WO2019230029A1 - Pulsed gas valve inspection device - Google Patents

Pulsed gas valve inspection device Download PDF

Info

Publication number
WO2019230029A1
WO2019230029A1 PCT/JP2018/048514 JP2018048514W WO2019230029A1 WO 2019230029 A1 WO2019230029 A1 WO 2019230029A1 JP 2018048514 W JP2018048514 W JP 2018048514W WO 2019230029 A1 WO2019230029 A1 WO 2019230029A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse gas
gas valve
vacuum
pulse
valve
Prior art date
Application number
PCT/JP2018/048514
Other languages
French (fr)
Japanese (ja)
Inventor
祥聖 山内
岩本 慎一
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2020521674A priority Critical patent/JP6939992B2/en
Publication of WO2019230029A1 publication Critical patent/WO2019230029A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K51/00Other details not peculiar to particular types of valves or cut-off apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts

Definitions

  • the present invention relates to a pulse gas valve inspection device for inspecting whether or not a pulse gas valve operates normally.
  • the ion trap mass spectrometer is provided with a pulse gas valve for repeatedly introducing cooling gas and collision gas into the inside of the ion trap (that is, the ion trapping space) in a pulsed manner.
  • the pulse width (gas introduction time) depends on the size of the ion trap device (volume of the ion trapping space), but in the case of a normal ion trap device having an inner diameter of the ring electrode of about 10 mm, it is about several hundred ⁇ sec.
  • the repetition rate is set to several tens of Hz or less (see Patent Document 1). Since the timing and time width of gas introduction into the ion trapping space greatly affect the analysis accuracy by the mass spectrometer, the pulse gas valve is required to operate extremely accurately.
  • manufacturers of mass spectrometers use a test system such as that shown in FIG. 16 to check whether or not the pulse gas valves operate normally before shipping the device (or valve). Is called.
  • This inspection system is provided with a T-tube type vacuum vessel 11 having a straight pipe portion 12 and a branch pipe portion 13 connected in the middle thereof, and a pulse gas valve 30 is evacuated at one end of the straight pipe portion 12.
  • a vacuum introducing mechanism 14 including a seal member and the like for airtight attachment to the container 11 is provided.
  • an inspection vacuum gauge 16 composed of an ionization vacuum gauge is attached to the other end of the straight pipe portion 12 via the vacuum introduction mechanism 15 similar to the above.
  • an auxiliary vacuum gauge 17 composed of a Pirani gauge or the like for measuring the ultimate degree of vacuum in the vacuum vessel 11 at the time of vacuuming is provided.
  • a main pump 18 composed of a molecular pump or the like is attached.
  • an auxiliary pump (roughing pump) 19 such as a diaphragm pump is connected to the exhaust side of the main pump 18.
  • the pulse gas valve 30 to be inspected is attached to the vacuum vessel 11, and then the main pump 18 and the auxiliary pump 19 inside the vacuum vessel 11. Evacuate. Thereafter, when the measurement value by the auxiliary vacuum gauge 17 (that is, the degree of vacuum in the vacuum vessel 11) reaches a predetermined value (1 ⁇ 10 ⁇ 4 Pa or less), the inspection is started. That is, by applying a pulsed valve driving voltage from the valve driving circuit 20 to the pulse gas valve 30, the pulse gas valve 30 is opened for a predetermined time (about 300 ⁇ sec). A test gas cylinder 21 filled with a test gas such as helium or argon is connected to the base end side of the pulse gas valve 30.
  • the test gas By opening the pulse gas valve 30 as described above, the test gas enters the vacuum vessel 11. be introduced.
  • the degree of vacuum in the vacuum vessel 11 changes due to the test gas introduced into the vacuum vessel 11, the output current from the inspection vacuum gauge 16 changes, and this is read by the ionization vacuum gauge reading circuit 22. Measure the time change in degrees.
  • FIG. 17 shows a waveform of the output current (vacuum degree signal) of the inspection vacuum gauge 16 when a 40 V rectangular wave having a width of 300 ⁇ sec is applied to the pulse gas valve 30 every 3 seconds.
  • a vacuum level signal for three times of valve opening / closing is overwritten on a waveform indicating a time change of the valve driving voltage.
  • the valve drive voltage does not seem to change, but in reality, a rectangular wave having a very short time width (300 ⁇ sec) is applied to the pulse gas valve at the timing indicated by the downward arrow in the figure. .
  • the vacuum degree signal rises to about 6 ⁇ 10 ⁇ 2 Pa at the maximum after approximately 170 msec after opening and closing of the valve.
  • the pulse gas valve by repeatedly opening and closing the pulse gas valve and comparing the waveforms of the vacuum degree signal, it is possible to inspect the repeated stability of gas discharge by the pulse gas valve. Further, the waveform of the vacuum degree signal obtained for the pulse gas valve to be inspected is compared with a reference waveform (for example, a waveform acquired for a pulse gas valve that has been confirmed to operate normally), thereby It is possible to inspect whether or not the amount of gas discharged by the pulse gas valve and the gas discharge timing are appropriate.
  • a reference waveform for example, a waveform acquired for a pulse gas valve that has been confirmed to operate normally
  • the present invention has been made in view of the above points, and an object of the present invention is to improve the work efficiency of valve inspection using a pulse gas valve inspection apparatus.
  • a pulse gas valve inspection apparatus comprises: A vacuum vessel; A vacuum pump for evacuating the vacuum vessel; A plurality of pulse gas valve mounting portions attached to the outer wall of the vacuum vessel, each capable of detachably attaching a pulse gas valve to the vacuum vessel; Pulse gas valve driving means for driving the pulse gas valve attached to each of the plurality of pulse gas valve attachment parts; Control means for controlling the pulse gas valve driving means to selectively open any one of the pulse gas valves attached to each of the plurality of pulse gas valve attachment parts; An ionization vacuum gauge for measuring a change in the degree of vacuum in the vacuum vessel by opening the pulse gas valve; It is characterized by having.
  • pulse gas valve inspection apparatus since a plurality of pulse gas valves can be attached to one vacuum vessel, a plurality of pulse gas valves are inspected each time the vacuum vessel is evacuated once. be able to. For this reason, unlike the prior art, it is not necessary to perform evacuation every time one pulse gas valve is inspected, and the time and labor required for inspecting a plurality of pulse gas valves can be greatly reduced.
  • the pulse gas valve inspection apparatus is as follows.
  • the vacuum vessel has a vacuum gauge mounting opening which is a circular opening for mounting the ionization vacuum gauge,
  • the internal space of the vacuum vessel has a rotating body shape centered on the central axis of the vacuum gauge mounting opening, It is desirable that the plurality of pulse gas valve mounting portions are arranged rotationally symmetrically with respect to the central axis.
  • the behavior when the gas (test gas) introduced into the vacuum vessel through the pulse gas valve enters the ionization vacuum gauge is determined by the plurality of pulse gas valves attached to the vacuum vessel. It can be approximately equal for each.
  • the ionization vacuum gauge may be partially or entirely disposed inside the vacuum vessel, or may be entirely disposed outside the vacuum vessel. In the latter case, the internal space of the vacuum gauge is communicated with the internal space of the vacuum vessel through the vacuum gauge mounting opening.
  • the pulse gas valve inspection apparatus further includes: A reference valve which is a pulse gas valve for acquiring a reference waveform attached to the vacuum vessel, It is good also as what has.
  • the reference valve may be detachably attached to the vacuum vessel via the pulse gas valve attachment part, or may be fixed to the vacuum vessel by welding or the like. Also in the latter case, it is desirable that the reference valve and the plurality of pulse gas valve mounting portions are arranged rotationally symmetrically with respect to the central axis of the vacuum gauge mounting opening.
  • the relative evaluation can be performed by comparing the waveform of the degree of vacuum change obtained for each pulse gas valve to be inspected with the reference waveform. Therefore, by re-acquisition of the reference waveform even when the environment in the vacuum vessel (for example, the ultimate vacuum level) changes due to the turning on / off of the power supply of the inspection device, venting of the vacuum vessel at the time of pulse gas valve replacement, etc.
  • Each pulse gas valve can be evaluated without being affected by the environmental change.
  • Each of the plurality of pulse gas valve mounting portions includes a valve mounting opening provided in the vacuum vessel, and an O-ring attached to a tip of the pulse gas valve; Furthermore, A facing surface facing the vacuum vessel and an opening provided in the facing surface, and the tips of two or more pulse gas valves of the pulse gas valves respectively attached to the plurality of pulse gas valve mounting portions are respectively inserted.
  • An O-ring pressing member that has a valve insertion hole and abuts the O-ring by the peripheral edge of each of the openings of the opposing surface;
  • the O-ring attached to two or more pulse gas valves can be pressed by one O-ring pressing member.
  • the user's work burden can be reduced.
  • the pulse gas valve inspection apparatus further includes: A test gas supply means for supplying a test gas to a gas inlet provided at a proximal end of the pulse gas valve; It is good also as what has.
  • test gas for example, in addition to an inert gas such as argon, helium, and nitrogen, for example, dry air can be used.
  • inert gas such as argon, helium, and nitrogen
  • dry air for example, dry air
  • the test gas supply means includes Among the pulse gas valves that are respectively attached to the plurality of pulse gas valve mounting portions, a sealed container that accommodates the gas inlets of two or more pulse gas valves; A test gas cylinder filled with the test gas; A test gas pipe connecting the test gas cylinder and the sealed container; It is good also as what has.
  • the inside of the sealed container can be filled with the test gas by introducing the test gas from the test gas cylinder to the sealed container via the test gas pipe.
  • a test gas can be introduced into the vacuum vessel by opening one of the two or more pulse gas valves. Therefore, it is not necessary to connect the gas inlets provided in each of the plurality of test gas valves and the test gas cylinders with pipes, and the work burden on the user in installing and replacing the pulse gas valves can be reduced.
  • the pulse gas valve inspection apparatus is as follows.
  • the pulse gas valve driving means comprises: One pulse gas valve drive circuit provided for two or more pulse gas valves among the pulse gas valves respectively attached to the plurality of pulse gas valve attachment parts; Drive valve switching means for selectively connecting the one pulse gas valve drive circuit to any one of the two or more pulse gas valves; It is good also as what has.
  • the pulse gas valve inspection apparatus is as follows.
  • the ionization vacuum gauge may be a nude gauge.
  • Ordinary ionization gauges have measurement electrodes (filaments, grids, and collectors) and envelopes such as glass tubes that cover them, but nude gauges do not have such envelopes. The measurement electrode is exposed. Therefore, the nude gauge has a characteristic that the time response is higher than that of a normal ionization vacuum gauge, and the measured value changes in the order of 1 to 10 ⁇ s. Therefore, according to the pulse gas valve inspection apparatus having the above-described configuration, it is possible to measure a change in the degree of vacuum at or below the open time scale (several hundred microseconds) of the pulse gas valve, which could not be measured conventionally.
  • the pulse gas valve inspection apparatus is as follows.
  • the adsorption of water molecules to the inner wall of the vacuum vessel when venting the vacuum vessel can be suppressed, and the time required for subsequent evacuation can be shortened.
  • the pulse gas valve inspection apparatus is The control means may control the vacuum pump and the pulse gas valve driving means so as to open the pulse gas valve in a state where the degree of vacuum in the vacuum vessel is 10 ⁇ 2 Pa to 10 ⁇ 3 Pa. Good.
  • the work efficiency of valve inspection using the pulse gas valve inspection apparatus can be improved.
  • the schematic diagram which shows the principal part structure of the pulse gas valve inspection apparatus which concerns on Example 1 of this invention Sectional drawing which shows the state which attached the pulse gas valve to the pulse gas valve vacuum introduction mechanism. Sectional drawing which shows the procedure at the time of attaching a nut member, a pressing ring, and an O-ring to a pulse gas valve. Sectional drawing which shows the procedure at the time of attaching the said pulse gas valve to a flange member.
  • the flowchart which shows operation
  • Sectional drawing which shows the state which penetrated the pulse gas valve to the O-ring press member and the O-ring in the Example. Sectional drawing which shows the state which has pressed the O-ring with the O-ring pressing member in the Example. Sectional drawing which shows another structural example of the press member fixing means in the Example.
  • the schematic diagram which shows the principal part structure of the pulse gas valve inspection apparatus which concerns on Example 4 of this invention.
  • the schematic diagram which shows the principal part structure of the pulse gas valve inspection apparatus which concerns on Example 5 of this invention.
  • the schematic diagram which shows the principal part structure of the pulse gas valve inspection apparatus which concerns on Example 6 of this invention.
  • the schematic diagram which shows the principal part structure of the pulse gas valve inspection apparatus which concerns on Example 7 of this invention.
  • the schematic diagram which shows the principal part structure of the pulse gas valve inspection apparatus which concerns on Example 8 of this invention.
  • the schematic block diagram which shows the conventional pulse gas valve inspection apparatus. A waveform showing a change in the degree of vacuum in the vacuum vessel when the pulse gas is introduced.
  • FIG. 1 shows the configuration of the pulse gas valve inspection apparatus according to the first embodiment of the present invention.
  • This inspection apparatus has a cylindrical vacuum vessel 110 to which a pulse gas valve 150 to be inspected is attached, and one end surface of the vacuum vessel 110 (hereinafter referred to as a first end surface 110a) is at the center thereof.
  • a circular vacuum gauge mounting opening 111 is provided.
  • An ionization vacuum gauge 113 is attached to the vacuum gauge attachment opening 111 via an ionization vacuum gauge vacuum introduction mechanism 112.
  • any type such as a triode type, a Schulz type, or a BA gauge may be used.
  • the ionization vacuum gauge vacuum introduction mechanism 112 is a member for attaching the ionization vacuum gauge 113 to the vacuum vessel 110 in an airtight manner, and has substantially the same configuration as a pulse gas valve vacuum introduction mechanism 120 described later.
  • a circular exhaust port 114 is provided at the center of the other end surface of the vacuum vessel 110 (hereinafter referred to as the second end surface 110b), and a main pump 116 (for example, a turbo molecular pump) is provided in the exhaust port 114. Etc.) is connected to the intake side.
  • An auxiliary pump 117 (for example, a diaphragm pump) is connected to the exhaust side of the main pump 116.
  • the second end surface 110b of the vacuum vessel 110 is further provided with a plurality of valve mounting openings 115 so as to surround the exhaust port 114.
  • a pulse gas valve vacuum introduction mechanism 120 is attached to the second end face 110b at a position corresponding to these valve attachment openings 115.
  • the valve mounting opening 115 and the pulse gas valve vacuum introduction mechanism 120 correspond to the pulse gas valve mounting portion in the present invention.
  • the pulse gas valve vacuum introduction mechanism 120 is a member for attaching the pulse gas valve 150 to the vacuum vessel 110 in an airtight manner.
  • FIG. 1 shows a configuration in which eight pulse gas valve vacuum introduction mechanisms 120 are provided in a vacuum vessel, but the number of pulse gas valves is not limited to this, and may be two or more (hereinafter referred to as the following). The same in all of the examples).
  • the pulse gas valve vacuum introduction mechanism 120 includes a flange member 121, a nut member 122, a pressing ring 123, and two O-rings 124 and 125.
  • the flange member 121 includes a cylindrical portion 121a having a thread groove formed on the outer peripheral surface, and a flange portion 121b provided at one end of the cylindrical portion 121a.
  • the flange portion 121b is formed on the second end surface 110b of the vacuum vessel 110.
  • the flange member 121 is fixed to the vacuum vessel 110 by being screwed to the outside.
  • the nut member 122 has an inner diameter that is substantially the same as the outer diameter of the cylindrical portion 121a of the flange member 121, and a cylindrical portion 122a in which a screw groove that is screwed into the screw groove is formed on the inner peripheral surface thereof, and the cylindrical portion And an annular portion 122b having an inner diameter smaller than the inner diameter of the cylindrical portion 122a.
  • the tip of the pulse gas valve 150 When attaching the pulse gas valve 150 to the vacuum vessel 110, first, as shown in FIG. 3, the tip of the pulse gas valve 150 is inserted into the nut member 122, the holding ring 123, and the O-rings 124 and 125 in this order. Thereafter, as shown in FIG. 4, the tip of the pulse gas valve 150 is inserted into the cylindrical portion 121a of the flange member 121 attached to the second end face 110b of the vacuum vessel 110, and the nut member 122 is rotated in that state. The nut member 122 is fastened to the cylindrical portion 121a.
  • the annular portion 122 b of the nut member 122 presses the O-rings 124 and 125 via the pressing ring 123, and thereby the O-rings 124 and 125 are in close contact with both the pulse gas valve 150 and the flange member 121.
  • the gap between the pulse gas valve 150 and the flange member 121 is hermetically sealed.
  • the pulse gas valve vacuum introduction mechanism 120 is disposed rotationally symmetrically with respect to the central axis X of the vacuum gauge mounting opening 111.
  • the inspection apparatus further includes a vent pipe 131 connected to the peripheral surface 110c of the vacuum vessel 110.
  • a valve for opening and closing the pipe 131 hereinafter, referred to as the pipe 131).
  • a vent valve 132) and an auxiliary vacuum gauge 133 are provided on the pipe 131.
  • the auxiliary vacuum gauge 133 measures the ultimate degree of vacuum of the vacuum vessel 110 when performing vacuuming, and is positioned between the vacuum vessel 110 and the vent valve 132 on the vent pipe 131.
  • the inspection apparatus further includes a test gas cylinder 134 containing a test gas (helium, argon, nitrogen, etc.), a regulator 135 for adjusting the pressure of the test gas supplied from the test gas cylinder 134, and a test gas cylinder 134;
  • a test gas supply pipe 136 that connects each pulse gas valve 150 is provided (the test gas cylinder 134, the regulator 135, and the test gas supply pipe 136 correspond to the test gas supply means in the present invention).
  • the test gas supply pipe 136 has one inlet end connected to the test gas cylinder 134 via the regulator 135 and a gas introduction port 151 (see FIGS. 2 to 4) provided on the base end side of the pulse gas valve 150 to be inspected.
  • a branch pipe structure having a plurality of outlet ends respectively connected to a gas inlet in the present invention.
  • the same number of outlet ends as the pulse gas valve vacuum introduction mechanism 120 are provided, only a part of the outlet ends is shown in FIG. 1 for simplification (FIGS. 6 and 7 described later). The same applies to FIG. 12, FIG. 14, and FIG.
  • the inspection apparatus includes an ionization vacuum gauge reading circuit 141 that receives a detection signal from the ionization vacuum gauge 113 and outputs a waveform representing a time change in the degree of vacuum, and a plurality of pulse gas valves to be tested.
  • 150 includes a plurality of pulse gas valve drive circuits 142a to 142d that respectively drive 150, and a control unit 143 that controls the operation of each unit.
  • the same number of pulse gas valve drive circuits 142a to 142d as the pulse gas valve vacuum introduction mechanism 120 are provided, only some of the pulse gas valve drive circuits 142a to 142d are shown in FIG. 1 for the sake of simplicity. (The same applies to FIGS. 6, 7, 11, and 13 to 15 described later).
  • the control unit 143 further includes a storage unit 144 that records the waveform generated by the ionization gauge reading circuit 141, an output unit 145 that includes a display device and a printer for outputting the waveform, and settings related to inspection.
  • An input unit 146 composed of a keyboard, a switch and the like for the user to input values and predetermined instructions is connected.
  • the substance of the control unit 143 is a dedicated or general-purpose computer including a CPU and a memory such as a RAM. A predetermined processing program is operated on the computer, and is shown in a flowchart of FIG. 5 described later. Such control is executed.
  • the user attaches the ionization vacuum gauge 113 to the ionization vacuum gauge vacuum introduction mechanism 112 and connects the ionization vacuum gauge 113 to the ionization vacuum gauge reading circuit 141.
  • the plurality of pulse gas valves 150 to be inspected by the user are respectively attached to the pulse gas valve vacuum introduction mechanism 120, and each pulse gas valve 150 is connected to the pulse gas valve drive circuits 142a to 142d.
  • the user performs a predetermined input operation with the input unit 146 to instruct the control unit 143 to execute the inspection.
  • the control unit 143 When a signal instructing execution of the inspection is input from the input unit 146, the control unit 143 causes the vent valve 132 to close the vent pipe 131 (step S11), and starts vacuuming by the auxiliary pump 117 and the main pump 116. (Step S12). Thereafter, the control unit 143 monitors the detection signal from the auxiliary vacuum gauge 133, and when the degree of vacuum in the vacuum vessel 110 obtained from the detection signal reaches a predetermined degree of vacuum (for example, 1 ⁇ 10 ⁇ 4 Pa).
  • a predetermined degree of vacuum for example, 1 ⁇ 10 ⁇ 4 Pa
  • step S13 the inspection of each pulse gas valve 150 is started, that is, the control unit 143 sets the valve number n representing the pulse gas valve 150 to be inspected to 1 (step S14), and the first pulse gas valve 150
  • the first pulse gas valve 150 By controlling a pulse gas valve driving circuit (for example, 142a) connected to the first pulse gas valve 150, the first pulse gas valve 150 is set at a predetermined time interval (for example, every 3 seconds) for a predetermined number of times (for example, 3 times) for a predetermined time. It is opened only during (for example, 300 ⁇ sec) (step S15).
  • step S15 the ionization vacuum gauge reading circuit 141 generates a waveform representing the change in the degree of vacuum over time based on the detection signal output from the ionization vacuum gauge 113.
  • the waveform is sent to the storage unit 144 via the control unit 143 and stored.
  • the control unit 143 increments the valve number n (step S17), and then executes step S15 for the nth pulse gas valve 150, and k units (in the example of FIG. 1) attached to the vacuum vessel 110.
  • step S16 the vent valve 132 is opened to open the vacuum vessel 110 to the atmosphere (step S18).
  • a waveform as shown in FIG. 17 (that is, a waveform showing a change in the degree of vacuum at each of a plurality of times of valve opening / closing in step S15 is overlaid for each pulse gas valve 150) is output to the output unit 145. It is displayed on the screen of the provided display device. In addition to or instead of displaying the waveform on the screen of the display device, the waveform may be printed by a printer provided in the output unit 145.
  • the user evaluates whether the inspection target valve is operating normally by comparing the waveform obtained for each pulse gas valve 150 to be inspected (hereinafter sometimes referred to as the inspection target valve) with a reference waveform.
  • the reference waveform is a waveform of a change in the degree of vacuum obtained by performing the same inspection as described above for a pulse gas valve that is known to operate normally (referred to as a reference valve).
  • the reference waveform may be obtained in advance, but every time the vacuum vessel 110 is opened to the atmosphere and evacuated, or every time the inspection apparatus is turned on / off, the reference waveform is used. It is desirable to re-acquire the waveform.
  • a reference valve is attached to any one of the k pulse gas valve vacuum introduction mechanisms 120 provided in the vacuum vessel 110, and each of the remaining k-1 pulse gas valve vacuum introduction mechanisms 120 is inspected.
  • the inspection according to the flowchart of FIG. 5 is executed with the target valve attached.
  • the user compares the waveform acquired for the reference valve in the inspection with the waveform obtained for each inspection target valve to evaluate whether each inspection target valve is operating normally.
  • the computer described above is based on whether or not the difference between the waveform obtained for each valve to be inspected and the reference waveform is within a predetermined allowable range. You may make it evaluate whether a test valve is operating normally.
  • a plurality of pulse gas valves 150 can be attached to one vacuum vessel 110. Each time the vacuum vessel 110 is evacuated, the plurality of pulse gas valves 150 are inspected. It can be performed. For this reason, it is not necessary to re-evacuate each time one pulse gas valve is inspected as in the prior art, and the time and labor required for inspecting a plurality of pulse gas valves can be greatly reduced.
  • FIG. 6 shows the configuration of a pulse gas valve inspection apparatus according to the second embodiment of the present invention. Note that the same or corresponding components as those in the inspection apparatus according to the first embodiment are denoted by the same reference numerals in the last two digits, and the description thereof is omitted as appropriate (the same applies to all the following embodiments).
  • the inspection apparatus is characterized in that the pulse gas valve (reference valve 260) used for obtaining the reference waveform is always fixed to the vacuum vessel 210 (that is, in this embodiment, the reference valve 260 is Included in the components of the inspection device).
  • the reference valve 260 may be connected to the vacuum vessel 210 via the pulse gas valve vacuum introduction mechanism 220 in the same manner as the pulse gas valve 250 to be tested. However, as shown in FIG. You may make it fix to the vacuum vessel 210 directly. Also in the latter case, the attachment positions of the reference valve 260 and each pulse gas valve vacuum introduction mechanism 220 in the vacuum vessel 210 are arranged rotationally symmetrically with respect to the central axis X of the vacuum gauge attachment opening 211.
  • FIG. 7 shows a schematic configuration of a pulse gas valve inspection apparatus according to the third embodiment of the present invention.
  • 8 and 9 are sectional views of the pulse gas valve vacuum introduction mechanism 320 and the second end surface 310b of the vacuum vessel 310 in the inspection apparatus of the embodiment (the main pump 316 is not shown in these drawings). ).
  • the inspection apparatus presses O-rings 324 and 325 attached to each pulse gas valve 350 and O-rings 324 and 325 attached to a plurality of pulse gas valves 350 at a time as the pulse gas valve vacuum introduction mechanism 320.
  • an O-ring pressing member 326 is a ring-shaped plate-shaped member having an outer diameter smaller than the diameter of the second end surface 310b of the vacuum vessel 310 and an inner diameter larger than the diameter of the exhaust port 314 provided in the second end surface 310b.
  • the inspection apparatus further includes a motor, a rotation / linear motion conversion mechanism, and the like for moving the O-ring pressing member 326 in the direction approaching the vacuum container 310 and the direction separating from the vacuum container 310.
  • a member drive mechanism 328 is provided.
  • the valve mounting opening 115 of the vacuum vessel 310 (corresponding to the pulse gas valve mounting portion in the present invention) is the center of the vacuum gauge mounting opening 311 provided on the first end surface 310a of the vacuum vessel 310. It is provided rotationally symmetric with respect to the axis X.
  • the pulse gas valve 350 when the pulse gas valve 350 is attached to the vacuum vessel 310, first, the tip of each pulse gas valve 350 is inserted into the valve insertion hole 327 of the O-ring pressing member 326 as shown in FIG. Then, O-rings 324 and 325 are attached to the tips. Thereafter, when the user performs a predetermined operation with the input unit 346, the pressing member driving mechanism 328 moves the O-ring pressing member 326 by a predetermined distance in the direction approaching the vacuum vessel 310 under the control of the control unit 343. Then, the O-ring pressing member 326 is stopped. As a result, as shown in FIG.
  • each pulse gas valve 350 is inserted into the interior of the vacuum vessel 310 from the valve attachment opening 315 provided in the second end surface 310b, and is attached to each pulse gas valve 350.
  • the O-rings 324 and 325 are pressed by the O-ring pressing member 326 (that is, the pressing member driving mechanism 328 corresponds to the pressing member fixing means in the present invention).
  • the O-rings 324 and 325 are in close contact with the peripheral surface of the pulse gas valve 350 and the second end surface 310b of the vacuum vessel 310, so that the pulse gas valve 350 is attached to the vacuum vessel 310 in an airtight manner.
  • the O-rings 324 and 325 attached to each pulse gas valve 350 can be pressed by one O-ring pressing member 326.
  • the work burden on the user when attaching 350 can be reduced.
  • the configuration in which two O-rings 324 and 325 are attached to one pulse gas valve 350 is illustrated, but the number of O-rings is not limited to this.
  • the pressing member fixing means in the present invention is not limited to the configuration in which the O-ring pressing member 326 is moved by a motor or the like like the above-described pressing member driving mechanism 328.
  • the O-ring pressing member 326 is not limited to the vacuum vessel 310. Any device can be used as long as it can be fixed in a state where it is close to. As such a configuration, for example, as shown in FIG. 10, a configuration including a flange member 329 fixed to the second end surface 310 b of the vacuum vessel 310 and a nut member 330 screwed to the flange member 329 is conceivable. .
  • the flange member 329 has an inner diameter larger than the outer diameter of the O-ring pressing member 326, a cylindrical portion 329a having a thread groove formed on the outer peripheral surface thereof, and a flange portion provided at one end of the cylindrical portion 329a. 329b, and is fixed to the vacuum vessel 310 by screwing the flange portion 329b to the outside of the second end surface 310b.
  • the nut member 330 has an inner diameter that is substantially the same as the outer diameter of the cylindrical portion 329a of the flange member 329, and a cylindrical portion 330a in which a screw groove that is screwed into the screw groove is formed on the inner peripheral surface thereof.
  • An annular portion 330b provided at one end of the cylindrical portion 330a and having an inner diameter smaller than the outer diameter of the O-ring pressing member 326 is provided.
  • the tip of each pulse gas valve 350 is inserted into the valve insertion hole 327 of the O-ring pressing member 326, and then the O-ring 324, 325 is attached. Thereafter, the O-ring pressing member 326 is caused to enter the cylindrical portion 329 a of the flange member 329, and the tip of each pulse gas valve 350 is inserted into the valve mounting opening 315 provided in the second end surface 310 b of the vacuum vessel 310.
  • the nut member 330 is attached to the cylindrical portion 329a of the flange member 329 and rotated, whereby the nut member 330 is fastened to the flange member 329. Accordingly, the O-ring pressing member 326 is pressed by the annular portion 330 b of the nut member 330, and the O-ring pressing member 326 presses the O-rings 324 and 325 toward the vacuum vessel 310. As a result, the O-rings 324 and 325 are crushed, and the space between each pulse gas valve 350 and the second end surface 310b of the vacuum vessel 310 is hermetically sealed.
  • FIG. 11 shows the configuration of a pulse gas valve inspection apparatus according to the fourth embodiment of the present invention.
  • the inspection apparatus according to the present embodiment includes an airtight container 471 that collectively accommodates proximal ends (regions including the gas introduction port 451) of the plurality of pulse gas valves 450.
  • a pipe 437 reaching the test gas cylinder 434 is connected to the sealed container 471, and the gas introduction port 451 of each pulse gas valve 450 is open to a sealed space inside the sealed container 471.
  • the intake side is connected to the sealed container 471 in addition to a pipe for connecting the intake side of the auxiliary pump 417 to the main pump 416 (hereinafter referred to as the first connection pipe 472).
  • the intake side is connected to the sealed container 471.
  • a pipe hereinafter referred to as a second connection pipe 473
  • a pump valve 474 for opening and closing the second connection pipe 473 is provided on the second connection pipe 473.
  • the pulse gas valve 450 is inspected using the inspection apparatus according to the present embodiment, the pulse gas valve 450 is first attached to the vacuum vessel 410, and then the sealed vessel 471 is attached to the second end surface 410b of the vacuum vessel 410.
  • the base end side of the pulse gas valve 450 is accommodated in the sealed container 471.
  • the inside of the vacuum vessel 410 is evacuated by the auxiliary pump 417 and the main pump 416, and the inside of the sealed vessel 471 is evacuated by the auxiliary pump 417.
  • the controller 443 opens the pump valve 474.
  • the evacuation of the sealed container 471 may be performed before or after the evacuation of the vacuum container 410, or may be performed in parallel with the evacuation of the vacuum container 410.
  • the user operates the regulator 435 to introduce the test gas from the test gas cylinder 434 to the sealed container 471.
  • the internal space of the sealed container 471 is filled with the test gas.
  • the test gas passes through the pulse gas valve 450 and is released into the vacuum vessel 410. Therefore, as in the inspection apparatus of the first embodiment, A change in the degree of vacuum in the vacuum vessel 410 is measured by an ionization vacuum gauge 413.
  • the inspection apparatus it is necessary to connect one pipe to the test gas cylinder 434 (the outlet end of the test gas supply pipe 136 in the first embodiment) to the gas introduction port 451 of each pulse gas valve 450 one by one. Therefore, it is possible to further reduce the work burden on the user in the inspection.
  • FIG. 12 shows the configuration of a pulse gas valve inspection apparatus according to the fifth embodiment of the present invention.
  • one pulse gas valve drive circuit 542 is provided for a plurality of pulse gas valves 550.
  • a switch part 547 (corresponding to the drive valve switching means in the present invention) is provided, and the pulse gas valve 550 connected to the pulse gas valve drive circuit 542 by this switch part 547. (That is, the pulse gas valve 550 for performing the opening / closing operation) can be switched alternatively.
  • pulse gas valves 550 are connected to the switch unit 547, but in reality, all the pulse gas valves 550 attached to the vacuum vessel 510 are connected to the switch unit 547. Any one of them is selected by the switch unit 547 and connected to the pulse gas valve drive circuit 542.
  • the manufacturing cost can be reduced and the maintainability can be improved.
  • the influence on the measurement result by the individual difference of the pulse gas valve drive circuit can be eliminated.
  • only one set of the pulse gas valve drive circuit and the switch unit is provided, but the number of pulse gas valve drive circuits and the switch units provided in the inspection apparatus is not limited to this.
  • two sets of pulse gas valve drive circuits and switch units are provided, half of the plurality of pulse gas valves 550 connected to the vacuum vessel 510 are connected to one switch unit, and the other half is connected to the other switch unit (and the pulse unit). It is good also as a structure connected to a gas valve drive circuit.
  • FIG. 13 shows the configuration of a pulse gas valve inspection apparatus according to the sixth embodiment of the present invention.
  • the inspection apparatus according to the present embodiment uses air as a test gas. Therefore, the test apparatus according to the present embodiment is not provided with the test gas valve supply means (that is, the test gas cylinder 134 and the test gas supply pipe 136 in the first embodiment), and the gas introduction port 651 of each pulse gas valve 650 is not provided. Open to the atmosphere.
  • the device configuration can be simplified to reduce the manufacturing cost, and the running cost can be reduced as compared with the case where helium or argon is used as the test gas. Further, since the pipe connection work between each pulse gas valve and the test gas cylinder is not required, the work burden on the user can be further reduced.
  • FIG. 14 shows the configuration of a pulse gas valve inspection apparatus according to the seventh embodiment of the present invention.
  • the inspection apparatus according to the present embodiment uses a nude gauge 713a as an ionization vacuum gauge.
  • a measurement electrode is housed in an envelope made of glass or the like, but the nude gauge 713a does not have an envelope, and the electrodes (filament, grid, collector) ) Is exposed.
  • Such a nude gauge 713a is more time responsive than an ionization vacuum gauge having an envelope, and the measured value changes on the order of 1 to 10 ⁇ sec. It is possible to observe a change in the degree of vacuum on a short time scale.
  • the opening of the pulse gas valve 750 with respect to the abnormality of the vacuum degree change on such a short time scale, or the driving voltage waveform which is difficult with the inspection apparatus using the ionization vacuum gauge equipped with the conventional envelope, or It becomes possible to evaluate the delay time of the closing operation.
  • FIG. 15 shows the configuration of a pulse gas valve inspection apparatus according to the eighth embodiment of the present invention.
  • the vent gas cylinder 881 is connected to the vent pipe 831, and when the inspection target valve is replaced, the control unit 843 uses the vent valve 832 provided on the vent pipe 831.
  • vent gas dry air or the like
  • vent gas cylinder 881 is supplied to the vacuum vessel 410 (these vent gas cylinder 881, vent pipe 831 and vent valve 832 serve as vent gas supply means in the present invention. Equivalent to).
  • the vent gas is not limited to the dry air, and may be any kind of gas as long as it has a low moisture content (humidity of 1% or less).
  • the pulse gas valve 150 is inspected in a state where the vacuum chamber 110 is at a degree of vacuum of about 10 ⁇ 4 Pa, but instead, 10 ⁇ 2 Pa to 10 ⁇ 3 Pa.
  • the pulse gas valve 150 may be inspected at a degree of vacuum. In this case, at the time of evacuation, each pulse gas valve 150 is reached when the ultimate degree of vacuum inside the vacuum vessel 110 detected by the auxiliary vacuum gauge 133 reaches a predetermined degree of vacuum of about 10 ⁇ 2 Pa to 10 ⁇ 3 Pa.
  • the control unit 143 controls the main pump 116, the auxiliary pump 117, and the pulse gas valve drive circuits 142a to 142d (the same applies to the embodiments other than the first embodiment) so as to start the inspection. If the degree of vacuum is about 10 ⁇ 2 Pa to 10 ⁇ 3 Pa, the adsorption of water molecules on the inner wall surface of the vacuum vessel does not greatly affect the evacuation time. Even so, the time required for evacuation can be shortened and a large number of pulse gas valves can be efficiently inspected.
  • the pulse gas valve is attached to the end surface of the vacuum vessel.
  • the pulse gas valve is attached to the peripheral surface of the vacuum vessel (that is, the circumference).
  • a configuration may be adopted in which a pulse gas valve vacuum introduction mechanism is provided on the surface.
  • the pulse gas valve vacuum introduction mechanisms are arranged so as to be rotationally symmetric with respect to the central axis X of the vacuum gauge mounting opening provided in the vacuum vessel.
  • the vacuum container is not limited to having the cylindrical internal space as described above, but may have another rotary body-shaped (for example, spherical) internal space.

Abstract

A pulsed gas valve inspection device is composed of: a vacuum container 110; vacuum pumps 116, 117 that produce a vacuum in the vacuum container 110; a plurality of pulsed gas valve attachment parts 115, 120 that are attached to an outer wall of the vacuum container 110 and each allow a pulsed gas valve 150 to be attached to the vacuum chamber 110 in a freely attachable/detachable manner; pulsed gas valve driving means 142a-142d that drive the pulsed gas valves 150 attached to the plurality of pulsed gas valve attachment parts 115, 120; a control means 143 that controls the pulsed gas valve driving means 142a-142d so as to selectively open one of the pulsed gas valves 150 attached to the plurality of pulsed gas valve attachment parts 115, 120; and an ionization vacuum gauge 113 that measures the change in the degree of vacuum within the vacuum chamber 110 due to the opening of the pulsed gas valve 150. The working efficiency involved in inspections of pulsed gas valves can thus be improved.

Description

パルスガスバルブ検査装置Pulse gas valve inspection device
 本発明は、パルスガスバルブが正常に動作するか否かを検査するためのパルスガスバルブ検査装置に関する。 The present invention relates to a pulse gas valve inspection device for inspecting whether or not a pulse gas valve operates normally.
 イオントラップ型質量分析装置には、イオントラップの内部(すなわちイオン捕捉空間)にクーリングガスやコリジョンガスをパルス状に繰り返し導入するためのパルスガスバルブが設けられている。このパルスの幅(ガスの導入時間)は、イオントラップ装置のサイズ(イオン捕捉空間の容積)にも依存するが、リング電極の内径が10mm程度の通常のイオントラップ装置の場合、数百μsec程度の非常に短いものとし、繰り返し速度は数十Hz以下とされる(特許文献1を参照)。イオン捕捉空間へのガス導入のタイミングや時間幅は、質量分析装置による分析精度に大きく影響するため、パルスガスバルブには極めて正確な動作が求められる。 The ion trap mass spectrometer is provided with a pulse gas valve for repeatedly introducing cooling gas and collision gas into the inside of the ion trap (that is, the ion trapping space) in a pulsed manner. The pulse width (gas introduction time) depends on the size of the ion trap device (volume of the ion trapping space), but in the case of a normal ion trap device having an inner diameter of the ring electrode of about 10 mm, it is about several hundred μsec. The repetition rate is set to several tens of Hz or less (see Patent Document 1). Since the timing and time width of gas introduction into the ion trapping space greatly affect the analysis accuracy by the mass spectrometer, the pulse gas valve is required to operate extremely accurately.
 そこで、質量分析装置(又はパルスガスバルブ)のメーカーでは、装置(又はバルブ)出荷前に、図16に記載のような検査システムを用いて、パルスガスバルブが正常に動作するか否かの検査が行われる。 Therefore, manufacturers of mass spectrometers (or pulse gas valves) use a test system such as that shown in FIG. 16 to check whether or not the pulse gas valves operate normally before shipping the device (or valve). Is called.
 この検査システムは、直管部12とその中途に接続された分岐管部13とを有するT字管型の真空容器11を備えており、直管部12の一端には、パルスガスバルブ30を真空容器11に対して気密に取り付けるための、シール部材等を含んだ真空導入機構14が設けられている。 This inspection system is provided with a T-tube type vacuum vessel 11 having a straight pipe portion 12 and a branch pipe portion 13 connected in the middle thereof, and a pulse gas valve 30 is evacuated at one end of the straight pipe portion 12. A vacuum introducing mechanism 14 including a seal member and the like for airtight attachment to the container 11 is provided.
 また、直管部12の他端には、上記同様の真空導入機構15を介して、電離真空計から成る検査用真空計16が取り付けられている。分岐管部13の中途には、真空引きの際に真空容器11内の到達真空度を計測するためのピラニゲージ等から成る補助真空計17が設けられており、分岐管部13の末端にはターボ分子ポンプ等から成るメインポンプ18が取り付けられている。更に、メインポンプ18の排気側にはダイアフラムポンプ等から成る補助ポンプ(粗引きポンプ)19が接続されている。 Further, an inspection vacuum gauge 16 composed of an ionization vacuum gauge is attached to the other end of the straight pipe portion 12 via the vacuum introduction mechanism 15 similar to the above. In the middle of the branch pipe section 13, an auxiliary vacuum gauge 17 composed of a Pirani gauge or the like for measuring the ultimate degree of vacuum in the vacuum vessel 11 at the time of vacuuming is provided. A main pump 18 composed of a molecular pump or the like is attached. Further, an auxiliary pump (roughing pump) 19 such as a diaphragm pump is connected to the exhaust side of the main pump 18.
 このような検査システムを用いてパルスガスバルブ30の検査を行う際には、まず、検査対象とするパルスガスバルブ30を真空容器11に取り付けた上で、メインポンプ18と補助ポンプ19によって真空容器11内を真空引きする。その後、補助真空計17による測定値(すなわち真空容器11内の真空度)が所定の値(1×10-4Pa以下)に達したら検査を開始する。すなわち、バルブ駆動回路20からパルスガスバルブ30にパルス状のバルブ駆動電圧を印加することによって、パルスガスバルブ30を所定の時間に亘って(300μsec程度)開放させる。パルスガスバルブ30の基端側にはヘリウム又はアルゴン等のテストガスが充填されたテストガスボンベ21が接続されており、上記のようにパルスガスバルブ30を開放することによって、テストガスが真空容器11内に導入される。真空容器11内に導入されたテストガスによって真空容器11内の真空度が変化すると、検査用真空計16からの出力電流が変化するので、これを電離真空計読取回路22で読み取ることにより、真空度の時間変化を計測する。 When inspecting the pulse gas valve 30 using such an inspection system, first, the pulse gas valve 30 to be inspected is attached to the vacuum vessel 11, and then the main pump 18 and the auxiliary pump 19 inside the vacuum vessel 11. Evacuate. Thereafter, when the measurement value by the auxiliary vacuum gauge 17 (that is, the degree of vacuum in the vacuum vessel 11) reaches a predetermined value (1 × 10 −4 Pa or less), the inspection is started. That is, by applying a pulsed valve driving voltage from the valve driving circuit 20 to the pulse gas valve 30, the pulse gas valve 30 is opened for a predetermined time (about 300 μsec). A test gas cylinder 21 filled with a test gas such as helium or argon is connected to the base end side of the pulse gas valve 30. By opening the pulse gas valve 30 as described above, the test gas enters the vacuum vessel 11. be introduced. When the degree of vacuum in the vacuum vessel 11 changes due to the test gas introduced into the vacuum vessel 11, the output current from the inspection vacuum gauge 16 changes, and this is read by the ionization vacuum gauge reading circuit 22. Measure the time change in degrees.
 図17に、300μsec幅の40V矩形波を、パルスガスバルブ30に対して3秒おきに印加した場合における、検査用真空計16の出力電流(真空度信号)の波形を示す。同図では、バルブ駆動電圧の時間変化を示す波形の上に、バルブ開閉3回分の真空度信号を重ね書きしている。なお、同図では、バルブ駆動電圧が変化していないように見えるが、実際には図中の下向きの矢印で示すタイミングでごく短い時間幅(300μsec)の矩形波がパルスガスバルブに印加されている。同図に示すように、真空度信号は、バルブの開閉後、約170msec掛けて最大6×10-2Pa程度まで上昇している。このように、パルスガスバルブの開閉を繰り返し行って真空度信号の波形を比較することにより、パルスガスバルブによるガス放出の繰り返し安定性を検査することができる。また、検査対象のパルスガスバルブについて得られた真空度信号の波形を、基準波形(例えば、正常に動作することが確認されているパルスガスバルブについて取得された波形)と比較することにより、該検査対象のパルスガスバルブによって放出されるガスの量やガスの放出タイミングが適切であるか否かを検査することができる。 FIG. 17 shows a waveform of the output current (vacuum degree signal) of the inspection vacuum gauge 16 when a 40 V rectangular wave having a width of 300 μsec is applied to the pulse gas valve 30 every 3 seconds. In the figure, a vacuum level signal for three times of valve opening / closing is overwritten on a waveform indicating a time change of the valve driving voltage. In this figure, the valve drive voltage does not seem to change, but in reality, a rectangular wave having a very short time width (300 μsec) is applied to the pulse gas valve at the timing indicated by the downward arrow in the figure. . As shown in the figure, the vacuum degree signal rises to about 6 × 10 −2 Pa at the maximum after approximately 170 msec after opening and closing of the valve. In this way, by repeatedly opening and closing the pulse gas valve and comparing the waveforms of the vacuum degree signal, it is possible to inspect the repeated stability of gas discharge by the pulse gas valve. Further, the waveform of the vacuum degree signal obtained for the pulse gas valve to be inspected is compared with a reference waveform (for example, a waveform acquired for a pulse gas valve that has been confirmed to operate normally), thereby It is possible to inspect whether or not the amount of gas discharged by the pulse gas valve and the gas discharge timing are appropriate.
特開2005-078804号公報([0013]-[0014], 図2)JP 2005-078804 ([0013]-[0014], Fig. 2)
 しかしながら、上記のような検査システムにおいて、真空容器内を、検査可能な真空度とするためには、真空引きに長時間(1時間程度)を要するため、多数のパルスガスバルブを検査する場合の作業効率が悪いという問題があった。 However, in the inspection system as described above, it takes a long time (about 1 hour) to evacuate the vacuum container so that the degree of vacuum can be inspected. There was a problem of inefficiency.
 本発明は上記の点に鑑みて成されたものであり、その目的とするところは、パルスガスバルブ検査装置を用いたバルブ検査の作業効率を改善することにある。 The present invention has been made in view of the above points, and an object of the present invention is to improve the work efficiency of valve inspection using a pulse gas valve inspection apparatus.
 上記課題を解決するために成された本発明に係るパルスガスバルブ検査装置は、
 真空容器と、
 前記真空容器内を真空引きする真空ポンプと、
 前記真空容器の外壁に取り付けられ、それぞれ前記真空容器に対してパルスガスバルブを着脱自在に取り付け可能な複数のパルスガスバルブ取付部と、
 前記複数のパルスガスバルブ取付部のそれぞれに取り付けられる前記パルスガスバルブを駆動するパルスガスバルブ駆動手段と、
 前記複数のパルスガスバルブ取付部のそれぞれに取り付けられる前記パルスガスバルブのいずれか1つを選択的に開放するよう前記パルスガスバルブ駆動手段を制御する制御手段と、
 前記パルスガスバルブの開放による前記真空容器内の真空度の変化を測定する電離真空計と、
を有することを特徴としている。
In order to solve the above problems, a pulse gas valve inspection apparatus according to the present invention comprises:
A vacuum vessel;
A vacuum pump for evacuating the vacuum vessel;
A plurality of pulse gas valve mounting portions attached to the outer wall of the vacuum vessel, each capable of detachably attaching a pulse gas valve to the vacuum vessel;
Pulse gas valve driving means for driving the pulse gas valve attached to each of the plurality of pulse gas valve attachment parts;
Control means for controlling the pulse gas valve driving means to selectively open any one of the pulse gas valves attached to each of the plurality of pulse gas valve attachment parts;
An ionization vacuum gauge for measuring a change in the degree of vacuum in the vacuum vessel by opening the pulse gas valve;
It is characterized by having.
 上記本発明に係るパルスガスバルブ検査装置によれば、1つの真空容器に複数個のパルスガスバルブを取り付けることができるため、真空容器を1回真空引きする毎に、複数個のパルスガスバルブの検査を行うことができる。このため、従来のように、1つのパルスガスバルブを検査する毎に真空引きを行う必要がなく、複数のパルスガスバルブを検査する際に掛かる時間と手間を大幅に軽減することができる。 According to the above-described pulse gas valve inspection apparatus according to the present invention, since a plurality of pulse gas valves can be attached to one vacuum vessel, a plurality of pulse gas valves are inspected each time the vacuum vessel is evacuated once. be able to. For this reason, unlike the prior art, it is not necessary to perform evacuation every time one pulse gas valve is inspected, and the time and labor required for inspecting a plurality of pulse gas valves can be greatly reduced.
 上記本発明に係るパルスガスバルブ検査装置は、
 前記真空容器が、前記電離真空計を取り付けるための円形の開口である真空計取り付け開口を有するものであって、
 前記真空容器の内部空間が、前記真空計取り付け開口の中心軸を中心とする回転体形状を有し、
 前記複数のパルスガスバルブ取付部が、前記中心軸に対して回転対称に配置されていることが望ましい。
The pulse gas valve inspection apparatus according to the present invention is as follows.
The vacuum vessel has a vacuum gauge mounting opening which is a circular opening for mounting the ionization vacuum gauge,
The internal space of the vacuum vessel has a rotating body shape centered on the central axis of the vacuum gauge mounting opening,
It is desirable that the plurality of pulse gas valve mounting portions are arranged rotationally symmetrically with respect to the central axis.
 このような構成によれば、パルスガスバルブを介して真空容器内に導入されたガス(テストガス)が電離真空計内へと進入する際の挙動を、真空容器に取り付けられた複数のパルスガスバルブの各々についてほぼ等しくすることができる。なお、電離真空計は、その一部又は全体が真空容器の内部に配置されていてもよく、その全体が真空容器の外部に配置されていてもよい。後者の場合、前記真空計は、その内部空間が前記真空計取り付け開口を介して真空容器の内部空間と連通されるようにする。 According to such a configuration, the behavior when the gas (test gas) introduced into the vacuum vessel through the pulse gas valve enters the ionization vacuum gauge is determined by the plurality of pulse gas valves attached to the vacuum vessel. It can be approximately equal for each. The ionization vacuum gauge may be partially or entirely disposed inside the vacuum vessel, or may be entirely disposed outside the vacuum vessel. In the latter case, the internal space of the vacuum gauge is communicated with the internal space of the vacuum vessel through the vacuum gauge mounting opening.
 上記本発明に係るパルスガスバルブ検査装置は、更に、
 前記真空容器に取り付けられた基準波形取得用のパルスガスバルブである参照バルブ、
 を有するものとしてもよい。
The pulse gas valve inspection apparatus according to the present invention further includes:
A reference valve which is a pulse gas valve for acquiring a reference waveform attached to the vacuum vessel,
It is good also as what has.
 前記参照バルブは、前記パルスガスバルブ取付部を介して真空容器に着脱可能に取り付けられていてもよく、溶接等によって真空容器に固定されていてもよい。後者の場合も、参照バルブ及び前記複数のパルスガスバルブ取付部は、真空計取り付け開口の中心軸に対して回転対称に配置することが望ましい。 The reference valve may be detachably attached to the vacuum vessel via the pulse gas valve attachment part, or may be fixed to the vacuum vessel by welding or the like. Also in the latter case, it is desirable that the reference valve and the plurality of pulse gas valve mounting portions are arranged rotationally symmetrically with respect to the central axis of the vacuum gauge mounting opening.
 このような構成によれば、検査対象の各パルスガスバルブについて得られた真空度変化の波形を、前記基準波形と比較することによって相対的な評価を行うことができる。そのため、検査装置の電源の入切や、パルスガスバルブ交換時における真空容器のベント等によって真空容器内の環境(例えば到達真空度など)が変化した場合にも、基準波形を取得し直すことにより、前記環境の変化の影響を受けずに各パルスガスバルブを評価することができる。 According to such a configuration, the relative evaluation can be performed by comparing the waveform of the degree of vacuum change obtained for each pulse gas valve to be inspected with the reference waveform. Therefore, by re-acquisition of the reference waveform even when the environment in the vacuum vessel (for example, the ultimate vacuum level) changes due to the turning on / off of the power supply of the inspection device, venting of the vacuum vessel at the time of pulse gas valve replacement, etc. Each pulse gas valve can be evaluated without being affected by the environmental change.
 上記本発明に係るパルスガスバルブ検査装置は、
 前記複数のパルスガスバルブ取付部が、それぞれ、前記真空容器に設けられたバルブ取り付け開口と、前記パルスガスバルブの先端に取り付けられるOリングとを含んでおり、
 更に、
 前記真空容器に対向する対向面と、該対向面に設けられた開口であって、前記複数のパルスガスバルブ取付部にそれぞれ取り付けられるパルスガスバルブのうちの2以上のパルスガスバルブの先端がそれぞれ挿通されるバルブ挿通孔とを有し、前記対向面のうち、前記開口のそれぞれの周縁部によって前記Oリングと当接するOリング押圧部材と、
 前記Oリング押圧部材によって前記Oリングが前記真空容器に向かって押圧された状態で、該Oリング押圧部材を固定する押圧部材固定手段と、
 を有するものとしてもよい。
The pulse gas valve inspection apparatus according to the present invention is as follows.
Each of the plurality of pulse gas valve mounting portions includes a valve mounting opening provided in the vacuum vessel, and an O-ring attached to a tip of the pulse gas valve;
Furthermore,
A facing surface facing the vacuum vessel and an opening provided in the facing surface, and the tips of two or more pulse gas valves of the pulse gas valves respectively attached to the plurality of pulse gas valve mounting portions are respectively inserted. An O-ring pressing member that has a valve insertion hole and abuts the O-ring by the peripheral edge of each of the openings of the opposing surface;
A pressing member fixing means for fixing the O-ring pressing member in a state where the O-ring is pressed toward the vacuum vessel by the O-ring pressing member;
It is good also as what has.
 このような構成によれば、真空容器にパルスガスバルブを取り付ける際に、2以上のパルスガスバルブに取り付けられたOリングを1つのOリング押圧部材で押圧することができるため、パルスガスバルブの取り付け及び交換におけるユーザの作業負担を低減することができる。 According to such a configuration, when the pulse gas valve is attached to the vacuum vessel, the O-ring attached to two or more pulse gas valves can be pressed by one O-ring pressing member. The user's work burden can be reduced.
 上記本発明に係るパルスガスバルブ検査装置は、更に、
 前記パルスガスバルブの基端に設けられたガス入口にテストガスを供給するテストガス供給手段、
 を有するものとしてもよい。
The pulse gas valve inspection apparatus according to the present invention further includes:
A test gas supply means for supplying a test gas to a gas inlet provided at a proximal end of the pulse gas valve;
It is good also as what has.
 ここで、前記テストガスとしては、例えば、アルゴン、ヘリウム、窒素などの不活性ガスのほか、例えば、乾燥大気などを用いることもできる。 Here, as the test gas, for example, in addition to an inert gas such as argon, helium, and nitrogen, for example, dry air can be used.
 また、前記テストガス供給手段は、
 前記複数のパルスガスバルブ取付部にそれぞれ取り付けられる前記パルスガスバルブのうち、2以上のパルスガスバルブの前記ガス入口が収容される密閉容器と、
 前記テストガスが充填されたテストガスボンベと、
 前記テストガスボンベと前記密閉容器とを繋ぐテストガス配管と、
 を有するものとしてもよい。
The test gas supply means includes
Among the pulse gas valves that are respectively attached to the plurality of pulse gas valve mounting portions, a sealed container that accommodates the gas inlets of two or more pulse gas valves;
A test gas cylinder filled with the test gas;
A test gas pipe connecting the test gas cylinder and the sealed container;
It is good also as what has.
 このような構成によれば、テストガス配管を介してテストガスボンベから密閉容器へとテストガスを導入することによって該密閉容器内をテストガスで充満させた状態とすることができ、この状態で前記2以上のパルスガスバルブのいずれかを開放することにより、前記真空容器内にテストガスを導入することができる。そのため、複数のテストガスバルブの各々に設けられたガス入口とテストガスボンベとの間をそれぞれ配管で接続する必要がなく、パルスガスバルブの取り付け及び交換におけるユーザの作業負担を低減することができる。 According to such a configuration, the inside of the sealed container can be filled with the test gas by introducing the test gas from the test gas cylinder to the sealed container via the test gas pipe. A test gas can be introduced into the vacuum vessel by opening one of the two or more pulse gas valves. Therefore, it is not necessary to connect the gas inlets provided in each of the plurality of test gas valves and the test gas cylinders with pipes, and the work burden on the user in installing and replacing the pulse gas valves can be reduced.
 上記本発明に係るパルスガスバルブ検査装置は、
 前記パルスガスバルブ駆動手段が、
 前記複数のパルスガスバルブ取付部にそれぞれ取り付けられる前記パルスガスバルブのうち、2以上のパルスガスバルブに対して設けられた1つのパルスガスバルブ駆動回路と、
 前記1つのパルスガスバルブ駆動回路を、前記2以上のパルスガスバルブのいずれかに択一的に接続する駆動バルブ切替手段と、
 を有するものとしてもよい。
The pulse gas valve inspection apparatus according to the present invention is as follows.
The pulse gas valve driving means comprises:
One pulse gas valve drive circuit provided for two or more pulse gas valves among the pulse gas valves respectively attached to the plurality of pulse gas valve attachment parts;
Drive valve switching means for selectively connecting the one pulse gas valve drive circuit to any one of the two or more pulse gas valves;
It is good also as what has.
 このような構成によれば、パルスガスバルブ駆動回路の数を抑えて検査装置の製造コストを低減することができる。 According to such a configuration, it is possible to reduce the manufacturing cost of the inspection apparatus by suppressing the number of pulse gas valve drive circuits.
 上記本発明に係るパルスガスバルブ検査装置は、
 前記電離真空計が、ヌードゲージであるものとしてもよい。
The pulse gas valve inspection apparatus according to the present invention is as follows.
The ionization vacuum gauge may be a nude gauge.
 通常の電離真空計は、測定用の電極(フィラメント、グリッド、及びコレクタ)と、これらを覆うガラス管等の外囲器を有しているが、ヌードゲージにはこのような外囲器がなく測定用の電極が露出した構成を有している。そのため、ヌードゲージは、通常の電離真空計よりも時間応答性が高く、1~10μ秒のオーダーで測定値が変化するという特性を有している。従って、上記構成を有するパルスガスバルブ検査装置によれば、従来測定できなかった、パルスガスバルブの開放時間スケール(数百マイクロ秒)以下での真空度変化を測定することが可能となる。 Ordinary ionization gauges have measurement electrodes (filaments, grids, and collectors) and envelopes such as glass tubes that cover them, but nude gauges do not have such envelopes. The measurement electrode is exposed. Therefore, the nude gauge has a characteristic that the time response is higher than that of a normal ionization vacuum gauge, and the measured value changes in the order of 1 to 10 μs. Therefore, according to the pulse gas valve inspection apparatus having the above-described configuration, it is possible to measure a change in the degree of vacuum at or below the open time scale (several hundred microseconds) of the pulse gas valve, which could not be measured conventionally.
 上記本発明に係るパルスガスバルブ検査装置は、
 前記真空容器に、水分含有量が1%以下のベントガスを導入するベントガス供給手段、
 を更に有するものとしてもよい。
The pulse gas valve inspection apparatus according to the present invention is as follows.
A vent gas supply means for introducing a vent gas having a moisture content of 1% or less into the vacuum container;
It is good also as having further.
 このような構成によれば、真空容器をベントする際における真空容器内壁への水分子の吸着を抑えることができ、その後の真空引きに要する時間を短縮することができる。 According to such a configuration, the adsorption of water molecules to the inner wall of the vacuum vessel when venting the vacuum vessel can be suppressed, and the time required for subsequent evacuation can be shortened.
 また、上記本発明に係るパルスガスバルブ検査装置は、
 前記制御手段が、真空容器内の真空度を10-2Pa~10-3Paとした状態で、前記パルスガスバルブの開放を行うよう、前記真空ポンプ及び前記パルスガスバルブ駆動手段を制御するものとしてもよい。
The pulse gas valve inspection apparatus according to the present invention is
The control means may control the vacuum pump and the pulse gas valve driving means so as to open the pulse gas valve in a state where the degree of vacuum in the vacuum vessel is 10 −2 Pa to 10 −3 Pa. Good.
 上記従来の検査装置のように、真空容器内を10-4Pa以下の真空度とした状態でパルスガスバルブの検査を行う場合には、真空容器の内壁からの水分子の脱離が真空引きの律速過程となる。これに対し、上記のように真空容器内を10-2Pa~10-3Pa程度の真空度とする場合には、真空容器の内壁からの水分子の脱離が真空引き時間に及ぼす影響は小さいため、真空引きに要する時間を短縮することができる。 When the pulse gas valve is inspected in a vacuum degree of 10 −4 Pa or less as in the conventional inspection apparatus described above, the desorption of water molecules from the inner wall of the vacuum container It becomes the rate-limiting process. On the other hand, when the vacuum vessel is made to have a degree of vacuum of about 10 −2 Pa to 10 −3 Pa as described above, the effect of water molecule desorption from the inner wall of the vacuum vessel on the evacuation time is Since it is small, the time required for evacuation can be shortened.
 以上の通り、本発明によれば、パルスガスバルブ検査装置を用いたバルブ検査の作業効率を改善することができる。 As described above, according to the present invention, the work efficiency of valve inspection using the pulse gas valve inspection apparatus can be improved.
本発明の実施例1に係るパルスガスバルブ検査装置の要部構成を示す模式図。The schematic diagram which shows the principal part structure of the pulse gas valve inspection apparatus which concerns on Example 1 of this invention. パルスガスバルブ真空導入機構にパルスガスバルブを取り付けた状態を示す断面図。Sectional drawing which shows the state which attached the pulse gas valve to the pulse gas valve vacuum introduction mechanism. パルスガスバルブにナット部材、押さえリング、及びOリングを取り付ける際の手順を示す断面図。Sectional drawing which shows the procedure at the time of attaching a nut member, a pressing ring, and an O-ring to a pulse gas valve. 前記パルスガスバルブをフランジ部材に取り付ける際の手順を示す断面図。Sectional drawing which shows the procedure at the time of attaching the said pulse gas valve to a flange member. 検査の実行時における制御部の動作を示すフローチャート。The flowchart which shows operation | movement of the control part at the time of execution of a test | inspection. 本発明の実施例2に係るパルスガスバルブ検査装置の要部構成を示す模式図。The schematic diagram which shows the principal part structure of the pulse gas valve inspection apparatus which concerns on Example 2 of this invention. 本発明の実施例3に係るパルスガスバルブ検査装置の要部構成を示す模式図。The schematic diagram which shows the principal part structure of the pulse gas valve inspection apparatus which concerns on Example 3 of this invention. 同実施例においてパルスガスバルブをOリング押圧部材及びOリングに挿通した状態を示す断面図。Sectional drawing which shows the state which penetrated the pulse gas valve to the O-ring press member and the O-ring in the Example. 同実施例においてOリング押圧部材でOリングを押圧している状態を示す断面図。Sectional drawing which shows the state which has pressed the O-ring with the O-ring pressing member in the Example. 同実施例における押圧部材固定手段の別の構成例を示す断面図。Sectional drawing which shows another structural example of the press member fixing means in the Example. 本発明の実施例4に係るパルスガスバルブ検査装置の要部構成を示す模式図。The schematic diagram which shows the principal part structure of the pulse gas valve inspection apparatus which concerns on Example 4 of this invention. 本発明の実施例5に係るパルスガスバルブ検査装置の要部構成を示す模式図。The schematic diagram which shows the principal part structure of the pulse gas valve inspection apparatus which concerns on Example 5 of this invention. 本発明の実施例6に係るパルスガスバルブ検査装置の要部構成を示す模式図。The schematic diagram which shows the principal part structure of the pulse gas valve inspection apparatus which concerns on Example 6 of this invention. 本発明の実施例7に係るパルスガスバルブ検査装置の要部構成を示す模式図。The schematic diagram which shows the principal part structure of the pulse gas valve inspection apparatus which concerns on Example 7 of this invention. 本発明の実施例8に係るパルスガスバルブ検査装置の要部構成を示す模式図。The schematic diagram which shows the principal part structure of the pulse gas valve inspection apparatus which concerns on Example 8 of this invention. 従来のパルスガスバルブ検査装置を示す概略構成図。The schematic block diagram which shows the conventional pulse gas valve inspection apparatus. パルスガス導入時の真空容器内の真空度変化を示す波形。A waveform showing a change in the degree of vacuum in the vacuum vessel when the pulse gas is introduced.
 以下、本発明を実施するための形態について実施例を挙げて説明する。 Hereinafter, modes for carrying out the present invention will be described with examples.
 本発明の第1の実施例に係るパルスガスバルブ検査装置の構成を図1に示す。この検査装置は、検査対象であるパルスガスバルブ150が取り付けられる円筒形の真空容器110を有しており、真空容器110の一方の端面(以下、第1端面110aとよぶ)には、その中心に円形の真空計取付用開口111が設けられている。この真空計取付用開口111には、電離真空計真空導入機構112を介して電離真空計113が取り付けられる。なお、電離真空計113としては、三極管型、シュルツ型、又はB-Aゲージ等、いかなる種類のものを用いてもよい。電離真空計真空導入機構112は、電離真空計113を真空容器110に対して気密に取り付けるための部材であり、後述のパルスガスバルブ真空導入機構120とほぼ同一の構成を有している。一方、真空容器110の他方の端面(以下、第2端面110bとよぶ)には、その中心に円形の排気口114が設けられており、排気口114にはメインポンプ116(例えば、ターボ分子ポンプ等)の吸気側が接続されている。また、メインポンプ116の排気側には、補助ポンプ117(例えば、ダイアフラムポンプ等)が接続されている。 FIG. 1 shows the configuration of the pulse gas valve inspection apparatus according to the first embodiment of the present invention. This inspection apparatus has a cylindrical vacuum vessel 110 to which a pulse gas valve 150 to be inspected is attached, and one end surface of the vacuum vessel 110 (hereinafter referred to as a first end surface 110a) is at the center thereof. A circular vacuum gauge mounting opening 111 is provided. An ionization vacuum gauge 113 is attached to the vacuum gauge attachment opening 111 via an ionization vacuum gauge vacuum introduction mechanism 112. As the ionization vacuum gauge 113, any type such as a triode type, a Schulz type, or a BA gauge may be used. The ionization vacuum gauge vacuum introduction mechanism 112 is a member for attaching the ionization vacuum gauge 113 to the vacuum vessel 110 in an airtight manner, and has substantially the same configuration as a pulse gas valve vacuum introduction mechanism 120 described later. On the other hand, a circular exhaust port 114 is provided at the center of the other end surface of the vacuum vessel 110 (hereinafter referred to as the second end surface 110b), and a main pump 116 (for example, a turbo molecular pump) is provided in the exhaust port 114. Etc.) is connected to the intake side. An auxiliary pump 117 (for example, a diaphragm pump) is connected to the exhaust side of the main pump 116.
 真空容器110の第2端面110bには、更に、排気口114を囲むように複数のバルブ取付用開口115が設けられている。また、第2端面110bには、これらのバルブ取付用開口115に対応する位置にパルスガスバルブ真空導入機構120が取り付けられている。なお、これらのバルブ取付用開口115及びパルスガスバルブ真空導入機構120が、本発明におけるパルスガスバルブ取付部に相当する。パルスガスバルブ真空導入機構120は、パルスガスバルブ150を真空容器110に対して気密に取り付けるための部材である。また、図1では、真空容器に8つのパルスガスバルブ真空導入機構120を設けた構成を示しているが、パルスガスバルブの数はこれに限定されるものではなく、2個以上であればよい(以下の全ての実施例において同じ)。 The second end surface 110b of the vacuum vessel 110 is further provided with a plurality of valve mounting openings 115 so as to surround the exhaust port 114. A pulse gas valve vacuum introduction mechanism 120 is attached to the second end face 110b at a position corresponding to these valve attachment openings 115. The valve mounting opening 115 and the pulse gas valve vacuum introduction mechanism 120 correspond to the pulse gas valve mounting portion in the present invention. The pulse gas valve vacuum introduction mechanism 120 is a member for attaching the pulse gas valve 150 to the vacuum vessel 110 in an airtight manner. Further, FIG. 1 shows a configuration in which eight pulse gas valve vacuum introduction mechanisms 120 are provided in a vacuum vessel, but the number of pulse gas valves is not limited to this, and may be two or more (hereinafter referred to as the following). The same in all of the examples).
 パルスガスバルブ真空導入機構120は、図2に示すように、フランジ部材121、ナット部材122、押さえリング123、及び2つのOリング124、125を備えている。フランジ部材121は、外周面にネジ溝が形成された円筒部121aと、円筒部121aの一端に設けられたフランジ部121bを備えており、このフランジ部121bが真空容器110の第2端面110bの外側にネジ留めされることによって、フランジ部材121が真空容器110に固定される。ナット部材122は、フランジ部材121の円筒部121aの外径と略同一寸法の内径を有し、その内周面に前記ネジ溝と螺合するネジ溝が形成された円筒部122aと、円筒部122aの一端に設けられ、円筒部122aの内径よりも小さな内径を有する円環部122bとを備えている。 As shown in FIG. 2, the pulse gas valve vacuum introduction mechanism 120 includes a flange member 121, a nut member 122, a pressing ring 123, and two O- rings 124 and 125. The flange member 121 includes a cylindrical portion 121a having a thread groove formed on the outer peripheral surface, and a flange portion 121b provided at one end of the cylindrical portion 121a. The flange portion 121b is formed on the second end surface 110b of the vacuum vessel 110. The flange member 121 is fixed to the vacuum vessel 110 by being screwed to the outside. The nut member 122 has an inner diameter that is substantially the same as the outer diameter of the cylindrical portion 121a of the flange member 121, and a cylindrical portion 122a in which a screw groove that is screwed into the screw groove is formed on the inner peripheral surface thereof, and the cylindrical portion And an annular portion 122b having an inner diameter smaller than the inner diameter of the cylindrical portion 122a.
 パルスガスバルブ150を真空容器110に取り付ける際には、まず、図3に示すように、パルスガスバルブ150の先端を、ナット部材122、押さえリング123、Oリング124、125に、この順番で挿通する。その後、図4に示すように、パルスガスバルブ150の先端を、真空容器110の第2端面110bに取り付けられたフランジ部材121の円筒部121aに挿通し、その状態でナット部材122を回転させることによって、ナット部材122を円筒部121aに締結させる。このとき、ナット部材122の円環部122bが押さえリング123を介してOリング124、125を押圧し、それによってOリング124、125がパルスガスバルブ150とフランジ部材121の両方に密着する。これにより、パルスガスバルブ150とフランジ部材121との間が気密にシールされる。 When attaching the pulse gas valve 150 to the vacuum vessel 110, first, as shown in FIG. 3, the tip of the pulse gas valve 150 is inserted into the nut member 122, the holding ring 123, and the O- rings 124 and 125 in this order. Thereafter, as shown in FIG. 4, the tip of the pulse gas valve 150 is inserted into the cylindrical portion 121a of the flange member 121 attached to the second end face 110b of the vacuum vessel 110, and the nut member 122 is rotated in that state. The nut member 122 is fastened to the cylindrical portion 121a. At this time, the annular portion 122 b of the nut member 122 presses the O- rings 124 and 125 via the pressing ring 123, and thereby the O- rings 124 and 125 are in close contact with both the pulse gas valve 150 and the flange member 121. As a result, the gap between the pulse gas valve 150 and the flange member 121 is hermetically sealed.
 なお、各パルスガスバルブ150を介して真空容器110内に導入されるガス(テストガス)が電離真空計113内へと進入する際の挙動が、各パルスガスバルブ150について同様となるように、これらのパルスガスバルブ真空導入機構120は、真空計取付用開口111の中心軸Xに対して回転対称に配置されている。 Note that the behavior when the gas (test gas) introduced into the vacuum vessel 110 via each pulse gas valve 150 enters the ionization vacuum gauge 113 is the same for each pulse gas valve 150. The pulse gas valve vacuum introduction mechanism 120 is disposed rotationally symmetrically with respect to the central axis X of the vacuum gauge mounting opening 111.
 本実施例に係る検査装置は、更に、真空容器110の周面110cに接続されたベント用配管131を備えており、該配管131上には、該配管131を開閉するためのバルブ(以下、ベントバルブ132とよぶ)と、補助真空計133(例えば、ピラニゲージ等)が配設されている。補助真空計133は、真空引きの実行時における真空容器110の到達真空度を測定するものであり、ベント用配管131上において、真空容器110とベントバルブ132の間に位置している。 The inspection apparatus according to the present embodiment further includes a vent pipe 131 connected to the peripheral surface 110c of the vacuum vessel 110. On the pipe 131, a valve for opening and closing the pipe 131 (hereinafter, referred to as the pipe 131). A vent valve 132) and an auxiliary vacuum gauge 133 (for example, a Pirani gauge) are provided. The auxiliary vacuum gauge 133 measures the ultimate degree of vacuum of the vacuum vessel 110 when performing vacuuming, and is positioned between the vacuum vessel 110 and the vent valve 132 on the vent pipe 131.
 本実施例に係る検査装置は、更に、テストガス(ヘリウム、アルゴン、窒素等)を収容したテストガスボンベ134、テストガスボンベ134から供給されるテストガスの圧力を調節するレギュレータ135、及びテストガスボンベ134と各パルスガスバルブ150とを繋ぐテストガス供給配管136を備えている(これらのテストガスボンベ134、レギュレータ135、及びテストガス供給配管136が、本発明におけるテストガス供給手段に相当する)。テストガス供給配管136は、レギュレータ135を介してテストガスボンベ134に接続される1つの入口端と、検査対象のパルスガスバルブ150の基端側に設けられたガス導入ポート151(図2~図4を参照。本発明におけるガス入口に相当)にそれぞれ接続される複数の出口端とを備えた分岐管構造を有している。なお、出口端は、パルスガスバルブ真空導入機構120と同じ数だけ設けられているが、図1では簡略化のため、一部の出口端のみを図示している(後述の図6、図7、図12、図14、及び図15においても同じ)。 The inspection apparatus according to the present embodiment further includes a test gas cylinder 134 containing a test gas (helium, argon, nitrogen, etc.), a regulator 135 for adjusting the pressure of the test gas supplied from the test gas cylinder 134, and a test gas cylinder 134; A test gas supply pipe 136 that connects each pulse gas valve 150 is provided (the test gas cylinder 134, the regulator 135, and the test gas supply pipe 136 correspond to the test gas supply means in the present invention). The test gas supply pipe 136 has one inlet end connected to the test gas cylinder 134 via the regulator 135 and a gas introduction port 151 (see FIGS. 2 to 4) provided on the base end side of the pulse gas valve 150 to be inspected. A branch pipe structure having a plurality of outlet ends respectively connected to a gas inlet in the present invention. Although the same number of outlet ends as the pulse gas valve vacuum introduction mechanism 120 are provided, only a part of the outlet ends is shown in FIG. 1 for simplification (FIGS. 6 and 7 described later). The same applies to FIG. 12, FIG. 14, and FIG.
 また更に、本実施例に係る検査装置は、電離真空計113からの検出信号を受け取って真空度の時間変化を表す波形を出力する電離真空計読取回路141と、検査対象である複数のパルスガスバルブ150をそれぞれ駆動する複数のパルスガスバルブ駆動回路142a~142dと、上記各部の動作を制御する制御部143とを備えている。なお、パルスガスバルブ駆動回路142a~142dは、パルスガスバルブ真空導入機構120と同じ数だけ設けられるが、図1では、簡略化のため、一部のパルスガスバルブ駆動回路142a~142dのみを図示している(後述する図6、図7、図11、図13~図15においても同じ)。制御部143には、更に、電離真空計読取回路141で生成された前記波形を記録する記憶部144と、該波形を出力するための表示装置やプリンタを備えた出力部145と、検査に関する設定値や所定の指示をユーザが入力するためのキーボードやスイッチ等から成る入力部146と、が接続されている。なお、制御部143の実体は、CPU、及びRAM等から成るメモリ等を備えた専用又は汎用のコンピュータであり、当該コンピュータで所定の処理プログラムを動作させることにより、後述する図5のフローチャートで示すような制御が実行される。 Furthermore, the inspection apparatus according to the present embodiment includes an ionization vacuum gauge reading circuit 141 that receives a detection signal from the ionization vacuum gauge 113 and outputs a waveform representing a time change in the degree of vacuum, and a plurality of pulse gas valves to be tested. 150 includes a plurality of pulse gas valve drive circuits 142a to 142d that respectively drive 150, and a control unit 143 that controls the operation of each unit. Although the same number of pulse gas valve drive circuits 142a to 142d as the pulse gas valve vacuum introduction mechanism 120 are provided, only some of the pulse gas valve drive circuits 142a to 142d are shown in FIG. 1 for the sake of simplicity. (The same applies to FIGS. 6, 7, 11, and 13 to 15 described later). The control unit 143 further includes a storage unit 144 that records the waveform generated by the ionization gauge reading circuit 141, an output unit 145 that includes a display device and a printer for outputting the waveform, and settings related to inspection. An input unit 146 composed of a keyboard, a switch and the like for the user to input values and predetermined instructions is connected. Note that the substance of the control unit 143 is a dedicated or general-purpose computer including a CPU and a memory such as a RAM. A predetermined processing program is operated on the computer, and is shown in a flowchart of FIG. 5 described later. Such control is executed.
 本実施例に係る検査装置を用いて検査を行う際には、まず、ユーザが電離真空計真空導入機構112に電離真空計113を取り付けると共に、電離真空計113を電離真空計読取回路141に接続する。更に、ユーザが検査対象である複数のパルスガスバルブ150を、それぞれパルスガスバルブ真空導入機構120に取り付けると共に、各パルスガスバルブ150をパルスガスバルブ駆動回路142a~142dに接続する。その後、ユーザが入力部146で所定の入力操作を行うことにより、制御部143に検査の実行を指示する。 When performing an inspection using the inspection apparatus according to the present embodiment, first, the user attaches the ionization vacuum gauge 113 to the ionization vacuum gauge vacuum introduction mechanism 112 and connects the ionization vacuum gauge 113 to the ionization vacuum gauge reading circuit 141. To do. Further, the plurality of pulse gas valves 150 to be inspected by the user are respectively attached to the pulse gas valve vacuum introduction mechanism 120, and each pulse gas valve 150 is connected to the pulse gas valve drive circuits 142a to 142d. Thereafter, the user performs a predetermined input operation with the input unit 146 to instruct the control unit 143 to execute the inspection.
 以下、検査の実行時における制御部143の動作について、図5を参照しつつ説明する。入力部146から検査の実行を指示する信号が入力されると、制御部143は、ベントバルブ132にベント用配管131を閉鎖させ(ステップS11)、補助ポンプ117及びメインポンプ116による真空引きを開始させる(ステップS12)。その後、制御部143は補助真空計133からの検出信号を監視し、該検出信号から求められる真空容器110内の真空度が所定の真空度(例えば、1×10-4 Pa)に到達した時点(ステップS13でYes)で、各パルスガスバルブ150の検査を開始する、すなわち、制御部143は、検査対象のパルスガスバルブ150を表すバルブ番号nを1とし(ステップS14)、1番目のパルスガスバルブ150に接続されたパルスガスバルブ駆動回路(例えば142a)を制御することにより、1番目のパルスガスバルブ150を所定の時間間隔(例えば3秒おき)で、所定の回数(例えば3回)、それぞれ所定の時間(例えば300μsec)の間だけ開放させる(ステップS15)。なお、ステップS15の実行中、電離真空計読取回路141では、電離真空計113から出力された検出信号に基づいて真空度の時間変化を表す波形が生成される。該波形は、制御部143を介して記憶部144に送出されて記憶される。その後は、制御部143がバルブ番号nをインクリメント(ステップS17)した上で、n番目のパルスガスバルブ150に対してステップS15を実行し、真空容器110に取り付けられたk個(図1の例では8個)のパルスガスバルブの全てについての検査が完了した時点(ステップS16でYes)で、ベントバルブ132を開いて真空容器110を大気に開放する(ステップS18)。 Hereinafter, the operation of the control unit 143 at the time of executing the inspection will be described with reference to FIG. When a signal instructing execution of the inspection is input from the input unit 146, the control unit 143 causes the vent valve 132 to close the vent pipe 131 (step S11), and starts vacuuming by the auxiliary pump 117 and the main pump 116. (Step S12). Thereafter, the control unit 143 monitors the detection signal from the auxiliary vacuum gauge 133, and when the degree of vacuum in the vacuum vessel 110 obtained from the detection signal reaches a predetermined degree of vacuum (for example, 1 × 10 −4 Pa). (Yes in step S13), the inspection of each pulse gas valve 150 is started, that is, the control unit 143 sets the valve number n representing the pulse gas valve 150 to be inspected to 1 (step S14), and the first pulse gas valve 150 By controlling a pulse gas valve driving circuit (for example, 142a) connected to the first pulse gas valve 150, the first pulse gas valve 150 is set at a predetermined time interval (for example, every 3 seconds) for a predetermined number of times (for example, 3 times) for a predetermined time. It is opened only during (for example, 300 μsec) (step S15). During the execution of step S15, the ionization vacuum gauge reading circuit 141 generates a waveform representing the change in the degree of vacuum over time based on the detection signal output from the ionization vacuum gauge 113. The waveform is sent to the storage unit 144 via the control unit 143 and stored. Thereafter, the control unit 143 increments the valve number n (step S17), and then executes step S15 for the nth pulse gas valve 150, and k units (in the example of FIG. 1) attached to the vacuum vessel 110. When the inspection for all the eight pulse gas valves is completed (Yes in step S16), the vent valve 132 is opened to open the vacuum vessel 110 to the atmosphere (step S18).
 以上により検査が完了した後は、ユーザが入力部146で所定の操作を行うことにより、制御部143に波形の表示を指示する。これにより、図17で示したような波形(すなわち、ステップS15における複数回のバルブ開閉の各回における真空度の変化を示す波形を、パルスガスバルブ150毎に重ね描きしたもの)が、出力部145に設けられた表示装置の画面に表示される。なお、表示装置の画面に前記波形を表示させるのに加えて又は代えて、出力部145に設けられたプリンタによって前記波形を印刷するようにしてもよい。ユーザは、検査対象の各パルスガスバルブ150(以下、検査対象バルブとよぶことがある)について得られた波形を、基準波形と比較することにより、検査対象バルブが正常に動作しているかどうかを評価する。ここで基準波形とは、正常に動作することが分かっているパルスガスバルブ(これを参照バルブとよぶ)について上記同様の検査を行って得られた真空度変化の波形である。なお、基準波形は、事前に取得しておいたものを使用してもよいが、真空容器110の大気開放及び真空引きを行う毎に、又は検査装置の電源の入切を行う毎に、基準波形を取得し直すことが望ましい。この場合、真空容器110に設けられたk個のパルスガスバルブ真空導入機構120のいずれか1つに参照用バルブを取り付け、更に、残りのk-1個のパルスガスバルブ真空導入機構120のそれぞれに検査対象バルブを取り付けた状態で、図5のフローチャートに従った検査を実行する。そして、該検査において参照バルブについて取得された波形と各検査対象バルブについて得られた波形とをユーザが比較することによって、各検査対象バルブが正常に動作しているかを評価する。なお、こうしたユーザの目視による評価に代えて、上述のコンピュータが、各検査対象バルブについて得られた波形と参照波形との差異が予め定められた許容範囲以内であるか否かに基づいて、各試験バルブが正常に動作しているか否かを評価するようにしてもよい。 After the inspection is completed as described above, the user instructs the control unit 143 to display a waveform by performing a predetermined operation with the input unit 146. As a result, a waveform as shown in FIG. 17 (that is, a waveform showing a change in the degree of vacuum at each of a plurality of times of valve opening / closing in step S15 is overlaid for each pulse gas valve 150) is output to the output unit 145. It is displayed on the screen of the provided display device. In addition to or instead of displaying the waveform on the screen of the display device, the waveform may be printed by a printer provided in the output unit 145. The user evaluates whether the inspection target valve is operating normally by comparing the waveform obtained for each pulse gas valve 150 to be inspected (hereinafter sometimes referred to as the inspection target valve) with a reference waveform. To do. Here, the reference waveform is a waveform of a change in the degree of vacuum obtained by performing the same inspection as described above for a pulse gas valve that is known to operate normally (referred to as a reference valve). The reference waveform may be obtained in advance, but every time the vacuum vessel 110 is opened to the atmosphere and evacuated, or every time the inspection apparatus is turned on / off, the reference waveform is used. It is desirable to re-acquire the waveform. In this case, a reference valve is attached to any one of the k pulse gas valve vacuum introduction mechanisms 120 provided in the vacuum vessel 110, and each of the remaining k-1 pulse gas valve vacuum introduction mechanisms 120 is inspected. The inspection according to the flowchart of FIG. 5 is executed with the target valve attached. Then, the user compares the waveform acquired for the reference valve in the inspection with the waveform obtained for each inspection target valve to evaluate whether each inspection target valve is operating normally. Instead of such visual evaluation by the user, the computer described above is based on whether or not the difference between the waveform obtained for each valve to be inspected and the reference waveform is within a predetermined allowable range. You may make it evaluate whether a test valve is operating normally.
 上記本実施例に係る検査装置によれば、1つの真空容器110に複数個のパルスガスバルブ150を取り付けることができ、真空容器110を1回真空引きする毎に、複数個のパルスガスバルブ150の検査を行うことができる。このため、従来のように、1つのパルスガスバルブを検査する毎に真空引きをやり直す必要がなく、複数のパルスガスバルブを検査する際に掛かる時間と手間を大幅に軽減することができる。 According to the inspection apparatus according to the present embodiment, a plurality of pulse gas valves 150 can be attached to one vacuum vessel 110. Each time the vacuum vessel 110 is evacuated, the plurality of pulse gas valves 150 are inspected. It can be performed. For this reason, it is not necessary to re-evacuate each time one pulse gas valve is inspected as in the prior art, and the time and labor required for inspecting a plurality of pulse gas valves can be greatly reduced.
 本発明の第2の実施例に係るパルスガスバルブ検査装置の構成を図6に示す。なお、実施例1に係る検査装置と同一又は対応する構成要素については、下二桁が共通する符号を付し、適宜説明を省略する(以下の全ての実施例で同じ)。 FIG. 6 shows the configuration of a pulse gas valve inspection apparatus according to the second embodiment of the present invention. Note that the same or corresponding components as those in the inspection apparatus according to the first embodiment are denoted by the same reference numerals in the last two digits, and the description thereof is omitted as appropriate (the same applies to all the following embodiments).
 本実施例に係る検査装置は、上記基準波形の取得に用いるパルスガスバルブ(参照バルブ260)が、真空容器210に常時固定されている点を特徴としている(すなわち、本実施例では参照バルブ260が検査装置の構成要素に含まれている)。ここで、参照バルブ260は、試験対象のパルスガスバルブ250と同様に、パルスガスバルブ真空導入機構220を介して真空容器210に接続するようにしてもよいが、図6に示すように、溶接等によって真空容器210に直接固定するようにしてもよい。後者の場合も、真空容器210における参照バルブ260及び各パルスガスバルブ真空導入機構220の取り付け位置は、真空計取付用開口211の中心軸Xに対して回転対称に配置される。 The inspection apparatus according to the present embodiment is characterized in that the pulse gas valve (reference valve 260) used for obtaining the reference waveform is always fixed to the vacuum vessel 210 (that is, in this embodiment, the reference valve 260 is Included in the components of the inspection device). Here, the reference valve 260 may be connected to the vacuum vessel 210 via the pulse gas valve vacuum introduction mechanism 220 in the same manner as the pulse gas valve 250 to be tested. However, as shown in FIG. You may make it fix to the vacuum vessel 210 directly. Also in the latter case, the attachment positions of the reference valve 260 and each pulse gas valve vacuum introduction mechanism 220 in the vacuum vessel 210 are arranged rotationally symmetrically with respect to the central axis X of the vacuum gauge attachment opening 211.
 本発明の第3の実施例に係るパルスガスバルブ検査装置の概略構成を図7に示す。また、同実施例の検査装置におけるパルスガスバルブ真空導入機構320及び真空容器310の第2端面310bの断面図を図8及び図9に示す(これらの図ではメインポンプ316の図示を省略している)。 FIG. 7 shows a schematic configuration of a pulse gas valve inspection apparatus according to the third embodiment of the present invention. 8 and 9 are sectional views of the pulse gas valve vacuum introduction mechanism 320 and the second end surface 310b of the vacuum vessel 310 in the inspection apparatus of the embodiment (the main pump 316 is not shown in these drawings). ).
 本実施例に係る検査装置は、パルスガスバルブ真空導入機構320として、各パルスガスバルブ350に取り付けられるOリング324、325と、複数のパルスガスバルブ350に取り付けられたOリング324、325を一度に押圧するためのOリング押圧部材326とを備えている。Oリング押圧部材326は、真空容器310の第2端面310bの直径よりも小さい外径と、第2端面310bに設けられた排気口314の直径よりも大きい内径を有するリング型の板状部材であり、真空容器310のバルブ取付用開口315に対応する位置に、それぞれバルブ挿通孔327を有している。本実施例に係る検査装置は、更に、Oリング押圧部材326を真空容器310に接近する方向及び真空容器310から離間する方向に移動するための、モータや回転直動変換機構等を備えた押圧部材駆動機構328を備えている。なお、本実施例においても、真空容器310のバルブ取付用開口115(本発明におけるパルスガスバルブ取付部に相当)は、真空容器310の第1端面310aに設けられた真空計取付用開口311の中心軸Xに対して回転対称に設けられている。 The inspection apparatus according to the present embodiment presses O- rings 324 and 325 attached to each pulse gas valve 350 and O- rings 324 and 325 attached to a plurality of pulse gas valves 350 at a time as the pulse gas valve vacuum introduction mechanism 320. And an O-ring pressing member 326. The O-ring pressing member 326 is a ring-shaped plate-shaped member having an outer diameter smaller than the diameter of the second end surface 310b of the vacuum vessel 310 and an inner diameter larger than the diameter of the exhaust port 314 provided in the second end surface 310b. There are valve insertion holes 327 at positions corresponding to the valve mounting openings 315 of the vacuum vessel 310. The inspection apparatus according to the embodiment further includes a motor, a rotation / linear motion conversion mechanism, and the like for moving the O-ring pressing member 326 in the direction approaching the vacuum container 310 and the direction separating from the vacuum container 310. A member drive mechanism 328 is provided. Also in this embodiment, the valve mounting opening 115 of the vacuum vessel 310 (corresponding to the pulse gas valve mounting portion in the present invention) is the center of the vacuum gauge mounting opening 311 provided on the first end surface 310a of the vacuum vessel 310. It is provided rotationally symmetric with respect to the axis X.
 本実施例の検査装置において、真空容器310にパルスガスバルブ350を取り付ける際には、まず、図8に示すように、各パルスガスバルブ350の先端をOリング押圧部材326のバルブ挿通孔327に挿通した後、該先端にOリング324、325を取り付ける。その後、ユーザが入力部346で所定の操作を行うと、制御部343の制御の下に、押圧部材駆動機構328がOリング押圧部材326を真空容器310に接近する方向に所定の距離だけ移動させてOリング押圧部材326を停止させる。これにより、図9に示すように、各パルスガスバルブ350の先端が、第2端面310bに設けられたバルブ取付用開口315から真空容器310の内部に挿通されると共に、各パルスガスバルブ350に取り付けられたOリング324、325がOリング押圧部材326によって押圧される(すなわち、押圧部材駆動機構328が本発明における押圧部材固定手段に相当する)。その結果、各Oリング324、325がパルスガスバルブ350の周面及び真空容器310の第2端面310bに密着するため、パルスガスバルブ350が真空容器310に気密に取り付けられた状態となる。 In the inspection apparatus of the present embodiment, when the pulse gas valve 350 is attached to the vacuum vessel 310, first, the tip of each pulse gas valve 350 is inserted into the valve insertion hole 327 of the O-ring pressing member 326 as shown in FIG. Then, O- rings 324 and 325 are attached to the tips. Thereafter, when the user performs a predetermined operation with the input unit 346, the pressing member driving mechanism 328 moves the O-ring pressing member 326 by a predetermined distance in the direction approaching the vacuum vessel 310 under the control of the control unit 343. Then, the O-ring pressing member 326 is stopped. As a result, as shown in FIG. 9, the tip of each pulse gas valve 350 is inserted into the interior of the vacuum vessel 310 from the valve attachment opening 315 provided in the second end surface 310b, and is attached to each pulse gas valve 350. The O- rings 324 and 325 are pressed by the O-ring pressing member 326 (that is, the pressing member driving mechanism 328 corresponds to the pressing member fixing means in the present invention). As a result, the O- rings 324 and 325 are in close contact with the peripheral surface of the pulse gas valve 350 and the second end surface 310b of the vacuum vessel 310, so that the pulse gas valve 350 is attached to the vacuum vessel 310 in an airtight manner.
 このように、本実施例に係る検査装置によれば、各パルスガスバルブ350に取り付けられたOリング324、325を1つのOリング押圧部材326によって押圧することができるため、真空容器310にパルスガスバルブ350を取り付ける際のユーザの作業負担を軽減することができる。なお、ここでは、1つのパルスガスバルブ350に2つのOリング324、325を取り付ける構成を例示したが、Oリングの数はこれに限定されるものではない。 As described above, according to the inspection apparatus according to the present embodiment, the O- rings 324 and 325 attached to each pulse gas valve 350 can be pressed by one O-ring pressing member 326. The work burden on the user when attaching 350 can be reduced. Here, the configuration in which two O- rings 324 and 325 are attached to one pulse gas valve 350 is illustrated, but the number of O-rings is not limited to this.
 また、本発明における押圧部材固定手段は、上記の押圧部材駆動機構328のようにモータ等によってOリング押圧部材326を移動させる構成に限定されるものではなく、Oリング押圧部材326を真空容器310に接近させた状態で固定できるものであればよい。このような構成としては、例えば、図10に示すように、真空容器310の第2端面310bに固定されるフランジ部材329と、フランジ部材329に螺合されるナット部材330から成るものが考えられる。ここで、フランジ部材329は、Oリング押圧部材326の外径よりも大きな内径を有し、その外周面にネジ溝が形成された円筒部329aと、円筒部329aの一端に設けられたフランジ部329bとを備えており、フランジ部329bを第2端面310bの外側にネジ留めすることによって真空容器310に固定される。一方、ナット部材330は、フランジ部材329の円筒部329aの外径と略同一寸法の内径を有し、その内周面に前記ネジ溝と螺合するネジ溝が形成された円筒部330aと、円筒部330aの一端に設けられ、Oリング押圧部材326の外径よりも小さな内径を有する円環部330bとを備えている。このような構成において、真空容器310にパルスガスバルブ350を取り付ける際には、まず、各パルスガスバルブ350の先端をOリング押圧部材326のバルブ挿通孔327に挿通した後、該先端にOリング324、325を取り付ける。その後、Oリング押圧部材326をフランジ部材329の円筒部329aに進入させて、各パルスガスバルブ350の先端を真空容器310の第2端面310bに設けられたバルブ取付用開口315に挿通する。この状態で、フランジ部材329の円筒部329aにナット部材330を取り付けて回転させることにより、フランジ部材329にナット部材330を締結させる。これにより、ナット部材330の円環部330bによってOリング押圧部材326が押され、該Oリング押圧部材326がOリング324、325を真空容器310に向かって押圧する。その結果、Oリング324、325が潰れ、各パルスガスバルブ350と真空容器310の第2端面310bとの間が気密にシールされる。 Further, the pressing member fixing means in the present invention is not limited to the configuration in which the O-ring pressing member 326 is moved by a motor or the like like the above-described pressing member driving mechanism 328. The O-ring pressing member 326 is not limited to the vacuum vessel 310. Any device can be used as long as it can be fixed in a state where it is close to. As such a configuration, for example, as shown in FIG. 10, a configuration including a flange member 329 fixed to the second end surface 310 b of the vacuum vessel 310 and a nut member 330 screwed to the flange member 329 is conceivable. . Here, the flange member 329 has an inner diameter larger than the outer diameter of the O-ring pressing member 326, a cylindrical portion 329a having a thread groove formed on the outer peripheral surface thereof, and a flange portion provided at one end of the cylindrical portion 329a. 329b, and is fixed to the vacuum vessel 310 by screwing the flange portion 329b to the outside of the second end surface 310b. On the other hand, the nut member 330 has an inner diameter that is substantially the same as the outer diameter of the cylindrical portion 329a of the flange member 329, and a cylindrical portion 330a in which a screw groove that is screwed into the screw groove is formed on the inner peripheral surface thereof. An annular portion 330b provided at one end of the cylindrical portion 330a and having an inner diameter smaller than the outer diameter of the O-ring pressing member 326 is provided. In such a configuration, when attaching the pulse gas valve 350 to the vacuum vessel 310, first, the tip of each pulse gas valve 350 is inserted into the valve insertion hole 327 of the O-ring pressing member 326, and then the O- ring 324, 325 is attached. Thereafter, the O-ring pressing member 326 is caused to enter the cylindrical portion 329 a of the flange member 329, and the tip of each pulse gas valve 350 is inserted into the valve mounting opening 315 provided in the second end surface 310 b of the vacuum vessel 310. In this state, the nut member 330 is attached to the cylindrical portion 329a of the flange member 329 and rotated, whereby the nut member 330 is fastened to the flange member 329. Accordingly, the O-ring pressing member 326 is pressed by the annular portion 330 b of the nut member 330, and the O-ring pressing member 326 presses the O- rings 324 and 325 toward the vacuum vessel 310. As a result, the O- rings 324 and 325 are crushed, and the space between each pulse gas valve 350 and the second end surface 310b of the vacuum vessel 310 is hermetically sealed.
 本発明の第4の実施例に係るパルスガスバルブ検査装置の構成を図11に示す。本実施例に係る検査装置は、複数のパルスガスバルブ450の基端側(ガス導入ポート451を含む領域)をまとめて収容する密閉容器471を備えている。密閉容器471には、テストガスボンベ434に至る配管437が接続されており、各パルスガスバルブ450のガス導入ポート451は、密閉容器471の内部の密閉空間に開放された状態となっている。更に、本実施例の検査装置では、補助ポンプ417の吸気側をメインポンプ416と接続するための配管(以下、第1接続管472とよぶ)に加えて、該吸気側を密閉容器471と接続するための配管(以下、第2接続管473とよぶ)が設けられている。なお、第2接続管473上には、第2接続管473を開閉するためのポンプ用バルブ474が設けられている。 FIG. 11 shows the configuration of a pulse gas valve inspection apparatus according to the fourth embodiment of the present invention. The inspection apparatus according to the present embodiment includes an airtight container 471 that collectively accommodates proximal ends (regions including the gas introduction port 451) of the plurality of pulse gas valves 450. A pipe 437 reaching the test gas cylinder 434 is connected to the sealed container 471, and the gas introduction port 451 of each pulse gas valve 450 is open to a sealed space inside the sealed container 471. Further, in the inspection apparatus of the present embodiment, in addition to a pipe for connecting the intake side of the auxiliary pump 417 to the main pump 416 (hereinafter referred to as the first connection pipe 472), the intake side is connected to the sealed container 471. For this purpose, a pipe (hereinafter referred to as a second connection pipe 473) is provided. A pump valve 474 for opening and closing the second connection pipe 473 is provided on the second connection pipe 473.
 本実施例に係る検査装置を用いてパルスガスバルブ450の検査を行う際には、まず、真空容器410にパルスガスバルブ450を取り付け、その後、真空容器410の第2端面410bに密閉容器471を取り付けることによって、パルスガスバルブ450の基端側を密閉容器471の内部に収容した状態とする。続いて、補助ポンプ417及びメインポンプ416によって真空容器410の内部を真空引きすると共に、補助ポンプ417によって密閉容器471の内部を真空引きする。密閉容器471を真空引きする際には、制御部443によってポンプ用バルブ474が開放される。なお、密閉容器471の真空引きは、真空容器410の真空引きの前に行っても、後に行ってもよく、あるいは真空容器410の真空引きと並行して行ってもよい。密閉容器471の真空引きが完了すると、ユーザがレギュレータ435を操作することによって、テストガスボンベ434から密閉容器471へとテストガスを導入する。これにより、密閉容器471の内部空間がテストガスで満たされた状態となる。この状態でいずれか1つのパルスガスバルブ450を開放することにより、テストガスが該パルスガスバルブ450を通過して真空容器410内に放出されるので、実施例1の検査装置と同様に、その際の真空容器410内の真空度の変化を電離真空計413で測定する。 When the pulse gas valve 450 is inspected using the inspection apparatus according to the present embodiment, the pulse gas valve 450 is first attached to the vacuum vessel 410, and then the sealed vessel 471 is attached to the second end surface 410b of the vacuum vessel 410. Thus, the base end side of the pulse gas valve 450 is accommodated in the sealed container 471. Subsequently, the inside of the vacuum vessel 410 is evacuated by the auxiliary pump 417 and the main pump 416, and the inside of the sealed vessel 471 is evacuated by the auxiliary pump 417. When the sealed container 471 is evacuated, the controller 443 opens the pump valve 474. The evacuation of the sealed container 471 may be performed before or after the evacuation of the vacuum container 410, or may be performed in parallel with the evacuation of the vacuum container 410. When the evacuation of the sealed container 471 is completed, the user operates the regulator 435 to introduce the test gas from the test gas cylinder 434 to the sealed container 471. As a result, the internal space of the sealed container 471 is filled with the test gas. By opening any one of the pulse gas valves 450 in this state, the test gas passes through the pulse gas valve 450 and is released into the vacuum vessel 410. Therefore, as in the inspection apparatus of the first embodiment, A change in the degree of vacuum in the vacuum vessel 410 is measured by an ionization vacuum gauge 413.
 上記本実施例に係る検査装置によれば、各パルスガスバルブ450のガス導入ポート451に、テストガスボンベ434に至る配管(実施例1におけるテストガス供給配管136の出口端)を1つずつ接続する必要がないため、検査におけるユーザの作業負担を一層軽減することができる。 According to the inspection apparatus according to the present embodiment, it is necessary to connect one pipe to the test gas cylinder 434 (the outlet end of the test gas supply pipe 136 in the first embodiment) to the gas introduction port 451 of each pulse gas valve 450 one by one. Therefore, it is possible to further reduce the work burden on the user in the inspection.
 本発明の第5の実施例に係るパルスガスバルブ検査装置の構成を図12に示す。本実施例の検査装置では、複数のパルスガスバルブ550に対して1つのパルスガスバルブ駆動回路542が設けられている。パルスガスバルブ150とパルスガスバルブ駆動回路542の間にはスイッチ部547(本発明における駆動バルブ切替手段に相当)が設けられており、このスイッチ部547によって、パルスガスバルブ駆動回路542に接続するパルスガスバルブ550(すなわち開閉動作を行わせるパルスガスバルブ550)を択一的に切り替えることができる。なお、図12では、図示の都合上、4つのパルスガスバルブ550のみがスイッチ部547に接続されているが、実際には、真空容器510に取り付けられる全てのパルスガスバルブ550がスイッチ部547に接続され、その中のいずれか1つがスイッチ部547によって選択されてパルスガスバルブ駆動回路542に接続される。 FIG. 12 shows the configuration of a pulse gas valve inspection apparatus according to the fifth embodiment of the present invention. In the inspection apparatus of this embodiment, one pulse gas valve drive circuit 542 is provided for a plurality of pulse gas valves 550. Between the pulse gas valve 150 and the pulse gas valve drive circuit 542, a switch part 547 (corresponding to the drive valve switching means in the present invention) is provided, and the pulse gas valve 550 connected to the pulse gas valve drive circuit 542 by this switch part 547. (That is, the pulse gas valve 550 for performing the opening / closing operation) can be switched alternatively. In FIG. 12, for convenience of illustration, only four pulse gas valves 550 are connected to the switch unit 547, but in reality, all the pulse gas valves 550 attached to the vacuum vessel 510 are connected to the switch unit 547. Any one of them is selected by the switch unit 547 and connected to the pulse gas valve drive circuit 542.
 このような構成によれば、パルスガスバルブ駆動回路の数を抑えることができるため、製造コストを低減できると共に、メンテナンス性を向上させることができる。また、パルスガスバルブ駆動回路の個体差による測定結果への影響を排除することができる。なお、上記の例では、パルスガスバルブ駆動回路及びスイッチ部を一組だけ設けたが、検査装置に設けられるパルスガスバルブ駆動回路及びスイッチ部の数はこれに限定されるものではない。例えば、二組のパルスガスバルブ駆動回路及びスイッチ部を設け、真空容器510に接続される複数のパルスガスバルブ550のうちの半数を一方のスイッチ部に接続し、残り半分を他方のスイッチ部(及びパルスガスバルブ駆動回路)に接続する構成としてもよい。 According to such a configuration, since the number of pulse gas valve drive circuits can be suppressed, the manufacturing cost can be reduced and the maintainability can be improved. Moreover, the influence on the measurement result by the individual difference of the pulse gas valve drive circuit can be eliminated. In the above example, only one set of the pulse gas valve drive circuit and the switch unit is provided, but the number of pulse gas valve drive circuits and the switch units provided in the inspection apparatus is not limited to this. For example, two sets of pulse gas valve drive circuits and switch units are provided, half of the plurality of pulse gas valves 550 connected to the vacuum vessel 510 are connected to one switch unit, and the other half is connected to the other switch unit (and the pulse unit). It is good also as a structure connected to a gas valve drive circuit.
 本発明の第6の実施例に係るパルスガスバルブ検査装置の構成を図13に示す。本実施例に係る検査装置は、テストガスに大気を用いるものである。そのため、本実施例に係る検査装置には、テストガスバルブ供給手段(すなわち、実施例1におけるテストガスボンベ134やテストガス供給配管136)が設けられておらず、各パルスガスバルブ650のガス導入ポート651は大気に開放されている。 FIG. 13 shows the configuration of a pulse gas valve inspection apparatus according to the sixth embodiment of the present invention. The inspection apparatus according to the present embodiment uses air as a test gas. Therefore, the test apparatus according to the present embodiment is not provided with the test gas valve supply means (that is, the test gas cylinder 134 and the test gas supply pipe 136 in the first embodiment), and the gas introduction port 651 of each pulse gas valve 650 is not provided. Open to the atmosphere.
 このような構成によれば、装置構成を簡略化して製造コストを低減できると共に、テストガスとしてヘリウムやアルゴンを用いる場合に比べてランニングコストを低減することができる。また、各パルスガスバルブとテストガスボンベ間の配管接続作業が不要となるため、ユーザの作業負担を一層低減することができる。 According to such a configuration, the device configuration can be simplified to reduce the manufacturing cost, and the running cost can be reduced as compared with the case where helium or argon is used as the test gas. Further, since the pipe connection work between each pulse gas valve and the test gas cylinder is not required, the work burden on the user can be further reduced.
 本発明の第7の実施例に係るパルスガスバルブ検査装置の構成を図14に示す。本実施例に係る検査装置は、電離真空計として、ヌードゲージ713aを使用することを特徴としている。通常の電離真空計は、測定用の電極がガラス等から成る外囲器の内部に収納されているが、ヌードゲージ713aは外囲器を有しておらず、電極(フィラメント、グリッド、及びコレクタ)が露出した状態となっている。このようなヌードゲージ713aは、外囲器を有する電離真空計よりも時間応答性がよく、1~10μsecのオーダーで測定値が変化するため、パルスガスバルブ750の開放時間スケール(300μsec程度)よりも短い時間スケールでの真空度変化を観察することが可能となる。その結果、そのような短い時間スケールでの真空度変化の異常や、従来の外囲器を備えた電離真空計を用いた検査装置では困難であった駆動電圧波形に対するパルスガスバルブ750の開動作又は閉動作の遅延時間の評価を行うことが可能となる。 FIG. 14 shows the configuration of a pulse gas valve inspection apparatus according to the seventh embodiment of the present invention. The inspection apparatus according to the present embodiment uses a nude gauge 713a as an ionization vacuum gauge. In an ordinary ionization vacuum gauge, a measurement electrode is housed in an envelope made of glass or the like, but the nude gauge 713a does not have an envelope, and the electrodes (filament, grid, collector) ) Is exposed. Such a nude gauge 713a is more time responsive than an ionization vacuum gauge having an envelope, and the measured value changes on the order of 1 to 10 μsec. It is possible to observe a change in the degree of vacuum on a short time scale. As a result, the opening of the pulse gas valve 750 with respect to the abnormality of the vacuum degree change on such a short time scale, or the driving voltage waveform which is difficult with the inspection apparatus using the ionization vacuum gauge equipped with the conventional envelope, or It becomes possible to evaluate the delay time of the closing operation.
 本発明の第8の実施例に係るパルスガスバルブ検査装置の構成を図15に示す。本実施例に係る検査装置では、ベント用配管831にベントガスボンベ881が接続されており、検査対象バルブを交換する際には、制御部843がベント用配管831上に設けられたベントバルブ832を開放することにより、ベントガスボンベ881内のベントガス(乾燥空気等)が真空容器410へと供給される(これらのベントガスボンベ881、ベント用配管831、及びベントバルブ832が、本発明におけるベントガス供給手段に相当する)。なお、ベントガスは、前記乾燥空気に限定されるものではなく、水分含有量が低い(湿度1%以下)のガスであれば、いかなる種類の気体であってもよい。 FIG. 15 shows the configuration of a pulse gas valve inspection apparatus according to the eighth embodiment of the present invention. In the inspection apparatus according to the present embodiment, the vent gas cylinder 881 is connected to the vent pipe 831, and when the inspection target valve is replaced, the control unit 843 uses the vent valve 832 provided on the vent pipe 831. By opening, vent gas (dry air or the like) in the vent gas cylinder 881 is supplied to the vacuum vessel 410 (these vent gas cylinder 881, vent pipe 831 and vent valve 832 serve as vent gas supply means in the present invention. Equivalent to). The vent gas is not limited to the dry air, and may be any kind of gas as long as it has a low moisture content (humidity of 1% or less).
 真空容器810を高真空以上(1×10-4Pa程度以下)とする場合、真空容器810の内壁面に吸着している水分子の脱離が真空引きの律速となることが知られている。上記構成から成る本実施の検査装置では、真空容器810内に、大気ではなく、水分含有量の低いベントガスを供給した上でパルスガスバルブ850の交換が行われるため、パルスガスバルブ850の交換に伴う真空容器810の内壁への水分子の吸着量を低減することができる。これにより、その後の真空引きに要する時間を短縮することができ、多数のパルスガスバルブ850を検査する場合における作業効率を改善することができる。 It is known that desorption of water molecules adsorbed on the inner wall surface of the vacuum vessel 810 becomes a rate-determining rate when the vacuum vessel 810 is at a high vacuum or higher (about 1 × 10 −4 Pa or lower). . In the inspection apparatus having the above-described configuration, the pulse gas valve 850 is replaced after supplying a vent gas having a low water content, not the atmosphere, into the vacuum vessel 810. Therefore, the vacuum accompanying the replacement of the pulse gas valve 850 is performed. The amount of water molecules adsorbed on the inner wall of the container 810 can be reduced. As a result, the time required for the subsequent evacuation can be shortened, and the working efficiency when inspecting a large number of pulse gas valves 850 can be improved.
 以上、本発明を実施するための形態について実施例を挙げて説明を行ったが、本発明は上記実施例に限定されるものではなく、本発明の趣旨の範囲で適宜変更が許容される。例えば、実施例1では、真空容器110内を10-4Pa程度の真空度にした状態でパルスガスバルブ150の検査を行うものとしたが、これに代えて、10-2Pa~10-3Pa程度の真空度でパルスガスバルブ150の検査を行うものとしてもよい。この場合、真空引きの際に、補助真空計133で検出される真空容器110内部の到達真空度が10-2Pa~10-3Pa程度の所定の真空度となった時点で各パルスガスバルブ150の検査を開始するよう、制御部143がメインポンプ116、補助ポンプ117、及びパルスガスバルブ駆動回路142a~142dを制御する(実施例1以外の実施例においても同じ)。10-2Pa~10-3Pa程度の真空度であれば真空容器内壁面への水分子の吸着は真空引き時間に大きく影響しないため、実施例8のようなベントガスボンベ881を有しない検査装置であっても、真空引きに要する時間を短縮して、多数のパルスガスバルブを効率よく検査することが可能となる。 As described above, the embodiment for carrying out the present invention has been described with reference to the embodiments. However, the present invention is not limited to the above embodiments, and appropriate modifications are allowed within the scope of the gist of the present invention. For example, in Example 1, the pulse gas valve 150 is inspected in a state where the vacuum chamber 110 is at a degree of vacuum of about 10 −4 Pa, but instead, 10 −2 Pa to 10 −3 Pa. The pulse gas valve 150 may be inspected at a degree of vacuum. In this case, at the time of evacuation, each pulse gas valve 150 is reached when the ultimate degree of vacuum inside the vacuum vessel 110 detected by the auxiliary vacuum gauge 133 reaches a predetermined degree of vacuum of about 10 −2 Pa to 10 −3 Pa. The control unit 143 controls the main pump 116, the auxiliary pump 117, and the pulse gas valve drive circuits 142a to 142d (the same applies to the embodiments other than the first embodiment) so as to start the inspection. If the degree of vacuum is about 10 −2 Pa to 10 −3 Pa, the adsorption of water molecules on the inner wall surface of the vacuum vessel does not greatly affect the evacuation time. Even so, the time required for evacuation can be shortened and a large number of pulse gas valves can be efficiently inspected.
 また、上記の各実施例では、真空容器の端面にパルスガスバルブを取り付ける構成としたが、実施例1、2、5~8に関しては、真空容器の周面にパルスガスバルブを取り付ける(すなわち、該周面にパルスガスバルブ真空導入機構を配設する)構成としてもよい。この場合も、各パルスガスバルブ真空導入機構は、真空容器に設けられた真空計取り付け開口の中心軸Xに対して回転対称になるよう配置する。また、真空容器は、上記のような円柱形の内部空間を有するものに限らず、その他の回転体形状(例えば球形)の内部空間を有するものであってもよい。 In each of the above embodiments, the pulse gas valve is attached to the end surface of the vacuum vessel. However, in Examples 1, 2, and 5 to 8, the pulse gas valve is attached to the peripheral surface of the vacuum vessel (that is, the circumference). A configuration may be adopted in which a pulse gas valve vacuum introduction mechanism is provided on the surface. Also in this case, the pulse gas valve vacuum introduction mechanisms are arranged so as to be rotationally symmetric with respect to the central axis X of the vacuum gauge mounting opening provided in the vacuum vessel. Further, the vacuum container is not limited to having the cylindrical internal space as described above, but may have another rotary body-shaped (for example, spherical) internal space.
110…真空容器
111…真空計取付用開口
112…電離真空計真空導入機構
113…電離真空計
114…排気口
115…バルブ取付用開口
116…メインポンプ
117…補助ポンプ
120…パルスガスバルブ真空導入機構
121…フランジ部材
122…ナット部材
123…押さえリング
124、125…Oリング
131…ベント用配管
132…ベントバルブ
133…補助真空計
134…テストガスボンベ
136…テストガス供給配管
141…電離真空計読取回路
142a~142d…パルスガスバルブ駆動回路
143…制御部
150…パルスガスバルブ
151…ガス導入ポート
260…参照バルブ
326…Oリング押圧部材
327…バルブ挿通孔
328…押圧部材駆動機構
471…密閉容器
547…スイッチ部
713a…ヌードゲージ
881…ベントガスボンベ
110 ... Vacuum vessel 111 ... Vacuum gauge mounting opening 112 ... Ionization vacuum gauge vacuum introduction mechanism 113 ... Ionization vacuum gauge 114 ... Exhaust port 115 ... Valve mounting opening 116 ... Main pump 117 ... Auxiliary pump 120 ... Pulse gas valve vacuum introduction mechanism 121 ... Flange member 122 ... Nut member 123 ... Presser ring 124, 125 ... O-ring 131 ... Vent pipe 132 ... Vent valve 133 ... Auxiliary vacuum gauge 134 ... Test gas cylinder 136 ... Test gas supply pipe 141 ... Ionization gauge reading circuit 142a- 142d ... pulse gas valve driving circuit 143 ... control unit 150 ... pulse gas valve 151 ... gas introduction port 260 ... reference valve 326 ... O-ring pressing member 327 ... valve insertion hole 328 ... pressing member driving mechanism 471 ... sealed container 547 ... switch unit 713a ... Nude gauge 88 ... vent gas cylinder

Claims (10)

  1.  真空容器と、
     前記真空容器内を真空引きする真空ポンプと、
     前記真空容器の外壁に取り付けられ、それぞれ前記真空容器に対してパルスガスバルブを着脱自在に取り付け可能な複数のパルスガスバルブ取付部と、
     前記複数のパルスガスバルブ取付部のそれぞれに取り付けられる前記パルスガスバルブを駆動するパルスガスバルブ駆動手段と、
     前記複数のパルスガスバルブ取付部のそれぞれに取り付けられる前記パルスガスバルブのいずれか1つを選択的に開放するよう前記パルスガスバルブ駆動手段を制御する制御手段と、
     前記パルスガスバルブの開放による前記真空容器内の真空度の変化を測定する電離真空計と、
     を有することを特徴とするパルスガスバルブ検査装置。
    A vacuum vessel;
    A vacuum pump for evacuating the vacuum vessel;
    A plurality of pulse gas valve mounting portions attached to the outer wall of the vacuum vessel, each capable of detachably attaching a pulse gas valve to the vacuum vessel;
    Pulse gas valve driving means for driving the pulse gas valve attached to each of the plurality of pulse gas valve attachment parts;
    Control means for controlling the pulse gas valve driving means to selectively open any one of the pulse gas valves attached to each of the plurality of pulse gas valve attachment parts;
    An ionization vacuum gauge for measuring a change in the degree of vacuum in the vacuum vessel by opening the pulse gas valve;
    A pulse gas valve inspection device comprising:
  2.  前記真空容器が、前記電離真空計を取り付けるための円形の開口である真空計取り付け開口を有するものであって、
     前記真空容器の内部空間が、前記真空計取り付け開口の中心軸を中心とする回転体形状を有し、
     前記複数のパルスガスバルブ取付部が、前記中心軸に対して回転対称に配置されていることを特徴とする請求項1に記載のパルスガスバルブ検査装置。
    The vacuum vessel has a vacuum gauge mounting opening which is a circular opening for mounting the ionization vacuum gauge,
    The internal space of the vacuum vessel has a rotating body shape centered on the central axis of the vacuum gauge mounting opening,
    The pulse gas valve inspection device according to claim 1, wherein the plurality of pulse gas valve mounting portions are disposed rotationally symmetrically with respect to the central axis.
  3.  更に、
     前記真空容器に取り付けられた基準波形取得用のパルスガスバルブである参照バルブ、
     を有することを特徴とする請求項1に記載のパルスガスバルブ検査装置。
    Furthermore,
    A reference valve which is a pulse gas valve for acquiring a reference waveform attached to the vacuum vessel,
    The pulse gas valve inspection device according to claim 1, comprising:
  4.  前記複数のパルスガスバルブ取付部が、それぞれ、前記真空容器に設けられたバルブ取り付け開口と、前記パルスガスバルブの先端に取り付けられるOリングとを含んでおり、
     更に、
     前記真空容器に対向する対向面と、該対向面に設けられた開口であって、前記複数のパルスガスバルブ取付部にそれぞれ取り付けられるパルスガスバルブのうちの2以上のパルスガスバルブの先端がそれぞれ挿通されるバルブ挿通孔とを有し、前記対向面のうち、前記開口のそれぞれの周縁部によって前記Oリングと当接するOリング押圧部材と、
     前記Oリング押圧部材によって前記Oリングが前記真空容器に向かって押圧された状態で、該Oリング押圧部材を固定する押圧部材固定手段と、
     を有することを特徴とする請求項1に記載のパルスガスバルブ検査装置。
    Each of the plurality of pulse gas valve mounting portions includes a valve mounting opening provided in the vacuum vessel, and an O-ring attached to a tip of the pulse gas valve;
    Furthermore,
    A facing surface facing the vacuum vessel and an opening provided in the facing surface, and the tips of two or more pulse gas valves of the pulse gas valves respectively attached to the plurality of pulse gas valve mounting portions are respectively inserted. An O-ring pressing member that has a valve insertion hole and abuts the O-ring by the peripheral edge of each of the openings of the opposing surface;
    A pressing member fixing means for fixing the O-ring pressing member in a state where the O-ring is pressed toward the vacuum vessel by the O-ring pressing member;
    The pulse gas valve inspection device according to claim 1, comprising:
  5.  更に、
     前記パルスガスバルブの基端に設けられたガス入口にテストガスを供給するテストガス供給手段、
     を有することを特徴とする請求項1に記載のパルスガスバルブ検査装置。
    Furthermore,
    A test gas supply means for supplying a test gas to a gas inlet provided at a proximal end of the pulse gas valve;
    The pulse gas valve inspection device according to claim 1, comprising:
  6.  前記テストガス供給手段が、
     前記複数のパルスガスバルブ取付部にそれぞれ取り付けられる前記パルスガスバルブのうち、2以上のパルスガスバルブの前記ガス入口が収容される密閉容器と、
     前記テストガスが充填されたテストガスボンベと、
     前記テストガスボンベと前記密閉容器とを繋ぐテストガス配管と、
     を有することを特徴とする請求項5に記載のパルスガスバルブ検査装置。
    The test gas supply means includes
    Among the pulse gas valves that are respectively attached to the plurality of pulse gas valve mounting portions, a sealed container that accommodates the gas inlets of two or more pulse gas valves;
    A test gas cylinder filled with the test gas;
    A test gas pipe connecting the test gas cylinder and the sealed container;
    The pulse gas valve inspection device according to claim 5, comprising:
  7.  前記パルスガスバルブ駆動手段が、
     前記複数のパルスガスバルブ取付部にそれぞれ取り付けられる前記パルスガスバルブのうち、2以上のパルスガスバルブに対して設けられた1つのパルスガスバルブ駆動回路と、
     前記1つのパルスガスバルブ駆動回路を、前記2以上のパルスガスバルブのいずれかに択一的に接続する駆動バルブ切替手段と、
     を有することを特徴とする請求項1に記載のパルスガスバルブ検査装置。
    The pulse gas valve driving means comprises:
    One pulse gas valve drive circuit provided for two or more pulse gas valves among the pulse gas valves respectively attached to the plurality of pulse gas valve attachment parts;
    Drive valve switching means for selectively connecting the one pulse gas valve drive circuit to any one of the two or more pulse gas valves;
    The pulse gas valve inspection device according to claim 1, comprising:
  8.  前記電離真空計が、ヌードゲージであることを特徴とする請求項1に記載のパルスガスバルブ検査装置。 The pulse gas valve inspection device according to claim 1, wherein the ionization vacuum gauge is a nude gauge.
  9.  前記真空容器に、水分含有量が1%以下のベントガスを導入するベントガス供給手段、
     を更に有することを特徴とする請求項1に記載のパルスガスバルブ検査装置。
    A vent gas supply means for introducing a vent gas having a moisture content of 1% or less into the vacuum container;
    The pulse gas valve inspection device according to claim 1, further comprising:
  10.  前記制御手段が、真空容器内の真空度を10-2Pa~10-3Paとした状態で、前記パルスガスバルブの開放を行うよう、前記真空ポンプ及び前記パルスガスバルブ駆動手段を制御することを特徴とする請求項1に記載のパルスガスバルブ検査装置。 The control means controls the vacuum pump and the pulse gas valve driving means so as to open the pulse gas valve in a state where the degree of vacuum in the vacuum vessel is 10 −2 Pa to 10 −3 Pa. The pulse gas valve inspection device according to claim 1.
PCT/JP2018/048514 2018-05-28 2018-12-28 Pulsed gas valve inspection device WO2019230029A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020521674A JP6939992B2 (en) 2018-05-28 2018-12-28 Pulse gas valve inspection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-101729 2018-05-28
JP2018101729 2018-05-28

Publications (1)

Publication Number Publication Date
WO2019230029A1 true WO2019230029A1 (en) 2019-12-05

Family

ID=68697303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/048514 WO2019230029A1 (en) 2018-05-28 2018-12-28 Pulsed gas valve inspection device

Country Status (2)

Country Link
JP (1) JP6939992B2 (en)
WO (1) WO2019230029A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102515060B1 (en) * 2022-07-18 2023-03-29 한전케이피에스 주식회사 Valve Performance diagnosis test device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07310841A (en) * 1994-05-19 1995-11-28 Fujikin:Kk Flow rate control method for fluid
CN1587951A (en) * 2004-08-18 2005-03-02 武汉天澄环保科技股份有限公司 Pulse valve performance detecting device and method
JP2009204045A (en) * 2008-02-27 2009-09-10 Fujikin Inc Piezoelectric element drive-type diaphragm type control valve
CN106404366A (en) * 2016-08-31 2017-02-15 苏州协昌环保科技股份有限公司 Electromagnetic pulse valve detection method and system
CN107421723A (en) * 2016-12-13 2017-12-01 中国第汽车股份有限公司 Simultaneously multiple magnetic valves can be carried out with the device and its detection method of reliability test

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07310841A (en) * 1994-05-19 1995-11-28 Fujikin:Kk Flow rate control method for fluid
CN1587951A (en) * 2004-08-18 2005-03-02 武汉天澄环保科技股份有限公司 Pulse valve performance detecting device and method
JP2009204045A (en) * 2008-02-27 2009-09-10 Fujikin Inc Piezoelectric element drive-type diaphragm type control valve
CN106404366A (en) * 2016-08-31 2017-02-15 苏州协昌环保科技股份有限公司 Electromagnetic pulse valve detection method and system
CN107421723A (en) * 2016-12-13 2017-12-01 中国第汽车股份有限公司 Simultaneously multiple magnetic valves can be carried out with the device and its detection method of reliability test

Also Published As

Publication number Publication date
JP6939992B2 (en) 2021-09-22
JPWO2019230029A1 (en) 2021-05-13

Similar Documents

Publication Publication Date Title
CN110376272B (en) On-line measuring device and method for gas partial pressure
JP3344046B2 (en) Leak amount detection device
CN109545647A (en) Mass spectrograph and mass spectrometric analysis method with mass spectrum sample rapid draing function
WO2019230029A1 (en) Pulsed gas valve inspection device
CN209216917U (en) Mass spectrograph with mass spectrum sample rapid draing function
CN113624565A (en) Trace atmosphere sampling detection device and trace atmosphere sampling detection method
CN109742010A (en) Vacuum for vacuum instrument is into the method for varying
CN110137071A (en) Split type process mass spectrograph
WO2006126434A1 (en) Mass analyzer and use thereof
CN210293526U (en) On-line measuring device for gas partial pressure
CN111665292B (en) High-pressure gas sampling test device and sampling test method
JPH05101805A (en) Plasma ion source ultra micro-quantity element mass spectrometer
JPH11101720A (en) Gas-capturing device
CN109444249A (en) Vacuum for vacuum instrument is into varying device
US20230221268A1 (en) Observation device for observation target gas, method of observing target ions, and sample holder
JP3024388B2 (en) Halogen gas leak detector
JP2001050916A (en) Method and apparatus for measurement of work function
JP2001242034A (en) Inspecting device for pressure sensor element
CN113933454A (en) Extreme ultraviolet lithography machine material detection device and test method
JP2000315474A (en) Mass spectrometer
CN111665103B (en) Rapid nondestructive sampling analysis device and method for low-vacuum trace gas
JP2720395B2 (en) Sealed gas analyzer
CN109738835A (en) The working method of ion source filament
KR20190016004A (en) Quadrupole mass spectrometer and method for determining decline in its sensitivity
JP4865532B2 (en) Mass spectrometry unit and method of using mass spectrometry unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18921065

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020521674

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18921065

Country of ref document: EP

Kind code of ref document: A1