gate of the N-type first transistor MN11 and the twelfth capacitor inserted between the input terminal and the gate of the N-type first transistor MN11. C12. A voltage obtained by resistance-dividing the third power source V3 by the tenth resistor R20 or the like at the gate of the N-type first transistor MN11 in accordance with the change of the pulse signal of “0” or “1” at the input of the cascode amplifier 5d. 1V or 0V can be applied. The latch circuit LATCH2 connected to the gate of the N-type first transistor MN11 improves the follow-up to the input change of the cascode amplifier 5d, and increases the bandwidth while maintaining the element breakdown voltage within the allowable range. Can be realized.
 さらに図15のカスコード型増幅器5dでは入力端子(入力2)から、カスコード型増幅器5dの入力端子(入力1)への入力”0”又は”1”のパルス信号を反転した電位が与えられる。これにより、ラッチ回路LATCH1が保持しP型の第1トランジスタMP11のゲートへ与えられる電圧と、ラッチ回路LATCH2が保持しN型の第1トランジスタMN11のゲートへ与えられる電圧がそれぞれ安定する。これにより、カスコード型増幅器5dの入力端子(入力1)への入力”0”又は”1”の変化に対する追従性を、図9のカスコード型増幅器5aなどより向上させることができる。 Further, in the cascode amplifier 5d of FIG. 15, a potential obtained by inverting the pulse signal of “0” or “1” input to the input terminal (input 1) of the cascode amplifier 5d is given from the input terminal (input 2). As a result, the voltage held by the latch circuit LATCH1 and applied to the gate of the P-type first transistor MP11 and the voltage held by the latch circuit LATCH2 and applied to the gate of the N-type first transistor MN11 are stabilized. As a result, the followability with respect to the change of the input “0” or “1” to the input terminal (input 1) of the cascode amplifier 5d can be improved as compared with the cascode amplifier 5a of FIG.
 さらに第5実施形態のカスコード型増幅器5aや第6実施形態のカスコード型増幅器5bと比較して、カスコード型増幅器の回路構成の対称性が向上する。 Furthermore, as compared with the cascode amplifier 5a of the fifth embodiment and the cascode amplifier 5b of the sixth embodiment, the symmetry of the circuit configuration of the cascode amplifier is improved.
 〔その他の実施形態〕
 上述した第1乃至第8実施形態のカスコード型増幅器は、無線通信機の送信器の出力段に用いることができる。図17は、その他の実施形態の無線通信機を説明するためのブロック図である。
[Other Embodiments]
The cascode amplifiers of the first to eighth embodiments described above can be used for the output stage of the transmitter of the wireless communication device. FIG. 17 is a block diagram for explaining a wireless communication device according to another embodiment.
 図17の無線通信機100は、入力信号を増幅して出力するカスコード型増幅器101と、カスコード型増幅器101の出力に接続されて無線信号を送出するアンテナ102と、を含む。カスコード型増幅器101には、上述した第1乃至第8実施形態のカスコード型増幅器を用いることができる。 17 includes a cascode amplifier 101 that amplifies and outputs an input signal, and an antenna 102 that is connected to the output of the cascode amplifier 101 and transmits a radio signal. As the cascode amplifier 101, the cascode amplifiers of the first to eighth embodiments described above can be used.
 第1乃至第8実施形態のカスコード型増幅器が素子耐圧を許容範囲内に維持しつつ、広帯域化を実現したことにより、これを採用した図17の無線通信機100は小型化が可能となる。よって図17の無線通信機100によれば、5G基地局の小型化への大きな貢献が期待できる。 Since the cascode amplifiers according to the first to eighth embodiments realize a wide band while maintaining the element breakdown voltage within an allowable range, the wireless communication device 100 of FIG. 17 employing this can be miniaturized. Therefore, according to the wireless communication device 100 of FIG.
 以上、本発明の好ましい実施形態を説明したが、本発明はこれに限定されるものではない。上述した実施形態では、カスコード型増幅器を構成するトランジスタの素子耐圧が1Vの場合で説明したが、これには限られない。上述した実施形態では、信号源6の出力レベルが0V又は1Vの場合で説明したが、これには限られない。第1電源V1、第2電源V2、第3電源V3、第4電源V4などの電位の具体値は上述した実施形態に限られず、お互いの大小関係を維持しつつ、適宜設定すればよい。請求の範囲に記載した発明の範囲内で、種々の変形が可能であり、それらも本発明の範囲に含まれることはいうまでもない。 The preferred embodiment of the present invention has been described above, but the present invention is not limited to this. In the above-described embodiment, the case where the element withstand voltage of the transistors constituting the cascode amplifier is 1 V has been described, but the present invention is not limited to this. In the above-described embodiment, the case where the output level of the signal source 6 is 0V or 1V has been described. However, the present invention is not limited to this. The specific values of the potentials of the first power supply V1, the second power supply V2, the third power supply V3, the fourth power supply V4 and the like are not limited to the above-described embodiments, and may be set as appropriate while maintaining the mutual magnitude relationship. It goes without saying that various modifications are possible within the scope of the invention described in the claims, and these are also included in the scope of the present invention.
 以上、上述した実施形態を模範的な例として本発明を説明した。しかしながら、本発明は、上述した実施形態には限定されない。即ち、本発明は、本発明のスコープ内において、当業者が理解し得る様々な態様を適用することができる。 The present invention has been described above using the above-described embodiment as an exemplary example. However, the present invention is not limited to the above-described embodiment. That is, the present invention can apply various modes that can be understood by those skilled in the art within the scope of the present invention.
 この出願は、2018年5月31日に出願された日本出願特願2018-104349号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2018-104349 filed on May 31, 2018, the entire disclosure of which is incorporated herein.
 1、2、3、4、5、10、101  カスコード型増幅器
 6  信号源
 100  無線通信機
 102  アンテナ
1, 2, 3, 4, 5, 10, 101 Cascode amplifier 6 Signal source 100 Wireless communication device 102 Antenna

Claims (10)

  1.  複数のトランジスタ
      を含む、カスコード型増幅器であって、
     出力信号を抵抗分割してカスコードトランジスタのゲートに帰還する構成
      を含む、カスコード型増幅器。
    A cascode amplifier including a plurality of transistors,
    A cascode amplifier including a configuration in which an output signal is divided into resistors and fed back to the gate of a cascode transistor.
  2.  前記構成は、
      第1抵抗と、
      第2抵抗と、
       を含み、
      前記第1抵抗は、
       出力端子と、第1ノードと、の間に接続され、
      前記第2抵抗は、
       第1電源と、前記第1ノードと、の間に接続されている、請求項1に記載のカスコード型増幅器。
    The configuration is as follows:
    A first resistor;
    A second resistor;
    Including
    The first resistor is
    Connected between the output terminal and the first node;
    The second resistor is
    The cascode amplifier according to claim 1, wherein the cascode amplifier is connected between a first power source and the first node.
  3.  前記構成は、
      第1抵抗と、
      第2抵抗と、
       を含み、
      前記第1抵抗は、
       出力端子と、第1ノードと、の間に接続され、
      前記第2抵抗は、
       第2電源と第3電源との間に直列接続された第3抵抗及び第4抵抗の接続点と、前記第1ノードと、の間に接続されている、請求項1に記載のカスコード型増幅器。
    The configuration is as follows:
    A first resistor;
    A second resistor;
    Including
    The first resistor is
    Connected between the output terminal and the first node;
    The second resistor is
    2. The cascode amplifier according to claim 1, wherein the cascode amplifier is connected between a connection point of a third resistor and a fourth resistor connected in series between a second power source and a third power source and the first node. .
  4.  前記複数のトランジスタは、
      第1トランジスタと、
      第2トランジスタと、
      第3トランジスタと、
      第4トランジスタと、
       を含み、
      前記第1トランジスタおよび前記第3トランジスタは、
       入力端子からの入力信号がゲートに入力され、
      前記第2トランジスタは、
       前記第1トランジスタと、出力端子と、の間に縦続接続され、
      前記第4トランジスタは、
       前記第3トランジスタと、出力端子と、の間に縦続接続され、前記カスコード型増幅器は、
     第5抵抗と、
     第6抵抗と、
     第7抵抗と、
     第8抵抗と、
      を含み、
     前記第5抵抗は、
      第1ノードと、前記第1トランジスタのゲートと、の間に接続され、
     前記第6抵抗は、
      前記第1トランジスタのゲートと、第2電源と、の間に接続され
     前記第7抵抗は、
      前記第1ノードと、前記第3トランジスタのゲートと、の間に接続され、
     前記第8抵抗は、
      前記第3トランジスタのゲートと、第3電源と、の間に接続されている、請求項1から請求項3のいずれかに記載のカスコード型増幅器。
    The plurality of transistors are:
    A first transistor;
    A second transistor;
    A third transistor;
    A fourth transistor;
    Including
    The first transistor and the third transistor are:
    The input signal from the input terminal is input to the gate,
    The second transistor is
    Cascaded between the first transistor and the output terminal;
    The fourth transistor includes:
    The cascode amplifier is connected in cascade between the third transistor and an output terminal.
    A fifth resistor;
    A sixth resistor;
    A seventh resistor;
    An eighth resistor;
    Including
    The fifth resistor is
    Connected between the first node and the gate of the first transistor;
    The sixth resistor is
    The seventh resistor connected between the gate of the first transistor and a second power source,
    Connected between the first node and the gate of the third transistor;
    The eighth resistor is
    The cascode amplifier according to any one of claims 1 to 3, wherein the cascode amplifier is connected between a gate of the third transistor and a third power source.
  5.  第1キャパシタと、
     第2キャパシタと、
      を含み、
     前記第1キャパシタは、
      前記第2トランジスタのゲートと、前記第3電源と、の間に接続され、
     前記第2キャパシタは、
      前記第4トランジスタのゲートと、前記第3電源と、の間に接続されている、請求項4に記載のカスコード型増幅器。
    A first capacitor;
    A second capacitor;
    Including
    The first capacitor is
    Connected between the gate of the second transistor and the third power source;
    The second capacitor is
    The cascode amplifier according to claim 4, wherein the cascode amplifier is connected between a gate of the fourth transistor and the third power source.
  6.  第3キャパシタと、
     第1ラッチ回路と、
      を含み、
     前記第3キャパシタは、
      前記入力端子と、前記第1トランジスタのゲートと、の間に接続され、
     前記第1ラッチ回路は、
      一端が、前記第1トランジスタのゲートに、接続されている、請求項4または請求項5に記載のカスコード型増幅器。
    A third capacitor;
    A first latch circuit;
    Including
    The third capacitor is
    Connected between the input terminal and the gate of the first transistor;
    The first latch circuit includes:
    The cascode amplifier according to claim 4, wherein one end is connected to a gate of the first transistor.
  7.  第4キャパシタ
      を含み、
     前記第4キャパシタは、
      前記第1ラッチ回路の前記一端とは異なる他端と、所定の電位が与えられる配線と、の間に接続されている、請求項6に記載のカスコード型増幅器。
    Including a fourth capacitor,
    The fourth capacitor is
    The cascode amplifier according to claim 6, connected between the other end different from the one end of the first latch circuit and a wiring to which a predetermined potential is applied.
  8.  第5キャパシタと、
     第2ラッチ回路と、
      を含み、
     前記第5キャパシタは、
      前記入力端子と、前記第3トランジスタのゲートと、の間に接続され、
     前記第2ラッチ回路は、
      一端が、前記第3トランジスタのゲートに、接続されている、請求項6に記載のカスコード型増幅器。
    A fifth capacitor;
    A second latch circuit;
    Including
    The fifth capacitor is
    Connected between the input terminal and the gate of the third transistor;
    The second latch circuit includes:
    The cascode amplifier according to claim 6, wherein one end is connected to a gate of the third transistor.
  9.  前記入力端子は、
      第1入力端子と、
      第2入力端子と、
       を含み、前記カスコード型増幅器は、
     第6キャパシタと、
     第7キャパシタと、
      を含み、
     前記第6キャパシタは、
      前記第1ラッチ回路の前記一端とは異なる他端と、前記第2入力端子と、の間に接続され、
     前記第7キャパシタは、
      前記第2ラッチ回路の前記一端とは異なる他端と、前記第2入力端子と、の間に接続されている、請求項8に記載のカスコード型増幅器。
    The input terminal is
    A first input terminal;
    A second input terminal;
    The cascode amplifier includes:
    A sixth capacitor;
    A seventh capacitor;
    Including
    The sixth capacitor includes:
    The other end different from the one end of the first latch circuit is connected between the second input terminal,
    The seventh capacitor is
    The cascode amplifier according to claim 8, connected between the other end different from the one end of the second latch circuit and the second input terminal.
  10.  請求項1から請求項9のいずれかに記載のカスコード型増幅器と、
     前記カスコード型増幅器の出力に接続されたアンテナと、
      を含む無線通信機。
    A cascode amplifier according to any one of claims 1 to 9,
    An antenna connected to the output of the cascode amplifier;
    Including wireless communication equipment.
PCT/JP2019/020448 2018-05-31 2019-05-23 Cascode-type amplifier and wireless communication device WO2019230555A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020522139A JP6981548B2 (en) 2018-05-31 2019-05-23 Cascode type amplifier and wireless communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018104349 2018-05-31
JP2018-104349 2018-05-31

Publications (1)

Publication Number Publication Date
WO2019230555A1 true WO2019230555A1 (en) 2019-12-05

Family

ID=68698758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020448 WO2019230555A1 (en) 2018-05-31 2019-05-23 Cascode-type amplifier and wireless communication device

Country Status (2)

Country Link
JP (1) JP6981548B2 (en)
WO (1) WO2019230555A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54152845A (en) * 1978-05-24 1979-12-01 Hitachi Ltd High dielectric strength mosfet circuit
JP2010141496A (en) * 2008-12-10 2010-06-24 Seiko Epson Corp Semiconductor integrated circuit, driving method of semiconductor integrated circuit, electronic device, and driving method of electronic device
JP2014220735A (en) * 2013-05-10 2014-11-20 富士通セミコンダクター株式会社 Output circuit and voltage signal output method
WO2016021092A1 (en) * 2014-08-04 2016-02-11 日本電気株式会社 Switching amplifier and radio transmitter

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6137367A (en) * 1998-03-24 2000-10-24 Amcom Communications, Inc. High power high impedance microwave devices for power applications
JP2012238929A (en) * 2011-05-09 2012-12-06 Waseda Univ Amplification circuit
CN107534442B (en) * 2015-05-20 2021-05-14 新唐科技日本株式会社 Differential output circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54152845A (en) * 1978-05-24 1979-12-01 Hitachi Ltd High dielectric strength mosfet circuit
JP2010141496A (en) * 2008-12-10 2010-06-24 Seiko Epson Corp Semiconductor integrated circuit, driving method of semiconductor integrated circuit, electronic device, and driving method of electronic device
JP2014220735A (en) * 2013-05-10 2014-11-20 富士通セミコンダクター株式会社 Output circuit and voltage signal output method
WO2016021092A1 (en) * 2014-08-04 2016-02-11 日本電気株式会社 Switching amplifier and radio transmitter

Also Published As

Publication number Publication date
JP6981548B2 (en) 2021-12-15
JPWO2019230555A1 (en) 2021-04-01

Similar Documents

Publication Publication Date Title
US7444124B1 (en) Adjustable segmented power amplifier
CN109347454B (en) Continuous variable gain amplifier
US9337777B2 (en) Amplifier
KR101495027B1 (en) Audio system and integrated circuit chip having class d amplifier therein
US10348260B2 (en) Amplifier circuit and filter
JP6597616B2 (en) Switching amplifier and radio transmitter
KR101855037B1 (en) Sub-nyquist receiver of using pseudo random binary sequence generator
TWI619346B (en) Power amplifying circuit
US20160261237A1 (en) Distributed amplifier
US9374046B2 (en) Current amplifier and transmitter using the same
WO2019230555A1 (en) Cascode-type amplifier and wireless communication device
CN111294012B (en) Capacitor circuit and capacitance multiplication filter
US20140009139A1 (en) Differential current source and differential current mirror circuit
Hori et al. A 1-bit digital transmitter system using a 20-Gbps quadruple-cascode class-D digital power amplifier with 45nm SOI CMOS
KR102534476B1 (en) Method and apparatus of adaptive gate bias for switched driver
US8195109B2 (en) Single ended switched power amplifier with tuned load coupling block
Veyrac et al. Experimental demonstration of a Riemann pump RF-DAC in 65 nm CMOS
US8803490B2 (en) Current-mode active termination
US8111181B2 (en) Single-ended polar transmitting circuit with current salvaging and substantially constant bandwidth
CN108400791B (en) Radio frequency transceiver and radio frequency transmitter thereof
Bieg et al. A CMOS switching mode amplifier with 3 V output swing for continuous-wave frequencies up to 4 GHz
WO2017130878A1 (en) Switching amplifier
CN108259012B (en) Power amplifier of broadband power line
KR101385636B1 (en) Frequency conversion mixer
JP2019503144A (en) Memoryless, common mode, low sensitivity and low pulling VCO

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19812280

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020522139

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19812280

Country of ref document: EP

Kind code of ref document: A1