WO2019230349A1 - Substrate processing method and substrate processing apparatus - Google Patents

Substrate processing method and substrate processing apparatus Download PDF

Info

Publication number
WO2019230349A1
WO2019230349A1 PCT/JP2019/018876 JP2019018876W WO2019230349A1 WO 2019230349 A1 WO2019230349 A1 WO 2019230349A1 JP 2019018876 W JP2019018876 W JP 2019018876W WO 2019230349 A1 WO2019230349 A1 WO 2019230349A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
sulfuric acid
liquid
liquid film
spm
Prior art date
Application number
PCT/JP2019/018876
Other languages
French (fr)
Japanese (ja)
Inventor
亨 遠藤
昌之 林
柴山 宣之
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Publication of WO2019230349A1 publication Critical patent/WO2019230349A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a substrate processing method and a substrate processing apparatus for processing a substrate.
  • substrates to be processed include semiconductor wafers, substrates for liquid crystal display devices, substrates for FPD (Flat Panel Display) such as organic EL (Electroluminescence) display devices, substrates for optical disks, substrates for magnetic disks, and magneto-optical disks.
  • FPD Full Panel Display
  • Substrates such as a substrate, a photomask substrate, a ceramic substrate, and a solar cell substrate are included.
  • Patent Document 1 discloses a substrate processing method in which an SPM solution, which is a mixed solution of sulfuric acid and hydrogen peroxide solution, is supplied to a substrate in order to remove the resist from the surface of the substrate.
  • SPM solution which is a mixed solution of sulfuric acid and hydrogen peroxide solution
  • hydrofluoric acid HF
  • SPM liquid is supplied to the surface of the substrate after rinsing the hydrofluoric acid on the substrate with a rinse liquid.
  • the surface of the substrate is hydrophobized by supplying hydrofluoric acid.
  • the SPM liquid is supplied to the hydrophobic surface of the substrate, the surface of the substrate is hydrophilized.
  • the hydrophobic surface of the substrate is hydrophilized by the SPM liquid, the surface of the substrate and the SPM liquid react violently to generate bubbles.
  • the surface of the substrate is exposed due to the generation of bubbles, and particles may be generated on the exposed substrate surface.
  • Such a problem is not limited to substrate processing for supplying hydrofluoric acid onto a substrate, but also occurs in substrate processing using a substrate having a previously hydrophobized surface.
  • an object of the present invention is to provide a substrate processing method and a substrate processing apparatus capable of suppressing the generation of particles when processing a substrate having a hydrophobic surface.
  • a substrate holding step of holding the substrate horizontally, and a rinse liquid is supplied to the hydrophobic upper surface of the substrate to form a rinse liquid film on the upper surface of the substrate.
  • a sulfuric acid-containing liquid film that forms a sulfuric acid-containing liquid film on the upper surface of the substrate by supplying sulfuric acid toward the upper surface of the substrate that holds the rinse liquid film;
  • Forming step and SPM liquid supply step of supplying an SPM liquid, which is a mixed liquid of sulfuric acid and hydrogen peroxide solution, toward the upper surface of the substrate toward the upper surface of the substrate holding the sulfuric acid-containing liquid film
  • sulfuric acid is supplied toward the upper surface of the substrate before the SPM liquid to form a sulfuric acid-containing liquid film.
  • sulfuric acid and SPM liquid are liquids that hydrophilize the upper surface of the substrate.
  • sulfuric acid has lower reactivity with respect to the hydrophobized upper surface than the SPM liquid. Therefore, after the hydrophilicity of the upper surface of the substrate has progressed to some extent with sulfuric acid having a relatively low reactivity (after the formation of a sulfuric acid-containing liquid film), the upper surface of the substrate is further hydrophilized with a relatively highly reactive SPM solution. Is done. That is, the upper surface of the substrate can be made hydrophilic stepwise.
  • the upper surface of the substrate and the SPM liquid can be caused to react gently compared to the case where the SPM liquid is supplied without supplying sulfuric acid to the upper surface of the substrate on which the rinse liquid film is formed. Therefore, the generation of bubbles due to the reaction between the upper surface of the substrate and the SPM liquid can be suppressed. As a result, generation of particles can be suppressed when a substrate having a hydrophobicized upper surface is processed.
  • the sulfuric acid-containing liquid film forming step includes a step of forming the sulfuric acid-containing liquid film by replacing the rinsing liquid in the rinsing liquid film with sulfuric acid. Therefore, exposure of the upper surface of the substrate can be suppressed between the formation of the rinse liquid film and the formation of the sulfuric acid-containing liquid film.
  • the substrate processing method includes a substrate rotation step of rotating the substrate around a rotation axis along a vertical direction, and a rotation deceleration step of reducing the rotation of the substrate in the rinse liquid film forming step. And further including.
  • the centrifugal force acting on the rinse liquid on the substrate can be reduced by the deceleration of the rotation of the substrate. Therefore, the thickness of the rinse liquid film can be increased.
  • the upper surface of the substrate is hardly exposed. Therefore, generation of particles due to exposure of the upper surface of the substrate can be suppressed.
  • the substrate processing method further includes a rotation acceleration step of accelerating the rotation of the substrate after the start of supply of sulfuric acid to the upper surface of the substrate. Therefore, a sufficiently thick rinse liquid film is maintained before the supply of sulfuric acid to the upper surface of the substrate is started. Therefore, it is possible to suppress the rinse liquid film from being shaken off from the upper surface of the substrate before the supply of sulfuric acid to the upper surface of the substrate is started. Therefore, exposure of the upper surface of the substrate can be suppressed.
  • the rotation acceleration step is started before the rinsing liquid on the substrate is replaced with sulfuric acid. Therefore, the centrifugal force acting on the sulfuric acid on the substrate can be increased. Therefore, it is possible to shorten the time until sulfuric acid spreads over the entire upper surface of the substrate.
  • the SPM liquid supply step is started in a state where the rinsing liquid on the substrate has been replaced with sulfuric acid. Therefore, the supply of the SPM liquid to the upper surface of the substrate is started in a state where the entire upper surface of the substrate is hydrophilized with sulfuric acid. Therefore, the generation of bubbles due to the reaction between the upper surface of the substrate and the SPM liquid can be suppressed over the entire upper surface of the substrate.
  • the sulfuric acid-containing liquid film forming step opens the sulfuric acid valve provided in a sulfuric acid supply pipe for supplying sulfuric acid to the nozzle facing the upper surface of the substrate, so that sulfuric acid is generated from the nozzle.
  • a discharged sulfuric acid discharge step In the SPM liquid supply process, the hydrogen peroxide provided in a hydrogen peroxide supply pipe for supplying hydrogen peroxide to the nozzle in a state where the sulfuric acid valve is opened by the execution of the sulfuric acid discharge process. It includes an SPM liquid discharge step in which the SPM liquid is discharged from the nozzle by opening a water valve.
  • switching from the sulfuric acid discharge process to the SPM liquid discharge process can be easily performed at a desired timing.
  • an increase in cost due to excessive supply of sulfuric acid to the upper surface of the substrate can be suppressed.
  • the substrate processing method further includes a hydrofluoric acid supply step of supplying hydrofluoric acid toward the upper surface of the substrate before the rinse liquid is supplied to the upper surface of the substrate. . Therefore, the upper surface of the substrate is reliably hydrophobized by hydrofluoric acid before the liquid film forming step is started.
  • the temperature of the sulfuric acid supplied to the upper surface of the substrate in the sulfuric acid-containing liquid film forming step is the temperature of the SPM liquid supplied to the upper surface of the substrate in the SPM liquid supply step. Lower than. Therefore, the reactivity between sulfuric acid and the upper surface of the substrate can be further reduced. Thereby, the difference of the reactivity of a sulfuric acid and the upper surface of a board
  • the sulfuric acid-containing liquid film forming step includes a central supply step of supplying sulfuric acid to a central region of the upper surface of the substrate. Therefore, sulfuric acid can be spread uniformly over the entire top surface of the substrate.
  • One embodiment of the present invention includes a substrate holding unit that horizontally holds a substrate, a rinse liquid supply unit that supplies a rinse liquid toward the upper surface of the substrate, and a sulfuric acid that supplies sulfuric acid toward the upper surface of the substrate.
  • a substrate processing apparatus including a controller for controlling a unit is provided.
  • a rinsing liquid film forming step in which the controller forms the rinsing liquid film on the upper surface of the substrate by supplying the rinsing liquid from the rinsing liquid supply unit toward the hydrophobicized upper surface of the substrate. And a sulfuric acid-containing liquid film that supplies sulfuric acid from the sulfuric acid supply unit toward the upper surface of the substrate holding the rinse liquid film to form a sulfuric acid-containing liquid film containing sulfuric acid on the upper surface of the substrate. It is programmed to execute a forming step and an SPM liquid supply step of supplying the SPM liquid from the SPM liquid supply unit toward the upper surface of the substrate holding the sulfuric acid-containing liquid film.
  • sulfuric acid is supplied toward the upper surface of the substrate prior to the SPM liquid to form a sulfuric acid-containing liquid film.
  • sulfuric acid and SPM liquid are liquids that hydrophilize the upper surface of the substrate.
  • sulfuric acid has lower reactivity with respect to the hydrophobized upper surface than the SPM liquid. Therefore, after the hydrophilicity of the upper surface of the substrate has progressed to some extent with sulfuric acid having a relatively low reactivity (after the formation of a sulfuric acid-containing liquid film), the upper surface of the substrate is further hydrophilized with a relatively highly reactive SPM solution. Is done. That is, the upper surface of the substrate can be made hydrophilic stepwise.
  • the upper surface of the substrate and the SPM liquid can be caused to react gently compared to the case where the SPM liquid is supplied without supplying sulfuric acid to the upper surface of the substrate on which the rinse liquid film is formed. Therefore, the generation of bubbles due to the reaction between the upper surface of the substrate and the SPM liquid can be suppressed. As a result, generation of particles can be suppressed when a substrate having a hydrophobicized upper surface is processed.
  • the controller is programmed to form the sulfuric acid-containing liquid film by replacing the rinsing liquid in the rinsing liquid film with sulfuric acid in the sulfuric acid-containing liquid film forming step. Yes. Therefore, exposure of the upper surface of the substrate can be suppressed between the formation of the rinse liquid film and the formation of the sulfuric acid-containing liquid film.
  • the substrate processing apparatus further includes a substrate rotation unit that rotates the substrate around a rotation axis along the vertical direction. Then, the controller executes a substrate rotation step for rotating the substrate on the substrate rotation unit, and a rotation reduction step for reducing the rotation of the substrate on the substrate rotation unit in the rinse liquid film forming step. It has been programmed.
  • the centrifugal force acting on the rinse liquid on the substrate can be reduced by the deceleration of the rotation of the substrate. Therefore, the thickness of the rinse liquid film can be increased.
  • the upper surface of the substrate is hardly exposed. Therefore, generation of particles due to exposure of the upper surface of the substrate can be suppressed.
  • the controller is programmed to execute a rotation acceleration step for causing the substrate rotation unit to accelerate rotation of the substrate after the start of supply of sulfuric acid to the upper surface of the substrate. ing.
  • the controller is programmed to start the rotation acceleration process before the rinsing liquid on the substrate is replaced with sulfuric acid. Therefore, the centrifugal force acting on the sulfuric acid on the substrate can be increased. Therefore, it is possible to shorten the time until sulfuric acid spreads over the entire upper surface of the substrate.
  • the controller is programmed to start the SPM-containing liquid film forming step in a state where the rinsing liquid on the substrate has been replaced with sulfuric acid. Therefore, the supply of the SPM liquid to the upper surface of the substrate is started in a state where the entire upper surface of the substrate is hydrophilized with sulfuric acid. Therefore, the generation of bubbles due to the reaction between the upper surface of the substrate and the SPM liquid can be suppressed over the entire upper surface of the substrate.
  • the sulfuric acid supply unit includes a nozzle that faces the upper surface of the substrate, a sulfuric acid supply pipe that supplies sulfuric acid to the nozzle, and a sulfuric acid valve that is interposed in the sulfuric acid supply pipe.
  • the SPM liquid supply unit includes the sulfuric acid supply unit, a hydrogen peroxide solution supply pipe for supplying hydrogen peroxide solution to the nozzle, and a hydrogen peroxide solution valve interposed in the hydrogen peroxide solution supply tube.
  • the controller executes a sulfuric acid discharge step of discharging sulfuric acid from the nozzle by opening the sulfuric acid valve in the sulfuric acid-containing liquid film forming step, and in the SPM-containing liquid film forming step, the sulfuric acid discharge It is programmed to execute the SPM liquid discharge process in which the SPM liquid is discharged from the nozzle by opening the hydrogen peroxide solution valve in a state where the sulfuric acid valve is opened by the execution of the process.
  • switching from the sulfuric acid discharge process to the SPM liquid discharge process can be easily performed at a desired timing.
  • an increase in cost due to excessive supply of sulfuric acid to the upper surface of the substrate can be suppressed.
  • the substrate processing apparatus further includes a hydrofluoric acid supply unit that supplies hydrofluoric acid toward the upper surface of the substrate.
  • the controller executes a hydrofluoric acid supply step of supplying hydrofluoric acid from the hydrofluoric acid supply unit toward the upper surface of the substrate before the rinsing liquid is supplied to the upper surface of the substrate. It has been programmed. Therefore, the upper surface of the substrate is reliably hydrophobized by hydrofluoric acid before the liquid film forming step is started.
  • the temperature of the sulfuric acid supplied to the upper surface of the substrate in the sulfuric acid supply step is lower than the temperature of the SPM liquid supplied to the upper surface of the substrate in the SPM liquid supply step. . Therefore, the reactivity between sulfuric acid and the upper surface of the substrate can be further reduced. Thereby, the difference of the reactivity of a sulfuric acid and the upper surface of a board
  • the controller is programmed to execute a central supply step of supplying sulfuric acid from the sulfuric acid supply unit toward a central region of the upper surface of the substrate in the sulfuric acid supply step. . Therefore, sulfuric acid can be spread uniformly over the entire top surface of the substrate.
  • FIG. 1 is a schematic plan view showing a layout of a substrate processing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic partial cross-sectional view showing a schematic configuration of a processing unit provided in the substrate processing apparatus.
  • FIG. 3 is a block diagram showing an electrical configuration of a main part of the substrate processing apparatus.
  • FIG. 4 is a flowchart for explaining an example of substrate processing by the processing unit.
  • FIG. 5A is a schematic diagram for explaining a state of the first rinsing liquid process (step S2) of the substrate process.
  • FIG. 5B is a schematic diagram for explaining the state of the first rinsing liquid treatment.
  • FIG. 5C is a schematic diagram for explaining the state of the sulfuric acid treatment (step S3) of the substrate treatment.
  • FIG. 5D is a schematic diagram for explaining the state of the sulfuric acid treatment.
  • FIG. 5E is a schematic diagram for explaining the state of the SPM liquid processing (step S4) of the substrate processing.
  • FIG. 6 is a graph showing the experimental results of measuring the number of particles generated on the upper surface of the substrate after the substrate processing is executed.
  • FIG. 7 is a schematic diagram for explaining the state of the sulfuric acid treatment in another example of the substrate treatment.
  • FIG. 8 is a schematic diagram for explaining a modification of the sulfuric acid supply unit and the SPM liquid supply unit provided in the processing unit.
  • FIG. 1 is a schematic plan view showing a layout of a substrate processing apparatus 1 according to an embodiment of the present invention.
  • the substrate processing apparatus 1 is a single wafer processing apparatus that processes substrates W such as silicon wafers one by one.
  • the substrate W is a disk-shaped substrate.
  • the substrate processing apparatus 1 includes a plurality of processing units 2 that process a substrate W with a processing liquid, a load port LP on which a carrier C that houses a plurality of substrates W processed by the processing unit 2 is placed, a load port A transfer robot IR and CR that transfer the substrate W between the LP and the processing unit 2 and a controller 3 that controls the substrate processing apparatus 1 are included.
  • the transfer robot IR transfers the substrate W between the carrier C and the transfer robot CR.
  • the transfer robot CR transfers the substrate W between the transfer robot IR and the processing unit 2.
  • the plurality of processing units 2 have the same configuration, for example. Examples of the processing liquid supplied to the substrate W in the processing unit 2 include hydrofluoric acid, rinsing liquid, sulfuric acid, and SPM liquid.
  • FIG. 2 is a schematic diagram for explaining a configuration example of the processing unit 2.
  • the processing unit 2 includes a spin chuck 5, a processing cup 8, a counter member 6, a hydrofluoric acid supply unit 9, a rinse liquid supply unit 10, an SC1 liquid supply unit 11, a sulfuric acid supply unit 12, and an SPM liquid supply. Unit 13 is included.
  • the spin chuck 5 rotates around the vertical rotation axis A1 passing through the central portion of the substrate W while holding the substrate W horizontally.
  • the spin chuck 5 includes a plurality of chuck pins 20, a spin base 21, a rotation shaft 22, and a spin motor 23.
  • the spin base 21 has a disc shape along the horizontal direction. On the upper surface of the spin base 21, a plurality of chuck pins 20 that grip the periphery of the substrate W are arranged at intervals in the circumferential direction of the spin base 21.
  • the spin base 21 and the plurality of chuck pins 20 are included in a substrate holding unit that holds the substrate W horizontally.
  • the substrate holding unit is also called a substrate holder.
  • the rotation shaft 22 extends in the vertical direction along the rotation axis A1.
  • the upper end portion of the rotating shaft 22 is coupled to the center of the lower surface of the spin base 21.
  • the spin motor 23 gives a rotational force to the rotary shaft 22.
  • the rotating shaft 22 is rotated by the spin motor 23, the spin base 21 is rotated.
  • the substrate W is rotated around the rotation axis A1.
  • the rotation shaft 22 and the spin motor 23 are included in a substrate rotation unit that rotates the substrate W around the rotation axis A1.
  • the facing member 6 faces the substrate W held by the spin chuck 5 from above.
  • the facing member 6 is formed in a disk shape having a diameter substantially the same as or larger than that of the substrate W.
  • the facing member 6 is disposed substantially horizontally above the spin chuck 5.
  • the facing member 6 has a facing surface 6 a that faces the upper surface of the substrate W.
  • a hollow shaft 60 is fixed to the surface of the facing member 6 opposite to the facing surface 6a.
  • a communication hole 6 b that penetrates the opposing member 6 vertically and communicates with the internal space 60 a of the hollow shaft 60 is formed in a portion of the opposing member 6 that overlaps the rotation axis A ⁇ b> 1 in plan view.
  • the facing member 6 blocks the atmosphere in the space between the facing surface 6a of the facing member 6 and the upper surface of the substrate W from the atmosphere outside the space. Therefore, the opposing member 6 is also called a blocking plate.
  • the processing unit 2 further includes a counter member lifting unit 61 that drives the lifting and lowering of the counter member 6.
  • the counter member lifting unit 61 can position the counter member 6 at an arbitrary position (height) from the lower position to the upper position.
  • the lower position is a position where the facing surface 6 a of the facing member 6 is closest to the substrate W in the movable range of the facing member 6.
  • the upper position is a position where the facing surface 6 a of the facing member 6 is farthest from the substrate W in the movable range of the facing member 6.
  • the facing member lifting / lowering unit 61 is also referred to as a facing member lifter (blocking plate lifter).
  • the counter member lifting / lowering unit 61 includes, for example, a ball screw mechanism (not shown) attached to a support member (not shown) that supports the hollow shaft 60, and an electric motor (not shown) that gives a driving force thereto. Including.
  • the processing cup 8 is accommodated in the chamber 4 (see FIG. 1).
  • the chamber 4 is formed with an entrance (not shown) for carrying the substrate W into the chamber 4 and carrying the substrate W out of the chamber 4.
  • the chamber 4 is provided with a shutter unit (not shown) that opens and closes the entrance / exit.
  • the hydrofluoric acid supply unit 9 is a unit that supplies hydrofluoric acid to the upper surface of the substrate W.
  • the hydrofluoric acid supply unit 9 includes a hydrofluoric acid nozzle 15, a hydrofluoric acid supply pipe 40, and a hydrofluoric acid valve 50.
  • the hydrofluoric acid supply pipe 40 is connected to the hydrofluoric acid nozzle 15.
  • the hydrofluoric acid supply pipe 40 guides (supplies) hydrofluoric acid (HF: hydrogen fluoride water) to the hydrofluoric acid nozzle 15.
  • the hydrofluoric acid valve 50 is interposed in the hydrofluoric acid supply pipe 40.
  • hydrofluoric acid valve 50 When the hydrofluoric acid valve 50 is opened, hydrofluoric acid is continuously discharged from the hydrofluoric acid nozzle 15 toward the central region on the upper surface of the substrate W.
  • the central region on the upper surface of the substrate W is a region including the center of rotation of the substrate W.
  • the hydrofluoric acid nozzle 15 is a fixed nozzle whose position in the chamber 4 is fixed.
  • the hydrofluoric acid nozzle 15 is a moving nozzle that can move in at least one of the horizontal direction and the vertical direction. May be.
  • the hydrofluoric acid nozzle 15 may be inserted into the internal space 60 a of the hollow shaft 60 and the communication hole 6 b of the facing member 6.
  • the rinse liquid supply unit 10 is a unit for supplying a rinse liquid to the upper surface of the substrate W.
  • the rinse liquid supply unit 10 includes a rinse liquid nozzle 16, a rinse liquid supply pipe 41, and a rinse liquid valve 51.
  • the rinse liquid supply pipe 41 is connected to the rinse liquid nozzle 16.
  • the rinse liquid supply pipe 41 guides (supply) the rinse liquid to the rinse liquid nozzle 16.
  • the rinse liquid valve 51 is interposed in the rinse liquid supply pipe 41. When the rinse liquid valve 51 is opened, the rinse liquid is continuously discharged from the rinse liquid nozzle 16 toward the central region on the upper surface of the substrate W.
  • the rinse liquid discharged from the rinse liquid nozzle 16 is DIW.
  • a liquid containing water can be used in addition to DIW.
  • the rinsing liquid for example, carbonated water, electrolytic ion water, hydrogen water, ozone water, ammonia water, and hydrochloric acid water having a diluted concentration (eg, about 10 ppm to 100 ppm) can be used in addition to DIW.
  • the rinse liquid nozzle 16 is inserted into the internal space 60 a of the hollow shaft 60 and the communication hole 6 b of the facing member 6, and faces the central region on the upper surface of the substrate W.
  • the rinsing liquid nozzle 16 is moved up and down by the facing member lifting / lowering unit 61 together with the facing member 6.
  • the rinsing liquid nozzle 16 may be a nozzle that is not inserted into the internal space 60 a of the hollow shaft 60 and the communication hole 6 b of the facing member 6.
  • the SC1 liquid supply unit 11 is a unit that supplies the SC1 liquid to the upper surface of the substrate W.
  • the SC1 liquid supply unit 11 includes an SC1 liquid nozzle 17, an SC1 liquid supply pipe 42, and an SC1 liquid valve 52.
  • the SC1 liquid supply pipe 42 is connected to the SC1 liquid nozzle 17.
  • the SC1 liquid supply pipe 42 guides (supply) SC1 liquid (ammonia-hydrogenoniaperoxide mixture) to the SC1 liquid nozzle 17.
  • the SC1 liquid valve 52 is interposed in the SC1 liquid supply pipe 42. When the SC1 liquid valve 52 is opened, the SC1 liquid is continuously discharged from the SC1 liquid nozzle 17.
  • the processing unit 2 further includes a first nozzle moving unit 30 that moves the SC1 liquid nozzle 17 in the horizontal direction and the vertical direction.
  • the SC1 liquid nozzle 17 is moved in the horizontal direction between the center position and the home position (retracted position) by the first nozzle moving unit 30.
  • the SC1 liquid nozzle 17 When the SC1 liquid nozzle 17 is located at the center position, the SC1 liquid nozzle 17 faces the center of rotation of the upper surface of the substrate W, and can discharge the SC1 liquid toward the central region of the upper surface of the substrate W.
  • the center of rotation of the upper surface of the substrate W is an intersection position with the rotation axis A1 on the upper surface of the substrate W.
  • the SC1 liquid nozzle 17 When the SC1 liquid nozzle 17 is located at the home position, the SC1 liquid nozzle 17 is not opposed to the upper surface of the substrate W, and is located outside the processing cup 8 in a plan view.
  • the SC1 liquid nozzle 17 can approach the upper surface of the substrate W or retreat upward from the upper surface of the substrate W by moving in the vertical direction.
  • the first nozzle moving unit 30 includes, for example, a rotating shaft (not shown) extending in the vertical direction, an arm (not shown) coupled to the rotating shaft and extending horizontally, and moving the rotating shaft up and down. And a rotating shaft drive unit (not shown).
  • the rotation shaft drive unit swings the arm by rotating the rotation shaft around a vertical rotation axis. Further, the rotating shaft drive unit moves the arm up and down by moving the rotating shaft up and down along the vertical direction.
  • the SC1 liquid nozzle 17 is fixed to the arm. The SC1 liquid nozzle 17 moves in the horizontal direction and the vertical direction in accordance with the swinging and raising / lowering of the arm.
  • the SC1 liquid nozzle 17 may be a fixed nozzle whose position in the chamber 4 (see FIG. 1) is fixed. Further, the SC1 liquid nozzle 17 may be a nozzle inserted through the internal space 60 a of the hollow shaft 60 and the communication hole 6 b of the facing member 6.
  • the sulfuric acid supply unit 12 is a unit that supplies sulfuric acid to the upper surface of the substrate W.
  • the sulfuric acid supply unit 12 includes a common nozzle 18, a sulfuric acid supply pipe 43 and a sulfuric acid valve 53.
  • the sulfuric acid supply pipe 43 is connected to the common nozzle 18.
  • the sulfuric acid supply pipe 43 guides (supplies) sulfuric acid (H 2 SO 4 ) to the common nozzle 18.
  • the sulfuric acid valve 53 is interposed in the sulfuric acid supply pipe 43. When the sulfuric acid valve 53 is opened, sulfuric acid is continuously discharged from the common nozzle 18.
  • the temperature of sulfuric acid discharged from the common nozzle 18 is, for example, 120 ° C. to 190 ° C.
  • the sulfuric acid discharged from the common nozzle 18 is, for example, a sulfuric acid aqueous solution, and may contain water as a component other than sulfuric acid.
  • the mass percent concentration of sulfuric acid in the sulfuric acid aqueous solution discharged from the common nozzle 18 is preferably 85% or more, and preferably 98% or less.
  • the SPM liquid supply unit 13 is a unit that supplies the SPM liquid to the upper surface of the substrate W.
  • the SPM liquid supply unit 13 includes a sulfuric acid supply unit 12, a hydrogen peroxide solution supply pipe 44, and a hydrogen peroxide solution valve 54.
  • the hydrogen peroxide solution supply pipe 44 is connected to the common nozzle 18 together with the sulfuric acid supply pipe 43.
  • the hydrogen peroxide solution supply pipe 44 guides (supply) the hydrogen peroxide solution (H 2 O 2 ) to the common nozzle 18.
  • the hydrogen peroxide solution valve 54 is interposed in the hydrogen peroxide solution supply pipe 44. When the hydrogen peroxide solution valve 54 is opened, hydrogen peroxide solution is continuously discharged from the common nozzle 18.
  • the sulfuric acid and the hydrogen peroxide solution are mixed in the common nozzle 18 and the SPM solution (sulfuric acid / hydrogen peroxide compound mixture).
  • the adjusted SPM liquid is continuously discharged from the common nozzle 18.
  • the temperature of the SPM liquid discharged from the common nozzle 18 is higher than the temperature of sulfuric acid discharged from the common nozzle 18, and is, for example, 160 ° C. to 220 ° C. Note that the flow rate of sulfuric acid discharged from the common nozzle 18 is more stable than the flow rate of SPM liquid discharged from the common nozzle 18.
  • the processing unit 2 further includes a second nozzle moving unit 31 that moves the common nozzle 18 in the horizontal direction and the vertical direction.
  • the common nozzle 18 is moved between the center position and the home position (retracted position) by the second nozzle moving unit 31.
  • the common nozzle 18 faces the rotation center of the upper surface of the substrate W, and can discharge sulfuric acid and SPM liquid toward the central region of the upper surface of the substrate W.
  • the common nozzle 18 When the common nozzle 18 is located at the home position, the common nozzle 18 does not face the upper surface of the substrate W and is located outside the processing cup 8 in a plan view.
  • the common nozzle 18 can approach the upper surface of the substrate W or retreat upward from the upper surface of the substrate W by moving in the vertical direction.
  • the second nozzle moving unit 31 has the same configuration as the first nozzle moving unit 30. That is, the second nozzle moving unit 31 includes, for example, a rotation shaft (not shown) along the vertical direction, an arm (not shown) coupled to the rotation shaft and the common nozzle 18 and extending horizontally, and rotation. A rotating shaft drive unit (not shown) for moving the shaft up and down and rotating.
  • the common nozzle 18 may be a fixed nozzle whose position in the chamber 4 (see FIG. 1) is fixed, or a communication hole between the internal space 60 a of the hollow shaft 60 and the facing member 6.
  • the nozzle inserted in 6b may be sufficient.
  • FIG. 3 is a block diagram showing the electrical configuration of the main part of the substrate processing apparatus 1.
  • the controller 3 includes a microcomputer and controls a control target provided in the substrate processing apparatus 1 according to a predetermined control program.
  • the controller 3 includes a processor (CPU) 3A and a memory 3B in which a control program is stored.
  • the controller 3 is configured to execute various controls for substrate processing when the processor 3A executes a control program.
  • the controller 3 includes the transfer robot IR, CR, the spin motor 23, the first nozzle moving unit 30, the second nozzle moving unit 31, the opposing member lifting / lowering unit 61, the hydrofluoric acid valve 50, the rinse liquid valve 51, and the SC1 liquid valve 52.
  • the sulfuric acid valve 53 and the hydrogen peroxide water valve 54 are programmed.
  • FIG. 4 is a flowchart for explaining an example of substrate processing by the substrate processing apparatus 1.
  • FIG. 4 mainly shows processing realized by the controller 3 executing a program.
  • the substrate processing executed by the substrate processing apparatus 1 is, for example, a resist stripping process for removing the resist formed on the upper surface of the substrate W.
  • hydrofluoric acid processing step S1
  • first rinsing liquid processing step S2
  • sulfuric acid processing step S3
  • SPM liquid processing step S4
  • second rinse liquid process step S5
  • SC1 liquid process step S6
  • third rinse liquid process step S7
  • drying process step S8
  • the substrate W is carried into the chamber 4.
  • the facing member 6 is located at the upper position, and the SC1 liquid nozzle 17 and the common nozzle 18 are located at the home position.
  • the unprocessed substrate W is carried into the processing unit 2 from the carrier C by the transfer robots IR and CR, and is transferred to the chuck pins 20.
  • the substrate W is horizontally held by the chuck pins 20 of the spin chuck 5 until it is carried out by the transfer robot CR (substrate holding step).
  • step S1 hydrofluoric acid processing
  • the spin motor 23 rotates the spin base 21.
  • the horizontally held substrate W is rotated (substrate rotation process).
  • the hydrofluoric acid valve 50 is opened.
  • hydrofluoric acid is supplied (discharged) from the hydrofluoric acid nozzle 15 toward the central region of the upper surface of the rotating substrate W (hydrofluoric acid supply step).
  • the rotation speed of the substrate W in the hydrofluoric acid supply process is, for example, 1200 rpm.
  • the hydrofluoric acid supplied to the upper surface of the substrate W spreads over the entire upper surface of the substrate W by centrifugal force.
  • the upper surface of the substrate W is hydrophobized by being treated with hydrofluoric acid.
  • step S2 the first rinsing liquid treatment
  • hydrofluoric acid on the substrate W is replaced with DIW (rinsing liquid), and a liquid film of DIW is formed on the substrate W.
  • DIW rinse liquid
  • first, hydrofluoric acid valve 50 is closed. And the opposing member raising / lowering unit 61 moves the opposing member 6 to the processing position between an upper position and a lower position. Then, the rinse liquid valve 51 is opened. Thereby, DIW is supplied (discharged) from the rinse liquid nozzle 16 toward the central region of the upper surface of the substrate W in the rotating state (first rinse liquid supply step). DIW supplied to the upper surface of the substrate W spreads over the entire upper surface of the substrate W by centrifugal force. As a result, the hydrofluoric acid on the upper surface of the substrate W is replaced by DIW.
  • the spin motor 23 decelerates the rotation of the substrate W step by step (first rotation deceleration step).
  • the rotation of the substrate W is maintained for a predetermined time after being decelerated from 1200 rpm to a predetermined rotation speed. Then, the deceleration of the rotation of the substrate W and the maintenance of the rotation speed are repeated a plurality of times. Then, the rotation of the substrate W is finally decelerated to 10 rpm and then maintained at 10 rpm for a predetermined time.
  • the rinse liquid valve 51 is closed when the rotation of the substrate W is sufficiently decelerated (for example, when the rotation speed reaches 10 rpm). Thereby, the supply of DIW from the rinse liquid nozzle 16 to the upper surface of the substrate W is stopped. Since the substrate W rotates at a sufficiently low speed, a DIW rinse liquid film 100 in a paddle state covering almost the entire upper surface of the substrate W is formed (held) on the upper surface of the substrate W (rinse liquid). Film formation step).
  • the liquid film in the paddle state is a relatively thick liquid film formed on the substrate W by reducing the centrifugal force acting on the liquid on the substrate W. And the opposing member raising / lowering unit 61 moves the opposing member 6 to an upper position.
  • step S3 sulfuric acid treatment (step S3) is performed in a state where the rinse liquid film 100 is formed on the upper surface of the substrate W.
  • 5C and 5D are schematic diagrams for explaining the state of the sulfuric acid treatment.
  • the second nozzle moving unit 31 moves the common nozzle 18 to the processing position (for example, the center position). Then, the sulfuric acid valve 53 is opened. Thus, sulfuric acid is supplied (discharged) from the common nozzle 18 toward the central region on the upper surface of the substrate W (a sulfuric acid supply process, a sulfuric acid discharge process, and a central supply process). The sulfuric acid supplied to the upper surface of the substrate W spreads on the upper surface of the substrate W while pushing out DIW located in the peripheral region of the upper surface of the substrate W by centrifugal force.
  • the sulfuric acid-containing liquid film 101 containing sulfuric acid is formed on the upper surface of the substrate W (sulfuric acid-containing liquid film forming step).
  • the peripheral region on the upper surface of the substrate W is a region including the peripheral portion on the upper surface of the substrate W and its peripheral portion.
  • the sulfuric acid-containing liquid film 101 is formed by replacing at least a part of the rinsing liquid in the rinsing liquid film 100 with sulfuric acid. That is, a liquid film in which a part of the rinsing liquid in the rinsing liquid film 100 on the upper surface of the substrate W is replaced with sulfuric acid is referred to as a sulfuric acid-containing liquid film 101 (the state shown in FIG. 5C). A liquid film in which all of the rinsing liquid in the inside is replaced with sulfuric acid is also referred to as a sulfuric acid-containing liquid film 101 (state of FIG. 5D). In order to uniformly treat the upper surface of the substrate W with sulfuric acid, the rinsing liquid in the rinsing liquid film 100 is preferably replaced with sulfuric acid.
  • the spin motor 23 rotates the substrate W after starting the supply of sulfuric acid to the upper surface of the substrate W and before the rinse liquid on the substrate W is replaced with sulfuric acid.
  • acceleration is performed to a predetermined rotational speed of 400 rpm or more and 1000 rpm or less (rotation acceleration step).
  • rotation acceleration step As a result, as shown in FIG. 5D, the sulfuric acid on the substrate W spreads over the entire upper surface of the substrate W by centrifugal force.
  • the upper surface of the substrate W is hydrophilized. Note that, unlike the substrate processing, the rotation of the substrate W may be accelerated after the sulfuric acid spreads over the entire upper surface of the substrate W.
  • the rotation acceleration step is performed for a predetermined period (for example, 1 second to 10 seconds) after the supply of sulfuric acid to the upper surface of the substrate W is started. It only has to start when you do.
  • the sulfuric acid-containing liquid film 101 is maintained without being split during the entire period during which sulfuric acid is supplied to the upper surface of the substrate W. Even after the rotation of the substrate W is accelerated by executing the rotation acceleration step, the sulfuric acid-containing liquid film 101 is not maintained in the paddle state, but the state in which the sulfuric acid-containing liquid film 101 covers the entire upper surface of the substrate W is maintained.
  • FIG. 5E is a schematic diagram for explaining the state of the SPM liquid treatment.
  • the hydrogen peroxide valve 54 is opened in a state where DIW on the substrate W has been replaced with sulfuric acid. As shown in FIG. 5E, since the hydrogen peroxide valve 54 is opened with the sulfuric acid valve 53 opened, the SPM liquid is supplied (discharged) from the common nozzle 18 toward the upper surface of the substrate W (SPM liquid). Supply process, SPM liquid discharge process).
  • the spin motor 23 maintains the rotation speed of the substrate W at the same rotation speed as that in the sulfuric acid supply process.
  • the spin motor 23 may reduce the rotation of the substrate W to, for example, 150 rpm after maintaining the rotation speed of the substrate W at the same rotation speed as in the sulfuric acid supply process (second rotation deceleration process). .
  • second rotation deceleration process By executing the second rotation deceleration step, the cooling of the SPM liquid on the substrate W due to the rotation of the substrate W can be suppressed.
  • the SPM liquid supplied to the upper surface of the substrate W spreads over the entire upper surface of the substrate W by centrifugal force. Thereby, as shown in FIG. 5E, the SPM-containing liquid film 102 containing the SPM liquid is formed on the upper surface of the substrate W (SPM-containing liquid film forming step).
  • the SPM-containing liquid film 102 is formed by replacing at least a part of the sulfuric acid in the sulfuric acid-containing liquid film 101 with the SPM liquid. That is, the liquid film in which a part of the sulfuric acid in the sulfuric acid-containing liquid film 101 on the upper surface of the substrate W is replaced with the SPM liquid is the SPM-containing liquid film 102, and the sulfuric acid in the sulfuric acid-containing liquid film 101 on the upper surface of the substrate W is The liquid film in which all is replaced with the SPM liquid is also the SPM-containing liquid film 102. In order to uniformly treat the upper surface of the substrate W with the SPM liquid, it is preferable to complete the replacement of the sulfuric acid in the sulfuric acid-containing liquid film 101 with the SPM liquid. By executing the SPM liquid treatment, the upper surface of the substrate W is made more hydrophilic.
  • step S5 the second rinse process (step S5) is performed after the SPM liquid process (step S4) for a predetermined time.
  • the sulfuric acid valve 53 and the hydrogen peroxide water valve 54 are closed.
  • the second nozzle moving unit 31 moves the common nozzle 18 to the home position.
  • the facing member lifting / lowering unit 61 moves the facing member 6 to the processing position.
  • the rinse liquid valve 51 is opened.
  • DIW is supplied (discharged) from the rinse liquid nozzle 16 toward the central region of the upper surface of the substrate W in the rotating state (second rinse liquid supply step).
  • DIW supplied to the upper surface of the substrate W spreads over the entire upper surface of the substrate W by centrifugal force. As a result, the SPM liquid on the upper surface of the substrate W is replaced by DIW.
  • step S6 After the second rinse liquid treatment (step S5) for a certain time, the SC1 liquid treatment (step S6) is executed.
  • the rinse liquid valve 51 is closed. And the opposing member raising / lowering unit 61 moves the opposing member 6 to an upper position. Then, the first nozzle moving unit 30 moves the SC1 liquid nozzle 17 to the processing position (for example, the center position). Then, the SC1 liquid valve 52 is opened. Thereby, the SC1 liquid is supplied (discharged) from the SC1 liquid nozzle 17 toward the central region of the upper surface of the substrate W in the rotating state (SC1 liquid supply step). The SC1 liquid supplied to the upper surface of the substrate W spreads over the entire upper surface of the substrate W by centrifugal force. The DIW on the upper surface of the substrate W is replaced with the SC1 liquid. Thereby, the upper surface of the substrate W is treated with the SC1 liquid.
  • step S7 After the SC1 liquid process (step S6) for a predetermined time, the third rinse process (step S7) is executed.
  • the SC1 liquid valve 52 is closed. Then, the first nozzle moving unit 30 moves the SC1 liquid nozzle 17 to the home position. Then, the facing member lifting / lowering unit 61 moves the facing member 6 to the processing position. Then, the rinse liquid valve 51 is opened. As a result, DIW is supplied (discharged) from the rinse liquid nozzle 16 toward the central region of the upper surface of the rotating substrate W (third rinse liquid supply step). DIW supplied to the upper surface of the substrate W spreads over the entire upper surface of the substrate W by centrifugal force. The SC1 liquid on the upper surface of the substrate W is replaced by DIW.
  • step S8 After the third rinsing process for a predetermined time (step S7), a drying process (step S8) for drying the upper surface of the substrate W is performed.
  • the rinse liquid valve 51 is closed.
  • the spin motor 23 rotates the substrate W at a high rotation speed (for example, 3000 rpm). Thereby, a large centrifugal force acts on the rinsing liquid on the substrate W, and the rinsing liquid on the substrate W is shaken off around the substrate W. In this way, the rinsing liquid is removed from the substrate W, and the substrate W is dried.
  • the spin motor 23 stops the rotation of the substrate W by the spin base 21.
  • hydrofluoric acid mixed with hydrogen fluoride and water was used to make the surface of the substrate hydrophobic. Further, in order to remove the resist, an SPM solution in which sulfuric acid and hydrogen peroxide solution were mixed was used. Further, in order to remove the resist, SC1 solution in which hydrogen peroxide water, ammonia water and water were mixed was used.
  • FIG. 6 is a graph showing experimental results obtained by measuring the number of particles after performing the above-described substrate processing. This experiment was performed by changing the time (paddle state maintaining time t) from the start of the supply of sulfuric acid to the upper surface of the substrate W to the acceleration of the rotation of the substrate W.
  • the horizontal axis in FIG. 6 is the paddle state maintenance time.
  • the number of particles was measured by, for example, a particle counter (not shown).
  • the rinsing liquid film 100 is formed on the hydrophobicized upper surface of the substrate W (liquid film forming step). Then, sulfuric acid is supplied toward the upper surface of the substrate W holding the rinse liquid film 100, and the sulfuric acid-containing liquid film 101 is formed on the upper surface of the substrate W (sulfuric acid-containing liquid film forming step). Then, the SPM liquid is supplied toward the upper surface of the substrate W holding the sulfuric acid-containing liquid film 101 (SPM liquid supply process).
  • sulfuric acid is supplied toward the upper surface of the substrate W prior to the SPM solution in a state where the rinse liquid film 100 is formed on the upper surface of the substrate W.
  • sulfuric acid and SPM liquid are liquids that hydrophilize the upper surface of the substrate W.
  • sulfuric acid has lower reactivity with respect to the hydrophobized upper surface than the SPM liquid. Therefore, after the hydrophilicity of the upper surface of the substrate W has progressed to some extent by sulfuric acid having a relatively low reactivity (after the sulfuric acid-containing liquid film forming step), the upper surface of the substrate W is further made hydrophilic by an SPM solution having a relatively high reactivity. It becomes. That is, the upper surface of the substrate W can be made hydrophilic stepwise.
  • the upper surface of the substrate W and the SPM liquid can be caused to react gently compared to the case where the SPM liquid is supplied without supplying sulfuric acid to the upper surface of the substrate W on which the rinse liquid film 100 is formed. Therefore, the generation of bubbles due to the reaction between the upper surface of the substrate W and the SPM liquid can be suppressed. As a result, generation of particles can be suppressed when processing the substrate W having a hydrophobicized upper surface.
  • the sulfuric acid-containing liquid film 101 is formed by replacing the rinsing liquid in the rinsing liquid film 100 with sulfuric acid in the sulfuric acid-containing liquid film forming step. Therefore, exposure of the upper surface of the substrate W can be suppressed between the formation of the rinse liquid film 100 and the formation of the sulfuric acid-containing liquid film 101.
  • the SPM-containing liquid film 102 is formed by replacing the sulfuric acid in the sulfuric acid-containing liquid film 101 with the SPM liquid in the SPM-containing liquid film forming step. Therefore, exposure of the upper surface of the substrate W can be suppressed during the period from when the sulfuric acid-containing liquid film 101 is formed to when the SPM-containing liquid film 102 is formed. Moreover, since the exposure of the upper surface of the substrate W can be avoided during the SPM-containing liquid film formation step from the start of the rinse liquid film formation step, the generation of particles due to the exposure of the upper surface of the substrate W can be further suppressed.
  • the rotation of the substrate W is decelerated (rotation decelerating step). Therefore, the centrifugal force acting on the rinse liquid on the substrate W can be reduced by the deceleration of the rotation of the substrate W. Therefore, the thickness of the rinse liquid film 100 can be increased. That is, the rinse liquid film 100 can be put into a paddle state. As the thickness of the rinse liquid film 100 is increased, the upper surface of the substrate W becomes difficult to be exposed. Therefore, generation of particles due to exposure of the upper surface of the substrate W can be suppressed.
  • the rotation acceleration step is started after the start of supply of sulfuric acid to the upper surface of the substrate W.
  • the rinse liquid film 100 having a sufficient thickness (paddle state) is maintained before the supply of sulfuric acid to the upper surface of the substrate W is started. Therefore, the rinse liquid film 100 can be prevented from being shaken off from the upper surface of the substrate W before the supply of sulfuric acid to the upper surface of the substrate W is started. Therefore, exposure of the upper surface of the substrate W can be suppressed.
  • the rotation acceleration process is started before the DIW (rinse solution) on the substrate W is replaced with sulfuric acid. Therefore, the centrifugal force acting on the sulfuric acid on the substrate W can be increased. Therefore, it is possible to shorten the time until sulfuric acid spreads over the entire upper surface of the substrate W.
  • the SPM liquid supply process in the SPM-containing liquid film forming process is started in a state where the rinsing liquid on the substrate W has been replaced with sulfuric acid. Therefore, the supply of the SPM liquid to the upper surface of the substrate W is started in a state where the entire upper surface of the substrate W is hydrophilized with sulfuric acid. Therefore, the generation of bubbles due to the reaction between the upper surface of the substrate W and the SPM liquid can be suppressed over the entire upper surface of the substrate W.
  • sulfuric acid is discharged from the common nozzle 18 by opening the sulfuric acid valve 53 in the sulfuric acid supply step in the sulfuric acid liquid film forming step (sulfuric acid discharging step). Then, the SPM liquid is discharged from the common nozzle 18 by opening the hydrogen peroxide water valve 54 in a state where the sulfuric acid valve 53 is opened by the execution of the sulfuric acid discharge process (SPM liquid discharge process).
  • the nozzle is moved when the sulfuric acid supply process shifts to the SPM liquid supply process, and the opening / closing timing is adjusted among a plurality of valves. It is necessary to do.
  • the configuration is such that sulfuric acid and SPM liquid are discharged from the common nozzle 18 as in this embodiment, it is possible to shift from the sulfuric acid supply process to the SPM liquid supply process simply by opening the hydrogen peroxide solution valve 54. it can.
  • switching from the sulfuric acid supply process to the SPM liquid supply process can be easily performed at a desired timing.
  • an increase in cost due to excessive supply of sulfuric acid to the upper surface of the substrate W can be suppressed.
  • hydrofluoric acid is supplied toward the upper surface of the substrate W (hydrofluoric acid supply step). Therefore, the upper surface of the substrate W is reliably hydrophobized by the hydrofluoric acid before the liquid film forming step is started.
  • the temperature of sulfuric acid supplied to the upper surface of the substrate W in the sulfuric acid-containing liquid film forming step is 120 ° C. to 190 ° C.
  • the SPM-containing liquid film forming step SPM liquid supplying step
  • the temperature of the SPM liquid supplied to the upper surface of the substrate W is 160 ° C. to 220 ° C.
  • the temperature of the sulfuric acid is preferably lower than the temperature of the SPM solution.
  • the difference between the reactivity between the sulfuric acid and the upper surface of the substrate W and the reactivity between the SPM liquid and the upper surface of the substrate W can be increased. Therefore, the upper surface of the substrate W can be made hydrophilic stepwise with certainty.
  • sulfuric acid is supplied to the central region on the upper surface of the substrate W (central supply step). Therefore, sulfuric acid can be spread uniformly over the entire top surface of the substrate W.
  • the flow rate of sulfuric acid discharged from the common nozzle 18 is stable as compared with the flow rate of SPM liquid discharged from the common nozzle 18. Therefore, sulfuric acid tends to spread uniformly over the entire top surface of the substrate W as compared with the SPM liquid. Therefore, by executing the sulfuric acid supply process before the SPM liquid supply process, the SPM liquid supply process can be started in a state where the entire upper surface of the substrate W is uniformly hydrophilicized.
  • the mass percent concentration of sulfuric acid in the sulfuric acid aqueous solution supplied from the sulfuric acid supply pipe 43 to the common nozzle 18 is 85% or more and 98% or less, a common SPM solution having a sufficiently high concentration of sulfuric acid is used. Adjustment can be made within the nozzle 18. Thereby, the resist on the substrate W can be satisfactorily peeled in the SPM liquid treatment (step S4).
  • the sulfuric acid supply step is performed with the common nozzle 18 positioned at the center position.
  • the second nozzle moving unit 31 may move the common nozzle 18 between the center position and the peripheral position (nozzle). Moving process).
  • the peripheral position is the position of the common nozzle 18 when the sulfuric acid or the SPM liquid supplied from the common nozzle 18 is deposited on the peripheral region R2 of the substrate W.
  • a supply position where the supply position P to which sulfuric acid is supplied on the upper surface of the substrate W is moved between the central region R1 on the upper surface of the substrate W and the peripheral region R2 on the upper surface of the substrate W by performing the nozzle moving step.
  • a moving process is performed.
  • step S3 in the sulfuric acid processing (step S3), when a period of 1 second or more and 10 seconds or less has elapsed after the supply of sulfuric acid to the upper surface of the substrate W is started (paddle state).
  • the rotation of the substrate W was accelerated so that the maintenance time was 1 second or longer and within 10 seconds. Thereby, the number of particles after the substrate processing was remarkably reduced.
  • the start of the supply of sulfuric acid to the upper surface of the substrate W and the acceleration of the rotation of the substrate W may be performed simultaneously. Further, the rotation of the substrate W may be accelerated immediately after the start of supply of sulfuric acid to the upper surface of the substrate W so that the paddle state maintaining time is longer than 0 seconds and shorter than 1 second. In that case, the hydrophilization by sulfuric acid does not progress more than the case where the paddle state maintenance time is 1 second or more and within 10 seconds, but the upper surface of the substrate W can be sufficiently hydrophilized.
  • a common pipe 70 is connected to the common nozzle 18 so that sulfuric acid and hydrogen peroxide water are mixed in the common pipe 70. It may be configured.
  • the sulfuric acid supply pipe 43 and the hydrogen peroxide solution supply pipe 44 are connected to the common pipe 70, and the connection pipe 71 connected to the common pipe 70 and the common nozzle 18 is provided. Is provided.
  • a common valve 72 is interposed in the connection pipe 71.
  • the common pipe 70, the connection pipe 71 and the common valve 72 are included in the sulfuric acid supply unit 12. That is, the common pipe 70, the connection pipe 71 and the common valve 72 are also included in the SPM liquid supply unit 13.
  • the common nozzle 18 is configured to discharge each of sulfuric acid and SPM liquid.
  • the nozzle which discharges sulfuric acid and the nozzle which discharges SPM liquid may be provided separately.
  • the upper surface of the substrate W is hydrophobized by the hydrofluoric acid treatment (step S1).
  • the processing unit 2 may be loaded with a substrate W whose upper surface is previously hydrophobized.
  • the processing unit 2 may perform the substrate processing in which the hydrofluoric acid processing is omitted.
  • DIW is used as the rinse liquid in the rinse liquid film forming step.
  • diluted sulfuric acid may be used instead of DIW.
  • the sulfuric acid may be supplied to the upper surface of the substrate W.
  • step S7 in the flowchart (FIG. 4) for explaining an example of the substrate processing by the substrate processing apparatus 1, after the rinsing liquid is supplied to the upper surface of the substrate W, IPA (isopropyl alcohol) is further added. ) May be supplied to the upper surface of the substrate W, and the rinse liquid may be replaced with IPA. Further, the water repellent may be supplied to the upper surface of the substrate W after the rinsing liquid is replaced with IPA.
  • IPA isopropyl alcohol
  • substrate processing apparatus 3 controller 9: hydrofluoric acid supply unit 10: rinsing liquid supply unit 12: sulfuric acid supply unit 13: SPM liquid supply unit 18: common nozzle (nozzle) 20: Chuck pin (substrate holding unit) 21: Spin base (substrate holding unit) 22: Rotating shaft (substrate rotating unit) 23: Spin motor (substrate rotation unit) 43: Sulfuric acid supply pipe 44: Hydrogen peroxide water supply pipe 53: Sulfuric acid valve 54: Hydrogen peroxide water valve 100: Rinse liquid film 101: Sulfuric acid-containing liquid film 102: SPM-containing liquid film A1: Rotation axis W: Substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

This substrate processing method comprises: a substrate holding step wherein a substrate is held horizontally; a rinsing liquid film formation step wherein a rinsing liquid is supplied to the upper surface of the substrate, said upper surface having been hydrophobilized, so as to form a rinsing liquid film on the upper surface of the substrate; a sulfuric acid-containing liquid film formation step wherein sulfuric acid is supplied to the upper surface of the substrate, which holds the rinsing liquid film, so as to form a sulfuric acid-containing liquid film that contains the sulfuric acid on the upper surface of the substrate; and an SPM liquid supply step wherein an SPM liquid that is a mixed liquid of sulfuric acid and a hydrogen peroxide solution is supplied to the upper surface of the substrate, which holds the sulfuric acid-containing liquid film.

Description

基板処理方法および基板処理装置Substrate processing method and substrate processing apparatus
 この発明は、基板を処理する基板処理方法および基板処理装置に関する。処理対象になる基板には、たとえば、半導体ウエハ、液晶表示装置用基板、有機EL(Electroluminescence)表示装置等のFPD(Flat Panel Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、セラミック基板、太陽電池用基板等の基板が含まれる。 The present invention relates to a substrate processing method and a substrate processing apparatus for processing a substrate. Examples of substrates to be processed include semiconductor wafers, substrates for liquid crystal display devices, substrates for FPD (Flat Panel Display) such as organic EL (Electroluminescence) display devices, substrates for optical disks, substrates for magnetic disks, and magneto-optical disks. Substrates such as a substrate, a photomask substrate, a ceramic substrate, and a solar cell substrate are included.
 下記特許文献1には、基板の表面からレジストを除去するために、硫酸と過酸化水素水との混合液であるSPM液が基板に供給される基板処理方法が開示されている。 The following Patent Document 1 discloses a substrate processing method in which an SPM solution, which is a mixed solution of sulfuric acid and hydrogen peroxide solution, is supplied to a substrate in order to remove the resist from the surface of the substrate.
米国特許出願公開第2015/114432号明細書US Patent Application Publication No. 2015/114432
 基板の表面にフッ酸(HF)を供給し、基板上のフッ酸をリンス液によって洗い流した後に基板の表面にSPM液を供給する場合がある。基板の表面は、フッ酸が供給されることによって、疎水化される。疎水化された基板の表面にSPM液を供給すると、基板の表面が親水化される。疎水化された基板の表面がSPM液によって親水化される際に、基板の表面とSPM液とが激しく反応して気泡が発生する。気泡の発生に起因して基板の表面が露出し、露出した基板表面にパーティクルが発生するおそれがある。 In some cases, hydrofluoric acid (HF) is supplied to the surface of the substrate, and the SPM liquid is supplied to the surface of the substrate after rinsing the hydrofluoric acid on the substrate with a rinse liquid. The surface of the substrate is hydrophobized by supplying hydrofluoric acid. When the SPM liquid is supplied to the hydrophobic surface of the substrate, the surface of the substrate is hydrophilized. When the hydrophobic surface of the substrate is hydrophilized by the SPM liquid, the surface of the substrate and the SPM liquid react violently to generate bubbles. The surface of the substrate is exposed due to the generation of bubbles, and particles may be generated on the exposed substrate surface.
 このような課題は、基板上にフッ酸を供給する基板処理に限られず、予め疎水化された表面を有する基板を用いる基板処理においても生じる。 Such a problem is not limited to substrate processing for supplying hydrofluoric acid onto a substrate, but also occurs in substrate processing using a substrate having a previously hydrophobized surface.
 そこで、この発明の目的は、疎水化された表面を有する基板を処理する際にパーティクルの発生を抑制することができる基板処理方法および基板処理装置を提供することである。 Accordingly, an object of the present invention is to provide a substrate processing method and a substrate processing apparatus capable of suppressing the generation of particles when processing a substrate having a hydrophobic surface.
 この発明の一実施形態は、基板を水平に保持する基板保持工程と、前記基板の疎水化された上面に向けてリンス液を供給して、前記基板の前記上面にリンス液膜を形成するリンス液膜形成工程と、前記リンス液膜を保持する前記基板の前記上面に向けて、硫酸を供給して、前記硫酸を含有する硫酸含有液膜を前記基板の前記上面に形成する硫酸含有液膜形成工程と、前記硫酸含有液膜を保持する前記基板の前記上面に向けて、硫酸と過酸化水素水との混合液であるSPM液を前記基板の前記上面に向けて供給するSPM液供給工程とを含む、基板処理方法を提供する。 In one embodiment of the present invention, a substrate holding step of holding the substrate horizontally, and a rinse liquid is supplied to the hydrophobic upper surface of the substrate to form a rinse liquid film on the upper surface of the substrate. A sulfuric acid-containing liquid film that forms a sulfuric acid-containing liquid film on the upper surface of the substrate by supplying sulfuric acid toward the upper surface of the substrate that holds the rinse liquid film; Forming step and SPM liquid supply step of supplying an SPM liquid, which is a mixed liquid of sulfuric acid and hydrogen peroxide solution, toward the upper surface of the substrate toward the upper surface of the substrate holding the sulfuric acid-containing liquid film A substrate processing method is provided.
 この方法によれば、基板の上面にリンス液膜が形成された状態で、SPM液よりも先に硫酸が基板の上面に向けて供給されて硫酸含有液膜が形成される。また、硫酸およびSPM液は基板の上面を親水化する液体であり、一般的に、硫酸は、疎水化された上面に対する反応性がSPM液よりも低い。そのため、反応性が比較的低い硫酸によって基板の上面の親水化がある程度進んだ後(硫酸含有液膜が形成された後)に、反応性が比較的高いSPM液によって基板の上面がさらに親水化される。つまり、基板の上面を段階的に親水化することができる。 According to this method, in a state where the rinse liquid film is formed on the upper surface of the substrate, sulfuric acid is supplied toward the upper surface of the substrate before the SPM liquid to form a sulfuric acid-containing liquid film. In addition, sulfuric acid and SPM liquid are liquids that hydrophilize the upper surface of the substrate. In general, sulfuric acid has lower reactivity with respect to the hydrophobized upper surface than the SPM liquid. Therefore, after the hydrophilicity of the upper surface of the substrate has progressed to some extent with sulfuric acid having a relatively low reactivity (after the formation of a sulfuric acid-containing liquid film), the upper surface of the substrate is further hydrophilized with a relatively highly reactive SPM solution. Is done. That is, the upper surface of the substrate can be made hydrophilic stepwise.
 そのため、リンス液膜が形成された基板の上面に硫酸を供給することなくSPM液を供給する場合と比較して、基板の上面とSPM液とを穏やかに反応させることができる。したがって、基板の上面とSPM液との反応に起因する気泡の発生を抑制することができる。その結果、疎水化された上面を有する基板を処理する際にパーティクルの発生を抑制することができる。 Therefore, the upper surface of the substrate and the SPM liquid can be caused to react gently compared to the case where the SPM liquid is supplied without supplying sulfuric acid to the upper surface of the substrate on which the rinse liquid film is formed. Therefore, the generation of bubbles due to the reaction between the upper surface of the substrate and the SPM liquid can be suppressed. As a result, generation of particles can be suppressed when a substrate having a hydrophobicized upper surface is processed.
 この発明の一実施形態では、前記硫酸含有液膜形成工程が、前記リンス液膜中のリンス液を硫酸で置換することによって、前記硫酸含有液膜を形成する工程を含む。そのため、リンス液膜が形成されてから硫酸含有液膜が形成されるまでの間において、基板の上面の露出を抑制できる。 In one embodiment of the present invention, the sulfuric acid-containing liquid film forming step includes a step of forming the sulfuric acid-containing liquid film by replacing the rinsing liquid in the rinsing liquid film with sulfuric acid. Therefore, exposure of the upper surface of the substrate can be suppressed between the formation of the rinse liquid film and the formation of the sulfuric acid-containing liquid film.
 この発明の一実施形態では、前記基板処理方法が、鉛直方向に沿う回転軸線のまわりに前記基板を回転させる基板回転工程と、前記リンス液膜形成工程において前記基板の回転を減速させる回転減速工程とをさらに含む。 In one embodiment of the present invention, the substrate processing method includes a substrate rotation step of rotating the substrate around a rotation axis along a vertical direction, and a rotation deceleration step of reducing the rotation of the substrate in the rinse liquid film forming step. And further including.
 この方法によれば、基板の回転の減速によって、基板上のリンス液に作用する遠心力を低減できる。そのため、リンス液膜の厚みを増大させることができる。リンス液膜の厚みが増大されることによって、基板の上面が露出しにくくなる。したがって、基板の上面の露出に起因するパーティクルの発生を抑制できる。 According to this method, the centrifugal force acting on the rinse liquid on the substrate can be reduced by the deceleration of the rotation of the substrate. Therefore, the thickness of the rinse liquid film can be increased. By increasing the thickness of the rinse liquid film, the upper surface of the substrate is hardly exposed. Therefore, generation of particles due to exposure of the upper surface of the substrate can be suppressed.
 この発明の一実施形態では、前記基板処理方法が、前記基板の前記上面への硫酸の供給の開始よりも後に前記基板の回転を加速させる回転加速工程をさらに含む。そのため、基板の上面への硫酸の供給開始前には、充分な厚みのリンス液膜が維持されている。そのため、基板の上面への硫酸の供給が開始される前にリンス液膜が基板の上面から振り切られることを抑制できる。したがって、基板の上面が露出することを抑制できる。 In one embodiment of the present invention, the substrate processing method further includes a rotation acceleration step of accelerating the rotation of the substrate after the start of supply of sulfuric acid to the upper surface of the substrate. Therefore, a sufficiently thick rinse liquid film is maintained before the supply of sulfuric acid to the upper surface of the substrate is started. Therefore, it is possible to suppress the rinse liquid film from being shaken off from the upper surface of the substrate before the supply of sulfuric acid to the upper surface of the substrate is started. Therefore, exposure of the upper surface of the substrate can be suppressed.
 この発明の一実施形態では、前記回転加速工程が、前記基板上の前記リンス液を硫酸で置換し終える前に開始される。そのため、基板上の硫酸に作用する遠心力を増大させることができる。したがって、硫酸が基板の上面の全体に広がるまでの時間を短縮することができる。 In one embodiment of the present invention, the rotation acceleration step is started before the rinsing liquid on the substrate is replaced with sulfuric acid. Therefore, the centrifugal force acting on the sulfuric acid on the substrate can be increased. Therefore, it is possible to shorten the time until sulfuric acid spreads over the entire upper surface of the substrate.
 この発明の一実施形態では、前記SPM液供給工程が、前記基板上の前記リンス液を硫酸に置換し終えた状態で開始される。そのため、基板の上面全体が硫酸によって親水化された状態で、基板の上面へのSPM液の供給が開始される。したがって、基板の上面とSPM液との反応による気泡の発生を基板の上面の全域において抑制することができる。 In one embodiment of the present invention, the SPM liquid supply step is started in a state where the rinsing liquid on the substrate has been replaced with sulfuric acid. Therefore, the supply of the SPM liquid to the upper surface of the substrate is started in a state where the entire upper surface of the substrate is hydrophilized with sulfuric acid. Therefore, the generation of bubbles due to the reaction between the upper surface of the substrate and the SPM liquid can be suppressed over the entire upper surface of the substrate.
 この発明の一実施形態では、前記硫酸含有液膜形成工程が、前記基板の前記上面に対向するノズルに硫酸を供給する硫酸供給管に介装された硫酸バルブを開くことによって前記ノズルから硫酸が吐出される硫酸吐出工程を含む。そして、前記SPM液供給工程が、前記硫酸吐出工程の実行によって前記硫酸バルブが開かれた状態で、前記ノズルに過酸化水素水を供給する過酸化水素水供給管に介装された過酸化水素水バルブを開くことによって、前記SPM液が前記ノズルから吐出されるSPM液吐出工程を含む。 In one embodiment of the present invention, the sulfuric acid-containing liquid film forming step opens the sulfuric acid valve provided in a sulfuric acid supply pipe for supplying sulfuric acid to the nozzle facing the upper surface of the substrate, so that sulfuric acid is generated from the nozzle. Including a discharged sulfuric acid discharge step; In the SPM liquid supply process, the hydrogen peroxide provided in a hydrogen peroxide supply pipe for supplying hydrogen peroxide to the nozzle in a state where the sulfuric acid valve is opened by the execution of the sulfuric acid discharge process. It includes an SPM liquid discharge step in which the SPM liquid is discharged from the nozzle by opening a water valve.
 硫酸とSPM液とを別々のノズルから吐出する構成では、硫酸吐出工程からSPM液吐出工程に移行する際にノズルを移動させたり、複数のバルブ間で開閉タイミングを調節したりする必要がある。硫酸とSPM液とが共通のノズルから吐出される構成であれば、過酸化水素水バルブを開くだけで硫酸吐出工程からSPM液吐出工程に移行することができる。 In a configuration in which sulfuric acid and SPM liquid are discharged from separate nozzles, it is necessary to move the nozzle when adjusting from the sulfuric acid discharge process to the SPM liquid discharge process, or to adjust the opening / closing timing among a plurality of valves. If the sulfuric acid and the SPM liquid are discharged from a common nozzle, the sulfuric acid discharge process can be shifted to the SPM liquid discharge process by simply opening the hydrogen peroxide solution valve.
 そのため、硫酸吐出工程からSPM液吐出工程への切替を、所望のタイミングで簡単に行うことができる。硫酸吐出工程からSPM液吐出工程への切替が所望のタイミングで行われることによって、基板の上面への硫酸の過剰な供給に起因するコストの増大を抑制することができる。さらに、基板の上面への硫酸の供給が不足することに起因して基板の上面の親水化が不充分となることを抑制することができる。 Therefore, switching from the sulfuric acid discharge process to the SPM liquid discharge process can be easily performed at a desired timing. By switching from the sulfuric acid discharge process to the SPM liquid discharge process at a desired timing, an increase in cost due to excessive supply of sulfuric acid to the upper surface of the substrate can be suppressed. Furthermore, it can be suppressed that the hydrophilicity of the upper surface of the substrate becomes insufficient due to insufficient supply of sulfuric acid to the upper surface of the substrate.
 この発明の一実施形態では、前記基板処理方法が、前記リンス液が前記基板の前記上面に供給される前に、前記基板の前記上面に向けてフッ酸を供給するフッ酸供給工程をさらに含む。そのため、液膜形成工程の開始前に、フッ酸によって基板の上面が確実に疎水化される。 In one embodiment of the present invention, the substrate processing method further includes a hydrofluoric acid supply step of supplying hydrofluoric acid toward the upper surface of the substrate before the rinse liquid is supplied to the upper surface of the substrate. . Therefore, the upper surface of the substrate is reliably hydrophobized by hydrofluoric acid before the liquid film forming step is started.
 この発明の一実施形態では、前記硫酸含有液膜形成工程において前記基板の前記上面に供給される硫酸の温度が、前記SPM液供給工程において前記基板の前記上面に供給される前記SPM液の温度よりも低い。そのため、硫酸と基板の上面との反応性を一層低減することができる。これにより、硫酸と基板の上面との反応性とSPM液と基板の上面との反応性との差を大きくすることができる。よって、基板の上面を確実に段階的に親水化することができる。 In one embodiment of the present invention, the temperature of the sulfuric acid supplied to the upper surface of the substrate in the sulfuric acid-containing liquid film forming step is the temperature of the SPM liquid supplied to the upper surface of the substrate in the SPM liquid supply step. Lower than. Therefore, the reactivity between sulfuric acid and the upper surface of the substrate can be further reduced. Thereby, the difference of the reactivity of a sulfuric acid and the upper surface of a board | substrate and the reactivity of a SPM liquid and the upper surface of a board | substrate can be enlarged. Therefore, the upper surface of the substrate can be surely made hydrophilic stepwise.
 この発明の一実施形態では、前記硫酸含有液膜形成工程が、前記基板の前記上面の中央領域に硫酸を供給する中央供給工程を含む。そのため、硫酸を基板の上面の全体に均一に広げることができる。 In one embodiment of the present invention, the sulfuric acid-containing liquid film forming step includes a central supply step of supplying sulfuric acid to a central region of the upper surface of the substrate. Therefore, sulfuric acid can be spread uniformly over the entire top surface of the substrate.
 この発明の一実施形態は、基板を水平に保持する基板保持ユニットと、リンス液を前記基板の上面に向けて供給するリンス液供給ユニットと、硫酸を前記基板の前記上面に向けて供給する硫酸供給ユニットと、硫酸と過酸化水素水との混合液であるSPM液を前記基板の前記上面に向けて供給するSPM液供給ユニットと、前記リンス液供給ユニット、前記硫酸供給ユニットおよび前記SPM液供給ユニットを制御するコントローラとを含む基板処理装置を提供する。 One embodiment of the present invention includes a substrate holding unit that horizontally holds a substrate, a rinse liquid supply unit that supplies a rinse liquid toward the upper surface of the substrate, and a sulfuric acid that supplies sulfuric acid toward the upper surface of the substrate. A supply unit; an SPM liquid supply unit that supplies an SPM liquid that is a mixed liquid of sulfuric acid and hydrogen peroxide solution toward the upper surface of the substrate; the rinse liquid supply unit; the sulfuric acid supply unit; and the SPM liquid supply. A substrate processing apparatus including a controller for controlling a unit is provided.
 そして、前記コントローラが、前記基板の疎水化された前記上面に向けて前記リンス液供給ユニットから前記リンス液を供給することによって、前記基板の前記上面にリンス液膜を形成するリンス液膜形成工程と、前記リンス液膜を保持する前記基板の前記上面に向けて、前記硫酸供給ユニットから硫酸を供給して、硫酸を含有する硫酸含有液膜を前記基板の前記上面に形成する硫酸含有液膜形成工程と、前記硫酸含有液膜を保持する前記基板の前記上面に向けて、前記SPM液供給ユニットから前記SPM液を供給するSPM液供給工程とを実行するようにプログラムされている。 A rinsing liquid film forming step in which the controller forms the rinsing liquid film on the upper surface of the substrate by supplying the rinsing liquid from the rinsing liquid supply unit toward the hydrophobicized upper surface of the substrate. And a sulfuric acid-containing liquid film that supplies sulfuric acid from the sulfuric acid supply unit toward the upper surface of the substrate holding the rinse liquid film to form a sulfuric acid-containing liquid film containing sulfuric acid on the upper surface of the substrate. It is programmed to execute a forming step and an SPM liquid supply step of supplying the SPM liquid from the SPM liquid supply unit toward the upper surface of the substrate holding the sulfuric acid-containing liquid film.
 この構成によれば、基板の上面にリンス液膜が形成された状態で、SPM液よりも先に硫酸が基板の上面に向けて供給されて硫酸含有液膜が形成される。また、硫酸およびSPM液は基板の上面を親水化する液体であり、一般的に、硫酸は、疎水化された上面に対する反応性がSPM液よりも低い。そのため、反応性が比較的低い硫酸によって基板の上面の親水化がある程度進んだ後(硫酸含有液膜が形成された後)に、反応性が比較的高いSPM液によって基板の上面がさらに親水化される。つまり、基板の上面を段階的に親水化することができる。 According to this configuration, in a state where the rinse liquid film is formed on the upper surface of the substrate, sulfuric acid is supplied toward the upper surface of the substrate prior to the SPM liquid to form a sulfuric acid-containing liquid film. In addition, sulfuric acid and SPM liquid are liquids that hydrophilize the upper surface of the substrate. In general, sulfuric acid has lower reactivity with respect to the hydrophobized upper surface than the SPM liquid. Therefore, after the hydrophilicity of the upper surface of the substrate has progressed to some extent with sulfuric acid having a relatively low reactivity (after the formation of a sulfuric acid-containing liquid film), the upper surface of the substrate is further hydrophilized with a relatively highly reactive SPM solution. Is done. That is, the upper surface of the substrate can be made hydrophilic stepwise.
 そのため、リンス液膜が形成された基板の上面に硫酸を供給することなくSPM液を供給する場合と比較して、基板の上面とSPM液とを穏やかに反応させることができる。したがって、基板の上面とSPM液との反応に起因する気泡の発生を抑制することができる。その結果、疎水化された上面を有する基板を処理する際にパーティクルの発生を抑制することができる。 Therefore, the upper surface of the substrate and the SPM liquid can be caused to react gently compared to the case where the SPM liquid is supplied without supplying sulfuric acid to the upper surface of the substrate on which the rinse liquid film is formed. Therefore, the generation of bubbles due to the reaction between the upper surface of the substrate and the SPM liquid can be suppressed. As a result, generation of particles can be suppressed when a substrate having a hydrophobicized upper surface is processed.
 この発明の一実施形態では、前記コントローラが、前記硫酸含有液膜形成工程において、前記リンス液膜中のリンス液を硫酸で置換することによって、前記硫酸含有液膜を形成するようにプログラムされている。そのため、リンス液膜が形成されてから硫酸含有液膜が形成されるまでの間において、基板の上面の露出を抑制できる。 In one embodiment of the present invention, the controller is programmed to form the sulfuric acid-containing liquid film by replacing the rinsing liquid in the rinsing liquid film with sulfuric acid in the sulfuric acid-containing liquid film forming step. Yes. Therefore, exposure of the upper surface of the substrate can be suppressed between the formation of the rinse liquid film and the formation of the sulfuric acid-containing liquid film.
 この発明の一実施形態では、前記基板処理装置が、鉛直方向に沿う回転軸線のまわりに前記基板を回転させる基板回転ユニットをさらに含む。そして、前記コントローラが、前記基板回転ユニットに、前記基板を回転させる基板回転工程と、前記リンス液膜形成工程において前記基板回転ユニットに前記基板の回転を減速させる回転減速工程とを実行するようにプログラムされている。 In one embodiment of the present invention, the substrate processing apparatus further includes a substrate rotation unit that rotates the substrate around a rotation axis along the vertical direction. Then, the controller executes a substrate rotation step for rotating the substrate on the substrate rotation unit, and a rotation reduction step for reducing the rotation of the substrate on the substrate rotation unit in the rinse liquid film forming step. It has been programmed.
 この構成によれば、基板の回転の減速によって、基板上のリンス液に作用する遠心力を低減できる。そのため、リンス液膜の厚みを増大させることができる。リンス液膜の厚みが増大されることによって、基板の上面が露出しにくくなる。したがって、基板の上面の露出に起因するパーティクルの発生を抑制できる。 According to this configuration, the centrifugal force acting on the rinse liquid on the substrate can be reduced by the deceleration of the rotation of the substrate. Therefore, the thickness of the rinse liquid film can be increased. By increasing the thickness of the rinse liquid film, the upper surface of the substrate is hardly exposed. Therefore, generation of particles due to exposure of the upper surface of the substrate can be suppressed.
 この発明の一実施形態では、前記コントローラが、前記基板の前記上面への硫酸の供給の開始よりも後に、前記基板回転ユニットに前記基板の回転を加速させる回転加速工程を実行するようにプログラムされている。 In one embodiment of the present invention, the controller is programmed to execute a rotation acceleration step for causing the substrate rotation unit to accelerate rotation of the substrate after the start of supply of sulfuric acid to the upper surface of the substrate. ing.
 そのため、基板の上面への硫酸の供給開始前には、充分な厚みのリンス液膜が維持されている。そのため、基板の上面への硫酸の供給が開始される前にリンス液膜が基板の上面から振り切られることを抑制できる。したがって、基板の上面が露出することを抑制できる。 Therefore, a sufficiently thick rinse liquid film is maintained before the supply of sulfuric acid to the upper surface of the substrate is started. Therefore, it is possible to suppress the rinse liquid film from being shaken off from the upper surface of the substrate before the supply of sulfuric acid to the upper surface of the substrate is started. Therefore, exposure of the upper surface of the substrate can be suppressed.
 この発明の一実施形態では、前記コントローラが、前記基板上の前記リンス液を硫酸で置換し終える前に前記回転加速工程を開始するようにプログラムされている。そのため、基板上の硫酸に作用する遠心力を増大させることができる。したがって、硫酸が基板の上面の全体に広がるまでの時間を短縮することができる。 In one embodiment of the present invention, the controller is programmed to start the rotation acceleration process before the rinsing liquid on the substrate is replaced with sulfuric acid. Therefore, the centrifugal force acting on the sulfuric acid on the substrate can be increased. Therefore, it is possible to shorten the time until sulfuric acid spreads over the entire upper surface of the substrate.
 この発明の一実施形態では、前記コントローラが、前記基板上の前記リンス液を硫酸に置換し終えた状態で前記SPM含有液膜形成工程を開始するようにプログラムされている。そのため、基板の上面全体が硫酸によって親水化された状態で、基板の上面へのSPM液の供給が開始される。したがって、基板の上面とSPM液との反応による気泡の発生を基板の上面の全域において抑制することができる。 In one embodiment of the present invention, the controller is programmed to start the SPM-containing liquid film forming step in a state where the rinsing liquid on the substrate has been replaced with sulfuric acid. Therefore, the supply of the SPM liquid to the upper surface of the substrate is started in a state where the entire upper surface of the substrate is hydrophilized with sulfuric acid. Therefore, the generation of bubbles due to the reaction between the upper surface of the substrate and the SPM liquid can be suppressed over the entire upper surface of the substrate.
 この発明の一実施形態では、前記硫酸供給ユニットが、前記基板の前記上面に対向するノズルと、前記ノズルに硫酸を供給する硫酸供給管と、前記硫酸供給管に介装された硫酸バルブとを含む。そして、前記SPM液供給ユニットが、前記硫酸供給ユニットと、前記ノズルに過酸化水素水を供給する過酸化水素水供給管と、前記過酸化水素水供給管に介装された過酸化水素水バルブとを含む。そして、前記コントローラが、前記硫酸含有液膜形成工程において、前記硫酸バルブを開くことによって前記ノズルから硫酸を吐出させる硫酸吐出工程を実行し、かつ、前記SPM含有液膜形成工程において、前記硫酸吐出工程の実行によって前記硫酸バルブが開かれた状態で前記過酸化水素水バルブを開くことによって、前記SPM液が前記ノズルから吐出されるSPM液吐出工程を実行するようにプログラムされている。 In one embodiment of the present invention, the sulfuric acid supply unit includes a nozzle that faces the upper surface of the substrate, a sulfuric acid supply pipe that supplies sulfuric acid to the nozzle, and a sulfuric acid valve that is interposed in the sulfuric acid supply pipe. Including. The SPM liquid supply unit includes the sulfuric acid supply unit, a hydrogen peroxide solution supply pipe for supplying hydrogen peroxide solution to the nozzle, and a hydrogen peroxide solution valve interposed in the hydrogen peroxide solution supply tube. Including. The controller executes a sulfuric acid discharge step of discharging sulfuric acid from the nozzle by opening the sulfuric acid valve in the sulfuric acid-containing liquid film forming step, and in the SPM-containing liquid film forming step, the sulfuric acid discharge It is programmed to execute the SPM liquid discharge process in which the SPM liquid is discharged from the nozzle by opening the hydrogen peroxide solution valve in a state where the sulfuric acid valve is opened by the execution of the process.
 硫酸とSPM液とを別々のノズルから吐出する構成では、硫酸吐出工程からSPM液吐出工程に移行する際にノズルを移動させたり、複数のバルブ間で開閉タイミングを調節したりする必要がある。硫酸とSPM液とが共通のノズルから吐出される構成であれば、過酸化水素水バルブを開くだけで硫酸吐出工程からSPM液吐出工程に移行することができる。 In a configuration in which sulfuric acid and SPM liquid are discharged from separate nozzles, it is necessary to move the nozzle when adjusting from the sulfuric acid discharge process to the SPM liquid discharge process, or to adjust the opening / closing timing among a plurality of valves. If the sulfuric acid and the SPM liquid are discharged from a common nozzle, the sulfuric acid discharge process can be shifted to the SPM liquid discharge process by simply opening the hydrogen peroxide solution valve.
 そのため、硫酸吐出工程からSPM液吐出工程への切替を、所望のタイミングで簡単に行うことができる。硫酸吐出工程からSPM液吐出工程への切替が所望のタイミングで行われることによって、基板の上面への硫酸の過剰な供給に起因するコストの増大を抑制することができる。さらに、基板の上面への硫酸の供給が不足することに起因して基板の上面の親水化が不充分となることを抑制することができる。 Therefore, switching from the sulfuric acid discharge process to the SPM liquid discharge process can be easily performed at a desired timing. By switching from the sulfuric acid discharge process to the SPM liquid discharge process at a desired timing, an increase in cost due to excessive supply of sulfuric acid to the upper surface of the substrate can be suppressed. Furthermore, it can be suppressed that the hydrophilicity of the upper surface of the substrate becomes insufficient due to insufficient supply of sulfuric acid to the upper surface of the substrate.
 この発明の一実施形態では、前記基板処理装置が、前記基板の前記上面に向けてフッ酸を供給するフッ酸供給ユニットをさらに含む。そして、前記コントローラが、前記リンス液が前記基板の前記上面に供給される前に、前記フッ酸供給ユニットから前記基板の前記上面に向けてフッ酸を供給するフッ酸供給工程を実行するようにプログラムされている。そのため、液膜形成工程の開始前に、フッ酸によって基板の上面が確実に疎水化される。 In one embodiment of the present invention, the substrate processing apparatus further includes a hydrofluoric acid supply unit that supplies hydrofluoric acid toward the upper surface of the substrate. Then, the controller executes a hydrofluoric acid supply step of supplying hydrofluoric acid from the hydrofluoric acid supply unit toward the upper surface of the substrate before the rinsing liquid is supplied to the upper surface of the substrate. It has been programmed. Therefore, the upper surface of the substrate is reliably hydrophobized by hydrofluoric acid before the liquid film forming step is started.
 この発明の一実施形態では、前記硫酸供給工程において前記基板の前記上面に供給される硫酸の温度が、前記SPM液供給工程において前記基板の前記上面に供給される前記SPM液の温度よりも低い。そのため、硫酸と基板の上面との反応性を一層低減することができる。これにより、硫酸と基板の上面との反応性とSPM液と基板の上面との反応性との差を大きくすることができる。よって、基板の上面を確実に段階的に親水化することができる。 In one embodiment of the present invention, the temperature of the sulfuric acid supplied to the upper surface of the substrate in the sulfuric acid supply step is lower than the temperature of the SPM liquid supplied to the upper surface of the substrate in the SPM liquid supply step. . Therefore, the reactivity between sulfuric acid and the upper surface of the substrate can be further reduced. Thereby, the difference of the reactivity of a sulfuric acid and the upper surface of a board | substrate and the reactivity of a SPM liquid and the upper surface of a board | substrate can be enlarged. Therefore, the upper surface of the substrate can be surely made hydrophilic stepwise.
 この発明の一実施形態では、前記コントローラが、前記硫酸供給工程において、前記硫酸供給ユニットから前記基板の前記上面の中央領域に向けて硫酸を供給する中央供給工程を実行するようにプログラムされている。そのため、硫酸を基板の上面の全体に均一に広げることができる。 In one embodiment of the present invention, the controller is programmed to execute a central supply step of supplying sulfuric acid from the sulfuric acid supply unit toward a central region of the upper surface of the substrate in the sulfuric acid supply step. . Therefore, sulfuric acid can be spread uniformly over the entire top surface of the substrate.
 本発明における上述の、またはさらに他の目的、特徴および効果は、添付図面を参照して次に述べる実施形態の説明により明らかにされる。 The above-described or other objects, features, and effects of the present invention will be clarified by the following description of embodiments with reference to the accompanying drawings.
図1は、この発明の一実施形態にかかる基板処理装置のレイアウトを示す模式的な平面図である。FIG. 1 is a schematic plan view showing a layout of a substrate processing apparatus according to an embodiment of the present invention. 図2は、前記基板処理装置に備えられる処理ユニットの概略構成を示す模式的な部分断面図である。FIG. 2 is a schematic partial cross-sectional view showing a schematic configuration of a processing unit provided in the substrate processing apparatus. 図3は、前記基板処理装置の主要部の電気的構成を示すブロック図である。FIG. 3 is a block diagram showing an electrical configuration of a main part of the substrate processing apparatus. 図4は、前記処理ユニットによる基板処理の一例を説明するための流れ図である。FIG. 4 is a flowchart for explaining an example of substrate processing by the processing unit. 図5Aは、前記基板処理の第1リンス液処理(ステップS2)の様子を説明するための模式図である。FIG. 5A is a schematic diagram for explaining a state of the first rinsing liquid process (step S2) of the substrate process. 図5Bは、前記第1リンス液処理の様子を説明するための模式図である。FIG. 5B is a schematic diagram for explaining the state of the first rinsing liquid treatment. 図5Cは、前記基板処理の硫酸処理(ステップS3)の様子を説明するための模式図である。FIG. 5C is a schematic diagram for explaining the state of the sulfuric acid treatment (step S3) of the substrate treatment. 図5Dは、前記硫酸処理の様子を説明するための模式図である。FIG. 5D is a schematic diagram for explaining the state of the sulfuric acid treatment. 図5Eは、前記基板処理のSPM液処理(ステップS4)の様子を説明するための模式図である。FIG. 5E is a schematic diagram for explaining the state of the SPM liquid processing (step S4) of the substrate processing. 図6は、前記基板処理を実行した後に基板の上面に発生するパーティクル数の測定した実験結果を示すグラフである。FIG. 6 is a graph showing the experimental results of measuring the number of particles generated on the upper surface of the substrate after the substrate processing is executed. 図7は、基板処理の別の例における前記硫酸処理の様子を説明するための模式図である。FIG. 7 is a schematic diagram for explaining the state of the sulfuric acid treatment in another example of the substrate treatment. 図8は、前記処理ユニットに備えられた硫酸供給ユニットおよびSPM液供給ユニットの変形例を説明するための模式図である。FIG. 8 is a schematic diagram for explaining a modification of the sulfuric acid supply unit and the SPM liquid supply unit provided in the processing unit.
 図1は、この発明の一実施形態にかかる基板処理装置1のレイアウトを示す模式的な平面図である。 FIG. 1 is a schematic plan view showing a layout of a substrate processing apparatus 1 according to an embodiment of the present invention.
 基板処理装置1は、シリコンウエハなどの基板Wを一枚ずつ処理する枚葉式の装置である。この実施形態では、基板Wは、円板状の基板である。 The substrate processing apparatus 1 is a single wafer processing apparatus that processes substrates W such as silicon wafers one by one. In this embodiment, the substrate W is a disk-shaped substrate.
 基板処理装置1は、基板Wを処理液で処理する複数の処理ユニット2と、処理ユニット2で処理される複数枚の基板Wを収容するキャリヤCが載置されるロードポートLPと、ロードポートLPと処理ユニット2との間で基板Wを搬送する搬送ロボットIRおよびCRと、基板処理装置1を制御するコントローラ3とを含む。 The substrate processing apparatus 1 includes a plurality of processing units 2 that process a substrate W with a processing liquid, a load port LP on which a carrier C that houses a plurality of substrates W processed by the processing unit 2 is placed, a load port A transfer robot IR and CR that transfer the substrate W between the LP and the processing unit 2 and a controller 3 that controls the substrate processing apparatus 1 are included.
 搬送ロボットIRは、キャリヤCと搬送ロボットCRとの間で基板Wを搬送する。搬送ロボットCRは、搬送ロボットIRと処理ユニット2との間で基板Wを搬送する。複数の処理ユニット2は、たとえば、同様の構成を有している。処理ユニット2内で基板Wに供給される処理液には、フッ酸、リンス液、硫酸、SPM液等が挙げられる。 The transfer robot IR transfers the substrate W between the carrier C and the transfer robot CR. The transfer robot CR transfers the substrate W between the transfer robot IR and the processing unit 2. The plurality of processing units 2 have the same configuration, for example. Examples of the processing liquid supplied to the substrate W in the processing unit 2 include hydrofluoric acid, rinsing liquid, sulfuric acid, and SPM liquid.
 図2は、処理ユニット2の構成例を説明するための模式図である。処理ユニット2は、スピンチャック5と、処理カップ8と、対向部材6と、フッ酸供給ユニット9と、リンス液供給ユニット10と、SC1液供給ユニット11と、硫酸供給ユニット12と、SPM液供給ユニット13とを含む。 FIG. 2 is a schematic diagram for explaining a configuration example of the processing unit 2. The processing unit 2 includes a spin chuck 5, a processing cup 8, a counter member 6, a hydrofluoric acid supply unit 9, a rinse liquid supply unit 10, an SC1 liquid supply unit 11, a sulfuric acid supply unit 12, and an SPM liquid supply. Unit 13 is included.
 スピンチャック5は、基板Wを水平に保持しながら基板Wの中央部を通る鉛直な回転軸線A1まわりに回転させる。スピンチャック5は、複数のチャックピン20と、スピンベース21と、回転軸22と、スピンモータ23とを含む。 The spin chuck 5 rotates around the vertical rotation axis A1 passing through the central portion of the substrate W while holding the substrate W horizontally. The spin chuck 5 includes a plurality of chuck pins 20, a spin base 21, a rotation shaft 22, and a spin motor 23.
 スピンベース21は、水平方向に沿う円板形状を有している。スピンベース21の上面には、基板Wの周縁を把持する複数のチャックピン20が、スピンベース21の周方向に間隔を空けて配置されている。スピンベース21および複数のチャックピン20は、基板Wを水平に保持する基板保持ユニットに含まれる。基板保持ユニットは、基板ホルダともいう。 The spin base 21 has a disc shape along the horizontal direction. On the upper surface of the spin base 21, a plurality of chuck pins 20 that grip the periphery of the substrate W are arranged at intervals in the circumferential direction of the spin base 21. The spin base 21 and the plurality of chuck pins 20 are included in a substrate holding unit that holds the substrate W horizontally. The substrate holding unit is also called a substrate holder.
 回転軸22は、回転軸線A1に沿って鉛直方向に延びている。回転軸22の上端部は、スピンベース21の下面中央に結合されている。スピンモータ23は、回転軸22に回転力を与える。スピンモータ23によって回転軸22が回転されることにより、スピンベース21が回転される。これにより、基板Wが回転軸線A1のまわりに回転される。回転軸22およびスピンモータ23は、回転軸線A1まわりに基板Wを回転させる基板回転ユニットに含まれる。 The rotation shaft 22 extends in the vertical direction along the rotation axis A1. The upper end portion of the rotating shaft 22 is coupled to the center of the lower surface of the spin base 21. The spin motor 23 gives a rotational force to the rotary shaft 22. When the rotating shaft 22 is rotated by the spin motor 23, the spin base 21 is rotated. As a result, the substrate W is rotated around the rotation axis A1. The rotation shaft 22 and the spin motor 23 are included in a substrate rotation unit that rotates the substrate W around the rotation axis A1.
 対向部材6は、スピンチャック5に保持された基板Wに上方から対向する。対向部材6は、基板Wとほぼ同じ径またはそれ以上の径を有する円板状に形成されている。対向部材6は、スピンチャック5よりも上方でほぼ水平に配置されている。対向部材6は、基板Wの上面に対向する対向面6aを有する。 The facing member 6 faces the substrate W held by the spin chuck 5 from above. The facing member 6 is formed in a disk shape having a diameter substantially the same as or larger than that of the substrate W. The facing member 6 is disposed substantially horizontally above the spin chuck 5. The facing member 6 has a facing surface 6 a that faces the upper surface of the substrate W.
 対向部材6において対向面6aとは反対側の面には、中空軸60が固定されている。対向部材6において平面視で回転軸線A1と重なる部分には、対向部材6を上下に貫通し、中空軸60の内部空間60aと連通する連通孔6bが形成されている。 A hollow shaft 60 is fixed to the surface of the facing member 6 opposite to the facing surface 6a. A communication hole 6 b that penetrates the opposing member 6 vertically and communicates with the internal space 60 a of the hollow shaft 60 is formed in a portion of the opposing member 6 that overlaps the rotation axis A <b> 1 in plan view.
 対向部材6は、対向部材6の対向面6aと基板Wの上面との間の空間内の雰囲気を当該空間の外部の雰囲気から遮断する。そのため、対向部材6は、遮断板とも呼ばれる。 The facing member 6 blocks the atmosphere in the space between the facing surface 6a of the facing member 6 and the upper surface of the substrate W from the atmosphere outside the space. Therefore, the opposing member 6 is also called a blocking plate.
 処理ユニット2は、対向部材6の昇降を駆動する対向部材昇降ユニット61をさらに含む。対向部材昇降ユニット61は、下位置から上位置までの任意の位置(高さ)に対向部材6を位置させることができる。下位置とは、対向部材6の可動範囲において、対向部材6の対向面6aが基板Wに最も近接する位置である。上位置とは、対向部材6の可動範囲において対向部材6の対向面6aが基板Wから最も離間する位置である。対向部材昇降ユニット61は、対向部材リフタ(遮断板リフタ)ともいわれる。 The processing unit 2 further includes a counter member lifting unit 61 that drives the lifting and lowering of the counter member 6. The counter member lifting unit 61 can position the counter member 6 at an arbitrary position (height) from the lower position to the upper position. The lower position is a position where the facing surface 6 a of the facing member 6 is closest to the substrate W in the movable range of the facing member 6. The upper position is a position where the facing surface 6 a of the facing member 6 is farthest from the substrate W in the movable range of the facing member 6. The facing member lifting / lowering unit 61 is also referred to as a facing member lifter (blocking plate lifter).
 対向部材昇降ユニット61は、たとえば、中空軸60を支持する支持部材(図示せず)に取り付けられたボールねじ機構(図示せず)と、それに駆動力を与える電動モータ(図示せず)とを含む。 The counter member lifting / lowering unit 61 includes, for example, a ball screw mechanism (not shown) attached to a support member (not shown) that supports the hollow shaft 60, and an electric motor (not shown) that gives a driving force thereto. Including.
 処理カップ8は、チャンバ4内に収容されている(図1参照)。チャンバ4には、チャンバ4内に基板Wを搬入したり、チャンバ4内から基板Wを搬出したりするための出入口(図示せず)が形成されている。チャンバ4には、この出入口を開閉するシャッタユニット(図示せず)が備えられている。 The processing cup 8 is accommodated in the chamber 4 (see FIG. 1). The chamber 4 is formed with an entrance (not shown) for carrying the substrate W into the chamber 4 and carrying the substrate W out of the chamber 4. The chamber 4 is provided with a shutter unit (not shown) that opens and closes the entrance / exit.
 フッ酸供給ユニット9は、基板Wの上面にフッ酸を供給するユニットである。フッ酸供給ユニット9は、フッ酸ノズル15、フッ酸供給管40およびフッ酸バルブ50を含む。フッ酸供給管40は、フッ酸ノズル15に接続されている。フッ酸供給管40は、フッ酸(HF:フッ化水素水)をフッ酸ノズル15に案内(供給)する。フッ酸バルブ50は、フッ酸供給管40に介装されている。フッ酸バルブ50が開かれると、フッ酸が、フッ酸ノズル15から基板Wの上面の中央領域に向けて連続的に吐出される。基板Wの上面の中央領域とは、基板Wの回転中心を含む領域のことである。 The hydrofluoric acid supply unit 9 is a unit that supplies hydrofluoric acid to the upper surface of the substrate W. The hydrofluoric acid supply unit 9 includes a hydrofluoric acid nozzle 15, a hydrofluoric acid supply pipe 40, and a hydrofluoric acid valve 50. The hydrofluoric acid supply pipe 40 is connected to the hydrofluoric acid nozzle 15. The hydrofluoric acid supply pipe 40 guides (supplies) hydrofluoric acid (HF: hydrogen fluoride water) to the hydrofluoric acid nozzle 15. The hydrofluoric acid valve 50 is interposed in the hydrofluoric acid supply pipe 40. When the hydrofluoric acid valve 50 is opened, hydrofluoric acid is continuously discharged from the hydrofluoric acid nozzle 15 toward the central region on the upper surface of the substrate W. The central region on the upper surface of the substrate W is a region including the center of rotation of the substrate W.
 この実施形態では、フッ酸ノズル15は、チャンバ4内での位置が固定された固定ノズルであるが、フッ酸ノズル15は、水平方向および鉛直方向の少なくともいずれかに移動可能な移動ノズルであってもよい。また、フッ酸ノズル15は、この実施形態とは異なり、中空軸60の内部空間60aと対向部材6の連通孔6bとに挿通されていてもよい。 In this embodiment, the hydrofluoric acid nozzle 15 is a fixed nozzle whose position in the chamber 4 is fixed. However, the hydrofluoric acid nozzle 15 is a moving nozzle that can move in at least one of the horizontal direction and the vertical direction. May be. Further, unlike this embodiment, the hydrofluoric acid nozzle 15 may be inserted into the internal space 60 a of the hollow shaft 60 and the communication hole 6 b of the facing member 6.
 リンス液供給ユニット10は、基板Wの上面にリンス液を供給するユニットである。リンス液供給ユニット10は、リンス液ノズル16、リンス液供給管41およびリンス液バルブ51を含む。リンス液供給管41は、リンス液ノズル16に接続されている。リンス液供給管41は、リンス液をリンス液ノズル16に案内(供給)する。リンス液バルブ51は、リンス液供給管41に介装されている。リンス液バルブ51が開かれると、リンス液が、リンス液ノズル16から基板Wの上面の中央領域に向けて連続的に吐出される。 The rinse liquid supply unit 10 is a unit for supplying a rinse liquid to the upper surface of the substrate W. The rinse liquid supply unit 10 includes a rinse liquid nozzle 16, a rinse liquid supply pipe 41, and a rinse liquid valve 51. The rinse liquid supply pipe 41 is connected to the rinse liquid nozzle 16. The rinse liquid supply pipe 41 guides (supply) the rinse liquid to the rinse liquid nozzle 16. The rinse liquid valve 51 is interposed in the rinse liquid supply pipe 41. When the rinse liquid valve 51 is opened, the rinse liquid is continuously discharged from the rinse liquid nozzle 16 toward the central region on the upper surface of the substrate W.
 この実施形態では、リンス液ノズル16から吐出されるリンス液は、DIWである。リンス液としては、DIW以外にも、水を含有する液体を用いることができる。リンス液としては、DIW以外に、たとえば、炭酸水、電解イオン水、水素水、オゾン水、アンモニア水および希釈濃度(たとえば、10ppm~100ppm程度)の塩酸水等を用いることができる。 In this embodiment, the rinse liquid discharged from the rinse liquid nozzle 16 is DIW. As the rinse liquid, a liquid containing water can be used in addition to DIW. As the rinsing liquid, for example, carbonated water, electrolytic ion water, hydrogen water, ozone water, ammonia water, and hydrochloric acid water having a diluted concentration (eg, about 10 ppm to 100 ppm) can be used in addition to DIW.
 リンス液ノズル16は、中空軸60の内部空間60aと対向部材6の連通孔6bとに挿通されており、基板Wの上面の中央領域に対向している。リンス液ノズル16は、対向部材6とともに対向部材昇降ユニット61によって昇降される。リンス液ノズル16は、この実施形態とは異なり、中空軸60の内部空間60aと対向部材6の連通孔6bとに挿通されていないノズルであってもよい。 The rinse liquid nozzle 16 is inserted into the internal space 60 a of the hollow shaft 60 and the communication hole 6 b of the facing member 6, and faces the central region on the upper surface of the substrate W. The rinsing liquid nozzle 16 is moved up and down by the facing member lifting / lowering unit 61 together with the facing member 6. Unlike the present embodiment, the rinsing liquid nozzle 16 may be a nozzle that is not inserted into the internal space 60 a of the hollow shaft 60 and the communication hole 6 b of the facing member 6.
 SC1液供給ユニット11は、基板Wの上面にSC1液を供給するユニットである。SC1液供給ユニット11は、SC1液ノズル17、SC1液供給管42およびSC1液バルブ52を含む。SC1液供給管42は、SC1液ノズル17に接続されている。SC1液供給管42は、SC1液(ammonia-hydrogen peroxide mixture:アンモニア過酸化水素水混合液)をSC1液ノズル17に案内(供給)する。SC1液バルブ52は、SC1液供給管42に介装されている。SC1液バルブ52が開かれると、SC1液が、SC1液ノズル17から連続的に吐出される。 The SC1 liquid supply unit 11 is a unit that supplies the SC1 liquid to the upper surface of the substrate W. The SC1 liquid supply unit 11 includes an SC1 liquid nozzle 17, an SC1 liquid supply pipe 42, and an SC1 liquid valve 52. The SC1 liquid supply pipe 42 is connected to the SC1 liquid nozzle 17. The SC1 liquid supply pipe 42 guides (supply) SC1 liquid (ammonia-hydrogenoniaperoxide mixture) to the SC1 liquid nozzle 17. The SC1 liquid valve 52 is interposed in the SC1 liquid supply pipe 42. When the SC1 liquid valve 52 is opened, the SC1 liquid is continuously discharged from the SC1 liquid nozzle 17.
 処理ユニット2は、SC1液ノズル17を水平方向および鉛直方向に移動させる第1ノズル移動ユニット30をさらに含む。SC1液ノズル17は、第1ノズル移動ユニット30によって、中心位置と、ホーム位置(退避位置)との間で水平方向に移動される。 The processing unit 2 further includes a first nozzle moving unit 30 that moves the SC1 liquid nozzle 17 in the horizontal direction and the vertical direction. The SC1 liquid nozzle 17 is moved in the horizontal direction between the center position and the home position (retracted position) by the first nozzle moving unit 30.
 SC1液ノズル17は、中心位置に位置するとき、基板Wの上面の回転中心に対向し、基板Wの上面の中央領域に向けてSC1液を吐出することができる。基板Wの上面の回転中心とは、基板Wの上面における回転軸線A1との交差位置である。 When the SC1 liquid nozzle 17 is located at the center position, the SC1 liquid nozzle 17 faces the center of rotation of the upper surface of the substrate W, and can discharge the SC1 liquid toward the central region of the upper surface of the substrate W. The center of rotation of the upper surface of the substrate W is an intersection position with the rotation axis A1 on the upper surface of the substrate W.
 SC1液ノズル17は、ホーム位置に位置するとき、基板Wの上面には対向せず、平面視において、処理カップ8の外方に位置する。SC1液ノズル17は、鉛直方向への移動によって、基板Wの上面に接近したり、基板Wの上面から上方に退避したりできる。 When the SC1 liquid nozzle 17 is located at the home position, the SC1 liquid nozzle 17 is not opposed to the upper surface of the substrate W, and is located outside the processing cup 8 in a plan view. The SC1 liquid nozzle 17 can approach the upper surface of the substrate W or retreat upward from the upper surface of the substrate W by moving in the vertical direction.
 第1ノズル移動ユニット30は、たとえば、鉛直方向に沿う回動軸(図示せず)と、回動軸に結合されて水平に延びるアーム(図示せず)と、回動軸を昇降させたり回動させたりする回動軸駆動ユニット(図示せず)とを含む。回動軸駆動ユニットは、回動軸を鉛直な回動軸線まわりに回動させることによってアームを揺動させる。さらに、回動軸駆動ユニットは、回動軸を鉛直方向に沿って昇降することにより、アームを上下動させる。SC1液ノズル17はアームに固定される。アームの揺動および昇降に応じて、SC1液ノズル17が水平方向および鉛直方向に移動する。 The first nozzle moving unit 30 includes, for example, a rotating shaft (not shown) extending in the vertical direction, an arm (not shown) coupled to the rotating shaft and extending horizontally, and moving the rotating shaft up and down. And a rotating shaft drive unit (not shown). The rotation shaft drive unit swings the arm by rotating the rotation shaft around a vertical rotation axis. Further, the rotating shaft drive unit moves the arm up and down by moving the rotating shaft up and down along the vertical direction. The SC1 liquid nozzle 17 is fixed to the arm. The SC1 liquid nozzle 17 moves in the horizontal direction and the vertical direction in accordance with the swinging and raising / lowering of the arm.
 この実施形態とは異なり、SC1液ノズル17は、チャンバ4内(図1参照)での位置が固定された固定ノズルであってもよい。また、SC1液ノズル17は、中空軸60の内部空間60aと対向部材6の連通孔6bとに挿通されたノズルであってもよい。 Unlike this embodiment, the SC1 liquid nozzle 17 may be a fixed nozzle whose position in the chamber 4 (see FIG. 1) is fixed. Further, the SC1 liquid nozzle 17 may be a nozzle inserted through the internal space 60 a of the hollow shaft 60 and the communication hole 6 b of the facing member 6.
 硫酸供給ユニット12は、基板Wの上面に硫酸を供給するユニットである。硫酸供給ユニット12は、共通ノズル18、硫酸供給管43および硫酸バルブ53を含む。硫酸供給管43は、共通ノズル18に接続されている。硫酸供給管43は、共通ノズル18に硫酸(HSO)を案内(供給)する。硫酸バルブ53は、硫酸供給管43に介装されている。硫酸バルブ53が開かれると、硫酸が、共通ノズル18から連続的に吐出される。共通ノズル18から吐出される硫酸の温度は、たとえば、120℃~190℃である。 The sulfuric acid supply unit 12 is a unit that supplies sulfuric acid to the upper surface of the substrate W. The sulfuric acid supply unit 12 includes a common nozzle 18, a sulfuric acid supply pipe 43 and a sulfuric acid valve 53. The sulfuric acid supply pipe 43 is connected to the common nozzle 18. The sulfuric acid supply pipe 43 guides (supplies) sulfuric acid (H 2 SO 4 ) to the common nozzle 18. The sulfuric acid valve 53 is interposed in the sulfuric acid supply pipe 43. When the sulfuric acid valve 53 is opened, sulfuric acid is continuously discharged from the common nozzle 18. The temperature of sulfuric acid discharged from the common nozzle 18 is, for example, 120 ° C. to 190 ° C.
 共通ノズル18から吐出される硫酸(硫酸供給管43から共通ノズル18に供給される硫酸)は、たとえば、硫酸水溶液であり、硫酸以外の成分として、水が含まれていてもよい。共通ノズル18から吐出される硫酸水溶液中の硫酸の質量パーセント濃度は85%以上であることが好ましく、98%以下であることが好ましい。 The sulfuric acid discharged from the common nozzle 18 (sulfuric acid supplied from the sulfuric acid supply pipe 43 to the common nozzle 18) is, for example, a sulfuric acid aqueous solution, and may contain water as a component other than sulfuric acid. The mass percent concentration of sulfuric acid in the sulfuric acid aqueous solution discharged from the common nozzle 18 is preferably 85% or more, and preferably 98% or less.
 SPM液供給ユニット13は、基板Wの上面にSPM液を供給するユニットである。SPM液供給ユニット13は、硫酸供給ユニット12、過酸化水素水供給管44および過酸化水素水バルブ54を含む。過酸化水素水供給管44は、硫酸供給管43とともに共通ノズル18に接続されている。過酸化水素水供給管44は、共通ノズル18に過酸化水素水(H)を案内(供給)する。過酸化水素水バルブ54は、過酸化水素水供給管44に介装されている。過酸化水素水バルブ54が開かれると、過酸化水素水が、共通ノズル18から連続的に吐出される。 The SPM liquid supply unit 13 is a unit that supplies the SPM liquid to the upper surface of the substrate W. The SPM liquid supply unit 13 includes a sulfuric acid supply unit 12, a hydrogen peroxide solution supply pipe 44, and a hydrogen peroxide solution valve 54. The hydrogen peroxide solution supply pipe 44 is connected to the common nozzle 18 together with the sulfuric acid supply pipe 43. The hydrogen peroxide solution supply pipe 44 guides (supply) the hydrogen peroxide solution (H 2 O 2 ) to the common nozzle 18. The hydrogen peroxide solution valve 54 is interposed in the hydrogen peroxide solution supply pipe 44. When the hydrogen peroxide solution valve 54 is opened, hydrogen peroxide solution is continuously discharged from the common nozzle 18.
 硫酸バルブ53および過酸化水素水バルブ54の両方が開かれると、共通ノズル18内で硫酸と過酸化水素水とが混合されてSPM液(sulfuric acid/hydrogen peroxide mixture:硫酸過酸化水素水混合液)が調製され、調整されたSPM液が共通ノズル18から連続的に吐出される。共通ノズル18から吐出されるSPM液の温度は、共通ノズル18から吐出される硫酸の温度よりも高く、たとえば、160℃~220℃である。なお、共通ノズル18から吐出される硫酸の流量は、共通ノズル18から吐出されるSPM液の流量と比較して安定している。 When both the sulfuric acid valve 53 and the hydrogen peroxide solution valve 54 are opened, the sulfuric acid and the hydrogen peroxide solution are mixed in the common nozzle 18 and the SPM solution (sulfuric acid / hydrogen peroxide compound mixture). ) And the adjusted SPM liquid is continuously discharged from the common nozzle 18. The temperature of the SPM liquid discharged from the common nozzle 18 is higher than the temperature of sulfuric acid discharged from the common nozzle 18, and is, for example, 160 ° C. to 220 ° C. Note that the flow rate of sulfuric acid discharged from the common nozzle 18 is more stable than the flow rate of SPM liquid discharged from the common nozzle 18.
 処理ユニット2は、水平方向および鉛直方向に共通ノズル18を移動させる第2ノズル移動ユニット31をさらに含む。共通ノズル18は、第2ノズル移動ユニット31によって、中心位置と、ホーム位置(退避位置)との間で移動される。共通ノズル18は、中心位置に位置するとき、基板Wの上面の回転中心に対向し、基板Wの上面の中央領域に向けて硫酸やSPM液を吐出することができる。 The processing unit 2 further includes a second nozzle moving unit 31 that moves the common nozzle 18 in the horizontal direction and the vertical direction. The common nozzle 18 is moved between the center position and the home position (retracted position) by the second nozzle moving unit 31. When the common nozzle 18 is located at the center position, the common nozzle 18 faces the rotation center of the upper surface of the substrate W, and can discharge sulfuric acid and SPM liquid toward the central region of the upper surface of the substrate W.
 共通ノズル18は、ホーム位置に位置するとき、基板Wの上面には対向せず、平面視において、処理カップ8の外方に位置する。共通ノズル18は、鉛直方向への移動によって、基板Wの上面に接近したり、基板Wの上面から上方に退避したりできる。 When the common nozzle 18 is located at the home position, the common nozzle 18 does not face the upper surface of the substrate W and is located outside the processing cup 8 in a plan view. The common nozzle 18 can approach the upper surface of the substrate W or retreat upward from the upper surface of the substrate W by moving in the vertical direction.
 第2ノズル移動ユニット31は、第1ノズル移動ユニット30と同様の構成を有している。すなわち、第2ノズル移動ユニット31は、たとえば、鉛直方向に沿う回動軸(図示せず)と、回動軸および共通ノズル18に結合されて水平に延びるアーム(図示せず)と、回動軸を昇降させたり回動させたりする回動軸駆動ユニット(図示せず)とを含む。 The second nozzle moving unit 31 has the same configuration as the first nozzle moving unit 30. That is, the second nozzle moving unit 31 includes, for example, a rotation shaft (not shown) along the vertical direction, an arm (not shown) coupled to the rotation shaft and the common nozzle 18 and extending horizontally, and rotation. A rotating shaft drive unit (not shown) for moving the shaft up and down and rotating.
 この実施形態とは異なり、共通ノズル18は、チャンバ4(図1参照)内での位置が固定された固定ノズルであってもよいし、中空軸60の内部空間60aと対向部材6の連通孔6bとに挿通されたノズルであってもよい。 Unlike this embodiment, the common nozzle 18 may be a fixed nozzle whose position in the chamber 4 (see FIG. 1) is fixed, or a communication hole between the internal space 60 a of the hollow shaft 60 and the facing member 6. The nozzle inserted in 6b may be sufficient.
 図3は、基板処理装置1の主要部の電気的構成を示すブロック図である。コントローラ3は、マイクロコンピュータを備え、所定の制御プログラムに従って基板処理装置1に備えられた制御対象を制御する。 FIG. 3 is a block diagram showing the electrical configuration of the main part of the substrate processing apparatus 1. The controller 3 includes a microcomputer and controls a control target provided in the substrate processing apparatus 1 according to a predetermined control program.
 具体的には、コントローラ3は、プロセッサ(CPU)3Aと、制御プログラムが格納されたメモリ3Bとを含む。コントローラ3は、プロセッサ3Aが制御プログラムを実行することによって、基板処理のための様々な制御を実行するように構成されている。とくに、コントローラ3は、搬送ロボットIR,CR、スピンモータ23、第1ノズル移動ユニット30、第2ノズル移動ユニット31、対向部材昇降ユニット61、フッ酸バルブ50、リンス液バルブ51、SC1液バルブ52、硫酸バルブ53、過酸化水素水バルブ54を制御するようにプログラムされている。 Specifically, the controller 3 includes a processor (CPU) 3A and a memory 3B in which a control program is stored. The controller 3 is configured to execute various controls for substrate processing when the processor 3A executes a control program. In particular, the controller 3 includes the transfer robot IR, CR, the spin motor 23, the first nozzle moving unit 30, the second nozzle moving unit 31, the opposing member lifting / lowering unit 61, the hydrofluoric acid valve 50, the rinse liquid valve 51, and the SC1 liquid valve 52. The sulfuric acid valve 53 and the hydrogen peroxide water valve 54 are programmed.
 図4は、基板処理装置1による基板処理の一例を説明するための流れ図である。図4には、主として、コントローラ3がプログラムを実行することによって実現される処理が示されている。 FIG. 4 is a flowchart for explaining an example of substrate processing by the substrate processing apparatus 1. FIG. 4 mainly shows processing realized by the controller 3 executing a program.
 基板処理装置1によって実行される基板処理は、たとえば、基板Wの上面に形成されたレジストを除去するレジスト剥離工程である。具体的には、基板処理装置1による基板処理では、図4に示すように、フッ酸処理(ステップS1)、第1リンス液処理(ステップS2)、硫酸処理(ステップS3)、SPM液処理(ステップS4)、第2リンス液処理(ステップS5)、SC1液処理(ステップS6)、第3リンス液処理(ステップS7)、および乾燥処理(ステップS8)がこの順番で実行される。 The substrate processing executed by the substrate processing apparatus 1 is, for example, a resist stripping process for removing the resist formed on the upper surface of the substrate W. Specifically, in the substrate processing by the substrate processing apparatus 1, as shown in FIG. 4, hydrofluoric acid processing (step S1), first rinsing liquid processing (step S2), sulfuric acid processing (step S3), SPM liquid processing ( Step S4), second rinse liquid process (step S5), SC1 liquid process (step S6), third rinse liquid process (step S7), and drying process (step S8) are executed in this order.
 基板処理では、まず、チャンバ4内に基板Wが搬入される。基板Wが搬入される際、対向部材6は上位置に位置し、SC1液ノズル17および共通ノズル18は、ホーム位置に位置している。未処理の基板Wは、搬送ロボットIR,CRによってキャリヤCから処理ユニット2に搬入され、チャックピン20に受け渡される。この後、基板Wは、搬送ロボットCRによって搬出されるまで、スピンチャック5のチャックピン20によって水平に保持される(基板保持工程)。 In the substrate processing, first, the substrate W is carried into the chamber 4. When the substrate W is carried in, the facing member 6 is located at the upper position, and the SC1 liquid nozzle 17 and the common nozzle 18 are located at the home position. The unprocessed substrate W is carried into the processing unit 2 from the carrier C by the transfer robots IR and CR, and is transferred to the chuck pins 20. Thereafter, the substrate W is horizontally held by the chuck pins 20 of the spin chuck 5 until it is carried out by the transfer robot CR (substrate holding step).
 次に、搬送ロボットCRが処理ユニット2外に退避した後、フッ酸処理(ステップS1)が開始される。具体的には、スピンモータ23が、スピンベース21を回転させる。これにより、水平に保持された基板Wが回転する(基板回転工程)。そして、フッ酸バルブ50が開かれる。これにより、回転状態の基板Wの上面の中央領域に向けて、フッ酸ノズル15からフッ酸が供給(吐出)される(フッ酸供給工程)。フッ酸供給工程における基板Wの回転速度は、たとえば、1200rpmである。基板Wの上面に供給されたフッ酸は遠心力によって基板Wの上面の全体に行き渡る。基板Wの上面は、フッ酸で処理されることによって疎水化される。 Next, after the transfer robot CR has retreated from the processing unit 2, hydrofluoric acid processing (step S1) is started. Specifically, the spin motor 23 rotates the spin base 21. As a result, the horizontally held substrate W is rotated (substrate rotation process). Then, the hydrofluoric acid valve 50 is opened. Thus, hydrofluoric acid is supplied (discharged) from the hydrofluoric acid nozzle 15 toward the central region of the upper surface of the rotating substrate W (hydrofluoric acid supply step). The rotation speed of the substrate W in the hydrofluoric acid supply process is, for example, 1200 rpm. The hydrofluoric acid supplied to the upper surface of the substrate W spreads over the entire upper surface of the substrate W by centrifugal force. The upper surface of the substrate W is hydrophobized by being treated with hydrofluoric acid.
 次に、一定時間のフッ酸処理(ステップS1)の後、第1リンス液処理(ステップS2)が実行される。第1リンス液処理では、基板W上のフッ酸がDIW(リンス液)で置換され、基板W上にDIWの液膜が形成される。図5Aおよび図5Bは、リンス液膜形成工程の様子を説明するための模式図である。 Next, after a certain period of hydrofluoric acid treatment (step S1), the first rinsing liquid treatment (step S2) is performed. In the first rinsing liquid treatment, hydrofluoric acid on the substrate W is replaced with DIW (rinsing liquid), and a liquid film of DIW is formed on the substrate W. 5A and 5B are schematic diagrams for explaining the state of the rinse liquid film forming step.
 図5Aを参照して、第1リンス液処理では、まず、フッ酸バルブ50が閉じられる。そして、対向部材昇降ユニット61が上位置と下位置との間の処理位置に対向部材6を移動させる。そして、リンス液バルブ51が開かれる。これにより、回転状態の基板Wの上面の中央領域に向けて、リンス液ノズル16からDIWが供給(吐出)される(第1リンス液供給工程)。基板Wの上面に供給されたDIWは遠心力によって基板Wの上面の全体に行き渡る。その結果、基板Wの上面のフッ酸は、DIWによって置換される。 Referring to FIG. 5A, in the first rinse liquid treatment, first, hydrofluoric acid valve 50 is closed. And the opposing member raising / lowering unit 61 moves the opposing member 6 to the processing position between an upper position and a lower position. Then, the rinse liquid valve 51 is opened. Thereby, DIW is supplied (discharged) from the rinse liquid nozzle 16 toward the central region of the upper surface of the substrate W in the rotating state (first rinse liquid supply step). DIW supplied to the upper surface of the substrate W spreads over the entire upper surface of the substrate W by centrifugal force. As a result, the hydrofluoric acid on the upper surface of the substrate W is replaced by DIW.
 基板Wの上面へのDIWの供給が開始されてから所定時間が経過すると、スピンモータ23(図2参照)は、基板Wの回転を段階的に減速する(第1回転減速工程)。例として、基板Wの回転は、1200rpmから所定の回転数に減速された後、所定時間維持される。そして、基板Wの回転の減速と回転数の維持とが複数回繰り返される。そして、基板Wの回転は、最終的に10rpmに減速された後、10rpmで所定時間維持される。 When a predetermined time has elapsed since the supply of DIW to the upper surface of the substrate W was started, the spin motor 23 (see FIG. 2) decelerates the rotation of the substrate W step by step (first rotation deceleration step). As an example, the rotation of the substrate W is maintained for a predetermined time after being decelerated from 1200 rpm to a predetermined rotation speed. Then, the deceleration of the rotation of the substrate W and the maintenance of the rotation speed are repeated a plurality of times. Then, the rotation of the substrate W is finally decelerated to 10 rpm and then maintained at 10 rpm for a predetermined time.
 図5Bに示すように、基板Wの回転が充分に減速された時点(たとえば、回転速度が10rpmになった時点)で、リンス液バルブ51が閉じられる。これにより、リンス液ノズル16から基板Wの上面へのDIWの供給が停止される。基板Wは、充分に低速度で回転しているため、基板Wの上面には、基板Wの上面のほぼ全体を覆うパドル状態のDIWのリンス液膜100が形成(保持)される(リンス液膜形成工程)。 As shown in FIG. 5B, the rinse liquid valve 51 is closed when the rotation of the substrate W is sufficiently decelerated (for example, when the rotation speed reaches 10 rpm). Thereby, the supply of DIW from the rinse liquid nozzle 16 to the upper surface of the substrate W is stopped. Since the substrate W rotates at a sufficiently low speed, a DIW rinse liquid film 100 in a paddle state covering almost the entire upper surface of the substrate W is formed (held) on the upper surface of the substrate W (rinse liquid). Film formation step).
 パドル状態の液膜とは、基板W上の液に作用する遠心力が低減されることによって基板W上に形成される比較的厚い液膜のことである。そして、対向部材昇降ユニット61が対向部材6を上位置に移動させる。 The liquid film in the paddle state is a relatively thick liquid film formed on the substrate W by reducing the centrifugal force acting on the liquid on the substrate W. And the opposing member raising / lowering unit 61 moves the opposing member 6 to an upper position.
 次に、リンス液膜100が基板Wの上面に形成された状態で硫酸処理(ステップS3)が実行される。図5Cおよび図5Dは、硫酸処理の様子を説明するための模式図である。 Next, sulfuric acid treatment (step S3) is performed in a state where the rinse liquid film 100 is formed on the upper surface of the substrate W. 5C and 5D are schematic diagrams for explaining the state of the sulfuric acid treatment.
 具体的には、図5Cに示すように、第2ノズル移動ユニット31が、共通ノズル18を、処理位置(たとえば、中心位置)に移動させる。そして、硫酸バルブ53が開かれる。これにより、基板Wの上面の中央領域に向けて、共通ノズル18から硫酸が供給(吐出)される(硫酸供給工程、硫酸吐出工程、中央供給工程)。基板Wの上面に供給された硫酸は遠心力によって基板Wの上面の周縁領域に位置するDIWを基板W外に押し出しながら、基板Wの上面に広がる。これにより、硫酸を含有する硫酸含有液膜101が基板Wの上面に形成される(硫酸含有液膜形成工程)。なお、基板Wの上面の周縁領域は、基板Wの上面の周縁部およびその周辺部を含む領域である。 Specifically, as shown in FIG. 5C, the second nozzle moving unit 31 moves the common nozzle 18 to the processing position (for example, the center position). Then, the sulfuric acid valve 53 is opened. Thus, sulfuric acid is supplied (discharged) from the common nozzle 18 toward the central region on the upper surface of the substrate W (a sulfuric acid supply process, a sulfuric acid discharge process, and a central supply process). The sulfuric acid supplied to the upper surface of the substrate W spreads on the upper surface of the substrate W while pushing out DIW located in the peripheral region of the upper surface of the substrate W by centrifugal force. As a result, the sulfuric acid-containing liquid film 101 containing sulfuric acid is formed on the upper surface of the substrate W (sulfuric acid-containing liquid film forming step). The peripheral region on the upper surface of the substrate W is a region including the peripheral portion on the upper surface of the substrate W and its peripheral portion.
 硫酸含有液膜101は、リンス液膜100中のリンス液の少なくとも一部を硫酸で置換することによって形成される。すなわち、基板Wの上面のリンス液膜100中のリンス液の一部が硫酸で置換された液膜を硫酸含有液膜101といい(図5Cの状態)、基板Wの上面のリンス液膜100中のリンス液の全てが硫酸で置換された液膜も硫酸含有液膜101という(図5Dの状態)。基板Wの上面を均一に硫酸で処理するには、リンス液膜100内のリンス液を硫酸で置換完了することが好ましい。 The sulfuric acid-containing liquid film 101 is formed by replacing at least a part of the rinsing liquid in the rinsing liquid film 100 with sulfuric acid. That is, a liquid film in which a part of the rinsing liquid in the rinsing liquid film 100 on the upper surface of the substrate W is replaced with sulfuric acid is referred to as a sulfuric acid-containing liquid film 101 (the state shown in FIG. 5C). A liquid film in which all of the rinsing liquid in the inside is replaced with sulfuric acid is also referred to as a sulfuric acid-containing liquid film 101 (state of FIG. 5D). In order to uniformly treat the upper surface of the substrate W with sulfuric acid, the rinsing liquid in the rinsing liquid film 100 is preferably replaced with sulfuric acid.
 基板Wの上面への硫酸の供給開始時において、基板Wが充分に低速度(たとえば、10rpm)で回転しているため、硫酸含有液膜101がパドル状態で維持されている。 When the supply of sulfuric acid to the upper surface of the substrate W is started, since the substrate W is rotating at a sufficiently low speed (for example, 10 rpm), the sulfuric acid-containing liquid film 101 is maintained in the paddle state.
 そして、スピンモータ23(図2参照)は、基板Wの上面への硫酸の供給を開始した後で、かつ、基板W上のリンス液が硫酸で置換し終える前に、基板Wの回転を、たとえば400rpm以上1000rpm以下の所定の回転数にまで加速させる(回転加速工程)。これにより、図5Dに示すように、基板W上の硫酸は遠心力によって基板Wの上面の全体に広がる。硫酸処理の実行によって、基板Wの上面が親水化される。なお、この基板処理とは異なり、基板Wの上面の全体に硫酸が広がった後に、基板Wの回転を加速させてもよい。 Then, the spin motor 23 (see FIG. 2) rotates the substrate W after starting the supply of sulfuric acid to the upper surface of the substrate W and before the rinse liquid on the substrate W is replaced with sulfuric acid. For example, acceleration is performed to a predetermined rotational speed of 400 rpm or more and 1000 rpm or less (rotation acceleration step). As a result, as shown in FIG. 5D, the sulfuric acid on the substrate W spreads over the entire upper surface of the substrate W by centrifugal force. By executing the sulfuric acid treatment, the upper surface of the substrate W is hydrophilized. Note that, unlike the substrate processing, the rotation of the substrate W may be accelerated after the sulfuric acid spreads over the entire upper surface of the substrate W.
 基板Wの上面を硫酸で充分に親水化するためには、回転加速工程は、たとえば、基板Wの上面への硫酸の供給が開始されてから所定期間(たとえば、1秒間以上10秒間以内)経過したときに開始されればよい。 In order to sufficiently hydrophilize the upper surface of the substrate W with sulfuric acid, for example, the rotation acceleration step is performed for a predetermined period (for example, 1 second to 10 seconds) after the supply of sulfuric acid to the upper surface of the substrate W is started. It only has to start when you do.
 なお、基板Wの上面へ硫酸が供給されている間の全期間において、硫酸含有液膜101が分裂せずに維持される。回転加速工程の実行によって基板Wの回転が加速された後においても、硫酸含有液膜101のパドル状態は維持されないものの、硫酸含有液膜101が基板Wの上面の全域を覆った状態は維持される。 Note that the sulfuric acid-containing liquid film 101 is maintained without being split during the entire period during which sulfuric acid is supplied to the upper surface of the substrate W. Even after the rotation of the substrate W is accelerated by executing the rotation acceleration step, the sulfuric acid-containing liquid film 101 is not maintained in the paddle state, but the state in which the sulfuric acid-containing liquid film 101 covers the entire upper surface of the substrate W is maintained. The
 次に、一定時間の硫酸処理(ステップS3)の後、SPM液処理が(ステップS4)が実行される。図5Eは、SPM液処理の様子を説明するための模式図である。 Next, after the sulfuric acid treatment for a predetermined time (step S3), the SPM liquid treatment (step S4) is executed. FIG. 5E is a schematic diagram for explaining the state of the SPM liquid treatment.
 SPM液処理では、基板W上のDIWを硫酸に置換し終えた状態で、過酸化水素水バルブ54が開かれる。図5Eに示すように、硫酸バルブ53が開かれた状態で過酸化水素水バルブ54が開かれるので、基板Wの上面に向けて共通ノズル18からSPM液が供給(吐出)される(SPM液供給工程、SPM液吐出工程)。 In the SPM solution treatment, the hydrogen peroxide valve 54 is opened in a state where DIW on the substrate W has been replaced with sulfuric acid. As shown in FIG. 5E, since the hydrogen peroxide valve 54 is opened with the sulfuric acid valve 53 opened, the SPM liquid is supplied (discharged) from the common nozzle 18 toward the upper surface of the substrate W (SPM liquid). Supply process, SPM liquid discharge process).
 スピンモータ23は、基板Wの回転速度を硫酸供給工程のときの回転速度と同じ回転速度に維持する。スピンモータ23は、硫酸供給工程のときの回転速度と同じ回転速度に基板Wの回転速度を維持した後、基板Wの回転を、たとえば、150rpmまで減速させてもよい(第2回転減速工程)。第2回転減速工程の実行によって、基板Wの回転に起因するSPM液の基板W上の冷却を抑制することができる。 The spin motor 23 maintains the rotation speed of the substrate W at the same rotation speed as that in the sulfuric acid supply process. The spin motor 23 may reduce the rotation of the substrate W to, for example, 150 rpm after maintaining the rotation speed of the substrate W at the same rotation speed as in the sulfuric acid supply process (second rotation deceleration process). . By executing the second rotation deceleration step, the cooling of the SPM liquid on the substrate W due to the rotation of the substrate W can be suppressed.
 基板Wの上面に供給されたSPM液は遠心力によって基板Wの上面の全体に行き渡る。これにより、図5Eに示すように、SPM液を含有するSPM含有液膜102が基板Wの上面に形成される(SPM含有液膜形成工程)。 The SPM liquid supplied to the upper surface of the substrate W spreads over the entire upper surface of the substrate W by centrifugal force. Thereby, as shown in FIG. 5E, the SPM-containing liquid film 102 containing the SPM liquid is formed on the upper surface of the substrate W (SPM-containing liquid film forming step).
 SPM含有液膜102は、硫酸含有液膜101内の硫酸の少なくとも一部をSPM液で置換することによって形成される。すなわち、基板Wの上面の硫酸含有液膜101内の硫酸の一部がSPM液で置換された液膜がSPM含有液膜102であり、基板Wの上面の硫酸含有液膜101内の硫酸の全てがSPM液で置換された液膜もSPM含有液膜102である。基板Wの上面を均一にSPM液で処理するには、硫酸含有液膜101内の硫酸をSPM液で置換完了することが好ましい。SPM液処理の実行によって、基板Wの上面が一層親水化される。 The SPM-containing liquid film 102 is formed by replacing at least a part of the sulfuric acid in the sulfuric acid-containing liquid film 101 with the SPM liquid. That is, the liquid film in which a part of the sulfuric acid in the sulfuric acid-containing liquid film 101 on the upper surface of the substrate W is replaced with the SPM liquid is the SPM-containing liquid film 102, and the sulfuric acid in the sulfuric acid-containing liquid film 101 on the upper surface of the substrate W is The liquid film in which all is replaced with the SPM liquid is also the SPM-containing liquid film 102. In order to uniformly treat the upper surface of the substrate W with the SPM liquid, it is preferable to complete the replacement of the sulfuric acid in the sulfuric acid-containing liquid film 101 with the SPM liquid. By executing the SPM liquid treatment, the upper surface of the substrate W is made more hydrophilic.
 次に、図2および図4を参照して、一定時間のSPM液処理(ステップS4)の後、第2リンス処理(ステップS5)が実行される。 Next, referring to FIG. 2 and FIG. 4, the second rinse process (step S5) is performed after the SPM liquid process (step S4) for a predetermined time.
 具体的には、硫酸バルブ53および過酸化水素水バルブ54が閉じられる。そして、第2ノズル移動ユニット31が、共通ノズル18をホーム位置に移動させる。そして、対向部材昇降ユニット61が対向部材6を処理位置に移動させる。そして、リンス液バルブ51が開かれる。これにより、回転状態の基板Wの上面の中央領域に向けて、リンス液ノズル16からDIWが供給(吐出)される(第2リンス液供給工程)。基板Wの上面に供給されたDIWは遠心力によって基板Wの上面の全体に行き渡る。その結果、基板Wの上面のSPM液は、DIWによって置換される。 Specifically, the sulfuric acid valve 53 and the hydrogen peroxide water valve 54 are closed. Then, the second nozzle moving unit 31 moves the common nozzle 18 to the home position. Then, the facing member lifting / lowering unit 61 moves the facing member 6 to the processing position. Then, the rinse liquid valve 51 is opened. Thereby, DIW is supplied (discharged) from the rinse liquid nozzle 16 toward the central region of the upper surface of the substrate W in the rotating state (second rinse liquid supply step). DIW supplied to the upper surface of the substrate W spreads over the entire upper surface of the substrate W by centrifugal force. As a result, the SPM liquid on the upper surface of the substrate W is replaced by DIW.
 次に、一定時間の第2リンス液処理(ステップS5)の後、SC1液処理(ステップS6)が実行される。 Next, after the second rinse liquid treatment (step S5) for a certain time, the SC1 liquid treatment (step S6) is executed.
 具体的には、リンス液バルブ51が閉じられる。そして、対向部材昇降ユニット61が対向部材6を上位置に移動させる。そして、第1ノズル移動ユニット30が、SC1液ノズル17を処理位置(たとえば、中心位置)に移動させる。そして、SC1液バルブ52が開かれる。これにより、回転状態の基板Wの上面の中央領域に向けて、SC1液ノズル17からSC1液が供給(吐出)される(SC1液供給工程)。基板Wの上面に供給されたSC1液は遠心力によって基板Wの上面の全体に行き渡る。基板Wの上面のDIWは、SC1液によって置換される。これにより、基板Wの上面がSC1液によって処理される。 Specifically, the rinse liquid valve 51 is closed. And the opposing member raising / lowering unit 61 moves the opposing member 6 to an upper position. Then, the first nozzle moving unit 30 moves the SC1 liquid nozzle 17 to the processing position (for example, the center position). Then, the SC1 liquid valve 52 is opened. Thereby, the SC1 liquid is supplied (discharged) from the SC1 liquid nozzle 17 toward the central region of the upper surface of the substrate W in the rotating state (SC1 liquid supply step). The SC1 liquid supplied to the upper surface of the substrate W spreads over the entire upper surface of the substrate W by centrifugal force. The DIW on the upper surface of the substrate W is replaced with the SC1 liquid. Thereby, the upper surface of the substrate W is treated with the SC1 liquid.
 次に、一定時間のSC1液処理(ステップS6)の後、第3リンス処理(ステップS7)が実行される。 Next, after the SC1 liquid process (step S6) for a predetermined time, the third rinse process (step S7) is executed.
 具体的には、SC1液バルブ52が閉じられる。そして、第1ノズル移動ユニット30が、SC1液ノズル17をホーム位置に移動させる。そして、対向部材昇降ユニット61が対向部材6を処理位置に移動させる。そして、リンス液バルブ51が開かれる。これにより、回転状態の基板Wの上面の中央領域に向けて、リンス液ノズル16からDIWが供給(吐出)される(第3リンス液供給工程)。基板Wの上面に供給されたDIWは遠心力によって基板Wの上面の全体に行き渡る。基板Wの上面のSC1液は、DIWによって置換される。 Specifically, the SC1 liquid valve 52 is closed. Then, the first nozzle moving unit 30 moves the SC1 liquid nozzle 17 to the home position. Then, the facing member lifting / lowering unit 61 moves the facing member 6 to the processing position. Then, the rinse liquid valve 51 is opened. As a result, DIW is supplied (discharged) from the rinse liquid nozzle 16 toward the central region of the upper surface of the rotating substrate W (third rinse liquid supply step). DIW supplied to the upper surface of the substrate W spreads over the entire upper surface of the substrate W by centrifugal force. The SC1 liquid on the upper surface of the substrate W is replaced by DIW.
 次に、一定時間の第3リンス処理(ステップS7)の後、基板Wの上面を乾燥させる乾燥処理(ステップS8)が実行される。 Next, after the third rinsing process for a predetermined time (step S7), a drying process (step S8) for drying the upper surface of the substrate W is performed.
 具体的には、リンス液バルブ51が閉じられる。そして、スピンモータ23が、高回転速度(たとえば3000rpm)で基板Wを回転させる。これにより、大きな遠心力が基板W上のリンス液に作用し、基板W上のリンス液が基板Wの周囲に振り切られる。このようにして、基板Wからリンス液が除去され、基板Wが乾燥される。そして、基板Wの高速回転が開始されてから所定時間が経過すると、スピンモータ23が、スピンベース21による基板Wの回転を停止させる。 Specifically, the rinse liquid valve 51 is closed. Then, the spin motor 23 rotates the substrate W at a high rotation speed (for example, 3000 rpm). Thereby, a large centrifugal force acts on the rinsing liquid on the substrate W, and the rinsing liquid on the substrate W is shaken off around the substrate W. In this way, the rinsing liquid is removed from the substrate W, and the substrate W is dried. When a predetermined time elapses after the high-speed rotation of the substrate W is started, the spin motor 23 stops the rotation of the substrate W by the spin base 21.
 以下では、上述した基板処理を実行した後の基板Wの上面に付着するパーティクルの数(パーティクル数)を測定した結果について説明する。 Hereinafter, the results of measuring the number of particles (number of particles) adhering to the upper surface of the substrate W after performing the above-described substrate processing will be described.
 この実験では、まず、基板の表面を疎水化するために、フッ化水素と水とを混合したフッ酸を用いた。また、レジストを除去するため、硫酸と過酸化水素水とを混合したSPM液を用いた。また、レジストを除去するため、過酸化水素水とアンモニア水と水とを混合したSC1液を用いた。 In this experiment, first, hydrofluoric acid mixed with hydrogen fluoride and water was used to make the surface of the substrate hydrophobic. Further, in order to remove the resist, an SPM solution in which sulfuric acid and hydrogen peroxide solution were mixed was used. Further, in order to remove the resist, SC1 solution in which hydrogen peroxide water, ammonia water and water were mixed was used.
 図6は、上述した基板処理を実行した後のパーティクル数の測定した実験結果を示すグラフである。この実験は、基板Wの上面への硫酸の供給を開始してから基板Wの回転を加速させるまでの時間(パドル状態維持時間t)を変化させて実行された。 FIG. 6 is a graph showing experimental results obtained by measuring the number of particles after performing the above-described substrate processing. This experiment was performed by changing the time (paddle state maintaining time t) from the start of the supply of sulfuric acid to the upper surface of the substrate W to the acceleration of the rotation of the substrate W.
 詳しくは、パドル状態維持時間を0秒間とした基板処理(t=0)、パドル状態維持時間を0秒間よりも長く1秒間よりも短い時間とした基板処理(0<t<1)、パドル状態維持時間を1秒間とした基板処理(t=1)を実行した。さらに、パドル状態維持時間を1秒間よりも長い時間とした基板処理(t=2,t=3,t=5,t=7,t=10)も実行した。各基板処理は、5枚の基板Wに対して実行された。 Specifically, substrate processing with a paddle state maintaining time of 0 seconds (t = 0), substrate processing with a paddle state maintaining time longer than 0 seconds and shorter than 1 second (0 <t <1), paddle state Substrate processing (t = 1) was performed with a maintenance time of 1 second. Further, substrate processing (t = 2, t = 3, t = 5, t = 7, t = 10) was performed with the paddle state maintaining time longer than 1 second. Each substrate processing was performed on five substrates W.
 図6の横軸は、パドル状態維持時間である。図6の縦軸は、パドル状態維持時間を0秒間とした基板処理(t=0)の後の基板W上のパーティクル数に対する、各基板処理後の基板W上のパーティクル数の割合(パーティクル割合)である。パーティクル数は、たとえば、パーティクルカウンタ(図示せず)で測定された。 The horizontal axis in FIG. 6 is the paddle state maintenance time. The vertical axis in FIG. 6 represents the ratio of the number of particles on the substrate W after each substrate processing (particle ratio) to the number of particles on the substrate W after the substrate processing (t = 0) with the paddle state maintaining time being 0 seconds. ). The number of particles was measured by, for example, a particle counter (not shown).
 図6に示すように、パドル状態維持時間を0秒間よりも長く1秒間よりも短い時間とした基板処理(0<t<1)によって、基板W上のパーティクル数は、パドル状態維持時間を0秒とした基板処理(t=0)後のパーティクル数の30%にまで減少した。パドル状態維持時間を1秒間とした基板処理(t=1)によって、基板W上のパーティクル数は、パドル状態維持時間を0秒とした基板処理(t=0)後のパーティクル数の10%にまで減少した。パドル状態維持時間を2秒間とした基板処理(t=2)、パドル状態維持時間を3秒間とした基板処理(t=3)、パドル状態維持時間を5秒間とした基板処理(t=5)、パドル状態維時間を7秒間とした基板処理(t=7)およびパドル状態維持時間を10秒間とした基板処理(t=10)によっても、基板W上のパーティクル数は、パドル状態維持時間を0秒とした基板処理(t=0)後のパーティクル数の10%にまで減少した。 As shown in FIG. 6, by the substrate processing (0 <t <1) in which the paddle state maintenance time is longer than 0 seconds and shorter than 1 second, the number of particles on the substrate W becomes 0 in the paddle state maintenance time. It decreased to 30% of the number of particles after the substrate processing (second = 0). By the substrate processing (t = 1) with the paddle state maintaining time of 1 second, the number of particles on the substrate W becomes 10% of the number of particles after the substrate processing (t = 0) with the paddle state maintaining time of 0 second. Decreased to. Substrate processing with a paddle state maintaining time of 2 seconds (t = 2), substrate processing with a paddle state maintaining time of 3 seconds (t = 3), and substrate processing with a paddle state maintaining time of 5 seconds (t = 5) Also, the number of particles on the substrate W is reduced by the substrate processing (t = 7) with the paddle state maintaining time of 7 seconds and the substrate processing (t = 10) with the paddle state maintaining time of 10 seconds. It decreased to 10% of the number of particles after the substrate treatment (t = 0) at 0 second.
 このように、パドル状態維持時間を設定することで、基板処理後に基板W上に発生するパーティクルの数が低減された。さらに、パドル状態維持時間を1秒以上とすることで、基板処理後に基板W上に発生するパーティクルの数が顕著に低減された。 Thus, by setting the paddle state maintaining time, the number of particles generated on the substrate W after the substrate processing was reduced. Furthermore, by setting the paddle state maintenance time to 1 second or longer, the number of particles generated on the substrate W after the substrate processing is significantly reduced.
 この実施形態では、基板Wの疎水化された上面にリンス液膜100が形成される(液膜形成工程)。そして、リンス液膜100を保持する基板Wの上面に向けて、硫酸が供給され、基板Wの上面に硫酸含有液膜101が形成される(硫酸含有液膜形成工程)。そして、硫酸含有液膜101を保持する基板Wの上面に向けてSPM液が供給される(SPM液供給工程)。 In this embodiment, the rinsing liquid film 100 is formed on the hydrophobicized upper surface of the substrate W (liquid film forming step). Then, sulfuric acid is supplied toward the upper surface of the substrate W holding the rinse liquid film 100, and the sulfuric acid-containing liquid film 101 is formed on the upper surface of the substrate W (sulfuric acid-containing liquid film forming step). Then, the SPM liquid is supplied toward the upper surface of the substrate W holding the sulfuric acid-containing liquid film 101 (SPM liquid supply process).
 この実施形態によれば、基板Wの上面にリンス液膜100が形成された状態で、SPM液よりも先に硫酸が基板Wの上面に向けて供給される。また、硫酸およびSPM液は基板Wの上面を親水化する液体であり、一般的に、硫酸は、疎水化された上面に対する反応性がSPM液よりも低い。そのため、反応性が比較的低い硫酸によって基板Wの上面の親水化がある程度進んだ後(硫酸含有液膜形成工程の後)に、反応性が比較的高いSPM液によって基板Wの上面がさらに親水化される。つまり、基板Wの上面を段階的に親水化することができる。 According to this embodiment, sulfuric acid is supplied toward the upper surface of the substrate W prior to the SPM solution in a state where the rinse liquid film 100 is formed on the upper surface of the substrate W. In addition, sulfuric acid and SPM liquid are liquids that hydrophilize the upper surface of the substrate W. In general, sulfuric acid has lower reactivity with respect to the hydrophobized upper surface than the SPM liquid. Therefore, after the hydrophilicity of the upper surface of the substrate W has progressed to some extent by sulfuric acid having a relatively low reactivity (after the sulfuric acid-containing liquid film forming step), the upper surface of the substrate W is further made hydrophilic by an SPM solution having a relatively high reactivity. It becomes. That is, the upper surface of the substrate W can be made hydrophilic stepwise.
 そのため、リンス液膜100が形成された基板Wの上面に硫酸を供給することなくSPM液を供給する場合と比較して、基板Wの上面とSPM液とを穏やかに反応させることができる。したがって、基板Wの上面とSPM液との反応に起因する気泡の発生を抑制することができる。その結果、疎水化された上面を有する基板Wを処理する際にパーティクルの発生を抑制することができる。 Therefore, the upper surface of the substrate W and the SPM liquid can be caused to react gently compared to the case where the SPM liquid is supplied without supplying sulfuric acid to the upper surface of the substrate W on which the rinse liquid film 100 is formed. Therefore, the generation of bubbles due to the reaction between the upper surface of the substrate W and the SPM liquid can be suppressed. As a result, generation of particles can be suppressed when processing the substrate W having a hydrophobicized upper surface.
 また、この実施形態では、硫酸含有液膜形成工程において、リンス液膜100中のリンス液を硫酸で置換することによって、硫酸含有液膜101が形成される。そのため、リンス液膜100が形成されてから硫酸含有液膜101が形成されるまでの間において、基板Wの上面の露出を抑制できる。 In this embodiment, the sulfuric acid-containing liquid film 101 is formed by replacing the rinsing liquid in the rinsing liquid film 100 with sulfuric acid in the sulfuric acid-containing liquid film forming step. Therefore, exposure of the upper surface of the substrate W can be suppressed between the formation of the rinse liquid film 100 and the formation of the sulfuric acid-containing liquid film 101.
 また、この実施形態では、SPM含有液膜形成工程において、硫酸含有液膜101中の硫酸をSPM液で置換することによって、SPM含有液膜102が形成される。そのため、硫酸含有液膜101が形成されてからSPM含有液膜102が形成されるまでの間において、基板Wの上面の露出を抑制できる。また、リンス液膜形成工程の開始からSPM含有液膜形成工程の間において、基板Wの上面の露出を避けることができるので、基板Wの上面の露出に起因するパーティクルの発生を一層抑制できる。 In this embodiment, the SPM-containing liquid film 102 is formed by replacing the sulfuric acid in the sulfuric acid-containing liquid film 101 with the SPM liquid in the SPM-containing liquid film forming step. Therefore, exposure of the upper surface of the substrate W can be suppressed during the period from when the sulfuric acid-containing liquid film 101 is formed to when the SPM-containing liquid film 102 is formed. Moreover, since the exposure of the upper surface of the substrate W can be avoided during the SPM-containing liquid film formation step from the start of the rinse liquid film formation step, the generation of particles due to the exposure of the upper surface of the substrate W can be further suppressed.
 また、この実施形態では、リンス液膜形成工程において、基板Wの回転を減速させる(回転減速工程)。そのため、基板Wの回転の減速によって、基板W上のリンス液に作用する遠心力を低減できる。そのため、リンス液膜100の厚みを増大させることができる。すなわち、リンス液膜100をパドル状態にすることができる。リンス液膜100の厚みが増大されることによって、基板Wの上面が露出しにくくなる。したがって、基板Wの上面の露出に起因するパーティクルの発生を抑制できる。 In this embodiment, in the rinse liquid film forming step, the rotation of the substrate W is decelerated (rotation decelerating step). Therefore, the centrifugal force acting on the rinse liquid on the substrate W can be reduced by the deceleration of the rotation of the substrate W. Therefore, the thickness of the rinse liquid film 100 can be increased. That is, the rinse liquid film 100 can be put into a paddle state. As the thickness of the rinse liquid film 100 is increased, the upper surface of the substrate W becomes difficult to be exposed. Therefore, generation of particles due to exposure of the upper surface of the substrate W can be suppressed.
 また、この実施形態では、回転加速工程は、基板Wの上面への硫酸の供給の開始よりも後に開始される。そのため、基板Wの上面への硫酸の供給開始前には、充分な厚みの(パドル状態の)リンス液膜100が維持されている。そのため、基板Wの上面への硫酸の供給が開始される前にリンス液膜100が基板Wの上面から振り切られることを抑制できる。したがって、基板Wの上面が露出することを抑制できる。さらに、回転加速工程が、基板W上のDIW(リンス液)を硫酸で置換し終える前に開始される。そのため、基板W上の硫酸に作用する遠心力を増大させることができる。したがって、硫酸が基板Wの上面の全体に広がるまでの時間を短縮することができる。 Further, in this embodiment, the rotation acceleration step is started after the start of supply of sulfuric acid to the upper surface of the substrate W. For this reason, the rinse liquid film 100 having a sufficient thickness (paddle state) is maintained before the supply of sulfuric acid to the upper surface of the substrate W is started. Therefore, the rinse liquid film 100 can be prevented from being shaken off from the upper surface of the substrate W before the supply of sulfuric acid to the upper surface of the substrate W is started. Therefore, exposure of the upper surface of the substrate W can be suppressed. Further, the rotation acceleration process is started before the DIW (rinse solution) on the substrate W is replaced with sulfuric acid. Therefore, the centrifugal force acting on the sulfuric acid on the substrate W can be increased. Therefore, it is possible to shorten the time until sulfuric acid spreads over the entire upper surface of the substrate W.
 また、この実施形態では、SPM含有液膜形成工程中のSPM液供給工程が、基板W上のリンス液を硫酸に置換し終えた状態で開始される。そのため、基板Wの上面全体が硫酸によって親水化された状態で、基板Wの上面へのSPM液の供給が開始される。したがって、基板Wの上面とSPM液との反応による気泡の発生を基板Wの上面の全域において抑制することができる。 In this embodiment, the SPM liquid supply process in the SPM-containing liquid film forming process is started in a state where the rinsing liquid on the substrate W has been replaced with sulfuric acid. Therefore, the supply of the SPM liquid to the upper surface of the substrate W is started in a state where the entire upper surface of the substrate W is hydrophilized with sulfuric acid. Therefore, the generation of bubbles due to the reaction between the upper surface of the substrate W and the SPM liquid can be suppressed over the entire upper surface of the substrate W.
 また、この実施形態では、硫酸液膜形成工程中の硫酸供給工程において、硫酸バルブ53を開くことによって共通ノズル18から硫酸が吐出される(硫酸吐出工程)。そして、硫酸吐出工程の実行によって硫酸バルブ53が開かれた状態で、過酸化水素水バルブ54を開くことによって、共通ノズル18からSPM液が吐出される(SPM液吐出工程)。 In this embodiment, sulfuric acid is discharged from the common nozzle 18 by opening the sulfuric acid valve 53 in the sulfuric acid supply step in the sulfuric acid liquid film forming step (sulfuric acid discharging step). Then, the SPM liquid is discharged from the common nozzle 18 by opening the hydrogen peroxide water valve 54 in a state where the sulfuric acid valve 53 is opened by the execution of the sulfuric acid discharge process (SPM liquid discharge process).
 この実施形態とは異なり硫酸とSPM液とを別々のノズルから吐出する構成では、硫酸供給工程からSPM液供給工程に移行する際にノズルを移動させたり、複数のバルブ間で開閉タイミングを調節したりする必要がある。一方、この実施形態のように、硫酸とSPM液とが共通ノズル18から吐出される構成であれば、過酸化水素水バルブ54を開くだけで硫酸供給工程からSPM液供給工程に移行することができる。 Unlike in this embodiment, in a configuration in which sulfuric acid and SPM liquid are discharged from separate nozzles, the nozzle is moved when the sulfuric acid supply process shifts to the SPM liquid supply process, and the opening / closing timing is adjusted among a plurality of valves. It is necessary to do. On the other hand, if the configuration is such that sulfuric acid and SPM liquid are discharged from the common nozzle 18 as in this embodiment, it is possible to shift from the sulfuric acid supply process to the SPM liquid supply process simply by opening the hydrogen peroxide solution valve 54. it can.
 そのため、硫酸供給工程からSPM液供給工程への切替を、所望のタイミングで簡単に行うことができる。硫酸供給工程からSPM液供給工程への切替が所望のタイミングで行われることによって、基板Wの上面への硫酸の過剰な供給に起因するコストの増大を抑制することができる。さらに、基板Wの上面への硫酸の供給が不足することに起因して基板Wの上面の親水化が不充分となることを抑制することができる。 Therefore, switching from the sulfuric acid supply process to the SPM liquid supply process can be easily performed at a desired timing. By switching from the sulfuric acid supply process to the SPM liquid supply process at a desired timing, an increase in cost due to excessive supply of sulfuric acid to the upper surface of the substrate W can be suppressed. Furthermore, it is possible to prevent the hydrophilicity of the upper surface of the substrate W from becoming insufficient due to insufficient supply of sulfuric acid to the upper surface of the substrate W.
 また、この実施形態では、リンス液が基板Wの上面に供給される前に、基板Wの上面に向けてフッ酸が供給される(フッ酸供給工程)。そのため、液膜形成工程の開始前に、フッ酸によって基板Wの上面が確実に疎水化される。 In this embodiment, before the rinse liquid is supplied to the upper surface of the substrate W, hydrofluoric acid is supplied toward the upper surface of the substrate W (hydrofluoric acid supply step). Therefore, the upper surface of the substrate W is reliably hydrophobized by the hydrofluoric acid before the liquid film forming step is started.
 また、この実施形態では、硫酸含有液膜形成工程(硫酸供給工程)において基板Wの上面に供給される硫酸の温度が120℃~190℃であり、SPM含有液膜形成工程(SPM液供給工程)において基板Wの上面に供給されるSPM液の温度が160℃~220℃である。硫酸の温度は、SPM液の温度よりも低くすることが好ましい。そのように温度差ができるように硫酸の温度およびSPM液の温度を設定すると、硫酸と基板Wの上面との反応性を一層低減することができる。これにより、硫酸と基板Wの上面との反応性とSPM液と基板Wの上面との反応性との差を大きくすることができる。よって、基板Wの上面を確実に段階的に親水化することができる。 In this embodiment, the temperature of sulfuric acid supplied to the upper surface of the substrate W in the sulfuric acid-containing liquid film forming step (sulfuric acid supplying step) is 120 ° C. to 190 ° C., and the SPM-containing liquid film forming step (SPM liquid supplying step) ), The temperature of the SPM liquid supplied to the upper surface of the substrate W is 160 ° C. to 220 ° C. The temperature of the sulfuric acid is preferably lower than the temperature of the SPM solution. When the temperature of sulfuric acid and the temperature of the SPM liquid are set so that a temperature difference can be made in this way, the reactivity between sulfuric acid and the upper surface of the substrate W can be further reduced. Thereby, the difference between the reactivity between the sulfuric acid and the upper surface of the substrate W and the reactivity between the SPM liquid and the upper surface of the substrate W can be increased. Therefore, the upper surface of the substrate W can be made hydrophilic stepwise with certainty.
 また、この実施形態では、基板Wの上面の中央領域に硫酸が供給される(中央供給工程)。そのため、硫酸を基板Wの上面の全体に均一に広げることができる。 In this embodiment, sulfuric acid is supplied to the central region on the upper surface of the substrate W (central supply step). Therefore, sulfuric acid can be spread uniformly over the entire top surface of the substrate W.
 また、共通ノズル18から吐出される硫酸の流量は、共通ノズル18から吐出されるSPM液の流量と比較して安定している。そのため、硫酸は、SPM液と比較して基板Wの上面の全体に均一に広がりやすい。そのため、SPM液供給工程の前に硫酸供給工程を実行することによって、基板Wの上面の全体が満遍なく親水化された状態でSPM液供給工程を開始することができる。 Also, the flow rate of sulfuric acid discharged from the common nozzle 18 is stable as compared with the flow rate of SPM liquid discharged from the common nozzle 18. Therefore, sulfuric acid tends to spread uniformly over the entire top surface of the substrate W as compared with the SPM liquid. Therefore, by executing the sulfuric acid supply process before the SPM liquid supply process, the SPM liquid supply process can be started in a state where the entire upper surface of the substrate W is uniformly hydrophilicized.
 また、硫酸供給管43から共通ノズル18に供給される硫酸水溶液中の硫酸の質量パーセント濃度が、85%以上で、かつ、98%以下であれば、充分に硫酸の濃度が高いSPM液を共通ノズル18内で調整することができる。これにより、SPM液処理(ステップS4)において基板W上のレジストを良好に剥離することができる。 In addition, if the mass percent concentration of sulfuric acid in the sulfuric acid aqueous solution supplied from the sulfuric acid supply pipe 43 to the common nozzle 18 is 85% or more and 98% or less, a common SPM solution having a sufficiently high concentration of sulfuric acid is used. Adjustment can be made within the nozzle 18. Thereby, the resist on the substrate W can be satisfactorily peeled in the SPM liquid treatment (step S4).
 この発明は、以上に説明した実施形態に限定されるものではなく、さらに他の形態で実施することができる。 The present invention is not limited to the embodiment described above, and can be implemented in other forms.
 たとえば、上述の実施形態では、硫酸処理(ステップS3)において、硫酸供給工程は、共通ノズル18が中心位置に位置する状態で行われた。しかしながら、図7に示すように、上述の実施形態とは異なり、硫酸供給工程では、第2ノズル移動ユニット31が、共通ノズル18を中心位置と周縁位置との間で移動させてもよい(ノズル移動工程)。周縁位置とは、共通ノズル18から供給される硫酸やSPM液が基板Wの周縁領域R2に着液するときの共通ノズル18の位置である。 For example, in the above-described embodiment, in the sulfuric acid treatment (step S3), the sulfuric acid supply step is performed with the common nozzle 18 positioned at the center position. However, as shown in FIG. 7, unlike the above-described embodiment, in the sulfuric acid supply step, the second nozzle moving unit 31 may move the common nozzle 18 between the center position and the peripheral position (nozzle). Moving process). The peripheral position is the position of the common nozzle 18 when the sulfuric acid or the SPM liquid supplied from the common nozzle 18 is deposited on the peripheral region R2 of the substrate W.
 ノズル移動工程が実行されることによって、基板Wの上面において硫酸が供給される供給位置Pを、基板Wの上面の中央領域R1と基板Wの上面の周縁領域R2との間で移動させる供給位置移動工程が実行される。 A supply position where the supply position P to which sulfuric acid is supplied on the upper surface of the substrate W is moved between the central region R1 on the upper surface of the substrate W and the peripheral region R2 on the upper surface of the substrate W by performing the nozzle moving step. A moving process is performed.
 また、上述の実施形態の基板処理では、硫酸処理(ステップS3)において、基板Wの上面への硫酸の供給が開始されてから、1秒間以上10秒間以下の期間が経過したときに(パドル状態維持時間が1秒間以上で10秒間以内となるように)基板Wの回転が加速された。これにより、基板処理後のパーティクル数が顕著に低減された。 In the substrate processing of the above-described embodiment, in the sulfuric acid processing (step S3), when a period of 1 second or more and 10 seconds or less has elapsed after the supply of sulfuric acid to the upper surface of the substrate W is started (paddle state). The rotation of the substrate W was accelerated so that the maintenance time was 1 second or longer and within 10 seconds. Thereby, the number of particles after the substrate processing was remarkably reduced.
 しかしながら、上述の実施形態とは異なり、基板Wの上面への硫酸の供給の開始と、基板Wの回転の加速とが同時に実行されてもよい。また、パドル状態維持時間が0秒間よりも長く1秒間よりも短くなるように、基板Wの上面への硫酸の供給の開始直後に基板Wの回転が加速されてもよい。その場合、パドル状態維持時間が1秒間以上で10秒間以内である場合よりも硫酸による親水化が進まないが、基板Wの上面を充分に親水化することができる。 However, unlike the above-described embodiment, the start of the supply of sulfuric acid to the upper surface of the substrate W and the acceleration of the rotation of the substrate W may be performed simultaneously. Further, the rotation of the substrate W may be accelerated immediately after the start of supply of sulfuric acid to the upper surface of the substrate W so that the paddle state maintaining time is longer than 0 seconds and shorter than 1 second. In that case, the hydrophilization by sulfuric acid does not progress more than the case where the paddle state maintenance time is 1 second or more and within 10 seconds, but the upper surface of the substrate W can be sufficiently hydrophilized.
 また、上述の実施形態では、共通ノズル18内で硫酸と過酸化水素水とが混合されてSPM液が調製されるように構成された例について説明した。しかしながら、上述の実施形態とは異なり、図8に示すように、共通ノズル18には、共通配管70が接続されており、共通配管70内で硫酸と過酸化水素水とが混合されるように構成されていてもよい。 Further, in the above-described embodiment, the example in which the SPM liquid is prepared by mixing sulfuric acid and hydrogen peroxide solution in the common nozzle 18 has been described. However, unlike the above-described embodiment, as shown in FIG. 8, a common pipe 70 is connected to the common nozzle 18 so that sulfuric acid and hydrogen peroxide water are mixed in the common pipe 70. It may be configured.
 共通配管70が設けられた構成では、共通配管70には、硫酸供給管43および過酸化水素水供給管44が接続されていて、共通配管70と共通ノズル18とに接続された接続配管71が設けられている。接続配管71には、共通バルブ72が介装されている。共通配管70、接続配管71および共通バルブ72は、硫酸供給ユニット12に含まれている。すなわち、共通配管70、接続配管71および共通バルブ72は、SPM液供給ユニット13にも含まれる。 In the configuration provided with the common pipe 70, the sulfuric acid supply pipe 43 and the hydrogen peroxide solution supply pipe 44 are connected to the common pipe 70, and the connection pipe 71 connected to the common pipe 70 and the common nozzle 18 is provided. Is provided. A common valve 72 is interposed in the connection pipe 71. The common pipe 70, the connection pipe 71 and the common valve 72 are included in the sulfuric acid supply unit 12. That is, the common pipe 70, the connection pipe 71 and the common valve 72 are also included in the SPM liquid supply unit 13.
 また、上述の実施形態では、共通ノズル18は、硫酸およびSPM液のそれぞれを吐出できるように構成されていた。しかしながら、上述の実施形態とは異なり、硫酸を吐出するノズルと、SPM液を吐出するノズルとが別々に設けられていてもよい。 In the above-described embodiment, the common nozzle 18 is configured to discharge each of sulfuric acid and SPM liquid. However, unlike the above-mentioned embodiment, the nozzle which discharges sulfuric acid and the nozzle which discharges SPM liquid may be provided separately.
 また、上述の実施形態では、フッ酸処理(ステップS1)によって、基板Wの上面が疎水化されるとした。しかしながら、上述の実施形態とは異なり、処理ユニット2には、上面が予め疎水化された基板Wが搬入されてもよい。処理ユニット2に搬入される基板Wの上面が疎水化されている場合には、処理ユニット2は、フッ酸処理が省略された基板処理を実行してもよい。 In the above-described embodiment, the upper surface of the substrate W is hydrophobized by the hydrofluoric acid treatment (step S1). However, unlike the above-described embodiment, the processing unit 2 may be loaded with a substrate W whose upper surface is previously hydrophobized. When the upper surface of the substrate W carried into the processing unit 2 is hydrophobized, the processing unit 2 may perform the substrate processing in which the hydrofluoric acid processing is omitted.
 また、上述の実施形態では、リンス液膜形成工程において、リンス液としてDIWを用いたが、希釈した硫酸をDIWの代わりに用いてもよい。すなわち、基板Wの上面に希釈した硫酸の液膜を形成した後、硫酸を基板Wの上面に供給してもよい。 In the above-described embodiment, DIW is used as the rinse liquid in the rinse liquid film forming step. However, diluted sulfuric acid may be used instead of DIW. In other words, after forming a diluted sulfuric acid liquid film on the upper surface of the substrate W, the sulfuric acid may be supplied to the upper surface of the substrate W.
 また、基板処理装置1による基板処理の一例を説明するための流れ図(図4)の第3リンス液処理(ステップS7)において、基板Wの上面にリンス液を供給した後、さらにIPA(イソプロピルアルコール)を基板Wの上面に供給し、リンス液をIPAで置換してもよい。また、リンス液をIPAで置換した後、撥水剤を基板Wの上面に供給してもよい。 Further, in the third rinsing liquid process (step S7) in the flowchart (FIG. 4) for explaining an example of the substrate processing by the substrate processing apparatus 1, after the rinsing liquid is supplied to the upper surface of the substrate W, IPA (isopropyl alcohol) is further added. ) May be supplied to the upper surface of the substrate W, and the rinse liquid may be replaced with IPA. Further, the water repellent may be supplied to the upper surface of the substrate W after the rinsing liquid is replaced with IPA.
 本発明の実施形態について詳細に説明してきたが、これらは本発明の技術的内容を明らかにするために用いられた具体例に過ぎず、本発明はこれらの具体例に限定して解釈されるべきではなく、本発明の範囲は添付の請求の範囲によってのみ限定される。 Although the embodiments of the present invention have been described in detail, these are only specific examples used to clarify the technical contents of the present invention, and the present invention is construed to be limited to these specific examples. Rather, the scope of the present invention is limited only by the accompanying claims.
 この出願は、2018年5月30日に日本国特許庁に提出された特願2018-103781号に対応しており、この出願の全開示はここに引用により組み込まれるものとする。 This application corresponds to Japanese Patent Application No. 2018-103781 filed with the Japan Patent Office on May 30, 2018, and the entire disclosure of this application is incorporated herein by reference.
1   :基板処理装置
3   :コントローラ
9   :フッ酸供給ユニット
10  :リンス液供給ユニット
12  :硫酸供給ユニット
13  :SPM液供給ユニット
18  :共通ノズル(ノズル)
20  :チャックピン(基板保持ユニット)
21  :スピンベース(基板保持ユニット)
22  :回転軸(基板回転ユニット)
23  :スピンモータ(基板回転ユニット)
43  :硫酸供給管
44  :過酸化水素水供給管
53  :硫酸バルブ
54  :過酸化水素水バルブ
100 :リンス液膜
101 :硫酸含有液膜
102 :SPM含有液膜
A1  :回転軸線
W   :基板
1: substrate processing apparatus 3: controller 9: hydrofluoric acid supply unit 10: rinsing liquid supply unit 12: sulfuric acid supply unit 13: SPM liquid supply unit 18: common nozzle (nozzle)
20: Chuck pin (substrate holding unit)
21: Spin base (substrate holding unit)
22: Rotating shaft (substrate rotating unit)
23: Spin motor (substrate rotation unit)
43: Sulfuric acid supply pipe 44: Hydrogen peroxide water supply pipe 53: Sulfuric acid valve 54: Hydrogen peroxide water valve 100: Rinse liquid film 101: Sulfuric acid-containing liquid film 102: SPM-containing liquid film A1: Rotation axis W: Substrate

Claims (20)

  1.  基板を水平に保持する基板保持工程と、
     前記基板の疎水化された上面に向けてリンス液を供給して、前記基板の前記上面にリンス液膜を形成するリンス液膜形成工程と、
     前記リンス液膜を保持する前記基板の前記上面に向けて、硫酸を供給して、前記硫酸を含有する硫酸含有液膜を前記基板の前記上面に形成する硫酸含有液膜形成工程と、
     前記硫酸含有液膜を保持する前記基板の前記上面に向けて、硫酸と過酸化水素水との混合液であるSPM液を供給するSPM液供給工程とを含む、基板処理方法。
    A substrate holding step for holding the substrate horizontally;
    A rinse liquid film forming step of supplying a rinse liquid toward the hydrophobicized upper surface of the substrate to form a rinse liquid film on the upper surface of the substrate;
    A sulfuric acid-containing liquid film forming step of forming sulfuric acid-containing liquid film containing sulfuric acid on the upper surface of the substrate by supplying sulfuric acid toward the upper surface of the substrate holding the rinse liquid film;
    A substrate processing method comprising: an SPM liquid supply step of supplying an SPM liquid that is a mixed liquid of sulfuric acid and hydrogen peroxide solution toward the upper surface of the substrate holding the sulfuric acid-containing liquid film.
  2.  前記硫酸含有液膜形成工程が、前記リンス液膜中のリンス液を硫酸で置換することによって、前記硫酸含有液膜を形成する工程を含む、請求項1に記載の基板処理方法。 2. The substrate processing method according to claim 1, wherein the sulfuric acid-containing liquid film forming step includes a step of forming the sulfuric acid-containing liquid film by replacing a rinsing liquid in the rinsing liquid film with sulfuric acid.
  3.  鉛直方向に沿う回転軸線のまわりに前記基板を回転させる基板回転工程と、
     前記リンス液膜形成工程において前記基板の回転を減速させる回転減速工程とをさらに含む、請求項1または2に記載の基板処理方法。
    A substrate rotation step of rotating the substrate around a rotation axis along the vertical direction;
    The substrate processing method according to claim 1, further comprising a rotation deceleration step of decelerating the rotation of the substrate in the rinse liquid film formation step.
  4.  前記基板の前記上面への硫酸の供給の開始よりも後に前記基板の回転を加速させる回転加速工程をさらに含む、請求項3に記載の基板処理方法。 4. The substrate processing method according to claim 3, further comprising a rotation acceleration step of accelerating rotation of the substrate after the start of supply of sulfuric acid to the upper surface of the substrate.
  5.  前記回転加速工程が、前記基板上の前記リンス液を硫酸で置換し終える前に開始される、請求項4に記載の基板処理方法。 The substrate processing method according to claim 4, wherein the rotation acceleration step is started before the rinsing liquid on the substrate is replaced with sulfuric acid.
  6.  前記SPM液供給工程が、前記基板上の前記リンス液を硫酸に置換し終えた状態で開始される、請求項1~5のいずれか一項に記載の基板処理方法。 6. The substrate processing method according to claim 1, wherein the SPM liquid supply step is started in a state where the rinsing liquid on the substrate has been replaced with sulfuric acid.
  7.  前記硫酸含有液膜形成工程が、前記基板の前記上面に対向するノズルに硫酸を供給する硫酸供給管に介装された硫酸バルブを開くことによって前記ノズルから硫酸が吐出される硫酸吐出工程を含み、
     前記SPM液供給工程が、前記硫酸吐出工程の実行によって前記硫酸バルブが開かれた状態で、前記ノズルに過酸化水素水を供給する過酸化水素水供給管に介装された過酸化水素水バルブを開くことによって、前記SPM液が前記ノズルから吐出されるSPM液吐出工程を含む、請求項1~6のいずれか一項に記載の基板処理方法。
    The sulfuric acid-containing liquid film forming step includes a sulfuric acid discharge step in which sulfuric acid is discharged from the nozzle by opening a sulfuric acid valve interposed in a sulfuric acid supply pipe that supplies sulfuric acid to the nozzle facing the upper surface of the substrate. ,
    In the SPM liquid supply process, a hydrogen peroxide solution valve interposed in a hydrogen peroxide solution supply pipe for supplying hydrogen peroxide solution to the nozzle in a state where the sulfuric acid valve is opened by executing the sulfuric acid discharge step. The substrate processing method according to any one of claims 1 to 6, further comprising: an SPM liquid discharging step in which the SPM liquid is discharged from the nozzle by opening.
  8.  前記リンス液が前記基板の前記上面に供給される前に、前記基板の前記上面に向けてフッ酸を供給するフッ酸供給工程をさらに含む、請求項1~7のいずれか一項に記載の基板処理方法。 The hydrofluoric acid supply step of supplying hydrofluoric acid toward the upper surface of the substrate before the rinsing liquid is supplied to the upper surface of the substrate. Substrate processing method.
  9.  前記硫酸含有液膜形成工程において前記基板の前記上面に供給される硫酸の温度が、前記SPM液供給工程において前記基板の前記上面に供給される前記SPM液の温度よりも低い、請求項1~8のいずれか一項に記載の基板処理方法。 The temperature of sulfuric acid supplied to the upper surface of the substrate in the sulfuric acid-containing liquid film forming step is lower than the temperature of the SPM liquid supplied to the upper surface of the substrate in the SPM liquid supplying step. The substrate processing method according to claim 8.
  10.  前記硫酸含有液膜形成工程が、前記基板の前記上面の中央領域に硫酸を供給する中央供給工程を含む、請求項1~9のいずれか一項に記載の基板処理方法。 The substrate processing method according to any one of claims 1 to 9, wherein the sulfuric acid-containing liquid film forming step includes a central supply step of supplying sulfuric acid to a central region of the upper surface of the substrate.
  11.  基板を水平に保持する基板保持ユニットと、
     リンス液を前記基板の上面に向けて供給するリンス液供給ユニットと、
     硫酸を前記基板の前記上面に向けて供給する硫酸供給ユニットと、
     硫酸と過酸化水素水との混合液であるSPM液を前記基板の前記上面に向けて供給するSPM液供給ユニットと、
     前記リンス液供給ユニット、前記硫酸供給ユニットおよび前記SPM液供給ユニットを制御するコントローラとを含み、
     前記コントローラが、前記基板の疎水化された前記上面に向けて前記リンス液供給ユニットから前記リンス液を供給することによって、前記基板の前記上面にリンス液膜を形成するリンス液膜形成工程と、前記リンス液膜を保持する前記基板の前記上面に向けて、前記硫酸供給ユニットから硫酸を供給して、硫酸を含有する硫酸含有液膜を前記基板の前記上面に形成する硫酸含有液膜形成工程と、前記硫酸含有液膜を保持する前記基板の前記上面に向けて、前記SPM液供給ユニットから前記SPM液を供給するSPM液供給工程とを実行するようにプログラムされている、基板処理装置。
    A substrate holding unit for horizontally holding the substrate;
    A rinsing liquid supply unit for supplying a rinsing liquid toward the upper surface of the substrate;
    A sulfuric acid supply unit for supplying sulfuric acid toward the upper surface of the substrate;
    An SPM liquid supply unit that supplies an SPM liquid, which is a mixed liquid of sulfuric acid and hydrogen peroxide, toward the upper surface of the substrate;
    A controller that controls the rinse liquid supply unit, the sulfuric acid supply unit, and the SPM liquid supply unit;
    A rinsing liquid film forming step of forming a rinsing liquid film on the upper surface of the substrate by supplying the rinsing liquid from the rinsing liquid supply unit toward the hydrophobicized upper surface of the substrate; A sulfuric acid-containing liquid film forming step of forming sulfuric acid-containing liquid film containing sulfuric acid on the upper surface of the substrate by supplying sulfuric acid from the sulfuric acid supply unit toward the upper surface of the substrate holding the rinse liquid film And a substrate processing apparatus programmed to execute an SPM liquid supply step of supplying the SPM liquid from the SPM liquid supply unit toward the upper surface of the substrate holding the sulfuric acid-containing liquid film.
  12.  前記コントローラが、前記硫酸含有液膜形成工程において、前記リンス液膜中のリンス液を硫酸で置換することによって、前記硫酸含有液膜を形成するようにプログラムされている、請求項11に記載の基板処理装置。 12. The controller according to claim 11, wherein the controller is programmed to form the sulfuric acid-containing liquid film by replacing the rinsing liquid in the rinsing liquid film with sulfuric acid in the sulfuric acid-containing liquid film forming step. Substrate processing equipment.
  13.  鉛直方向に沿う回転軸線のまわりに前記基板を回転させる基板回転ユニットをさらに含み、
     前記コントローラが、前記基板回転ユニットに、前記基板を回転させる基板回転工程と、前記リンス液膜形成工程において前記基板回転ユニットに前記基板の回転を減速させる回転減速工程とを実行するようにプログラムされている、請求項11または12に記載の基板処理装置。
    A substrate rotation unit for rotating the substrate around a rotation axis along the vertical direction;
    The controller is programmed to execute a substrate rotation step for rotating the substrate in the substrate rotation unit, and a rotation deceleration step for reducing the rotation of the substrate in the substrate rotation unit in the rinse liquid film forming step. The substrate processing apparatus according to claim 11 or 12.
  14.  前記コントローラが、前記基板の前記上面への硫酸の供給の開始よりも後に、前記基板回転ユニットに前記基板の回転を加速させる回転加速工程を実行するようにプログラムされている、請求項13に記載の基板処理装置。 14. The controller is programmed to perform a rotation acceleration step for causing the substrate rotation unit to accelerate rotation of the substrate after the start of supply of sulfuric acid to the upper surface of the substrate. Substrate processing equipment.
  15.  前記コントローラが、前記基板上の前記リンス液を硫酸で置換し終える前に前記回転加速工程を開始するようにプログラムされている、請求項14に記載の基板処理装置。 15. The substrate processing apparatus according to claim 14, wherein the controller is programmed to start the rotation acceleration step before the rinsing liquid on the substrate is replaced with sulfuric acid.
  16.  前記コントローラが、前記基板上の前記リンス液を硫酸に置換し終えた状態で前記SPM液供給工程を開始するようにプログラムされている、請求項11~15のいずれか一項に記載の基板処理装置。 The substrate processing according to any one of claims 11 to 15, wherein the controller is programmed to start the SPM liquid supply step in a state where the rinsing liquid on the substrate has been replaced with sulfuric acid. apparatus.
  17.  前記硫酸供給ユニットが、前記基板の前記上面に対向するノズルと、前記ノズルに硫酸を供給する硫酸供給管と、前記硫酸供給管に介装された硫酸バルブとを含み、
     前記SPM液供給ユニットが、前記硫酸供給ユニットと、前記ノズルに過酸化水素水を供給する過酸化水素水供給管と、前記過酸化水素水供給管に介装された過酸化水素水バルブとを含み、
     前記コントローラが、前記硫酸含有液膜形成工程において、前記硫酸バルブを開くことによって前記ノズルから硫酸を吐出させる硫酸吐出工程を実行し、かつ、前記SPM液供給工程において、前記硫酸吐出工程の実行によって前記硫酸バルブが開かれた状態で前記過酸化水素水バルブを開くことによって、前記SPM液が前記ノズルから吐出されるSPM液吐出工程を実行するようにプログラムされている、請求項11~16のいずれか一項に記載の基板処理装置。
    The sulfuric acid supply unit includes a nozzle facing the upper surface of the substrate, a sulfuric acid supply pipe for supplying sulfuric acid to the nozzle, and a sulfuric acid valve interposed in the sulfuric acid supply pipe,
    The SPM liquid supply unit includes the sulfuric acid supply unit, a hydrogen peroxide solution supply pipe for supplying hydrogen peroxide solution to the nozzle, and a hydrogen peroxide solution valve interposed in the hydrogen peroxide solution supply tube. Including
    The controller executes a sulfuric acid discharge step of discharging sulfuric acid from the nozzle by opening the sulfuric acid valve in the sulfuric acid-containing liquid film forming step, and in the SPM liquid supply step, by executing the sulfuric acid discharge step The SPM liquid discharging step of discharging the SPM liquid from the nozzle is performed by opening the hydrogen peroxide solution valve in a state where the sulfuric acid valve is opened. The substrate processing apparatus according to any one of claims.
  18.  前記基板の前記上面に向けてフッ酸を供給するフッ酸供給ユニットをさらに含み、
     前記コントローラが、前記リンス液が前記基板の前記上面に供給される前に、前記フッ酸供給ユニットから前記基板の前記上面に向けてフッ酸を供給するフッ酸供給工程を実行するようにプログラムされている、請求項11~17のいずれか一項に記載の基板処理装置。
    A hydrofluoric acid supply unit for supplying hydrofluoric acid toward the upper surface of the substrate;
    The controller is programmed to perform a hydrofluoric acid supply step of supplying hydrofluoric acid from the hydrofluoric acid supply unit toward the upper surface of the substrate before the rinsing liquid is supplied to the upper surface of the substrate. The substrate processing apparatus according to any one of claims 11 to 17.
  19.  前記硫酸含有液膜形成工程において前記基板の前記上面に供給される硫酸の温度が、前記SPM液供給工程において前記基板の前記上面に供給される前記SPM液の温度よりも低い、請求項11~18のいずれか一項に記載の基板処理装置。 The temperature of the sulfuric acid supplied to the upper surface of the substrate in the sulfuric acid-containing liquid film forming step is lower than the temperature of the SPM liquid supplied to the upper surface of the substrate in the SPM liquid supplying step. The substrate processing apparatus according to claim 18.
  20.  前記コントローラが、前記硫酸含有液膜形成工程において、前記硫酸供給ユニットから前記基板の前記上面の中央領域に向けて硫酸を供給する中央供給工程を実行するようにプログラムされている、請求項11~19のいずれか一項に記載の基板処理装置。 The controller is programmed to perform a central supply step of supplying sulfuric acid from the sulfuric acid supply unit toward a central region of the upper surface of the substrate in the sulfuric acid-containing liquid film forming step. 20. The substrate processing apparatus according to any one of 19 above.
PCT/JP2019/018876 2018-05-30 2019-05-13 Substrate processing method and substrate processing apparatus WO2019230349A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-103781 2018-05-30
JP2018103781A JP7094147B2 (en) 2018-05-30 2018-05-30 Board processing method and board processing equipment

Publications (1)

Publication Number Publication Date
WO2019230349A1 true WO2019230349A1 (en) 2019-12-05

Family

ID=68697488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018876 WO2019230349A1 (en) 2018-05-30 2019-05-13 Substrate processing method and substrate processing apparatus

Country Status (3)

Country Link
JP (1) JP7094147B2 (en)
TW (1) TWI746985B (en)
WO (1) WO2019230349A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202410187A (en) * 2022-07-12 2024-03-01 日商東京威力科創股份有限公司 Substrate processing method and substrate processing device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015109335A (en) * 2013-12-04 2015-06-11 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005032819A (en) * 2003-07-08 2005-02-03 Dainippon Screen Mfg Co Ltd Device and method for peeling resist
JP2009200193A (en) * 2008-02-21 2009-09-03 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and substrate processing method
JP5361790B2 (en) * 2010-04-28 2013-12-04 株式会社東芝 Method for surface treatment of semiconductor substrate
KR101450965B1 (en) * 2011-09-29 2014-10-15 다이닛뽕스크린 세이조오 가부시키가이샤 Substrate Processing Apparatus and Substrate Processing Method
JP5961535B2 (en) * 2012-11-26 2016-08-02 東京エレクトロン株式会社 Substrate liquid processing method, substrate liquid processing system, and storage medium
JP5992379B2 (en) * 2013-08-23 2016-09-14 東京エレクトロン株式会社 Substrate processing method and substrate processing apparatus
US10464107B2 (en) * 2013-10-24 2019-11-05 SCREEN Holdings Co., Ltd. Substrate processing method and substrate processing apparatus
JP6587865B2 (en) * 2014-09-30 2019-10-09 芝浦メカトロニクス株式会社 Substrate processing apparatus and substrate processing method
JP6618113B2 (en) * 2015-11-02 2019-12-11 株式会社Screenホールディングス Substrate processing equipment
JP6742124B2 (en) * 2016-03-30 2020-08-19 株式会社Screenホールディングス Substrate processing equipment
CN109715400B (en) * 2016-09-30 2021-06-25 积水化成品工业株式会社 Hydrogels

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015109335A (en) * 2013-12-04 2015-06-11 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method

Also Published As

Publication number Publication date
JP7094147B2 (en) 2022-07-01
JP2019207982A (en) 2019-12-05
TWI746985B (en) 2021-11-21
TW202004955A (en) 2020-01-16

Similar Documents

Publication Publication Date Title
KR102525266B1 (en) Substrate processing method and substrate processing apparatus
JP6379400B2 (en) Substrate processing method and substrate processing apparatus
JP6080291B2 (en) Substrate processing method and substrate processing apparatus
US11465167B2 (en) Substrate treatment apparatus
JP6493839B2 (en) Substrate processing method and substrate processing apparatus
JP6231328B2 (en) Substrate processing method and substrate processing apparatus
WO2015053329A1 (en) Substrate processing method, and substrate processing device
WO2017029862A1 (en) Substrate treatment method and substrate treatment device
JP4963994B2 (en) Substrate processing apparatus and substrate processing method
JP2009267167A (en) Substrate-treating device
JP4439956B2 (en) Resist stripping method and resist stripping apparatus
TWI809652B (en) Substrate processing method and substrate processing apparatus
JP6593591B2 (en) Substrate processing method
JP4908879B2 (en) Substrate processing method and substrate processing apparatus
WO2019230349A1 (en) Substrate processing method and substrate processing apparatus
JP5208586B2 (en) Substrate processing method
JP2007234812A (en) Substrate processing method and substrate processing device
JP6934376B2 (en) Board processing method and board processing equipment
JPH11330041A (en) Device for processing substrate by etching liquid
WO2016152371A1 (en) Substrate processing method and substrate processing device
JP2018019103A (en) Substrate processing method and substrate processing apparatus
TWI795990B (en) Substrate processing method and substrate processing apparatus
JP7562329B2 (en) Substrate processing method
JP2024075338A (en) Substrate processing apparatus and substrate processing method
TW202301424A (en) Substrate treatment method and substrate treatment device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19812168

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19812168

Country of ref document: EP

Kind code of ref document: A1