WO2019230435A1 - Refrigerant cycle device - Google Patents

Refrigerant cycle device Download PDF

Info

Publication number
WO2019230435A1
WO2019230435A1 PCT/JP2019/019610 JP2019019610W WO2019230435A1 WO 2019230435 A1 WO2019230435 A1 WO 2019230435A1 JP 2019019610 W JP2019019610 W JP 2019019610W WO 2019230435 A1 WO2019230435 A1 WO 2019230435A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
ejector
side evaporator
plate
suction
Prior art date
Application number
PCT/JP2019/019610
Other languages
French (fr)
Japanese (ja)
Inventor
大介 櫻井
押谷 洋
陽一郎 河本
陽平 長野
紘志 前田
航 袁
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2019230435A1 publication Critical patent/WO2019230435A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series

Definitions

  • This disclosure relates to a refrigeration cycle apparatus including an ejector.
  • Patent Document 1 describes a refrigeration cycle apparatus having an ejector.
  • the ejector is a pressure reducing unit that depressurizes the refrigerant, and is also a fluid transporting refrigerant circulating unit that circulates the refrigerant by suction of a refrigerant flow ejected at high speed.
  • the ejector includes a nozzle portion, a refrigerant suction port, and a diffuser portion.
  • the nozzle unit further expands the refrigerant under reduced pressure by reducing the passage area of the refrigerant that has passed through the expansion valve of the refrigeration cycle apparatus.
  • the refrigerant suction port is disposed in the same space as the refrigerant outlet of the nozzle part, and sucks the gas phase refrigerant from the evaporator of the refrigeration cycle apparatus.
  • the diffuser portion is a pressure increasing portion that increases the pressure by mixing the high-speed refrigerant flow from the nozzle portion and the suction refrigerant at the refrigerant suction port.
  • the evaporator is a heat exchanger that exchanges heat between the refrigerant and the air blown into the passenger compartment.
  • the air heat-exchanged by the evaporator is used for air conditioning in the passenger compartment.
  • the present disclosure aims to further increase the efficiency of the refrigeration cycle apparatus.
  • a refrigeration cycle apparatus is provided.
  • a radiator that dissipates the refrigerant discharged from the compressor;
  • a nozzle part for reducing the pressure of the refrigerant flowing out of the radiator, a refrigerant suction port for sucking the refrigerant by a suction action of the refrigerant jetted from the nozzle part, a refrigerant jetted from the nozzle part, and a refrigerant sucked from the refrigerant suction port
  • An ejector having a boosting unit for mixing and boosting;
  • a plurality of plate-shaped members are laminated and joined, and a refrigerant flow path through which a refrigerant flows and a liquid flow path through which a liquid flows are formed between the plurality of plate-shaped members, and the pressure is increased by the pressure increasing unit.
  • a stacked heat exchanger in which the refrigerant is sucked into the refrigerant suction port.
  • the effect of improving the cycle efficiency by the ejector can be obtained by applying the ejector to the stacked heat exchanger for exchanging heat between the refrigerant and the liquid.
  • the stacked heat exchanger does not exchange heat between the refrigerant and the air, but exchanges heat between the refrigerant and the liquid, so that a temperature distribution is hardly generated in the liquid after the heat exchange.
  • the efficiency of the refrigeration cycle apparatus can be further increased.
  • FIG. 1 It is a figure showing the whole refrigeration cycle device composition in a 1st embodiment. It is a perspective view which shows the outflow side evaporator in 1st Embodiment. It is a schematic diagram which shows the evaporator unit in 1st Embodiment. It is the graph which compared the ejector flow volume and the ejector pressurization effect
  • the ejector refrigeration cycle 10 of the first embodiment shown in FIG. 1 is applied to a vehicle refrigeration cycle apparatus.
  • the compressor 11 sucks and compresses the refrigerant.
  • the compressor 11 is rotationally driven by a vehicle travel engine (not shown) via an electromagnetic clutch, a belt, etc. (not shown).
  • the compressor 11 may be a variable capacity compressor that can adjust the refrigerant discharge capacity by changing the discharge capacity, or a fixed capacity compressor that adjusts the refrigerant discharge capacity by changing the operating rate of the compressor operation by switching the electromagnetic clutch. Either of these may be used.
  • the compressor 11 may be an electric compressor that adjusts the refrigerant discharge capacity by adjusting the rotational speed of the electric motor.
  • a radiator 12 is disposed on the refrigerant discharge side of the compressor 11.
  • the radiator 12 cools the high-pressure refrigerant by exchanging heat between the high-pressure refrigerant discharged from the compressor 11 and the cooling water.
  • the cooling water heat-exchanged by the radiator 12 is used as a heat source for heating the interior of the vehicle or is radiated to the air outside the vehicle (hereinafter referred to as outside air).
  • a refrigerant whose high pressure does not exceed the critical pressure such as a refrigerant of chlorofluorocarbon or HC, is used as the refrigerant. Therefore, the ejector refrigeration cycle 10 constitutes a vapor compression subcritical cycle. Yes. Therefore, the radiator 12 functions as a condenser that condenses the refrigerant.
  • An expansion valve 13 is disposed on the outlet side of the radiator 12.
  • the expansion valve 13 is a first decompression unit that decompresses the liquid refrigerant from the radiator 12.
  • the expansion valve 13 is a temperature type expansion valve having a temperature sensing unit (not shown) disposed in the suction side passage of the compressor 11.
  • the expansion valve 13 detects the degree of superheat of the compressor suction side refrigerant based on the temperature and pressure of the suction side refrigerant (in other words, the evaporator outlet side refrigerant) of the compressor 11, and overheats the compressor suction side refrigerant.
  • the valve opening (in other words, the refrigerant flow rate) is adjusted so that the degree becomes a predetermined value set in advance.
  • An ejector 14 is disposed on the outlet side of the expansion valve 13.
  • the ejector 14 is a decompression unit that decompresses the refrigerant, and is a fluid transport refrigerant circulation means (in other words, a momentum transport type) that circulates the refrigerant by suction action (in other words, entrainment action) of the refrigerant flow ejected at high speed. It is also a pump).
  • the ejector 14 includes a nozzle portion 14a and a refrigerant suction port 14b.
  • the nozzle portion 14a further expands the refrigerant under reduced pressure by reducing the passage area of the refrigerant (that is, the intermediate pressure refrigerant) after passing through the expansion valve 13.
  • the refrigerant suction port 14b is disposed in the same space as the refrigerant outlet of the nozzle portion 14a, and sucks the gas phase refrigerant from the suction side evaporator 18.
  • a diffuser portion 14 d is disposed at the downstream side of the refrigerant flow of the nozzle portion 14 a and the refrigerant suction port 14 b.
  • the diffuser portion 14d is a pressure increasing portion that increases the pressure by mixing the high-speed refrigerant flow from the nozzle portion 14a and the suction refrigerant from the refrigerant suction port 14b.
  • the diffuser portion 14d is formed in a shape that gradually increases the refrigerant passage area, and decelerates the refrigerant flow to increase the refrigerant pressure. That is, the diffuser part 14d converts the velocity energy of the refrigerant into pressure energy.
  • the outflow side evaporator 15 is connected to the outlet part of the ejector 14 (in other words, the tip part of the diffuser part 14d).
  • the outflow side evaporator 15 is a heat exchanger in which the refrigerant flowing out of the diffuser portion 14d exchanges heat with the cooling water.
  • the outlet side of the outflow side evaporator 15 is connected to the suction side of the compressor 11.
  • a flow distributor 16 is disposed on the outlet side of the expansion valve 13.
  • the flow distributor 16 adjusts the refrigerant flow rate Gn flowing into the nozzle portion 14 a of the ejector 14 and the refrigerant flow rate Ge flowing into the refrigerant suction port 14 b of the ejector 14.
  • the flow distributor 16 distributes the refrigerant after passing through the expansion valve 13 to the inlet side of the nozzle portion 14a of the ejector 14 and the inlet side of the refrigerant suction port 14b of the ejector 14.
  • the flow distributor 16 has a gas-liquid separation function of the refrigerant.
  • the refrigerant after passing through the expansion valve 13 is divided into a gas-liquid two-phase refrigerant flow toward the nozzle portion 14 a of the ejector 14 and a liquid phase toward the throttle mechanism 17. Separated into a refrigerant stream.
  • a throttle mechanism 17 and a suction side evaporator 18 are disposed between the flow distributor 16 and the refrigerant suction port 14b of the ejector 14.
  • the throttle mechanism 17 is a second decompression unit that decompresses the refrigerant that has flowed out of the flow distributor 16, and is disposed on the inlet side of the suction-side evaporator 18.
  • the flow distributor 16 and the throttle mechanism 17 are formed integrally with the ejector 14.
  • the suction side evaporator 18 is a heat exchanger in which the refrigerant sucked into the refrigerant suction port 14b of the ejector 14 exchanges heat with cooling water.
  • the cooling water of the cooling water circuit 21 circulates in the outflow side evaporator 15 and the suction side evaporator 18.
  • a pump 22 and a cooler core 23 are arranged in the cooling water circuit 21.
  • the pump 22 sucks and discharges the cooling water from the cooling water circuit 21. Thereby, the cooling water circulates in the outflow side evaporator 15, the suction side evaporator 18 and the cooler core 23.
  • the cooler core 23 cools the air by exchanging heat between the cooling water cooled by the outflow side evaporator 15 and the suction side evaporator 18 and the air.
  • the cooler core 23 is housed in an air conditioning case (not shown).
  • the air conditioning case is disposed in the vehicle interior.
  • An air passage is formed in the air conditioning case. In the air passage, air is blown by the electric blower 24 and cooled by the cooler core 23.
  • the cold air cooled by the cooler core 23 is sent into a common cooling target space (for example, a vehicle interior space). As a result, the common cooling target space is cooled by the cooler core 23.
  • a common cooling target space for example, a vehicle interior space
  • the ejector 14, the outflow side evaporator 15, the flow rate distributor 16, the throttle mechanism 17 and the suction side evaporator 18 are integrally assembled to constitute one evaporator unit 20.
  • the evaporator unit 20 is disposed in an engine room (not shown).
  • the evaporator unit 20 has a refrigerant inlet 20a and a refrigerant outlet 20b.
  • the refrigerant inlet 20 a communicates with the flow distributor 16.
  • the refrigerant outlet 20 b communicates with the outflow side evaporator 15.
  • the outflow side evaporator 15 is a stacked heat exchanger in which a plurality of plate-like members 151 are stacked and joined at a predetermined interval.
  • the plurality of laminated plate-like members 151 constitutes a core portion that exchanges heat between the refrigerant and the cooling water.
  • the plate-like member 151 is an elongated, substantially rectangular member, and for example, a double-sided clad material in which a brazing material is clad on both sides of an aluminum core material is used.
  • the laminating direction of the plate-like member 151 is referred to as a plate-like member laminating direction D1
  • the longitudinal direction of the plate-like member 151 is referred to as a plate-like member longitudinal direction D2.
  • a space is formed between adjacent plate-like members 151.
  • the space between the adjacent plate-shaped members 151 constitutes a refrigerant flow path (not shown) and a cooling water flow path (in other words, a liquid flow path) (not shown).
  • the refrigerant channel and the cooling water channel are separated from each other by a plate-like member 151.
  • the plate-shaped member 151 has a function as a heat transfer plate for exchanging heat between the refrigerant flowing through the refrigerant flow path and the cooling water flowing through the cooling water flow path.
  • cooling water for example, a liquid containing ethylene glycol, dimethylpolysiloxane or nanofluid, or an antifreeze liquid can be used.
  • ethylene glycol antifreeze so-called LLC is used as the cooling water.
  • the edges of the plate-like member 151 overlap each other, and these overlapping portions are joined by brazing.
  • a refrigerant tank section (not shown) and a cooling water tank section (not shown) are provided inside the outflow side evaporator 15.
  • the refrigerant tank unit communicates with the plurality of refrigerant flow paths, and distributes and collects the refrigerant to the plurality of refrigerant flow paths.
  • the cooling water tank unit communicates with the plurality of cooling water channels, and distributes and collects the cooling water to the plurality of cooling water channels.
  • the refrigerant tank portion and the cooling water tank portion are provided across the plurality of plate members 151 in the stacking direction of the plate members 151.
  • Each of the refrigerant tank portion and the cooling water tank portion is constituted by a communication hole (not shown) provided in the plate-like member 151.
  • the outflow side evaporator 15 is provided with a refrigerant inlet portion 15a, a refrigerant outlet portion 15b, a cooling water inlet portion 15c, and a cooling water outlet portion 15d.
  • the refrigerant inlet portion 15 a is connected to the diffuser portion 14 d of the ejector 14, and allows the refrigerant that has flowed out of the diffuser portion 14 d to flow into the outflow side evaporator 15.
  • the refrigerant outlet portion 15 b is connected to the refrigerant suction side of the compressor 11 and causes the refrigerant to flow out from the outflow side evaporator 15 to the compressor 11.
  • the cooling water inlet portion allows cooling water to flow into the outflow side evaporator 15.
  • the cooling water outlet causes the cooling water to flow out from the outflow side evaporator 15.
  • the suction-side evaporator 18 is a stacked heat exchanger in which a plurality of plate-like members 151 are stacked at a predetermined interval and joined in the same manner as the outflow-side evaporator 15. Therefore, detailed description of the suction side evaporator 18 is omitted.
  • the suction side evaporator 18 is provided with a refrigerant inlet 18a, a refrigerant outlet 18b, a cooling water inlet not shown, and a cooling water outlet not shown.
  • the refrigerant inlet 18 a is connected to the throttle mechanism 17 and allows the refrigerant that has flowed out of the throttle mechanism 17 to flow into the suction-side evaporator 18.
  • the refrigerant outlet 18b is connected to the refrigerant suction port 14b of the ejector 14, and allows the refrigerant to flow out from the suction side evaporator 18 to the refrigerant suction port 14b.
  • the cooling water inlet part allows the cooling water to flow into the suction side evaporator 18.
  • the cooling water outlet allows the cooling water to flow out from the suction side evaporator 18.
  • the volume ratio of the refrigerant flow path of the outflow side evaporator 15 and the refrigerant flow path of the suction side evaporator 18 is preferably in the range of 6: 4 to 8: 2, more preferably 7: 3.
  • the heat exchange capacity ratio between the outflow side evaporator 15 and the suction side evaporator 18 is preferably in the range of 6: 4 to 8: 2, more preferably 7: 3.
  • the volume can be easily changed. That is, by changing the number of stacked plate-like members, the volumes of the outflow side evaporator 15 and the suction side evaporator 18 can be easily changed.
  • the outflow side evaporator 15 and the suction side evaporator 18 are arranged in such a direction that the plate member stacking direction D1 and the plate member longitudinal direction D2 coincide with each other.
  • the outflow side evaporator 15 and the suction side evaporator 18 are arranged in the plate member longitudinal direction D2.
  • the ejector 14 is disposed so as to face the plate surfaces of the outflow side evaporator 15 and the suction side evaporator 18.
  • the axial direction is arrange
  • the ejector 14 is arranged so that the nozzle portion 14a is on the suction side evaporator 18 side and the diffuser portion 14d is on the outflow side evaporator 15 side.
  • the nozzle part 14a, the refrigerant suction port 14b, and the outlet part of the diffuser part 14d are formed at positions facing the suction side evaporator 18 and the outflow side evaporator 15 side.
  • the gas-liquid two-phase refrigerant that has flowed into the flow distributor 16 from the refrigerant inlet 20 a is branched by the flow distributor 16 into a refrigerant that goes to the nozzle portion 14 a of the ejector 14 and a refrigerant that goes to the throttle mechanism 17.
  • the gas-liquid two-phase refrigerant branched to the nozzle part 14a side passes through the ejector 14 in the order of the nozzle part 14a ⁇ the mixing part 14c ⁇ the diffuser part 14d and is decompressed, and the decompressed low-pressure refrigerant flows out from the refrigerant inlet part 15a. It flows into the side evaporator 15.
  • the refrigerant in the outflow side evaporator 15 flows out from the refrigerant outlet portion 15b.
  • the gas-liquid two-phase refrigerant branched to the throttle mechanism 17 side by the flow distributor 16 passes through the throttle mechanism 17 and is decompressed, and the decompressed low-pressure refrigerant (specifically, the gas-liquid two-phase refrigerant) is the refrigerant inlet. It flows into the suction side evaporator 18 from the part 18a. The refrigerant in the suction-side evaporator 18 is sucked into the refrigerant suction port 14b of the ejector 14 from the refrigerant outlet portion 18b.
  • the compressor 11 When the compressor 11 is driven by the vehicle engine, the high-temperature and high-pressure refrigerant compressed and discharged by the compressor 11 flows into the radiator 12. In the radiator 12, the high-temperature refrigerant is cooled by the cooling water and condensed. The high-pressure refrigerant that has flowed out of the radiator 12 passes through the expansion valve 13.
  • the valve opening degree is adjusted so that the degree of superheat of the outlet refrigerant of the outlet-side evaporator 15 becomes a predetermined value, and the high-pressure refrigerant is depressurized.
  • the intermediate-pressure refrigerant that has passed through the expansion valve 13 is divided into a main flow that flows into the nozzle portion 14 a of the ejector 14 and a branch flow that flows into the throttle mechanism 17 in the flow distributor 16.
  • the refrigerant branched to the nozzle part 14a side is decompressed and expanded by the nozzle part 14a. Therefore, the pressure energy of the refrigerant is converted into velocity energy at the nozzle portion 14a, and the refrigerant is ejected at a high velocity from the outlet of the nozzle portion 14a. Due to the refrigerant pressure drop caused by the flow of the high-speed jet refrigerant, the branch flow refrigerant (specifically, the gas-phase refrigerant) after passing through the suction side evaporator 18 is sucked from the refrigerant suction port 14b.
  • the branch flow refrigerant specifically, the gas-phase refrigerant
  • the refrigerant injected from the nozzle part 14a and the refrigerant sucked into the refrigerant suction port 14b are mixed in the mixing part 14c on the downstream side of the nozzle part 14a and flow into the diffuser part 14d.
  • the refrigerant pressure increases because the velocity energy of the refrigerant (in other words, expansion energy) is converted into pressure energy due to the expansion of the passage area.
  • the refrigerant flowing out from the diffuser portion 14d of the ejector 14 flows through the outflow side evaporator 15.
  • the low-temperature low-pressure refrigerant absorbs heat from the cooling water in the cooling water circuit 21 and evaporates.
  • the vapor phase refrigerant after evaporation is sucked into the compressor 11 from one refrigerant outlet 20b and compressed again.
  • the refrigerant divided into the throttle mechanism 17 is decompressed by the throttle mechanism 17 to become a low-pressure refrigerant (specifically, a gas-liquid two-phase refrigerant), and the low-pressure refrigerant flows through the suction-side evaporator 18.
  • a low-pressure refrigerant specifically, a gas-liquid two-phase refrigerant
  • the low-pressure refrigerant flows through the suction-side evaporator 18.
  • the low-temperature low-pressure refrigerant absorbs heat from the cooling water after passing through the outflow side evaporator 15 and evaporates.
  • the vapor phase refrigerant after evaporation is sucked into the ejector 14 from the refrigerant suction port 14b.
  • the refrigerant on the downstream side of the diffuser portion 14d of the ejector 14 is supplied to the outflow side evaporator 15, and the branch flow refrigerant can be supplied also to the suction side evaporator 18 through the throttle mechanism 17.
  • the side evaporator 18 can simultaneously exert a cooling effect.
  • the cooling water cooled by both the outflow side evaporator 15 and the suction side evaporator 18 can flow into the cooler core 23.
  • the cooling water that has flowed into the cooler core 23 cools the air blown into the space to be cooled. Thereby, the space to be cooled can be cooled (in other words, cooled).
  • the refrigerant evaporating pressure of the outflow side evaporator 15 is a pressure after being increased by the diffuser portion 14 d, while the outlet side of the suction side evaporator 18 is connected to the refrigerant suction port 14 b of the ejector 14.
  • the lowest pressure immediately after the pressure reduction at the nozzle portion 14 a can be applied to the suction side evaporator 18.
  • the refrigerant evaporation pressure of the suction side evaporator 18 (in other words, the refrigerant evaporation temperature) can be made lower than the refrigerant evaporation pressure of the outflow side evaporator 15 (in other words, the refrigerant evaporation temperature).
  • coolant evaporation temperature is arrange
  • coolant evaporation temperature is arrange
  • the cooling performance of both the outflow side evaporator 15 and the suction side evaporator 18 can be effectively exhibited. Therefore, the cooling performance for the common cooling water can be effectively improved by the combination of the outflow side evaporator 15 and the suction side evaporator 18. Further, the suction pressure of the compressor 11 can be increased by the pressure increasing action in the diffuser portion 14d, and the driving power of the compressor 11 can be reduced.
  • the refrigeration cycle apparatus using the stacked heat exchanger can be mounted with an ejector without greatly changing the mountability, and the boosting effect by the ejector can be obtained.
  • the outflow side evaporator 15 and the suction side evaporator 18 exchange heat between the refrigerant and the cooling water, and the cooling water heat-exchanged by the outflow side evaporator 15 and the suction side evaporator 18 is the cooler core 23.
  • the air is cooled, and the air cooled by the cooler core 23 is blown out into the passenger compartment.
  • the air blown into the passenger compartment is heat-exchanged with the refrigerant flowing through the outflow side evaporator 15 and the suction side evaporator 18 through the cooling water.
  • the flow rate of the refrigerant flowing through the ejector 14 can be increased, and the potential of the boosting effect by the ejector 14 can be sufficiently exhibited.
  • the heat exchange capacity ratio between the outflow side evaporator 15 and the suction side evaporator 18 can be optimized according to the refrigerant flow rate ratio between the outflow side evaporator 15 and the suction side evaporator 18.
  • FIG. 4 is a graph comparing the ejector flow rate, the ejector pressurizing action, the heat exchange capability of the suction-side evaporator 18, and the composite performance characteristics in this embodiment and the comparative example.
  • the ejector flow rate is the flow rate of the refrigerant flowing through the nozzle portion 14a of the ejector 14.
  • the ejector pressure increasing action increases as the ejector flow rate increases.
  • the heat exchange capacity of the suction-side evaporator 18 decreases as the ejector flow rate increases.
  • the combined performance characteristic is the sum of the heat exchange capacity of the outflow side evaporator 15 and the heat exchange capacity of the suction side evaporator 18.
  • the outflow side evaporator and the suction side evaporator are heat exchangers that exchange heat between the refrigerant and the air. Therefore, in the comparative example, temperature distribution is likely to occur in the air heat-exchanged by the outflow-side evaporator and the suction-side evaporator. Therefore, in order to suppress the temperature distribution of the heat-exchanged air, the flow rate of the refrigerant flowing through the ejector is reduced. It is necessary to suppress it. As a result, it must be used in a region lower than the peak of the synthesis performance.
  • the outflow side evaporator 15 and the suction side evaporator 18 exchange heat between the refrigerant and the cooling water, a temperature distribution is hardly generated in the heat exchanged cooling water. Therefore, in the comparative example, the flow rate of the refrigerant flowing through the ejector 14 can be increased as compared with the comparative example. As a result, it can be used in a region close to the peak of the synthesis performance.
  • the refrigerant flow path for guiding the refrigerant flowing out from the ejector 14 to the outflow side evaporator 15 is formed in the evaporator unit 20 without using refrigerant piping.
  • the evaporator unit 20 can be reduced in size, and the pressure loss of the refrigerant boosted by the diffuser portion 14d can be suppressed.
  • the cycle efficiency (so-called COP) improvement effect by the ejector 14, that is, the COP improvement effect by reducing the power consumption of the compressor can be sufficiently obtained.
  • the ejector 14 is applied to the outflow side evaporator 15 and the suction side evaporator 18 that exchange heat between the refrigerant and the cooling water, and the COP improvement effect by the ejector 14 can be obtained.
  • the efficiency of the refrigeration cycle apparatus can be further increased.
  • the outflow-side evaporator 15 and the suction-side evaporator 18 are stacked heat exchangers formed by stacking plate-like members, the outflow-side evaporator can be set by appropriately setting the number of stacked plate-like members. 15 and the suction-side evaporator 18 can be appropriately set in volume.
  • one refrigerant branched by the flow distributor 16 is decompressed by the throttle mechanism 17.
  • the refrigerant decompressed by the throttle mechanism 17 flows into the suction side heat exchanger 18, and the refrigerant in the suction side heat exchanger 18 is sucked into the refrigerant suction port 14b of the ejector 14.
  • the refrigerant that has flowed out of the diffuser portion 14 d of the ejector 14 flows into the outflow side evaporator 15.
  • the other refrigerant branched by the flow distributor 16 flows into the nozzle portion 14 a of the ejector 14.
  • the cooling performance for the common air can be effectively improved by the combination of the suction side heat exchanger 18 and the outflow side evaporator 15.
  • the ejector 14 is fixed to the plate member 151 so as to face the plate surface of the plate member 151.
  • the volume of the suction side heat exchanger 18 is smaller than the volume of the outflow side heat exchanger 15.
  • the heat exchange capacity ratio between the outflow side evaporator 15 and the suction side evaporator 18 can be optimized in accordance with the refrigerant flow rate ratio between the outflow side evaporator 15 and the suction side evaporator 18.
  • the outflow side evaporator 15 and the suction side evaporator 18 are arranged in the plate member longitudinal direction D2.
  • the outflow side evaporator 15 and the suction side evaporator 18 are arranged on the opposite side with the ejector 14 interposed therebetween.
  • the nozzle portion 14a and the refrigerant suction port 14b are formed at a position facing the suction-side evaporator 18 side, and the outlet portion of the diffuser portion 14d is formed at a position facing the outflow-side evaporator 15 side. Yes.
  • the outflow side evaporator 15 and the suction side evaporator 18 are arranged in the plate member longitudinal direction D2, and the ejector 14 faces the plate surfaces of the outflow side evaporator 15 and the suction side evaporator 18. Are arranged to be.
  • the outflow side evaporator 15 and the suction side evaporator 18 are arranged in the plate-like member stacking direction D1, and the ejector 14 is connected to the outflow side evaporator 15.
  • the suction-side evaporator 18 is disposed so as to face the end face of the plate-like member.
  • the axial direction of the ejector 14 is arranged in parallel with the plate-shaped member stacking direction D1.
  • the ejector 14 is disposed such that the nozzle portion 14a is on the suction side evaporator 18 side and the diffuser portion 14d is on the outflow side evaporator 15 side.
  • the ejector 14 is similar to the above embodiment, even if the nozzle portion 14a and the pressure increasing portion 14d are fixed to the plate-like member 151 so as to extend in the stacking direction D1 of the plate-like member 151. An effect can be produced.
  • the ejector refrigeration cycle 10 includes the outflow side evaporator 15 and the suction side evaporator 18.
  • the ejector refrigeration cycle 10 does not include the outflow side evaporator 15 but includes the suction side evaporator 18.
  • the expansion valve 13 is connected to the inlet of the nozzle portion 14a of the ejector 14.
  • An accumulator 19 is connected to the outlet portion of the ejector 14 (in other words, the tip portion of the diffuser portion 14d).
  • the accumulator 19 is a gas-liquid separation unit that separates the gas-liquid refrigerant flowing out of the diffuser unit 14d. Furthermore, the accumulator 19 also has a function as a liquid storage unit that stores a part of the separated liquid-phase refrigerant as surplus refrigerant in the cycle.
  • the gas phase refrigerant outlet of the accumulator 19 is connected to the suction side of the compressor 11.
  • the liquid-phase refrigerant outlet of the accumulator 19 is connected to the refrigerant inlet side of the suction-side evaporator 18 via a fixed throttle 19a.
  • the fixed throttle 19a is, for example, an orifice or a capillary tube.
  • the ejector 14 and the accumulator 19 are arranged so as to face the plate surface of the suction side evaporator 18.
  • the axial direction is arrange
  • the refrigerant suction port 14b is formed at a position facing the outflow side evaporator 15 side.
  • the exit part of the diffuser part 14d is formed at a position facing the extension of the ejector 14.
  • the accumulator 19 is disposed so as to face the outlet portion of the diffuser portion 14d.
  • the liquid phase refrigerant outlet of the accumulator 19 is formed at a position facing the outflow side evaporator 15 side.
  • the ejector 14 is disposed so as to face the plate surface of the suction side evaporator 18.
  • the axial direction is arrange
  • the refrigerant suction port 14b and the outlet part of the diffuser part 14d are formed at positions facing the outflow side evaporator 15 side.
  • the exit part of the diffuser part 14d is formed at a position facing the extension of the ejector 14.
  • the accumulator 19 is disposed on the side of the suction side evaporator 18 (on the left side in FIG. 9) so as to face the outlet portion of the diffuser portion 14d.
  • the liquid phase refrigerant outlet of the accumulator 19 is formed at a position facing the outflow side evaporator 15 side.
  • the refrigerant that has flowed out of the radiator 12 is decompressed by the expansion valve 13, and then flows into the nozzle portion 14a of the ejector 14.
  • the refrigerant gas-liquid pressurized by the diffuser part 14 d of the ejector 14 is separated by the accumulator 19, and the separated gas-phase refrigerant is discharged toward the compressor 11.
  • the refrigerant flows from the diffuser portion 14d of the ejector 14, and the refrigerant is sucked into the refrigerant suction port 14b of the ejector 14.
  • the ejector 14 is fixed to the plate-like member of the suction-side evaporator 18 so as to face the plate surface of the plate-like member of the suction-side evaporator 18.
  • the accumulator 19 is fixed to the plate-like member of the suction-side evaporator 18 so as to face the plate surface of the plate-like member of the suction-side evaporator 18.
  • the accumulator 19 is fixed to the plate-like member of the suction-side evaporator 18 so as to extend in the stacking direction D1 of the plate-like members of the suction-side evaporator 18.
  • the ejector 14, the outflow side evaporator 15, the flow distributor 16, the throttle mechanism 17, and the suction side evaporator 18 are integrally assembled with the evaporator unit 20.
  • the radiator 12 is also integrally assembled with the evaporator unit 20.
  • the heat radiator 12 is in contact with the outflow side evaporator 15 so as to be able to conduct heat.
  • the high-pressure refrigerant flowing through the radiator 12 and the low-pressure refrigerant flowing through the outflow evaporator 15 can exchange heat, and an internal heat exchange function can be exhibited.
  • the ejector 14 may have a flow volume adjustment function.
  • the ejector 14 of the present embodiment includes a needle valve 14e and a drive mechanism portion 14f.
  • the needle valve 14e is a nozzle-side valve body portion that is disposed in a refrigerant passage formed inside the nozzle portion 14a and changes the passage cross-sectional area of the refrigerant passage.
  • the needle valve 14e is formed of a needle-like (or a shape combining a conical shape, a cylindrical shape, or the like) metal (stainless steel in the present embodiment).
  • the central axis of the needle valve 14e is arranged coaxially with the central axis of the nozzle portion 14a, the central axis of the refrigerant passage of the diffuser portion 14d, and the like.
  • the needle valve 14e is displaced in the central axis direction to change the passage cross-sectional area of the nozzle portion 14a. Furthermore, the needle valve 14e can also close the nozzle part 14a by contacting the throat part.
  • the needle valve 14e is displaced by the drive mechanism 14f.
  • the drive mechanism unit 14f is an electric actuator having a stepping motor. The operation of the drive mechanism unit 14f is controlled by a control voltage (control pulse) output from a control device (not shown).
  • the function of the expansion valve can be integrated with the ejector 14.
  • the ejector 14 is provided outside the outflow side evaporator 15 and the suction side evaporator 18, but the ejector 14 is disposed inside the outflow side evaporator 15 and the suction side evaporator 18 (specifically, the plate Between the two members).
  • the evaporator unit 20 is configured by integrating the ejector 14, the outflow side evaporator 15, and the suction side evaporator 18, but other ejector refrigeration cycle components are integrated in the evaporator unit 20. May be used.
  • the expansion valve 13 may be integrally assembled with the evaporator unit 20.
  • each member of the evaporator unit 20 is integrally brazed when the members are integrally assembled.
  • these members are integrally screwed, caulked, welded, and bonded. It can carry out using various fixing means, such as.
  • the vapor compression subcritical cycle using a refrigerant such as a chlorofluorocarbon-based hydrocarbon or a hydrocarbon-based refrigerant whose high pressure does not exceed the critical pressure has been described, but the high pressure pressure is critical as the refrigerant, such as carbon dioxide. A refrigerant exceeding the pressure may be used.
  • the evaporator unit 20 is configured as an indoor heat exchanger, and the radiator 12 is configured as an outdoor heat exchanger that radiates heat to the atmosphere side.
  • the evaporator unit 20 is configured as an outdoor heat exchanger that absorbs heat from a heat source such as the atmosphere
  • the radiator 12 is configured as an indoor heat exchanger that heats a fluid to be heated such as air or water.
  • the present disclosure may be applied to a heat pump cycle.
  • the refrigeration cycle for a vehicle has been described.
  • the present embodiment is not limited to a vehicle and can be applied to a refrigeration cycle for stationary use as well.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

The present invention comprises: a compressor (11) that sucks in and discharges a refrigerant; a radiator (12) that releases heat from refrigerant that has been discharged from the compressor (11); an ejector (14) that has a nozzle part (14a) that depressurizes refrigerant that has flowed out of the radiator (12), a refrigerant suction port (14b) that suctions refrigerant by means of the suction effect of refrigerant that is sprayed from the nozzle part (14a), and a pressurization part (14d) that mixes and pressurizes refrigerant that has been sprayed from the nozzle part (14a) and refrigerant that has been suctioned through the refrigerant suction port; and layered heat exchangers (15, 18) into which refrigerant that has been pressurized by the pressurization part (14d) flows and from which refrigerant is suctioned by the refrigerant suction port. The layered heat exchangers are formed by layering and joining a plurality of plate-shaped members (151). Refrigerant flow channels in which refrigerant flows and liquid flow channels in which a liquid flows are formed between the plurality of plate-shaped members (151).

Description

冷凍サイクル装置Refrigeration cycle equipment 関連出願の相互参照Cross-reference of related applications
 本出願は、2018年5月31日に出願された日本特許出願2018-105228号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2018-105228 filed on May 31, 2018, the contents of which are incorporated herein by reference.
 本開示は、エジェクタを備える冷凍サイクル装置に関する。 This disclosure relates to a refrigeration cycle apparatus including an ejector.
 従来、特許文献1には、エジェクタを有する冷凍サイクル装置が記載されている。エジェクタは、冷媒を減圧する減圧部であるとともに、高速で噴出する冷媒流の吸引作用によって冷媒の循環を行う流体輸送用冷媒循環部でもある。 Conventionally, Patent Document 1 describes a refrigeration cycle apparatus having an ejector. The ejector is a pressure reducing unit that depressurizes the refrigerant, and is also a fluid transporting refrigerant circulating unit that circulates the refrigerant by suction of a refrigerant flow ejected at high speed.
 エジェクタは、ノズル部と冷媒吸引口とディフューザ部とを備えている。ノズル部は、冷凍サイクル装置の膨張弁を通過した冷媒の通路面積を小さく絞って冷媒をさらに減圧膨張させる。冷媒吸引口は、ノズル部の冷媒噴出口と同一空間に配置され、冷凍サイクル装置の蒸発器からの気相冷媒を吸引する。 The ejector includes a nozzle portion, a refrigerant suction port, and a diffuser portion. The nozzle unit further expands the refrigerant under reduced pressure by reducing the passage area of the refrigerant that has passed through the expansion valve of the refrigeration cycle apparatus. The refrigerant suction port is disposed in the same space as the refrigerant outlet of the nozzle part, and sucks the gas phase refrigerant from the evaporator of the refrigeration cycle apparatus.
 ディフューザ部は、ノズル部からの高速度の冷媒流と冷媒吸引口の吸引冷媒とを混合して昇圧させる昇圧部である。 The diffuser portion is a pressure increasing portion that increases the pressure by mixing the high-speed refrigerant flow from the nozzle portion and the suction refrigerant at the refrigerant suction port.
 蒸発器は、冷媒と、車室内へ吹き出される空気とを熱交換させる熱交換器である。蒸発器で熱交換された空気は、車室内の空調に利用される。 The evaporator is a heat exchanger that exchanges heat between the refrigerant and the air blown into the passenger compartment. The air heat-exchanged by the evaporator is used for air conditioning in the passenger compartment.
特許第4259478号Japanese Patent No. 4259478
 上記従来技術では、蒸発器で熱交換された空気の温度分布を抑制するために、エジェクタを流れる冷媒の流量を抑制する必要があった。そのため、エジェクタによる昇圧効果のポテンシャルを十分に発揮することが困難であった。 In the above prior art, it was necessary to suppress the flow rate of the refrigerant flowing through the ejector in order to suppress the temperature distribution of the air heat exchanged by the evaporator. Therefore, it has been difficult to fully exhibit the potential of the boosting effect by the ejector.
 また、近年、ハイブリッド自動車や電気自動車に搭載される走行用電池を冷凍サイクル装置の冷媒で冷却するニーズが高まっているが、走行用電池のために要求される冷却能力は、空調のために要求される冷却能力よりも大きいものとなる。そのため、冷凍サイクル装置の一層の高効率化が求められている。 In recent years, there has been an increasing need to cool batteries used in hybrid vehicles and electric vehicles with refrigerants in refrigeration cycle devices, but the cooling capacity required for batteries used for vehicles is required for air conditioning. It will be larger than the cooling capacity. Therefore, higher efficiency of the refrigeration cycle apparatus is required.
 本開示は上記点に鑑みて、冷凍サイクル装置の一層の高効率化を図ることを目的とする。 In view of the above points, the present disclosure aims to further increase the efficiency of the refrigeration cycle apparatus.
 本開示の一態様による冷凍サイクル装置は、
 冷媒を吸入して吐出する圧縮機と、
 圧縮機から吐出された冷媒を放熱させる放熱器と、
 放熱器から流出した冷媒を減圧させるノズル部と、ノズル部から噴射される冷媒の吸引作用によって冷媒を吸引する冷媒吸引口と、ノズル部から噴射された冷媒と冷媒吸引口から吸引された冷媒とを混合させて昇圧させる昇圧部とを有するエジェクタと、
 複数の板状部材が積層して接合され、複数の板状部材同士の間に、冷媒が流れる冷媒流路と、液体が流れる液体流路とが形成されており、昇圧部で昇圧された冷媒が流入し、冷媒吸引口に冷媒が吸引される積層型熱交換器とを備える。
A refrigeration cycle apparatus according to an aspect of the present disclosure is provided.
A compressor for sucking and discharging refrigerant;
A radiator that dissipates the refrigerant discharged from the compressor;
A nozzle part for reducing the pressure of the refrigerant flowing out of the radiator, a refrigerant suction port for sucking the refrigerant by a suction action of the refrigerant jetted from the nozzle part, a refrigerant jetted from the nozzle part, and a refrigerant sucked from the refrigerant suction port An ejector having a boosting unit for mixing and boosting;
A plurality of plate-shaped members are laminated and joined, and a refrigerant flow path through which a refrigerant flows and a liquid flow path through which a liquid flows are formed between the plurality of plate-shaped members, and the pressure is increased by the pressure increasing unit. And a stacked heat exchanger in which the refrigerant is sucked into the refrigerant suction port.
 これによると、冷媒と液体とを熱交換させる積層型熱交換器にエジェクタを適用して、エジェクタによるサイクル効率向上効果を得ることができる。 According to this, the effect of improving the cycle efficiency by the ejector can be obtained by applying the ejector to the stacked heat exchanger for exchanging heat between the refrigerant and the liquid.
 すなわち、積層型熱交換器は、冷媒と空気とを熱交換させるのではなく、冷媒と液体とを熱交換させるので、熱交換後の液体に温度分布が生じにくい。 That is, the stacked heat exchanger does not exchange heat between the refrigerant and the air, but exchanges heat between the refrigerant and the liquid, so that a temperature distribution is hardly generated in the liquid after the heat exchange.
 そのため、エジェクタを流れる冷媒の流量を増加させて、エジェクタによる昇圧効果のポテンシャルを十分に発揮することができるので、冷凍サイクル装置の一層の高効率化を図ることができる。 Therefore, since the flow rate of the refrigerant flowing through the ejector can be increased and the potential of the boosting effect by the ejector can be fully exhibited, the efficiency of the refrigeration cycle apparatus can be further increased.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な既述により、より明確となる。
第1実施形態における冷凍サイクル装置の全体構成を示す図である。 第1実施形態における流出側蒸発器を示す斜視図である。 第1実施形態における蒸発器ユニットを示す模式図である。 エジェクタ流量とエジェクタ昇圧作用、吸引側蒸発器の熱交換能力、および合成性能特性を、第1実施形態と比較例とで比較したグラフである。 第2実施形態における蒸発器ユニットを示す模式図である。 第3実施形態における蒸発器ユニットを示す模式図である。 第4実施形態における冷凍サイクル装置の全体構成を示す図である。 第4実施形態の第1実施例における蒸発器ユニットを示す模式図である。 第4実施形態の第2実施例における蒸発器ユニットを示す模式図である。 第5実施形態における冷凍サイクル装置の全体構成を示す図である。 第6実施形態におけるエジェクタを示す断面図である。
The above and other objects, features, and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings.
It is a figure showing the whole refrigeration cycle device composition in a 1st embodiment. It is a perspective view which shows the outflow side evaporator in 1st Embodiment. It is a schematic diagram which shows the evaporator unit in 1st Embodiment. It is the graph which compared the ejector flow volume and the ejector pressurization effect | action, the heat exchange capability of the suction side evaporator, and the synthetic | combination performance characteristic by 1st Embodiment and a comparative example. It is a schematic diagram which shows the evaporator unit in 2nd Embodiment. It is a schematic diagram which shows the evaporator unit in 3rd Embodiment. It is a figure which shows the whole structure of the refrigerating-cycle apparatus in 4th Embodiment. It is a schematic diagram which shows the evaporator unit in 1st Example of 4th Embodiment. It is a schematic diagram which shows the evaporator unit in 2nd Example of 4th Embodiment. It is a figure which shows the whole structure of the refrigerating-cycle apparatus in 5th Embodiment. It is sectional drawing which shows the ejector in 6th Embodiment.
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各実施形態において先行する実施形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各実施形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の実施形態を適用することができる。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。 Hereinafter, a plurality of modes for carrying out the present disclosure will be described with reference to the drawings. In each embodiment, portions corresponding to those described in the preceding embodiment may be denoted by the same reference numerals, and redundant description may be omitted. When only a part of the configuration is described in each embodiment, the other embodiments described above can be applied to other parts of the configuration. Not only combinations of parts that clearly show that combinations are possible in each embodiment, but also combinations of the embodiments even if they are not specified unless there is a problem with the combination. Is also possible.
 (第1実施形態)
 図1に示す第1実施形態のエジェクタ式冷凍サイクル10は、車両用冷凍サイクル装置に適用されている。エジェクタ式冷凍サイクル10において、圧縮機11は、冷媒を吸入圧縮する。例えば、圧縮機11は、図示しない電磁クラッチ、ベルト等を介して図示しない車両走行用エンジンにより回転駆動される。
(First embodiment)
The ejector refrigeration cycle 10 of the first embodiment shown in FIG. 1 is applied to a vehicle refrigeration cycle apparatus. In the ejector refrigeration cycle 10, the compressor 11 sucks and compresses the refrigerant. For example, the compressor 11 is rotationally driven by a vehicle travel engine (not shown) via an electromagnetic clutch, a belt, etc. (not shown).
 圧縮機11としては、吐出容量の変化により冷媒吐出能力を調整できる可変容量型圧縮機、あるいは電磁クラッチの断続により圧縮機作動の稼働率を変化させて冷媒吐出能力を調整する固定容量型圧縮機のいずれを使用してもよい。 The compressor 11 may be a variable capacity compressor that can adjust the refrigerant discharge capacity by changing the discharge capacity, or a fixed capacity compressor that adjusts the refrigerant discharge capacity by changing the operating rate of the compressor operation by switching the electromagnetic clutch. Either of these may be used.
 例えば、圧縮機11は、電動モータの回転数調整により冷媒吐出能力を調整する電動圧縮機であってもよい。 For example, the compressor 11 may be an electric compressor that adjusts the refrigerant discharge capacity by adjusting the rotational speed of the electric motor.
 圧縮機11の冷媒吐出側には放熱器12が配置されている。放熱器12は圧縮機11から吐出された高圧冷媒と、冷却水との間で熱交換を行って高圧冷媒を冷却する。放熱器12で熱交換された冷却水は、車室内の暖房等の熱源として利用されたり、車室外の空気(以下、外気と言う。)に放熱されたりする。 A radiator 12 is disposed on the refrigerant discharge side of the compressor 11. The radiator 12 cools the high-pressure refrigerant by exchanging heat between the high-pressure refrigerant discharged from the compressor 11 and the cooling water. The cooling water heat-exchanged by the radiator 12 is used as a heat source for heating the interior of the vehicle or is radiated to the air outside the vehicle (hereinafter referred to as outside air).
 本実施形態では、冷媒としてフロン系、HC系等の冷媒のように高圧圧力が臨界圧力を超えない冷媒を用いているので、エジェクタ式冷凍サイクル10は蒸気圧縮式の亜臨界サイクルを構成している。したがって、放熱器12は冷媒を凝縮する凝縮器として機能する。 In the present embodiment, a refrigerant whose high pressure does not exceed the critical pressure, such as a refrigerant of chlorofluorocarbon or HC, is used as the refrigerant. Therefore, the ejector refrigeration cycle 10 constitutes a vapor compression subcritical cycle. Yes. Therefore, the radiator 12 functions as a condenser that condenses the refrigerant.
 放熱器12の出口側には膨張弁13が配置されている。膨張弁13は放熱器12からの液冷媒を減圧する第1減圧部である。膨張弁13は、圧縮機11の吸入側通路に配置された図示しない感温部を有する温度式膨張弁である。 An expansion valve 13 is disposed on the outlet side of the radiator 12. The expansion valve 13 is a first decompression unit that decompresses the liquid refrigerant from the radiator 12. The expansion valve 13 is a temperature type expansion valve having a temperature sensing unit (not shown) disposed in the suction side passage of the compressor 11.
 膨張弁13は、圧縮機11の吸入側冷媒(換言すれば、蒸発器出口側冷媒)の温度と圧力とに基づいて圧縮機吸入側冷媒の過熱度を検出し、圧縮機吸入側冷媒の過熱度が予め設定された所定値となるように弁開度(換言すれば、冷媒流量)を調整する。 The expansion valve 13 detects the degree of superheat of the compressor suction side refrigerant based on the temperature and pressure of the suction side refrigerant (in other words, the evaporator outlet side refrigerant) of the compressor 11, and overheats the compressor suction side refrigerant. The valve opening (in other words, the refrigerant flow rate) is adjusted so that the degree becomes a predetermined value set in advance.
 膨張弁13の出口側にエジェクタ14が配置されている。エジェクタ14は冷媒を減圧する減圧部であるとともに、高速で噴出する冷媒流の吸引作用(換言すれば、巻き込み作用)によって冷媒の循環を行う流体輸送用冷媒循環手段(換言すれば、運動量輸送式ポンプ)でもある。 An ejector 14 is disposed on the outlet side of the expansion valve 13. The ejector 14 is a decompression unit that decompresses the refrigerant, and is a fluid transport refrigerant circulation means (in other words, a momentum transport type) that circulates the refrigerant by suction action (in other words, entrainment action) of the refrigerant flow ejected at high speed. It is also a pump).
 エジェクタ14は、ノズル部14aと冷媒吸引口14bとを備えている。ノズル部14aは、膨張弁13通過後の冷媒(すなわち中間圧冷媒)の通路面積を小さく絞って冷媒をさらに減圧膨張させる。冷媒吸引口14bは、ノズル部14aの冷媒噴出口と同一空間に配置され、吸引側蒸発器18からの気相冷媒を吸引する。 The ejector 14 includes a nozzle portion 14a and a refrigerant suction port 14b. The nozzle portion 14a further expands the refrigerant under reduced pressure by reducing the passage area of the refrigerant (that is, the intermediate pressure refrigerant) after passing through the expansion valve 13. The refrigerant suction port 14b is disposed in the same space as the refrigerant outlet of the nozzle portion 14a, and sucks the gas phase refrigerant from the suction side evaporator 18.
 エジェクタ14のうちノズル部14aおよび冷媒吸引口14bの冷媒流れ下流側部位には、ディフューザ部14dが配置されている。ディフューザ部14dは、ノズル部14aからの高速度の冷媒流と冷媒吸引口14bの吸引冷媒とを混合して昇圧させる昇圧部である。 In the ejector 14, a diffuser portion 14 d is disposed at the downstream side of the refrigerant flow of the nozzle portion 14 a and the refrigerant suction port 14 b. The diffuser portion 14d is a pressure increasing portion that increases the pressure by mixing the high-speed refrigerant flow from the nozzle portion 14a and the suction refrigerant from the refrigerant suction port 14b.
 ディフューザ部14dは冷媒の通路面積を徐々に大きくする形状に形成されており、冷媒流れを減速して冷媒圧力を上昇させる。つまり、ディフューザ部14dは冷媒の速度エネルギーを圧力エネルギーに変換する。 The diffuser portion 14d is formed in a shape that gradually increases the refrigerant passage area, and decelerates the refrigerant flow to increase the refrigerant pressure. That is, the diffuser part 14d converts the velocity energy of the refrigerant into pressure energy.
 エジェクタ14の出口部(換言すれば、ディフューザ部14dの先端部)側には流出側蒸発器15が接続されている。流出側蒸発器15は、ディフューザ部14dから流出した冷媒が冷却水と熱交換する熱交換器である。流出側蒸発器15の出口側は圧縮機11の吸入側に接続されている。 The outflow side evaporator 15 is connected to the outlet part of the ejector 14 (in other words, the tip part of the diffuser part 14d). The outflow side evaporator 15 is a heat exchanger in which the refrigerant flowing out of the diffuser portion 14d exchanges heat with the cooling water. The outlet side of the outflow side evaporator 15 is connected to the suction side of the compressor 11.
 膨張弁13の出口側には流量分配器16が配置されている。流量分配器16は、エジェクタ14のノズル部14aに流入する冷媒流量Gnと、エジェクタ14の冷媒吸引口14bに流入する冷媒流量Geとを調整する。 A flow distributor 16 is disposed on the outlet side of the expansion valve 13. The flow distributor 16 adjusts the refrigerant flow rate Gn flowing into the nozzle portion 14 a of the ejector 14 and the refrigerant flow rate Ge flowing into the refrigerant suction port 14 b of the ejector 14.
 流量分配器16は、膨張弁13通過後の冷媒を、エジェクタ14のノズル部14aの入口側と、エジェクタ14の冷媒吸引口14bの入口側とに分配する。流量分配器16は、冷媒の気液分離機能を有しており、膨張弁13通過後の冷媒を、エジェクタ14のノズル部14aに向かう気液2相冷媒流と、絞り機構17に向かう液相冷媒流とに分離する。 The flow distributor 16 distributes the refrigerant after passing through the expansion valve 13 to the inlet side of the nozzle portion 14a of the ejector 14 and the inlet side of the refrigerant suction port 14b of the ejector 14. The flow distributor 16 has a gas-liquid separation function of the refrigerant. The refrigerant after passing through the expansion valve 13 is divided into a gas-liquid two-phase refrigerant flow toward the nozzle portion 14 a of the ejector 14 and a liquid phase toward the throttle mechanism 17. Separated into a refrigerant stream.
 流量分配器16とエジェクタ14の冷媒吸引口14bとの間には絞り機構17と吸引側蒸発器18とが配置されている。絞り機構17は、流量分配器16から流出した冷媒を減圧させる第2減圧部であり、吸引側蒸発器18の入口側に配置されている。 A throttle mechanism 17 and a suction side evaporator 18 are disposed between the flow distributor 16 and the refrigerant suction port 14b of the ejector 14. The throttle mechanism 17 is a second decompression unit that decompresses the refrigerant that has flowed out of the flow distributor 16, and is disposed on the inlet side of the suction-side evaporator 18.
 流量分配器16および絞り機構17は、エジェクタ14と一体的に形成されている。 The flow distributor 16 and the throttle mechanism 17 are formed integrally with the ejector 14.
 吸引側蒸発器18は、エジェクタ14の冷媒吸引口14bに吸引される冷媒が冷却水と熱交換する熱交換器である。 The suction side evaporator 18 is a heat exchanger in which the refrigerant sucked into the refrigerant suction port 14b of the ejector 14 exchanges heat with cooling water.
 流出側蒸発器15および吸引側蒸発器18には、冷却水回路21の冷却水が循環する。冷却水回路21には、ポンプ22とクーラコア23とが配置されている。 The cooling water of the cooling water circuit 21 circulates in the outflow side evaporator 15 and the suction side evaporator 18. A pump 22 and a cooler core 23 are arranged in the cooling water circuit 21.
 ポンプ22は、冷却水回路21の冷却水を吸入して吐出する。これにより、流出側蒸発器15、吸引側蒸発器18およびクーラコア23に冷却水が循環する。 The pump 22 sucks and discharges the cooling water from the cooling water circuit 21. Thereby, the cooling water circulates in the outflow side evaporator 15, the suction side evaporator 18 and the cooler core 23.
 クーラコア23は、流出側蒸発器15および吸引側蒸発器18で冷却された冷却水と空気とを熱交換させることによって、空気を冷却する。 The cooler core 23 cools the air by exchanging heat between the cooling water cooled by the outflow side evaporator 15 and the suction side evaporator 18 and the air.
 クーラコア23は、図示しない空調ケース内に収納されている。空調ケースは車室内に配置されている。空調ケース内には空気通路が形成されている。空気通路において、電動送風機24によって空気が送風されてクーラコア23で冷却されるようになっている。 The cooler core 23 is housed in an air conditioning case (not shown). The air conditioning case is disposed in the vehicle interior. An air passage is formed in the air conditioning case. In the air passage, air is blown by the electric blower 24 and cooled by the cooler core 23.
 クーラコア23で冷却された冷風は、共通の冷却対象空間(例えば、車室内空間)に送り込まれる。これによりクーラコア23にて共通の冷却対象空間が冷却されるようになっている。 The cold air cooled by the cooler core 23 is sent into a common cooling target space (for example, a vehicle interior space). As a result, the common cooling target space is cooled by the cooler core 23.
 エジェクタ14、流出側蒸発器15、流量分配器16、絞り機構17および吸引側蒸発器18は、一体的に組み付けられて1つの蒸発器ユニット20を構成している。 The ejector 14, the outflow side evaporator 15, the flow rate distributor 16, the throttle mechanism 17 and the suction side evaporator 18 are integrally assembled to constitute one evaporator unit 20.
 蒸発器ユニット20は、図示しないエンジンルームに配置されている。 The evaporator unit 20 is disposed in an engine room (not shown).
 蒸発器ユニット20には、冷媒入口20aと冷媒出口20bとが形成されている。冷媒入口20aは、流量分配器16と連通している。冷媒出口20bは、流出側蒸発器15と連通している。 The evaporator unit 20 has a refrigerant inlet 20a and a refrigerant outlet 20b. The refrigerant inlet 20 a communicates with the flow distributor 16. The refrigerant outlet 20 b communicates with the outflow side evaporator 15.
 蒸発器ユニット20の具体例を図2および図3により説明する。流出側蒸発器15は、複数の板状部材151を所定間隔を設けて積層して接合した積層型熱交換器である。積層された複数の板状部材151は冷媒と冷却水を熱交換するコア部を構成している。板状部材151は細長の略矩形状の部材であり、例えばアルミニウム芯材の両面にろう材をクラッドした両面クラッド材が用いられる。 Specific examples of the evaporator unit 20 will be described with reference to FIGS. The outflow side evaporator 15 is a stacked heat exchanger in which a plurality of plate-like members 151 are stacked and joined at a predetermined interval. The plurality of laminated plate-like members 151 constitutes a core portion that exchanges heat between the refrigerant and the cooling water. The plate-like member 151 is an elongated, substantially rectangular member, and for example, a double-sided clad material in which a brazing material is clad on both sides of an aluminum core material is used.
 以下、板状部材151の積層方向を板状部材積層方向D1と言い、板状部材151の長手方向を板状部材長手方向D2と言う。 Hereinafter, the laminating direction of the plate-like member 151 is referred to as a plate-like member laminating direction D1, and the longitudinal direction of the plate-like member 151 is referred to as a plate-like member longitudinal direction D2.
 隣接する板状部材151の間には空間が形成されている。隣接する板状部材151の間空間は、図示しない冷媒流路および図示しない冷却水流路(換言すれば液体流路)を構成している。 A space is formed between adjacent plate-like members 151. The space between the adjacent plate-shaped members 151 constitutes a refrigerant flow path (not shown) and a cooling water flow path (in other words, a liquid flow path) (not shown).
 冷媒流路および冷却水流路は、板状部材151によって互いに仕切られている。板状部材151は、冷媒流路を流れる冷媒と冷却水流路を流れる冷却水とを熱交換させる伝熱プレートとしての機能を有する。 The refrigerant channel and the cooling water channel are separated from each other by a plate-like member 151. The plate-shaped member 151 has a function as a heat transfer plate for exchanging heat between the refrigerant flowing through the refrigerant flow path and the cooling water flowing through the cooling water flow path.
 冷却水としては、例えばエチレングリコール、ジメチルポリシロキサンもしくはナノ流体を含む液体、または不凍液体等を用いることができる。本実施形態では、冷却水として、エチレングリコール系の不凍液(いわゆるLLC)を用いている。 As the cooling water, for example, a liquid containing ethylene glycol, dimethylpolysiloxane or nanofluid, or an antifreeze liquid can be used. In this embodiment, ethylene glycol antifreeze (so-called LLC) is used as the cooling water.
 板状部材151の縁部同士は重なり合っており、これらの重なり合っている部分がろう付けにより接合されている。 The edges of the plate-like member 151 overlap each other, and these overlapping portions are joined by brazing.
 流出側蒸発器15の内部には、図示しない冷媒タンク部および図示しない冷却水タンク部が設けられている。冷媒タンク部は、複数の冷媒流路と連通しており、複数の冷媒流路に対して冷媒の分配および集合を行う。冷却水タンク部は、複数の冷却水流路と連通しており、複数の冷却水流路に対して冷却水の分配および集合を行う。 Inside the outflow side evaporator 15, a refrigerant tank section (not shown) and a cooling water tank section (not shown) are provided. The refrigerant tank unit communicates with the plurality of refrigerant flow paths, and distributes and collects the refrigerant to the plurality of refrigerant flow paths. The cooling water tank unit communicates with the plurality of cooling water channels, and distributes and collects the cooling water to the plurality of cooling water channels.
 冷媒タンク部および冷却水タンク部は、板状部材151の積層方向において、複数の板状部材151に跨って設けられている。 The refrigerant tank portion and the cooling water tank portion are provided across the plurality of plate members 151 in the stacking direction of the plate members 151.
 冷媒タンク部および冷却水タンク部はそれぞれ、板状部材151に設けられた図示しない連通孔によって構成されている。 Each of the refrigerant tank portion and the cooling water tank portion is constituted by a communication hole (not shown) provided in the plate-like member 151.
 流出側蒸発器15には、冷媒入口部15a、冷媒出口部15b、冷却水入口部15cおよび冷却水出口部15dが設けられている。冷媒入口部15aは、エジェクタ14のディフューザ部14dに接続されており、ディフューザ部14dから流出した冷媒を流出側蒸発器15に流入させる。 The outflow side evaporator 15 is provided with a refrigerant inlet portion 15a, a refrigerant outlet portion 15b, a cooling water inlet portion 15c, and a cooling water outlet portion 15d. The refrigerant inlet portion 15 a is connected to the diffuser portion 14 d of the ejector 14, and allows the refrigerant that has flowed out of the diffuser portion 14 d to flow into the outflow side evaporator 15.
 冷媒出口部15bは、圧縮機11の冷媒吸入側に接続されており、流出側蒸発器15から圧縮機11へ冷媒を流出させる。 The refrigerant outlet portion 15 b is connected to the refrigerant suction side of the compressor 11 and causes the refrigerant to flow out from the outflow side evaporator 15 to the compressor 11.
 冷却水入口部は、流出側蒸発器15に冷却水を流入させる。冷却水出口部は、流出側蒸発器15から冷却水を流出させる。 The cooling water inlet portion allows cooling water to flow into the outflow side evaporator 15. The cooling water outlet causes the cooling water to flow out from the outflow side evaporator 15.
 吸引側蒸発器18は、流出側蒸発器15と同様に、複数の板状部材151を所定間隔を設けて積層して接合した積層型熱交換器である。そのため、吸引側蒸発器18の詳細な説明を省略する。 The suction-side evaporator 18 is a stacked heat exchanger in which a plurality of plate-like members 151 are stacked at a predetermined interval and joined in the same manner as the outflow-side evaporator 15. Therefore, detailed description of the suction side evaporator 18 is omitted.
 吸引側蒸発器18には、冷媒入口部18a、冷媒出口部18b、図示しない冷却水入口部および図示しない冷却水出口部が設けられている。冷媒入口部18aは、絞り機構17に接続されており、絞り機構17から流出した冷媒を吸引側蒸発器18に流入させる。 The suction side evaporator 18 is provided with a refrigerant inlet 18a, a refrigerant outlet 18b, a cooling water inlet not shown, and a cooling water outlet not shown. The refrigerant inlet 18 a is connected to the throttle mechanism 17 and allows the refrigerant that has flowed out of the throttle mechanism 17 to flow into the suction-side evaporator 18.
 冷媒出口部18bは、エジェクタ14の冷媒吸引口14bに接続されており、吸引側蒸発器18から冷媒吸引口14bへ冷媒を流出させる。 The refrigerant outlet 18b is connected to the refrigerant suction port 14b of the ejector 14, and allows the refrigerant to flow out from the suction side evaporator 18 to the refrigerant suction port 14b.
 冷却水入口部は、吸引側蒸発器18に冷却水を流入させる。冷却水出口部は、吸引側蒸発器18から冷却水を流出させる。 The cooling water inlet part allows the cooling water to flow into the suction side evaporator 18. The cooling water outlet allows the cooling water to flow out from the suction side evaporator 18.
 流出側蒸発器15の冷媒流路と吸引側蒸発器18の冷媒流路との容積比は、好ましくは6:4~8:2の範囲、より好ましくは7:3である。換言すれば、流出側蒸発器15と吸引側蒸発器18との熱交換能力比は、好ましくは6:4~8:2の範囲、より好ましくは7:3である。 The volume ratio of the refrigerant flow path of the outflow side evaporator 15 and the refrigerant flow path of the suction side evaporator 18 is preferably in the range of 6: 4 to 8: 2, more preferably 7: 3. In other words, the heat exchange capacity ratio between the outflow side evaporator 15 and the suction side evaporator 18 is preferably in the range of 6: 4 to 8: 2, more preferably 7: 3.
 流出側蒸発器15および吸引側蒸発器18は積層型熱交換器であるので、容積の変更が容易である。すなわち、板状部材の積層枚数を変更することによって、流出側蒸発器15および吸引側蒸発器18の容積を容易に変更できる。 Since the outflow-side evaporator 15 and the suction-side evaporator 18 are stacked heat exchangers, the volume can be easily changed. That is, by changing the number of stacked plate-like members, the volumes of the outflow side evaporator 15 and the suction side evaporator 18 can be easily changed.
 流出側蒸発器15および吸引側蒸発器18は、それぞれの板状部材積層方向D1および板状部材長手方向D2が一致する向きで並べられている。流出側蒸発器15および吸引側蒸発器18は、板状部材長手方向D2に並べられている。 The outflow side evaporator 15 and the suction side evaporator 18 are arranged in such a direction that the plate member stacking direction D1 and the plate member longitudinal direction D2 coincide with each other. The outflow side evaporator 15 and the suction side evaporator 18 are arranged in the plate member longitudinal direction D2.
 エジェクタ14は、流出側蒸発器15および吸引側蒸発器18の板面と対向するように配置されている。エジェクタ14は、その軸方向が板状部材長手方向D2と平行に配置されている。 The ejector 14 is disposed so as to face the plate surfaces of the outflow side evaporator 15 and the suction side evaporator 18. As for the ejector 14, the axial direction is arrange | positioned in parallel with the plate-shaped member longitudinal direction D2.
 エジェクタ14は、ノズル部14aが吸引側蒸発器18側に、ディフューザ部14dが流出側蒸発器15側になるように配置されている。 The ejector 14 is arranged so that the nozzle portion 14a is on the suction side evaporator 18 side and the diffuser portion 14d is on the outflow side evaporator 15 side.
 エジェクタ14において、ノズル部14a、冷媒吸引口14bおよびディフューザ部14dの出口部は、吸引側蒸発器18および流出側蒸発器15側を向く位置に形成されている。 In the ejector 14, the nozzle part 14a, the refrigerant suction port 14b, and the outlet part of the diffuser part 14d are formed at positions facing the suction side evaporator 18 and the outflow side evaporator 15 side.
 以上の構成において蒸発器ユニット20全体の冷媒流路を図1および図3により具体的に説明する。 The refrigerant flow path of the entire evaporator unit 20 in the above configuration will be specifically described with reference to FIGS.
 冷媒入口20aから流量分配器16に流入した気液2相冷媒は、流量分配器16にて、エジェクタ14のノズル部14aに向かう冷媒と、絞り機構17に向かう冷媒とに分岐される。ノズル部14a側に分岐された気液2相冷媒は、エジェクタ14をノズル部14a→混合部14c→ディフューザ部14dの順番に通過して減圧され、減圧後の低圧冷媒は冷媒入口部15aから流出側蒸発器15に流入する。流出側蒸発器15の冷媒は冷媒出口部15bから流出する。 The gas-liquid two-phase refrigerant that has flowed into the flow distributor 16 from the refrigerant inlet 20 a is branched by the flow distributor 16 into a refrigerant that goes to the nozzle portion 14 a of the ejector 14 and a refrigerant that goes to the throttle mechanism 17. The gas-liquid two-phase refrigerant branched to the nozzle part 14a side passes through the ejector 14 in the order of the nozzle part 14a → the mixing part 14c → the diffuser part 14d and is decompressed, and the decompressed low-pressure refrigerant flows out from the refrigerant inlet part 15a. It flows into the side evaporator 15. The refrigerant in the outflow side evaporator 15 flows out from the refrigerant outlet portion 15b.
 流量分配器16にて絞り機構17側に分岐された気液2相冷媒は、絞り機構17を通過して減圧され、減圧後の低圧冷媒(具体的には気液2相冷媒)は冷媒入口部18aから吸引側蒸発器18に流入する。吸引側蒸発器18の冷媒は、冷媒出口部18bからエジェクタ14の冷媒吸引口14bに吸引される。 The gas-liquid two-phase refrigerant branched to the throttle mechanism 17 side by the flow distributor 16 passes through the throttle mechanism 17 and is decompressed, and the decompressed low-pressure refrigerant (specifically, the gas-liquid two-phase refrigerant) is the refrigerant inlet. It flows into the suction side evaporator 18 from the part 18a. The refrigerant in the suction-side evaporator 18 is sucked into the refrigerant suction port 14b of the ejector 14 from the refrigerant outlet portion 18b.
 次に、第1実施形態の作動を説明する。圧縮機11を車両エンジンにより駆動すると、圧縮機11で圧縮されて吐出された高温高圧状態の冷媒は放熱器12に流入する。放熱器12では高温の冷媒が冷却水により冷却されて凝縮する。放熱器12から流出した高圧冷媒は膨張弁13を通過する。 Next, the operation of the first embodiment will be described. When the compressor 11 is driven by the vehicle engine, the high-temperature and high-pressure refrigerant compressed and discharged by the compressor 11 flows into the radiator 12. In the radiator 12, the high-temperature refrigerant is cooled by the cooling water and condensed. The high-pressure refrigerant that has flowed out of the radiator 12 passes through the expansion valve 13.
 膨張弁13では、流出側蒸発器15の出口冷媒の過熱度が所定値となるように弁開度が調整され、高圧冷媒が減圧される。膨張弁13通過後の中間圧冷媒は、流量分配器16において、エジェクタ14のノズル部14aに流入する主流と、絞り機構17に流入する分岐流とに分流する。 In the expansion valve 13, the valve opening degree is adjusted so that the degree of superheat of the outlet refrigerant of the outlet-side evaporator 15 becomes a predetermined value, and the high-pressure refrigerant is depressurized. The intermediate-pressure refrigerant that has passed through the expansion valve 13 is divided into a main flow that flows into the nozzle portion 14 a of the ejector 14 and a branch flow that flows into the throttle mechanism 17 in the flow distributor 16.
 ノズル部14a側に分流された冷媒はノズル部14aで減圧され膨張する。したがって、ノズル部14aで冷媒の圧力エネルギーが速度エネルギーに変換され、ノズル部14aの噴出口から冷媒は高速度となって噴出する。高速度の噴射冷媒の流れによる冷媒圧力低下により、冷媒吸引口14bから吸引側蒸発器18通過後の分岐流れ冷媒(具体的には気相冷媒)を吸引する。 The refrigerant branched to the nozzle part 14a side is decompressed and expanded by the nozzle part 14a. Therefore, the pressure energy of the refrigerant is converted into velocity energy at the nozzle portion 14a, and the refrigerant is ejected at a high velocity from the outlet of the nozzle portion 14a. Due to the refrigerant pressure drop caused by the flow of the high-speed jet refrigerant, the branch flow refrigerant (specifically, the gas-phase refrigerant) after passing through the suction side evaporator 18 is sucked from the refrigerant suction port 14b.
 ノズル部14aから噴射された冷媒と冷媒吸引口14bに吸引された冷媒は、ノズル部14a下流側の混合部14cで混合してディフューザ部14dに流入する。ディフューザ部14dでは通路面積の拡大により、冷媒の速度エネルギー(換言すれば膨張エネルギー)が圧力エネルギーに変換されるため、冷媒の圧力が上昇する。 The refrigerant injected from the nozzle part 14a and the refrigerant sucked into the refrigerant suction port 14b are mixed in the mixing part 14c on the downstream side of the nozzle part 14a and flow into the diffuser part 14d. In the diffuser portion 14d, the refrigerant pressure increases because the velocity energy of the refrigerant (in other words, expansion energy) is converted into pressure energy due to the expansion of the passage area.
 そしてエジェクタ14のディフューザ部14dから流出した冷媒は流出側蒸発器15を流れる。この間に、流出側蒸発器15では低温の低圧冷媒が冷却水回路21の冷却水から吸熱して蒸発する。蒸発後の気相冷媒は1つの冷媒出口20bから圧縮機11に吸入され、再び圧縮される。 Then, the refrigerant flowing out from the diffuser portion 14d of the ejector 14 flows through the outflow side evaporator 15. During this time, in the outflow side evaporator 15, the low-temperature low-pressure refrigerant absorbs heat from the cooling water in the cooling water circuit 21 and evaporates. The vapor phase refrigerant after evaporation is sucked into the compressor 11 from one refrigerant outlet 20b and compressed again.
 一方、絞り機構17に分流された冷媒は絞り機構17で減圧されて低圧冷媒(具体的には気液2相冷媒)となり、低圧冷媒が吸引側蒸発器18を流れる。この間に吸引側蒸発器18では、低温の低圧冷媒が、流出側蒸発器15通過後の冷却水から吸熱して蒸発する。蒸発後の気相冷媒は冷媒吸引口14bからエジェクタ14内に吸引される。 On the other hand, the refrigerant divided into the throttle mechanism 17 is decompressed by the throttle mechanism 17 to become a low-pressure refrigerant (specifically, a gas-liquid two-phase refrigerant), and the low-pressure refrigerant flows through the suction-side evaporator 18. During this time, in the suction side evaporator 18, the low-temperature low-pressure refrigerant absorbs heat from the cooling water after passing through the outflow side evaporator 15 and evaporates. The vapor phase refrigerant after evaporation is sucked into the ejector 14 from the refrigerant suction port 14b.
 以上のごとく、エジェクタ14のディフューザ部14dの下流側冷媒を流出側蒸発器15に供給するととともに、分岐流れ冷媒を絞り機構17を通して吸引側蒸発器18にも供給できるので流出側蒸発器15および吸引側蒸発器18で同時に冷却作用を発揮できる。 As described above, the refrigerant on the downstream side of the diffuser portion 14d of the ejector 14 is supplied to the outflow side evaporator 15, and the branch flow refrigerant can be supplied also to the suction side evaporator 18 through the throttle mechanism 17. The side evaporator 18 can simultaneously exert a cooling effect.
 そのため、流出側蒸発器15および吸引側蒸発器18の両方で冷却された冷却水をクーラコア23に流入させることができる。クーラコア23に流入した冷却水は、冷却対象空間に吹き出される空気を冷却する。これにより、冷却対象空間を冷却(換言すれば冷房)できる。 Therefore, the cooling water cooled by both the outflow side evaporator 15 and the suction side evaporator 18 can flow into the cooler core 23. The cooling water that has flowed into the cooler core 23 cools the air blown into the space to be cooled. Thereby, the space to be cooled can be cooled (in other words, cooled).
 その際に、流出側蒸発器15の冷媒蒸発圧力はディフューザ部14dで昇圧した後の圧力であり、一方、吸引側蒸発器18の出口側はエジェクタ14の冷媒吸引口14bに接続されている。これにより、ノズル部14aでの減圧直後の最も低い圧力を吸引側蒸発器18に作用させることができる。 At that time, the refrigerant evaporating pressure of the outflow side evaporator 15 is a pressure after being increased by the diffuser portion 14 d, while the outlet side of the suction side evaporator 18 is connected to the refrigerant suction port 14 b of the ejector 14. As a result, the lowest pressure immediately after the pressure reduction at the nozzle portion 14 a can be applied to the suction side evaporator 18.
 これにより、流出側蒸発器15の冷媒蒸発圧力(換言すれば冷媒蒸発温度)よりも吸引側蒸発器18の冷媒蒸発圧力(換言すれば冷媒蒸発温度)を低くすることができる。そして、冷媒蒸発温度が高い流出側蒸発器15を冷却水流れ方向の上流側に配置し、冷媒蒸発温度が低い吸引側蒸発器18を冷却水流れ方向の下流側に配置している。これにより、流出側蒸発器15における冷媒蒸発温度と送風空気との温度差および吸引側蒸発器18における冷媒蒸発温度と送風空気との温度差を両方とも確保できる。 Thereby, the refrigerant evaporation pressure of the suction side evaporator 18 (in other words, the refrigerant evaporation temperature) can be made lower than the refrigerant evaporation pressure of the outflow side evaporator 15 (in other words, the refrigerant evaporation temperature). And the outflow side evaporator 15 with a high refrigerant | coolant evaporation temperature is arrange | positioned in the upstream of a cooling water flow direction, and the suction side evaporator 18 with a low refrigerant | coolant evaporation temperature is arrange | positioned in the downstream of a cooling water flow direction. Thereby, both the temperature difference between the refrigerant evaporation temperature and the blown air in the outflow side evaporator 15 and the temperature difference between the refrigerant evaporation temperature and the blown air in the suction side evaporator 18 can be secured.
 このため、流出側蒸発器15および吸引側蒸発器18の両方の冷却性能を有効に発揮できる。したがって、共通の冷却水に対する冷却性能を流出側蒸発器15および吸引側蒸発器18の組み合わせにて効果的に向上できる。また、ディフューザ部14dでの昇圧作用により圧縮機11の吸入圧を上昇して、圧縮機11の駆動動力を低減できる。 Therefore, the cooling performance of both the outflow side evaporator 15 and the suction side evaporator 18 can be effectively exhibited. Therefore, the cooling performance for the common cooling water can be effectively improved by the combination of the outflow side evaporator 15 and the suction side evaporator 18. Further, the suction pressure of the compressor 11 can be increased by the pressure increasing action in the diffuser portion 14d, and the driving power of the compressor 11 can be reduced.
 本実施形態によると、積層型熱交換器を用いた冷凍サイクル装置に対し、搭載性を大きく変更することなくエジェクタを搭載し、エジェクタによる昇圧効果を得ることができる。 According to the present embodiment, the refrigeration cycle apparatus using the stacked heat exchanger can be mounted with an ejector without greatly changing the mountability, and the boosting effect by the ejector can be obtained.
 本実施形態によると、流出側蒸発器15および吸引側蒸発器18が冷媒と冷却水とを熱交換させ、流出側蒸発器15および吸引側蒸発器18で熱交換された冷却水がクーラコア23で空気を冷却し、クーラコア23で冷却された空気が車室内へ吹き出される。 According to this embodiment, the outflow side evaporator 15 and the suction side evaporator 18 exchange heat between the refrigerant and the cooling water, and the cooling water heat-exchanged by the outflow side evaporator 15 and the suction side evaporator 18 is the cooler core 23. The air is cooled, and the air cooled by the cooler core 23 is blown out into the passenger compartment.
 すなわち、車室内へ吹き出される空気は、流出側蒸発器15および吸引側蒸発器18を流れる冷媒と、冷却水を介して熱交換される。 That is, the air blown into the passenger compartment is heat-exchanged with the refrigerant flowing through the outflow side evaporator 15 and the suction side evaporator 18 through the cooling water.
 したがって、車室内へ吹き出される空気の温度分布を抑制するために、エジェクタ14を流れる冷媒の流量を抑制する必要がない。 Therefore, it is not necessary to suppress the flow rate of the refrigerant flowing through the ejector 14 in order to suppress the temperature distribution of the air blown into the vehicle interior.
 そのため、エジェクタ14を流れる冷媒の流量を増加させて、エジェクタ14による昇圧効果のポテンシャルを十分に発揮することができる。 Therefore, the flow rate of the refrigerant flowing through the ejector 14 can be increased, and the potential of the boosting effect by the ejector 14 can be sufficiently exhibited.
 流出側蒸発器15と吸引側蒸発器18との熱交換能力比を、流出側蒸発器15と吸引側蒸発器18との冷媒流量比に合わせて最適化できる。 The heat exchange capacity ratio between the outflow side evaporator 15 and the suction side evaporator 18 can be optimized according to the refrigerant flow rate ratio between the outflow side evaporator 15 and the suction side evaporator 18.
 図4は、エジェクタ流量と、エジェクタ昇圧作用、吸引側蒸発器18の熱交換能力、および合成性能特性を、本実施形態と比較例とで比較したグラフである。 FIG. 4 is a graph comparing the ejector flow rate, the ejector pressurizing action, the heat exchange capability of the suction-side evaporator 18, and the composite performance characteristics in this embodiment and the comparative example.
 エジェクタ流量は、エジェクタ14のノズル部14aを流れる冷媒の流量である。エジェクタ昇圧作用は、エジェクタ流量が多くなるほど大きくなる。吸引側蒸発器18の熱交換能力は、エジェクタ流量が多くなるほど小さくなる。 The ejector flow rate is the flow rate of the refrigerant flowing through the nozzle portion 14a of the ejector 14. The ejector pressure increasing action increases as the ejector flow rate increases. The heat exchange capacity of the suction-side evaporator 18 decreases as the ejector flow rate increases.
 合成性能特性は、流出側蒸発器15の熱交換能力と、吸引側蒸発器18の熱交換能力との合計である。 The combined performance characteristic is the sum of the heat exchange capacity of the outflow side evaporator 15 and the heat exchange capacity of the suction side evaporator 18.
 比較例では、流出側蒸発器および吸引側蒸発器は、冷媒と空気とを熱交換させる熱交換器である。そのため、比較例では、流出側蒸発器および吸引側蒸発器で熱交換された空気に温度分布が生じやすいので、熱交換された空気の温度分布を抑制するために、エジェクタを流れる冷媒の流量を抑制する必要がある。その結果、合成性能のピークよりも低い領域で使用せざるを得ない。 In the comparative example, the outflow side evaporator and the suction side evaporator are heat exchangers that exchange heat between the refrigerant and the air. Therefore, in the comparative example, temperature distribution is likely to occur in the air heat-exchanged by the outflow-side evaporator and the suction-side evaporator. Therefore, in order to suppress the temperature distribution of the heat-exchanged air, the flow rate of the refrigerant flowing through the ejector is reduced. It is necessary to suppress it. As a result, it must be used in a region lower than the peak of the synthesis performance.
 この点、本実施形態では、流出側蒸発器15および吸引側蒸発器18が冷媒と冷却水とを熱交換させるので、熱交換された冷却水に温度分布が生じにくい。そのため、比較例では、エジェクタ14を流れる冷媒の流量を比較例と比較して多くすることができる。その結果、合成性能のピークに近い領域で使用することができる。 In this respect, in this embodiment, since the outflow side evaporator 15 and the suction side evaporator 18 exchange heat between the refrigerant and the cooling water, a temperature distribution is hardly generated in the heat exchanged cooling water. Therefore, in the comparative example, the flow rate of the refrigerant flowing through the ejector 14 can be increased as compared with the comparative example. As a result, it can be used in a region close to the peak of the synthesis performance.
 本実施形態では、エジェクタ14から流出した冷媒を流出側蒸発器15へ導くための冷媒流路を、冷媒配管を用いることなく、蒸発器ユニット20内に形成している。これにより、蒸発器ユニット20を小型化できるとともに、ディフューザ部14dにて昇圧した冷媒の圧力損失を抑制できる。その結果、エジェクタ14によるサイクル効率(いわゆるCOP)向上効果、すなわち圧縮機の消費動力を低減させることによるCOP向上効果を充分に得ることができる。 In the present embodiment, the refrigerant flow path for guiding the refrigerant flowing out from the ejector 14 to the outflow side evaporator 15 is formed in the evaporator unit 20 without using refrigerant piping. Thereby, the evaporator unit 20 can be reduced in size, and the pressure loss of the refrigerant boosted by the diffuser portion 14d can be suppressed. As a result, the cycle efficiency (so-called COP) improvement effect by the ejector 14, that is, the COP improvement effect by reducing the power consumption of the compressor can be sufficiently obtained.
 本実施形態によると、冷媒と冷却水とを熱交換させる流出側蒸発器15および吸引側蒸発器18にエジェクタ14を適用して、エジェクタ14によるCOP向上効果を得ることができる。 According to the present embodiment, the ejector 14 is applied to the outflow side evaporator 15 and the suction side evaporator 18 that exchange heat between the refrigerant and the cooling water, and the COP improvement effect by the ejector 14 can be obtained.
 すなわち、冷媒と空気とを熱交換させる場合、熱交換後の空気に温度分布が生じやすいが、本実施形態の流出側蒸発器15および吸引側蒸発器18は冷媒と冷却水とを熱交換させるので、熱交換後の空気に温度分布が生じにくい。 That is, when heat is exchanged between the refrigerant and the air, a temperature distribution tends to occur in the air after the heat exchange, but the outflow side evaporator 15 and the suction side evaporator 18 of this embodiment exchange heat between the refrigerant and the cooling water. Therefore, it is difficult for temperature distribution to occur in the air after heat exchange.
 そのため、エジェクタ14を流れる冷媒の流量を増加させて、エジェクタ14による昇圧効果のポテンシャルを十分に発揮することができるので、冷凍サイクル装置の一層の高効率化を図ることができる。 Therefore, since the flow rate of the refrigerant flowing through the ejector 14 can be increased and the potential of the pressurizing effect by the ejector 14 can be sufficiently exerted, the efficiency of the refrigeration cycle apparatus can be further increased.
 流出側蒸発器15および吸引側蒸発器18は、板状部材を積層することによって形成された積層型熱交換器であるので、板状部材の積層枚数を適宜設定することによって、流出側蒸発器15および吸引側蒸発器18の容積を適宜設定することができる。 Since the outflow-side evaporator 15 and the suction-side evaporator 18 are stacked heat exchangers formed by stacking plate-like members, the outflow-side evaporator can be set by appropriately setting the number of stacked plate-like members. 15 and the suction-side evaporator 18 can be appropriately set in volume.
 したがって、流出側蒸発器15と吸引側蒸発器18との熱交換能力比を、流出側蒸発器15と吸引側蒸発器18との冷媒流量比に合わせて最適化することが容易である。 Therefore, it is easy to optimize the heat exchange capacity ratio between the outflow side evaporator 15 and the suction side evaporator 18 according to the refrigerant flow rate ratio between the outflow side evaporator 15 and the suction side evaporator 18.
 本実施形態では、流量分配機16で分岐された一方の冷媒は絞り機構17で減圧される。絞り機構17で減圧された冷媒は吸引側熱交換器18に流入し、吸引側熱交換器18の冷媒はエジェクタ14の冷媒吸引口14bに吸引される。エジェクタ14のディフューザ部14dから流出した冷媒は流出側蒸発器15に流入する。流量分配機16で分岐された他方の冷媒はエジェクタ14のノズル部14aに流入する。 In the present embodiment, one refrigerant branched by the flow distributor 16 is decompressed by the throttle mechanism 17. The refrigerant decompressed by the throttle mechanism 17 flows into the suction side heat exchanger 18, and the refrigerant in the suction side heat exchanger 18 is sucked into the refrigerant suction port 14b of the ejector 14. The refrigerant that has flowed out of the diffuser portion 14 d of the ejector 14 flows into the outflow side evaporator 15. The other refrigerant branched by the flow distributor 16 flows into the nozzle portion 14 a of the ejector 14.
 これによると、共通の空気に対する冷却性能を吸引側熱交換器18および流出側蒸発器15の組み合わせにて効果的に向上できる。 According to this, the cooling performance for the common air can be effectively improved by the combination of the suction side heat exchanger 18 and the outflow side evaporator 15.
 本実施形態では、エジェクタ14は、板状部材151の板面と対向するように、板状部材151に固定されている。 In the present embodiment, the ejector 14 is fixed to the plate member 151 so as to face the plate surface of the plate member 151.
 これにより、エジェクタ14と流出側蒸発器15および吸引側蒸発器18との冷媒配管の接続を容易化できるとともに、蒸発器ユニット20の体格を小型化できる。 Thereby, the connection of the refrigerant piping between the ejector 14, the outflow side evaporator 15 and the suction side evaporator 18 can be facilitated, and the size of the evaporator unit 20 can be reduced in size.
 本実施形態では、吸引側熱交換器18の容積は、流出側熱交換器15の容積よりも小さくなっている。 In this embodiment, the volume of the suction side heat exchanger 18 is smaller than the volume of the outflow side heat exchanger 15.
 これにより、流出側蒸発器15と吸引側蒸発器18との熱交換能力比を、流出側蒸発器15と吸引側蒸発器18との冷媒流量比に合わせて最適化できる。 Thereby, the heat exchange capacity ratio between the outflow side evaporator 15 and the suction side evaporator 18 can be optimized in accordance with the refrigerant flow rate ratio between the outflow side evaporator 15 and the suction side evaporator 18.
 (第2実施形態)
 上記第1実施形態では、流出側蒸発器15および吸引側蒸発器18は、板状部材長手方向D2に並べられている。これに対し、本実施形態では、図5に示すように、流出側蒸発器15および吸引側蒸発器18は、エジェクタ14を挟んで反対側に配置されている。
(Second Embodiment)
In the first embodiment, the outflow side evaporator 15 and the suction side evaporator 18 are arranged in the plate member longitudinal direction D2. On the other hand, in this embodiment, as shown in FIG. 5, the outflow side evaporator 15 and the suction side evaporator 18 are arranged on the opposite side with the ejector 14 interposed therebetween.
 エジェクタ14において、ノズル部14aおよび冷媒吸引口14bは、吸引側蒸発器18側を向く位置に形成されており、ディフューザ部14dの出口部は、流出側蒸発器15側を向く位置に形成されている。 In the ejector 14, the nozzle portion 14a and the refrigerant suction port 14b are formed at a position facing the suction-side evaporator 18 side, and the outlet portion of the diffuser portion 14d is formed at a position facing the outflow-side evaporator 15 side. Yes.
 本実施形態においても、上記実施形態と同様の作用効果を奏することができる。 In this embodiment, the same effects as those in the above embodiment can be obtained.
 (第3実施形態)
 上記実施形態では、流出側蒸発器15および吸引側蒸発器18は、板状部材長手方向D2に並べられており、エジェクタ14は、流出側蒸発器15および吸引側蒸発器18の板面と対向するように配置されている。これに対し、本実施形態では、図6に示すように、流出側蒸発器15および吸引側蒸発器18は、板状部材積層方向D1に並べられており、エジェクタ14は、流出側蒸発器15および吸引側蒸発器18の板状部材の端面と対向するように配置されている。
(Third embodiment)
In the above embodiment, the outflow side evaporator 15 and the suction side evaporator 18 are arranged in the plate member longitudinal direction D2, and the ejector 14 faces the plate surfaces of the outflow side evaporator 15 and the suction side evaporator 18. Are arranged to be. On the other hand, in this embodiment, as shown in FIG. 6, the outflow side evaporator 15 and the suction side evaporator 18 are arranged in the plate-like member stacking direction D1, and the ejector 14 is connected to the outflow side evaporator 15. The suction-side evaporator 18 is disposed so as to face the end face of the plate-like member.
 エジェクタ14は、その軸方向が板状部材積層方向D1と平行に配置されている。エジェクタ14は、ノズル部14aが吸引側蒸発器18側に、ディフューザ部14dが流出側蒸発器15側になるように配置されている。 The axial direction of the ejector 14 is arranged in parallel with the plate-shaped member stacking direction D1. The ejector 14 is disposed such that the nozzle portion 14a is on the suction side evaporator 18 side and the diffuser portion 14d is on the outflow side evaporator 15 side.
 本実施形態のように、エジェクタ14は、ノズル部14aおよび昇圧部14dが、板状部材151の積層方向D1に延びるように、板状部材151に固定されていても、上記実施形態と同様の作用効果を奏することができる。 As in the present embodiment, the ejector 14 is similar to the above embodiment, even if the nozzle portion 14a and the pressure increasing portion 14d are fixed to the plate-like member 151 so as to extend in the stacking direction D1 of the plate-like member 151. An effect can be produced.
 (第4実施形態)
 上記実施形態では、エジェクタ式冷凍サイクル10は流出側蒸発器15および吸引側蒸発器18を備えている。これに対し、本実施形態では、図7に示すように、エジェクタ式冷凍サイクル10は流出側蒸発器15を備えず、吸引側蒸発器18を備えている。
(Fourth embodiment)
In the above embodiment, the ejector refrigeration cycle 10 includes the outflow side evaporator 15 and the suction side evaporator 18. On the other hand, in this embodiment, as shown in FIG. 7, the ejector refrigeration cycle 10 does not include the outflow side evaporator 15 but includes the suction side evaporator 18.
 エジェクタ14のノズル部14aの入口には膨張弁13が接続されている。エジェクタ14の出口部(換言すれば、ディフューザ部14dの先端部)にはアキュムレータ19が接続されている。 The expansion valve 13 is connected to the inlet of the nozzle portion 14a of the ejector 14. An accumulator 19 is connected to the outlet portion of the ejector 14 (in other words, the tip portion of the diffuser portion 14d).
 アキュムレータ19は、ディフューザ部14dから流出した冷媒の気液を分離する気液分離部である。さらに、アキュムレータ19は、分離された液相冷媒の一部をサイクル内の余剰冷媒として蓄える貯液部としての機能を兼ね備えている。 The accumulator 19 is a gas-liquid separation unit that separates the gas-liquid refrigerant flowing out of the diffuser unit 14d. Furthermore, the accumulator 19 also has a function as a liquid storage unit that stores a part of the separated liquid-phase refrigerant as surplus refrigerant in the cycle.
 アキュムレータ19の気相冷媒出口は、圧縮機11の吸入側に接続されている。アキュムレータ19の液相冷媒出口は、固定絞り19aを介して、吸引側蒸発器18の冷媒入口側に接続されている。固定絞り19aは、例えば、オリフィスやキャピラリーチューブ等である。 The gas phase refrigerant outlet of the accumulator 19 is connected to the suction side of the compressor 11. The liquid-phase refrigerant outlet of the accumulator 19 is connected to the refrigerant inlet side of the suction-side evaporator 18 via a fixed throttle 19a. The fixed throttle 19a is, for example, an orifice or a capillary tube.
 図8に示す第1実施例では、エジェクタ14およびアキュムレータ19は、吸引側蒸発器18の板面と対向するように配置されている。エジェクタ14は、その軸方向が板状部材長手方向D2と平行に配置されている。 In the first embodiment shown in FIG. 8, the ejector 14 and the accumulator 19 are arranged so as to face the plate surface of the suction side evaporator 18. As for the ejector 14, the axial direction is arrange | positioned in parallel with the plate-shaped member longitudinal direction D2.
 エジェクタ14において、冷媒吸引口14bは、流出側蒸発器15側を向く位置に形成されている。ディフューザ部14dの出口部は、エジェクタ14の延長上を向く位置に形成されている。 In the ejector 14, the refrigerant suction port 14b is formed at a position facing the outflow side evaporator 15 side. The exit part of the diffuser part 14d is formed at a position facing the extension of the ejector 14.
 アキュムレータ19は、ディフューザ部14dの出口部と対向するように配置されている。アキュムレータ19の液相冷媒出口は、流出側蒸発器15側を向く位置に形成されている。 The accumulator 19 is disposed so as to face the outlet portion of the diffuser portion 14d. The liquid phase refrigerant outlet of the accumulator 19 is formed at a position facing the outflow side evaporator 15 side.
 図9に示す第2実施例では、エジェクタ14は、吸引側蒸発器18の板面と対向するように配置されている。エジェクタ14は、その軸方向が板状部材長手方向D2と平行に配置されている。 In the second embodiment shown in FIG. 9, the ejector 14 is disposed so as to face the plate surface of the suction side evaporator 18. As for the ejector 14, the axial direction is arrange | positioned in parallel with the plate-shaped member longitudinal direction D2.
 エジェクタ14において、冷媒吸引口14bおよびディフューザ部14dの出口部は、流出側蒸発器15側を向く位置に形成されている。ディフューザ部14dの出口部は、エジェクタ14の延長上を向く位置に形成されている。 In the ejector 14, the refrigerant suction port 14b and the outlet part of the diffuser part 14d are formed at positions facing the outflow side evaporator 15 side. The exit part of the diffuser part 14d is formed at a position facing the extension of the ejector 14.
 アキュムレータ19は、吸引側蒸発器18の側方(図9では左方側)にて、ディフューザ部14dの出口部と対向するように配置されている。アキュムレータ19の液相冷媒出口は、流出側蒸発器15側を向く位置に形成されている。 The accumulator 19 is disposed on the side of the suction side evaporator 18 (on the left side in FIG. 9) so as to face the outlet portion of the diffuser portion 14d. The liquid phase refrigerant outlet of the accumulator 19 is formed at a position facing the outflow side evaporator 15 side.
 本実施形態では、放熱器12から流出した冷媒を膨張弁13で減圧させた後、エジェクタ14のノズル部14aに流入させる。エジェクタ14のディフューザ部14dで昇圧された冷媒の気液をアキュムレータ19で分離し、分離された気相の冷媒を圧縮機11に向けて流出させる。 In this embodiment, the refrigerant that has flowed out of the radiator 12 is decompressed by the expansion valve 13, and then flows into the nozzle portion 14a of the ejector 14. The refrigerant gas-liquid pressurized by the diffuser part 14 d of the ejector 14 is separated by the accumulator 19, and the separated gas-phase refrigerant is discharged toward the compressor 11.
 吸引側蒸発器18は、エジェクタ14のディフューザ部14dから冷媒が流入し、エジェクタ14の冷媒吸引口14bに冷媒が吸入される。 In the suction-side evaporator 18, the refrigerant flows from the diffuser portion 14d of the ejector 14, and the refrigerant is sucked into the refrigerant suction port 14b of the ejector 14.
 このような構成の冷凍サイクル装置においても、上記実施形態と同様に、一層の高効率化を図ることができる。 Even in the refrigeration cycle apparatus having such a configuration, the efficiency can be further improved as in the above embodiment.
 本実施形態では、エジェクタ14は、吸引側蒸発器18の板状部材の板面と対向するように、吸引側蒸発器18の板状部材に固定されている。 In the present embodiment, the ejector 14 is fixed to the plate-like member of the suction-side evaporator 18 so as to face the plate surface of the plate-like member of the suction-side evaporator 18.
 これにより、エジェクタ14と吸引側蒸発器18との冷媒配管の接続を容易化できるとともに、蒸発器ユニット20の体格を小型化できる。 Thereby, the connection of the refrigerant piping between the ejector 14 and the suction side evaporator 18 can be facilitated, and the size of the evaporator unit 20 can be reduced in size.
 本実施形態では、アキュムレータ19は、吸引側蒸発器18の板状部材の板面と対向するように、吸引側蒸発器18の板状部材に固定されている。 In this embodiment, the accumulator 19 is fixed to the plate-like member of the suction-side evaporator 18 so as to face the plate surface of the plate-like member of the suction-side evaporator 18.
 これにより、アキュムレータ19とエジェクタ14および吸引側蒸発器18との冷媒配管の接続を容易化できるとともに、蒸発器ユニット20の体格を小型化できる。 Thereby, the connection of the refrigerant piping between the accumulator 19, the ejector 14, and the suction side evaporator 18 can be facilitated, and the size of the evaporator unit 20 can be reduced in size.
 本実施形態では、アキュムレータ19は、吸引側蒸発器18の板状部材の積層方向D1に延びるように、吸引側蒸発器18の板状部材に固定されている。 In the present embodiment, the accumulator 19 is fixed to the plate-like member of the suction-side evaporator 18 so as to extend in the stacking direction D1 of the plate-like members of the suction-side evaporator 18.
 これにより、アキュムレータ19を大容量化しつつ、蒸発器ユニット20の体格を小型化できる。 This makes it possible to reduce the size of the evaporator unit 20 while increasing the capacity of the accumulator 19.
 (第5実施形態)
 上記第1~第3実施形態では、蒸発器ユニット20に、エジェクタ14、流出側蒸発器15、流量分配器16、絞り機構17および吸引側蒸発器18が一体的に組み付けられている。これに対し、本実施形態では、図10に示すように、蒸発器ユニット20に放熱器12も一体的に組み付けられている。
(Fifth embodiment)
In the first to third embodiments, the ejector 14, the outflow side evaporator 15, the flow distributor 16, the throttle mechanism 17, and the suction side evaporator 18 are integrally assembled with the evaporator unit 20. On the other hand, in this embodiment, as shown in FIG. 10, the radiator 12 is also integrally assembled with the evaporator unit 20.
 放熱器12は、流出側蒸発器15と熱伝導可能に接触している。これにより、放熱器12を流れる高圧冷媒と、流出側蒸発器15を流れる低圧冷媒とを熱交換させて、内部熱交換機能を発揮できる。 The heat radiator 12 is in contact with the outflow side evaporator 15 so as to be able to conduct heat. As a result, the high-pressure refrigerant flowing through the radiator 12 and the low-pressure refrigerant flowing through the outflow evaporator 15 can exchange heat, and an internal heat exchange function can be exhibited.
 (第6実施形態)
 図11に示す本実施形態のように、エジェクタ14は、流量調整機能を有するものであってもよい。
(Sixth embodiment)
Like this embodiment shown in FIG. 11, the ejector 14 may have a flow volume adjustment function.
 本実施形態のエジェクタ14は、ニードル弁14eおよび駆動機構部14fを有している。 The ejector 14 of the present embodiment includes a needle valve 14e and a drive mechanism portion 14f.
 ニードル弁14eは、ノズル部14aの内部に形成された冷媒通路内に配置されて、冷媒通路の通路断面積を変化させるノズル側弁体部である。ニードル弁14eは、針状(あるいは、円錐形状、円柱形状等を組み合わせた形状)の金属(本実施形態では、ステンレス)で形成されている。 The needle valve 14e is a nozzle-side valve body portion that is disposed in a refrigerant passage formed inside the nozzle portion 14a and changes the passage cross-sectional area of the refrigerant passage. The needle valve 14e is formed of a needle-like (or a shape combining a conical shape, a cylindrical shape, or the like) metal (stainless steel in the present embodiment).
 ニードル弁14eの中心軸は、ノズル部14aの中心軸、ディフューザ部14dの冷媒通路の中心軸等と同軸上に配置されている。そして、ニードル弁14eは、中心軸方向に変位することによって、ノズル部14aの通路断面積を変化させる。さらに、ニードル弁14eは、喉部に当接することによって、ノズル部14aを閉塞させることもできる。 The central axis of the needle valve 14e is arranged coaxially with the central axis of the nozzle portion 14a, the central axis of the refrigerant passage of the diffuser portion 14d, and the like. The needle valve 14e is displaced in the central axis direction to change the passage cross-sectional area of the nozzle portion 14a. Furthermore, the needle valve 14e can also close the nozzle part 14a by contacting the throat part.
 ニードル弁14eは、駆動機構部14fによって変位される。駆動機構部14fは、ステッピングモータを有する電動アクチュエータである。駆動機構部14fは、図示しない制御装置から出力される制御電圧(制御パルス)によって、その作動が制御される。 The needle valve 14e is displaced by the drive mechanism 14f. The drive mechanism unit 14f is an electric actuator having a stepping motor. The operation of the drive mechanism unit 14f is controlled by a control voltage (control pulse) output from a control device (not shown).
 本実施形態によると、エジェクタ14に膨張弁の機能も一体化できる。 According to this embodiment, the function of the expansion valve can be integrated with the ejector 14.
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。 The present disclosure is not limited to the above-described embodiment, and various modifications can be made as follows without departing from the spirit of the present disclosure.
 上記実施形態では、エジェクタ14は流出側蒸発器15および吸引側蒸発器18の外部に設けられているが、エジェクタ14は流出側蒸発器15および吸引側蒸発器18の内部(具体的には板状部材同士の間)に形成されていてもよい。 In the above embodiment, the ejector 14 is provided outside the outflow side evaporator 15 and the suction side evaporator 18, but the ejector 14 is disposed inside the outflow side evaporator 15 and the suction side evaporator 18 (specifically, the plate Between the two members).
 上述の実施形態において、蒸発器ユニット20はエジェクタ14、流出側蒸発器15および吸引側蒸発器18を一体化して構成されているが、蒸発器ユニット20に他のエジェクタ式冷凍サイクル構成部品を一体化してもよい。例えば、蒸発器ユニット20に膨張弁13を一体的に組みつけてもよい。 In the above-described embodiment, the evaporator unit 20 is configured by integrating the ejector 14, the outflow side evaporator 15, and the suction side evaporator 18, but other ejector refrigeration cycle components are integrated in the evaporator unit 20. May be used. For example, the expansion valve 13 may be integrally assembled with the evaporator unit 20.
 上述の実施形態では、蒸発器ユニット20の各部材を一体に組み付けるに際して各部材を一体ろう付けしているが、これらの部材の一体組み付けは、ろう付け以外に、ねじ止め、かしめ、溶接、接着等の種々な固定手段を用いて行うことができる。 In the above-described embodiment, each member of the evaporator unit 20 is integrally brazed when the members are integrally assembled. However, in addition to brazing, these members are integrally screwed, caulked, welded, and bonded. It can carry out using various fixing means, such as.
 上述の実施形態では、冷媒として高圧圧力が臨界圧力を超えないフロン系、炭化水素系等の冷媒を用いる蒸気圧縮式の亜臨界サイクルについて説明したが、冷媒として二酸化炭素のように高圧圧力が臨界圧力を超える冷媒を採用してもよい。 In the above-described embodiment, the vapor compression subcritical cycle using a refrigerant such as a chlorofluorocarbon-based hydrocarbon or a hydrocarbon-based refrigerant whose high pressure does not exceed the critical pressure has been described, but the high pressure pressure is critical as the refrigerant, such as carbon dioxide. A refrigerant exceeding the pressure may be used.
 上記の実施形態では、蒸発器ユニット20を室内側熱交換器として構成し、放熱器12を大気側へ放熱する室外熱交換器として構成している。これとは逆に、蒸発器ユニット20を大気等の熱源から吸熱する室外側熱交換器として構成し、放熱器12を空気あるいは水等の被加熱流体を加熱する室内側熱交換器として構成するヒートポンプサイクルに本開示を適用してもよい。 In the above embodiment, the evaporator unit 20 is configured as an indoor heat exchanger, and the radiator 12 is configured as an outdoor heat exchanger that radiates heat to the atmosphere side. On the contrary, the evaporator unit 20 is configured as an outdoor heat exchanger that absorbs heat from a heat source such as the atmosphere, and the radiator 12 is configured as an indoor heat exchanger that heats a fluid to be heated such as air or water. The present disclosure may be applied to a heat pump cycle.
 上述の各実施形態では、車両用の冷凍サイクルについて説明したが、車両用に限らず、定置用等の冷凍サイクルに対しても上記実施形態を同様に適用できることはもちろんである。 In each of the above-described embodiments, the refrigeration cycle for a vehicle has been described. However, the present embodiment is not limited to a vehicle and can be applied to a refrigeration cycle for stationary use as well.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (9)

  1.  冷媒を吸入して吐出する圧縮機(11)と、
     前記圧縮機から吐出された前記冷媒を放熱させる放熱器(12)と、
     前記放熱器から流出した前記冷媒を減圧させるノズル部(14a)と、前記ノズル部から噴射される前記冷媒の吸引作用によって前記冷媒を吸引する冷媒吸引口(14b)と、前記ノズル部から噴射された前記冷媒と前記冷媒吸引口から吸引された前記冷媒とを混合させて昇圧させる昇圧部(14d)とを有するエジェクタ(14)と、
     複数の板状部材(151)が積層して接合され、前記複数の板状部材同士の間に、前記冷媒が流れる冷媒流路と、液体が流れる液体流路とが形成されており、前記昇圧部で昇圧された前記冷媒が流入し、前記冷媒吸引口に前記冷媒が吸引される積層型熱交換器(15、18)とを備える冷凍サイクル装置。
    A compressor (11) for sucking and discharging refrigerant;
    A radiator (12) for radiating heat from the refrigerant discharged from the compressor;
    A nozzle part (14a) for depressurizing the refrigerant flowing out of the radiator, a refrigerant suction port (14b) for sucking the refrigerant by a suction action of the refrigerant jetted from the nozzle part, and jetted from the nozzle part. An ejector (14) having a pressure increasing unit (14d) for mixing and increasing the pressure of the refrigerant and the refrigerant sucked from the refrigerant suction port;
    A plurality of plate-like members (151) are laminated and joined, and a refrigerant channel through which the refrigerant flows and a liquid channel through which a liquid flows are formed between the plurality of plate-like members, and the pressure increase A refrigeration cycle apparatus comprising: a stacked heat exchanger (15, 18) in which the refrigerant whose pressure has been increased flows in and the refrigerant is sucked into the refrigerant suction port.
  2.  前記放熱器から流出した前記冷媒を減圧させる第1減圧部(13)と、
     前記第1減圧部で減圧された前記冷媒を分岐させる分岐部(16)と、
     前記分岐部で分岐された一方の前記冷媒を減圧させる第2減圧部(17)とを備え、
     前記積層型熱交換器は、前記第2減圧部で減圧された前記冷媒が流入し、前記冷媒吸引口に前記冷媒が吸引される吸引側熱交換器(18)と、前記昇圧部で昇圧された前記冷媒が流入し、前記圧縮機へ向けて前記冷媒が流出する流出側熱交換器(15)とを含み、
     前記分岐部で分岐された他方の前記冷媒は前記ノズル部に流入する請求項1に記載の冷凍サイクル装置。
    A first decompression section (13) for decompressing the refrigerant flowing out of the radiator;
    A branching section (16) for branching the refrigerant decompressed by the first decompression section;
    A second decompression section (17) for decompressing one of the refrigerants branched at the branch section,
    The stacked heat exchanger has the suction side heat exchanger (18) in which the refrigerant decompressed by the second decompression unit flows and the refrigerant is sucked into the refrigerant suction port, and the pressure is increased by the boosting unit. An outflow side heat exchanger (15) through which the refrigerant flows in and flows out toward the compressor,
    The refrigeration cycle apparatus according to claim 1, wherein the other refrigerant branched at the branch portion flows into the nozzle portion.
  3.  前記エジェクタは、前記板状部材の板面と対向するように、前記板状部材に固定されている請求項2に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 2, wherein the ejector is fixed to the plate member so as to face a plate surface of the plate member.
  4.  前記エジェクタは、前記ノズル部および前記昇圧部が、前記板状部材の積層方向(D1)に延びるように、前記板状部材に固定されている請求項2に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 2, wherein the ejector is fixed to the plate-like member such that the nozzle portion and the booster portion extend in a stacking direction (D1) of the plate-like member.
  5.  前記吸引側熱交換器の容積は、前記流出側熱交換器の容積よりも小さくなっている請求項2ないし4のいずれか1つに記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 2 to 4, wherein a volume of the suction side heat exchanger is smaller than a volume of the outflow side heat exchanger.
  6.  前記放熱器から流出した前記冷媒を減圧させる減圧部(13)と、
     前記昇圧部で昇圧された前記冷媒の気液を分離し、分離された気相の前記冷媒を前記圧縮機に向けて流出させる気液分離部(19)とを備え、
     前記ノズル部には、前記減圧部で減圧された前記冷媒が流入し、
     前記積層型熱交換器は、前記昇圧部から前記冷媒が流入し、前記冷媒吸引口に前記冷媒が吸入される請求項1に記載の冷凍サイクル装置。
    A decompression section (13) for decompressing the refrigerant flowing out of the radiator;
    A gas-liquid separation part (19) for separating the gas-liquid of the refrigerant whose pressure has been increased by the pressure-increasing part, and causing the separated gas-phase refrigerant to flow toward the compressor;
    The refrigerant that has been decompressed by the decompression unit flows into the nozzle part,
    2. The refrigeration cycle apparatus according to claim 1, wherein in the stacked heat exchanger, the refrigerant flows in from the pressure increasing unit, and the refrigerant is sucked into the refrigerant suction port.
  7.  前記エジェクタは、前記板状部材の板面と対向するように、前記板状部材に固定されている請求項6に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 6, wherein the ejector is fixed to the plate member so as to face a plate surface of the plate member.
  8.  前記気液分離部は、前記板状部材の板面と対向するように、前記板状部材に固定されている請求項7に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 7, wherein the gas-liquid separation unit is fixed to the plate member so as to face the plate surface of the plate member.
  9.  前記気液分離部は、前記板状部材の積層方向(D1)に延びるように、前記板状部材に固定されている請求項7に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 7, wherein the gas-liquid separation unit is fixed to the plate-like member so as to extend in a stacking direction (D1) of the plate-like member.
PCT/JP2019/019610 2018-05-31 2019-05-17 Refrigerant cycle device WO2019230435A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-105228 2018-05-31
JP2018105228A JP7135450B2 (en) 2018-05-31 2018-05-31 refrigeration cycle equipment

Publications (1)

Publication Number Publication Date
WO2019230435A1 true WO2019230435A1 (en) 2019-12-05

Family

ID=68696679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019610 WO2019230435A1 (en) 2018-05-31 2019-05-17 Refrigerant cycle device

Country Status (2)

Country Link
JP (1) JP7135450B2 (en)
WO (1) WO2019230435A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006292351A (en) * 2005-03-14 2006-10-26 Mitsubishi Electric Corp Refrigerating air conditioner
JP2007057222A (en) * 2005-04-05 2007-03-08 Denso Corp Ejector type refrigerating cycle unit
JP2009221883A (en) * 2008-03-13 2009-10-01 Denso Corp Ejector device and vapor compression refrigeration cycle using ejector device
US20110120182A1 (en) * 2008-01-18 2011-05-26 Roland Haussmann Plate Evaporator, In Particular For A Refrigerant Circuit
WO2014103436A1 (en) * 2012-12-27 2014-07-03 三菱電機株式会社 Refrigeration cycle device
WO2014162764A1 (en) * 2013-04-02 2014-10-09 三菱電機株式会社 Refrigeration cycle device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017219262A (en) * 2016-06-08 2017-12-14 株式会社デンソー Ejector type refrigeration cycle device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006292351A (en) * 2005-03-14 2006-10-26 Mitsubishi Electric Corp Refrigerating air conditioner
JP2007057222A (en) * 2005-04-05 2007-03-08 Denso Corp Ejector type refrigerating cycle unit
US20110120182A1 (en) * 2008-01-18 2011-05-26 Roland Haussmann Plate Evaporator, In Particular For A Refrigerant Circuit
JP2009221883A (en) * 2008-03-13 2009-10-01 Denso Corp Ejector device and vapor compression refrigeration cycle using ejector device
WO2014103436A1 (en) * 2012-12-27 2014-07-03 三菱電機株式会社 Refrigeration cycle device
WO2014162764A1 (en) * 2013-04-02 2014-10-09 三菱電機株式会社 Refrigeration cycle device

Also Published As

Publication number Publication date
JP7135450B2 (en) 2022-09-13
JP2019211117A (en) 2019-12-12

Similar Documents

Publication Publication Date Title
JP4779928B2 (en) Ejector refrigeration cycle
JP4622960B2 (en) Ejector refrigeration cycle
JP4254217B2 (en) Ejector cycle
JP4259478B2 (en) Evaporator structure and ejector cycle
US7428826B2 (en) Ejector cycle device
KR100879748B1 (en) Ejector type refrigerating cycle unit
JP5083346B2 (en) Ejector
JP5050563B2 (en) Ejector and ejector type refrigeration cycle unit
JP4661449B2 (en) Ejector refrigeration cycle
US7726150B2 (en) Ejector cycle device
JP4952730B2 (en) Ejector refrigeration cycle
JP2009097771A (en) Ejector type refrigerating cycle
JP4595717B2 (en) Vapor compression refrigeration cycle using ejector
JP2010133605A (en) Ejector type refrigerating cycle
JP2016145701A (en) Heat exchanger
JP2007040612A (en) Vapor compression type cycle
JP4930214B2 (en) Refrigeration cycle equipment
JP6720933B2 (en) Ejector type refrigeration cycle
JP2010266198A (en) Ejector type refrigerating cycle
WO2014103277A1 (en) Ejector
WO2016084339A1 (en) Evaporator unit
JP4725449B2 (en) Ejector refrigeration cycle
WO2019230435A1 (en) Refrigerant cycle device
JP2008261512A (en) Ejector type refrigerating cycle
JP2009138952A (en) Brine type cooling device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19812007

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19812007

Country of ref document: EP

Kind code of ref document: A1