WO2019230484A1 - Secondary battery, laminate battery, and manufacturing method - Google Patents
Secondary battery, laminate battery, and manufacturing method Download PDFInfo
- Publication number
- WO2019230484A1 WO2019230484A1 PCT/JP2019/019996 JP2019019996W WO2019230484A1 WO 2019230484 A1 WO2019230484 A1 WO 2019230484A1 JP 2019019996 W JP2019019996 W JP 2019019996W WO 2019230484 A1 WO2019230484 A1 WO 2019230484A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery
- sheet
- electrode
- conductive adhesive
- conductive
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/531—Electrode connections inside a battery casing
- H01M50/536—Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a technique for thinning a secondary battery in which a plurality of sheet batteries are stacked.
- Patent Document 1 discloses a stacked battery in which a plurality of sheet batteries are stacked.
- two sheet batteries are arranged so that the second electrodes face each other.
- the sheet battery has a tab portion.
- a tab lead is connected to the tab portion.
- the present invention has been made in view of the above-described problems, and an object thereof is to provide a technique for thinning a secondary battery in which a plurality of sheet batteries are stacked.
- a secondary battery includes a first sheet-like battery having a first electrode and a second electrode, a first electrode, and a second electrode, such that the second electrodes face each other.
- a second sheet-shaped battery disposed opposite to the first sheet-shaped battery, and an extraction electrode disposed between the second electrode of the first sheet-shaped battery and the second electrode of the second sheet-shaped battery.
- a first conductive adhesive that connects the second electrode and the extraction electrode of the first sheet battery, and a second that connects the second electrode and the extraction electrode of the second sheet battery.
- a plurality of first conductive adhesives are disposed between the extraction electrode and the second electrode of the first sheet-shaped battery, and the extraction electrode and the first sheet-shaped
- a plurality of second conductive adhesives are disposed between the second electrodes of the battery, and in a plan view in a state where the first sheet-shaped battery and the second sheet-shaped battery are disposed to face each other, It is preferable that the first conductive adhesive and the second conductive adhesive are alternately arranged.
- the first conductive adhesive and the second conductive adhesive are alternately arranged along the longitudinal direction of the extraction electrode.
- the first sheet-shaped battery and the second sheet-shaped battery have a tab portion, and the plane in a state where the first sheet-shaped battery and the second sheet-shaped battery are arranged to face each other.
- the tab portion of the first sheet battery and the tab portion of the second sheet battery overlap, and the tab portion of the first sheet battery and the second sheet battery are tab portions.
- the first electrodes are arranged so as to face each other.
- the laminated battery according to the present embodiment includes the above-described secondary battery as a sheet-like battery pair, and includes a plurality of the sheet-like battery pairs so that the first electrodes of two adjacent sheet-like battery pairs face each other.
- a plurality of the sheet-like battery pairs are stacked, and the first sheet-like battery and the second sheet-like battery are arranged to face each other when viewed in a plan view.
- the first conductive adhesive and the second conductive adhesive thus formed are shifted from each other.
- the manufacturing method of the secondary battery which concerns on 1 aspect of this embodiment is a process of apply
- a plurality of first conductive adhesives are disposed between the extraction electrode and the second electrode of the first sheet-like battery, and the extraction electrode and the first electrode
- a plurality of second conductive adhesives are arranged between the second electrodes of one sheet-like battery, and the plane in a state where the first sheet-like battery and the second sheet-like battery are arranged to face each other.
- the first conductive adhesive and the second conductive adhesive are alternately arranged.
- the first conductive adhesive and the second conductive adhesive are alternately arranged along the longitudinal direction of the extraction electrode.
- the first sheet-shaped battery and the second sheet-shaped battery have a tab portion, and the first sheet-shaped battery and the second sheet-shaped battery are arranged to face each other.
- the tab portion of the first sheet battery and the tab portion of the second sheet battery overlap, and the tab portion of the first sheet battery and the second sheet battery are tabs.
- the first electrodes are arranged so as to face each other.
- the manufacturing method of the laminated battery according to the present embodiment includes a step of manufacturing a plurality of the secondary batteries to be a sheet-like battery pair by the above-described method of manufacturing a secondary battery, and two adjacent sheet-like battery pairs. And laminating a plurality of the sheet-like battery pairs so that the first electrodes face each other, and the first sheet-like battery and the second sheet-like battery are arranged facing each other in plan view. In such a case, the first conductive adhesive and the second conductive adhesive provided in the plurality of sheet-like battery pairs are arranged so as to be shifted.
- FIG. 1 is a cross-sectional view showing a configuration of a secondary battery according to a first embodiment. It is XY top view which shows typically the structure of a part of secondary battery. It is XY top view which shows typically the structure of a part of secondary battery. 3 is an XY plan view schematically showing the arrangement of a first conductive adhesive 121 and a second conductive adhesive 122. FIG. It is sectional drawing which shows the laminated structure of a comparative example.
- FIG. 7 is a flowchart showing a manufacturing process of the secondary battery.
- FIG. It is a top view which shows typically arrangement
- FIG. 1 is a cross-sectional view showing a basic laminated structure of a sheet-like secondary battery.
- the Z direction is the thickness direction (stacking direction) of a sheet-like secondary battery (hereinafter also simply referred to as a sheet-like battery), and the XY plane is a plane parallel to the sheet-like battery.
- the sheet battery is rectangular, and the X direction and the Y direction are parallel to the edge of the sheet battery.
- the Z direction will be described as the vertical direction.
- a sheet battery 10 includes a laminate in which an n-type oxide semiconductor layer 13, a charge layer 14, a p-type oxide semiconductor layer 16, and a second electrode 17 are laminated in this order on a substrate 11. 20.
- a region where the n-type oxide semiconductor layer 13, the charging layer 14, the p-type oxide semiconductor layer 16, and the second electrode 17 are stacked on the base material 11 is defined as a stacked portion 31, and the outside is a peripheral portion. This is part 32.
- the peripheral edge 32 is a region where the base material 11 is exposed on the + Z side.
- the base material 11 is formed of a conductive material such as metal and functions as a first electrode (negative electrode). In this embodiment, the base material 11 is a negative electrode.
- a metal foil sheet such as a stainless steel (SUS) sheet or an aluminum sheet can be used.
- the base material 11 should just be a structure containing a 1st electrode.
- metal materials such as chromium (Cr) or titanium (Ti) can be used as a material of a 1st electrode.
- an alloy film containing aluminum (Al), silver (Ag), or the like may be used.
- the first electrode is formed on the substrate 11, it can be formed by the same method as the second electrode 17 described later.
- Examples of the method for forming the first electrode include vapor deposition methods such as sputtering, ion plating, electron beam evaporation, vacuum evaporation, and chemical vapor deposition.
- the metal electrode can be formed by an electrolytic plating method, an electroless plating method, or the like.
- copper, copper alloy, nickel, aluminum, silver, gold, zinc, tin or the like can be used as a metal used for plating.
- the n-type oxide semiconductor layer 13 includes an n-type oxide semiconductor material (second n-type oxide semiconductor material).
- n-type oxide semiconductor layer 13 for example, titanium dioxide (TiO 2 ), tin oxide (SnO 2 ), zinc oxide (ZnO), or the like can be used.
- the n-type oxide semiconductor layer 13 can be formed on the substrate 11 by sputtering or vapor deposition.
- titanium dioxide (TiO 2 ) is preferably used as a material for the n-type oxide semiconductor layer 13.
- the n-type oxide semiconductor layer 13 can be formed on the substrate 11 by sputtering or the like.
- a titanium dioxide film can be formed by reactive sputtering using titanium as a target.
- oxygen gas and argon gas can be used.
- a charge layer 14 is formed on the n-type oxide semiconductor layer 13.
- the charging layer 14 includes an insulating material.
- a silicone resin can be used.
- the insulating material it is preferable to use a silicon compound (silicone) having a main skeleton with a siloxane bond such as silicon oxide. Therefore, the charge layer 14 contains silicon oxide (SiO x ) as an insulating material.
- the charging layer 14 includes an n-type oxide semiconductor material in addition to the insulating material. That is, the charging layer 14 is formed of a mixture obtained by mixing an insulating material and an n-type oxide semiconductor material. For example, a fine-particle n-type oxide semiconductor can be used as the n-type oxide semiconductor material.
- the n-type oxide semiconductor becomes a layer having a charging function when irradiated with ultraviolet rays.
- the n-type oxide semiconductor material of the charge layer 14 can be titanium dioxide.
- the charging layer 14 is formed of silicon oxide and titanium dioxide.
- tin oxide (SnO 2 ), zinc oxide (ZnO), and magnesium oxide (MgO) are suitable as the n-type oxide semiconductor material that can be used as the charging layer 14. It is also possible to use materials that combine two, three or all of titanium dioxide, tin oxide, zinc oxide, magnesium oxide.
- the n-type oxide semiconductor material contained in the charging layer 14 and the n-type oxide semiconductor material contained in the n-type oxide semiconductor layer 13 may be the same or different.
- the n-type oxide semiconductor material included in the n-type oxide semiconductor layer 13 is titanium oxide
- the n-type oxide semiconductor material of the charge layer 14 may be titanium oxide or n other than titanium oxide. It may be a type oxide semiconductor material.
- the charge layer 14 is formed of silicon oxide and titanium dioxide using n-type oxide semiconductor material as titanium dioxide.
- n-type oxide semiconductor material that can be used in the charge layer 14
- tin oxide (SnO 2 ) or zinc oxide (ZnO) is suitable. It is also possible to use materials that combine two or all of titanium dioxide, tin oxide, and zinc oxide.
- a coating liquid in which a solvent is mixed with a mixture of a precursor of titanium oxide, tin oxide, or zinc oxide and silicone oil is prepared.
- a coating solution in which fatty acid titanium and silicone oil are mixed in a solvent is prepared.
- the coating solution is applied onto the n-type oxide semiconductor layer 13 by a spin coating method, a slit coating method, or the like.
- the charge layer 14 can be formed on the n-type oxide semiconductor layer 13 by drying and baking the coating film.
- the precursor titanium stearate, which is a precursor of titanium oxide, can be used, for example. Titanium oxide, tin oxide, and zinc oxide are formed by decomposition from an aliphatic acid salt that is a precursor of a metal oxide.
- the charging layer 14 after drying and firing may be UV-cured by irradiating with ultraviolet rays.
- fine particles of an oxide semiconductor can be used without using a precursor.
- a liquid mixture is produced by mixing nanoparticles of titanium oxide or zinc oxide with silicone oil.
- a coating liquid is produced
- a coating solution is applied onto the n-type oxide semiconductor layer 13 by a spin coating method, a slit coating method, or the like.
- the charging layer 14 can be formed by performing drying, baking, and UV irradiation on the coating film.
- a p-type oxide semiconductor layer 16 is formed on the charging layer 14.
- the p-type oxide semiconductor layer 16 includes a p-type oxide semiconductor material.
- a material of the p-type oxide semiconductor layer 16 nickel oxide (NiO), copper aluminum oxide (CuAlO 2 ), or the like can be used.
- the p-type oxide semiconductor layer 16 is a nickel oxide film having a thickness of 400 nm.
- the p-type oxide semiconductor layer 16 is formed on the charging layer 14 by a film formation method such as vapor deposition or sputtering.
- a second electrode 17 is formed on the p-type oxide semiconductor layer 16.
- the second electrode 17 functions as a positive electrode.
- the second electrode 17 only needs to be formed of a conductive film.
- metal materials such as chromium (Cr) or copper (Cu) can be used.
- As another metal material there is a silver (Ag) alloy containing aluminum (Al).
- the forming method include vapor phase film forming methods such as sputtering, ion plating, electron beam evaporation, vacuum evaporation, and chemical vapor deposition.
- the metal electrode can be formed by an electrolytic plating method, an electroless plating method, or the like.
- copper, copper alloy, nickel, aluminum, silver, gold, zinc, tin or the like can be used as a metal used for plating.
- the second electrode 17 is an Al film having a thickness of 300 nm.
- the stacked body 20 includes the base material 11, the n-type oxide semiconductor layer 13, the charging layer 14, the p-type oxide semiconductor layer 16, and the second electrode 17. Therefore, the second electrode 17 is disposed on the outermost surface of the sheet battery 10.
- the n-type oxide semiconductor layer 13 is disposed below the charging layer 14 and the p-type oxide semiconductor layer 16 is disposed above the charging layer 14.
- the layer 13 and the p-type oxide semiconductor layer 16 may be arranged opposite to each other.
- the n-type oxide semiconductor layer 13 may be disposed on the charging layer 14 and the p-type oxide semiconductor layer 16 may be disposed below.
- the base material 11 is a positive electrode and the second electrode 17 is a negative electrode.
- the charging layer 14 is sandwiched between the n-type oxide semiconductor layer 13 and the p-type oxide semiconductor layer 16
- the n-type oxide semiconductor layer 13 may be disposed on the charging layer 14.
- the p-type oxide semiconductor layer 16 may be disposed.
- the sheet battery 10 includes the first electrode (base material 11), the first oxide semiconductor layer (n-type oxide semiconductor layer 13 or p-type oxide semiconductor layer 16), the charging layer 14, the second oxidation. Any structure in which the physical semiconductor layer (p-type oxide semiconductor layer 16 or n-type oxide semiconductor layer 13) and the second electrode 17 are stacked in this order may be used.
- the sheet-like battery 10 includes a first electrode (base material 11), a first oxide semiconductor layer (n-type oxide semiconductor layer 13 or p-type oxide semiconductor layer 16), a charging layer 14, and a second oxide semiconductor.
- a structure including a layer other than the layer (p-type oxide semiconductor layer 16 or n-type oxide semiconductor layer 13) and the second electrode 17 may be used.
- an aluminum compound layer may be added between the charging layer 14 and the p-type oxide semiconductor layer 16.
- aluminum compounds are Al 2 O 3 (aluminum oxide), AlN (aluminum nitride), AlON (aluminum oxynitride), Al (OH) 3 (aluminum hydroxide), and SiAlON (silicon-alumina nitride). It is preferable that at least one of them is included.
- a layer containing nickel hydroxide may be added between the p-type oxide semiconductor layer 16 and the charging layer 14.
- FIG. 2 is an XY plan view showing the configuration of the sheet battery 10.
- the sheet battery 10 includes a rectangular portion 10a and a tab portion 10b.
- the rectangular portion 10a is a portion that is rectangular in the XY plan view.
- the tab part 10b protrudes to the + X side of the rectangular part 10a.
- the laminated part 31 is provided in the rectangular part 10a.
- the laminated portion 31 has a rectangular shape, and a peripheral edge portion 32 is provided outside the laminated portion 31.
- the second electrode 17 is exposed on the + Z side (see also FIG. 1).
- the base material 11 is exposed on the + Z side (see also FIG. 1).
- the tab portion 10b the base material 11 is exposed on the + Z side.
- the secondary battery according to the present embodiment has a structure in which sheet batteries as shown in FIGS. 1 and 2 are stacked. That is, the secondary battery is a laminated battery in which two or more sheet batteries 10 are laminated.
- the configuration of the secondary battery 110 according to the present embodiment will be described.
- FIG. 3 is a cross-sectional view schematically showing the configuration of the secondary battery 110.
- 4 and 5 are XY plan views schematically showing a partial configuration of the secondary battery 110.
- one of the two sheet batteries is a first sheet battery 111, and the other is a second sheet battery 112.
- the 2nd sheet-like battery 112 has the structure shown in FIG. 1 and FIG. 2, respectively.
- the first sheet battery 111 and the second sheet battery 112 are connected in parallel.
- the secondary battery 110 includes a sheet battery 111, a sheet battery 112, a first conductive adhesive 121, a second conductive adhesive 122, an extraction electrode 125, and an insulating material. 128.
- the secondary battery 110 has a configuration in which a first sheet battery 111 and a second sheet battery 112 are stacked.
- the thickness of the 1st sheet-like battery 111 and the 2nd sheet-like battery 112 is 12 micrometers, for example.
- the first sheet-like battery 111 and the second sheet-like battery 112 each have the laminated structure shown in FIG. 1, but are simplified as appropriate. Specifically, the n-type oxide semiconductor layer 13, the charge layer 14, and the p-type oxide semiconductor layer 16 are omitted.
- the first sheet-like battery 111 includes a base material 11a and a second electrode 17a, which correspond to the base material 11 and the second electrode 17 shown in FIGS. ing.
- the 2nd sheet-like battery 112 has the base material 11b and the 2nd electrode 17b, and these correspond to the base material 11 and the 2nd electrode 17 which were shown by FIG.1 and FIG.2. ing.
- the first sheet battery 111 and the second sheet battery 112 are connected in parallel. Therefore, the base material 11b and the base material 11a are connected, and the second electrode 17a and the second electrode 17b are connected.
- the first sheet-shaped battery 111 has a rectangular portion 111a and a tab portion 111b, which correspond to the rectangular portion 10a and the tab portion 10b shown in FIG.
- the second sheet-like battery 112 has a rectangular portion 112a and a tab portion 112b, which correspond to the rectangular portion 10a and the tab portion 10b shown in FIG.
- the first sheet battery 111 is disposed on the ⁇ Z side, and the second sheet battery 112 is disposed on the + Z side.
- the first sheet-shaped battery 111 and the second sheet-shaped battery 112 have the same size and the same shape.
- the rectangular part 111a and the rectangular part 112a overlap in XY plane.
- the tab part 111b and the tab part 112b overlap in the XY plane.
- the first sheet-shaped battery 111 and the second sheet-shaped battery 112 are disposed to face each other so that the second electrodes 17a and 17b face each other.
- the second electrode 17a is disposed on the + Z side
- the base material 11a is disposed on the ⁇ Z side.
- the second electrode 17b is disposed on the ⁇ Z side
- the base material 11b is disposed on the + Z side. That is, the second sheet-like battery 112 has a stacked configuration in which the stacked body 20 shown in FIG. 1 is turned upside down.
- an extraction electrode 125 is disposed between the first sheet-like battery 111 and the second sheet-like battery 112.
- the extraction electrode 125 connects the second electrode 17 a of the first sheet battery 111 and the second electrode 17 b of the second sheet battery 112.
- the extraction electrode 125 is, for example, a metal sheet.
- the thickness of the extraction electrode 125 is, for example, 10 ⁇ m.
- the extraction electrode 125 is drawn from between the first sheet battery 111 and the second sheet battery 112 to the outside of the first sheet battery 111 and the second sheet battery 112. Specifically, the extraction electrode 125 is extracted to the ⁇ X side from between the first sheet battery 111 and the second sheet battery 112. That is, the extraction electrode 125 is extracted from the laminated portion 31 through the peripheral edge portion 32 to the outside of the first sheet battery 111 and the second sheet battery 112.
- the extraction electrode 125 is a metal sheet having a rectangular shape in which the X direction is the longitudinal direction and the Y direction is the short direction (see also FIG. 4).
- a first conductive adhesive 121 is disposed between the extraction electrode 125 and the first sheet battery 111.
- the extraction electrode 125 and the second electrode 17 a of the first sheet battery 111 are electrically connected via the first conductive adhesive 121.
- the thickness of the first conductive adhesive 121 is, for example, 10 ⁇ m.
- a second conductive adhesive 122 is disposed between the extraction electrode 125 and the second sheet battery 112.
- the extraction electrode 125 and the second electrode 17 b of the second sheet battery 112 are electrically connected via the first conductive adhesive 121.
- the thickness of the second conductive adhesive 122 is, for example, 10 ⁇ m.
- the extraction electrode 125 electrically connects the second electrode 17 a of the second sheet battery 112 to the second electrode 17 b of the second sheet battery 112. Moreover, the tab part 111b of the 1st sheet-like battery 111 and the tab part 112b of the 2nd sheet-like battery 112 are connected. The base material 11a is exposed at the tab portion 111b, and the base material 11b is exposed at the tab portion 112b. Therefore, in the location where the tab parts 111b and 112b overlap, the base material 11a and the base material 11b, which are the first electrodes, are arranged to face each other.
- the first sheet battery 111 and the second sheet battery 112 are connected in parallel.
- the tab portion 111b and the tab portion 112b can be connected by crimping or ultrasonic welding.
- the tab portion 111b and the tab portion 112b may be connected using a conductive adhesive.
- the tab part 111b of the 1st sheet-like battery 111 and the tab part 112b of the 2nd sheet-like battery 112 overlap. Therefore, the base materials 11a and 11b to be the first electrodes can be easily connected.
- an insulating material 128 is provided around the extraction electrode 125 in the peripheral portion 32 on the ⁇ X side.
- the insulating material 128 is disposed between the first sheet battery 111 and the extraction electrode 125.
- the insulating member 128 is disposed between the second sheet battery 112 and the extraction electrode 125.
- the insulating member 128 is disposed at a position where the base materials 11 a and 11 b are exposed and the base materials 11 a and 11 b are opposed to the extraction electrode 125. In other words, the insulating material 128 is disposed at a location where the peripheral edge portion 32 and the extraction electrode 125 face each other.
- the insulating material 128 By applying the insulating material 128 to the extraction electrode 125 at a position corresponding to the peripheral edge portion 32, it is possible to prevent the base material 11 a and the base material 11 b that are the first electrodes from being short-circuited with the extraction electrode 125.
- the insulating material 128 is formed so as to cover a part of the extraction electrode 125. Or the insulating material 128 may be apply
- the insulating material 128 is coated by vapor deposition or spray application.
- a resin film such as polyimide can be used.
- the insulating material 128 preferably has elasticity. The thickness of the insulating material 128 is 10 ⁇ m.
- FIG. 4 is an XY plan view showing a partial configuration of the secondary battery 110. More specifically, FIG. 4 is a top view showing the configuration of the secondary battery 110 with the second sheet battery 112 removed.
- a plurality of second conductive adhesives 122 are arranged on the extraction electrode 125.
- Ten second conductive adhesives 122 are provided in a staggered arrangement.
- the second conductive adhesives 122 are arranged in two rows. In each row, five second conductive adhesives 122 are provided.
- the + Y side column is the first column and the -Y side column is the second column.
- the positions of the second conductive adhesive 122 in the first row and the second conductive adhesive 122 in the second row are shifted in the X direction. Specifically, from the ⁇ X side to the + X side, the second conductive adhesive 122 in the second column and the second conductive adhesive in the first column, starting from the second conductive adhesive 122 in the second column.
- the adhesives 122 are alternately arranged one by one.
- FIG. 4 is an XY plan view showing a partial configuration of the secondary battery 110. More specifically, FIG. 4 is a top view showing the configuration of the secondary battery 110 from which the second sheet battery 112, the extraction electrode 125, and the insulating member 128 are removed.
- first conductive adhesives 121 are disposed on the second electrode 17 a of the first sheet battery 111.
- ten first conductive adhesives 121 are provided in a staggered arrangement.
- the first conductive adhesives 121 are arranged in two rows. In each row, five first conductive adhesives 121 are provided.
- the + Y side column is the first column and the -Y side column is the second column.
- the positions of the first conductive adhesive 121 in the first row and the first conductive adhesive 121 in the second row are shifted in the X direction. Specifically, from the ⁇ X side to the + X side, the first conductive adhesive 121 in the first row and the first conductive adhesive 121 in the second row starting from the first conductive adhesive 121 in the first row.
- the adhesives 121 are alternately arranged one by one.
- FIG. 6 is a top view schematically showing the arrangement of the first conductive adhesive 121 and the second conductive adhesive 122 in the XY plane.
- the extraction electrode 125 and the second sheet battery 112 are omitted.
- the first conductive adhesive 121 and the second conductive adhesive 122 are arranged so as to be shifted in the XY plan view. Specifically, the first conductive adhesive 121 is disposed so as not to overlap with the second conductive adhesive 122. Further, the second conductive adhesive 122 is disposed so as not to overlap with the first conductive adhesive 121.
- the first conductive adhesive 121 and the second conductive adhesive 122 are alternately placed one by one from the ⁇ X side toward the + X side, starting with the first conductive adhesive 121.
- the second conductive adhesive 122 and the first conductive adhesive 121 are alternately arranged one by one from the ⁇ X side toward the + X side, starting with the second conductive adhesive 122. ing.
- the first conductive adhesive 121 and the second conductive adhesive 122 are arranged so as not to overlap. That is, in the XY plan view, the first conductive adhesive 121 and the second conductive adhesive 122 are arranged so as not to overlap. By doing in this way, the increase in the thickness of the secondary battery 110 can be prevented.
- FIG. 7 is a cross-sectional view schematically showing a laminated structure of the secondary battery 110A according to the comparative example.
- a conductive tape 151 is provided between the extraction electrode 125 and the first sheet battery 111.
- a conductive tape 152 is provided between the extraction electrode 125 and the second sheet battery 112. The conductive tape 151 and the conductive tape 152 are overlapped.
- each of the conductive tapes 151 and 152 is 25 ⁇ m.
- the thickness (50 ⁇ m) of the two conductive tapes 151 and 152 increases.
- the first conductive adhesive 121 and the second conductive adhesive 122 are arranged so as to be shifted. For this reason, an increase in thickness due to the overlapping of the conductive adhesive can be prevented, and the secondary battery 110 can be thinned.
- the first conductive adhesive 121 and the second conductive adhesive 122 are arranged in a staggered manner, whereby the bonded portions can be dispersed. As shown in FIG. 6, the first conductive adhesive 121 and the second conductive adhesive 122 are alternately arranged along the X direction.
- the 1st sheet-like battery 111 and the 2nd sheet-like battery 112 can be adhere
- FIG. 8 is a flowchart showing a method for manufacturing the secondary battery 110.
- the connection method of the base material 11a used as the 1st electrode and the base material 11b is not specifically limited, it is abbreviate
- the first conductive adhesive 121 is applied on the second electrode 17a of the first sheet battery 111 (S11).
- the dispenser applies the first conductive adhesive 121 to a predetermined size and a predetermined position.
- the dispenser controls the application amount and the application position.
- the dispenser applies the first conductive adhesive 121 to the upper surface of the second electrode 17a so that the first conductive adhesive 121 has a circular shape with a diameter of 0.64 ⁇ m. As a result, the configuration shown in FIG. 5 is obtained.
- the extraction electrode 125 is attached to the first sheet-like battery 111 through the first conductive adhesive 121 (S12). Specifically, the extraction electrode 125 is pressed toward the first sheet battery 111. As a result, the first conductive adhesive 121 is pressed against the first sheet battery 111 and deformed. An extraction electrode 125 is connected to the first conductive adhesive 121, and the extraction electrode 125 is bonded to the first sheet battery 111. Therefore, the second electrode 17 a and the extraction electrode 125 of the first sheet battery 111 are connected via the first conductive adhesive 121.
- the deformed first conductive adhesive 121 is, for example, a circle having a diameter of 1.5 mm. Further, the thickness (height) of the first conductive adhesive 121 after deformation is, for example, 10 ⁇ m.
- the extraction electrode 125 can be fixed to the first sheet battery 111 by curing the first conductive adhesive 121.
- the second conductive adhesive 122 is applied on the extraction electrode 125 (S13).
- the dispenser used in S11 applies the second conductive adhesive 122 to the upper surface of the extraction electrode 125.
- the second conductive adhesive 122 is disposed so as not to overlap the first conductive adhesive 121 in the XY plan view (see also FIG. 6).
- the configuration shown in FIG. 4 is obtained.
- the application size of the second conductive adhesive 122 the first conductive adhesive 121 is similarly circular with a diameter of 0.64 ⁇ m.
- the 2nd sheet-like battery 112 is affixed on the extraction electrode 125 (S14).
- the second sheet battery 112 is pressed toward the first sheet battery 111. Accordingly, the second conductive adhesive 122 is pressed against the first sheet battery 111 and deformed.
- the extraction electrode 125 is connected to the second conductive adhesive 122, and the second sheet battery 112 is bonded to the extraction electrode 125 on the first sheet battery 111. Therefore, the second electrode 17 b of the second conductive adhesive 122 and the extraction electrode 125 are connected via the second conductive adhesive 122.
- the size of the deformed second sheet battery 112 is about 1.5 ⁇ m, similar to the first conductive adhesive 121.
- the second sheet-like battery 112 can be fixed to the extraction electrode 125 by curing the second conductive adhesive 122.
- the secondary battery 110 in which the pair of sheet batteries 111 and 112 are stacked is completed.
- the first conductive adhesive 121 and the second conductive adhesive 122 are shifted from each other when viewed in a plan view in a state where the first sheet battery 111 and the second sheet battery 112 are arranged to face each other. Therefore, the thin secondary battery 110 can be manufactured.
- Embodiment 2 the secondary battery 110 having the structure shown in Embodiment 1 is further stacked. Specifically, the secondary battery 110 having a pair of sheet batteries is used as a sheet battery pair, and a plurality of sheet battery pairs are stacked. Therefore, the description of the sheet-like battery pair will be omitted as appropriate.
- FIG. 9 is a cross-sectional view showing the configuration of the laminated battery 200.
- FIG. 10 is a schematic diagram for explaining the arrangement of the conductive adhesive in each layer.
- the secondary battery 110 of Embodiment 1 is stacked. Specifically, the secondary battery 110 is connected in parallel as a sheet-like battery pair. By doing in this way, a large capacity secondary battery can be provided.
- the laminated battery 200 has five sheet-like battery pairs 201-205. Each of the sheet-like battery pairs 201 to 205 corresponds to the secondary battery 110 shown in the first embodiment. Therefore, the laminated battery 200 is constituted by five layers of sheet-like battery pairs 201 to 205.
- the arrangement of the first conductive adhesive 121 and the second conductive adhesive 122 is one of the technical features. Since the basic configuration of the sheet-like battery pairs 201 to 205 is the same as that of the secondary battery 110 shown in Embodiment 1, the description thereof is omitted.
- the sheet-like battery pair 201, the sheet-like battery pair 202, the sheet-like battery pair 203, the sheet-like battery pair 204, and the sheet-like battery pair 205 are stacked in order from the -X side.
- Two sheet batteries included in the sheet battery pair 201 are referred to as a first sheet battery 211a and a second sheet battery 212a.
- the first sheet battery 211a corresponds to the first sheet battery 111 of the first embodiment
- the second sheet battery 212a corresponds to the second sheet battery 112.
- the two sheet batteries included in the sheet battery pair 202 are referred to as a first sheet battery 211b and a second sheet battery 212b.
- the two sheet batteries included in the sheet battery pair 203 are referred to as a first sheet battery 211c and a second sheet battery 212c.
- the two sheet batteries included in the sheet battery pair 204 are referred to as a first sheet battery 211d and a second sheet battery 212d.
- the two sheet batteries included in the sheet battery pair 205 are a first sheet battery 211e and a second sheet battery 212e.
- the laminated battery 200 includes the five sheet-like batteries 211a to 211e and the five sheet-like batteries 212a to 212e. Therefore, in the laminated battery 200, ten sheet-like batteries 211a to 211e and 212a to 212e are laminated.
- the second electrodes are arranged so as to face each other. Therefore, in the two adjacent sheet-like battery pairs, the base materials that are the first electrodes are arranged so as to face each other.
- the extraction electrodes included in the sheet batteries 201 to 205 are referred to as extraction electrodes 125a to 125e, respectively.
- the first conductive adhesives included in the sheet batteries 201 to 205 are referred to as first conductive adhesives 121a to 121e, respectively.
- the second conductive adhesives included in the sheet batteries 201 to 205 are referred to as second conductive adhesives 122a to 122e, respectively.
- the extraction electrodes 125a to 125e are arranged so as to overlap each other.
- the sheet battery 201 includes four first conductive adhesives 121a and four second conductive adhesives 122a.
- the four first conductive adhesives 121a and the four second conductive adhesives 122a are staggered.
- the sheet-like battery 202 includes four first conductive adhesives 121b and four second conductive adhesives 122b.
- the four first conductive adhesives 121b and the four second conductive adhesives 122b are staggered.
- the sheet-like battery 203 includes four first conductive adhesives 121c and four second conductive adhesives 122c. The four first conductive adhesives 121c and the four second conductive adhesives 122c are staggered.
- the sheet battery 204 includes four first conductive adhesives 121d and four second conductive adhesives 122d. The four first conductive adhesives 121d and the four second conductive adhesives 122d are staggered.
- the sheet battery 205 includes four first conductive adhesives 121e and four second conductive adhesives 122e. The four first conductive adhesives 121e and the four second conductive adhesives 122e are staggered.
- FIG. 11 is a diagram showing all of the first conductive adhesives 121a to 121e and the second conductive adhesives 122a to 122e in the XY plan view. As shown in FIG. 11, the first conductive adhesives 121a to 121e and the second conductive adhesives 122a to 122e are formed in two rows. Then, 20 conductive adhesives are arranged in each row.
- the first conductive adhesives 121a to 121e and the second conductive adhesives 122a to 122e are displaced from each other. That is, in the XY plan view, all 40 conductive adhesives are arranged so as to be shifted.
- the first conductive adhesive 121a is disposed so as not to overlap any of the first conductive adhesives 121b to 121e and the second conductive adhesives 122a to 122e.
- any one of the first conductive adhesives 121a to 121e and the second conductive adhesives 122a to 122e is displaced from the conductive adhesives of the other sheet-like battery pairs.
- the first conductive adhesives 121a to 121e and the second conductive adhesives 122a to 122e so as not to overlap, an increase in the thickness of the multilayer battery 200 can be prevented.
- a manufacturing method for manufacturing the laminated battery 200 shown in FIGS. 9 and 10 will be described.
- the secondary battery 110 is a sheet battery pair.
- a plurality of sheet-like battery pairs are stacked.
- the sheet-shaped battery pairs are laminated so that the first electrodes (base materials) face each other.
- the extraction electrodes 125 are connected.
- the first electrode can be connected at the tab portion. Thereby, a thin and high performance laminated battery can be manufactured.
- this invention includes the appropriate deformation
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Connection Of Batteries Or Terminals (AREA)
- Battery Mounting, Suspending (AREA)
Abstract
Provided is a technology for allowing thinning of a secondary battery in which sheet-like batteries are laminated. A secondary battery (110) according to this embodiment is provided with: a first sheet-like battery (111) that has a first electrode and a second electrode; a second sheet-like battery (112) that has a first electrode and a second electrode and that is disposed opposite to the first sheet-like battery (111) such that the second electrodes (17a), (17b) oppose each other; a lead-out electrode (125) that is disposed between the second electrode (17a) of the first sheet-like battery (111) and the second electrode (17b) of the second sheet-like battery (112); a first conductive adhesive (121) that connects the second electrode (17a) of the first sheet-like battery (111) and the lead-out electrode (125) to each other; and a second conductive adhesive (122) that connects the second electrode (17b) of the second sheet-like battery (112) and the lead-out electrode (125) to each other. In an XY-planar view, the first conductive adhesive (121) and the second conductive adhesive (122) are arranged so as to be shifted from each other.
Description
本発明は、複数のシート状電池が積層された二次電池を薄型化するための技術に関する。
The present invention relates to a technique for thinning a secondary battery in which a plurality of sheet batteries are stacked.
特許文献1には、複数のシート状電池を積層した積層電池が開示されている。特許文献1では、2枚のシート状電池が、第2電極同士が向かい合うように配置されている。シート状電池は、タブ部を有している。そして、タブ部にタブリードが接続されている。
Patent Document 1 discloses a stacked battery in which a plurality of sheet batteries are stacked. In Patent Document 1, two sheet batteries are arranged so that the second electrodes face each other. The sheet battery has a tab portion. A tab lead is connected to the tab portion.
複数のシート状電池を積層した二次電池では、より薄型化することが望まれている。
In a secondary battery in which a plurality of sheet batteries are stacked, it is desired to make them thinner.
本発明は、上記の課題に鑑みてなされたものであり、複数のシート状電池が積層された二次電池を薄型化する技術を提供することを目的とする。
The present invention has been made in view of the above-described problems, and an object thereof is to provide a technique for thinning a secondary battery in which a plurality of sheet batteries are stacked.
本実施形態の一態様に係る二次電池は、第1電極、及び第2電極を有する第1シート状電池と、第1電極、及び第2電極を有し、前記第2電極同士が向かい合うように前記第1シート状電池と対向配置された第2シート状電池と、前記第1シート状電池の第2電極と前記第2シート状電池の前記第2電極との間に配置された引出電極と、前記第1シート状電池の前記第2電極と前記引出電極とを接続する第1導電性接着剤と、前記第2シート状電池の前記第2電極と前記引出電極とを接続する第2導電性接着剤と、を備え、前記第1シート状電池と前記第2シート状電池が向かい合って配置された状態の平面視において、前記第1導電性接着剤と前記第2導電性接着剤とがずれて配置されている。
A secondary battery according to an aspect of the present embodiment includes a first sheet-like battery having a first electrode and a second electrode, a first electrode, and a second electrode, such that the second electrodes face each other. A second sheet-shaped battery disposed opposite to the first sheet-shaped battery, and an extraction electrode disposed between the second electrode of the first sheet-shaped battery and the second electrode of the second sheet-shaped battery. A first conductive adhesive that connects the second electrode and the extraction electrode of the first sheet battery, and a second that connects the second electrode and the extraction electrode of the second sheet battery. A conductive adhesive, and the first conductive adhesive and the second conductive adhesive in a plan view in a state where the first sheet battery and the second sheet battery are disposed to face each other. Are arranged out of position.
上記の二次電池において、前記引出電極と前記第1シート状電池の第2電極との間には、複数の第1導電性接着剤が配置されており、前記引出電極と前記第1シート状電池の第2電極との間には、複数の第2導電性接着剤が配置されており、前記第1シート状電池と前記第2シート状電池が向かい合って配置された状態の平面視において、前記第1導電性接着剤と前記第2導電性接着剤とが交互に配置されていることが好ましい。
In the above secondary battery, a plurality of first conductive adhesives are disposed between the extraction electrode and the second electrode of the first sheet-shaped battery, and the extraction electrode and the first sheet-shaped A plurality of second conductive adhesives are disposed between the second electrodes of the battery, and in a plan view in a state where the first sheet-shaped battery and the second sheet-shaped battery are disposed to face each other, It is preferable that the first conductive adhesive and the second conductive adhesive are alternately arranged.
上記の二次電池において、前記引出電極の長手方向に沿って、前記第1導電性接着剤と前記第2導電性接着剤とが交互に配置されていることが好ましい。
In the above secondary battery, it is preferable that the first conductive adhesive and the second conductive adhesive are alternately arranged along the longitudinal direction of the extraction electrode.
上記の二次電池において、前記第1シート状電池及び第2シート状電池がタブ部を有しており、前記第1シート状電池と前記第2シート状電池が向かい合って配置された状態の平面視において、前記第1シート状電池の前記タブ部と第2シート状電池がタブ部とが重複しており、前記第1シート状電池の前記タブ部と第2シート状電池がタブ部では、第1電極同士が向かい合うように配置されていることが好ましい
In the above secondary battery, the first sheet-shaped battery and the second sheet-shaped battery have a tab portion, and the plane in a state where the first sheet-shaped battery and the second sheet-shaped battery are arranged to face each other. In view, the tab portion of the first sheet battery and the tab portion of the second sheet battery overlap, and the tab portion of the first sheet battery and the second sheet battery are tab portions. It is preferable that the first electrodes are arranged so as to face each other.
本実施の形態にかかる積層電池は、上記の二次電池をシート状電池ペアとして、前記シート状電池ペアを複数備え、隣接する2つの前記シート状電池ペアの前記第1電極同士が向かい合うように、複数の前記シート状電池ペアが積層されており、前記第1シート状電池と前記第2シート状電池が向かい合って配置された状態の平面視した場合に、前記複数のシート状電池ペアに設けられた前記第1導電性接着剤及び前記第2導電性接着剤がずれて配置されている。
The laminated battery according to the present embodiment includes the above-described secondary battery as a sheet-like battery pair, and includes a plurality of the sheet-like battery pairs so that the first electrodes of two adjacent sheet-like battery pairs face each other. A plurality of the sheet-like battery pairs are stacked, and the first sheet-like battery and the second sheet-like battery are arranged to face each other when viewed in a plan view. The first conductive adhesive and the second conductive adhesive thus formed are shifted from each other.
本実施形態の一態様に係る二次電池の製造方法は、第1電極、及び第2電極を有する第1シート状電池の前記第2電極の上に、第1導電性接着剤を塗布する工程と、前記第1導電性接着剤に引出電極を接続する工程と、前記引出電極の上に、第2導電性接着剤を塗布する工程と、第1電極、及び第2電極を有する第2シート状電池の前記第2電極を前記第2導電性接着剤に接続する工程と、を備え、前記第1シート状電池と前記第2シート状電池が向かい合って配置された状態の平面視において、前記第1導電性接着剤と前記第2導電性接着剤とがずれて配置されている。
The manufacturing method of the secondary battery which concerns on 1 aspect of this embodiment is a process of apply | coating a 1st conductive adhesive on the said 2nd electrode of the 1st sheet-like battery which has a 1st electrode and a 2nd electrode. A step of connecting an extraction electrode to the first conductive adhesive, a step of applying a second conductive adhesive on the extraction electrode, a second sheet having the first electrode and the second electrode Connecting the second electrode of the battery to the second conductive adhesive, and in a plan view of the state where the first sheet battery and the second sheet battery are disposed facing each other, The first conductive adhesive and the second conductive adhesive are shifted from each other.
上記の二次電池の製造方法において、前記引出電極と前記第1シート状電池の第2電極との間には、複数の第1導電性接着剤が配置されており、前記引出電極と前記第1シート状電池の第2電極との間には、複数の第2導電性接着剤が配置されており、前記第1シート状電池と前記第2シート状電池が向かい合って配置された状態の平面視において、前記第1導電性接着剤と前記第2導電性接着剤とが交互に配置されていることが好ましい。
In the above secondary battery manufacturing method, a plurality of first conductive adhesives are disposed between the extraction electrode and the second electrode of the first sheet-like battery, and the extraction electrode and the first electrode A plurality of second conductive adhesives are arranged between the second electrodes of one sheet-like battery, and the plane in a state where the first sheet-like battery and the second sheet-like battery are arranged to face each other. In view, it is preferable that the first conductive adhesive and the second conductive adhesive are alternately arranged.
上記の二次電池の製造方法において、前記引出電極の長手方向に沿って、前記第1導電性接着剤と前記第2導電性接着剤とが交互に配置されていることが好ましい。
In the method for manufacturing a secondary battery, it is preferable that the first conductive adhesive and the second conductive adhesive are alternately arranged along the longitudinal direction of the extraction electrode.
上記の二次電池の製造方法において、前記第1シート状電池及び第2シート状電池がタブ部を有しており、前記第1シート状電池と前記第2シート状電池が向かい合って配置された状態の平面視において、前記第1シート状電池の前記タブ部と第2シート状電池がタブ部とが重複しており、前記第1シート状電池の前記タブ部と第2シート状電池がタブ部では、第1電極同士が向かい合うように配置されていることが好ましい。
In the above secondary battery manufacturing method, the first sheet-shaped battery and the second sheet-shaped battery have a tab portion, and the first sheet-shaped battery and the second sheet-shaped battery are arranged to face each other. In a plan view of the state, the tab portion of the first sheet battery and the tab portion of the second sheet battery overlap, and the tab portion of the first sheet battery and the second sheet battery are tabs. In the part, it is preferable that the first electrodes are arranged so as to face each other.
本実施の形態にかかる積層電池の製造方法は、上記の二次電池の製造方法によって、シート状電池ペアとなる前記二次電池を複数製造する工程と、隣接する2つの前記シート状電池ペアの前記第1電極同士が向かい合うように、複数の前記シート状電池ペアを積層する工程と、を備え、前記第1シート状電池と前記第2シート状電池が向かい合って配置された状態の平面視した場合に、前記複数のシート状電池ペアに設けられた前記第1導電性接着剤及び前記第2導電性接着剤がずれて配置されている。
The manufacturing method of the laminated battery according to the present embodiment includes a step of manufacturing a plurality of the secondary batteries to be a sheet-like battery pair by the above-described method of manufacturing a secondary battery, and two adjacent sheet-like battery pairs. And laminating a plurality of the sheet-like battery pairs so that the first electrodes face each other, and the first sheet-like battery and the second sheet-like battery are arranged facing each other in plan view. In such a case, the first conductive adhesive and the second conductive adhesive provided in the plurality of sheet-like battery pairs are arranged so as to be shifted.
本発明によれば、二次電池を薄型化する技術を提供することができる。
According to the present invention, it is possible to provide a technique for thinning the secondary battery.
以下、本発明の実施形態の一例について図面を参照して説明する。以下の説明は、本発明の好適な実施形態を示すものであって、本発明の技術的範囲が以下の実施形態に限定されるものではない。
Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings. The following description shows preferred embodiments of the present invention, and the technical scope of the present invention is not limited to the following embodiments.
実施の形態1.
(シート状電池の積層構造)
以下、本実施の形態にかかる二次電池の基本的な構成について、図1を用いて説明する。図1は、シート状二次電池の基本的な積層構造を示す断面図である。なお、説明の明確化のため、以下の図には適宜、XYZ3次元直交座標系が示されている。Z方向は、シート状の二次電池(以下、単にシート状電池とも称する)の厚さ方向(積層方向)となり、XY平面はシート状電池と平行な平面となる。また、XY平面において、シート状電池は矩形状であり、X方向、及びY方向は、シート状電池の端辺に平行な方向となっている。Z方向を上下方向として説明する。 Embodiment 1 FIG.
(Laminated structure of sheet batteries)
The basic configuration of the secondary battery according to the present embodiment will be described below with reference to FIG. FIG. 1 is a cross-sectional view showing a basic laminated structure of a sheet-like secondary battery. For clarity of explanation, the following drawings appropriately show an XYZ three-dimensional orthogonal coordinate system. The Z direction is the thickness direction (stacking direction) of a sheet-like secondary battery (hereinafter also simply referred to as a sheet-like battery), and the XY plane is a plane parallel to the sheet-like battery. In addition, in the XY plane, the sheet battery is rectangular, and the X direction and the Y direction are parallel to the edge of the sheet battery. The Z direction will be described as the vertical direction.
(シート状電池の積層構造)
以下、本実施の形態にかかる二次電池の基本的な構成について、図1を用いて説明する。図1は、シート状二次電池の基本的な積層構造を示す断面図である。なお、説明の明確化のため、以下の図には適宜、XYZ3次元直交座標系が示されている。Z方向は、シート状の二次電池(以下、単にシート状電池とも称する)の厚さ方向(積層方向)となり、XY平面はシート状電池と平行な平面となる。また、XY平面において、シート状電池は矩形状であり、X方向、及びY方向は、シート状電池の端辺に平行な方向となっている。Z方向を上下方向として説明する。 Embodiment 1 FIG.
(Laminated structure of sheet batteries)
The basic configuration of the secondary battery according to the present embodiment will be described below with reference to FIG. FIG. 1 is a cross-sectional view showing a basic laminated structure of a sheet-like secondary battery. For clarity of explanation, the following drawings appropriately show an XYZ three-dimensional orthogonal coordinate system. The Z direction is the thickness direction (stacking direction) of a sheet-like secondary battery (hereinafter also simply referred to as a sheet-like battery), and the XY plane is a plane parallel to the sheet-like battery. In addition, in the XY plane, the sheet battery is rectangular, and the X direction and the Y direction are parallel to the edge of the sheet battery. The Z direction will be described as the vertical direction.
図1において、シート状電池10は、基材11上に、n型酸化物半導体層13、充電層14、p型酸化物半導体層16、及び第2電極17がこの順序で積層された積層体20を有している。なお、基材11の上に、n型酸化物半導体層13、充電層14、p型酸化物半導体層16、及び第2電極17が積層されている領域を積層部31とし、その外側を周縁部32とする。周縁部32は、+Z側において、基材11が露出している領域である。
In FIG. 1, a sheet battery 10 includes a laminate in which an n-type oxide semiconductor layer 13, a charge layer 14, a p-type oxide semiconductor layer 16, and a second electrode 17 are laminated in this order on a substrate 11. 20. A region where the n-type oxide semiconductor layer 13, the charging layer 14, the p-type oxide semiconductor layer 16, and the second electrode 17 are stacked on the base material 11 is defined as a stacked portion 31, and the outside is a peripheral portion. This is part 32. The peripheral edge 32 is a region where the base material 11 is exposed on the + Z side.
基材11は金属等の導電性物質等により形成され、第1電極(負極)として機能する。本実施形態では、基材11が負極となっている。基材11としては、例えば、ステンレス鋼(SUS)シートやアルミニウムシート等の金属箔シートを用いることができる。
The base material 11 is formed of a conductive material such as metal and functions as a first electrode (negative electrode). In this embodiment, the base material 11 is a negative electrode. As the base material 11, for example, a metal foil sheet such as a stainless steel (SUS) sheet or an aluminum sheet can be used.
絶縁材料からなる基材11を用意して、基材11上に第1電極を形成することもできる。すなわち、基材11は第1電極を含む構成であればよい。基材11の上に、第1電極を形成する場合、第1電極の材料として、クロム(Cr)又はチタン(Ti)等の金属材料を用いることができる。第1電極の材料として、アルミニウム(Al)、銀(Ag)等を含む合金膜を用いてもよい。第1電極を基材11上に形成する場合、後述する第2電極17と同様の方法で形成することができる。
It is also possible to prepare the base material 11 made of an insulating material and form the first electrode on the base material 11. That is, the base material 11 should just be a structure containing a 1st electrode. When forming a 1st electrode on the base material 11, metal materials, such as chromium (Cr) or titanium (Ti), can be used as a material of a 1st electrode. As a material for the first electrode, an alloy film containing aluminum (Al), silver (Ag), or the like may be used. When the first electrode is formed on the substrate 11, it can be formed by the same method as the second electrode 17 described later.
第1電極の形成方法としては、スパッタリング、イオンプレーティング、電子ビーム蒸着、真空蒸着、化学蒸着等の気相成膜法を挙げることができる。また、金属電極は電解メッキ法、無電解メッキ法等により形成することができる。メッキに使用される金属としては、一般に銅、銅合金、ニッケル、アルミ、銀、金、亜鉛又はスズ等を使用することが可能である。
Examples of the method for forming the first electrode include vapor deposition methods such as sputtering, ion plating, electron beam evaporation, vacuum evaporation, and chemical vapor deposition. The metal electrode can be formed by an electrolytic plating method, an electroless plating method, or the like. In general, copper, copper alloy, nickel, aluminum, silver, gold, zinc, tin or the like can be used as a metal used for plating.
基材11の上には、n型酸化物半導体層13が形成されている。n型酸化物半導体層13はn型酸化物半導体材料(第2n型酸化物半導体材料)を含んで構成される。n型酸化物半導体層13としては、例えば、二酸化チタン(TiO2)、酸化スズ(SnO2)又は酸化亜鉛(ZnO)等を使用することが可能である。例えば、n型酸化物半導体層13は、スパッタリング又は蒸着により、基材11上に成膜することができる。n型酸化物半導体層13の材料として、二酸化チタン(TiO2)を用いることが好ましい。
An n-type oxide semiconductor layer 13 is formed on the base material 11. The n-type oxide semiconductor layer 13 includes an n-type oxide semiconductor material (second n-type oxide semiconductor material). As the n-type oxide semiconductor layer 13, for example, titanium dioxide (TiO 2 ), tin oxide (SnO 2 ), zinc oxide (ZnO), or the like can be used. For example, the n-type oxide semiconductor layer 13 can be formed on the substrate 11 by sputtering or vapor deposition. As a material for the n-type oxide semiconductor layer 13, titanium dioxide (TiO 2 ) is preferably used.
例えば、n型酸化物半導体層13は、スパッタリング等により、基材11上に成膜することができる。例えば、チタンをターゲットとする反応性スパッタにより、二酸化チタン膜を形成することができる。反応性スパッタでは、例えば、酸素ガス及びアルゴンガスを用いることができる。
For example, the n-type oxide semiconductor layer 13 can be formed on the substrate 11 by sputtering or the like. For example, a titanium dioxide film can be formed by reactive sputtering using titanium as a target. In reactive sputtering, for example, oxygen gas and argon gas can be used.
n型酸化物半導体層13の上には、充電層14が形成されている。充電層14は、絶縁材料を含んでいる。この絶縁材料としては、シリコーン樹脂を用いることができる。例えば、絶縁材料としては、シリコン酸化物等のシロキサン結合による主骨格を持つシリコン化合物(シリコーン)を使用することが好ましい。よって、充電層14は、絶縁材料として酸化ケイ素(SiOx)を含んでいる。
A charge layer 14 is formed on the n-type oxide semiconductor layer 13. The charging layer 14 includes an insulating material. As this insulating material, a silicone resin can be used. For example, as the insulating material, it is preferable to use a silicon compound (silicone) having a main skeleton with a siloxane bond such as silicon oxide. Therefore, the charge layer 14 contains silicon oxide (SiO x ) as an insulating material.
また、充電層14は、絶縁材料に加えて、n型酸化物半導体材料を含んでいる。すなわち、充電層14は、絶縁材料とn型酸化物半導体材料とを混合した混合物により形成されている。例えば、n型酸化物半導体材料として、微粒子のn型酸化物半導体を使用することが可能である。n型酸化物半導体は、紫外線照射により、充電機能を備えた層となる。
Further, the charging layer 14 includes an n-type oxide semiconductor material in addition to the insulating material. That is, the charging layer 14 is formed of a mixture obtained by mixing an insulating material and an n-type oxide semiconductor material. For example, a fine-particle n-type oxide semiconductor can be used as the n-type oxide semiconductor material. The n-type oxide semiconductor becomes a layer having a charging function when irradiated with ultraviolet rays.
例えば、充電層14のn型酸化物半導体材料を二酸化チタンとすることができる。充電層14は、酸化シリコンと二酸化チタンとによって形成される。この他に、充電層14として使用可能なn型酸化物半導体材料としては、酸化スズ(SnO2)、酸化亜鉛(ZnO)、酸化マグネシウム(MgO)が好適である。二酸化チタン、酸化スズ、酸化亜鉛、酸化マグネシウムの2つ、3つ、又は全てを組み合わせた材料を使用することも可能である。
For example, the n-type oxide semiconductor material of the charge layer 14 can be titanium dioxide. The charging layer 14 is formed of silicon oxide and titanium dioxide. In addition, tin oxide (SnO 2 ), zinc oxide (ZnO), and magnesium oxide (MgO) are suitable as the n-type oxide semiconductor material that can be used as the charging layer 14. It is also possible to use materials that combine two, three or all of titanium dioxide, tin oxide, zinc oxide, magnesium oxide.
充電層14に含まれるn型酸化物半導体材料と、n型酸化物半導体層13に含まれるn型酸化物半導体材料とは、同じであってもよく、異なっていてもよい。例えば、n型酸化物半導体層13に含まれるn型酸化物半導体材料が酸化チタンである場合、充電層14のn型酸化物半導体材料は酸化チタンであってもよいし、酸化チタン以外のn型酸化物半導体材料であってもよい。
The n-type oxide semiconductor material contained in the charging layer 14 and the n-type oxide semiconductor material contained in the n-type oxide semiconductor layer 13 may be the same or different. For example, when the n-type oxide semiconductor material included in the n-type oxide semiconductor layer 13 is titanium oxide, the n-type oxide semiconductor material of the charge layer 14 may be titanium oxide or n other than titanium oxide. It may be a type oxide semiconductor material.
例えば、充電層14は、n型酸化物半導体材料を二酸化チタンとして、酸化シリコンと二酸化チタンとによって形成される。この他に、充電層14で使用可能なn型酸化物半導体材料としては、酸化スズ(SnO2)、又は酸化亜鉛(ZnO)が好適である。二酸化チタン、酸化スズ、及び酸化亜鉛の2つ又は全てを組み合わせた材料を使用することも可能である。
For example, the charge layer 14 is formed of silicon oxide and titanium dioxide using n-type oxide semiconductor material as titanium dioxide. In addition, as the n-type oxide semiconductor material that can be used in the charge layer 14, tin oxide (SnO 2 ) or zinc oxide (ZnO) is suitable. It is also possible to use materials that combine two or all of titanium dioxide, tin oxide, and zinc oxide.
充電層14の製造工程について説明する。まず、酸化チタン、酸化スズ、又は酸化亜鉛の前駆体と、シリコーンオイルとの混合物に溶媒を混合した塗布液を用意する。脂肪酸チタンとシリコーンオイルを溶媒に混合した塗布液を用意する。そして、スピン塗布法、スリットコート法等により、塗布液がn型酸化物半導体層13上に塗布される。塗布膜に対して、乾燥、及び焼成を行うことで、n型酸化物半導体層13上に充電層14を形成することができる。なお、前駆体の一例として、例えば酸化チタンの前駆体であるチタニウムステアレートが使用できる。酸化チタン、酸化スズ、酸化亜鉛は、金属酸化物の前駆体である脂肪族酸塩から分解して形成される。乾燥、及び焼成した後の、充電層14に対して、紫外線照射を行いUV硬化させてもよい。
The manufacturing process of the charge layer 14 will be described. First, a coating liquid in which a solvent is mixed with a mixture of a precursor of titanium oxide, tin oxide, or zinc oxide and silicone oil is prepared. A coating solution in which fatty acid titanium and silicone oil are mixed in a solvent is prepared. Then, the coating solution is applied onto the n-type oxide semiconductor layer 13 by a spin coating method, a slit coating method, or the like. The charge layer 14 can be formed on the n-type oxide semiconductor layer 13 by drying and baking the coating film. As an example of the precursor, titanium stearate, which is a precursor of titanium oxide, can be used, for example. Titanium oxide, tin oxide, and zinc oxide are formed by decomposition from an aliphatic acid salt that is a precursor of a metal oxide. The charging layer 14 after drying and firing may be UV-cured by irradiating with ultraviolet rays.
なお、酸化チタン、酸化スズ、酸化亜鉛等については、前駆体を用いずに、酸化物半導体の微細な粒子を用いることも可能である。酸化チタン、又は酸化亜鉛のナノ粒子をシリコーンオイルと混合することで、混合液が生成される。さらに、混合液に溶媒を混合することで、塗布液が生成される。スピン塗布法、スリットコート法等により、塗布液がn型酸化物半導体層13上に塗布される。塗布膜に対して、乾燥、焼成、及びUV照射を行うことで、充電層14を形成することができる。
For titanium oxide, tin oxide, zinc oxide, etc., fine particles of an oxide semiconductor can be used without using a precursor. A liquid mixture is produced by mixing nanoparticles of titanium oxide or zinc oxide with silicone oil. Furthermore, a coating liquid is produced | generated by mixing a solvent with a liquid mixture. A coating solution is applied onto the n-type oxide semiconductor layer 13 by a spin coating method, a slit coating method, or the like. The charging layer 14 can be formed by performing drying, baking, and UV irradiation on the coating film.
充電層14の上には、p型酸化物半導体層16が形成されている。p型酸化物半導体層16は、p型酸化物半導体材料を含んで構成される。p型酸化物半導体層16の材料としては、酸化ニッケル(NiO)、及び銅アルミ酸化物(CuAlO2)等を使用することが可能である。例えば、p型酸化物半導体層16は、厚さ400nmの酸化ニッケル膜となっている。p型酸化物半導体層16は、蒸着又はスパッタリング等の成膜方法によって、充電層14の上に成膜されている。
A p-type oxide semiconductor layer 16 is formed on the charging layer 14. The p-type oxide semiconductor layer 16 includes a p-type oxide semiconductor material. As a material of the p-type oxide semiconductor layer 16, nickel oxide (NiO), copper aluminum oxide (CuAlO 2 ), or the like can be used. For example, the p-type oxide semiconductor layer 16 is a nickel oxide film having a thickness of 400 nm. The p-type oxide semiconductor layer 16 is formed on the charging layer 14 by a film formation method such as vapor deposition or sputtering.
p型酸化物半導体層16の上には、第2電極17が形成されている。第2電極17は、正極として機能する。第2電極17は、導電膜によって形成されていればよい。また、第2電極17の材料としては、クロム(Cr)又は銅(Cu)等の金属材料を用いることができる。他の金属材料として、アルミニウム(Al)を含む銀(Ag)合金等がある。その形成方法としては、スパッタリング、イオンプレーティング、電子ビーム蒸着、真空蒸着、化学蒸着等の気相成膜法を挙げることができる。また、金属電極は電解メッキ法、無電解メッキ法等により形成することができる。メッキに使用される金属としては、一般に銅、銅合金、ニッケル、アルミ、銀、金、亜鉛又はスズ等を使用することが可能である。例えば、第2電極17は、厚さ300nmのAl膜となっている。
A second electrode 17 is formed on the p-type oxide semiconductor layer 16. The second electrode 17 functions as a positive electrode. The second electrode 17 only needs to be formed of a conductive film. Moreover, as a material of the 2nd electrode 17, metal materials, such as chromium (Cr) or copper (Cu), can be used. As another metal material, there is a silver (Ag) alloy containing aluminum (Al). Examples of the forming method include vapor phase film forming methods such as sputtering, ion plating, electron beam evaporation, vacuum evaporation, and chemical vapor deposition. The metal electrode can be formed by an electrolytic plating method, an electroless plating method, or the like. In general, copper, copper alloy, nickel, aluminum, silver, gold, zinc, tin or the like can be used as a metal used for plating. For example, the second electrode 17 is an Al film having a thickness of 300 nm.
このように、積層体20は、基材11、n型酸化物半導体層13、充電層14、p型酸化物半導体層16、第2電極17を有している。したがって、シート状電池10の最表面には、第2電極17が配置される。
As described above, the stacked body 20 includes the base material 11, the n-type oxide semiconductor layer 13, the charging layer 14, the p-type oxide semiconductor layer 16, and the second electrode 17. Therefore, the second electrode 17 is disposed on the outermost surface of the sheet battery 10.
上記の説明では、充電層14の下にn型酸化物半導体層13が配置され、充電層14の上にp型酸化物半導体層16が配置されている構成としたが、n型酸化物半導体層13とp型酸化物半導体層16とは反対の配置になっていてもよい。すなわち、充電層14の上にn型酸化物半導体層13が配置され、下にp型酸化物半導体層16が配置されている構成であってもよい。この場合、基材11が正極、第2電極17が負極となる。すなわち、充電層14がn型酸化物半導体層13とp型酸化物半導体層16に挟まれている構成であれば、充電層14の上にn型酸化物半導体層13が配置されていても、p型酸化物半導体層16が配置されていてもよい。換言すると、シート状電池10は、第1電極(基材11)、第1酸化物半導体層(n型酸化物半導体層13、又はp型酸化物半導体層16)、充電層14、第2酸化物半導体層(p型酸化物半導体層16、又はn型酸化物半導体層13)、第2電極17の順番で積層されている構成であればよい。
In the above description, the n-type oxide semiconductor layer 13 is disposed below the charging layer 14 and the p-type oxide semiconductor layer 16 is disposed above the charging layer 14. The layer 13 and the p-type oxide semiconductor layer 16 may be arranged opposite to each other. In other words, the n-type oxide semiconductor layer 13 may be disposed on the charging layer 14 and the p-type oxide semiconductor layer 16 may be disposed below. In this case, the base material 11 is a positive electrode and the second electrode 17 is a negative electrode. In other words, if the charging layer 14 is sandwiched between the n-type oxide semiconductor layer 13 and the p-type oxide semiconductor layer 16, the n-type oxide semiconductor layer 13 may be disposed on the charging layer 14. The p-type oxide semiconductor layer 16 may be disposed. In other words, the sheet battery 10 includes the first electrode (base material 11), the first oxide semiconductor layer (n-type oxide semiconductor layer 13 or p-type oxide semiconductor layer 16), the charging layer 14, the second oxidation. Any structure in which the physical semiconductor layer (p-type oxide semiconductor layer 16 or n-type oxide semiconductor layer 13) and the second electrode 17 are stacked in this order may be used.
さらに、シート状電池10は第1電極(基材11)、第1酸化物半導体層(n型酸化物半導体層13、又はp型酸化物半導体層16)、充電層14、第2酸化物半導体層(p型酸化物半導体層16、又はn型酸化物半導体層13)、第2電極17以外の層を含む構成であってもよい。
Further, the sheet-like battery 10 includes a first electrode (base material 11), a first oxide semiconductor layer (n-type oxide semiconductor layer 13 or p-type oxide semiconductor layer 16), a charging layer 14, and a second oxide semiconductor. A structure including a layer other than the layer (p-type oxide semiconductor layer 16 or n-type oxide semiconductor layer 13) and the second electrode 17 may be used.
図1に示す積層体20において、一部の層が省略されていてもよく、あるいは、他の層が追加されていてもよい。例えば、充電層14とp型酸化物半導体層16との間に、アルミニウム化合物の層が追加されていてもよい。例えば、アルミニウム化合物は、Al2O3(酸化アルミニウム)、AlN(アルミナイトライド)、AlON(酸窒化アルミニウム)、Al(OH)3(水酸化アルミニウム)、及びSiAlON(シリコン―アルミナ窒化物)のうち少なくとも1つを含むことが好ましい。さらには、p型酸化物半導体層16と充電層14との間に水酸化ニッケルを含む層が追加されていてもよい。
In the laminate 20 shown in FIG. 1, some layers may be omitted, or other layers may be added. For example, an aluminum compound layer may be added between the charging layer 14 and the p-type oxide semiconductor layer 16. For example, aluminum compounds are Al 2 O 3 (aluminum oxide), AlN (aluminum nitride), AlON (aluminum oxynitride), Al (OH) 3 (aluminum hydroxide), and SiAlON (silicon-alumina nitride). It is preferable that at least one of them is included. Furthermore, a layer containing nickel hydroxide may be added between the p-type oxide semiconductor layer 16 and the charging layer 14.
(平面構成)
次に、シート状電池10の平面構成について説明する。図2は、シート状電池10の構成を示すXY平面図である。図2に示すように、シート状電池10は矩形部10aとタブ部10bを備えている。矩形部10aは、XY平面視において矩形状になっている部分である。タブ部10bは、矩形部10aの+X側に突出している。 (Plane configuration)
Next, the planar configuration of thesheet battery 10 will be described. FIG. 2 is an XY plan view showing the configuration of the sheet battery 10. As shown in FIG. 2, the sheet battery 10 includes a rectangular portion 10a and a tab portion 10b. The rectangular portion 10a is a portion that is rectangular in the XY plan view. The tab part 10b protrudes to the + X side of the rectangular part 10a.
次に、シート状電池10の平面構成について説明する。図2は、シート状電池10の構成を示すXY平面図である。図2に示すように、シート状電池10は矩形部10aとタブ部10bを備えている。矩形部10aは、XY平面視において矩形状になっている部分である。タブ部10bは、矩形部10aの+X側に突出している。 (Plane configuration)
Next, the planar configuration of the
矩形部10aに、積層部31が設けられている。XY平面視において、積層部31は、矩形状になっており、積層部31の外側に周縁部32が設けられている。積層部31では、+Z側において、第2電極17が露出している(図1を合わせて参照)。周縁部32では、+Z側において、基材11が露出している(図1を合わせて参照)。また、タブ部10bにおいても、+Z側には、基材11が露出している。
The laminated part 31 is provided in the rectangular part 10a. In the XY plan view, the laminated portion 31 has a rectangular shape, and a peripheral edge portion 32 is provided outside the laminated portion 31. In the stacked portion 31, the second electrode 17 is exposed on the + Z side (see also FIG. 1). In the peripheral part 32, the base material 11 is exposed on the + Z side (see also FIG. 1). In the tab portion 10b, the base material 11 is exposed on the + Z side.
(積層電池)
本実施の形態にかかる二次電池は、図1、及び図2に示すようなシート状電池を積層した構成を有している。つまり、二次電池は、2つ以上のシート状電池10を積層した積層電池となっている。本実施の形態にかかる二次電池110の構成について説明する。図3は、二次電池110の構成を模式的に示す断面図である。図4、及び図5は二次電池110の一部の構成を模式的に示すXY平面図である。 (Laminated battery)
The secondary battery according to the present embodiment has a structure in which sheet batteries as shown in FIGS. 1 and 2 are stacked. That is, the secondary battery is a laminated battery in which two ormore sheet batteries 10 are laminated. The configuration of the secondary battery 110 according to the present embodiment will be described. FIG. 3 is a cross-sectional view schematically showing the configuration of the secondary battery 110. 4 and 5 are XY plan views schematically showing a partial configuration of the secondary battery 110.
本実施の形態にかかる二次電池は、図1、及び図2に示すようなシート状電池を積層した構成を有している。つまり、二次電池は、2つ以上のシート状電池10を積層した積層電池となっている。本実施の形態にかかる二次電池110の構成について説明する。図3は、二次電池110の構成を模式的に示す断面図である。図4、及び図5は二次電池110の一部の構成を模式的に示すXY平面図である。 (Laminated battery)
The secondary battery according to the present embodiment has a structure in which sheet batteries as shown in FIGS. 1 and 2 are stacked. That is, the secondary battery is a laminated battery in which two or
図3~図5において、2つのシート状電池の一方を第1シート状電池111とし、他方を第2シート状電池112とする。第1シート状電池111第2シート状電池112は、それぞれ図1、及び図2に示す構成を有している。第1シート状電池111第2シート状電池112とは並列接続されている。
3 to 5, one of the two sheet batteries is a first sheet battery 111, and the other is a second sheet battery 112. The 1st sheet-like battery 111 The 2nd sheet-like battery 112 has the structure shown in FIG. 1 and FIG. 2, respectively. The first sheet battery 111 and the second sheet battery 112 are connected in parallel.
まず、図3を用いて、二次電池110の構成について説明する。図3に示すように、二次電池110は、シート状電池111と、シート状電池112と、第1導電性接着剤121と、第2導電性接着剤122と、引出電極125と、絶縁材128とを備えている。
First, the configuration of the secondary battery 110 will be described with reference to FIG. As shown in FIG. 3, the secondary battery 110 includes a sheet battery 111, a sheet battery 112, a first conductive adhesive 121, a second conductive adhesive 122, an extraction electrode 125, and an insulating material. 128.
二次電池110は、第1シート状電池111、及び第2シート状電池112が積層された構成を備えている。第1シート状電池111、及び第2シート状電池112の厚さは、例えば、12μmとなっている。第1シート状電池111及び第2シート状電池112は、それぞれ図1で示した積層構造となっているが、適宜簡略化して示している。具体的には、n型酸化物半導体層13、充電層14、p型酸化物半導体層16を省略している。
The secondary battery 110 has a configuration in which a first sheet battery 111 and a second sheet battery 112 are stacked. The thickness of the 1st sheet-like battery 111 and the 2nd sheet-like battery 112 is 12 micrometers, for example. The first sheet-like battery 111 and the second sheet-like battery 112 each have the laminated structure shown in FIG. 1, but are simplified as appropriate. Specifically, the n-type oxide semiconductor layer 13, the charge layer 14, and the p-type oxide semiconductor layer 16 are omitted.
また、第1シート状電池111は、基材11a、及び第2電極17aを有しており、これらは、図1、及び図2に示された基材11、及び第2電極17に対応している。同様に、第2シート状電池112は基材11b、及び第2電極17bを有しており、これらは、図1、及び図2に示された基材11、及び第2電極17に対応している。上記の通り、第1シート状電池111と第2シート状電池112とは並列接続されている。したがって、基材11bと基材11aとが接続され、第2電極17aと第2電極17bとが接続される。
The first sheet-like battery 111 includes a base material 11a and a second electrode 17a, which correspond to the base material 11 and the second electrode 17 shown in FIGS. ing. Similarly, the 2nd sheet-like battery 112 has the base material 11b and the 2nd electrode 17b, and these correspond to the base material 11 and the 2nd electrode 17 which were shown by FIG.1 and FIG.2. ing. As described above, the first sheet battery 111 and the second sheet battery 112 are connected in parallel. Therefore, the base material 11b and the base material 11a are connected, and the second electrode 17a and the second electrode 17b are connected.
第1シート状電池111は、矩形部111aとタブ部111bを有しており、これらは図2に示した矩形部10a、タブ部10bに対応している。第2シート状電池112は、矩形部112aとタブ部112bを有しており、これらは図2に示した矩形部10a、タブ部10bに対応している。
The first sheet-shaped battery 111 has a rectangular portion 111a and a tab portion 111b, which correspond to the rectangular portion 10a and the tab portion 10b shown in FIG. The second sheet-like battery 112 has a rectangular portion 112a and a tab portion 112b, which correspond to the rectangular portion 10a and the tab portion 10b shown in FIG.
第1シート状電池111が-Z側に配置され、第2シート状電池112が+Z側に配置されている。第1シート状電池111、及び第2シート状電池112は同じ大きさ、及び同じ形状となっている。そして、XY平面において、矩形部111aと矩形部112aとが重複している。さらに、XY平面において、タブ部111bとタブ部112bとが重複している。
The first sheet battery 111 is disposed on the −Z side, and the second sheet battery 112 is disposed on the + Z side. The first sheet-shaped battery 111 and the second sheet-shaped battery 112 have the same size and the same shape. And the rectangular part 111a and the rectangular part 112a overlap in XY plane. Furthermore, the tab part 111b and the tab part 112b overlap in the XY plane.
第1シート状電池111と第2シート状電池112とは、第2電極17a、17b同士が向かい合うように対向配置されている。第1シート状電池111では、第2電極17aが+Z側に配置され、基材11aが-Z側に配置されている。反対に、第2シート状電池112では、第2電極17bが-Z側に配置され、基材11bが+Z側に配置されている。つまり、第2シート状電池112は、図1に示す積層体20を上下反転した積層構成となっている。
The first sheet-shaped battery 111 and the second sheet-shaped battery 112 are disposed to face each other so that the second electrodes 17a and 17b face each other. In the first sheet-like battery 111, the second electrode 17a is disposed on the + Z side, and the base material 11a is disposed on the −Z side. On the other hand, in the second sheet-like battery 112, the second electrode 17b is disposed on the −Z side, and the base material 11b is disposed on the + Z side. That is, the second sheet-like battery 112 has a stacked configuration in which the stacked body 20 shown in FIG. 1 is turned upside down.
第1シート状電池111と第2シート状電池112との間は、引出電極125が配置されている。引出電極125は、第1シート状電池111の第2電極17aと第2シート状電池112の第2電極17bとを接続する。引出電極125は、例えば金属シートである。引出電極125の厚さは、例えば10μmとなっている。
Between the first sheet-like battery 111 and the second sheet-like battery 112, an extraction electrode 125 is disposed. The extraction electrode 125 connects the second electrode 17 a of the first sheet battery 111 and the second electrode 17 b of the second sheet battery 112. The extraction electrode 125 is, for example, a metal sheet. The thickness of the extraction electrode 125 is, for example, 10 μm.
引出電極125は、第1シート状電池111と第2シート状電池112との間から、第1シート状電池111、及び第2シート状電池112の外側まで引き出されている。具体的には、引出電極125は、第1シート状電池111と及び第2シート状電池112との間から、-X側に引き出されている。つまり、引出電極125は、積層部31から周縁部32を通って、第1シート状電池111第2シート状電池112の外側に引き出されている。引出電極125は、X方向を長手方向、Y方向を短手方向とする長方形状になっている金属シートである(図4を合わせて参照)。
The extraction electrode 125 is drawn from between the first sheet battery 111 and the second sheet battery 112 to the outside of the first sheet battery 111 and the second sheet battery 112. Specifically, the extraction electrode 125 is extracted to the −X side from between the first sheet battery 111 and the second sheet battery 112. That is, the extraction electrode 125 is extracted from the laminated portion 31 through the peripheral edge portion 32 to the outside of the first sheet battery 111 and the second sheet battery 112. The extraction electrode 125 is a metal sheet having a rectangular shape in which the X direction is the longitudinal direction and the Y direction is the short direction (see also FIG. 4).
引出電極125と第1シート状電池111との間には、第1導電性接着剤121が配置されている。引出電極125と第1シート状電池111の第2電極17aは、第1導電性接着剤121を介して電気的に接続される。第1導電性接着剤121の厚さは、例えば、10μmとなっている。
A first conductive adhesive 121 is disposed between the extraction electrode 125 and the first sheet battery 111. The extraction electrode 125 and the second electrode 17 a of the first sheet battery 111 are electrically connected via the first conductive adhesive 121. The thickness of the first conductive adhesive 121 is, for example, 10 μm.
引出電極125と第2シート状電池112との間には、第2導電性接着剤122が配置されている。引出電極125と第2シート状電池112の第2電極17bは、第1導電性接着剤121を介して電気的に接続される。第2導電性接着剤122の厚さは、例えば、10μmとなっている。
A second conductive adhesive 122 is disposed between the extraction electrode 125 and the second sheet battery 112. The extraction electrode 125 and the second electrode 17 b of the second sheet battery 112 are electrically connected via the first conductive adhesive 121. The thickness of the second conductive adhesive 122 is, for example, 10 μm.
引出電極125は、第2シート状電池112の第2電極17aを第2シート状電池112の第2電極17bと電気的に接続する。また、第1シート状電池111のタブ部111bと第2シート状電池112のタブ部112bとが接続される。タブ部111bで、基材11aが露出し、タブ部112bでは基材11bが露出している。よって、タブ部111b、112bが重複する箇所において、第1電極である基材11a、基材11b同士が向かい合うに配置されている。
The extraction electrode 125 electrically connects the second electrode 17 a of the second sheet battery 112 to the second electrode 17 b of the second sheet battery 112. Moreover, the tab part 111b of the 1st sheet-like battery 111 and the tab part 112b of the 2nd sheet-like battery 112 are connected. The base material 11a is exposed at the tab portion 111b, and the base material 11b is exposed at the tab portion 112b. Therefore, in the location where the tab parts 111b and 112b overlap, the base material 11a and the base material 11b, which are the first electrodes, are arranged to face each other.
これにより、第1シート状電池111と第2シート状電池112とが並列接続される。なお、タブ部111bとタブ部112bとの接続は、圧着、又は超音波溶接などを用いることができる。あるいは、導電性接着剤を用いて、タブ部111bとタブ部112bとを接続してもよい。このように、第1シート状電池111のタブ部111bと第2シート状電池112のタブ部112bとが重複している。よって、第1電極となる基材11a、11bを容易に接続することができる。
Thereby, the first sheet battery 111 and the second sheet battery 112 are connected in parallel. Note that the tab portion 111b and the tab portion 112b can be connected by crimping or ultrasonic welding. Alternatively, the tab portion 111b and the tab portion 112b may be connected using a conductive adhesive. Thus, the tab part 111b of the 1st sheet-like battery 111 and the tab part 112b of the 2nd sheet-like battery 112 overlap. Therefore, the base materials 11a and 11b to be the first electrodes can be easily connected.
また、-X側の周縁部32において、引出電極125の周りには、絶縁材128が設けられている。絶縁材128は、第1シート状電池111と引出電極125との間に配置される。さらに、絶縁部材128は第2シート状電池112と引出電極125との間に配置される。絶縁部材128は、基材11a、11bが露出する箇所であって、基材11a、11bが引出電極125と対向する箇所に配置されている。換言すると、周縁部32と引出電極125とが向かい合う箇所には、絶縁材128が配置される。周縁部32に対応する位置において、引出電極125に絶縁材128を塗布することで、第1電極である基材11a、及び基材11bが引出電極125と短絡するのを防ぐことができる。
Further, an insulating material 128 is provided around the extraction electrode 125 in the peripheral portion 32 on the −X side. The insulating material 128 is disposed between the first sheet battery 111 and the extraction electrode 125. Further, the insulating member 128 is disposed between the second sheet battery 112 and the extraction electrode 125. The insulating member 128 is disposed at a position where the base materials 11 a and 11 b are exposed and the base materials 11 a and 11 b are opposed to the extraction electrode 125. In other words, the insulating material 128 is disposed at a location where the peripheral edge portion 32 and the extraction electrode 125 face each other. By applying the insulating material 128 to the extraction electrode 125 at a position corresponding to the peripheral edge portion 32, it is possible to prevent the base material 11 a and the base material 11 b that are the first electrodes from being short-circuited with the extraction electrode 125.
絶縁材128は引出電極125の一部を覆うように形成されている。あるいは、絶縁材128は、基材11a、11b上に塗布されていてもよい。絶縁材128は、蒸着又はスプレー塗布などにより、コーティングされている。絶縁材128としては、例えば、ポリイミドなどの樹脂膜を用いることができる。絶縁材128は、弾性を有していることが好ましい。絶縁材128の厚さは、10μmとなっている。
The insulating material 128 is formed so as to cover a part of the extraction electrode 125. Or the insulating material 128 may be apply | coated on the base materials 11a and 11b. The insulating material 128 is coated by vapor deposition or spray application. As the insulating material 128, for example, a resin film such as polyimide can be used. The insulating material 128 preferably has elasticity. The thickness of the insulating material 128 is 10 μm.
次に、第2導電性接着剤122の配置について、図4を用いて説明する。図4は、二次電池110の一部の構成を示すXY平面図である。より具体的には、図4は、第2シート状電池112を取り除いた二次電池110の構成を示す上面図となっている。
Next, the arrangement of the second conductive adhesive 122 will be described with reference to FIG. FIG. 4 is an XY plan view showing a partial configuration of the secondary battery 110. More specifically, FIG. 4 is a top view showing the configuration of the secondary battery 110 with the second sheet battery 112 removed.
図4に示すように、引出電極125の上には、複数の第2導電性接着剤122が配置されている。10個の第2導電性接着剤122が千鳥配置に設けられている。ここでは、第2導電性接着剤122が2列に配置されている。各列には、5個の第2導電性接着剤122が設けられている。+Y側の列を1列目とし、-Y側の列を2列目とする。
As shown in FIG. 4, a plurality of second conductive adhesives 122 are arranged on the extraction electrode 125. Ten second conductive adhesives 122 are provided in a staggered arrangement. Here, the second conductive adhesives 122 are arranged in two rows. In each row, five second conductive adhesives 122 are provided. The + Y side column is the first column and the -Y side column is the second column.
1列目の第2導電性接着剤122と、2列目の第2導電性接着剤122とのX方向の位置がずれている。具体的には、-X側から+X側に向かうにつれて、2列目の第2導電性接着剤122を先頭として、2列目の第2導電性接着剤122と、1列目の第2導電性接着剤122とが1個ずつ交互に並んでいる。
The positions of the second conductive adhesive 122 in the first row and the second conductive adhesive 122 in the second row are shifted in the X direction. Specifically, from the −X side to the + X side, the second conductive adhesive 122 in the second column and the second conductive adhesive in the first column, starting from the second conductive adhesive 122 in the second column. The adhesives 122 are alternately arranged one by one.
次に、第1導電性接着剤121の配置について、図5を用いて説明する。図4は、二次電池110の一部の構成を示すXY平面図である。より具体的には、図4は、第2シート状電池112、引出電極125、及び絶縁部材128を取り除いた二次電池110の構成を示す上面図となっている。
Next, the arrangement of the first conductive adhesive 121 will be described with reference to FIG. FIG. 4 is an XY plan view showing a partial configuration of the secondary battery 110. More specifically, FIG. 4 is a top view showing the configuration of the secondary battery 110 from which the second sheet battery 112, the extraction electrode 125, and the insulating member 128 are removed.
図5に示すように、第1シート状電池111の第2電極17aの上には、複数の第1導電性接着剤121が配置されている。図5では、10個の第1導電性接着剤121が千鳥配置に設けられている。ここでは、第1導電性接着剤121が2列に配置されている。各列には、5個の第1導電性接着剤121が設けられている。+Y側の列を1列目とし、-Y側の列を2列目とする。
As shown in FIG. 5, a plurality of first conductive adhesives 121 are disposed on the second electrode 17 a of the first sheet battery 111. In FIG. 5, ten first conductive adhesives 121 are provided in a staggered arrangement. Here, the first conductive adhesives 121 are arranged in two rows. In each row, five first conductive adhesives 121 are provided. The + Y side column is the first column and the -Y side column is the second column.
1列目の第1導電性接着剤121と、2列目の第1導電性接着剤121とのX方向の位置がずれている。具体的には、-X側から+X側に向かうにつれて、1列目の第1導電性接着剤121を先頭として、1列目の第1導電性接着剤121と、2列目の第1導電性接着剤121とが1個ずつ交互に並んでいる。
The positions of the first conductive adhesive 121 in the first row and the first conductive adhesive 121 in the second row are shifted in the X direction. Specifically, from the −X side to the + X side, the first conductive adhesive 121 in the first row and the first conductive adhesive 121 in the second row starting from the first conductive adhesive 121 in the first row. The adhesives 121 are alternately arranged one by one.
図6は、XY平面における第1導電性接着剤121と第2導電性接着剤122とを配置を模式的に示す上面図である。図6では、引出電極125、及び第2シート状電池112が省略されている。図6に示すように、XY平面視において、第1導電性接着剤121と第2導電性接着剤122とがずれて配置されている。具体的には、第1導電性接着剤121は第2導電性接着剤122と重複しないように配置されている。さらに、第2導電性接着剤122は、第1導電性接着剤121と重複しないように配置されている。
FIG. 6 is a top view schematically showing the arrangement of the first conductive adhesive 121 and the second conductive adhesive 122 in the XY plane. In FIG. 6, the extraction electrode 125 and the second sheet battery 112 are omitted. As shown in FIG. 6, the first conductive adhesive 121 and the second conductive adhesive 122 are arranged so as to be shifted in the XY plan view. Specifically, the first conductive adhesive 121 is disposed so as not to overlap with the second conductive adhesive 122. Further, the second conductive adhesive 122 is disposed so as not to overlap with the first conductive adhesive 121.
1列目の配置では、-X側から+X側に向かうにつれて、第1導電性接着剤121を先頭として、第1導電性接着剤121と第2導電性接着剤122とが1個ずつ交互に配置されている。2列目では、-X側から+X側に向かうにつれて、第2導電性接着剤122を先頭として、第2導電性接着剤122と第1導電性接着剤121とが1個ずつ交互に配置されている。
In the arrangement in the first row, the first conductive adhesive 121 and the second conductive adhesive 122 are alternately placed one by one from the −X side toward the + X side, starting with the first conductive adhesive 121. Has been placed. In the second row, the second conductive adhesive 122 and the first conductive adhesive 121 are alternately arranged one by one from the −X side toward the + X side, starting with the second conductive adhesive 122. ing.
このように、XY平面視において、第1導電性接着剤121と第2導電性接着剤122とを重複しないように配置されている。つまり、XY平面視において、第1導電性接着剤121と第2導電性接着剤122とを重複しないように配置されている。このようにすることで、二次電池110の厚さの増加を防ぐことができる。
Thus, in the XY plan view, the first conductive adhesive 121 and the second conductive adhesive 122 are arranged so as not to overlap. That is, in the XY plan view, the first conductive adhesive 121 and the second conductive adhesive 122 are arranged so as not to overlap. By doing in this way, the increase in the thickness of the secondary battery 110 can be prevented.
図7は、比較例にかかる二次電池110Aの積層構造を模式的に示す断面図である。図7では、引出電極125と第1シート状電池111との間に導電性テープ151が設けられている。また、引出電極125と第2シート状電池112の間に、導電性テープ152が設けられている。導電性テープ151と導電性テープ152は重複して配置されている。
FIG. 7 is a cross-sectional view schematically showing a laminated structure of the secondary battery 110A according to the comparative example. In FIG. 7, a conductive tape 151 is provided between the extraction electrode 125 and the first sheet battery 111. In addition, a conductive tape 152 is provided between the extraction electrode 125 and the second sheet battery 112. The conductive tape 151 and the conductive tape 152 are overlapped.
例えば、導電性テープ151、152の厚さは、それぞれ25μmである。図7の比較例では、導電性テープ151、152が重複しているため、2枚分の導電性テープ151、152の厚さ(50μm)が増加する。
For example, the thickness of each of the conductive tapes 151 and 152 is 25 μm. In the comparative example of FIG. 7, since the conductive tapes 151 and 152 overlap, the thickness (50 μm) of the two conductive tapes 151 and 152 increases.
本実施の形態では、第1導電性接着剤121と第2導電性接着剤122とが重なっていない。したがって、二次電池110の全体の厚さは、導電性接着剤121、又は第2導電性接着剤122の一方の厚さ(10μm)分しか増加しない。本実施の形態によれば、図7の構成に比べて、二次電池110の厚さを40(=50―10)μm薄くすることができる。
In the present embodiment, the first conductive adhesive 121 and the second conductive adhesive 122 do not overlap. Therefore, the total thickness of the secondary battery 110 increases only by one thickness (10 μm) of the conductive adhesive 121 or the second conductive adhesive 122. According to the present embodiment, the thickness of the secondary battery 110 can be reduced by 40 (= 50-10) μm compared to the configuration of FIG.
このように、本実施の形態では、第1導電性接着剤121と第2導電性接着剤122とがずれて配置されている。このため、導電性接着剤が重なることによる厚さの増加を防ぐことができ、二次電池110を薄型化することができる。
Thus, in the present embodiment, the first conductive adhesive 121 and the second conductive adhesive 122 are arranged so as to be shifted. For this reason, an increase in thickness due to the overlapping of the conductive adhesive can be prevented, and the secondary battery 110 can be thinned.
また、XY平面視において、第1導電性接着剤121と第2導電性接着剤122とを千鳥配置とすることで、接着箇所を分散させることができる。図6に示すように、X方向に沿って、第1導電性接着剤121と第2導電性接着剤122とが交互に配置されている。第1シート状電池111、及び第2シート状電池112を確実に接着させることでき、第1シート状電池111、及び第2シート状電池112の剥がれをふせぐことができる。
In addition, in the XY plan view, the first conductive adhesive 121 and the second conductive adhesive 122 are arranged in a staggered manner, whereby the bonded portions can be dispersed. As shown in FIG. 6, the first conductive adhesive 121 and the second conductive adhesive 122 are alternately arranged along the X direction. The 1st sheet-like battery 111 and the 2nd sheet-like battery 112 can be adhere | attached reliably, and peeling of the 1st sheet-like battery 111 and the 2nd sheet-like battery 112 can be prevented.
次に、本実施の形態にかかる二次電池110の製造方法について、図8を用いて説明する。図8は、二次電池110の製造方法を示すフローチャートである。なお、第1電極となる基材11a、及び基材11bの接続方法は、特に限定されないため、省略されている。
Next, a method for manufacturing the secondary battery 110 according to the present embodiment will be described with reference to FIG. FIG. 8 is a flowchart showing a method for manufacturing the secondary battery 110. In addition, since the connection method of the base material 11a used as the 1st electrode and the base material 11b is not specifically limited, it is abbreviate | omitted.
まず、第1シート状電池111の第2電極17a上に第1導電性接着剤121を塗布する(S11)。例えば、ディスペンサが、第1導電性接着剤121を所定の大きさ、及び所定の位置に塗布する。ここでは、ディスペンサが塗布量、及び塗布位置を制御している。ここでは、XY平面視において、第1導電性接着剤121が直径0.64μmの円形となるように、ディスペンサが第1導電性接着剤121を第2電極17aの上面に塗布する。これにより、図5に示す構成となる。
First, the first conductive adhesive 121 is applied on the second electrode 17a of the first sheet battery 111 (S11). For example, the dispenser applies the first conductive adhesive 121 to a predetermined size and a predetermined position. Here, the dispenser controls the application amount and the application position. Here, in the XY plan view, the dispenser applies the first conductive adhesive 121 to the upper surface of the second electrode 17a so that the first conductive adhesive 121 has a circular shape with a diameter of 0.64 μm. As a result, the configuration shown in FIG. 5 is obtained.
次に、第1導電性接着剤121を介して、第1シート状電池111に引出電極125を貼り付ける(S12)。具体的には、引出電極125を第1シート状電池111に向けて押圧する。これにより、第1導電性接着剤121が第1シート状電池111に押しつけられて、変形する。第1導電性接着剤121に引出電極125が接続され、引出電極125が第1シート状電池111に貼り合わせられる。よって、第1シート状電池111の第2電極17aと引出電極125とが第1導電性接着剤121を介して、接続される。
Next, the extraction electrode 125 is attached to the first sheet-like battery 111 through the first conductive adhesive 121 (S12). Specifically, the extraction electrode 125 is pressed toward the first sheet battery 111. As a result, the first conductive adhesive 121 is pressed against the first sheet battery 111 and deformed. An extraction electrode 125 is connected to the first conductive adhesive 121, and the extraction electrode 125 is bonded to the first sheet battery 111. Therefore, the second electrode 17 a and the extraction electrode 125 of the first sheet battery 111 are connected via the first conductive adhesive 121.
XY平面視において、変形後の第1導電性接着剤121は例えば、直径1.5mmの円形となる。また、変形後の第1導電性接着剤121の厚さ(高さ)は、例えば、10μmである。第1導電性接着剤121を硬化させることで、引出電極125を第1シート状電池111に固定することができる。
In the XY plan view, the deformed first conductive adhesive 121 is, for example, a circle having a diameter of 1.5 mm. Further, the thickness (height) of the first conductive adhesive 121 after deformation is, for example, 10 μm. The extraction electrode 125 can be fixed to the first sheet battery 111 by curing the first conductive adhesive 121.
次に、引出電極125の上に第2導電性接着剤122を塗布する(S13)。S11で用いられたディスペンサが、第2導電性接着剤122を引出電極125の上面に塗布する。ここでは、XY平面視において、第2導電性接着剤122が第1導電性接着剤121と重ならないように配置される(図6を合わせて参照)。これにより、図4に示す構成となる。第2導電性接着剤122の塗布サイズは、第1導電性接着剤121は同様に、直径0.64μmの円形となっている。
Next, the second conductive adhesive 122 is applied on the extraction electrode 125 (S13). The dispenser used in S11 applies the second conductive adhesive 122 to the upper surface of the extraction electrode 125. Here, the second conductive adhesive 122 is disposed so as not to overlap the first conductive adhesive 121 in the XY plan view (see also FIG. 6). As a result, the configuration shown in FIG. 4 is obtained. As for the application size of the second conductive adhesive 122, the first conductive adhesive 121 is similarly circular with a diameter of 0.64 μm.
そして、引出電極125に、第2シート状電池112を貼り付ける(S14)。第2シート状電池112を第1シート状電池111に向けて押圧する。これにより、第2導電性接着剤122が、第1シート状電池111に押しつけられて、変形する。第2導電性接着剤122に引出電極125が接続され、第2シート状電池112が第1シート状電池111上の引出電極125に貼り合わせられる。よって、第2導電性接着剤122の第2電極17bと引出電極125とが第2導電性接着剤122を介して、接続される。
And the 2nd sheet-like battery 112 is affixed on the extraction electrode 125 (S14). The second sheet battery 112 is pressed toward the first sheet battery 111. Accordingly, the second conductive adhesive 122 is pressed against the first sheet battery 111 and deformed. The extraction electrode 125 is connected to the second conductive adhesive 122, and the second sheet battery 112 is bonded to the extraction electrode 125 on the first sheet battery 111. Therefore, the second electrode 17 b of the second conductive adhesive 122 and the extraction electrode 125 are connected via the second conductive adhesive 122.
XY平面視において、変形後の第2シート状電池112のサイズは第1導電性接着剤121と同様に、1.5μm程度となっている。第2導電性接着剤122を硬化させることで、引出電極125に第2シート状電池112を固定することができる。
In the XY plan view, the size of the deformed second sheet battery 112 is about 1.5 μm, similar to the first conductive adhesive 121. The second sheet-like battery 112 can be fixed to the extraction electrode 125 by curing the second conductive adhesive 122.
このように一対のシート状電池111、112が積層された二次電池110が完成する。第1シート状電池111と第2シート状電池112が向かい合って配置された状態の平面視した場合に、第1導電性接着剤121及び第2導電性接着剤122がずれて配置されている。よって、薄型の二次電池110を製造することができる。
Thus, the secondary battery 110 in which the pair of sheet batteries 111 and 112 are stacked is completed. The first conductive adhesive 121 and the second conductive adhesive 122 are shifted from each other when viewed in a plan view in a state where the first sheet battery 111 and the second sheet battery 112 are arranged to face each other. Therefore, the thin secondary battery 110 can be manufactured.
実施の形態2.
本実施の形態では、実施の形態1で示した構成の二次電池110をさらに積層している。具体的には、一対のシート状電池を有する二次電池110をシート状電池ペアとして、複数のシート状電池ペアを積層している。そのため、シート状電池ペアの説明に付いては適宜省略する。 Embodiment 2. FIG.
In this embodiment, thesecondary battery 110 having the structure shown in Embodiment 1 is further stacked. Specifically, the secondary battery 110 having a pair of sheet batteries is used as a sheet battery pair, and a plurality of sheet battery pairs are stacked. Therefore, the description of the sheet-like battery pair will be omitted as appropriate.
本実施の形態では、実施の形態1で示した構成の二次電池110をさらに積層している。具体的には、一対のシート状電池を有する二次電池110をシート状電池ペアとして、複数のシート状電池ペアを積層している。そのため、シート状電池ペアの説明に付いては適宜省略する。 Embodiment 2. FIG.
In this embodiment, the
本実施の形態にかかる積層電池200について、図9,図10を用いて説明する。図9は、積層電池200の構成を示す断面図である。図10は、各層における導電性接着剤の配置を説明するための模式図である。本実施の形態では、実施の形態1の二次電池110を積層している。具体的には、二次電池110をシート状電池ペアとして並列接続している。このようにすることで、大容量の二次電池を提供することができる。
The laminated battery 200 according to the present embodiment will be described with reference to FIGS. FIG. 9 is a cross-sectional view showing the configuration of the laminated battery 200. FIG. 10 is a schematic diagram for explaining the arrangement of the conductive adhesive in each layer. In this embodiment, the secondary battery 110 of Embodiment 1 is stacked. Specifically, the secondary battery 110 is connected in parallel as a sheet-like battery pair. By doing in this way, a large capacity secondary battery can be provided.
積層電池200は、5つのシート状電池ペア201~205を有している。シート状電池ペア201~205のそれぞれは、実施の形態1で示した二次電池110に対応している。よって、積層電池200は、5層のシート状電池ペア201~205によって構成されている。
The laminated battery 200 has five sheet-like battery pairs 201-205. Each of the sheet-like battery pairs 201 to 205 corresponds to the secondary battery 110 shown in the first embodiment. Therefore, the laminated battery 200 is constituted by five layers of sheet-like battery pairs 201 to 205.
第1導電性接着剤121、及び第2導電性接着剤122の配置が技術的特徴の一つとなっている。シート状電池ペア201~205の基本的な構成は、実施の形態1で示した二次電池110と同様であるため、説明を省略する。
The arrangement of the first conductive adhesive 121 and the second conductive adhesive 122 is one of the technical features. Since the basic configuration of the sheet-like battery pairs 201 to 205 is the same as that of the secondary battery 110 shown in Embodiment 1, the description thereof is omitted.
-X側から順番に、シート状電池ペア201、シート状電池ペア202、シート状電池ペア203、シート状電池ペア204、及びシート状電池ペア205が積層されている。シート状電池ペア201に含まれる2つのシート状電池を第1シート状電池211a、第2シート状電池212aとする。第1シート状電池211aが、実施の形態1の第1シート状電池111に対応し、第2シート状電池212aが第2シート状電池112に対応する。
The sheet-like battery pair 201, the sheet-like battery pair 202, the sheet-like battery pair 203, the sheet-like battery pair 204, and the sheet-like battery pair 205 are stacked in order from the -X side. Two sheet batteries included in the sheet battery pair 201 are referred to as a first sheet battery 211a and a second sheet battery 212a. The first sheet battery 211a corresponds to the first sheet battery 111 of the first embodiment, and the second sheet battery 212a corresponds to the second sheet battery 112.
シート状電池ペア202に含まれる2つのシート状電池を第1シート状電池211b、第2シート状電池212bとする。シート状電池ペア203に含まれる2つのシート状電池を第1シート状電池211c、第2シート状電池212cとする。シート状電池ペア204に含まれる2つのシート状電池を第1シート状電池211d、第2シート状電池212dとする。シート状電池ペア205に含まれる2つのシート状電池を第1シート状電池211e、第2シート状電池212eとする。
The two sheet batteries included in the sheet battery pair 202 are referred to as a first sheet battery 211b and a second sheet battery 212b. The two sheet batteries included in the sheet battery pair 203 are referred to as a first sheet battery 211c and a second sheet battery 212c. The two sheet batteries included in the sheet battery pair 204 are referred to as a first sheet battery 211d and a second sheet battery 212d. The two sheet batteries included in the sheet battery pair 205 are a first sheet battery 211e and a second sheet battery 212e.
このように、積層電池200は、5枚のシート状電池211a~211eと5枚のシート状電池212a~212eとを備えている。よって、積層電池200では、10枚のシート状電池211a~211e、212a~212eが積層されている。
As described above, the laminated battery 200 includes the five sheet-like batteries 211a to 211e and the five sheet-like batteries 212a to 212e. Therefore, in the laminated battery 200, ten sheet-like batteries 211a to 211e and 212a to 212e are laminated.
実施の形態1で示したように、シート状電池ペア201~205のそれぞれにおいて、第2電極同士が向かい合うように配置されている。よって、隣接する2つのシート状電池ペアでは、第1電極である基材同士が向かい合うように配置されている。
As shown in Embodiment 1, in each of the sheet-like battery pairs 201 to 205, the second electrodes are arranged so as to face each other. Therefore, in the two adjacent sheet-like battery pairs, the base materials that are the first electrodes are arranged so as to face each other.
シート状電池201~205に含まれる引出電極をそれぞれ引出電極125a~125eとする。同様に、シート状電池201~205に含まれる第1導電性接着剤をそれぞれ第1導電性接着剤121a~121eとする。さらに同様にシート状電池201~205に含まれる第2導電性接着剤をそれぞれ第2導電性接着剤122a~122eとする。XY平面視において、引出電極125a~125eは、互いに重複するように配置されている。
The extraction electrodes included in the sheet batteries 201 to 205 are referred to as extraction electrodes 125a to 125e, respectively. Similarly, the first conductive adhesives included in the sheet batteries 201 to 205 are referred to as first conductive adhesives 121a to 121e, respectively. Similarly, the second conductive adhesives included in the sheet batteries 201 to 205 are referred to as second conductive adhesives 122a to 122e, respectively. In the XY plan view, the extraction electrodes 125a to 125e are arranged so as to overlap each other.
図10に示すように、シート状電池201は、4つの第1導電性接着剤121aと4つの第2導電性接着剤122aとを備えている。4つの第1導電性接着剤121aと4つの第2導電性接着剤122aとは千鳥配置となっている。同様に、シート状電池202は、4つの第1導電性接着剤121bと4つの第2導電性接着剤122bとを備えている。4つの第1導電性接着剤121bと4つの第2導電性接着剤122bとは千鳥配置となっている。
As shown in FIG. 10, the sheet battery 201 includes four first conductive adhesives 121a and four second conductive adhesives 122a. The four first conductive adhesives 121a and the four second conductive adhesives 122a are staggered. Similarly, the sheet-like battery 202 includes four first conductive adhesives 121b and four second conductive adhesives 122b. The four first conductive adhesives 121b and the four second conductive adhesives 122b are staggered.
シート状電池203は、4つの第1導電性接着剤121cと4つの第2導電性接着剤122cとを備えている。4つの第1導電性接着剤121cと4つの第2導電性接着剤122cとは千鳥配置となっている。シート状電池204は、4つの第1導電性接着剤121dと4つの第2導電性接着剤122dとを備えている。4つの第1導電性接着剤121dと4つの第2導電性接着剤122dとは千鳥配置となっている。シート状電池205は、4つの第1導電性接着剤121eと4つの第2導電性接着剤122eとを備えている。4つの第1導電性接着剤121eと4つの第2導電性接着剤122eとは千鳥配置となっている。
The sheet-like battery 203 includes four first conductive adhesives 121c and four second conductive adhesives 122c. The four first conductive adhesives 121c and the four second conductive adhesives 122c are staggered. The sheet battery 204 includes four first conductive adhesives 121d and four second conductive adhesives 122d. The four first conductive adhesives 121d and the four second conductive adhesives 122d are staggered. The sheet battery 205 includes four first conductive adhesives 121e and four second conductive adhesives 122e. The four first conductive adhesives 121e and the four second conductive adhesives 122e are staggered.
図11は、XY平面視における第1導電性接着剤121a~121eと第2導電性接着剤122a~122eの全てを示す図である。図11に示すように、第1導電性接着剤121a~121eと第2導電性接着剤122a~122eは、2列に形成されている。そして、各列に20個の導電性接着剤が配置されている。
FIG. 11 is a diagram showing all of the first conductive adhesives 121a to 121e and the second conductive adhesives 122a to 122e in the XY plan view. As shown in FIG. 11, the first conductive adhesives 121a to 121e and the second conductive adhesives 122a to 122e are formed in two rows. Then, 20 conductive adhesives are arranged in each row.
そして、XY平面視において、第1導電性接着剤121a~121eと第2導電性接着剤122a~122eはそれぞれ、ずれて配置されている。つまり、XY平面視において、40個の導電性接着剤が全てずれて配置されている。例えば、第1導電性接着剤121aは、第1導電性接着剤121b~121e、及び第2導電性接着剤122a~122eのいずれとも重複しないように配置されている。
In the XY plan view, the first conductive adhesives 121a to 121e and the second conductive adhesives 122a to 122e are displaced from each other. That is, in the XY plan view, all 40 conductive adhesives are arranged so as to be shifted. For example, the first conductive adhesive 121a is disposed so as not to overlap any of the first conductive adhesives 121b to 121e and the second conductive adhesives 122a to 122e.
つまり、XY平面視において、第1導電性接着剤121a~121eと第2導電性接着剤122a~122eのいずれの導電性接着剤が、他のシート状電池ペアの導電性接着剤からずれて配置されている。このように、第1導電性接着剤121a~121eと第2導電性接着剤122a~122eの全てが重ならないように配置することで、積層電池200の厚さの増加を防ぐことができる。
That is, in the XY plan view, any one of the first conductive adhesives 121a to 121e and the second conductive adhesives 122a to 122e is displaced from the conductive adhesives of the other sheet-like battery pairs. Has been. Thus, by arranging the first conductive adhesives 121a to 121e and the second conductive adhesives 122a to 122e so as not to overlap, an increase in the thickness of the multilayer battery 200 can be prevented.
図9、図10に示す積層電池200を製造する製造方法について説明する。まず、実施の形態1の図8等で示した製造方法によって、複数の二次電池110を用意する。上記の通り、二次電池110がシート状電池ペアとなっている。そして、複数のシート状電池ペアを重ね合わせていく。このとき、隣接するシート状電池ペアにおいて、第1電極(基材)同士が向かい合うように、シート状電池ペアが積層される。そして、隣接するシート状電池ペア間において、第1電極同士を接続するとともに、引出電極125同士を接続する。なお、第1電極はタブ部において接続することができる。これにより、薄型、かつ、高い性能の積層電池を製造することができる。
A manufacturing method for manufacturing the laminated battery 200 shown in FIGS. 9 and 10 will be described. First, a plurality of secondary batteries 110 are prepared by the manufacturing method shown in FIG. As described above, the secondary battery 110 is a sheet battery pair. Then, a plurality of sheet-like battery pairs are stacked. At this time, in the adjacent sheet-shaped battery pairs, the sheet-shaped battery pairs are laminated so that the first electrodes (base materials) face each other. And between adjacent sheet-like battery pairs, while connecting 1st electrodes, the extraction electrodes 125 are connected. The first electrode can be connected at the tab portion. Thereby, a thin and high performance laminated battery can be manufactured.
以上、本発明の実施形態の一例を説明したが、本発明はその目的と利点を損なうことのない適宜の変形を含み、更に、上記の実施形態による限定は受けない。
As mentioned above, although an example of embodiment of this invention was demonstrated, this invention includes the appropriate deformation | transformation which does not impair the objective and advantage, Furthermore, the limitation by said embodiment is not received.
この出願は、2018年5月31日に出願された日本出願特願2018-104848を基礎とする優先権を主張し、その開示の全てをここに取り込む。
This application claims priority based on Japanese Patent Application No. 2018-104848 filed on May 31, 2018, the entire disclosure of which is incorporated herein.
10 シート状電池
11 基材
13 n型酸化物半導体層
14 充電層
16 p型酸化物半導体層
17 第2電極
20 積層体
31 積層部
32 周縁部
111 第1シート状電池
112 第2シート状電池
121 第1導電性接着剤
122 第2導電性接着剤
125 引出電極
128 絶縁材
200 積層電池
201~205 シート状電池ペア
211a~211e 第1シート状電池
212a~212e 第2シート状電池 DESCRIPTION OFSYMBOLS 10 Sheet-shaped battery 11 Base material 13 N-type oxide semiconductor layer 14 Charging layer 16 p-type oxide semiconductor layer 17 2nd electrode 20 Laminated body 31 Laminated | stacking part 32 Peripheral part 111 1st sheet-like battery 112 2nd sheet-like battery 121 First conductive adhesive 122 Second conductive adhesive 125 Extraction electrode 128 Insulating material 200 Stacked battery 201-205 Sheet battery pair 211a-211e First sheet battery 212a-212e Second sheet battery
11 基材
13 n型酸化物半導体層
14 充電層
16 p型酸化物半導体層
17 第2電極
20 積層体
31 積層部
32 周縁部
111 第1シート状電池
112 第2シート状電池
121 第1導電性接着剤
122 第2導電性接着剤
125 引出電極
128 絶縁材
200 積層電池
201~205 シート状電池ペア
211a~211e 第1シート状電池
212a~212e 第2シート状電池 DESCRIPTION OF
Claims (10)
- 第1電極、及び第2電極を有する第1シート状電池と、
第1電極、及び第2電極を有し、前記第2電極同士が向かい合うように前記第1シート状電池と対向配置された第2シート状電池と、
前記第1シート状電池の第2電極と前記第2シート状電池の前記第2電極との間に配置された引出電極と、
前記第1シート状電池の前記第2電極と前記引出電極とを接続する第1導電性接着剤と、
前記第2シート状電池の前記第2電極と前記引出電極とを接続する第2導電性接着剤と、を備え、
前記第1シート状電池と前記第2シート状電池が向かい合って配置された状態の平面視において、前記第1導電性接着剤と前記第2導電性接着剤とがずれて配置されている二次電池。 A first sheet-like battery having a first electrode and a second electrode;
A second sheet-like battery having a first electrode and a second electrode, the second sheet-like battery being disposed facing the first sheet-like battery so that the second electrodes face each other;
An extraction electrode disposed between the second electrode of the first sheet battery and the second electrode of the second sheet battery;
A first conductive adhesive connecting the second electrode and the extraction electrode of the first sheet battery;
A second conductive adhesive connecting the second electrode and the extraction electrode of the second sheet battery,
In the plan view of the state in which the first sheet battery and the second sheet battery are arranged to face each other, the second conductive adhesive and the secondary conductive adhesive are arranged to be shifted from each other. battery. - 前記引出電極と前記第1シート状電池の第2電極との間には、複数の第1導電性接着剤が配置されており、
前記引出電極と前記第1シート状電池の第2電極との間には、複数の第2導電性接着剤が配置されており、
前記第1シート状電池と前記第2シート状電池が向かい合って配置された状態の平面視において、前記第1導電性接着剤と前記第2導電性接着剤とが交互に配置されている請求項1に記載の二次電池。 A plurality of first conductive adhesives are disposed between the extraction electrode and the second electrode of the first sheet battery,
A plurality of second conductive adhesives are disposed between the extraction electrode and the second electrode of the first sheet battery,
The first conductive adhesive and the second conductive adhesive are alternately arranged in a plan view in a state where the first sheet battery and the second sheet battery are arranged to face each other. 2. The secondary battery according to 1. - 前記引出電極の長手方向に沿って、前記第1導電性接着剤と前記第2導電性接着剤とが交互に配置されている請求項2に記載の二次電池。 The secondary battery according to claim 2, wherein the first conductive adhesive and the second conductive adhesive are alternately arranged along a longitudinal direction of the extraction electrode.
- 前記第1シート状電池及び第2シート状電池がタブ部を有しており、
前記第1シート状電池と前記第2シート状電池が向かい合って配置された状態の平面視において、
前記第1シート状電池の前記タブ部と第2シート状電池がタブ部とが重複しており、
前記第1シート状電池の前記タブ部と第2シート状電池がタブ部では、第1電極同士が向かい合うように配置されている請求項1~3のいずれか1項に記載の二次電池。 The first sheet-shaped battery and the second sheet-shaped battery have a tab portion,
In a plan view of the state in which the first sheet-shaped battery and the second sheet-shaped battery are arranged to face each other,
The tab portion of the first sheet battery and the tab portion of the second sheet battery overlap,
The secondary battery according to any one of claims 1 to 3, wherein the tab portion of the first sheet battery and the second sheet battery are arranged so that the first electrodes face each other at the tab portion. - 請求項1~4のいずれか1項に記載の二次電池をシート状電池ペアとして、前記シート状電池ペアを複数備え、
隣接する2つの前記シート状電池ペアの前記第1電極同士が向かい合うように、複数の前記シート状電池ペアが積層されており、
前記第1シート状電池と前記第2シート状電池が向かい合って配置された状態の平面視した場合に、前記複数のシート状電池ペアに設けられた前記第1導電性接着剤及び前記第2導電性接着剤がずれて配置されている二次電池。 The secondary battery according to any one of claims 1 to 4 as a sheet-like battery pair, comprising a plurality of the sheet-like battery pairs,
A plurality of the sheet battery pairs are stacked such that the first electrodes of two adjacent sheet battery pairs adjacent to each other face each other.
The first conductive adhesive and the second conductive provided in the plurality of sheet-like battery pairs when viewed from above in a state in which the first sheet-like battery and the second sheet-like battery are arranged facing each other. Secondary battery in which the adhesive is displaced. - 第1電極、及び第2電極を有する第1シート状電池の前記第2電極の上に、第1導電性接着剤を塗布する工程と、
前記第1導電性接着剤に引出電極を接続する工程と、
前記引出電極の上に、第2導電性接着剤を塗布する工程と、
第1電極、及び第2電極を有する第2シート状電池の前記第2電極を前記第2導電性接着剤に接続する工程と、を備え、
前記第1シート状電池と前記第2シート状電池が向かい合って配置された状態の平面視において、前記第1導電性接着剤と前記第2導電性接着剤とがずれて配置されている二次電池の製造方法。 Applying a first conductive adhesive on the second electrode of the first sheet-shaped battery having the first electrode and the second electrode;
Connecting an extraction electrode to the first conductive adhesive;
Applying a second conductive adhesive on the extraction electrode;
Connecting the second electrode of the second sheet-like battery having the first electrode and the second electrode to the second conductive adhesive,
In the plan view of the state in which the first sheet battery and the second sheet battery are arranged to face each other, the second conductive adhesive and the secondary conductive adhesive are arranged to be shifted from each other. Battery manufacturing method. - 前記引出電極と前記第1シート状電池の第2電極との間には、複数の第1導電性接着剤が配置されており、
前記引出電極と前記第1シート状電池の第2電極との間には、複数の第2導電性接着剤が配置されており、
前記第1シート状電池と前記第2シート状電池が向かい合って配置された状態の平面視において、前記第1導電性接着剤と前記第2導電性接着剤とが交互に配置されている請求項6に記載の二次電池の製造方法。 A plurality of first conductive adhesives are disposed between the extraction electrode and the second electrode of the first sheet battery,
A plurality of second conductive adhesives are disposed between the extraction electrode and the second electrode of the first sheet battery,
The first conductive adhesive and the second conductive adhesive are alternately arranged in a plan view in a state where the first sheet battery and the second sheet battery are arranged to face each other. 6. A method for producing a secondary battery according to 6. - 前記引出電極の長手方向に沿って、前記第1導電性接着剤と前記第2導電性接着剤とが交互に配置されている請求項7に記載の二次電池の製造方法。 The method for manufacturing a secondary battery according to claim 7, wherein the first conductive adhesive and the second conductive adhesive are alternately arranged along a longitudinal direction of the extraction electrode.
- 前記第1シート状電池及び第2シート状電池がタブ部を有しており、
前記第1シート状電池と前記第2シート状電池が向かい合って配置された状態の平面視において、
前記第1シート状電池の前記タブ部と第2シート状電池がタブ部とが重複しており、
前記第1シート状電池の前記タブ部と第2シート状電池がタブ部では、第1電極同士が向かい合うように配置されている請求項6~8のいずれか1項に記載の二次電池の製造方法。 The first sheet-shaped battery and the second sheet-shaped battery have a tab portion,
In a plan view of the state in which the first sheet-shaped battery and the second sheet-shaped battery are arranged to face each other,
The tab portion of the first sheet battery and the tab portion of the second sheet battery overlap,
The secondary battery according to any one of claims 6 to 8, wherein the tab portion of the first sheet battery and the second sheet battery are arranged so that the first electrodes face each other at the tab portion. Production method. - 請求項6~9のいずれか1項に記載の二次電池の製造方法によって、シート状電池ペアとなる前記二次電池を複数製造する工程と、
隣接する2つの前記シート状電池ペアの前記第1電極同士が向かい合うように、複数の前記シート状電池ペアを積層する工程と、を備え、
前記第1シート状電池と前記第2シート状電池が向かい合って配置された状態の平面視した場合に、前記複数のシート状電池ペアに設けられた前記第1導電性接着剤及び前記第2導電性接着剤がずれて配置されている積層電池の製造方法。 A step of producing a plurality of the secondary batteries to be a sheet-like battery pair by the method for producing a secondary battery according to any one of claims 6 to 9,
Laminating a plurality of the sheet-like battery pairs so that the first electrodes of two adjacent sheet-like battery pairs face each other,
The first conductive adhesive and the second conductive provided in the plurality of sheet-like battery pairs when viewed from above in a state in which the first sheet-like battery and the second sheet-like battery are arranged facing each other. For producing a laminated battery in which the adhesive is displaced.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-104848 | 2018-05-31 | ||
JP2018104848A JP2019212382A (en) | 2018-05-31 | 2018-05-31 | Secondary battery, laminated battery, and manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019230484A1 true WO2019230484A1 (en) | 2019-12-05 |
Family
ID=68698080
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/019996 WO2019230484A1 (en) | 2018-05-31 | 2019-05-21 | Secondary battery, laminate battery, and manufacturing method |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2019212382A (en) |
TW (1) | TW202005159A (en) |
WO (1) | WO2019230484A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH031455A (en) * | 1989-05-30 | 1991-01-08 | Shin Kobe Electric Mach Co Ltd | Sealed square alkaline storage battery |
JP2006040875A (en) * | 2004-07-29 | 2006-02-09 | Samsung Sdi Co Ltd | Electrode assembly and lithium secondary battery using it |
JP3162607U (en) * | 2010-06-28 | 2010-09-09 | 佑正 許 | Full contact tab structure of rechargeable battery |
JP2017127063A (en) * | 2016-01-12 | 2017-07-20 | トヨタ自動車株式会社 | Stator |
-
2018
- 2018-05-31 JP JP2018104848A patent/JP2019212382A/en active Pending
-
2019
- 2019-05-21 WO PCT/JP2019/019996 patent/WO2019230484A1/en active Application Filing
- 2019-05-31 TW TW108118870A patent/TW202005159A/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH031455A (en) * | 1989-05-30 | 1991-01-08 | Shin Kobe Electric Mach Co Ltd | Sealed square alkaline storage battery |
JP2006040875A (en) * | 2004-07-29 | 2006-02-09 | Samsung Sdi Co Ltd | Electrode assembly and lithium secondary battery using it |
JP3162607U (en) * | 2010-06-28 | 2010-09-09 | 佑正 許 | Full contact tab structure of rechargeable battery |
JP2017127063A (en) * | 2016-01-12 | 2017-07-20 | トヨタ自動車株式会社 | Stator |
Also Published As
Publication number | Publication date |
---|---|
JP2019212382A (en) | 2019-12-12 |
TW202005159A (en) | 2020-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW505933B (en) | Laminated body, capacitor, electronic part, and method and device for manufacturing the laminated body, capacitor, and electronic part | |
JP4992523B2 (en) | Multilayer ceramic electronic component and manufacturing method thereof | |
JPWO2016158228A1 (en) | Thin film capacitor | |
KR20140103085A (en) | Electrode assembly and cell of polymer lithium secondary battery comprising the same | |
KR101807354B1 (en) | Electrode assembly | |
JP2001217142A (en) | Laminated thin-film capacitor and method for mounting it | |
WO2019230484A1 (en) | Secondary battery, laminate battery, and manufacturing method | |
TWI647724B (en) | Laminated battery | |
JP6112206B2 (en) | Multilayer thermoelectric conversion element and method for manufacturing the same | |
WO2012014648A1 (en) | Substrate-embedded capacitor, capacitor-integrated substrate provided with same, and method for producing substrate-embedded capacitor | |
JP2014032893A (en) | Thin film battery | |
KR102128670B1 (en) | Battery structure and laminated battery | |
WO2019123981A1 (en) | Method of manufacturing lithium ion secondary battery | |
WO2019151377A1 (en) | Layering tool, layering method, and battery structure manufacturing method | |
US20160087577A1 (en) | Flexible solar cells comprising thick and thin absorber regions | |
CN104471675B (en) | The manufacture method of film superimposed elements | |
JP2019114406A (en) | Lithium ion secondary battery | |
KR102205425B1 (en) | Electrode assembly for secondary battery, method of manufacturing the same and lithium secondary battery comprising the same | |
JP2022128975A (en) | Inductor component | |
JP5098743B2 (en) | Manufacturing method of electronic parts | |
KR20210011584A (en) | Electrode assembly for secondary battery, method of manufacturing the same and lithium secondary battery comprising the same | |
WO2018235494A1 (en) | Sheet-form rechargeable battery, battery structure, and method for producing sheet-form rechargeable battery | |
TWI682570B (en) | Secondary cell and method for manufacturing secondary cell | |
CN107112149A (en) | Electrical storage device and its manufacture method | |
JP2012212750A (en) | Laminate structure and manufacturing method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19811554 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19811554 Country of ref document: EP Kind code of ref document: A1 |