WO2019230027A1 - Impedance matching element, and communication device - Google Patents

Impedance matching element, and communication device Download PDF

Info

Publication number
WO2019230027A1
WO2019230027A1 PCT/JP2018/047441 JP2018047441W WO2019230027A1 WO 2019230027 A1 WO2019230027 A1 WO 2019230027A1 JP 2018047441 W JP2018047441 W JP 2018047441W WO 2019230027 A1 WO2019230027 A1 WO 2019230027A1
Authority
WO
WIPO (PCT)
Prior art keywords
impedance matching
terminal
matching element
type doping
region
Prior art date
Application number
PCT/JP2018/047441
Other languages
French (fr)
Japanese (ja)
Inventor
紀行 植木
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2019530846A priority Critical patent/JPWO2019230027A1/en
Publication of WO2019230027A1 publication Critical patent/WO2019230027A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/732Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/866Zener diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/868PIN diodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/28Impedance matching networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H5/00One-port networks comprising only passive electrical elements as network components
    • H03H5/12One-port networks comprising only passive electrical elements as network components with at least one voltage- or current-dependent element
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/18Input circuits, e.g. for coupling to an antenna or a transmission line
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits

Definitions

  • the present invention relates to an impedance matching element for impedance matching.
  • Patent Document 1 describes an impedance matching circuit that performs impedance matching between an antenna and a high-frequency circuit.
  • Patent Document 1 discloses an impedance matching circuit using a capacitor as an example of an impedance matching circuit.
  • a capacitor used as a matching element is connected in series between the antenna and the high-frequency circuit.
  • the antenna Q is higher than when no impedance matching element is provided. This narrows the width of the band in which the antenna can communicate (a band where a predetermined gain can be obtained).
  • an object of the present invention is to provide an impedance matching element that can perform impedance matching while suppressing a reduction in the bandwidth of the antenna.
  • the impedance matching element includes a semiconductor substrate, a first terminal, and a second terminal.
  • the first terminal is formed on the semiconductor substrate and connected to the antenna.
  • the second terminal is formed on the semiconductor substrate and connected to the high frequency circuit.
  • the semiconductor substrate includes a first region and a second region.
  • the first region has a PN junction structure and has a rectifying action in which a current flows from the first terminal to the second terminal in a steady state.
  • the second region has a PN junction structure and has a rectifying action in which a current flows from the second terminal to the first terminal in a steady state.
  • the first region and the second region are connected between the first terminal and the second terminal and have a breakdown voltage in both directions.
  • the portion of the semiconductor substrate composed of the first region and the second region acts on a high-frequency signal like a capacitor whose capacitance frequency characteristics are opposite to those of a general parallel plate type capacitor. . Specifically, the higher the frequency, the lower the capacitance of this part. Therefore, it is possible to suppress the Q of the antenna from becoming higher than when a normal capacitor is used.
  • the impedance matching element of the present invention preferably has the following configuration.
  • the semiconductor substrate includes a first main surface.
  • a wiring layer is formed on the first main surface.
  • a first terminal and a second terminal are formed on the surface of the wiring layer opposite to the surface that contacts the first main surface.
  • a bidirectional Zener diode is formed using the first region and the second region.
  • a MOSFET having a bidirectional breakdown voltage is formed using the first region and the second region.
  • a transistor having a bidirectional breakdown voltage is formed using the first region and the second region.
  • any semiconductor element having bidirectional breakdown characteristics can be used as an impedance matching element.
  • impedance matching can be performed without narrowing the antenna bandwidth.
  • FIG. 1 is a block diagram showing an example of a communication device 1 including an impedance matching element 10 according to the first embodiment of the present invention.
  • FIG. 2A is a graph showing the frequency characteristics of the capacitance of the bidirectional Zener diode
  • FIG. 2B is a graph showing the frequency characteristics of the imaginary component of the bidirectional Zener diode.
  • FIG. 3A is a graph showing the frequency characteristics of the imaginary component of the impedance of an antenna, a normal capacitor, and a bidirectional Zener diode.
  • FIG. 3B shows a bidirectional Zener diode when a normal capacitor is used.
  • 6 is a graph showing the passing characteristics of the antenna when neither a normal capacitor nor a bidirectional Zener diode is used.
  • FIG. 1 is a block diagram showing an example of a communication device 1 including an impedance matching element 10 according to the first embodiment of the present invention.
  • FIG. 2A is a graph showing the frequency characteristics of the capacitance of the bidirectional Zener di
  • FIG. 4 is a graph showing pass characteristics of the bidirectional Zener diode.
  • FIG. 5 is a side sectional view of the impedance matching element 10 according to the first embodiment of the present invention.
  • FIG. 6 is a perspective view of the impedance matching element 10 according to the first embodiment of the present invention.
  • FIG. 7A is a top view of the impedance matching element 10 according to the first embodiment, and
  • FIG. 7B is a view of an intermediate position of the wiring layer 40 as viewed from the top surface side.
  • C) is a view of the first main surface of the semiconductor substrate 20.
  • FIG. 8A is a side sectional view of an impedance matching element 10A according to the second embodiment of the present invention, and FIG.
  • FIG. 8B is a diagram of the impedance matching element 10A according to the second embodiment of the present invention. It is a top view which shows the positional relationship of each component.
  • FIG. 9A is an equivalent circuit diagram of the impedance matching element 10A according to the second embodiment of the present invention
  • FIG. 9B shows the impedance matching element 10A according to the second embodiment of the present invention.
  • FIG. 9C is an equivalent circuit diagram of a first mode of signal transmission
  • FIG. 9C is an equivalent circuit diagram of a second mode of signal transmission of the impedance matching element 10A according to the second embodiment of the present invention.
  • FIG. 10A is a side cross-sectional view of the impedance matching element 10B according to the third embodiment of the present invention, and FIG.
  • FIG. 10B shows the impedance matching element 10B according to the third embodiment of the present invention. It is an equivalent circuit diagram.
  • FIG. 11A is a side cross-sectional view of an impedance matching element 10C according to the fourth embodiment of the present invention, and FIG. 11B shows an impedance matching element 10C according to the fourth embodiment of the present invention. It is an equivalent circuit diagram.
  • 12A and 12B are functional block diagrams illustrating a configuration example of the high-frequency circuit.
  • FIG. 1 is a block diagram showing an example of a communication device 1 including an impedance matching element 10 according to the first embodiment of the present invention.
  • the communication apparatus 1 includes an antenna 91, a high frequency circuit 92, and an impedance matching element 10.
  • the impedance matching element 10 includes a first terminal P11, a second terminal P12, and a bidirectional Zener diode ZD10.
  • the bidirectional Zener diode ZD10 is connected between the first terminal P11 and the second terminal P12.
  • the antenna 91 is connected to the first terminal P11.
  • the high frequency circuit 92 is connected to the second terminal P12.
  • the impedance matching element 10 is connected in series between the antenna 91 and the high frequency circuit 92.
  • the bidirectional Zener diode ZD10 has a bidirectional breakdown voltage.
  • the bidirectional Zener diode ZD10 has the following various characteristics.
  • FIG. 2A is a graph showing the frequency characteristics of the capacitance of the bidirectional Zener diode ZD10.
  • FIG. 2B is a graph showing the frequency characteristics of the imaginary component of the bidirectional Zener diode ZD10. 2A and 2B, the solid line indicates the characteristic of the bidirectional Zener diode ZD10, and the broken line indicates the characteristic of a normal capacitor.
  • the bidirectional Zener diode ZD10 has a capacitance that decreases as the frequency increases. That is, the frequency dependence of capacitance exhibits a negative characteristic.
  • the capacitance of a normal capacitor increases as the frequency increases. That is, the frequency dependency of capacitance exhibits a positive characteristic.
  • a normal capacitor is a capacitor having a configuration in which a dielectric is disposed between opposing electrodes. In particular, as shown in FIG. 2 (A), the tendency becomes large at a frequency exceeding about 700 MHz, which is currently widely used for communication.
  • the change amount of the imaginary component of the impedance between the terminals with respect to the change amount of the frequency is usually in the region where the frequency dependence of the capacitance is negative. It becomes smaller than the amount of change of the capacitor.
  • the frequency dependence of capacitance shows a negative characteristic in a region exceeding at least about 700 MHz, and the imaginary number of the impedance between terminals with respect to the amount of change in frequency. It can be seen that the component change amount is smaller than the normal capacitor change amount.
  • the relationship between the impedance characteristics of the antenna, the impedance characteristics of a normal capacitor, and the impedance characteristics of the bidirectional Zener diode ZD10 will be considered.
  • FIG. 3A is a graph showing frequency characteristics of an imaginary component of the impedance of an antenna (an antenna having no matching element (for example, an antenna element)), a normal capacitor, and a bidirectional Zener diode.
  • the solid line indicates the characteristic of the bidirectional Zener diode
  • the broken line indicates the characteristic of the normal capacitor
  • the two-dot chain line indicates the characteristic of the antenna alone.
  • the imaginary component of the antenna impedance increases as the frequency increases.
  • the imaginary number component of the normal capacitor impedance and the imaginary number component of the bidirectional Zener diode increase as the frequency increases.
  • the rate of change of the imaginary number component of the bidirectional Zener diode is smaller than the rate of change of the imaginary number component of a normal capacitor.
  • the high frequency band is preferably a frequency band of about 700 MHz or more, for example.
  • the rate of change of the imaginary component of the impedance corresponds to the height of Q. That is, if the rate of change of the imaginary number component of impedance is large, Q is high, and if the rate of change of the imaginary number component of impedance is low, Q is low.
  • the antenna Q is lower when the bidirectional Zener diode is used as the impedance matching element than when a normal capacitor is used as the impedance matching element. More strictly, the Q of the substantial antenna constituted by the antenna and the bidirectional Zener diode is lowered.
  • FIG. 3B is a graph showing the passing characteristics of the antenna when a normal capacitor is used, when a bidirectional Zener diode is used, and when neither a normal capacitor nor a bidirectional Zener diode is used.
  • the solid line indicates the characteristics when the bidirectional Zener diode is used
  • the broken line indicates the characteristics when a normal capacitor is used
  • the two-dot chain line indicates the characteristics of the antenna alone.
  • the pole at the resonance frequency is steeper than the antenna alone.
  • the bidirectional Zener diode is used, the steepness of the pole at the resonance frequency is lowered. That is, the width of the specific band is widened.
  • the bandwidth of the bandwidth is as follows when a normal capacitor is used. About 72%.
  • the width of the ratio band is about 82%. In other words, the reduction in the width of the specific band can be improved by about 10%.
  • FIG. 4 is a graph showing pass characteristics of the bidirectional Zener diode.
  • the bidirectional Zener diode can transmit a high-frequency signal with almost no attenuation in a frequency band of at least about 700 MHz.
  • the impedance matching element 10 composed of the bidirectional Zener diode ZD10 is connected between the antenna 91 and the high-frequency circuit 92, thereby matching the impedance of the antenna 91 and the impedance of the high-frequency circuit 92.
  • a reduction in the width of the communication band of the antenna 91 can be suppressed, and a high-frequency signal can be transmitted with low loss.
  • FIG. 5 is a side sectional view of the impedance matching element 10 according to the first embodiment of the present invention.
  • FIG. 6 is a perspective view of the impedance matching element 10 according to the first embodiment of the present invention. In FIG. 6, the semiconductor substrate of the impedance matching element 10 and the electrode of the wiring layer are illustrated, and the portion formed of the insulating material in the wiring layer is not illustrated.
  • FIG. 7A is a top view of the impedance matching element 10 according to the first embodiment, and FIG. 7B is a view of an intermediate position of the wiring layer 40 as viewed from the top surface side.
  • C) is a view of the first main surface of the semiconductor substrate 20.
  • the impedance matching element 10 includes a semiconductor substrate 20, an insulating film 31, and a wiring layer 40.
  • the semiconductor substrate 20 includes an Nsub layer 21, an N epilayer 22, an N-type doping unit 231, an N-type doping unit 232, a P + type doping unit 241, and a P + type doping unit 242.
  • the semiconductor substrate 20 is formed by a known semiconductor formation process.
  • the Nsub layer 21 is made of an N-type semiconductor and has a flat plate shape.
  • the N epi layer 22 is made of an N-type semiconductor.
  • the N epilayer 22 is formed on one main surface of the Nsub layer 21 by epitaxially growing an N-type semiconductor.
  • the N-type doping part 231 and the N-type doping part 232 are formed in the N epilayer 22.
  • the N-type doping unit 231 and the N-type doping unit 232 are formed by performing partial N-type carrier doping on the N epilayer 22.
  • the N-type doping part 231 and the N-type doping part 232 are formed at a height (depth) in contact with the Nsub layer 21.
  • the N-type doping part 231 and the N-type doping part 232 have a substantially rectangular parallelepiped shape.
  • the N-type doping part 231 and the N-type doping part 232 are arranged apart from each other by a predetermined distance in the X direction.
  • the P + type doping portion 241 and the P + type doping portion 242 are on the surface of the N epilayer 22 (the surface opposite to the surface in contact with the Nsub layer 21), That is, it is formed on the first main surface side of the semiconductor substrate 20.
  • the P + type doping part 241 and the P + type doping part 242 are formed by performing partial P type carrier doping on the N epilayer 22.
  • the P + type doping part 241 overlaps with the N type doping part 231 in plan view (viewed in the Z-axis direction in FIG. 5), and has a predetermined height (depth, that is, along the Z-axis direction in FIG. 5). Length).
  • the P + type doping unit 241 is joined to the N type doping unit 231.
  • a first PN junction is realized by the junction between the P + type doping unit 241 and the N type doping unit 231.
  • the PN junction corresponds to a first region having a rectifying action for flowing a current from the first terminal P11 to the second terminal P12 in a steady state.
  • the steady state means a state in which no breakdown occurs.
  • the P + type doping part 242 overlaps with the N type doping part 232 in a plan view (viewed in the Z-axis direction in FIG. 5), and has a predetermined height (depth, ie, along the Z-axis direction in FIG. 5). Length).
  • the P + type doping part 242 is joined to the N type doping part 232.
  • a second PN junction is realized by the junction between the P + type doping unit 242 and the N type doping unit 232.
  • the PN junction corresponds to a second region having a rectifying action for flowing a current from the second terminal P12 to the first terminal P11 in a steady state.
  • the N-type doping unit 231 and the N-type doping unit 232 are in contact with the Nsub layer 21, the Nsub layer 21 serves as a current path that electrically connects the first region and the second region.
  • the insulating film 31 is made of SiO 2 , SiN or the like. It is formed on the surface of the N epi layer 22.
  • the wiring conductor 321 and the wiring conductor 322 are made of a metal having high conductivity such as Al.
  • the wiring conductor 321 and the wiring conductor 322 are formed on the surface of the insulating film 31 (surface opposite to the surface in contact with the N epitaxial layer 22).
  • the wiring conductor 321 and the wiring conductor 322 are substantially rectangular in a plan view and are separated by a predetermined distance in the X direction.
  • the wiring conductor 321 overlaps the P + type doping part 241 in plan view.
  • the wiring conductor 321 is connected to the P + type doping part 241 through a via conductor that penetrates the insulating film 31.
  • the wiring conductor 322 overlaps the P + type doping part 242 in plan view.
  • the wiring conductor 322 is connected to the P + type doping part 242 through a via conductor that penetrates the insulating film 31.
  • the wiring layer 40 includes an insulating resin 41, a via conductor 421, a via conductor 422, a wiring conductor 431, a wiring conductor 432, a plating layer 441, and a plating layer 442.
  • the insulating resin 41 is made of a resin excellent in workability, such as an epoxy resin.
  • the insulating resin 41 is formed on the surface of the insulating film 31.
  • the wiring conductor 431 and the wiring conductor 432 are made of a metal having high conductivity and excellent workability, such as Cu.
  • the insulating resin 41 is disposed in the vicinity of the surface opposite to the contact surface with the insulating film 31 (the surface of the impedance matching element 10).
  • the wiring conductor 431 and the wiring conductor 432 are substantially rectangular in a plan view and are separated by a predetermined distance in the X direction.
  • the wiring conductor 431 overlaps the wiring conductor 321 in plan view.
  • the wiring conductor 431 is connected to the wiring conductor 321 via a via conductor 421 extending in the thickness direction (Z direction) of the insulating resin 41.
  • the wiring conductor 432 overlaps the wiring conductor 322 in plan view.
  • the wiring conductor 432 is connected to the wiring conductor 322 via a via conductor 422 extending in the thickness direction (Z direction) of the insulating resin 41.
  • the plating layer 441 and the plating layer 442 are formed by, for example, Ni / Au plating.
  • the plating layer 441 overlaps a part of the wiring conductor 431 and is exposed to the surface of the impedance matching element 10 through the opening 451. This exposed portion corresponds to the “first terminal” of the present invention.
  • the plated layer 442 overlaps a part of the wiring conductor 432 and is exposed to the surface of the impedance matching element 10 through the opening 452. This exposed portion corresponds to the “second terminal” of the present invention. With this configuration, the first terminal and the second terminal of the impedance matching element 10 are formed on the semiconductor substrate 20.
  • the impedance matching element 10 having the bidirectional Zener diode ZD10 having the above-described bidirectional breakdown voltage can be realized. Furthermore, the impedance matching element 10 can improve the freedom degree of arrangement
  • FIG. 1st terminal and a 2nd terminal by providing the wiring layer 40.
  • FIG. 8A is a side sectional view of an impedance matching element 10A according to the second embodiment of the present invention
  • FIG. 8B is a diagram of the impedance matching element 10A according to the second embodiment of the present invention. It is a top view which shows the positional relationship of each component.
  • FIG. 9A is an equivalent circuit diagram of the impedance matching element 10A according to the second embodiment of the present invention
  • FIG. 9B shows the impedance matching element 10A according to the second embodiment of the present invention.
  • FIG. 9C is an equivalent circuit diagram of a first mode of signal transmission
  • FIG. 9C is an equivalent circuit diagram of a second mode of signal transmission of the impedance matching element 10A according to the second embodiment of the present invention.
  • the impedance matching element 10A according to the second embodiment includes the first Compared to the impedance matching element 10 according to the embodiment, it is different in that it is constituted by more diodes.
  • the concept of the other basic configuration of the impedance matching element 10A is the same as that of the impedance matching element 10, and the description of the same part is omitted.
  • the wiring portion is not shown, but the impedance matching element 10A includes a wiring portion similar to that of the impedance matching element 10 according to the first embodiment. It is preferable.
  • the impedance matching element 10A includes a semiconductor substrate 20A and an insulating film 31.
  • the semiconductor substrate 20A includes a Psub layer 27, an N epi layer 22, an N type doping unit 23, a P + type doping unit 241A, a P + type doping unit 242A, an N + type doping unit 251A, and an N + type doping unit 252A.
  • the semiconductor substrate 20A is formed by a known semiconductor formation process.
  • the Psub layer 27 is made of a P-type semiconductor and has a flat plate shape.
  • the N epi layer 22 is made of an N-type semiconductor.
  • the N epi layer 22 is formed on one main surface of the Psub layer 27.
  • the N-type doping portion 23 is formed by being embedded in the N epi layer 22.
  • the N-type doping part 23 is in contact with the Psub layer 27.
  • the P + type doping portion 241A and the P + type doping portion 242A are formed on the surface of the N epi layer 22 (the surface opposite to the surface in contact with the Psub layer 27), that is, on the first main surface side of the semiconductor substrate 20A. .
  • the P + type doping part 241A and the P + type doping part 242A are arranged at a predetermined distance in the X direction.
  • the P + type doping part 241A and the P + type doping part 242A overlap the N type doping part 23 in a plan view of the semiconductor substrate 20A (as viewed in the Z-axis direction in FIG. 8A). However, the P + type doping part 241A and the P + type doping part 242A are separated from the N type doping part 23 in the Z direction.
  • the N + type doping portion 251A and the N + type doping portion 252A are formed on the surface of the N epi layer 22 (the surface opposite to the surface in contact with the Psub layer 27), that is, on the first main surface side of the semiconductor substrate 20A. .
  • the N + type doping part 251A and the N + type doping part 252A are arranged in a position sandwiching the P + type doping part 241A and the P + type doping part 242A in the X direction. At this time, the N + type doping unit 251A and the P + type doping unit 241A are adjacent to each other, and the N + type doping unit 252A and the P + type doping unit 242A are adjacent to each other.
  • the N + type doping part 251A and the N + type doping part 252A do not overlap the N type doping part 23 in a plan view of the semiconductor substrate 20A.
  • the trench 261 is made of an insulating material and has a frame shape surrounding the N + type doping portion 251A in plan view of the semiconductor substrate 20A. As shown in FIG. 8A, the trench 261 has a predetermined depth from the surface of the semiconductor substrate 20 ⁇ / b> A, and the tip in the depth direction reaches the inside of the Psub layer 27.
  • the trench 262 is made of an insulating material and has a frame shape surrounding the N + -type doping portion 252A in plan view of the semiconductor substrate 20A. As shown in FIG. 8A, the trench 262 has a predetermined depth from the surface of the semiconductor substrate 20 ⁇ / b> A, and the tip in the depth direction reaches the inside of the Psub layer 27.
  • the trench 263 is made of an insulating material and surrounds the N-type doping portion 23, the P + -type doping portion 241A, and the P + -type doping portion 242A in plan view of the semiconductor substrate 20A. It is out. As shown in FIG. 8A, the trench 263 has a predetermined depth from the surface of the semiconductor substrate 20A, and the tip in the depth direction reaches the inside of the Psub layer 27.
  • the insulating film 31 is made of SiO 2 , SiN or the like. It is formed on the surface of the N epi layer 22.
  • the wiring conductor 321A and the wiring conductor 322A are made of a metal having high conductivity, such as Al.
  • the wiring conductor 321 ⁇ / b> A and the wiring conductor 322 ⁇ / b> A are formed on the surface of the insulating film 31 (surface opposite to the surface in contact with the N epitaxial layer 22).
  • the wiring conductor 321A is connected to the first terminal P11, and the wiring conductor 322A is connected to the second terminal P12.
  • the wiring conductor 321A overlaps the P + type doping part 241A and the N + type doping part 251A in plan view.
  • the wiring conductor 321A is connected to the P + type doping part 241A and the N + type doping part 251A via via conductors that penetrate the insulating film 31.
  • the wiring conductor 322A overlaps the P + type doping part 242A and the N + type doping part 252A in plan view.
  • the wiring conductor 322A is connected to the P + type doping part 242A and the N + type doping part 252A through a via conductor penetrating the insulating film 31.
  • a Zener diode ZD11 in which a current flows from the Psub layer 27 to the N-type doping portion 23 in a steady state is formed by the connection portion between the Psub layer 27 and the N-type doping portion 23. . That is, the structure of the PN junction having the bidirectional breakdown voltage in the present invention is realized.
  • a diode D31 (see FIG. 9) in which a current flows from the P + type doping part 241A to the N epilayer 22 in a steady state is formed by the connection part between the P + type doping part 241A and the N epilayer 22.
  • a diode D32 (see FIG. 9) in which a current flows from the P + type doping part 242A to the N epilayer 22 in a steady state is formed by the connection part between the P + type doping part 242A and the N epilayer 22.
  • the Psub layer is overlapped with the N + type doping portion 251A in a plan view of the semiconductor substrate 20A and surrounded by the trench 261 in the connection portion between the N epi layer 22 and the Psub layer 27 (see FIG. 8B).
  • a diode D21 (see FIG. 9) in which current flows from 27 to the N-epi layer 22 is formed.
  • the Psub layer is overlapped by the portion (see FIG. 8B) that overlaps with the N + type doping portion 252A in a plan view of the semiconductor substrate 20A and is surrounded by the trench 262 in the connection portion between the N epi layer 22 and the Psub layer 27 A diode D ⁇ b> 22 in which current flows from 27 to the N epilayer 22 is formed.
  • the anode of the diode D31 is connected to the first terminal P11
  • the cathode of the diode D32 is connected to the cathode of the diode D31
  • the second terminal P12 is connected to the anode of the diode D32.
  • the cathode of the diode D21 is connected to the first terminal P11
  • the anode of the diode D22 is connected to the anode of the diode D21
  • the second terminal P12 is connected to the cathode of the diode D22.
  • the cathode of the Zener diode ZD11 is connected to the cathode of the diode D31 and the cathode of the diode D32.
  • the anode of the Zener diode ZD11 is connected to the anode of the diode D21 and the anode of the diode D22.
  • a signal transmission path is formed in which the diode D31, the Zener diode ZD11, and the diode D22 are connected in this order from the first terminal P11 to the second terminal P12.
  • the anode of the Zener diode ZD11 is on the second terminal P12 side
  • the cathode of the Zener diode ZD11 is on the first terminal P11 side.
  • the portion of the PN junction that forms the Zener diode ZD11 corresponds to the second region because current flows from the second terminal P12 to the first terminal P11 in a steady state.
  • a signal transmission path is configured in which the diode D21, the Zener diode ZD11, and the diode D32 are connected in this order from the first terminal P11 to the second terminal P12.
  • the anode of the Zener diode ZD11 is on the first terminal P11 side
  • the cathode of the Zener diode ZD11 is on the second terminal P12 side.
  • the portion of the PN junction that forms the Zener diode ZD11 corresponds to the first region because current flows from the first terminal P11 to the second terminal P12 in a steady state.
  • the impedance matching element 10A can realize a circuit configuration having a breakdown voltage bidirectionally between the first terminal P11 and the second terminal P12. Thereby, the impedance matching element 10A can have the same effects as the impedance matching element 10 according to the first embodiment.
  • FIG. 10A is a side cross-sectional view of the impedance matching element 10B according to the third embodiment of the present invention
  • FIG. 10B shows the impedance matching element 10B according to the third embodiment of the present invention. It is an equivalent circuit diagram.
  • the impedance matching element 10B according to the third embodiment is more n-type MOS-FET than the impedance matching element 10 according to the first embodiment. Is different in that a circuit configuration having a bidirectional breakdown voltage is realized.
  • the concept of the other basic configuration of the impedance matching element 10B is the same as that of the impedance matching element 10, and the description of the same part is omitted.
  • the wiring portion is not shown, but the impedance matching element 10B preferably includes a wiring portion similar to the impedance matching element 10 according to the first embodiment.
  • the impedance matching element 10B includes a semiconductor substrate 20B and an insulating film 31.
  • the semiconductor substrate 20B includes a Psub layer 27, a P well layer 28, a P + type doping unit 24B, an N + type doping unit 251B, and an N + type doping unit 252B.
  • the semiconductor substrate 20B is formed by a known semiconductor formation process.
  • the Psub layer 27 is made of a P-type semiconductor and has a flat plate shape.
  • the P well layer 28 is made of a P-type semiconductor.
  • the P well layer 28 is formed on one main surface of the Psub layer 27.
  • the P + type doping portion 24B is formed on the surface of the P well layer 28 (the surface opposite to the surface in contact with the Psub layer 27), that is, on the first main surface side of the semiconductor substrate 20B.
  • the N + type doping portion 251B and the N + type doping portion 252B are formed on the surface of the P well layer 28 (the surface opposite to the surface in contact with the Psub layer 27), that is, on the first main surface side of the semiconductor substrate 20B. .
  • the N + type doping part 251B and the N + type doping part 252B are arranged apart from each other in the X direction. Further, the N + -type doping unit 251B and the N + -type doping unit 252B are arranged apart from the P + -type doping unit 24B in the X direction. At this time, the P + type doping part 24B is not disposed between the N + type doping part 251B and the N + type doping part 252B in the X direction.
  • the insulating film 31 is made of SiO 2 , SiN or the like. It is formed on the surface of the P well layer 28.
  • the wiring conductor 321B, the wiring conductor 322B, the wiring conductor 323B, and the wiring conductor 324B are made of a metal having high conductivity, such as Al.
  • the wiring conductor 321B, the wiring conductor 322B, the wiring conductor 323B, and the wiring conductor 324B are formed on the surface of the insulating film 31 (the surface opposite to the surface in contact with the P well layer 28).
  • the wiring conductor 321B is connected to the first terminal P11, and the wiring conductor 322B is connected to the second terminal P12.
  • the wiring conductor 321B overlaps the N + type doping part 251B in plan view.
  • the wiring conductor 321B is connected to the N + type doping portion 251B through a via conductor that penetrates the insulating film 31.
  • the wiring conductor 322B overlaps the N + type doping portion 252B in plan view.
  • the wiring conductor 322B is connected to the N + type doping portion 252B through a via conductor that penetrates the insulating film 31.
  • the wiring conductor 323B overlaps with the P + type doping portion 24B in plan view.
  • the wiring conductor 323B is connected to the P + type doping part 24B through a via conductor that penetrates the insulating film 31.
  • the wiring conductor 324B is connected to the wiring conductor 323B.
  • the impedance matching element 10B is realized by an n-type MOS-FET in which the first terminal P11 and the second terminal P12 are connected to the drain and source, as shown in FIG.
  • the structure of the PN junction which forms the 2nd field is realized by the junction of P well layer 28 and N + type doping part 251B.
  • the structure of the PN junction forming the first region is realized by the junction between the P well layer 28 and the N + type doping portion 252B.
  • the impedance matching element 10B can realize a circuit configuration having a breakdown voltage in both directions between the first terminal P11 and the second terminal P12. Thereby, the impedance matching element 10B can have the same effect as the impedance matching element 10 according to the first embodiment.
  • n + type MOS-FET including the Psub layer 27, the P well layer 28, the P + type doping unit 24B, the N + type doping unit 251B, and the N + type doping unit 252B has been described.
  • the present invention is not limited to this, and various MOS-FETs can be used.
  • a p + type MOS-FET may be used instead of the n + type MOS-FET.
  • FIG. 11A is a side cross-sectional view of an impedance matching element 10C according to the fourth embodiment of the present invention
  • FIG. 11B shows an impedance matching element 10C according to the fourth embodiment of the present invention. It is an equivalent circuit diagram.
  • the impedance matching element 10C according to the fourth embodiment is compared with the impedance matching element 10 according to the first embodiment by a PNP transistor. The difference is that a circuit configuration having a bidirectional breakdown voltage is realized.
  • the concept of the other basic configuration of the impedance matching element 10C is the same as that of the impedance matching element 10, and the description of the same part is omitted.
  • the wiring portion is not shown, but the impedance matching element 10C preferably includes a wiring portion similar to the impedance matching element 10 according to the first embodiment.
  • the impedance matching element 10C includes a semiconductor substrate 20C and an insulating film 31.
  • the semiconductor substrate 20C includes a Psub layer 27, an N well layer 29, a P well layer 281C, a P well layer 282C, a P + type doping unit 241C, a P + type doping unit 242C, an N + type doping unit 251C, and an N + type doping unit 252C.
  • the semiconductor substrate 20C is formed by a known semiconductor formation process.
  • the Psub layer 27 is made of a P-type semiconductor and has a flat plate shape.
  • the N well layer 29 is made of an N type semiconductor. N well layer 29 is formed on one main surface of Psub layer 27.
  • the P well layer 281C and the P well layer 282C are formed on the surface of the N well layer 29 (the surface opposite to the surface in contact with the Psub layer 27), that is, on the first main surface side of the semiconductor substrate 20C.
  • the P + type doping part 241C is formed on the surface side of the P well layer 281C, that is, on the first main surface side of the semiconductor substrate 20C.
  • the P + type doping portion 242C is formed on the surface side of the P well layer 282C, that is, on the first main surface side of the semiconductor substrate 20C.
  • N + type doping portion 251C and N + type doping portion 252C are formed on the surface of N well layer 29 (the surface opposite to the surface in contact with Psub layer 27), that is, on the first main surface side of semiconductor substrate 20C. .
  • the N + type doping unit 251B and the N + type doping unit 252B are arranged apart from each other with the P well layer 281C and the P well layer 282C interposed therebetween in the X direction.
  • the insulating film 31 is made of SiO 2 , SiN or the like. It is formed on the surface of N well layer 29.
  • the wiring conductor 321C, the wiring conductor 322C, the wiring conductor 323C, and the wiring conductor 324C are made of a metal having high conductivity, such as Al.
  • the wiring conductor 321C, the wiring conductor 322C, the wiring conductor 323C, and the wiring conductor 324C are formed on the surface of the insulating film 31 (the surface opposite to the surface in contact with the N well layer 29).
  • the wiring conductor 321C is connected to the first terminal P11, and the wiring conductor 322C is connected to the second terminal P12.
  • the wiring conductor 321C overlaps with the P + type doping portion 241C in plan view.
  • the wiring conductor 321C is connected to the P + type doping portion 241C through a via conductor that penetrates the insulating film 31.
  • the wiring conductor 322C overlaps with the P + type doping portion 242C in plan view.
  • the wiring conductor 322C is connected to the P + type doping portion 242C through a via conductor that penetrates the insulating film 31.
  • the wiring conductor 323C and the wiring conductor 324C overlap with the N + type doping part 251C and the N + type doping part 252C, respectively, in plan view.
  • the wiring conductor 323C is connected to the N + type doping portion 251C via a via conductor that penetrates the insulating film 31, and the wiring conductor 324C is connected to the N + type doping portion 252C via a via conductor that penetrates the insulating film 31. Connected to.
  • the wiring conductor 323C and the wiring conductor 324C are connected.
  • the impedance matching element 10C is realized by a PNP transistor in which the first terminal P11 and the second terminal P12 are connected to the emitter and collector, as shown in FIG. 11B.
  • region is implement
  • the structure of the PN junction forming the second region is realized by the junction between the P well layer 282C and the N well layer 29.
  • the impedance matching element 10C can realize a circuit configuration having a breakdown voltage bidirectionally between the first terminal P11 and the second terminal P12.
  • the impedance matching element 10 ⁇ / b> C can achieve the same operational effects as the impedance matching element 10 according to the first embodiment.
  • the high frequency circuit 92 is realized, for example, by the circuit configuration shown in FIGS. 12 (A) and 12 (B).
  • FIGS. 12A and 12B are functional block diagrams illustrating a configuration example of the high-frequency circuit 92.
  • the high-frequency circuit 92 generally uses a circuit called a high-frequency front-end circuit. it can.
  • the high-frequency circuit 92 includes a switch circuit (SW circuit) 921, a transmission circuit (TX circuit) 922, and a reception circuit (RX circuit) 923.
  • the switch circuit 921 is connected to the antenna 91 via the impedance matching element of the present invention.
  • the switch circuit 921 is connected to the transmission circuit 922 and the reception circuit 923.
  • the switch circuit 921 connects the transmission circuit 922 to the antenna 91 when transmitting a high-frequency signal, and connects the reception circuit 923 to the antenna 91 when receiving a high-frequency signal.
  • the switch circuit 921 corresponds to a kind of branching circuit of the present invention.
  • the high-frequency circuit 92 includes a duplexer (DPX) 924, a power amplifier (PA) 925, and a low noise amplifier (LNA) 926.
  • the duplexer 924 is connected to the antenna 91 via the impedance matching element of the present invention.
  • the duplexer 924 is connected to the power amplifier 925 and the low noise amplifier 926.
  • the duplexer 924 corresponds to a kind of branching circuit of the present invention.
  • the power amplifier 925 is included in the transmission circuit of the present invention, and the low noise amplifier 926 is included in the reception circuit of the present invention.
  • the transmission signal is amplified by the power amplifier 925 and output to the antenna 91 via the duplexer 924.
  • a reception signal from the antenna 91 is output to the low noise amplifier 926 via the duplexer 924 and amplified by the low noise amplifier 926.

Abstract

An impedance matching element (10), provided with a semiconductor substrate (20), a first terminal (P11), and a second terminal (P12). The first terminal (P11) is formed on the semiconductor substrate (20) and is connected to the antenna (91). The second terminal (P12) is formed on the semiconductor substrate (20) and is connected to a high-frequency circuit (92). The semiconductor substrate (20) has a first region and a second region. The first region is provided with a first PN junction, and has a rectification effect of channeling a current from the first terminal (P11) to the second terminal (P12) in a steady state. The second region is provided with a second PN junction, and has a rectification effect of channeling a current from the second terminal (P12) to the first terminal (P11) in a steady state. The first region and the second region are connected between the first terminal (P11) and the second terminal (P12) and have a breakdown voltage in both directions.

Description

インピーダンス整合素子、および通信装置Impedance matching element and communication device
 本発明は、インピーダンス整合用のインピーダンス整合素子に関する。 The present invention relates to an impedance matching element for impedance matching.
 特許文献1には、アンテナと高周波回路との間のインピーダンス整合を行うインピーダンス整合回路が記載されている。 Patent Document 1 describes an impedance matching circuit that performs impedance matching between an antenna and a high-frequency circuit.
 より具体的には、特許文献1では、インピーダンス整合回路の一例として、キャパシタを用いたインピーダンス整合回路が示されている。このインピーダンス整合回路において、整合素子として用いられるキャパシタは、アンテナと高周波回路との間に、直列に接続されている。 More specifically, Patent Document 1 discloses an impedance matching circuit using a capacitor as an example of an impedance matching circuit. In this impedance matching circuit, a capacitor used as a matching element is connected in series between the antenna and the high-frequency circuit.
特開2005-20596号公報JP 2005-20596 A
 しかしながら、インピーダンス整合素子として、直列接続のキャパシタを用いた場合、インピーダンス整合素子がない場合よりも、アンテナのQが高くなる。これにより、アンテナの通信可能な帯域(所定の利得が得られる帯域)の幅が狭くなってしまう。 However, when a series-connected capacitor is used as the impedance matching element, the antenna Q is higher than when no impedance matching element is provided. This narrows the width of the band in which the antenna can communicate (a band where a predetermined gain can be obtained).
 したがって、本発明の目的は、アンテナの帯域幅が狭くなるのを抑えつつ、インピーダンス整合を行うことができるインピーダンス整合素子を提供することにある。 Therefore, an object of the present invention is to provide an impedance matching element that can perform impedance matching while suppressing a reduction in the bandwidth of the antenna.
 この発明のインピーダンス整合素子は、半導体基板、第1端子、および、第2端子を備える。第1端子は、半導体基板上に形成され、アンテナに接続している。第2端子は、半導体基板上に形成され、高周波回路に接続している。半導体基板は、第1領域と第2領域とを備える。第1領域は、PN接合の構造を備え、定常状態において第1端子から第2端子に電流を流す整流作用を有する。第2領域は、PN接合の構造を備え、定常状態において第2端子から第1端子に電流を流す整流作用を有する。第1領域と第2領域とは、第1端子と第2端子との間に接続され、双方向にブレークダウン電圧を有する。 The impedance matching element according to the present invention includes a semiconductor substrate, a first terminal, and a second terminal. The first terminal is formed on the semiconductor substrate and connected to the antenna. The second terminal is formed on the semiconductor substrate and connected to the high frequency circuit. The semiconductor substrate includes a first region and a second region. The first region has a PN junction structure and has a rectifying action in which a current flows from the first terminal to the second terminal in a steady state. The second region has a PN junction structure and has a rectifying action in which a current flows from the second terminal to the first terminal in a steady state. The first region and the second region are connected between the first terminal and the second terminal and have a breakdown voltage in both directions.
 この構成では、半導体基板における第1領域と第2領域とからなる部分は、高周波信号に対して、一般的な平行平板型のキャパシタとはキャパシタンスの周波数特性が逆となるキャパシタのように作用する。具体的には、周波数が高くなるほど、この部分のキャパシタンスは低くなる。したがって、通常のキャパシタを用いた場合よりも、アンテナのQが高くなることが抑制される。 In this configuration, the portion of the semiconductor substrate composed of the first region and the second region acts on a high-frequency signal like a capacitor whose capacitance frequency characteristics are opposite to those of a general parallel plate type capacitor. . Specifically, the higher the frequency, the lower the capacitance of this part. Therefore, it is possible to suppress the Q of the antenna from becoming higher than when a normal capacitor is used.
 また、この発明のインピーダンス整合素子では、次の構成であることが好ましい。半導体基板は、第1主面を備える。第1主面上には、配線層が形成されている。配線層における第1主面に当接する面と反対側の面に、第1端子および第2端子が形成されている。 Also, the impedance matching element of the present invention preferably has the following configuration. The semiconductor substrate includes a first main surface. A wiring layer is formed on the first main surface. A first terminal and a second terminal are formed on the surface of the wiring layer opposite to the surface that contacts the first main surface.
 この構成では、配線層によって、第1端子と第2端子の配置の自由度が向上する。 In this configuration, the degree of freedom of arrangement of the first terminal and the second terminal is improved by the wiring layer.
 また、この発明のインピーダンス整合素子では、一例として、第1領域と第2領域とを用いて、双方向ツェナーダイオードが形成されている。 In the impedance matching element of the present invention, as an example, a bidirectional Zener diode is formed using the first region and the second region.
 また、この発明のインピーダンス整合素子では、一例として、第1領域と第2領域とを用いて、双方向のブレークダウン電圧を有するMOSFETが形成されている。 In the impedance matching element of the present invention, as an example, a MOSFET having a bidirectional breakdown voltage is formed using the first region and the second region.
 また、この発明のインピーダンス整合素子では、一例として、第1領域と第2領域とを用いて、双方向のブレークダウン電圧を有するトランジスタが形成されている。 In the impedance matching element of the present invention, as an example, a transistor having a bidirectional breakdown voltage is formed using the first region and the second region.
 このように、双方向のブレークダウン特性を有する半導体素子であれば、インピーダンス整合素子として利用することが可能である。 As described above, any semiconductor element having bidirectional breakdown characteristics can be used as an impedance matching element.
 この発明によれば、アンテナの帯域幅を狭くすることなく、インピーダンス整合を行うことができる。 According to the present invention, impedance matching can be performed without narrowing the antenna bandwidth.
図1は本発明の第1の実施形態に係るインピーダンス整合素子10を含む通信装置1の一例を示すブロック図である。FIG. 1 is a block diagram showing an example of a communication device 1 including an impedance matching element 10 according to the first embodiment of the present invention. 図2(A)は、双方向ツェナーダイオードのキャパシタンスの周波数特性を示すグラフであり、図2(B)は、双方向ツェナーダイオードの虚数成分の周波数特性を示すグラフである。FIG. 2A is a graph showing the frequency characteristics of the capacitance of the bidirectional Zener diode, and FIG. 2B is a graph showing the frequency characteristics of the imaginary component of the bidirectional Zener diode. 図3(A)は、アンテナ、通常のキャパシタ、双方向ツェナーダイオードのインピーダンスの虚数成分の周波数特性を示すグラフであり、図3(B)は、通常のキャパシタを用いた場合、双方向ツェナーダイオードを用いた場合、通常のキャパシタも双方向ツェナーダイオードも用いない場合でのアンテナの通過特性を示すグラフである。FIG. 3A is a graph showing the frequency characteristics of the imaginary component of the impedance of an antenna, a normal capacitor, and a bidirectional Zener diode. FIG. 3B shows a bidirectional Zener diode when a normal capacitor is used. 6 is a graph showing the passing characteristics of the antenna when neither a normal capacitor nor a bidirectional Zener diode is used. 図4は双方向ツェナーダイオードの通過特性を示すグラフである。FIG. 4 is a graph showing pass characteristics of the bidirectional Zener diode. 図5は本発明の第1の実施形態に係るインピーダンス整合素子10の側面断面図である。FIG. 5 is a side sectional view of the impedance matching element 10 according to the first embodiment of the present invention. 図6は本発明の第1の実施形態に係るインピーダンス整合素子10の斜視図である。FIG. 6 is a perspective view of the impedance matching element 10 according to the first embodiment of the present invention. 図7(A)は、第1の実施形態に係るインピーダンス整合素子10の上面図であり、図7(B)は、配線層40の途中位置を上面側から視た図であり、図7(C)は、半導体基板20の第1主面を視た図である。FIG. 7A is a top view of the impedance matching element 10 according to the first embodiment, and FIG. 7B is a view of an intermediate position of the wiring layer 40 as viewed from the top surface side. C) is a view of the first main surface of the semiconductor substrate 20. 図8(A)は、本発明の第2の実施形態に係るインピーダンス整合素子10Aの側面断面図であり、図8(B)は、本発明の第2の実施形態に係るインピーダンス整合素子10Aの各構成要素の位置関係を示す平面図である。FIG. 8A is a side sectional view of an impedance matching element 10A according to the second embodiment of the present invention, and FIG. 8B is a diagram of the impedance matching element 10A according to the second embodiment of the present invention. It is a top view which shows the positional relationship of each component. 図9(A)は、本発明の第2の実施形態に係るインピーダンス整合素子10Aの等価回路図であり、図9(B)は、本発明の第2の実施形態に係るインピーダンス整合素子10Aの信号伝送の第1態様の等価回路図であり、図9(C)は、本発明の第2の実施形態に係るインピーダンス整合素子10Aの信号伝送の第2態様の等価回路図である。FIG. 9A is an equivalent circuit diagram of the impedance matching element 10A according to the second embodiment of the present invention, and FIG. 9B shows the impedance matching element 10A according to the second embodiment of the present invention. FIG. 9C is an equivalent circuit diagram of a first mode of signal transmission, and FIG. 9C is an equivalent circuit diagram of a second mode of signal transmission of the impedance matching element 10A according to the second embodiment of the present invention. 図10(A)は、本発明の第3の実施形態に係るインピーダンス整合素子10Bの側面断面図であり、図10(B)は、本発明の第3の実施形態に係るインピーダンス整合素子10Bの等価回路図である。FIG. 10A is a side cross-sectional view of the impedance matching element 10B according to the third embodiment of the present invention, and FIG. 10B shows the impedance matching element 10B according to the third embodiment of the present invention. It is an equivalent circuit diagram. 図11(A)は、本発明の第4の実施形態に係るインピーダンス整合素子10Cの側面断面図であり、図11(B)は、本発明の第4の実施形態に係るインピーダンス整合素子10Cの等価回路図である。FIG. 11A is a side cross-sectional view of an impedance matching element 10C according to the fourth embodiment of the present invention, and FIG. 11B shows an impedance matching element 10C according to the fourth embodiment of the present invention. It is an equivalent circuit diagram. 図12(A)、図12(B)は、高周波回路の構成例を示す機能ブロック図である。12A and 12B are functional block diagrams illustrating a configuration example of the high-frequency circuit.
 以降、図を参照して幾つかの具体的な例を挙げて、本発明を実施するための複数の形態を示す。各図中には同一箇所に同一符号を付している。要点の説明又は理解の容易性を考慮して、便宜上実施形態を分けて示すが、異なる実施形態で示した構成の部分的な置換又は組み合わせが可能である。第2の実施形態以降では第1の実施形態と共通の事柄についての記述を省略し、異なる点を中心に説明を行う。特に、同様の構成による同様の作用効果については実施形態毎には逐次言及しない。 Hereinafter, several specific examples will be given with reference to the drawings to show a plurality of modes for carrying out the present invention. In each figure, the same reference numerals are assigned to the same portions. In consideration of ease of explanation or understanding of the main points, the embodiments are shown separately for convenience, but partial replacement or combination of the configurations shown in different embodiments is possible. In the second and subsequent embodiments, description of matters common to the first embodiment will be omitted, and description will be made focusing on differences. In particular, the same operation effect by the same configuration will not be sequentially described for each embodiment.
 (回路構成および特性)
 本発明の第1の実施形態に係るインピーダンス整合素子について、図を参照して説明する。図1は、本発明の第1の実施形態に係るインピーダンス整合素子10を含む通信装置1の一例を示すブロック図である。
(Circuit configuration and characteristics)
An impedance matching element according to a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing an example of a communication device 1 including an impedance matching element 10 according to the first embodiment of the present invention.
 通信装置1は、アンテナ91、高周波回路92、および、インピーダンス整合素子10を備える。インピーダンス整合素子10は、第1端子P11、第2端子P12、双方向ツェナーダイオードZD10を備える。双方向ツェナーダイオードZD10は、第1端子P11と第2端子P12との間に接続されている。 The communication apparatus 1 includes an antenna 91, a high frequency circuit 92, and an impedance matching element 10. The impedance matching element 10 includes a first terminal P11, a second terminal P12, and a bidirectional Zener diode ZD10. The bidirectional Zener diode ZD10 is connected between the first terminal P11 and the second terminal P12.
 アンテナ91は、第1端子P11に接続されている。高周波回路92は、第2端子P12に接続されている。言い換えれば、インピーダンス整合素子10は、アンテナ91と高周波回路92との間に、直列に接続されている。 The antenna 91 is connected to the first terminal P11. The high frequency circuit 92 is connected to the second terminal P12. In other words, the impedance matching element 10 is connected in series between the antenna 91 and the high frequency circuit 92.
 双方向ツェナーダイオードZD10は、双方向のブレークダウン電圧を有する。そして、双方向ツェナーダイオードZD10は、次に示す各種の特性を有する。 The bidirectional Zener diode ZD10 has a bidirectional breakdown voltage. The bidirectional Zener diode ZD10 has the following various characteristics.
 図2(A)は、双方向ツェナーダイオードZD10のキャパシタンスの周波数特性を示すグラフである。図2(B)は、双方向ツェナーダイオードZD10の虚数成分の周波数特性を示すグラフである。図2(A)、図2(B)において、実線は、双方向ツェナーダイオードZD10の特性を示し、破線は、通常のキャパシタの特性を示す。 FIG. 2A is a graph showing the frequency characteristics of the capacitance of the bidirectional Zener diode ZD10. FIG. 2B is a graph showing the frequency characteristics of the imaginary component of the bidirectional Zener diode ZD10. 2A and 2B, the solid line indicates the characteristic of the bidirectional Zener diode ZD10, and the broken line indicates the characteristic of a normal capacitor.
 図2(A)に示すように、双方向ツェナーダイオードZD10は、周波数が高くなるのにしたがって、キャパシタンスは小さくなる。すなわち、キャパシタンスの周波数依存性が負の特性を示す。一方、通常のキャパシタは、周波数が高くなるのにしたがって、キャパシタンスは大きくなる。すなわち、キャパシタンスの周波数依存性が正の特性を示す。なお、通常のキャパシタとは、対向電極間に誘電体を配置した構成からなるキャパシタである。特に、図2(A)に示すように、現在、通信用として多く利用されている約700MHzを超える周波数では、その傾向が大きくなる。 As shown in FIG. 2A, the bidirectional Zener diode ZD10 has a capacitance that decreases as the frequency increases. That is, the frequency dependence of capacitance exhibits a negative characteristic. On the other hand, the capacitance of a normal capacitor increases as the frequency increases. That is, the frequency dependency of capacitance exhibits a positive characteristic. A normal capacitor is a capacitor having a configuration in which a dielectric is disposed between opposing electrodes. In particular, as shown in FIG. 2 (A), the tendency becomes large at a frequency exceeding about 700 MHz, which is currently widely used for communication.
 そして、図2(B)に示すように、双方向ツェナーダイオードZD10は、キャパシタンスの周波数依存性が負の特性を示す領域では、周波数の変化量に対する端子間インピーダンスの虚数成分の変化量が、通常のキャパシタの変化量よりも小さくなる。なお、図2(A)、図2(B)に示す例では、少なくとも約700MHzを超える領域では、キャパシタンスの周波数依存性が負の特性を示しており、周波数の変化量に対する端子間インピーダンスの虚数成分の変化量が、通常のキャパシタの変化量よりも小さくなっていることが分かる。 As shown in FIG. 2B, in the bidirectional Zener diode ZD10, the change amount of the imaginary component of the impedance between the terminals with respect to the change amount of the frequency is usually in the region where the frequency dependence of the capacitance is negative. It becomes smaller than the amount of change of the capacitor. In the example shown in FIGS. 2A and 2B, the frequency dependence of capacitance shows a negative characteristic in a region exceeding at least about 700 MHz, and the imaginary number of the impedance between terminals with respect to the amount of change in frequency. It can be seen that the component change amount is smaller than the normal capacitor change amount.
 ここで、アンテナのインピーダンス特性と、通常のキャパシタのインピーダンス特性、および、双方向ツェナーダイオードZD10のインピーダンス特性との関係について考える。 Here, the relationship between the impedance characteristics of the antenna, the impedance characteristics of a normal capacitor, and the impedance characteristics of the bidirectional Zener diode ZD10 will be considered.
 図3(A)は、アンテナ(整合素子を有さないアンテナ(例えば、アンテナエレメント))、通常のキャパシタ、双方向ツェナーダイオードのインピーダンスの虚数成分の周波数特性を示すグラフである。図3(A)において、実線は、双方向ツェナーダイオードの特性を示し、破線は、通常のキャパシタの特性を示し、二点鎖線は、アンテナ単体の特性を示す。 FIG. 3A is a graph showing frequency characteristics of an imaginary component of the impedance of an antenna (an antenna having no matching element (for example, an antenna element)), a normal capacitor, and a bidirectional Zener diode. In FIG. 3A, the solid line indicates the characteristic of the bidirectional Zener diode, the broken line indicates the characteristic of the normal capacitor, and the two-dot chain line indicates the characteristic of the antenna alone.
 図3(A)に示すように、アンテナのインピーダンスの虚数成分は、周波数が高くなるほど大きくなる。同様に、通常のキャパシタのインピーダンスの虚数成分も、双方向ツェナーダイオードの虚数成分も、周波数が高くなるほど大きくなる。 As shown in FIG. 3 (A), the imaginary component of the antenna impedance increases as the frequency increases. Similarly, the imaginary number component of the normal capacitor impedance and the imaginary number component of the bidirectional Zener diode increase as the frequency increases.
 しかしながら、図3(A)に示すように、双方向ツェナーダイオードの虚数成分の変化率は、通常のキャパシタの虚数成分の変化率よりも小さい。 However, as shown in FIG. 3A, the rate of change of the imaginary number component of the bidirectional Zener diode is smaller than the rate of change of the imaginary number component of a normal capacitor.
 したがって、通常のキャパシタをインピーダンス整合素子として用いるよりも、双方向ツェナーダイオードをインピーダンス整合素子として用いる方が、高周波帯域におけるインピーダンスの虚数成分の変化率は、小さくなる。なお、高周波帯域とは、例えば約700MHz以上の周波数帯域であることが好ましい。 Therefore, the rate of change of the imaginary component of the impedance in the high frequency band is smaller when the bidirectional Zener diode is used as the impedance matching element than when the normal capacitor is used as the impedance matching element. The high frequency band is preferably a frequency band of about 700 MHz or more, for example.
 ここで、インピーダンスの虚数成分の変化率は、Qの高さに対応する。すなわち、インピーダンスの虚数成分の変化率が大きければ、Qは高くなり、インピーダンスの虚数成分の変化率が低ければ、Qは低くなる。 Here, the rate of change of the imaginary component of the impedance corresponds to the height of Q. That is, if the rate of change of the imaginary number component of impedance is large, Q is high, and if the rate of change of the imaginary number component of impedance is low, Q is low.
 この結果、双方向ツェナーダイオードをインピーダンス整合素子として用いる方が、通常のキャパシタをインピーダンス整合素子として用いるよりも、アンテナのQは低くなる。より厳密には、アンテナと双方向ツェナーダイオードによって構成される実質的なアンテナのQは低くなる。 As a result, the antenna Q is lower when the bidirectional Zener diode is used as the impedance matching element than when a normal capacitor is used as the impedance matching element. More strictly, the Q of the substantial antenna constituted by the antenna and the bidirectional Zener diode is lowered.
 図3(B)は、通常のキャパシタを用いた場合、双方向ツェナーダイオードを用いた場合、通常のキャパシタも双方向ツェナーダイオードも用いない場合でのアンテナの通過特性を示すグラフである。図3(B)において、実線は、双方向ツェナーダイオードを用いた場合の特性を示し、破線は、通常のキャパシタを用いた場合の特性を示し、二点鎖線は、アンテナ単体の特性を示す。 FIG. 3B is a graph showing the passing characteristics of the antenna when a normal capacitor is used, when a bidirectional Zener diode is used, and when neither a normal capacitor nor a bidirectional Zener diode is used. In FIG. 3B, the solid line indicates the characteristics when the bidirectional Zener diode is used, the broken line indicates the characteristics when a normal capacitor is used, and the two-dot chain line indicates the characteristics of the antenna alone.
 図3(B)に示すように、通常のキャパシタを用いた場合、双方向ツェナーダイオードを用いた場合の双方において、アンテナ単体よりも共振周波数での極は急峻になる。しかしながら、双方向ツェナーダイオードを用いた場合の方が、共振周波数での極の急峻度は低下する。すなわち、比帯域の幅が広くなる。 As shown in FIG. 3B, in the case of using a normal capacitor and in the case of using a bidirectional Zener diode, the pole at the resonance frequency is steeper than the antenna alone. However, when the bidirectional Zener diode is used, the steepness of the pole at the resonance frequency is lowered. That is, the width of the specific band is widened.
 例えば、図3(B)の例では、S[dB]=-10において、アンテナ単体での比帯域の幅を約100%とすると、通常のキャパシタを用いた場合には、比帯域の幅は、約72%になる。しかしながら、双方向ツェナーダイオードを用いた場合には、比帯域の幅は、約82%になる。すなわち、比帯域の幅の減少を約10%改善できる。 For example, in the example of FIG. 3B, when the bandwidth of the specific band of the antenna alone is about 100% at S [dB] = − 10, the bandwidth of the bandwidth is as follows when a normal capacitor is used. About 72%. However, when the bidirectional Zener diode is used, the width of the ratio band is about 82%. In other words, the reduction in the width of the specific band can be improved by about 10%.
 このように、双方向ツェナーダイオードを用いることによって、容量性のインピーダンス整合素子を接続したことによる、アンテナの通信帯域の幅の減少を抑制できる。 Thus, by using the bidirectional Zener diode, it is possible to suppress a decrease in the communication bandwidth of the antenna due to the connection of the capacitive impedance matching element.
 また、双方向ツェナーダイオードは、次に示す通過特性を有する。図4は、双方向ツェナーダイオードの通過特性を示すグラフである。 Also, the bidirectional Zener diode has the following pass characteristics. FIG. 4 is a graph showing pass characteristics of the bidirectional Zener diode.
 図4に示すように、双方向ツェナーダイオードは、少なくとも約700MHz以上の周波数帯域において、殆ど減衰することなく、高周波信号を伝送できる。 As shown in FIG. 4, the bidirectional Zener diode can transmit a high-frequency signal with almost no attenuation in a frequency band of at least about 700 MHz.
 以上のように、双方向ツェナーダイオードZD10からなるインピーダンス整合素子10を、アンテナ91と高周波回路92との間に接続することによって、アンテナ91のインピーダンスと、高周波回路92のインピーダンスとを整合しながら、アンテナ91の通信帯域の幅の減少を抑制し、且つ、高周波信号を低損失に伝送できる。 As described above, the impedance matching element 10 composed of the bidirectional Zener diode ZD10 is connected between the antenna 91 and the high-frequency circuit 92, thereby matching the impedance of the antenna 91 and the impedance of the high-frequency circuit 92. A reduction in the width of the communication band of the antenna 91 can be suppressed, and a high-frequency signal can be transmitted with low loss.
 (インピーダンス整合素子10の具体的な構造)
 図5は、本発明の第1の実施形態に係るインピーダンス整合素子10の側面断面図である。図6は、本発明の第1の実施形態に係るインピーダンス整合素子10の斜視図である。図6では、インピーダンス整合素子10の半導体基板と、配線層の電極を図示しており、配線層における絶縁性材料によって形成される部分の図示は省略している。図7(A)は、第1の実施形態に係るインピーダンス整合素子10の上面図であり、図7(B)は、配線層40の途中位置を上面側から視た図であり、図7(C)は、半導体基板20の第1主面を視た図である。
(Specific structure of impedance matching element 10)
FIG. 5 is a side sectional view of the impedance matching element 10 according to the first embodiment of the present invention. FIG. 6 is a perspective view of the impedance matching element 10 according to the first embodiment of the present invention. In FIG. 6, the semiconductor substrate of the impedance matching element 10 and the electrode of the wiring layer are illustrated, and the portion formed of the insulating material in the wiring layer is not illustrated. FIG. 7A is a top view of the impedance matching element 10 according to the first embodiment, and FIG. 7B is a view of an intermediate position of the wiring layer 40 as viewed from the top surface side. C) is a view of the first main surface of the semiconductor substrate 20.
 図5、図6に示すように、インピーダンス整合素子10は、半導体基板20、絶縁膜31、および、配線層40を備える。 As shown in FIGS. 5 and 6, the impedance matching element 10 includes a semiconductor substrate 20, an insulating film 31, and a wiring layer 40.
 半導体基板20は、Nsub層21、Nエピ層22、N型ドーピング部231、N型ドーピング部232、P+型ドーピング部241、および、P+型ドーピング部242を備える。半導体基板20は、既知の半導体形成プロセスによって形成されている。 The semiconductor substrate 20 includes an Nsub layer 21, an N epilayer 22, an N-type doping unit 231, an N-type doping unit 232, a P + type doping unit 241, and a P + type doping unit 242. The semiconductor substrate 20 is formed by a known semiconductor formation process.
 Nsub層21は、N型の半導体からなり、平板状である。Nエピ層22は、N型の半導体からなる。Nエピ層22は、Nsub層21の一方主面上に、N型半導体をエピタキシャル成長させることによって形成されている。 The Nsub layer 21 is made of an N-type semiconductor and has a flat plate shape. The N epi layer 22 is made of an N-type semiconductor. The N epilayer 22 is formed on one main surface of the Nsub layer 21 by epitaxially growing an N-type semiconductor.
 図5、図6、図7(C)に示すように、N型ドーピング部231およびN型ドーピング部232は、Nエピ層22に形成されている。N型ドーピング部231およびN型ドーピング部232は、Nエピ層22に対して、部分的なN型キャリアのドーピングを行うことによって、形成されている。N型ドーピング部231およびN型ドーピング部232は、Nsub層21に当接する高さ(深さ)で形成されている。 As shown in FIGS. 5, 6, and 7 (C), the N-type doping part 231 and the N-type doping part 232 are formed in the N epilayer 22. The N-type doping unit 231 and the N-type doping unit 232 are formed by performing partial N-type carrier doping on the N epilayer 22. The N-type doping part 231 and the N-type doping part 232 are formed at a height (depth) in contact with the Nsub layer 21.
 N型ドーピング部231およびN型ドーピング部232は、略直方体形状である。N型ドーピング部231とN型ドーピング部232とは、X方向に所定距離で離間して配置されている。 The N-type doping part 231 and the N-type doping part 232 have a substantially rectangular parallelepiped shape. The N-type doping part 231 and the N-type doping part 232 are arranged apart from each other by a predetermined distance in the X direction.
 図5、図6、図7(C)に示すように、P+型ドーピング部241およびP+型ドーピング部242は、Nエピ層22の表面(Nsub層21に当接する面と反対の面)側、すなわち、半導体基板20の第1主面側に形成されている。P+型ドーピング部241およびP+型ドーピング部242は、Nエピ層22に対して、部分的なP型キャリアのドーピングを行うことによって、形成されている。 As shown in FIGS. 5, 6, and 7 (C), the P + type doping portion 241 and the P + type doping portion 242 are on the surface of the N epilayer 22 (the surface opposite to the surface in contact with the Nsub layer 21), That is, it is formed on the first main surface side of the semiconductor substrate 20. The P + type doping part 241 and the P + type doping part 242 are formed by performing partial P type carrier doping on the N epilayer 22.
 P+型ドーピング部241は、平面視で(図5のZ軸方向に視て)、N型ドーピング部231と重なっており、所定の高さ(深さ、すなわち、図5のZ軸方向に沿った長さ)を有する。P+型ドーピング部241は、N型ドーピング部231に接合している。これらP+型ドーピング部241とN型ドーピング部231との接合部によって、第1のPN接合が実現される。そして、このPN接合部は、定常状態において第1端子P11から第2端子P12に電流を流す整流作用を有する第1領域に対応する。なお、定常状態とは、ブレークダウンが生じていない状態を意味する。 The P + type doping part 241 overlaps with the N type doping part 231 in plan view (viewed in the Z-axis direction in FIG. 5), and has a predetermined height (depth, that is, along the Z-axis direction in FIG. 5). Length). The P + type doping unit 241 is joined to the N type doping unit 231. A first PN junction is realized by the junction between the P + type doping unit 241 and the N type doping unit 231. The PN junction corresponds to a first region having a rectifying action for flowing a current from the first terminal P11 to the second terminal P12 in a steady state. The steady state means a state in which no breakdown occurs.
 P+型ドーピング部242は、平面視で(図5のZ軸方向に視て)、N型ドーピング部232と重なっており、所定の高さ(深さ、すなわち、図5のZ軸方向に沿った長さ)を有する。P+型ドーピング部242は、N型ドーピング部232に接合している。これらP+型ドーピング部242とN型ドーピング部232との接合部によって、第2のPN接合が実現される。そして、このPN接合部は、定常状態において第2端子P12から第1端子P11に電流を流す整流作用を有する第2領域に対応する。 The P + type doping part 242 overlaps with the N type doping part 232 in a plan view (viewed in the Z-axis direction in FIG. 5), and has a predetermined height (depth, ie, along the Z-axis direction in FIG. 5). Length). The P + type doping part 242 is joined to the N type doping part 232. A second PN junction is realized by the junction between the P + type doping unit 242 and the N type doping unit 232. The PN junction corresponds to a second region having a rectifying action for flowing a current from the second terminal P12 to the first terminal P11 in a steady state.
 また、N型ドーピング部231およびN型ドーピング部232は、Nsub層21に当接しているので、Nsub層21が、第1領域と第2領域を電気的に接続する電流経路となる。 Further, since the N-type doping unit 231 and the N-type doping unit 232 are in contact with the Nsub layer 21, the Nsub layer 21 serves as a current path that electrically connects the first region and the second region.
 そして、この構造では、第1領域のPN接合部の向きと、第2領域のPN接合部の向きとが逆の状態で接続される。これにより、双方向にブレークダウン電圧を有する双方向ツェナーダイオードZD10が形成される。 In this structure, the direction of the PN junction in the first region and the direction of the PN junction in the second region are connected in an opposite state. As a result, a bidirectional Zener diode ZD10 having a breakdown voltage in both directions is formed.
 絶縁膜31は、SiO、SiN等からなる。Nエピ層22の表面に形成されている。 The insulating film 31 is made of SiO 2 , SiN or the like. It is formed on the surface of the N epi layer 22.
 配線導体321および配線導体322は、Al等の高い導電率を有する金属からなる。配線導体321および配線導体322は、絶縁膜31の表面(Nエピ層22に当接する面と反対側の面)に形成されている。 The wiring conductor 321 and the wiring conductor 322 are made of a metal having high conductivity such as Al. The wiring conductor 321 and the wiring conductor 322 are formed on the surface of the insulating film 31 (surface opposite to the surface in contact with the N epitaxial layer 22).
 図7(C)に示すように、配線導体321と配線導体322は、平面視において略矩形であり、X方向に所定距離で離間している。 As shown in FIG. 7C, the wiring conductor 321 and the wiring conductor 322 are substantially rectangular in a plan view and are separated by a predetermined distance in the X direction.
 配線導体321は、平面視において、P+型ドーピング部241に重なっている。配線導体321は、絶縁膜31を貫通するビア導体を介して、P+型ドーピング部241に接続している。 The wiring conductor 321 overlaps the P + type doping part 241 in plan view. The wiring conductor 321 is connected to the P + type doping part 241 through a via conductor that penetrates the insulating film 31.
 配線導体322は、平面視において、P+型ドーピング部242に重なっている。配線導体322は、絶縁膜31を貫通するビア導体を介して、P+型ドーピング部242に接続している。 The wiring conductor 322 overlaps the P + type doping part 242 in plan view. The wiring conductor 322 is connected to the P + type doping part 242 through a via conductor that penetrates the insulating film 31.
 配線層40は、絶縁性樹脂41、ビア導体421、ビア導体422、配線導体431、配線導体432、メッキ層441、および、メッキ層442を備える。 The wiring layer 40 includes an insulating resin 41, a via conductor 421, a via conductor 422, a wiring conductor 431, a wiring conductor 432, a plating layer 441, and a plating layer 442.
 絶縁性樹脂41は、例えば、エポキシ樹脂等の加工性に優れた樹脂からなる。絶縁性樹脂41は、絶縁膜31の表面に形成されている。 The insulating resin 41 is made of a resin excellent in workability, such as an epoxy resin. The insulating resin 41 is formed on the surface of the insulating film 31.
 配線導体431および配線導体432は、例えば、Cu等の、高い導電率を有し、加工性に優れた金属からなる。絶縁性樹脂41における絶縁膜31との当接面と反対側の面(インピーダンス整合素子10の表面)の近傍に配置されている。 The wiring conductor 431 and the wiring conductor 432 are made of a metal having high conductivity and excellent workability, such as Cu. The insulating resin 41 is disposed in the vicinity of the surface opposite to the contact surface with the insulating film 31 (the surface of the impedance matching element 10).
 図7(B)に示すように、配線導体431および配線導体432は、平面視において略矩形であり、X方向に所定距離で離間している。 As shown in FIG. 7B, the wiring conductor 431 and the wiring conductor 432 are substantially rectangular in a plan view and are separated by a predetermined distance in the X direction.
 配線導体431は、平面視において、配線導体321に重なっている。配線導体431は、絶縁性樹脂41の厚み方向(Z方向)に延びるビア導体421を介して、配線導体321に接続している。 The wiring conductor 431 overlaps the wiring conductor 321 in plan view. The wiring conductor 431 is connected to the wiring conductor 321 via a via conductor 421 extending in the thickness direction (Z direction) of the insulating resin 41.
 配線導体432は、平面視において、配線導体322に重なっている。配線導体432は、絶縁性樹脂41の厚み方向(Z方向)に延びるビア導体422を介して、配線導体322に接続している。 The wiring conductor 432 overlaps the wiring conductor 322 in plan view. The wiring conductor 432 is connected to the wiring conductor 322 via a via conductor 422 extending in the thickness direction (Z direction) of the insulating resin 41.
 メッキ層441、および、メッキ層442は、例えば、Ni/Auメッキによって形成されている。 The plating layer 441 and the plating layer 442 are formed by, for example, Ni / Au plating.
 図5、図7(A)に示すように、メッキ層441は、配線導体431の一部に重なっており、開口451によって、インピーダンス整合素子10の表面に露出している。この露出部分が、本発明の「第1端子」に対応する。メッキ層442は、配線導体432の一部に重なっており、開口452によって、インピーダンス整合素子10の表面に露出している。この露出部分が、本発明の「第2端子」に対応する。この構成により、インピーダンス整合素子10の第1端子および第2端子は、半導体基板20上に形成される。 As shown in FIGS. 5 and 7A, the plating layer 441 overlaps a part of the wiring conductor 431 and is exposed to the surface of the impedance matching element 10 through the opening 451. This exposed portion corresponds to the “first terminal” of the present invention. The plated layer 442 overlaps a part of the wiring conductor 432 and is exposed to the surface of the impedance matching element 10 through the opening 452. This exposed portion corresponds to the “second terminal” of the present invention. With this configuration, the first terminal and the second terminal of the impedance matching element 10 are formed on the semiconductor substrate 20.
 そして、このような構成を用いることによって、上述の双方向にブレークダウン電圧を有する双方向ツェナーダイオードZD10を有するインピーダンス整合素子10を実現できる。さらに、インピーダンス整合素子10は、配線層40を備えることによって、第1端子と第2端子の配置の自由度を向上できる。 And by using such a configuration, the impedance matching element 10 having the bidirectional Zener diode ZD10 having the above-described bidirectional breakdown voltage can be realized. Furthermore, the impedance matching element 10 can improve the freedom degree of arrangement | positioning of a 1st terminal and a 2nd terminal by providing the wiring layer 40. FIG.
 次に、本発明の第2の実施形態に係るインピーダンス整合素子について、図を参照して説明する。図8(A)は、本発明の第2の実施形態に係るインピーダンス整合素子10Aの側面断面図であり、図8(B)は、本発明の第2の実施形態に係るインピーダンス整合素子10Aの各構成要素の位置関係を示す平面図である。図9(A)は、本発明の第2の実施形態に係るインピーダンス整合素子10Aの等価回路図であり、図9(B)は、本発明の第2の実施形態に係るインピーダンス整合素子10Aの信号伝送の第1態様の等価回路図であり、図9(C)は、本発明の第2の実施形態に係るインピーダンス整合素子10Aの信号伝送の第2態様の等価回路図である。 Next, an impedance matching element according to a second embodiment of the present invention will be described with reference to the drawings. FIG. 8A is a side sectional view of an impedance matching element 10A according to the second embodiment of the present invention, and FIG. 8B is a diagram of the impedance matching element 10A according to the second embodiment of the present invention. It is a top view which shows the positional relationship of each component. FIG. 9A is an equivalent circuit diagram of the impedance matching element 10A according to the second embodiment of the present invention, and FIG. 9B shows the impedance matching element 10A according to the second embodiment of the present invention. FIG. 9C is an equivalent circuit diagram of a first mode of signal transmission, and FIG. 9C is an equivalent circuit diagram of a second mode of signal transmission of the impedance matching element 10A according to the second embodiment of the present invention.
 図8(A)、図8(B)、図9(A)、図9(B)、図9(C)に示すように、第2の実施形態に係るインピーダンス整合素子10Aは、第1の実施形態に係るインピーダンス整合素子10と比較して、より多くのダイオードによって構成される点において異なる。インピーダンス整合素子10Aのその他の基本的な構成の概念は、インピーダンス整合素子10と同様であり、同様の箇所の説明は省略する。なお、図8(A)、図8(B)では、配線部の図示を省略しているが、インピーダンス整合素子10Aは、第1の実施形態に係るインピーダンス整合素子10と同様の配線部を備えていることが好ましい。 As shown in FIG. 8A, FIG. 8B, FIG. 9A, FIG. 9B, and FIG. 9C, the impedance matching element 10A according to the second embodiment includes the first Compared to the impedance matching element 10 according to the embodiment, it is different in that it is constituted by more diodes. The concept of the other basic configuration of the impedance matching element 10A is the same as that of the impedance matching element 10, and the description of the same part is omitted. 8A and 8B, the wiring portion is not shown, but the impedance matching element 10A includes a wiring portion similar to that of the impedance matching element 10 according to the first embodiment. It is preferable.
 図8(A)に示すように、インピーダンス整合素子10Aは、半導体基板20A、および、絶縁膜31を備える。 As shown in FIG. 8A, the impedance matching element 10A includes a semiconductor substrate 20A and an insulating film 31.
 半導体基板20Aは、Psub層27、Nエピ層22、N型ドーピング部23、P+型ドーピング部241A、P+型ドーピング部242A、N+型ドーピング部251A、および、N+型ドーピング部252Aを備える。半導体基板20Aは、既知の半導体形成プロセスによって形成されている。 The semiconductor substrate 20A includes a Psub layer 27, an N epi layer 22, an N type doping unit 23, a P + type doping unit 241A, a P + type doping unit 242A, an N + type doping unit 251A, and an N + type doping unit 252A. The semiconductor substrate 20A is formed by a known semiconductor formation process.
 Psub層27は、P型の半導体からなり、平板状である。Nエピ層22は、N型の半導体からなる。Nエピ層22は、Psub層27の一方主面上に形成されている。 The Psub layer 27 is made of a P-type semiconductor and has a flat plate shape. The N epi layer 22 is made of an N-type semiconductor. The N epi layer 22 is formed on one main surface of the Psub layer 27.
 N型ドーピング部23は、Nエピ層22内に埋め込まれて形成されている。N型ドーピング部23は、Psub層27に当接している。 The N-type doping portion 23 is formed by being embedded in the N epi layer 22. The N-type doping part 23 is in contact with the Psub layer 27.
 P+型ドーピング部241AおよびP+型ドーピング部242Aは、Nエピ層22の表面(Psub層27に当接する面と反対の面)側、すなわち、半導体基板20Aの第1主面側に形成されている。P+型ドーピング部241AとP+型ドーピング部242Aとは、X方向に所定距離で離間して配置されている。P+型ドーピング部241AおよびP+型ドーピング部242Aは、半導体基板20Aの平面視において(図8(A)のZ軸方向に視て)、N型ドーピング部23に重なっている。ただし、P+型ドーピング部241AおよびP+型ドーピング部242Aは、Z方向において、N型ドーピング部23から離間している。 The P + type doping portion 241A and the P + type doping portion 242A are formed on the surface of the N epi layer 22 (the surface opposite to the surface in contact with the Psub layer 27), that is, on the first main surface side of the semiconductor substrate 20A. . The P + type doping part 241A and the P + type doping part 242A are arranged at a predetermined distance in the X direction. The P + type doping part 241A and the P + type doping part 242A overlap the N type doping part 23 in a plan view of the semiconductor substrate 20A (as viewed in the Z-axis direction in FIG. 8A). However, the P + type doping part 241A and the P + type doping part 242A are separated from the N type doping part 23 in the Z direction.
 N+型ドーピング部251AおよびN+型ドーピング部252Aは、Nエピ層22の表面(Psub層27に当接する面と反対の面)側、すなわち、半導体基板20Aの第1主面側に形成されている。N+型ドーピング部251AとN+型ドーピング部252Aとは、X方向において、P+型ドーピング部241AおよびP+型ドーピング部242Aを挟む位置に配置されている。この際、N+型ドーピング部251AとP+型ドーピング部241Aとは、隣り合い、N+型ドーピング部252AとP+型ドーピング部242Aとは、隣り合う。N+型ドーピング部251AおよびN+型ドーピング部252Aは、半導体基板20Aの平面視において、N型ドーピング部23に重なっていない。 The N + type doping portion 251A and the N + type doping portion 252A are formed on the surface of the N epi layer 22 (the surface opposite to the surface in contact with the Psub layer 27), that is, on the first main surface side of the semiconductor substrate 20A. . The N + type doping part 251A and the N + type doping part 252A are arranged in a position sandwiching the P + type doping part 241A and the P + type doping part 242A in the X direction. At this time, the N + type doping unit 251A and the P + type doping unit 241A are adjacent to each other, and the N + type doping unit 252A and the P + type doping unit 242A are adjacent to each other. The N + type doping part 251A and the N + type doping part 252A do not overlap the N type doping part 23 in a plan view of the semiconductor substrate 20A.
 図8(B)に示すように、トレンチ261は、絶縁性材料からなり、半導体基板20Aを平面視して、N+型ドーピング部251Aを囲む枠状である。図8(A)に示すように、トレンチ261は、半導体基板20Aの表面から所定の深さを有し、その深さ方向の先端は、Psub層27の内部まで達している。 As shown in FIG. 8B, the trench 261 is made of an insulating material and has a frame shape surrounding the N + type doping portion 251A in plan view of the semiconductor substrate 20A. As shown in FIG. 8A, the trench 261 has a predetermined depth from the surface of the semiconductor substrate 20 </ b> A, and the tip in the depth direction reaches the inside of the Psub layer 27.
 図8(B)に示すように、トレンチ262は、絶縁性材料からなり、半導体基板20Aを平面視して、N+型ドーピング部252Aを囲む枠状である。図8(A)に示すように、トレンチ262は、半導体基板20Aの表面から所定の深さを有し、その深さ方向の先端は、Psub層27の内部まで達している。 As shown in FIG. 8B, the trench 262 is made of an insulating material and has a frame shape surrounding the N + -type doping portion 252A in plan view of the semiconductor substrate 20A. As shown in FIG. 8A, the trench 262 has a predetermined depth from the surface of the semiconductor substrate 20 </ b> A, and the tip in the depth direction reaches the inside of the Psub layer 27.
 図8(B)に示すように、トレンチ263は、絶縁性材料からなり、半導体基板20Aを平面視して、N型ドーピング部23、P+型ドーピング部241A、および、P+型ドーピング部242Aを囲んでいる。図8(A)に示すように、トレンチ263は、半導体基板20Aの表面から所定の深さを有し、その深さ方向の先端は、Psub層27の内部まで達している。 As shown in FIG. 8B, the trench 263 is made of an insulating material and surrounds the N-type doping portion 23, the P + -type doping portion 241A, and the P + -type doping portion 242A in plan view of the semiconductor substrate 20A. It is out. As shown in FIG. 8A, the trench 263 has a predetermined depth from the surface of the semiconductor substrate 20A, and the tip in the depth direction reaches the inside of the Psub layer 27.
 絶縁膜31は、SiO、SiN等からなる。Nエピ層22の表面に形成されている。 The insulating film 31 is made of SiO 2 , SiN or the like. It is formed on the surface of the N epi layer 22.
 配線導体321Aおよび配線導体322Aは、例えば、Al等の、高い導電率を有する金属からなる。配線導体321Aおよび配線導体322Aは、絶縁膜31の表面(Nエピ層22に当接する面と反対側の面)に形成されている。配線導体321Aは、第1端子P11に接続しており、配線導体322Aは、第2端子P12に接続している。 The wiring conductor 321A and the wiring conductor 322A are made of a metal having high conductivity, such as Al. The wiring conductor 321 </ b> A and the wiring conductor 322 </ b> A are formed on the surface of the insulating film 31 (surface opposite to the surface in contact with the N epitaxial layer 22). The wiring conductor 321A is connected to the first terminal P11, and the wiring conductor 322A is connected to the second terminal P12.
 配線導体321Aは、平面視において、P+型ドーピング部241AおよびN+型ドーピング部251Aに重なっている。配線導体321Aは、絶縁膜31を貫通するビア導体を介して、P+型ドーピング部241AおよびN+型ドーピング部251Aに接続している。 The wiring conductor 321A overlaps the P + type doping part 241A and the N + type doping part 251A in plan view. The wiring conductor 321A is connected to the P + type doping part 241A and the N + type doping part 251A via via conductors that penetrate the insulating film 31.
 配線導体322Aは、平面視において、P+型ドーピング部242AおよびN+型ドーピング部252Aに重なっている。配線導体322Aは、絶縁膜31を貫通するビア導体を介して、P+型ドーピング部242AおよびN+型ドーピング部252Aに接続している。 The wiring conductor 322A overlaps the P + type doping part 242A and the N + type doping part 252A in plan view. The wiring conductor 322A is connected to the P + type doping part 242A and the N + type doping part 252A through a via conductor penetrating the insulating film 31.
 このような構成では、Psub層27とN型ドーピング部23との接続部によって、定常状態において、Psub層27からN型ドーピング部23に電流が流れるツェナーダイオードZD11(図9参照)が形成される。すなわち、本発明のおける、双方向ブレークダウン電圧を有するPN接合の構造が実現される。 In such a configuration, a Zener diode ZD11 (see FIG. 9) in which a current flows from the Psub layer 27 to the N-type doping portion 23 in a steady state is formed by the connection portion between the Psub layer 27 and the N-type doping portion 23. . That is, the structure of the PN junction having the bidirectional breakdown voltage in the present invention is realized.
 P+型ドーピング部241AとNエピ層22との接続部によって、定常状態において、P+型ドーピング部241AからNエピ層22に電流が流れるダイオードD31(図9参照)が形成される。 A diode D31 (see FIG. 9) in which a current flows from the P + type doping part 241A to the N epilayer 22 in a steady state is formed by the connection part between the P + type doping part 241A and the N epilayer 22.
 P+型ドーピング部242AとNエピ層22との接続部によって、定常状態において、P+型ドーピング部242AからNエピ層22に電流が流れるダイオードD32(図9参照)が形成される。 A diode D32 (see FIG. 9) in which a current flows from the P + type doping part 242A to the N epilayer 22 in a steady state is formed by the connection part between the P + type doping part 242A and the N epilayer 22.
 半導体基板20Aの平面視においてN+型ドーピング部251Aと重なり、Nエピ層22とPsub層27との接続部におけるトレンチ261に囲まれる部分(図8(B)参照)によって、定常状態において、Psub層27からNエピ層22に電流が流れるダイオードD21(図9参照)が形成される。 In a steady state, the Psub layer is overlapped with the N + type doping portion 251A in a plan view of the semiconductor substrate 20A and surrounded by the trench 261 in the connection portion between the N epi layer 22 and the Psub layer 27 (see FIG. 8B). A diode D21 (see FIG. 9) in which current flows from 27 to the N-epi layer 22 is formed.
 半導体基板20Aの平面視においてN+型ドーピング部252Aと重なり、Nエピ層22とPsub層27との接続部におけるトレンチ262に囲まれる部分(図8(B)参照)によって、定常状態において、Psub層27からNエピ層22に電流が流れるダイオードD22が形成される。 In a steady state, the Psub layer is overlapped by the portion (see FIG. 8B) that overlaps with the N + type doping portion 252A in a plan view of the semiconductor substrate 20A and is surrounded by the trench 262 in the connection portion between the N epi layer 22 and the Psub layer 27 A diode D <b> 22 in which current flows from 27 to the N epilayer 22 is formed.
 そして、このような構造によって、図9(A)に示すような回路が実現される。第1端子P11には、ダイオードD31のアノードが接続され、ダイオードD31のカソードには、ダイオードD32のカソードが接続され、ダイオードD32のアノードには、第2端子P12が接続される。また、第1端子P11には、ダイオードD21のカソードが接続され、ダイオードD21のアノードには、ダイオードD22のアノードが接続され、ダイオードD22のカソードには、第2端子P12が接続される。さらに、ダイオードD31のカソードとダイオードD32のカソードとには、ツェナーダイオードZD11のカソードが接続される。ダイオードD21のアノードとダイオードD22のアノードとには、ツェナーダイオードZD11のアノードが接続される。 And such a structure realizes a circuit as shown in FIG. The anode of the diode D31 is connected to the first terminal P11, the cathode of the diode D32 is connected to the cathode of the diode D31, and the second terminal P12 is connected to the anode of the diode D32. The cathode of the diode D21 is connected to the first terminal P11, the anode of the diode D22 is connected to the anode of the diode D21, and the second terminal P12 is connected to the cathode of the diode D22. Further, the cathode of the Zener diode ZD11 is connected to the cathode of the diode D31 and the cathode of the diode D32. The anode of the Zener diode ZD11 is connected to the anode of the diode D21 and the anode of the diode D22.
 そして、この構成では、図9(B)に示す信号伝送の第1態様と、図9(C)に示す信号伝送の第2態様とが実現される。 In this configuration, the first mode of signal transmission shown in FIG. 9B and the second mode of signal transmission shown in FIG. 9C are realized.
 図9(B)に示す態様では、第1端子P11から第2端子P12に向けて、ダイオードD31、ツェナーダイオードZD11、および、ダイオードD22が、この順で接続される信号伝送経路が構成される。この際、ツェナーダイオードZD11のアノードは、第2端子P12側となり、ツェナーダイオードZD11のカソードは、第1端子P11側となる。この場合、ツェナーダイオードZD11を形成するPN接合の部分は、定常状態で第2端子P12から第1端子P11に電流を流すので、第2領域に対応する。 9B, a signal transmission path is formed in which the diode D31, the Zener diode ZD11, and the diode D22 are connected in this order from the first terminal P11 to the second terminal P12. At this time, the anode of the Zener diode ZD11 is on the second terminal P12 side, and the cathode of the Zener diode ZD11 is on the first terminal P11 side. In this case, the portion of the PN junction that forms the Zener diode ZD11 corresponds to the second region because current flows from the second terminal P12 to the first terminal P11 in a steady state.
 図9(C)に示す態様では、第1端子P11から第2端子P12に向けて、ダイオードD21、ツェナーダイオードZD11、および、ダイオードD32が、この順で接続される信号伝送経路が構成される。この際、ツェナーダイオードZD11のアノードは、第1端子P11側となり、ツェナーダイオードZD11のカソードは、第2端子P12側となる。この場合、ツェナーダイオードZD11を形成するPN接合の部分は、定常状態で第1端子P11から第2端子P12に電流を流すので、第1領域に対応する。 9C, a signal transmission path is configured in which the diode D21, the Zener diode ZD11, and the diode D32 are connected in this order from the first terminal P11 to the second terminal P12. At this time, the anode of the Zener diode ZD11 is on the first terminal P11 side, and the cathode of the Zener diode ZD11 is on the second terminal P12 side. In this case, the portion of the PN junction that forms the Zener diode ZD11 corresponds to the first region because current flows from the first terminal P11 to the second terminal P12 in a steady state.
 このような構成により、インピーダンス整合素子10Aは、第1端子P11と第2端子P12との間に、双方向にブレークダウン電圧を有する回路構成を実現できる。これにより、インピーダンス整合素子10Aは、第1の実施形態に係るインピーダンス整合素子10と同様の作用効果を奏することができる。 With such a configuration, the impedance matching element 10A can realize a circuit configuration having a breakdown voltage bidirectionally between the first terminal P11 and the second terminal P12. Thereby, the impedance matching element 10A can have the same effects as the impedance matching element 10 according to the first embodiment.
 次に、本発明の第3の実施形態に係るインピーダンス整合素子について、図を参照して説明する。図10(A)は、本発明の第3の実施形態に係るインピーダンス整合素子10Bの側面断面図であり、図10(B)は、本発明の第3の実施形態に係るインピーダンス整合素子10Bの等価回路図である。 Next, an impedance matching element according to a third embodiment of the present invention will be described with reference to the drawings. FIG. 10A is a side cross-sectional view of the impedance matching element 10B according to the third embodiment of the present invention, and FIG. 10B shows the impedance matching element 10B according to the third embodiment of the present invention. It is an equivalent circuit diagram.
 図10(A)、図10(B)に示すように、第3の実施形態に係るインピーダンス整合素子10Bは、第1の実施形態に係るインピーダンス整合素子10と比較して、n型MOS-FETによって、双方向ブレークダウン電圧を有する回路構成を実現する点で異なる。インピーダンス整合素子10Bのその他の基本的な構成の概念は、インピーダンス整合素子10と同様であり、同様の箇所の説明は省略する。なお、図10(A)では、配線部の図示を省略しているが、インピーダンス整合素子10Bは、第1の実施形態に係るインピーダンス整合素子10と同様の配線部を備えていることが好ましい。 As shown in FIGS. 10A and 10B, the impedance matching element 10B according to the third embodiment is more n-type MOS-FET than the impedance matching element 10 according to the first embodiment. Is different in that a circuit configuration having a bidirectional breakdown voltage is realized. The concept of the other basic configuration of the impedance matching element 10B is the same as that of the impedance matching element 10, and the description of the same part is omitted. In FIG. 10A, the wiring portion is not shown, but the impedance matching element 10B preferably includes a wiring portion similar to the impedance matching element 10 according to the first embodiment.
 図10(A)に示すように、インピーダンス整合素子10Bは、半導体基板20B、および、絶縁膜31を備える。 As shown in FIG. 10A, the impedance matching element 10B includes a semiconductor substrate 20B and an insulating film 31.
 半導体基板20Bは、Psub層27、Pウェル層28、P+型ドーピング部24B、N+型ドーピング部251B、および、N+型ドーピング部252Bを備える。半導体基板20Bは、既知の半導体形成プロセスによって形成されている。 The semiconductor substrate 20B includes a Psub layer 27, a P well layer 28, a P + type doping unit 24B, an N + type doping unit 251B, and an N + type doping unit 252B. The semiconductor substrate 20B is formed by a known semiconductor formation process.
 Psub層27は、P型の半導体からなり、平板状である。Pウェル層28は、P型の半導体からなる。Pウェル層28は、Psub層27の一方主面上に形成されている。 The Psub layer 27 is made of a P-type semiconductor and has a flat plate shape. The P well layer 28 is made of a P-type semiconductor. The P well layer 28 is formed on one main surface of the Psub layer 27.
 P+型ドーピング部24Bは、Pウェル層28の表面(Psub層27に当接する面と反対の面)側、すなわち、半導体基板20Bの第1主面側に形成されている。 The P + type doping portion 24B is formed on the surface of the P well layer 28 (the surface opposite to the surface in contact with the Psub layer 27), that is, on the first main surface side of the semiconductor substrate 20B.
 N+型ドーピング部251BおよびN+型ドーピング部252Bは、Pウェル層28の表面(Psub層27に当接する面と反対の面)側、すなわち、半導体基板20Bの第1主面側に形成されている。N+型ドーピング部251BとN+型ドーピング部252Bとは、X方向において離間して配置されている。さらに、N+型ドーピング部251BとN+型ドーピング部252Bとは、X方向において、P+型ドーピング部24Bから離間して配置されている。この際、P+型ドーピング部24Bは、X方向において、N+型ドーピング部251BとN+型ドーピング部252Bとの間に配置されていない。 The N + type doping portion 251B and the N + type doping portion 252B are formed on the surface of the P well layer 28 (the surface opposite to the surface in contact with the Psub layer 27), that is, on the first main surface side of the semiconductor substrate 20B. . The N + type doping part 251B and the N + type doping part 252B are arranged apart from each other in the X direction. Further, the N + -type doping unit 251B and the N + -type doping unit 252B are arranged apart from the P + -type doping unit 24B in the X direction. At this time, the P + type doping part 24B is not disposed between the N + type doping part 251B and the N + type doping part 252B in the X direction.
 絶縁膜31は、SiO、SiN等からなる。Pウェル層28の表面に形成されている。 The insulating film 31 is made of SiO 2 , SiN or the like. It is formed on the surface of the P well layer 28.
 配線導体321B、配線導体322B、配線導体323B、および配線導体324Bは、例えば、Al等の、高い導電率を有する金属からなる。配線導体321B、配線導体322B、配線導体323B、および配線導体324Bは、絶縁膜31の表面(Pウェル層28に当接する面と反対側の面)に形成されている。配線導体321Bは、第1端子P11に接続しており、配線導体322Bは、第2端子P12に接続している。 The wiring conductor 321B, the wiring conductor 322B, the wiring conductor 323B, and the wiring conductor 324B are made of a metal having high conductivity, such as Al. The wiring conductor 321B, the wiring conductor 322B, the wiring conductor 323B, and the wiring conductor 324B are formed on the surface of the insulating film 31 (the surface opposite to the surface in contact with the P well layer 28). The wiring conductor 321B is connected to the first terminal P11, and the wiring conductor 322B is connected to the second terminal P12.
 配線導体321Bは、平面視において、N+型ドーピング部251Bに重なっている。配線導体321Bは、絶縁膜31を貫通するビア導体を介して、N+型ドーピング部251Bに接続している。 The wiring conductor 321B overlaps the N + type doping part 251B in plan view. The wiring conductor 321B is connected to the N + type doping portion 251B through a via conductor that penetrates the insulating film 31.
 配線導体322Bは、平面視において、N+型ドーピング部252Bに重なっている。配線導体322Bは、絶縁膜31を貫通するビア導体を介して、N+型ドーピング部252Bに接続している。 The wiring conductor 322B overlaps the N + type doping portion 252B in plan view. The wiring conductor 322B is connected to the N + type doping portion 252B through a via conductor that penetrates the insulating film 31.
 配線導体323Bは、平面視において、P+型ドーピング部24Bに重なっている。配線導体323Bは、絶縁膜31を貫通するビア導体を介して、P+型ドーピング部24Bに接続している。配線導体324Bは、配線導体323Bに接続している。 The wiring conductor 323B overlaps with the P + type doping portion 24B in plan view. The wiring conductor 323B is connected to the P + type doping part 24B through a via conductor that penetrates the insulating film 31. The wiring conductor 324B is connected to the wiring conductor 323B.
 この構成により、インピーダンス整合素子10Bは、図10(B)に示すように、第1端子P11および第2端子P12がドレインおよびソースに接続するn型MOS-FETによって実現される。 With this configuration, the impedance matching element 10B is realized by an n-type MOS-FET in which the first terminal P11 and the second terminal P12 are connected to the drain and source, as shown in FIG.
 そして、このような構成では、Pウェル層28とN+型ドーピング部251Bとの接合部によって、第2領域を形成するPN接合の構造が実現される。 And in such a structure, the structure of the PN junction which forms the 2nd field is realized by the junction of P well layer 28 and N + type doping part 251B.
 また、Pウェル層28とN+型ドーピング部252Bとの接合部によって、第1領域を形成するPN接合の構造が実現される。 Also, the structure of the PN junction forming the first region is realized by the junction between the P well layer 28 and the N + type doping portion 252B.
 このような構成により、インピーダンス整合素子10Bは、第1端子P11と第2端子P12との間に、双方向にブレークダウン電圧を有する回路構成を実現できる。これにより、インピーダンス整合素子10Bは、第1の実施形態に係るインピーダンス整合素子10と同様の作用効果を奏することができる。 With such a configuration, the impedance matching element 10B can realize a circuit configuration having a breakdown voltage in both directions between the first terminal P11 and the second terminal P12. Thereby, the impedance matching element 10B can have the same effect as the impedance matching element 10 according to the first embodiment.
 なお、上述した実施形態では、Psub層27、Pウェル層28、P+型ドーピング部24B、N+型ドーピング部251B、および、N+型ドーピング部252Bを備えるn+型MOS-FETを用いた例について説明したが、これに限定されるものではなく、種々のMOS-FETを用いることができる。n+型MOS-FETに代えて、p+型MOS-FETを用いてもよい。 In the above-described embodiment, an example using an n + type MOS-FET including the Psub layer 27, the P well layer 28, the P + type doping unit 24B, the N + type doping unit 251B, and the N + type doping unit 252B has been described. However, the present invention is not limited to this, and various MOS-FETs can be used. A p + type MOS-FET may be used instead of the n + type MOS-FET.
 次に、本発明の第4の実施形態に係るインピーダンス整合素子について、図を参照して説明する。図11(A)は、本発明の第4の実施形態に係るインピーダンス整合素子10Cの側面断面図であり、図11(B)は、本発明の第4の実施形態に係るインピーダンス整合素子10Cの等価回路図である。 Next, an impedance matching element according to a fourth embodiment of the present invention will be described with reference to the drawings. FIG. 11A is a side cross-sectional view of an impedance matching element 10C according to the fourth embodiment of the present invention, and FIG. 11B shows an impedance matching element 10C according to the fourth embodiment of the present invention. It is an equivalent circuit diagram.
 図11(A)、図11(B)に示すように、第4の実施形態に係るインピーダンス整合素子10Cは、第1の実施形態に係るインピーダンス整合素子10と比較して、PNP型トランジスタによって、双方向ブレークダウン電圧を有する回路構成を実現する点で異なる。インピーダンス整合素子10Cのその他の基本的な構成の概念は、インピーダンス整合素子10と同様であり、同様の箇所の説明は省略する。なお、図11(A)では、配線部の図示を省略しているが、インピーダンス整合素子10Cは、第1の実施形態に係るインピーダンス整合素子10と同様の配線部を備えていることが好ましい。 As shown in FIGS. 11A and 11B, the impedance matching element 10C according to the fourth embodiment is compared with the impedance matching element 10 according to the first embodiment by a PNP transistor. The difference is that a circuit configuration having a bidirectional breakdown voltage is realized. The concept of the other basic configuration of the impedance matching element 10C is the same as that of the impedance matching element 10, and the description of the same part is omitted. In FIG. 11A, the wiring portion is not shown, but the impedance matching element 10C preferably includes a wiring portion similar to the impedance matching element 10 according to the first embodiment.
 図11(A)に示すように、インピーダンス整合素子10Cは、半導体基板20C、および、絶縁膜31を備える。 As shown in FIG. 11A, the impedance matching element 10C includes a semiconductor substrate 20C and an insulating film 31.
 半導体基板20Cは、Psub層27、Nウェル層29、Pウェル層281C、Pウェル層282C、P+型ドーピング部241C、P+型ドーピング部242C、N+型ドーピング部251C、および、N+型ドーピング部252Cを備える。半導体基板20Cは、既知の半導体形成プロセスによって形成されている。 The semiconductor substrate 20C includes a Psub layer 27, an N well layer 29, a P well layer 281C, a P well layer 282C, a P + type doping unit 241C, a P + type doping unit 242C, an N + type doping unit 251C, and an N + type doping unit 252C. Prepare. The semiconductor substrate 20C is formed by a known semiconductor formation process.
 Psub層27は、P型の半導体からなり、平板状である。Nウェル層29は、N型の半導体からなる。Nウェル層29は、Psub層27の一方主面上に形成されている。 The Psub layer 27 is made of a P-type semiconductor and has a flat plate shape. The N well layer 29 is made of an N type semiconductor. N well layer 29 is formed on one main surface of Psub layer 27.
 Pウェル層281CおよびPウェル層282Cは、Nウェル層29の表面(Psub層27に当接する面と反対の面)側、すなわち、半導体基板20Cの第1主面側に形成されている。 The P well layer 281C and the P well layer 282C are formed on the surface of the N well layer 29 (the surface opposite to the surface in contact with the Psub layer 27), that is, on the first main surface side of the semiconductor substrate 20C.
 P+型ドーピング部241Cは、Pウェル層281Cの表面側、すなわち、半導体基板20Cの第1主面側に形成されている。P+型ドーピング部242Cは、Pウェル層282Cの表面側、すなわち、半導体基板20Cの第1主面側に形成されている。 The P + type doping part 241C is formed on the surface side of the P well layer 281C, that is, on the first main surface side of the semiconductor substrate 20C. The P + type doping portion 242C is formed on the surface side of the P well layer 282C, that is, on the first main surface side of the semiconductor substrate 20C.
 N+型ドーピング部251CおよびN+型ドーピング部252Cは、Nウェル層29の表面(Psub層27に当接する面と反対の面)側、すなわち、半導体基板20Cの第1主面側に形成されている。N+型ドーピング部251BとN+型ドーピング部252Bとは、X方向において、Pウェル層281CおよびPウェル層282Cを挟んで、離間して配置されている。 N + type doping portion 251C and N + type doping portion 252C are formed on the surface of N well layer 29 (the surface opposite to the surface in contact with Psub layer 27), that is, on the first main surface side of semiconductor substrate 20C. . The N + type doping unit 251B and the N + type doping unit 252B are arranged apart from each other with the P well layer 281C and the P well layer 282C interposed therebetween in the X direction.
 絶縁膜31は、SiO、SiN等からなる。Nウェル層29の表面に形成されている。 The insulating film 31 is made of SiO 2 , SiN or the like. It is formed on the surface of N well layer 29.
 配線導体321C、配線導体322C、配線導体323C、および配線導体324Cは、例えば、Al等の、高い導電率を有する金属からなる。配線導体321C、配線導体322C、配線導体323C、および配線導体324Cは、絶縁膜31の表面(Nウェル層29に当接する面と反対側の面)に形成されている。配線導体321Cは、第1端子P11に接続しており、配線導体322Cは、第2端子P12に接続している。 The wiring conductor 321C, the wiring conductor 322C, the wiring conductor 323C, and the wiring conductor 324C are made of a metal having high conductivity, such as Al. The wiring conductor 321C, the wiring conductor 322C, the wiring conductor 323C, and the wiring conductor 324C are formed on the surface of the insulating film 31 (the surface opposite to the surface in contact with the N well layer 29). The wiring conductor 321C is connected to the first terminal P11, and the wiring conductor 322C is connected to the second terminal P12.
 配線導体321Cは、平面視において、P+型ドーピング部241Cに重なっている。配線導体321Cは、絶縁膜31を貫通するビア導体を介して、P+型ドーピング部241Cに接続している。 The wiring conductor 321C overlaps with the P + type doping portion 241C in plan view. The wiring conductor 321C is connected to the P + type doping portion 241C through a via conductor that penetrates the insulating film 31.
 配線導体322Cは、平面視において、P+型ドーピング部242Cに重なっている。配線導体322Cは、絶縁膜31を貫通するビア導体を介して、P+型ドーピング部242Cに接続している。 The wiring conductor 322C overlaps with the P + type doping portion 242C in plan view. The wiring conductor 322C is connected to the P + type doping portion 242C through a via conductor that penetrates the insulating film 31.
 配線導体323Cおよび配線導体324Cは、平面視において、N+型ドーピング部251CおよびN+型ドーピング部252Cに、それぞれ重なっている。配線導体323Cは、絶縁膜31を貫通するビア導体を介して、N+型ドーピング部251Cに接続しており、配線導体324Cは、絶縁膜31を貫通するビア導体を介して、N+型ドーピング部252Cに接続している。配線導体323Cと配線導体324Cとは、接続されている。 The wiring conductor 323C and the wiring conductor 324C overlap with the N + type doping part 251C and the N + type doping part 252C, respectively, in plan view. The wiring conductor 323C is connected to the N + type doping portion 251C via a via conductor that penetrates the insulating film 31, and the wiring conductor 324C is connected to the N + type doping portion 252C via a via conductor that penetrates the insulating film 31. Connected to. The wiring conductor 323C and the wiring conductor 324C are connected.
 この構成により、インピーダンス整合素子10Cは、図11(B)に示すように、第1端子P11および第2端子P12がエミッタおよびコレクタに接続するPNP型トランジスタによって実現される。 With this configuration, the impedance matching element 10C is realized by a PNP transistor in which the first terminal P11 and the second terminal P12 are connected to the emitter and collector, as shown in FIG. 11B.
 そして、このような構成では、Pウェル層281CとNウェル層29との接合部によって、第1領域を形成するPN接合の構成が実現される。 And in such a structure, the structure of the PN junction which forms a 1st area | region is implement | achieved by the junction part of P well layer 281C and the N well layer 29. FIG.
 また、Pウェル層282CとNウェル層29との接合部によって、第2領域を形成するPN接合の構成が実現される。 Further, the structure of the PN junction forming the second region is realized by the junction between the P well layer 282C and the N well layer 29.
 このような構成により、インピーダンス整合素子10Cは、第1端子P11と第2端子P12との間に、双方向にブレークダウン電圧を有する回路構成を実現できる。これにより、インピーダンス整合素子10Cは、第1の実施形態に係るインピーダンス整合素子10と同様の作用効果を奏することができる。 With such a configuration, the impedance matching element 10C can realize a circuit configuration having a breakdown voltage bidirectionally between the first terminal P11 and the second terminal P12. Thereby, the impedance matching element 10 </ b> C can achieve the same operational effects as the impedance matching element 10 according to the first embodiment.
 (高周波回路の具体例)
 なお、上述説明では、高周波回路について具体的な構成を示していないが、各実施形態の高周波回路は、例えば、次に示すような回路構成によって実現が可能である。
(Specific examples of high-frequency circuits)
In the above description, the specific configuration of the high-frequency circuit is not shown, but the high-frequency circuit of each embodiment can be realized by the following circuit configuration, for example.
 高周波回路92は、例えば、図12(A)、図12(B)に示す回路構成によって実現される。図12(A)、図12(B)は、高周波回路92の構成例を示す機能ブロック図である。 The high frequency circuit 92 is realized, for example, by the circuit configuration shown in FIGS. 12 (A) and 12 (B). FIGS. 12A and 12B are functional block diagrams illustrating a configuration example of the high-frequency circuit 92.
 なお、図12(A)、図12(B)は、高周波回路92の簡単な構成例を示すものであり、高周波回路92には、一般的に、高周波フロントエンド回路と称する回路を用いることができる。 12A and 12B show a simple configuration example of the high-frequency circuit 92. The high-frequency circuit 92 generally uses a circuit called a high-frequency front-end circuit. it can.
 図12(A)に示す構成例では、高周波回路92は、スイッチ回路(SW回路)921、送信回路(TX回路)922、および、受信回路(RX回路)923を備える。スイッチ回路921は、本発明のインピーダンス整合素子を介して、アンテナ91に接続している。また、スイッチ回路921は、送信回路922および受信回路923に接続している。スイッチ回路921は、高周波信号の送信時には、送信回路922をアンテナ91に接続し、高周波信号の受信時には、受信回路923をアンテナ91に接続する。この回路において、スイッチ回路921が、本発明の分波回路の一種に相当する。 In the configuration example shown in FIG. 12A, the high-frequency circuit 92 includes a switch circuit (SW circuit) 921, a transmission circuit (TX circuit) 922, and a reception circuit (RX circuit) 923. The switch circuit 921 is connected to the antenna 91 via the impedance matching element of the present invention. The switch circuit 921 is connected to the transmission circuit 922 and the reception circuit 923. The switch circuit 921 connects the transmission circuit 922 to the antenna 91 when transmitting a high-frequency signal, and connects the reception circuit 923 to the antenna 91 when receiving a high-frequency signal. In this circuit, the switch circuit 921 corresponds to a kind of branching circuit of the present invention.
 図12(B)に示す構成例では、高周波回路92は、デュプレクサ(DPX)924、パワーアンプ(PA)925、ローノイズアンプ(LNA)926を備える。デュプレクサ924は、本発明のインピーダンス整合素子を介して、アンテナ91に接続している。また、デュプレクサ924は、パワーアンプ925、および、ローノイズアンプ926に接続している。この回路において、デュプレクサ924が、本発明の分波回路の一種に相当する。パワーアンプ925は、本発明の送信回路に含まれ、ローノイズアンプ926は、本発明の受信回路に含まれている。 In the configuration example shown in FIG. 12B, the high-frequency circuit 92 includes a duplexer (DPX) 924, a power amplifier (PA) 925, and a low noise amplifier (LNA) 926. The duplexer 924 is connected to the antenna 91 via the impedance matching element of the present invention. The duplexer 924 is connected to the power amplifier 925 and the low noise amplifier 926. In this circuit, the duplexer 924 corresponds to a kind of branching circuit of the present invention. The power amplifier 925 is included in the transmission circuit of the present invention, and the low noise amplifier 926 is included in the reception circuit of the present invention.
 送信信号は、パワーアンプ925で増幅され、デュプレクサ924を介して、アンテナ91に出力される。アンテナ91から受信信号は、デュプレクサ924を介して、ローノイズアンプ926に出力され、ローノイズアンプ926で増幅される。 The transmission signal is amplified by the power amplifier 925 and output to the antenna 91 via the duplexer 924. A reception signal from the antenna 91 is output to the low noise amplifier 926 via the duplexer 924 and amplified by the low noise amplifier 926.
 なお、上述の各実施形態の説明は、すべての点で例示であって、制限的なものではない。当業者にとって変形及び変更が適宜可能である。 Note that the description of each embodiment described above is an example in all respects and is not restrictive. Modifications and changes can be appropriately made by those skilled in the art.
1:通信装置
10、10A、10B、10C:インピーダンス整合素子
20、20A、20B、20C:半導体基板
21:Nsub層
22:エピ層
23:N型ドーピング部
24B:P+型ドーピング部
27:Psub層
28:Pウェル層
29:Nウェル層
31:絶縁膜
40:配線層
41:絶縁性樹脂
91:アンテナ
92:高周波回路
231、232:N型ドーピング部
241、241A、241C、242、242A、242C:P+型ドーピング部
251A、251B、251C、252A、252B、252C:N+型ドーピング部
261、262、263:トレンチ
281C、282C:Pウェル層
321、321A、321B、321C、322、322A、322B、322C、323B、323C、324B、324C:配線導体
421、422:ビア導体
431、432:配線導体
441、442:メッキ層
451:開口
921:スイッチ回路
922:送信回路
923:受信回路
924:デュプレクサ
925:パワーアンプ
926:ローノイズアンプ
P11:第1端子
P12:第2端子
ZD10:双方向ツェナーダイオード
ZD11:ツェナーダイオード
D21、D22、D31、D32:ダイオード
1: Communication devices 10, 10A, 10B, 10C: Impedance matching elements 20, 20A, 20B, 20C: Semiconductor substrate 21: Nsub layer 22: Epi layer 23: N-type doping unit 24B: P + type doping unit 27: Psub layer 28 : P well layer 29: N well layer 31: Insulating film 40: Wiring layer 41: Insulating resin 91: Antenna 92: High frequency circuits 231 and 232: N- type doping parts 241, 241 A, 241 C, 242 242 A, 242 C: P + Type doping part 251A, 251B, 251C, 252A, 252B, 252C: N + type doping part 261, 262, 263: Trench 281C, 282C: P well layer 321, 321A, 321B, 321C, 322, 322A, 322B, 322C, 323B 323C, 324B, 324C: Wiring conductor 421, 422: Via conductors 431, 432: Wiring conductors 441, 442: Plating layer 451: Opening 921: Switch circuit 922: Transmission circuit 923: Reception circuit 924: Duplexer 925: Power amplifier 926: Low noise amplifier P11: First terminal P12 : Second terminal ZD10: bidirectional Zener diode ZD11: Zener diodes D21, D22, D31, D32: diodes

Claims (9)

  1.  半導体基板と、
     前記半導体基板上に形成され、アンテナに接続する第1端子と、
     前記半導体基板上に形成され、高周波回路に接続する第2端子と、を備え、
     前記半導体基板は、
     第1のPN接合を備え、定常状態において前記第1端子から前記第2端子に電流を流す整流作用を有する第1領域と、
     第2のPN接合を備え、定常状態において前記第2端子から前記第1端子に電流を流す整流作用を有する第2領域と、を有し、
     前記第1領域と前記第2領域とは、前記第1端子と前記第2端子との間に接続され、双方向にブレークダウン電圧を有する、
     インピーダンス整合素子。
    A semiconductor substrate;
    A first terminal formed on the semiconductor substrate and connected to the antenna;
    A second terminal formed on the semiconductor substrate and connected to a high-frequency circuit,
    The semiconductor substrate is
    A first region having a first PN junction and having a rectifying action for flowing current from the first terminal to the second terminal in a steady state;
    A second region having a second PN junction and having a rectifying action for flowing current from the second terminal to the first terminal in a steady state;
    The first region and the second region are connected between the first terminal and the second terminal and have a breakdown voltage in both directions.
    Impedance matching element.
  2.  前記半導体基板は、第1主面を備え、
     前記第1主面上には、配線層が形成されており、
     前記配線層における前記第1主面に当接する面と反対側の面に、前記第1端子および前記第2端子が形成されている、
     請求項1に記載のインピーダンス整合素子。
    The semiconductor substrate includes a first main surface,
    A wiring layer is formed on the first main surface,
    The first terminal and the second terminal are formed on the surface of the wiring layer opposite to the surface that contacts the first main surface.
    The impedance matching element according to claim 1.
  3.  前記第1領域と前記第2領域とを用いて、双方向ツェナーダイオードが形成されている、
     請求項1または請求項2に記載のインピーダンス整合素子。
    A bidirectional Zener diode is formed using the first region and the second region.
    The impedance matching element according to claim 1 or 2.
  4.  前記第1領域と前記第2領域とを用いて、前記双方向のブレークダウン電圧を有するMOSFETが形成されている、
     請求項1または請求項2に記載のインピーダンス整合素子。
    A MOSFET having the bidirectional breakdown voltage is formed using the first region and the second region.
    The impedance matching element according to claim 1 or 2.
  5.  前記第1領域と前記第2領域とを用いて、前記双方向のブレークダウン電圧を有するトランジスタが形成されている、
     請求項1または請求項2に記載のインピーダンス整合素子。
    A transistor having the bidirectional breakdown voltage is formed using the first region and the second region.
    The impedance matching element according to claim 1 or 2.
  6.  請求項1乃至請求項5のいずれかに記載の構成を有するインピーダンス整合素子と、
     前記高周波回路と、を備え、
     前記高周波回路は、前記インピーダンス整合素子に接続される分波回路と、前記分波回路にそれぞれ接続される送信回路および受信回路とを備える、
     通信装置。
    An impedance matching element having the configuration according to claim 1;
    The high-frequency circuit,
    The high-frequency circuit includes a branching circuit connected to the impedance matching element, and a transmission circuit and a reception circuit connected to the branching circuit, respectively.
    Communication device.
  7.  前記分波回路は、スイッチ回路である、
     請求項6に記載の通信装置。
    The branching circuit is a switch circuit.
    The communication apparatus according to claim 6.
  8.  前記分波回路は、デュプレクサである、
     請求項6に記載の通信装置。
    The branching circuit is a duplexer;
    The communication apparatus according to claim 6.
  9.  前記送信回路は、パワーアンプを含み、前記受信回路は、ローノイズアンプを含む、
     請求項6乃至請求項8のいずれかに記載の通信装置。
    The transmission circuit includes a power amplifier, and the reception circuit includes a low noise amplifier.
    The communication apparatus according to claim 6.
PCT/JP2018/047441 2018-05-31 2018-12-25 Impedance matching element, and communication device WO2019230027A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019530846A JPWO2019230027A1 (en) 2018-05-31 2018-12-25 Impedance matching element and communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-104286 2018-05-31
JP2018104286 2018-05-31

Publications (1)

Publication Number Publication Date
WO2019230027A1 true WO2019230027A1 (en) 2019-12-05

Family

ID=68698745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047441 WO2019230027A1 (en) 2018-05-31 2018-12-25 Impedance matching element, and communication device

Country Status (2)

Country Link
JP (1) JPWO2019230027A1 (en)
WO (1) WO2019230027A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004214353A (en) * 2002-12-27 2004-07-29 Nec Kansai Ltd Vertical type insulated gate field effect transistor
WO2007135821A1 (en) * 2006-05-19 2007-11-29 Murata Manufacturing Co., Ltd. Matching device, and antenna matching circuit
JP2008544494A (en) * 2005-06-08 2008-12-04 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Linear variable voltage diode capacitor and adaptive matching network
JP2013026249A (en) * 2011-07-15 2013-02-04 Renesas Electronics Corp Bidirectional zener diode and bidirectional zener diode manufacturing method
JP2014530543A (en) * 2011-09-13 2014-11-17 クゥアルコム・インコーポレイテッドQualcomm Incorporated Impedance matching circuit having multiple configurations
JP2015082699A (en) * 2013-10-21 2015-04-27 アスモ株式会社 Motor controller
WO2018066578A1 (en) * 2016-10-07 2018-04-12 株式会社村田製作所 Filter
WO2018150881A1 (en) * 2017-02-14 2018-08-23 株式会社村田製作所 Common mode choke coil, module component, and electronic device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004214353A (en) * 2002-12-27 2004-07-29 Nec Kansai Ltd Vertical type insulated gate field effect transistor
JP2008544494A (en) * 2005-06-08 2008-12-04 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Linear variable voltage diode capacitor and adaptive matching network
WO2007135821A1 (en) * 2006-05-19 2007-11-29 Murata Manufacturing Co., Ltd. Matching device, and antenna matching circuit
JP2013026249A (en) * 2011-07-15 2013-02-04 Renesas Electronics Corp Bidirectional zener diode and bidirectional zener diode manufacturing method
JP2014530543A (en) * 2011-09-13 2014-11-17 クゥアルコム・インコーポレイテッドQualcomm Incorporated Impedance matching circuit having multiple configurations
JP2015082699A (en) * 2013-10-21 2015-04-27 アスモ株式会社 Motor controller
WO2018066578A1 (en) * 2016-10-07 2018-04-12 株式会社村田製作所 Filter
WO2018150881A1 (en) * 2017-02-14 2018-08-23 株式会社村田製作所 Common mode choke coil, module component, and electronic device

Also Published As

Publication number Publication date
JPWO2019230027A1 (en) 2020-06-11

Similar Documents

Publication Publication Date Title
JP4322414B2 (en) Semiconductor device
KR100710434B1 (en) Schottky barrier diode
US7307298B2 (en) Semiconductor device
US20110316062A1 (en) Semiconductor device
US20130056730A1 (en) Semiconductor device
JP2006196802A (en) Semiconductor device and method for manufacturing the same
EP3460843B1 (en) Transistor with shield structure, packaged device, and method of manufacture
US6580107B2 (en) Compound semiconductor device with depletion layer stop region
WO2007062369A2 (en) Semiconductor device and circuit having multiple voltage controlled capacitors
JP4535668B2 (en) Semiconductor device
US6734509B2 (en) Semiconductor integrated circuit
US6891267B2 (en) Semiconductor switching circuit device
US11444078B2 (en) ESD protection element
WO2019230027A1 (en) Impedance matching element, and communication device
KR100644980B1 (en) Compound semiconductor switch circuit device
KR100620923B1 (en) Switching circuit device of compound semiconductor
JP2005353991A (en) Semiconductor device
US20210273118A1 (en) Semiconductor Device
US7750442B2 (en) High-frequency switch
WO2024062789A1 (en) Semiconductor device, method for manufacturing semiconductor device, semiconductor module, and electronic equipment
US10930747B2 (en) Semiconductor device with an encircled electrode
CN100487895C (en) Compound semiconductor device
KR100620927B1 (en) Compound semiconductor device
JP2012019221A (en) Semiconductor device
JP2012015531A (en) Semiconductor device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019530846

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18920417

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18920417

Country of ref document: EP

Kind code of ref document: A1