WO2018150881A1 - Common mode choke coil, module component, and electronic device - Google Patents

Common mode choke coil, module component, and electronic device Download PDF

Info

Publication number
WO2018150881A1
WO2018150881A1 PCT/JP2018/003332 JP2018003332W WO2018150881A1 WO 2018150881 A1 WO2018150881 A1 WO 2018150881A1 JP 2018003332 W JP2018003332 W JP 2018003332W WO 2018150881 A1 WO2018150881 A1 WO 2018150881A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
layer
conductor pattern
common mode
layers
Prior art date
Application number
PCT/JP2018/003332
Other languages
French (fr)
Japanese (ja)
Inventor
紀行 植木
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2018568093A priority Critical patent/JP6642742B2/en
Publication of WO2018150881A1 publication Critical patent/WO2018150881A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/09Filters comprising mutual inductance

Definitions

  • the present invention relates to a common mode choke coil, a module component incorporating the common mode choke coil, and an electronic device including these.
  • FIG. 17A and 17B are equivalent circuit diagrams of the common mode filter described in Patent Document 1.
  • FIG. 17A and 17B are equivalent circuit diagrams of the common mode filter described in Patent Document 1.
  • the common mode filter shown in FIG. 17A includes two first coils 3, 3 and two second coils 6, 6.
  • the common mode filter includes an inductance of the second coil 6, and the first coil 3 and the second coil 6.
  • An attenuation pole is generated at a specific frequency by mutual inductance due to coupling and stray capacitance generated between the first coil 3 and the second coil 6.
  • FIG. 17 (B) is an equivalent circuit diagram of the common mode filter shown in FIG. 17 (A), particularly for common mode noise.
  • a series circuit including the second coil 6 and the stray capacitance C is connected in parallel to the first coil 3 which is the main part of the common mode choke coil. It is a structured. Therefore, the differential mode signal passes through not only the first coil 3 but also the series circuit including the second coil 6 and the stray capacitance C. As a result, the series circuit adversely affects the differential mode signal.
  • An object of the present invention is to provide a common mode choke coil that substantially eliminates the influence on the differential mode signal and widens the attenuation band of the common mode noise, a module component incorporating the common mode choke coil, and an electronic apparatus including the same. It is to provide.
  • the common mode choke coil of the present invention is configured as follows.
  • a main circuit including a first coil provided on the first signal line, and a second coil magnetically coupled to the first coil provided on a second signal line that forms a differential transmission line together with the first signal line; A third coil that is magnetically coupled to the first coil and the second coil, and a sub-circuit that includes a capacitor connected to the third coil.
  • the first coil, the second coil, and the third coil are configured in a stacked body in which a plurality of insulating base material layers are stacked and have a mounting surface.
  • the first coil and the second coil are each formed of a first coil conductor pattern and a second coil conductor pattern that are formed in the first layer of the plurality of insulating base layers and run parallel to each other.
  • the coil is composed of a third coil conductor pattern formed in the second layer of the plurality of insulating base layers and in a position overlapping the first coil conductor pattern and the second coil conductor pattern in plan view. Is done.
  • the first layer is composed of a single layer or a plurality of layers
  • the second layer is composed of a single layer or a plurality of layers and is provided on the upper layer side or the lower layer side of the first layer.
  • the sub-circuit is coupled to the main circuit, so that the attenuation band of the common mode noise is widened. Further, the sub circuit does not exist equivalently for the differential mode signal, and the sub circuit does not affect the differential mode signal.
  • the first coil conductor pattern and the second coil conductor pattern run in parallel in the same layer, and a third coil conductor pattern is provided at a position that is different from these layers and overlaps in plan view.
  • the magnetic field coupling degree between the first coil conductor pattern and the third coil conductor pattern is substantially equal to the magnetic field coupling degree between the second coil conductor pattern and the third coil conductor pattern. Furthermore, since the magnitude of these magnetic field coupling degrees is appropriately determined by the distance between the first layer and the second layer, the influence of the sub circuit on the characteristics of the main circuit can be minimized.
  • the first layer is disposed closer to the mounting surface of the laminate than the second layer. This structure suppresses the parasitic inductance and parasitic capacitance from the terminal electrode formed on the mounting surface to the first coil and the second coil, so that the attenuation of common mode noise is ensured and the differential mode signal is inserted. Loss is suppressed.
  • the third coil conductor pattern is formed in a first conductor pattern formed on a layer closer to the first layer among a plurality of layers of the second layer, and on a layer far from the first layer.
  • the capacitor includes a first conductor pattern and a second conductor pattern facing in the stacking direction, and the capacitor is formed by a capacitance generated between the first conductor pattern and the second conductor pattern.
  • a dedicated capacitor forming electrode is formed, an eddy current is generated in the capacitor forming electrode.
  • no eddy current is generated, and the first coil, the second coil, and the third coil are generated. There is no decrease in the Q value of the coil, the attenuation amount of the common mode noise is ensured, and the insertion loss of the differential mode signal is suppressed.
  • the line width of the first conductor pattern is preferably narrower than the line width of the second conductor pattern.
  • the external shape of the said 3rd coil conductor pattern is smaller than the external shape of the 1st coil conductor pattern and the 2nd coil conductor pattern.
  • the first layer includes a plurality of layers, and capacitance is formed between the first coil conductor patterns and the second coil conductor patterns formed in different layers of the first layer. It is preferable that For example, if a capacitor forming electrode connected between the first coil conductor and the second coil conductor is separately formed, an eddy current is generated in the capacitor forming electrode. No current is generated, the Q values of the first coil, the second coil, and the third coil are not lowered, the attenuation amount of the common mode noise is ensured, and the insertion loss of the differential mode signal is suppressed.
  • the module component of the present invention includes a common mode choke coil and an ESD protection element.
  • the common mode choke coil is configured as shown in (1) above, and the ESD protection element is integrated into the laminate and connected to the main circuit. With this structure, it can be handled as a single component including the ESD protection element and the common mode choke coil, and the occupied area on the circuit board is reduced.
  • the ESD protection element is disposed on the mounting surface side of the multilayer body from the common mode choke coil.
  • the module component of the present invention includes a fourth coil and a fifth coil inserted in series with the first signal line to provide the ESD protection element, and the ESD protection element includes the first protection element. It is preferable that the connection point between the four coils and the fifth coil is connected between the ground and the ground, and the fourth coil and the fifth coil are configured to make a Japanese-style connection.
  • the above configuration acts in a direction in which the inductance component generated in the ESD current path of the ESD protection element is canceled. That is, the equivalent series inductance due to the provision of the ESD protection element is suppressed, and the peak voltage during ESD protection can be further suppressed.
  • the module component of the present invention includes an ESD protection element between the first signal line and the second signal line, A fourth coil and a fifth coil inserted in series with the first signal line; a sixth coil and a seventh coil inserted in series with the second signal line;
  • the ESD protection element includes a first Zener diode, a second Zener diode, and a third Zener diode, The first Zener diode and the second Zener diode are connected in series between a connection point between the fourth coil and the fifth coil and a connection point between the sixth coil and the seventh coil.
  • the third Zener diode is connected between a connection point of the first Zener diode and the second Zener diode and a ground;
  • the fourth coil and the fifth coil are connected in a Japanese-style manner,
  • the sixth coil and the seventh coil are connected in a Japanese-style manner.
  • a configuration is preferred.
  • An electronic device of the present invention includes a common mode choke coil having a differential transmission line, and an electronic circuit connected to the differential transmission line.
  • the common mode choke coil is configured as shown in (1) above.
  • An electronic device of the present invention includes the module component according to any one of (7) to (10) above, a differential transmission line, and an electronic circuit connected to the differential transmission line.
  • a common mode choke coil that substantially eliminates the influence on the differential mode signal and widens the attenuation band of the common mode noise, a module component that incorporates the common mode choke coil, and an electronic apparatus including the same. Composed.
  • FIG. 1 is a circuit diagram of a module component 101 according to an embodiment of the present invention.
  • FIG. 2A is an equivalent circuit diagram regarding common mode noise of the common mode choke coil 10
  • FIG. 2B is an equivalent circuit diagram regarding differential mode signals of the common mode choke coil 10.
  • FIG. 3A shows the frequency characteristics of insertion loss with respect to common mode noise.
  • FIG. 3B is a diagram illustrating frequency characteristics of insertion loss of the first resonance circuit and the second resonance circuit alone.
  • FIG. 3C is a diagram illustrating the frequency characteristics of the insertion loss of the third resonance circuit.
  • FIG. 4 is a diagram illustrating frequency characteristics of reactances of the third resonance circuit, the first resonance circuit, and the second resonance circuit, and frequency characteristics of insertion loss with respect to common mode noise.
  • FIG. 1 is a circuit diagram of a module component 101 according to an embodiment of the present invention.
  • FIG. 2A is an equivalent circuit diagram regarding common mode noise of the common mode choke coil 10
  • FIG. 2B is an equivalent circuit diagram regarding differential mode signals
  • FIG. 5 is a perspective view of each conductor pattern inside the module component 101 seen through.
  • FIG. 6 is a front view seen through each conductor pattern inside the module component 101.
  • FIG. 7 is a plan view showing a conductor pattern formed on each insulating base material layer of the module component 101.
  • FIG. 8 is a block diagram of an electronic device 200 according to the present invention.
  • FIG. 9 is a circuit diagram of the module component 102 including two transient voltage suppressors.
  • FIGS. 10A and 10B are diagrams illustrating the relationship between the mutual inductance due to the coupling between the inductor La and the inductor Lb and the inductance component generated in the path of the ESD current.
  • FIG. 11 is a plan view showing a connection structure of the transient voltage suppressor 21 to the signal line.
  • FIG. 12 is a perspective view showing the internal structure of the transient voltage suppressor 21.
  • FIG. 13A is a plan view showing the configuration of the ESD protection element 1
  • FIG. 13B is a longitudinal sectional view of the ESD protection element 1.
  • FIG. 14 is a circuit diagram of the ESD protection element 1.
  • FIG. 15 is a circuit diagram of a transient voltage suppressor.
  • FIG. 16 is a plan view showing a connection structure of the matching circuit 31 and the ESD protection element 1 to the signal line.
  • FIG. 17A is an equivalent circuit diagram of the common mode filter described in Patent Document 1
  • FIG. 17B is an equivalent circuit diagram of the common mode filter, particularly for common mode noise.
  • FIG. 1 is a circuit diagram of a module component 101 according to an embodiment of the present invention.
  • the module component 101 includes a common mode choke coil 10 and a transient voltage suppressor 20.
  • the common mode choke coil 10 includes a main circuit MC and a sub circuit SC.
  • the main circuit MC is provided on a first coil L1 provided on the first signal line SL1 and a second signal line SL2 that forms a differential transmission line together with the first signal line SL1, and is magnetically coupled to the first coil L1.
  • the sub circuit SC includes a third coil L3 that is magnetically coupled to the first coil L1 and the second coil L2, and a capacitor C3 connected to the third coil L3.
  • the first coil L1 and the second coil L2 are magnetically coupled.
  • the dot marks shown in the first coil L1 and the second coil L2 indicate the polarity of mutual coupling.
  • the third coil L3 is magnetically coupled to the first coil L1 and the second coil L2, respectively.
  • the transient voltage suppressor 20 includes an ESD protection element 2 and inductors La, Lb, Lc, and Ld.
  • the inductors La and Lb are connected in series to the first signal line SL1
  • the inductors Lc and Ld are connected in series to the second signal line SL2.
  • the dot marks shown in the inductors La and Lb indicate the polarity of coupling between the inductors La and Lb.
  • the dot mark shown to the inductor Lc and the inductor Ld represents the polarity of the coupling
  • These inductors La, Lb, Lc, and Ld constitute an impedance matching circuit of the ESD protection element 2 for the differential transmission line.
  • the inductors La, Lb, Lc, and Ld correspond to “fourth coil”, “fifth coil”, “sixth coil”, and “seventh coil”, respectively, according to the present invention.
  • the ESD protection element 2 includes three Zener diodes Da, Db, Dc, and a series circuit of Zener diodes Da, Db between a connection point between the inductor La and the inductor Lb and a connection point between the inductor Lc and the inductor Ld. Is connected.
  • the Zener diodes Da and Db are connected in opposite directions, and the Zener diode Dc is connected between the connection point of the Zener diodes Da and Db and the ground.
  • the zener diodes Da, Db, and Dc correspond to “first zener diode”, “second zener diode”, and “third zener diode” according to the present invention, respectively.
  • the inductor La and the inductor Lb are connected in a Japanese-style manner. Further, the inductor Lc and the inductor Ld are connected in a Japanese-style manner.
  • an equivalent negative inductance element is connected in series to the Zener diode Da by the summing connection of the inductor La and the inductor Lb, and the equivalent series inductance of the Zener diode Da is suppressed.
  • an equivalent negative inductance element is connected in series to the Zener diode Db by the summing connection of the inductor Lc and the inductor Ld, and the equivalent series inductance of the Zener diode Db is suppressed. This effectively suppresses the peak voltage during ESD protection.
  • FIG. 2A is an equivalent circuit diagram for the common mode noise of the common mode choke coil 10
  • FIG. 2B is an equivalent circuit diagram for the differential mode signal of the common mode choke coil 10.
  • the first signal line SL1 and the second signal line SL2 constitute one differential line.
  • the first coil L1 and the second coil L2 are magnetically coupled with a polarity that cancels common mode noise propagating through the differential line. That is, the first coil L1 and the second coil L2 are differentially connected to the common mode noise, and are summed to the differential mode signal.
  • the first resonance circuit is configured by the first coil L1 and the first capacitor C1 connected in parallel to the first coil L1, and the second coil L2 and the first capacitor C1 are connected in parallel to the first coil L1.
  • a second resonance circuit is configured with the second capacitor C2.
  • a third resonance circuit is configured by a sub-circuit including a third coil L3 and a third capacitor C3.
  • the third coil L3 is magnetically coupled to the first coil L1 and the second coil L2, thereby forming a multiple resonance circuit including a first resonance circuit, a second resonance circuit, and a third resonance circuit.
  • the sub circuit SC since the first coil L1 and the second coil L2 are not coupled, there is no magnetic field coupling the first coil L1, the second coil L2, and the third coil L3. Therefore, as for the differential mode signal, as shown in FIG. 2B, the sub circuit SC does not exist equivalently, and the sub circuit SC does not influence the differential mode signal. Note that capacitors Cp1 and Cp2 shown in FIG. 2B are stray capacitances generated between the first coil L1 and the second coil L2.
  • FIG. 3A shows the frequency characteristics of insertion loss with respect to common mode noise.
  • FIG. 3B is a diagram illustrating frequency characteristics of insertion loss of the first resonance circuit and the second resonance circuit alone.
  • FIG. 3C is a diagram illustrating the frequency characteristics of the insertion loss of the third resonance circuit.
  • FIG. 4 is a diagram illustrating frequency characteristics of reactances of the third resonance circuit, the first resonance circuit, and the second resonance circuit, and frequency characteristics of insertion loss with respect to common mode noise.
  • the upper stage is a diagram illustrating frequency characteristics of reactance of the third resonance circuit, the first resonance circuit, and the second resonance circuit alone.
  • the middle stage is a diagram showing frequency characteristics of reactance in a state where the third resonance circuit is coupled to the first resonance circuit and the second resonance circuit.
  • the lower diagram shows the frequency characteristics of insertion loss with respect to common mode noise, and is the same diagram as FIG.
  • the resonance frequency of the first resonance circuit and the second resonance circuit alone is f0, and the resonance frequency of the third resonance circuit alone is f1, but these resonance circuits are coupled to each other as shown in FIG.
  • the frequencies are displaced to f01 and f11, respectively, and the frequency band between f01 and f11 is expanded.
  • common mode noise is particularly generated for a predetermined band having a frequency f01 (3 GHz) as a center frequency and a predetermined band having a frequency f11 (5 GHz) as a center frequency. Is suppressed.
  • the sub-circuit SC is coupled to the main circuit MC, so that the attenuation band of common mode noise is widened. Further, the sub circuit SC does not exist equivalently for the differential mode signal, and the sub circuit SC does not affect the differential mode signal.
  • FIG. 5 is a perspective view in which each conductor pattern inside the module component 101 is seen through.
  • FIG. 6 is a front view seen through each conductor pattern in the module component 101.
  • FIG. 7 is a plan view showing a conductor pattern formed on each insulating base material layer of the module component 101.
  • These conductor patterns are obtained by patterning Cu foil, for example.
  • the thickness of the conductor pattern is about 4 ⁇ m to 8 ⁇ m.
  • the distance between adjacent conductor patterns is about 20 ⁇ m to 40 ⁇ m.
  • the interlayer distance between conductor patterns adjacent in the stacking direction is also about 20 to 40 ⁇ m.
  • the module component 101 is configured as a laminated body 100 in which a plurality of insulating base material layers S1 to S17 are laminated.
  • the lower surface of the laminate 100 shown in FIG. 6 is a mounting surface UF for mounting the module component 101 on the circuit board.
  • These insulating base layers S1 to S17 are resin layers such as LCP (liquid crystal polymer).
  • the insulating base layer S1 is the lowermost layer, and the insulating base layer S17 is the uppermost layer.
  • Terminal electrodes P1, P2, P3, P4, and P GND are formed on the mounting surface UF of the insulating base layer (hereinafter simply “base layer”) S1.
  • base layer the insulating base layer
  • first coil conductor patterns L1a to L1e, second coil conductor patterns L2a to L2e, first coil conductor patterns L1a to L1e, an interlayer connection conductor, and a second coil conductor Interlayer connection conductors for connecting the conductor patterns L2a to L2e to each other are formed.
  • a helical first coil L1 is constituted by the first coil conductor patterns L1a to L1e and the interlayer connection conductors connecting these patterns.
  • a helical second coil L2 is configured by the second coil conductor patterns L2a to L2e and the interlayer connection conductors that connect these layers.
  • the first coil conductor patterns L1a to L1e and the second coil conductor patterns L2a to L2e are loop-shaped conductor patterns that run parallel to each other in each of the base layers S10 to S14. These base material layers S10 to S14 correspond to the “first layer” in the present invention.
  • the first coil conductor patterns L1a to L1e and the second coil conductor patterns L2a to L2e run side by side in each layer, but the relationship between the inner periphery and the outer periphery is switched for each layer. Thereby, the inductances of the first coil conductor patterns L1a to L1e and the second coil conductor patterns L2a to L2e are equalized. Further, as will be described later, the stray capacitance formed between the layers is equalized.
  • the third coil conductor patterns L3a and L3b are formed on the base material layers S15 and S16.
  • the third coil conductor patterns L3a and L3b are formed at positions overlapping the first coil conductor patterns L1a to L1e and the second coil conductor patterns L2a to L2e in plan view.
  • the base material layers S15 and S16 correspond to the “second layer” in the present invention.
  • the second layer is provided on the upper layer side of the first layer. That is, unlike the base material layers S10 to S14, the base material layers S15 and S16 are base material layers outside the range of the laminated portion of the base material layers S10 to S14.
  • first layer (S10 to S14) is arranged on the mounting surface UF side of the laminate 100 from the second layer (S15, S16).
  • second layer (S15, S16) is disposed on the upper surface TF side of the stacked body 100 from the first layer (S10 to S14).
  • the first coil conductor patterns L1a to L1e face each other in the stacking direction with one layer interposed therebetween.
  • the first coil conductor pattern L1a formed on the base material layer S10 and the first coil conductor pattern L1c formed on the base material layer S12 face each other in the stacking direction, and a stray capacitance is formed therebetween.
  • the second coil conductor pattern L2a and the second coil conductor pattern L2c face each other in the stacking direction, and a stray capacitance is formed therebetween.
  • first coil conductor pattern L1b formed on the base material layer S11 and the first coil conductor pattern L1d formed on the base material layer S13 face each other in the stacking direction, and a stray capacitance is formed therebetween.
  • second coil conductor pattern L2b and the second coil conductor pattern L2d face each other in the stacking direction, and a stray capacitance is formed therebetween.
  • the inductance components of the first coil conductor patterns L1a to L1e constitute the first coil L1 shown in FIG. 1, and the stray capacitance generated between the conductor patterns in the stacking direction causes the first capacitor C1.
  • the inductance components of the second coil conductor patterns L2a to L2e constitute the second coil L2 shown in FIG. 1, and the stray capacitance generated between the conductor patterns in the stacking direction constitutes the second capacitor C2.
  • the stray capacitances constituting the first capacitor C1 and the second capacitor C2 are constituted by stray capacitances between the conductive patterns of adjacent layers, the stray capacitance fluctuates greatly due to the misalignment in the surface direction of the base material layer.
  • the conductor patterns by causing the conductor patterns to face each other in the stacking direction with one base material layer interposed therebetween, fluctuations in stray capacitance due to the stacking error are suppressed.
  • the first conductor pattern L3a is formed on the base layer S15 on the side close to the first layer (S10 to S14) of the second layer (S15, S16).
  • the second conductor pattern L3b is formed on the base material layer S16 far from the first layer (S10 to S14).
  • the first conductor pattern L3a and the second conductor pattern L3b face each other in the stacking direction.
  • the outer peripheral end of the first conductor pattern L3a is connected to the outer peripheral end of the second conductor pattern L3b via an interlayer connection conductor.
  • the stray capacitance generated between the first conductor pattern L3a and the second conductor pattern L3b constitutes the third capacitor C3 shown in FIG.
  • the line width of the first conductor pattern L3a is about 30 ⁇ m, and the line width of the second conductor pattern L3b is about 100 ⁇ m. That is, the line width of the first conductor pattern L3a is narrower than the line width of the second conductor pattern L3b, and the first conductor pattern L3a is substantially the same as the second conductor pattern L3b over the entire length in plan view from the stacking direction. Overlap. With this structure, stray capacitance generated between the first coil conductor patterns L1a to L1e and the second coil conductor patterns L2a to L2e and the third coil conductor patterns L3a and L3b is suppressed.
  • the first coil L1 by the first coil conductor patterns L1a to L1e and the second coil L2 and the third coil L3 by the second coil conductor patterns L2a to L2e are coupled by a magnetic field and are hardly electrically coupled.
  • This electric field coupling is a coupling in which a capacitance is generated between the first coil L1 and the second coil L2 via the third coil L3, and thus has an adverse effect on the differential mode signal.
  • the first coil L1 and the second coil L2 are coupled to the third coil L3 almost only by a magnetic field, the influence of the sub circuit on the differential mode signal is suppressed. Further, even if there is a positional deviation in the surface direction between the first coil conductor patterns L1a to L1e and the second coil conductor patterns L2a to L2e, it is not easily affected.
  • the outer shapes of the third coil conductor patterns L3a and L3b are smaller than the outer shapes of the first coil conductor patterns L1a to L1e and the second coil conductor patterns L2a to L2e.
  • the outer width W3 of the third coil conductor patterns L3a and L3b is smaller than the outer width W12 of the first coil conductor patterns L1a to L1e and the second coil conductor patterns L2a to L2e.
  • the first coil conductor patterns L1a to L1e and the second coil conductor patterns L2a to L2e run in parallel in the same layer, and are in different layers and overlap with each other in plan view. Since the conductor patterns L3a and L3b are provided, the magnetic field coupling degree M2a between the first coil conductor patterns L1a to L1e and the third coil conductor patterns L3a and L3b, the second coil conductor patterns L2a to L2e, The magnetic field coupling degree M2b with the three-coil conductor patterns L3a and L3b is substantially equal. Further, the magnitudes of the magnetic field coupling degrees M2a and M2b are appropriately determined by the distance between the first layer (S10 to S14) and the second layer (S15 and S16). The influence of SC can also be suppressed to the minimum.
  • the terminal electrodes P1, P2, P3, P4 formed on the mounting surface UF.
  • the parasitic inductance and the parasitic capacitance are suppressed. Thereby, the attenuation amount of the common mode noise is ensured, and the insertion loss of the differential mode signal is suppressed.
  • the transient voltage suppressor 20 including the ESD protection element 2 and the inductors La, Lb, Lc, and Ld includes the common mode choke coil 10 including the main circuit MC and the sub circuit SC. Further, the laminated body 100 is disposed on the mounting surface UF side. With this structure, since the path length from the terminal electrode formed on the mounting surface to the transient voltage suppressor 20 is short and the parasitic component is small, the effect of suppressing the transient voltage is high.
  • flow preventing dummy patterns DP1c, DP1d, DP1e, DP1f, and DP1g are formed on the base material layers S10, S11, S12, and S13, respectively.
  • flow preventing dummy patterns DP1a, DP2a, DP3a, DP4a are formed on the base material layer S5.
  • flow preventing dummy patterns DP1b, DP2b, DP3b, DP4b are formed on the base material layer S6.
  • These dummy patterns for flow prevention disperse each conductor pattern formed on the base material layers S5, S6, S10 to S14 or the base material layers adjacent thereto uniformly within the surface of the base material layers. This suppresses the resin from flowing unevenly during the lamination heating press, and the shape of each conductor pattern is maintained as designed.
  • the unevenness on the upper surface of the laminated body is small and smooth after the heat pressing, picking up by the mounter is easy when the module component 101 is surface-mounted on the circuit board.
  • the unevenness is small and smooth on the mounting surface of the laminated body, the mounting property to the circuit board is improved.
  • the first coil conductor patterns L1a to L1e and the second coil conductor patterns L2a to L2e formed on the base material layers S10 to S14 are shifted from the center of each base material layer to the left in FIG. Therefore, flow preventing dummy patterns DP1c, DP1d, DP1e, DP1f, and DP1g are formed near the right end of each base material layer.
  • the base material layers S5 and S6 cavity openings CAa and CAb for accommodating the ESD protection element 2 (see FIG. 6) are formed, respectively.
  • the base material layer in which the cavity opening is simply formed easily extends in the X-axis direction, the Y-axis direction, or both directions.
  • the base material layers S5 and S6 have the flow preventing dummy patterns DP1a, DP2a, DP3a, DP4a, DP1b. , DP2b, DP3b, and DP4b are formed, respectively, so that the “elongation” of the base material layers S5 and S6 and the base material layers adjacent thereto is suppressed. Thereby, the shape of the cavity is maintained.
  • the anti-flow dummy patterns DP1a, DP1b, DP1c, DP1d, DP1e, DP1f, and DP1g are patterns that are long in the Y-axis direction, and therefore have an effect of suppressing the expansion in the Y-axis direction. high. Further, since the flow preventing dummy patterns DP2a, DP3a, DP4a, DP2b, DP3b, and DP4b are long patterns in the X-axis direction, the effect of suppressing the expansion in the X-axis direction is high.
  • the anti-flow dummy patterns DP1a, DP1b, DP1c, DP1d, DP1e, DP1f, DP1g, DP2a, DP3a, DP2b, DP3b extend in the peripheral direction of each base material layer. Two rows are arranged in the radial direction from the center of the material layer. Each flow prevention dummy pattern is disposed discontinuously (divided) in the peripheral direction of each base material layer.
  • the flow preventing dummy patterns DP2a, DP3a, DP2b, DP3b are shaped so that the dividing positions do not overlap in the radial direction. That is, the dividing position is dispersed. As a result, the eddy current is prevented and elongation in the X-axis direction is effectively suppressed.
  • FIG. 8 is a block diagram of an electronic device 200 according to the present invention.
  • the electronic device 200 includes a module component 101, a differential transmission line DTL, a USB connector CN, a USB device controller 201 connected to the differential transmission line DTL via the module component 101, and a CPU 202 connected to the USB device controller 201. Is provided.
  • the configuration of the module component 101 is as shown in FIGS.
  • common mode noise superimposed on the differential transmission line DTL is suppressed by the common mode choke coil 10 in the module component 101.
  • a transient voltage such as ESD entering via the USB connector CN is suppressed by the ESD protection element 2 in the module component 101, and the transient voltage applied to the USB device controller 201 is suppressed.
  • the module component 101 is connected to the differential transmission line.
  • the common mode choke coil that does not include the transient voltage suppressor 20 is configured, and the common mode choke coil is differentially connected. You may connect to a transmission line.
  • FIG. 9 is a circuit diagram of the module component 102 including two transient voltage suppressors.
  • the module component 102 includes a common mode choke coil 10 and two transient voltage suppressors 21.
  • the configuration and operation of the common mode choke coil 10 are the same as those shown in FIG.
  • the transient voltage suppressor 21 includes the ESD protection element 1 and inductors La, Lb, and ESL1.
  • the ESD protection element 1 is connected between a connection point CN1 between the inductor La and the inductor Lb and the ground.
  • the inductor ESL1 is an inductance component (equivalent series inductance) generated in the ESD current path (inductor generated between the connection point CN1 of the inductors La and Lb and the ground).
  • the inductors La and Lb are impedance matching circuits with the ESD protection element 1.
  • the inductor La and the inductor Lb are connected in a Japanese-style manner.
  • the inductors La and Lb correspond to the “fourth coil” and the “fifth coil” according to the present invention, respectively.
  • FIG. 10 (A) and 10 (B) are diagrams showing the relationship between the mutual inductance due to the coupling between the inductor La and the inductor Lb and the inductance component generated in the path of the ESD current.
  • a capacitor Cd1 is a parasitic capacitance generated in the ESD protection element 1.
  • a transformer formed by coupling the inductor La and the inductor Lb shown in FIG. 10A is represented by a T-type equivalent circuit as shown in FIG.
  • the mutual inductance ( ⁇ M) due to the coupling between the inductor La and the inductor Lb is equivalently connected in series between the connection point CN1 and the ground.
  • the mutual inductance ( ⁇ M) is a negative inductance. Therefore, the inductance component generated in the ESD current path is canceled. If the absolute value of the mutual inductance ( ⁇ M) is equal to the inductance of the inductor ESL1, the inductance component of the ESD current path is zero. This effectively suppresses the peak voltage during ESD protection.
  • the transient voltage suppressor 21 functions as a three-terminal element including the ESD protection element 1, the matching circuit for the ESD protection element 1, and the ESL cancellation circuit.
  • FIG. 11 is a plan view showing a connection structure of the transient voltage suppressor 21 to the signal line.
  • the transient voltage suppressor 21 is a rectangular parallelepiped chip component, and includes terminals Pa, Pb, and P GND on the bottom surface.
  • the substrate on which the transient voltage suppressor 21 is mounted has a signal line formed by a conductor pattern, and the terminals Pa and Pb of the transient voltage suppressor 21 are connected to the two signal lines, respectively. That is, the transient voltage suppressor 21 is mounted on the base material so as to be inserted in the middle of the signal line. Also, the base material is formed a ground electrode terminal P GND transient voltage suppressor 21 is connected to the ground electrode.
  • the terminal P GND is formed between the terminals Pa and Pb. Therefore, the transient voltage suppressor 21 is mounted so as to straddle the ground electrode.
  • the transient voltage suppressor 21 is connected (inserted) in series to the signal line, the arrangement of the conductor pattern of the signal line and the transient voltage suppressor 20 is simplified. Moreover, impedance mismatch of the signal line can be reduced.
  • FIG. 12 is a perspective view showing the internal structure of the transient voltage suppressor 21.
  • the transient voltage suppressor 21 includes the ESD protection element 1 and its redistribution layer REL.
  • the ESD protection element 1 is a semiconductor substrate on which a plurality of diode elements are formed.
  • Inductors La and Lb are formed in the redistribution layer REL of the semiconductor substrate.
  • the upper surface of the redistribution layer REL is a mounting surface of the transient voltage suppressor 21, and terminals Pa, Pb, and PGND are formed on this surface.
  • FIG. 13A is a plan view showing the configuration of the ESD protection element 1
  • FIG. 13B is a longitudinal sectional view of the ESD protection element 1.
  • FIG. FIG. 14 is a circuit diagram of the ESD protection element 1.
  • N-type epitaxial layers Nepi1 and Nepi2 are formed on a P-type semiconductor substrate Psub.
  • diodes D11 and D21 are formed between the P-type semiconductor substrate Psub and the N-type epitaxial layer Nepi1.
  • N-type epitaxial layer Nepi1 a single N-type region is formed, and a Zener diode D3 is formed between the N-type region and the P-type semiconductor substrate Psub.
  • Two P-type regions are formed in the N-type epitaxial layer Nepi2 and diodes D12 and D22 are formed between the P-type region and the N-type epitaxial layer Nepi2.
  • N-type regions are further formed in the N-type epitaxial layer Nepi2. These N-type regions act as cathode terminals of the diodes D11 and D21.
  • a trench TR for electrical insulation is formed around the N-type region formed in the N-type epitaxial layers Nepi1 and Nepi2.
  • One of the two N-type regions formed in the N-type epitaxial layer Nepi2 and one of the two P-type regions are connected by an Al wiring and used as the terminal T1.
  • the other of the two N-type regions and the other of the two P-type regions are connected by an Al-aluminum wiring and used as a terminal T2.
  • the arrow in FIG. 13B indicates the direction of current flowing through the semiconductor substrate Psub.
  • the ESD protection element 1 having the two terminals T1 and T2 is configured by the structure described above.
  • the ESD protection element needs to have a low capacity in order to pass a high-frequency signal. This is because it is necessary to increase the self-resonance frequency due to the parasitic capacitance of the ESD protection element and the equivalent series inductance (ESL) in order to pass a high-frequency signal.
  • ESD equivalent series inductance
  • a T-type matching circuit including two inductors that are coupled in a coupled manner using the capacitance of the ESD protection element 1 is configured.
  • the ESL of the ESD protection element 1 can be canceled, the self-resonance frequency of the ESD protection element 1 can be increased, and the high frequency without increasing the parasitic capacitance of the ESD protection element 1 (that is, while ensuring the ESD protection performance).
  • a signal can be passed.
  • FIG. 15 is a circuit diagram of a transient voltage suppressor. This circuit corresponds to the transient voltage suppressor 21 shown in FIG.
  • the matching circuit 31 is configured as one element in which the rewiring layer portion illustrated in FIG. 12 is independent, and includes terminals Pa, Pb, and Pc.
  • the ESD protection element 1 is configured as one element in which the semiconductor substrate 1 portion shown in FIG. 12 is independent, and includes terminals T1 and T2.
  • FIG. 16 is a plan view showing a connection structure of the matching circuit 31 and the ESD protection element 1 to the signal line.
  • both the matching circuit 31 and the ESD protection element 1 are rectangular parallelepiped chip components, and the matching circuit 31 is mounted on the base material so as to be inserted in the middle of the signal line.
  • the terminal T1 is connected to the terminal Pc of the matching circuit 31 through the conductor pattern on the base material, and the terminal T2 is connected to the ground electrode.
  • separating the ESD protection element 1 and the matching circuit 31 has an advantage that the ESD protection element 1 having desired characteristics can be selectively used.
  • the third coil described above is an example configured with a third conductor pattern formed in a plurality of second layers, but the second layer may be a single layer.
  • FIG. 6 shows an example in which the “second layer” in which the third coil L3 is formed is arranged on the upper layer side of the “first layer” in which the first coil L1 and the second coil L2 are formed.
  • the vertical relationship between the “first layer” and the “second layer” may be reversed.

Abstract

A common mode choke coil (10) comprises: a main circuit (MC) including a first coil (L1) provided on a first signal line (SL1) and a second coil (L2) provided on a second signal line (SL2); and a sub-circuit (SC) comprising a third coil (L3) coupled to the first coil (L1) and the second coil (L2) via a magnetic field, and a capacitor (C3) connected to the third coil (L3). The first coil (L1) and the second coil (L2) are formed in a first layer of a plurality of insulating substrate layers, and are each configured of a first coil conductor pattern and a second coil conductor pattern running in parallel. The third coil (L3) is configured of a third coil conductor pattern which is formed in a second layer of the plurality of insulating substrate layers, in a position overlapping the first coil conductor pattern and the second coil conductor pattern in plan view.

Description

コモンモードチョークコイル、モジュール部品および電子機器Common mode choke coil, module parts and electronic equipment
 本発明は、コモンモードチョークコイル、このコモンモードチョークコイルを内蔵するモジュール部品、およびこれらを備える電子機器に関する。 The present invention relates to a common mode choke coil, a module component incorporating the common mode choke coil, and an electronic device including these.
 従来のコモンモードチョークコイルに関する発明としては、例えば、特許文献1に記載のコモノードノイズフィルタが知られている。図17(A)(B)は、特許文献1に記載のコモンモードフィルタの等価回路図である。 As an invention related to a conventional common mode choke coil, for example, a common node noise filter described in Patent Document 1 is known. 17A and 17B are equivalent circuit diagrams of the common mode filter described in Patent Document 1. FIG.
 図17(A)に示すコモンモードフィルタは、2つの第1コイル3,3と2つの第2コイル6,6を備え、第2コイル6のインダクタンス、第1コイル3と第2コイル6との結合による相互インダクタンス、第1コイル3と第2コイル6との間に発生する浮遊容量、によって、特定の周波数で減衰極が生じるように構成されている。 The common mode filter shown in FIG. 17A includes two first coils 3, 3 and two second coils 6, 6. The common mode filter includes an inductance of the second coil 6, and the first coil 3 and the second coil 6. An attenuation pole is generated at a specific frequency by mutual inductance due to coupling and stray capacitance generated between the first coil 3 and the second coil 6.
国際公開第2010/032464号International Publication No. 2010/032464
 図17(B)は、図17(A)に示したコモンモードフィルタの、特にコモンモードノイズについての等価回路図である。このように、特許文献1に示されるようなコモンモードチョークコイルは、コモンモードチョークコイルの主要部である第1コイル3に対して、第2コイル6および浮遊容量Cを含む直列回路が並列接続された構造である。そのため、ディファレンシャルモードの信号は、第1コイル3だけでなく、第2コイル6および浮遊容量Cを含む直列回路を通過する。その結果、上記直列回路はディファレンシャルモードの信号に対して悪影響及ぼしてしまう。 FIG. 17 (B) is an equivalent circuit diagram of the common mode filter shown in FIG. 17 (A), particularly for common mode noise. As described above, in the common mode choke coil as disclosed in Patent Document 1, a series circuit including the second coil 6 and the stray capacitance C is connected in parallel to the first coil 3 which is the main part of the common mode choke coil. It is a structured. Therefore, the differential mode signal passes through not only the first coil 3 but also the series circuit including the second coil 6 and the stray capacitance C. As a result, the series circuit adversely affects the differential mode signal.
 本発明の目的は、ディファレンシャルモードの信号に対する影響を実質的に無くし、コモンモードノイズの減衰帯域を広くしたコモンモードチョークコイル、このコモンモードチョークコイルを内蔵するモジュール部品、およびこれらを備える電子機器を提供することにある。 An object of the present invention is to provide a common mode choke coil that substantially eliminates the influence on the differential mode signal and widens the attenuation band of the common mode noise, a module component incorporating the common mode choke coil, and an electronic apparatus including the same. It is to provide.
(1)本発明のコモンモードチョークコイルは次のように構成される。 (1) The common mode choke coil of the present invention is configured as follows.
 第1信号線に設けられた第1コイルと、第1信号線と共に差動伝送線路を構成する第2信号線に設けられ第1コイルに磁界結合する第2コイルとを含む主回路と、第1コイルおよび第2コイルに磁界結合する第3コイルと、当該第3コイルに接続されたキャパシタを含んで構成された副回路と、を有する。 A main circuit including a first coil provided on the first signal line, and a second coil magnetically coupled to the first coil provided on a second signal line that forms a differential transmission line together with the first signal line; A third coil that is magnetically coupled to the first coil and the second coil, and a sub-circuit that includes a capacitor connected to the third coil.
 第1コイル、第2コイルおよび第3コイルは、複数の絶縁性基材層が積層され実装面を有する積層体に構成される。 The first coil, the second coil, and the third coil are configured in a stacked body in which a plurality of insulating base material layers are stacked and have a mounting surface.
 第1コイルおよび第2コイルは、複数の絶縁性基材層のうち第1層に形成され、互いに並走する第1コイル用導体パターンおよび第2コイル用導体パターンにてそれぞれ構成され、第3コイルは、複数の絶縁性基材層のうち第2層において、且つ平面視で第1コイル用導体パターンおよび第2コイル用導体パターンと重なる位置に形成された第3コイル用導体パターンにて構成される。 The first coil and the second coil are each formed of a first coil conductor pattern and a second coil conductor pattern that are formed in the first layer of the plurality of insulating base layers and run parallel to each other. The coil is composed of a third coil conductor pattern formed in the second layer of the plurality of insulating base layers and in a position overlapping the first coil conductor pattern and the second coil conductor pattern in plan view. Is done.
 そして、第1層は単一層または複数層で構成され、第2層は単一層または複数層で構成されて第1層の上層側または下層側に設けられる。 The first layer is composed of a single layer or a plurality of layers, and the second layer is composed of a single layer or a plurality of layers and is provided on the upper layer side or the lower layer side of the first layer.
 上記の構成によれば、先ず、主回路に対して副回路が結合することによって、コモンモードノイズの減衰帯域が広くなる。また、副回路はディファレンシャルモードの信号に対しては等価的に存在しなくなり、副回路はディファレンシャルモードの信号に影響を及ぼさない。その上で、第1コイル用導体パターンと第2コイル用導体パターンとは同一層を並走し、これらと異なる層であって平面視で重なる位置に第3コイル用導体パターンが設けられていることで、第1コイル用導体パターンと第3コイル用導体パターンとの磁界結合度と、第2コイル用導体パターンと第3コイル用導体パターンとの磁界結合度とはほぼ等しい。さらに、これら磁界結合度の大きさは、第1層と第2層との間の距離で適宜定められるので、主回路の特性に対する副回路の影響も最小限に抑制できる。 According to the above configuration, first, the sub-circuit is coupled to the main circuit, so that the attenuation band of the common mode noise is widened. Further, the sub circuit does not exist equivalently for the differential mode signal, and the sub circuit does not affect the differential mode signal. In addition, the first coil conductor pattern and the second coil conductor pattern run in parallel in the same layer, and a third coil conductor pattern is provided at a position that is different from these layers and overlaps in plan view. Thus, the magnetic field coupling degree between the first coil conductor pattern and the third coil conductor pattern is substantially equal to the magnetic field coupling degree between the second coil conductor pattern and the third coil conductor pattern. Furthermore, since the magnitude of these magnetic field coupling degrees is appropriately determined by the distance between the first layer and the second layer, the influence of the sub circuit on the characteristics of the main circuit can be minimized.
(2)前記第1層は第2層より積層体の実装面側に配置されていることが好ましい。この構造により、実装面に形成されている端子電極から第1コイルおよび第2コイルまでの寄生インダクタンスおよび寄生キャパシタンスが抑制されるので、コモンモードノイズの減衰量が確保され、且つディファレンシャルモード信号の挿入損失は抑制される。 (2) It is preferable that the first layer is disposed closer to the mounting surface of the laminate than the second layer. This structure suppresses the parasitic inductance and parasitic capacitance from the terminal electrode formed on the mounting surface to the first coil and the second coil, so that the attenuation of common mode noise is ensured and the differential mode signal is inserted. Loss is suppressed.
(3)前記第3コイル用導体パターンは、第2層の複数層のうち第1層に近い側の層に形成された第1導体パターンと、第1層から遠い側の層に形成され第1導体パターンと積層方向に対向する第2導体パターンとを含み、前記キャパシタは、第1導体パターンと第2導体パターンとの間に生じる容量によって構成されることが好ましい。例えば、専用のキャパシタ形成用電極を形成すると、このキャパシタ形成用電極に渦電流が生じてしまうが、上記構造によれば、渦電流が生じることもなく、第1コイル、第2コイルおよび第3コイルのQ値の低下が無く、コモンモードノイズの減衰量が確保され、ディファレンシャルモード信号の挿入損失が抑制される。 (3) The third coil conductor pattern is formed in a first conductor pattern formed on a layer closer to the first layer among a plurality of layers of the second layer, and on a layer far from the first layer. Preferably, the capacitor includes a first conductor pattern and a second conductor pattern facing in the stacking direction, and the capacitor is formed by a capacitance generated between the first conductor pattern and the second conductor pattern. For example, when a dedicated capacitor forming electrode is formed, an eddy current is generated in the capacitor forming electrode. However, according to the above structure, no eddy current is generated, and the first coil, the second coil, and the third coil are generated. There is no decrease in the Q value of the coil, the attenuation amount of the common mode noise is ensured, and the insertion loss of the differential mode signal is suppressed.
(4)前記第1導体パターンの線幅は第2導体パターンの線幅よりも細いことが好ましい。この構造により、第1コイルと第3コイルとの間に生じる容量、および第2コイルと第3コイルとの間に生じる容量がそれぞれ抑制される。このことで、ディファレンシャルモードの信号に与える副回路の影響が抑制される。また、第1導体パターンと第2導体パターンとの面方向の位置ずれがあっても、その影響を受けにくい。 (4) The line width of the first conductor pattern is preferably narrower than the line width of the second conductor pattern. With this structure, the capacitance generated between the first coil and the third coil and the capacitance generated between the second coil and the third coil are suppressed. This suppresses the influence of the sub circuit on the differential mode signal. Further, even if there is a positional deviation in the surface direction between the first conductor pattern and the second conductor pattern, it is not easily affected.
(5)前記第3コイル用導体パターンの外形は、第1コイル用導体パターンおよび第2コイル用導体パターンの外形よりも小さいことが好ましい。この構造により、第3コイル用導体パターンの面方向の位置がずれても、第3コイルと第1コイルとの結合度、および第3コイルと第2コイルとの結合度の変化は小さいので、特性バラツキは小さい。 (5) It is preferable that the external shape of the said 3rd coil conductor pattern is smaller than the external shape of the 1st coil conductor pattern and the 2nd coil conductor pattern. With this structure, even if the position of the third coil conductor pattern in the plane direction is shifted, the change in the degree of coupling between the third coil and the first coil and the degree of coupling between the third coil and the second coil is small. The characteristic variation is small.
(6)前記第1層は複数層で構成され、前記第1層のうち互いに異なる層に形成された第1コイル用導体パターン間に、および第2コイル用導体パターン間に、それぞれ容量が形成されていることが好ましい。例えば、第1コイル用導体と第2コイル用導体との間に接続されるキャパシタ形成用電極を別途形成すると、このキャパシタ形成用電極に渦電流が生じてしまうが、上記構造によれば、渦電流が生じることもなく、第1コイル、第2コイルおよび第3コイルのQ値の低下が無く、コモンモードノイズの減衰量が確保され、ディファレンシャルモード信号の挿入損失が抑制される。 (6) The first layer includes a plurality of layers, and capacitance is formed between the first coil conductor patterns and the second coil conductor patterns formed in different layers of the first layer. It is preferable that For example, if a capacitor forming electrode connected between the first coil conductor and the second coil conductor is separately formed, an eddy current is generated in the capacitor forming electrode. No current is generated, the Q values of the first coil, the second coil, and the third coil are not lowered, the attenuation amount of the common mode noise is ensured, and the insertion loss of the differential mode signal is suppressed.
(7)本発明のモジュール部品は、コモンモードチョークコイルとESD保護素子とを備える。コモンモードチョークコイルは上記(1)に示したとおりに構成され、ESD保護素子は積層体に一体化され主回路に接続される。この構造により、ESD保護素子およびコモンモードチョークコイルを備える単一部品として扱うことができ、回路基板上の占有面積が縮小化される。 (7) The module component of the present invention includes a common mode choke coil and an ESD protection element. The common mode choke coil is configured as shown in (1) above, and the ESD protection element is integrated into the laminate and connected to the main circuit. With this structure, it can be handled as a single component including the ESD protection element and the common mode choke coil, and the occupied area on the circuit board is reduced.
(8)前記ESD保護素子は、コモンモードチョークコイルより積層体の実装面側に配置されていることが好ましい。この構造により、実装面に形成されている端子電極からESD保護素子までの経路長が短く、寄生成分が小さいので、過渡電圧の抑制効果が高まる。 (8) It is preferable that the ESD protection element is disposed on the mounting surface side of the multilayer body from the common mode choke coil. With this structure, since the path length from the terminal electrode formed on the mounting surface to the ESD protection element is short and the parasitic component is small, the effect of suppressing the transient voltage is enhanced.
(9)本発明のモジュール部品は、前記ESD保護素子を設けるために、前記第1信号線に直列に挿入された第4コイルと第5コイルと、を備え、前記ESD保護素子は、前記第4コイルと前記第5コイルとの接続点と、グランドとの間に接続され、前記第4コイルと前記第5コイルとは和動接続する構成であることが好ましい。 (9) The module component of the present invention includes a fourth coil and a fifth coil inserted in series with the first signal line to provide the ESD protection element, and the ESD protection element includes the first protection element. It is preferable that the connection point between the four coils and the fifth coil is connected between the ground and the ground, and the fourth coil and the fifth coil are configured to make a Japanese-style connection.
 上記構成により、ESD保護素子のESD電流経路に生じるインダクタンス成分が相殺される方向に作用する。すなわち、ESD保護素子を設けることによる等価直列インダクタンスが抑制され、ESD保護時のピーク電圧をより抑制できる。 The above configuration acts in a direction in which the inductance component generated in the ESD current path of the ESD protection element is canceled. That is, the equivalent series inductance due to the provision of the ESD protection element is suppressed, and the peak voltage during ESD protection can be further suppressed.
(10)本発明のモジュール部品は、第1信号線と第2信号線との間にESD保護素子を備える場合、
 前記第1信号線に直列に挿入された第4コイルと第5コイルと、前記第2信号線に直列に挿入された第6コイルと第7コイルと、を備え、
 前記ESD保護素子は、第1ツェナーダイオードと第2ツェナーダイオードと第3ツェナーダイオードと、を備え、
 前記第1ツェナーダイオードと前記第2ツェナーダイオードとは、前記第4コイルと前記第5コイルとの接続点と、前記第6コイルと前記第7コイルとの接続点と、の間に直列接続され、
 前記第3ツェナーダイオードは、前記第1ツェナーダイオードと前記第2ツェナーダイオードとの接続点と、グランドとの間に接続され、
 前記第4コイルと前記第5コイルとは和動接続し、
 前記第6コイルと前記第7コイルとは和動接続する、
 構成であることが好ましい。
(10) When the module component of the present invention includes an ESD protection element between the first signal line and the second signal line,
A fourth coil and a fifth coil inserted in series with the first signal line; a sixth coil and a seventh coil inserted in series with the second signal line;
The ESD protection element includes a first Zener diode, a second Zener diode, and a third Zener diode,
The first Zener diode and the second Zener diode are connected in series between a connection point between the fourth coil and the fifth coil and a connection point between the sixth coil and the seventh coil. ,
The third Zener diode is connected between a connection point of the first Zener diode and the second Zener diode and a ground;
The fourth coil and the fifth coil are connected in a Japanese-style manner,
The sixth coil and the seventh coil are connected in a Japanese-style manner.
A configuration is preferred.
 上記構成により、ESD保護素子を設けることによる等価直列インダクタンスが抑制され、ESD保護時のピーク電圧をより抑制できる。 With the above configuration, the equivalent series inductance due to the provision of the ESD protection element is suppressed, and the peak voltage during ESD protection can be further suppressed.
(11)本発明の電子機器は、差動伝送線路を有するコモンモードチョークコイルと、差動伝送線路に接続された電子回路とを備える。コモンモードチョークコイルは上記(1)に示したとおりに構成される。この構造により、電子回路が広帯域に亘る信号を扱う場合に、その広帯域に亘るコモンモードノイズが抑制され、且つディファレンシャルモードの信号に影響を及ぼさないで差動信号の入出力がなされる。 (11) An electronic device of the present invention includes a common mode choke coil having a differential transmission line, and an electronic circuit connected to the differential transmission line. The common mode choke coil is configured as shown in (1) above. With this structure, when the electronic circuit handles a signal over a wide band, common mode noise over the wide band is suppressed, and differential signals are input and output without affecting the differential mode signal.
(12)本発明の電子機器は、上記(7)から(10)のいずれかに記載のモジュール部品と、差動伝送線路と、この差動伝送線路に接続された電子回路とを備える。この構造により、電子回路が広帯域に亘る信号を扱う場合に、その広帯域に亘るコモンモードノイズが抑制され、且つディファレンシャルモードの信号に影響を及ぼさないで差動信号の入出力がなされる。さらに、外部等から印加される過渡電圧が抑制される。 (12) An electronic device of the present invention includes the module component according to any one of (7) to (10) above, a differential transmission line, and an electronic circuit connected to the differential transmission line. With this structure, when the electronic circuit handles a signal over a wide band, common mode noise over the wide band is suppressed, and differential signals are input and output without affecting the differential mode signal. Furthermore, the transient voltage applied from the outside etc. is suppressed.
 本発明によれば、ディファレンシャルモードの信号に対する影響を実質的に無くし、コモンモードノイズの減衰帯域を広くしたコモンモードチョークコイル、このコモンモードチョークコイルを内蔵するモジュール部品、およびこれらを備える電子機器が構成される。 According to the present invention, there is provided a common mode choke coil that substantially eliminates the influence on the differential mode signal and widens the attenuation band of the common mode noise, a module component that incorporates the common mode choke coil, and an electronic apparatus including the same. Composed.
図1は本発明の実施形態に係るモジュール部品101の回路図である。FIG. 1 is a circuit diagram of a module component 101 according to an embodiment of the present invention. 図2(A)はコモンモードチョークコイル10のコモンモードノイズについての等価回路図であり、図2(B)はコモンモードチョークコイル10のディファレンシャルモード信号についての等価回路図である。FIG. 2A is an equivalent circuit diagram regarding common mode noise of the common mode choke coil 10, and FIG. 2B is an equivalent circuit diagram regarding differential mode signals of the common mode choke coil 10. 図3(A)はコモンモードノイズに対する挿入損失の周波数特性を示す図である。図3(B)は第1共振回路および第2共振回路の単体での挿入損失の周波数特性を示す図である。図3(C)は第3共振回路の挿入損失の周波数特性を示す図である。FIG. 3A shows the frequency characteristics of insertion loss with respect to common mode noise. FIG. 3B is a diagram illustrating frequency characteristics of insertion loss of the first resonance circuit and the second resonance circuit alone. FIG. 3C is a diagram illustrating the frequency characteristics of the insertion loss of the third resonance circuit. 図4は、第3共振回路、第1共振回路および第2共振回路のリアクタンスの周波数特性と、コモンモードノイズに対する挿入損失の周波数特性を示す図である。FIG. 4 is a diagram illustrating frequency characteristics of reactances of the third resonance circuit, the first resonance circuit, and the second resonance circuit, and frequency characteristics of insertion loss with respect to common mode noise. 図5はモジュール部品101の内部の各導体パターンを透視した斜視図である。FIG. 5 is a perspective view of each conductor pattern inside the module component 101 seen through. 図6はモジュール部品101の内部の各導体パターンを透視した正面図である。FIG. 6 is a front view seen through each conductor pattern inside the module component 101. 図7はモジュール部品101の各絶縁性基材層に形成されている導体パターンを表す平面図である。FIG. 7 is a plan view showing a conductor pattern formed on each insulating base material layer of the module component 101. 図8は本発明に係る電子機器200のブロック図である。FIG. 8 is a block diagram of an electronic device 200 according to the present invention. 図9は二つの過渡電圧サプレッサを備えるモジュール部品102の回路図である。FIG. 9 is a circuit diagram of the module component 102 including two transient voltage suppressors. 図10(A)、図10(B)は、インダクタLaとインダクタLbとの結合による相互インダクタンスと、ESD電流の経路に生じるインダクタンス成分との関係を示す図である。FIGS. 10A and 10B are diagrams illustrating the relationship between the mutual inductance due to the coupling between the inductor La and the inductor Lb and the inductance component generated in the path of the ESD current. 図11は、信号ラインに対する過渡電圧サプレッサ21の接続構造を示す平面図である。FIG. 11 is a plan view showing a connection structure of the transient voltage suppressor 21 to the signal line. 図12は過渡電圧サプレッサ21の内部構造を示す透視斜視図である。FIG. 12 is a perspective view showing the internal structure of the transient voltage suppressor 21. 図13(A)はESD保護素子1の構成を示す平面図であり、図13(B)はESD保護素子1の縦断面図である。FIG. 13A is a plan view showing the configuration of the ESD protection element 1, and FIG. 13B is a longitudinal sectional view of the ESD protection element 1. 図14はESD保護素子1の回路図である。FIG. 14 is a circuit diagram of the ESD protection element 1. 図15は過渡電圧サプレッサの回路図である。FIG. 15 is a circuit diagram of a transient voltage suppressor. 図16は、信号ラインに対する整合回路31およびESD保護素子1の接続構造を示す平面図である。FIG. 16 is a plan view showing a connection structure of the matching circuit 31 and the ESD protection element 1 to the signal line. 図17(A)は、特許文献1に記載のコモンモードフィルタの等価回路図であり、図17(B)は、コモンモードフィルタの特にコモンモードノイズについての等価回路図である。FIG. 17A is an equivalent circuit diagram of the common mode filter described in Patent Document 1, and FIG. 17B is an equivalent circuit diagram of the common mode filter, particularly for common mode noise.
 以下、本発明の実施形態を、各図を順次参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は本発明の実施形態に係るモジュール部品101の回路図である。このモジュール部品101は、コモンモードチョークコイル10と過渡電圧サプレッサ20とを備える。コモンモードチョークコイル10は、主回路MCと副回路SCとを備える。主回路MCは、第1信号線SL1に設けられた第1コイルL1と、第1信号線SL1と共に差動伝送線路を構成する第2信号線SL2に設けられ、第1コイルL1に磁界結合する第2コイルL2とを含む。副回路SCは、第1コイルL1および第2コイルL2に磁界結合する第3コイルL3と、当該第3コイルL3に接続されたキャパシタC3とを含んで構成される。 FIG. 1 is a circuit diagram of a module component 101 according to an embodiment of the present invention. The module component 101 includes a common mode choke coil 10 and a transient voltage suppressor 20. The common mode choke coil 10 includes a main circuit MC and a sub circuit SC. The main circuit MC is provided on a first coil L1 provided on the first signal line SL1 and a second signal line SL2 that forms a differential transmission line together with the first signal line SL1, and is magnetically coupled to the first coil L1. And the second coil L2. The sub circuit SC includes a third coil L3 that is magnetically coupled to the first coil L1 and the second coil L2, and a capacitor C3 connected to the third coil L3.
 図1中に符号M1で示すように、第1コイルL1と第2コイルL2とは磁界結合する。第1コイルL1と第2コイルL2に示すドットマークは、相互の結合の極性を表している。また、図1中に符号M2a,M2bで示すように、第3コイルL3は第1コイルL1および第2コイルL2とそれぞれ磁界結合する。 As shown by a symbol M1 in FIG. 1, the first coil L1 and the second coil L2 are magnetically coupled. The dot marks shown in the first coil L1 and the second coil L2 indicate the polarity of mutual coupling. Further, as indicated by reference numerals M2a and M2b in FIG. 1, the third coil L3 is magnetically coupled to the first coil L1 and the second coil L2, respectively.
 図1において、過渡電圧サプレッサ20はESD保護素子2およびインダクタLa,Lb,Lc,Ldで構成されている。本実施形態では、インダクタLa,Lbが第1信号線SL1に直列接続されていて、インダクタLc,Ldが第2信号線SL2に直列接続されている。インダクタLaとインダクタLbに示すドットマークは、インダクタLaとインダクタLbとの結合の極性を表している。同様に、インダクタLcとインダクタLdに示すドットマークは、インダクタLcとインダクタLdとの結合の極性を表している。これらインダクタLa,Lb,Lc,Ldによって、差動伝送線路に対するESD保護素子2のインピーダンス整合回路が構成されている。 1, the transient voltage suppressor 20 includes an ESD protection element 2 and inductors La, Lb, Lc, and Ld. In the present embodiment, the inductors La and Lb are connected in series to the first signal line SL1, and the inductors Lc and Ld are connected in series to the second signal line SL2. The dot marks shown in the inductors La and Lb indicate the polarity of coupling between the inductors La and Lb. Similarly, the dot mark shown to the inductor Lc and the inductor Ld represents the polarity of the coupling | bonding of the inductor Lc and the inductor Ld. These inductors La, Lb, Lc, and Ld constitute an impedance matching circuit of the ESD protection element 2 for the differential transmission line.
 上記インダクタLa,Lb,Lc,Ldは本発明に係る「第4コイル」,[第5コイル],「第6コイル」,[第7コイル]にそれぞれ相当する。 The inductors La, Lb, Lc, and Ld correspond to “fourth coil”, “fifth coil”, “sixth coil”, and “seventh coil”, respectively, according to the present invention.
 ESD保護素子2は3つのツェナーダイオードDa,Db,Dcを含み、インダクタLaとインダクタLbとの接続点と、インダクタLcとインダクタLdとの接続点との間に、ツェナーダイオードDa,Dbの直列回路が接続されている。ツェナーダイオードDa,Dbは互いに逆方向に接続されていて、このツェナーダイオードDa,Dbの接続点とグランドとの間にツェナーダイオードDcが接続されている。 The ESD protection element 2 includes three Zener diodes Da, Db, Dc, and a series circuit of Zener diodes Da, Db between a connection point between the inductor La and the inductor Lb and a connection point between the inductor Lc and the inductor Ld. Is connected. The Zener diodes Da and Db are connected in opposite directions, and the Zener diode Dc is connected between the connection point of the Zener diodes Da and Db and the ground.
 上記ツェナーダイオードDa,Db,Dcは本発明に係る「第1ツェナーダイオード」,「第2ツェナーダイオード」,「第3ツェナーダイオード」にそれぞれ相当する。 The zener diodes Da, Db, and Dc correspond to “first zener diode”, “second zener diode”, and “third zener diode” according to the present invention, respectively.
 インダクタLaとインダクタLbとは和動接続されている。また、インダクタLcとインダクタLdとは和動接続されている。後述するように、このインダクタLaとインダクタLbとの和動接続により、等価的な負のインダクタンス素子がツェナーダイオードDaに直列接続されて、ツェナーダイオードDaの等価直列インダクタンスが抑制される。同様に、インダクタLcとインダクタLdとの和動接続により、等価的な負のインダクタンス素子がツェナーダイオードDbに直列接続されて、ツェナーダイオードDbの等価直列インダクタンスが抑制される。これにより、ESD保護時のピーク電圧を効果的に抑制される。 The inductor La and the inductor Lb are connected in a Japanese-style manner. Further, the inductor Lc and the inductor Ld are connected in a Japanese-style manner. As will be described later, an equivalent negative inductance element is connected in series to the Zener diode Da by the summing connection of the inductor La and the inductor Lb, and the equivalent series inductance of the Zener diode Da is suppressed. Similarly, an equivalent negative inductance element is connected in series to the Zener diode Db by the summing connection of the inductor Lc and the inductor Ld, and the equivalent series inductance of the Zener diode Db is suppressed. This effectively suppresses the peak voltage during ESD protection.
 図2(A)はコモンモードチョークコイル10のコモンモードノイズについての等価回路図であり、図2(B)はコモンモードチョークコイル10のディファレンシャルモード信号についての等価回路図である。第1信号線SL1と第2信号線SL2とで一つの差動線路が構成される。第1コイルL1と第2コイルL2とは、差動線路を伝搬するコモンモードノイズを打ち消す極性で磁界結合する。すなわち、第1コイルL1と第2コイルL2は、コモンモードノイズに対しては差動接続されていて、ディファレンシャルモード信号に対しては和動接続されている。 FIG. 2A is an equivalent circuit diagram for the common mode noise of the common mode choke coil 10, and FIG. 2B is an equivalent circuit diagram for the differential mode signal of the common mode choke coil 10. The first signal line SL1 and the second signal line SL2 constitute one differential line. The first coil L1 and the second coil L2 are magnetically coupled with a polarity that cancels common mode noise propagating through the differential line. That is, the first coil L1 and the second coil L2 are differentially connected to the common mode noise, and are summed to the differential mode signal.
 図2(A)(B)に表れているように、第1コイルL1とこれに並列接続されている第1キャパシタC1とで第1共振回路が構成され、第2コイルL2とこれに並列接続されている第2キャパシタC2とで第2共振回路が構成される。 As shown in FIGS. 2A and 2B, the first resonance circuit is configured by the first coil L1 and the first capacitor C1 connected in parallel to the first coil L1, and the second coil L2 and the first capacitor C1 are connected in parallel to the first coil L1. A second resonance circuit is configured with the second capacitor C2.
 コモンモードノイズについては、図2(A)に示すように、さらに、第3コイルL3と第3キャパシタC3とによる副回路で第3共振回路が構成される。第3コイルL3は第1コイルL1および第2コイルL2と磁界結合することにより、第1共振回路、第2共振回路、および第3共振回路による複共振回路が構成される。 As for the common mode noise, as shown in FIG. 2A, a third resonance circuit is configured by a sub-circuit including a third coil L3 and a third capacitor C3. The third coil L3 is magnetically coupled to the first coil L1 and the second coil L2, thereby forming a multiple resonance circuit including a first resonance circuit, a second resonance circuit, and a third resonance circuit.
 ディファレンシャルモード信号については、第1コイルL1と第2コイルL2とが結合しないので、第1コイルL1および第2コイルL2と第3コイルL3とが結合する磁界が無い。そのため、ディファレンシャルモード信号については、図2(B)に示すように、副回路SCは等価的には存在せず、ディファレンシャルモード信号に対して、副回路SCは影響を及ぼさない。なお、図2(B)に示すキャパシタCp1,Cp2は第1コイルL1と第2コイルL2との間に生じる浮遊容量である。 Regarding the differential mode signal, since the first coil L1 and the second coil L2 are not coupled, there is no magnetic field coupling the first coil L1, the second coil L2, and the third coil L3. Therefore, as for the differential mode signal, as shown in FIG. 2B, the sub circuit SC does not exist equivalently, and the sub circuit SC does not influence the differential mode signal. Note that capacitors Cp1 and Cp2 shown in FIG. 2B are stray capacitances generated between the first coil L1 and the second coil L2.
 図3(A)はコモンモードノイズに対する挿入損失の周波数特性を示す図である。図3(B)は第1共振回路および第2共振回路の単体での挿入損失の周波数特性を示す図である。図3(C)は第3共振回路の挿入損失の周波数特性を示す図である。また、図4は、第3共振回路、第1共振回路および第2共振回路のリアクタンスの周波数特性と、コモンモードノイズに対する挿入損失の周波数特性を示す図である。図4において上段は第3共振回路、第1共振回路および第2共振回路の単体でのリアクタンスの周波数特性を示す図である。中段は、第1共振回路および第2共振回路に第3共振回路が結合した状態でのリアクタンスの周波数特性を示す図である。下段はコモンモードノイズに対する挿入損失の周波数特性を示す図であり、図3(A)と同じ図である。 FIG. 3A shows the frequency characteristics of insertion loss with respect to common mode noise. FIG. 3B is a diagram illustrating frequency characteristics of insertion loss of the first resonance circuit and the second resonance circuit alone. FIG. 3C is a diagram illustrating the frequency characteristics of the insertion loss of the third resonance circuit. FIG. 4 is a diagram illustrating frequency characteristics of reactances of the third resonance circuit, the first resonance circuit, and the second resonance circuit, and frequency characteristics of insertion loss with respect to common mode noise. In FIG. 4, the upper stage is a diagram illustrating frequency characteristics of reactance of the third resonance circuit, the first resonance circuit, and the second resonance circuit alone. The middle stage is a diagram showing frequency characteristics of reactance in a state where the third resonance circuit is coupled to the first resonance circuit and the second resonance circuit. The lower diagram shows the frequency characteristics of insertion loss with respect to common mode noise, and is the same diagram as FIG.
 第1共振回路および第2共振回路の単体での共振周波数はf0、第3共振回路単体での共振周波数はf1であるが、これら共振回路が結合することにより、図4に示したとおり、共振周波数はそれぞれf01,f11に変位し、f01-f11間の周波数帯域が広がる。 The resonance frequency of the first resonance circuit and the second resonance circuit alone is f0, and the resonance frequency of the third resonance circuit alone is f1, but these resonance circuits are coupled to each other as shown in FIG. The frequencies are displaced to f01 and f11, respectively, and the frequency band between f01 and f11 is expanded.
 本実施形態では、図3(A)に表れているように、特に、周波数f01(3GHz)を中心周波数とする所定帯域と、周波数f11(5GHz)を中心周波数とする所定帯域とについてコモンモードノイズが抑制される。 In the present embodiment, as shown in FIG. 3A, common mode noise is particularly generated for a predetermined band having a frequency f01 (3 GHz) as a center frequency and a predetermined band having a frequency f11 (5 GHz) as a center frequency. Is suppressed.
 上記第1共振回路および第2共振回路の単体での共振周波数f0と、第3共振回路単体での共振周波数f1との設定によって、上記コモンモードノイズが抑制される周波数帯の中心周波数f01,f11を定めることができ、そのことによって、コモンモードノイズを抑制する周波数帯を定めることができる。 By setting the resonance frequency f0 of the first resonance circuit and the second resonance circuit alone and the resonance frequency f1 of the third resonance circuit alone, center frequencies f01 and f11 in the frequency band in which the common mode noise is suppressed. Thus, a frequency band for suppressing common mode noise can be determined.
 本実施形態によれば、主回路MCに副回路SCが結合することによって、コモンモードノイズの減衰帯域が広くなる。また、副回路SCはディファレンシャルモードの信号に対しては等価的に存在しなくなり、副回路SCはディファレンシャルモードの信号に影響を及ぼさない。 According to the present embodiment, the sub-circuit SC is coupled to the main circuit MC, so that the attenuation band of common mode noise is widened. Further, the sub circuit SC does not exist equivalently for the differential mode signal, and the sub circuit SC does not affect the differential mode signal.
 図5はモジュール部品101の内部の各導体パターンを透視した斜視図である。図6はこのモジュール部品101の内部の各導体パターンを透視した正面図である。図7はこのモジュール部品101の各絶縁性基材層に形成されている導体パターンを表す平面図である。これら導体パターンは例えばCu箔がパターン化されたものである。導体パターンの厚みは4μmから8μm程度である。隣接する導体パターンの線間距離は20μmから40μm程度である。積層方向に隣接する導体パターンの層間距離も20μmから40μm程度である。 FIG. 5 is a perspective view in which each conductor pattern inside the module component 101 is seen through. FIG. 6 is a front view seen through each conductor pattern in the module component 101. FIG. 7 is a plan view showing a conductor pattern formed on each insulating base material layer of the module component 101. These conductor patterns are obtained by patterning Cu foil, for example. The thickness of the conductor pattern is about 4 μm to 8 μm. The distance between adjacent conductor patterns is about 20 μm to 40 μm. The interlayer distance between conductor patterns adjacent in the stacking direction is also about 20 to 40 μm.
 モジュール部品101は、複数の絶縁性基材層S1~S17が積層された積層体100に構成されている。図6に示す積層体100の下面は、このモジュール部品101を回路基板へ実装するための実装面UFである。これら絶縁性基材層S1~S17は例えばLCP(液晶ポリマー)等の樹脂層である。 The module component 101 is configured as a laminated body 100 in which a plurality of insulating base material layers S1 to S17 are laminated. The lower surface of the laminate 100 shown in FIG. 6 is a mounting surface UF for mounting the module component 101 on the circuit board. These insulating base layers S1 to S17 are resin layers such as LCP (liquid crystal polymer).
 図7において、絶縁性基材層S1は最下層、絶縁性基材層S17は最上層である。絶縁性基材層(以下、単に「基材層」)S1の実装面UFには端子電極P1,P2,P3,P4,PGND が形成されている。基材層S10~S14には第1コイル用導体パターンL1a~L1e、第2コイル用導体パターンL2a~L2e、第1コイル用導体パターンL1a~L1eを層間接続する層間接続導体、および第2コイル用導体パターンL2a~L2eを層間接続する層間接続導体がそれぞれ形成されている。第1コイル用導体パターンL1a~L1eおよびこれらを層間接続する層間接続導体よってヘリカル状の第1コイルL1が構成されている。同様に、第2コイル用導体パターンL2a~L2eおよびこれらを層間接続する層間接続導体によってヘリカル状の第2コイルL2が構成されている。第1コイル用導体パターンL1a~L1eと第2コイル用導体パターンL2a~L2eとは、基材層S10~S14内の各層において、互いに並走するループ状の導体パターンである。これら基材層S10~S14は本発明における「第1層」に相当する。なお、第1コイル用導体パターンL1a~L1eと第2コイル用導体パターンL2a~L2eは、各層において並走しているが、層毎に内周と外周の関係が入れ替わっている。これにより、第1コイル用導体パターンL1a~L1eと第2コイル用導体パターンL2a~L2eのインダクタンスを均等化している。また、後述するように、層間に形成される浮遊容量を均等化している。 In FIG. 7, the insulating base layer S1 is the lowermost layer, and the insulating base layer S17 is the uppermost layer. Terminal electrodes P1, P2, P3, P4, and P GND are formed on the mounting surface UF of the insulating base layer (hereinafter simply “base layer”) S1. In the base material layers S10 to S14, first coil conductor patterns L1a to L1e, second coil conductor patterns L2a to L2e, first coil conductor patterns L1a to L1e, an interlayer connection conductor, and a second coil conductor Interlayer connection conductors for connecting the conductor patterns L2a to L2e to each other are formed. A helical first coil L1 is constituted by the first coil conductor patterns L1a to L1e and the interlayer connection conductors connecting these patterns. Similarly, a helical second coil L2 is configured by the second coil conductor patterns L2a to L2e and the interlayer connection conductors that connect these layers. The first coil conductor patterns L1a to L1e and the second coil conductor patterns L2a to L2e are loop-shaped conductor patterns that run parallel to each other in each of the base layers S10 to S14. These base material layers S10 to S14 correspond to the “first layer” in the present invention. The first coil conductor patterns L1a to L1e and the second coil conductor patterns L2a to L2e run side by side in each layer, but the relationship between the inner periphery and the outer periphery is switched for each layer. Thereby, the inductances of the first coil conductor patterns L1a to L1e and the second coil conductor patterns L2a to L2e are equalized. Further, as will be described later, the stray capacitance formed between the layers is equalized.
 基材層S15,S16には第3コイル用導体パターンL3a,L3bが形成されている。これら第3コイル用導体パターンL3a,L3bは、平面視で第1コイル用導体パターンL1a~L1eおよび第2コイル用導体パターンL2a~L2eと重なる位置に形成されている。この基材層S15,S16は本発明における「第2層」に相当する。 The third coil conductor patterns L3a and L3b are formed on the base material layers S15 and S16. The third coil conductor patterns L3a and L3b are formed at positions overlapping the first coil conductor patterns L1a to L1e and the second coil conductor patterns L2a to L2e in plan view. The base material layers S15 and S16 correspond to the “second layer” in the present invention.
 そして、第2層は第1層の上層側に設けられている。すなわち、基材層S15,S16は、基材層S10~S14とは異なり、基材層S10~S14の積層部分の範囲外の基材層である。 The second layer is provided on the upper layer side of the first layer. That is, unlike the base material layers S10 to S14, the base material layers S15 and S16 are base material layers outside the range of the laminated portion of the base material layers S10 to S14.
 また、第1層(S10~S14)は第2層(S15,S16)より積層体100の実装面UF側に配置されている。換言すると、第2層(S15,S16)は第1層(S10~S14)より積層体100の上面TF側に配置されている。 Further, the first layer (S10 to S14) is arranged on the mounting surface UF side of the laminate 100 from the second layer (S15, S16). In other words, the second layer (S15, S16) is disposed on the upper surface TF side of the stacked body 100 from the first layer (S10 to S14).
 第1コイル用導体パターンL1a~L1eはそれぞれ間に1層を挟んで積層方向に対向する。例えば、基材層S10に形成された第1コイル用導体パターンL1aと、基材層S12に形成された第1コイル用導体パターンL1cとは積層方向に対向し、その間に浮遊容量が形成される。同様に、第2コイル用導体パターンL2aと、第2コイル用導体パターンL2cとは積層方向に対向し、その間に浮遊容量が形成される。また、基材層S11に形成された第1コイル用導体パターンL1bと、基材層S13に形成された第1コイル用導体パターンL1dとは積層方向に対向し、その間に浮遊容量が形成される。同様に、第2コイル用導体パターンL2bと、第2コイル用導体パターンL2dとは積層方向に対向し、その間に浮遊容量が形成される。 The first coil conductor patterns L1a to L1e face each other in the stacking direction with one layer interposed therebetween. For example, the first coil conductor pattern L1a formed on the base material layer S10 and the first coil conductor pattern L1c formed on the base material layer S12 face each other in the stacking direction, and a stray capacitance is formed therebetween. . Similarly, the second coil conductor pattern L2a and the second coil conductor pattern L2c face each other in the stacking direction, and a stray capacitance is formed therebetween. Further, the first coil conductor pattern L1b formed on the base material layer S11 and the first coil conductor pattern L1d formed on the base material layer S13 face each other in the stacking direction, and a stray capacitance is formed therebetween. . Similarly, the second coil conductor pattern L2b and the second coil conductor pattern L2d face each other in the stacking direction, and a stray capacitance is formed therebetween.
 このように、第1コイル用導体パターンL1a~L1eはそのインダクタンス成分が、図1に示した第1コイルL1を構成し、それらの積層方向で導体パターン間に生じる浮遊容量が第1キャパシタC1を構成する。同様に、第2コイル用導体パターンL2a~L2eはそのインダクタンス成分が、図1に示した第2コイルL2を構成し、それらの積層方向で導体パターン間に生じる浮遊容量が第2キャパシタC2を構成する。 As described above, the inductance components of the first coil conductor patterns L1a to L1e constitute the first coil L1 shown in FIG. 1, and the stray capacitance generated between the conductor patterns in the stacking direction causes the first capacitor C1. Constitute. Similarly, the inductance components of the second coil conductor patterns L2a to L2e constitute the second coil L2 shown in FIG. 1, and the stray capacitance generated between the conductor patterns in the stacking direction constitutes the second capacitor C2. To do.
 因みに、第1キャパシタC1および第2キャパシタC2を構成する浮遊容量を、隣接する層の導体パターン間の浮遊容量で構成すると、基材層の面方向の積みずれに対する浮遊容量の変動が大きいが、本実施形態のように、1層分の基材層を挟んで導体パターンを積層方向に対向させることにより、上記積みずれによる浮遊容量の変動は抑制される。 Incidentally, if the stray capacitances constituting the first capacitor C1 and the second capacitor C2 are constituted by stray capacitances between the conductive patterns of adjacent layers, the stray capacitance fluctuates greatly due to the misalignment in the surface direction of the base material layer. As in the present embodiment, by causing the conductor patterns to face each other in the stacking direction with one base material layer interposed therebetween, fluctuations in stray capacitance due to the stacking error are suppressed.
 第3コイル用導体パターンL3a,L3bのうち第1導体パターンL3aは、第2層(S15,S16)のうち第1層(S10~S14)に近い側の基材層S15に形成されている。第3コイル用導体パターンL3a,L3bのうち第2導体パターンL3bは、第1層(S10~S14)から遠い側の基材層S16に形成されている。第1導体パターンL3aと第2導体パターンL3bとは積層方向に対向する。第1導体パターンL3aの外周端は層間接続導体を介して第2導体パターンL3bの外周端と接続される。この第1導体パターンL3aと第2導体パターンL3bとの間に生じる浮遊容量が、図1に示した第3キャパシタC3を構成する。 Among the third coil conductor patterns L3a and L3b, the first conductor pattern L3a is formed on the base layer S15 on the side close to the first layer (S10 to S14) of the second layer (S15, S16). Of the third coil conductor patterns L3a and L3b, the second conductor pattern L3b is formed on the base material layer S16 far from the first layer (S10 to S14). The first conductor pattern L3a and the second conductor pattern L3b face each other in the stacking direction. The outer peripheral end of the first conductor pattern L3a is connected to the outer peripheral end of the second conductor pattern L3b via an interlayer connection conductor. The stray capacitance generated between the first conductor pattern L3a and the second conductor pattern L3b constitutes the third capacitor C3 shown in FIG.
 第1導体パターンL3aの線幅は約30μm、第2導体パターンL3bの線幅は約100μmである。すなわち、第1導体パターンL3aの線幅は第2導体パターンL3bの線幅よりも細く、積層方向からの平面視で、第1導体パターンL3aは実質的に全長に亘って第2導体パターンL3bに重なる。この構造により、第1コイル用導体パターンL1a~L1eおよび第2コイル用導体パターンL2a~L2eと第3コイル用導体パターンL3a,L3bとの間に生じる浮遊容量が抑制される。このことで、第1コイル用導体パターンL1a~L1eによる第1コイルL1および第2コイル用導体パターンL2a~L2eによる第2コイルL2と第3コイルL3とは磁界で結合し、殆ど電界結合しない。この電界結合は、第1コイルL1と第2コイルL2との間に、第3コイルL3を介して容量が生じる結合であるので、ディファレンシャルモードの信号に悪影響を与える。本実施形態では、第1コイルL1および第2コイルL2が第3コイルL3とほぼ磁界でのみ結合するので、ディファレンシャルモードの信号に与える副回路の影響が抑制される。また、第1コイル用導体パターンL1a~L1eと第2コイル用導体パターンL2a~L2eとの面方向の位置ずれがあっても、その影響を受けにくい。 The line width of the first conductor pattern L3a is about 30 μm, and the line width of the second conductor pattern L3b is about 100 μm. That is, the line width of the first conductor pattern L3a is narrower than the line width of the second conductor pattern L3b, and the first conductor pattern L3a is substantially the same as the second conductor pattern L3b over the entire length in plan view from the stacking direction. Overlap. With this structure, stray capacitance generated between the first coil conductor patterns L1a to L1e and the second coil conductor patterns L2a to L2e and the third coil conductor patterns L3a and L3b is suppressed. As a result, the first coil L1 by the first coil conductor patterns L1a to L1e and the second coil L2 and the third coil L3 by the second coil conductor patterns L2a to L2e are coupled by a magnetic field and are hardly electrically coupled. This electric field coupling is a coupling in which a capacitance is generated between the first coil L1 and the second coil L2 via the third coil L3, and thus has an adverse effect on the differential mode signal. In the present embodiment, since the first coil L1 and the second coil L2 are coupled to the third coil L3 almost only by a magnetic field, the influence of the sub circuit on the differential mode signal is suppressed. Further, even if there is a positional deviation in the surface direction between the first coil conductor patterns L1a to L1e and the second coil conductor patterns L2a to L2e, it is not easily affected.
 第3コイル用導体パターンL3a,L3bの外形は、第1コイル用導体パターンL1a~L1eおよび第2コイル用導体パターンL2a~L2eの外形よりも小さい。例えば図6において、第3コイル用導体パターンL3a,L3bの外形幅W3は、第1コイル用導体パターンL1a~L1eおよび第2コイル用導体パターンL2a~L2eの外形幅W12よりも小さい。 The outer shapes of the third coil conductor patterns L3a and L3b are smaller than the outer shapes of the first coil conductor patterns L1a to L1e and the second coil conductor patterns L2a to L2e. For example, in FIG. 6, the outer width W3 of the third coil conductor patterns L3a and L3b is smaller than the outer width W12 of the first coil conductor patterns L1a to L1e and the second coil conductor patterns L2a to L2e.
 このように、第1コイル用導体パターンL1a~L1eと第2コイル用導体パターンL2a~L2eとはそれぞれ同一層を並走し、これらと異なる層であって平面視で重なる位置に第3コイル用導体パターンL3a,L3bが設けられているので、第1コイル用導体パターンL1a~L1eと第3コイル用導体パターンL3a,L3bとの磁界結合度M2aと、第2コイル用導体パターンL2a~L2eと第3コイル用導体パターンL3a,L3bとの磁界結合度M2bとはほぼ等しい。さらに、上記磁界結合度M2a,M2bの大きさは、第1層(S10~S14)と第2層(S15,S16)との間の距離で適宜定められるので、主回路MCの特性に対する副回路SCの影響も最小限に抑制できる。 As described above, the first coil conductor patterns L1a to L1e and the second coil conductor patterns L2a to L2e run in parallel in the same layer, and are in different layers and overlap with each other in plan view. Since the conductor patterns L3a and L3b are provided, the magnetic field coupling degree M2a between the first coil conductor patterns L1a to L1e and the third coil conductor patterns L3a and L3b, the second coil conductor patterns L2a to L2e, The magnetic field coupling degree M2b with the three-coil conductor patterns L3a and L3b is substantially equal. Further, the magnitudes of the magnetic field coupling degrees M2a and M2b are appropriately determined by the distance between the first layer (S10 to S14) and the second layer (S15 and S16). The influence of SC can also be suppressed to the minimum.
 また、第1層(S10~S14)は第2層(S15,S16)より積層体の実装面側に配置されているので、実装面UFに形成されている端子電極P1,P2,P3,P4から第1コイルL1および第2コイルL2までの寄生インダクタンスおよび寄生キャパシタンスが抑制される。これにより、コモンモードノイズの減衰量が確保され、ディファレンシャルモード信号の挿入損失は抑制される。 Further, since the first layer (S10 to S14) is arranged on the mounting surface side of the multilayer body from the second layer (S15, S16), the terminal electrodes P1, P2, P3, P4 formed on the mounting surface UF. To the first coil L1 and the second coil L2, the parasitic inductance and the parasitic capacitance are suppressed. Thereby, the attenuation amount of the common mode noise is ensured, and the insertion loss of the differential mode signal is suppressed.
 図1、図6に示したように、ESD保護素子2およびインダクタLa,Lb,Lc,Ldで構成される過渡電圧サプレッサ20は、主回路MCおよび副回路SCで構成されるコモンモードチョークコイル10より積層体100の実装面UF側に配置されている。この構造により、実装面に形成されている端子電極から過渡電圧サプレッサ20までの経路長が短く、寄生成分が小さいので、過渡電圧の抑制効果が高い。 As shown in FIGS. 1 and 6, the transient voltage suppressor 20 including the ESD protection element 2 and the inductors La, Lb, Lc, and Ld includes the common mode choke coil 10 including the main circuit MC and the sub circuit SC. Further, the laminated body 100 is disposed on the mounting surface UF side. With this structure, since the path length from the terminal electrode formed on the mounting surface to the transient voltage suppressor 20 is short and the parasitic component is small, the effect of suppressing the transient voltage is high.
 ここで、モジュール部品101において、電気的には直接的に関係のない流動防止用ダミーパターンについて示す。図7において、基材層S10,S11,S12,S13に、流動防止用ダミーパターンDP1c,DP1d,DP1e,DP1f,DP1gがそれぞれ形成されている。また、基材層S5に流動防止用ダミーパターンDP1a,DP2a,DP3a,DP4aが形成されている。同様に、基材層S6に流動防止用ダミーパターンDP1b,DP2b,DP3b,DP4bが形成されている。 Here, in the module component 101, a flow prevention dummy pattern that is not directly related electrically will be described. In FIG. 7, flow preventing dummy patterns DP1c, DP1d, DP1e, DP1f, and DP1g are formed on the base material layers S10, S11, S12, and S13, respectively. In addition, flow preventing dummy patterns DP1a, DP2a, DP3a, DP4a are formed on the base material layer S5. Similarly, flow preventing dummy patterns DP1b, DP2b, DP3b, DP4b are formed on the base material layer S6.
 これら流動防止用ダミーパターンは、基材層S5,S6,S10~S14またはそれらに隣接する基材層に形成されている各導体パターンを、それら基材層の面内に均等に分散させる。このことで、積層加熱プレス時に、樹脂が偏って流動することが抑制され、各導体パターンの形状が設計通りに保たれる。また、加熱プレス後、積層体の上面の凹凸が小さく、滑らかになるので、このモジュール部品101を回路基板上に表面実装する際に、マウンターによるピックアップが容易となる。同様に、積層体の実装面についても凹凸が小さく、滑らかになるので、回路基板への実装性が高まる。 These dummy patterns for flow prevention disperse each conductor pattern formed on the base material layers S5, S6, S10 to S14 or the base material layers adjacent thereto uniformly within the surface of the base material layers. This suppresses the resin from flowing unevenly during the lamination heating press, and the shape of each conductor pattern is maintained as designed. In addition, since the unevenness on the upper surface of the laminated body is small and smooth after the heat pressing, picking up by the mounter is easy when the module component 101 is surface-mounted on the circuit board. Similarly, since the unevenness is small and smooth on the mounting surface of the laminated body, the mounting property to the circuit board is improved.
 例えば、基材層S10~S14に形成されている第1コイル用導体パターンL1a~L1eおよび第2コイル用導体パターンL2a~L2eは各基材層の中心から図7における左方へずれている。そのため、各基材層の右端付近に流動防止用ダミーパターンDP1c,DP1d,DP1e,DP1f,DP1gがそれぞれ形成されている。 For example, the first coil conductor patterns L1a to L1e and the second coil conductor patterns L2a to L2e formed on the base material layers S10 to S14 are shifted from the center of each base material layer to the left in FIG. Therefore, flow preventing dummy patterns DP1c, DP1d, DP1e, DP1f, and DP1g are formed near the right end of each base material layer.
 また、基材層S5,S6には、ESD保護素子2(図6参照)を収容するキャビティ用開口CAa,CAbがそれぞれ形成されている。単にキャビティ用開口が形成された基材層はX軸方向、Y軸方向またはその両方向に伸びやすいが、基材層S5,S6には、流動防止用ダミーパターンDP1a,DP2a,DP3a,DP4a,DP1b,DP2b,DP3b,DP4bがそれぞれ形成されているので、基材層S5,S6およびそれらに隣接する基材層の上記「伸び」が抑制される。これにより、キャビティの形状が維持される。 In addition, in the base material layers S5 and S6, cavity openings CAa and CAb for accommodating the ESD protection element 2 (see FIG. 6) are formed, respectively. The base material layer in which the cavity opening is simply formed easily extends in the X-axis direction, the Y-axis direction, or both directions. However, the base material layers S5 and S6 have the flow preventing dummy patterns DP1a, DP2a, DP3a, DP4a, DP1b. , DP2b, DP3b, and DP4b are formed, respectively, so that the “elongation” of the base material layers S5 and S6 and the base material layers adjacent thereto is suppressed. Thereby, the shape of the cavity is maintained.
 上記複数の流動防止用ダミーパターンのうち、流動防止用ダミーパターンDP1a,DP1b,DP1c,DP1d,DP1e,DP1f,DP1gはY軸方向に長いパターンであるので、Y軸方向の伸びを抑制する効果が高い。また、流動防止用ダミーパターンDP2a,DP3a,DP4a,DP2b,DP3b,DP4bはX軸方向に長いパターンであるので、X軸方向の伸びを抑制する効果が高い。 Among the plurality of anti-flow dummy patterns, the anti-flow dummy patterns DP1a, DP1b, DP1c, DP1d, DP1e, DP1f, and DP1g are patterns that are long in the Y-axis direction, and therefore have an effect of suppressing the expansion in the Y-axis direction. high. Further, since the flow preventing dummy patterns DP2a, DP3a, DP4a, DP2b, DP3b, and DP4b are long patterns in the X-axis direction, the effect of suppressing the expansion in the X-axis direction is high.
 上記複数の流動防止用ダミーパターンのうち、流動防止用ダミーパターンDP1a,DP1b,DP1c,DP1d,DP1e,DP1f,DP1g,DP2a,DP3a,DP2b,DP3bは、各基材層の周囲方向に伸び、基材層の中心からの放射方向に2列配置されている。そして、各流動防止用ダミーパターンは各基材層の周囲方向に不連続的に(分断されて)配置されている。この構造により、第1コイル用導体パターンL1a~L1eおよび第2コイル用導体パターンL2a~L2eのコイル開口を通る磁束によって、これら流動防止用ダミーパターンに渦電流が流れることが抑制される。すなわち、第1コイル用導体パターンL1a~L1eおよび第2コイル用導体パターンL2a~L2eの磁界結合を阻害しない。 Among the plurality of anti-flow dummy patterns, the anti-flow dummy patterns DP1a, DP1b, DP1c, DP1d, DP1e, DP1f, DP1g, DP2a, DP3a, DP2b, DP3b extend in the peripheral direction of each base material layer. Two rows are arranged in the radial direction from the center of the material layer. Each flow prevention dummy pattern is disposed discontinuously (divided) in the peripheral direction of each base material layer. With this structure, eddy currents are prevented from flowing through these flow preventing dummy patterns by the magnetic flux passing through the coil openings of the first coil conductor patterns L1a to L1e and the second coil conductor patterns L2a to L2e. That is, the magnetic field coupling between the first coil conductor patterns L1a to L1e and the second coil conductor patterns L2a to L2e is not inhibited.
 特に、流動防止用ダミーパターンDP2a,DP3a,DP2b,DP3bは、分断位置が放射方向に重ならない形状になっている。すなわち、分断位置が分散されている。このことにより、上記渦電流が防止されるとともに、X軸方向の伸びが効果的に抑制される。 In particular, the flow preventing dummy patterns DP2a, DP3a, DP2b, DP3b are shaped so that the dividing positions do not overlap in the radial direction. That is, the dividing position is dispersed. As a result, the eddy current is prevented and elongation in the X-axis direction is effectively suppressed.
 次に、本発明の電子機器の例を示す。図8は本発明に係る電子機器200のブロック図である。この電子機器200は、モジュール部品101、差動伝送線路DTL、USBコネクタCN、差動伝送線路DTLにモジュール部品101を介して接続されたUSBデバイスコントローラ201、このUSBデバイスコントローラ201に接続されたCPU202を備える。モジュール部品101の構成は図1~図7等に示したとおりである。 Next, an example of the electronic device of the present invention is shown. FIG. 8 is a block diagram of an electronic device 200 according to the present invention. The electronic device 200 includes a module component 101, a differential transmission line DTL, a USB connector CN, a USB device controller 201 connected to the differential transmission line DTL via the module component 101, and a CPU 202 connected to the USB device controller 201. Is provided. The configuration of the module component 101 is as shown in FIGS.
 本実施形態によれば、差動伝送線路DTLに重畳されるコモンモードノイズがモジュール部品101内のコモンモードチョークコイル10で抑制される。また、例えばUSBコネクタCNを介して入るESD等の過渡電圧がモジュール部品101内のESD保護素子2で抑制され、USBデバイスコントローラ201へ印加される過渡電圧が抑制される。 According to this embodiment, common mode noise superimposed on the differential transmission line DTL is suppressed by the common mode choke coil 10 in the module component 101. Further, for example, a transient voltage such as ESD entering via the USB connector CN is suppressed by the ESD protection element 2 in the module component 101, and the transient voltage applied to the USB device controller 201 is suppressed.
 なお、図8に示した例は、差動伝送線路にモジュール部品101を接続したが、過渡電圧サプレッサ20を含まないコモンモードチョークコイル単体の部品を構成して、このコモンモードチョークコイルを差動伝送線路に接続してもよい。 In the example shown in FIG. 8, the module component 101 is connected to the differential transmission line. However, the common mode choke coil that does not include the transient voltage suppressor 20 is configured, and the common mode choke coil is differentially connected. You may connect to a transmission line.
 次に、モジュール部品に設ける過渡電圧サプレッサの他の構成について示す。 Next, other configurations of the transient voltage suppressor provided in the module parts will be described.
 図9は二つの過渡電圧サプレッサを備えるモジュール部品102の回路図である。このモジュール部品102は、コモンモードチョークコイル10と二つの過渡電圧サプレッサ21とを備える。コモンモードチョークコイル10の構成および作用は図1に示したものと同じである。 FIG. 9 is a circuit diagram of the module component 102 including two transient voltage suppressors. The module component 102 includes a common mode choke coil 10 and two transient voltage suppressors 21. The configuration and operation of the common mode choke coil 10 are the same as those shown in FIG.
 図9において、過渡電圧サプレッサ21はESD保護素子1およびインダクタLa,Lb,ESL1で構成されている。ESD保護素子1はインダクタLaとインダクタLbとの接続点CN1とグランドとの間に接続されている。インダクタESL1は、ESD電流の経路(インダクタLa,Lbの接続点CN1とグランドとの間に生じるインダクタ)に生じるインダクタンス成分(等価直列インダクタンス)である。インダクタLa,LbはESD保護素子1とのインピーダンス整合回路である。 9, the transient voltage suppressor 21 includes the ESD protection element 1 and inductors La, Lb, and ESL1. The ESD protection element 1 is connected between a connection point CN1 between the inductor La and the inductor Lb and the ground. The inductor ESL1 is an inductance component (equivalent series inductance) generated in the ESD current path (inductor generated between the connection point CN1 of the inductors La and Lb and the ground). The inductors La and Lb are impedance matching circuits with the ESD protection element 1.
 上記インダクタLaとインダクタLbとは和動接続されている。インダクタLa,Lbは本発明に係る「第4コイル」,[第5コイル]にそれぞれ相当する。 The inductor La and the inductor Lb are connected in a Japanese-style manner. The inductors La and Lb correspond to the “fourth coil” and the “fifth coil” according to the present invention, respectively.
 図10(A)、図10(B)は、インダクタLaとインダクタLbとの結合による相互インダクタンスと、ESD電流の経路に生じるインダクタンス成分との関係を示す図である。図10(A)においてキャパシタCd1はESD保護素子1に生じる寄生容量である。図10(A)に示すインダクタLaとインダクタLbとの結合によるトランスは、図10(B)に示すようなT型等価回路で表される。このように、インダクタLaとインダクタLbとの結合による相互インダクタンス(-M)は接続点CN1とグランドとの間に等価的に直列に接続される。インダクタLaとインダクタLbとの結合係数をk、インダクタLaのインダクタンスをLa、インダクタLbのインダクタンスをLbでそれぞれ表すと、M=k×√(La×Lb)の関係にある。 10 (A) and 10 (B) are diagrams showing the relationship between the mutual inductance due to the coupling between the inductor La and the inductor Lb and the inductance component generated in the path of the ESD current. In FIG. 10A, a capacitor Cd1 is a parasitic capacitance generated in the ESD protection element 1. A transformer formed by coupling the inductor La and the inductor Lb shown in FIG. 10A is represented by a T-type equivalent circuit as shown in FIG. Thus, the mutual inductance (−M) due to the coupling between the inductor La and the inductor Lb is equivalently connected in series between the connection point CN1 and the ground. When the coupling coefficient between the inductor La and the inductor Lb is represented by k, the inductance of the inductor La is represented by La, and the inductance of the inductor Lb is represented by Lb, M = k × √ (La × Lb).
 上記インダクタLaとインダクタLbとは和動接続されているので、上記相互インダクタンス(-M)は負のインダクタンスである。そのため、上記ESDの電流経路に生じるインダクタンス成分が相殺される方向に作用する。相互インダクタンス(-M)の絶対値がインダクタESL1のインダクタンスと等しければ、ESDの電流経路のインダクタンス成分は0となる。このことにより、ESD保護時のピーク電圧を効果的に抑制される。 Since the inductor La and the inductor Lb are connected in a oscillating manner, the mutual inductance (−M) is a negative inductance. Therefore, the inductance component generated in the ESD current path is canceled. If the absolute value of the mutual inductance (−M) is equal to the inductance of the inductor ESL1, the inductance component of the ESD current path is zero. This effectively suppresses the peak voltage during ESD protection.
 上述のとおり、過渡電圧サプレッサ21は、ESD保護素子1と、ESD保護素子1との整合回路と、ESL相殺回路とを備える3端子の素子として作用する。 As described above, the transient voltage suppressor 21 functions as a three-terminal element including the ESD protection element 1, the matching circuit for the ESD protection element 1, and the ESL cancellation circuit.
 図11は、信号ラインに対する過渡電圧サプレッサ21の接続構造を示す平面図である。この例では、過渡電圧サプレッサ21は直方体状のチップ部品であり、底面に端子Pa,Pb,PGND を備える。この過渡電圧サプレッサ21の実装先である基材には導体パターンによる信号ラインが形成されていて、過渡電圧サプレッサ21の端子Pa,Pbが二つの信号ラインにそれぞれ接続される。つまり、過渡電圧サプレッサ21は、信号ラインの途中に挿入されるように基材に実装される。また、基材にはグランド電極が形成されていて、過渡電圧サプレッサ21の端子PGND がグランド電極に接続される。端子PGNDは端子Pa,Pbの間に形成されている。したがって、過渡電圧サプレッサ21グランド電極を跨ぐように実装される。 FIG. 11 is a plan view showing a connection structure of the transient voltage suppressor 21 to the signal line. In this example, the transient voltage suppressor 21 is a rectangular parallelepiped chip component, and includes terminals Pa, Pb, and P GND on the bottom surface. The substrate on which the transient voltage suppressor 21 is mounted has a signal line formed by a conductor pattern, and the terminals Pa and Pb of the transient voltage suppressor 21 are connected to the two signal lines, respectively. That is, the transient voltage suppressor 21 is mounted on the base material so as to be inserted in the middle of the signal line. Also, the base material is formed a ground electrode terminal P GND transient voltage suppressor 21 is connected to the ground electrode. The terminal P GND is formed between the terminals Pa and Pb. Therefore, the transient voltage suppressor 21 is mounted so as to straddle the ground electrode.
 図11に示したように、過渡電圧サプレッサ21が信号ラインに対して直列に接続(挿入)される構造であれば、信号ラインの導体パターンおよび過渡電圧サプレッサ20の配置が簡素になる。また、信号ラインのインピーダンス不整合を低減できる。 As shown in FIG. 11, if the transient voltage suppressor 21 is connected (inserted) in series to the signal line, the arrangement of the conductor pattern of the signal line and the transient voltage suppressor 20 is simplified. Moreover, impedance mismatch of the signal line can be reduced.
 図12は過渡電圧サプレッサ21の内部構造を示す透視斜視図である。図12では厚み方向(Z軸方向)を引き延ばして図示している。過渡電圧サプレッサ21はESD保護素子1と、その再配線層RELを備える。ESD保護素子1は、後に示すように、複数のダイオード素子が形成された半導体基板である。この半導体基板の再配線層RELにインダクタLa,Lbが形成されている。再配線層RELの上面は、過渡電圧サプレッサ21の実装面であり、この面に端子Pa,Pb,PGND が形成されている。 FIG. 12 is a perspective view showing the internal structure of the transient voltage suppressor 21. In FIG. 12, the thickness direction (Z-axis direction) is extended. The transient voltage suppressor 21 includes the ESD protection element 1 and its redistribution layer REL. As will be described later, the ESD protection element 1 is a semiconductor substrate on which a plurality of diode elements are formed. Inductors La and Lb are formed in the redistribution layer REL of the semiconductor substrate. The upper surface of the redistribution layer REL is a mounting surface of the transient voltage suppressor 21, and terminals Pa, Pb, and PGND are formed on this surface.
 図13(A)は上記ESD保護素子1の構成を示す平面図であり、図13(B)はESD保護素子1の縦断面図である。また、図14はこのESD保護素子1の回路図である。 FIG. 13A is a plan view showing the configuration of the ESD protection element 1, and FIG. 13B is a longitudinal sectional view of the ESD protection element 1. FIG. FIG. 14 is a circuit diagram of the ESD protection element 1.
 ESD保護素子1はP型半導体基板PsubにN型エピタキシャル層Nepi1,Nepi2 が形成されている。この構造により、P型半導体基板PsubとN型エピタキシャル層Nepi1との間にダイオードD11,D21が構成されている。 In the ESD protection element 1, N-type epitaxial layers Nepi1 and Nepi2 are formed on a P-type semiconductor substrate Psub. With this structure, diodes D11 and D21 are formed between the P-type semiconductor substrate Psub and the N-type epitaxial layer Nepi1.
 N型エピタキシャル層Nepi1 には一つのN型領域が形成されていて、このN型領域とP型半導体基板Psubとの間にツェナーダイオードD3が構成されている。 In the N-type epitaxial layer Nepi1, a single N-type region is formed, and a Zener diode D3 is formed between the N-type region and the P-type semiconductor substrate Psub.
 N型エピタキシャル層Nepi2 には二つのP型領域が形成されていて、これらP型領域とN型エピタキシャル層Nepi2との間にダイオードD12,D22が構成されている。 Two P-type regions are formed in the N-type epitaxial layer Nepi2 and diodes D12 and D22 are formed between the P-type region and the N-type epitaxial layer Nepi2.
 N型エピタキシャル層Nepi2 にはさらに二つのN型領域が形成されている。これらN型領域は上記ダイオードD11,D21のカソード端子として作用する。 Two N-type regions are further formed in the N-type epitaxial layer Nepi2. These N-type regions act as cathode terminals of the diodes D11 and D21.
 上記N型エピタキシャル層Nepi1 ,Nepi2に形成されたN型領域の周囲には、電気的絶縁のためのトレンチTRが形成されている。N型エピタキシャル層Nepi2 に形成された二つのN型領域の一方と二つのP型領域の一方とは、Al 配線で接続され、端子T1として用いられる。同様に、上記二つのN型領域の他方と二つのP型領域の他方とは、Al 配線で接続され、端子T2として用いられる。 A trench TR for electrical insulation is formed around the N-type region formed in the N-type epitaxial layers Nepi1 and Nepi2. One of the two N-type regions formed in the N-type epitaxial layer Nepi2 and one of the two P-type regions are connected by an Al wiring and used as the terminal T1. Similarly, the other of the two N-type regions and the other of the two P-type regions are connected by an Al-aluminum wiring and used as a terminal T2.
 図13(B)中の矢印は半導体基板Psubに流れる電流の方向を示している。以上に示した構造により、二つの端子T1,T2を有するESD保護素子1が構成される。 The arrow in FIG. 13B indicates the direction of current flowing through the semiconductor substrate Psub. The ESD protection element 1 having the two terminals T1 and T2 is configured by the structure described above.
 例えばUSB3.1 Gen2規格などに従って高速データ通信を行う回路に、本実施形態の過渡電圧サプレッサを適用する場合、ESD保護素子は高周波信号を通過させるために、低容量化が必要となる。これは、高周波信号を通すためにESD保護素子の寄生容量と等価直列インダクタンス(ESL)とによる自己共振周波数を高くする必要があるためである。しかし、一般的に低容量のものはESD保護性能が低い、という問題がある。本実施形態では、上述のとおり、インピーダンスマッチングを行うために、ESD保護素子1の容量を利用し、和動結合する二つのインダクタを含むT型マッチング回路を構成する。これによりESD保護素子1のESLをキャンセルさせ、ESD保護素子1の自己共振周波数を高めることができ、ESD保護素子1の寄生容量を低下させることなく(つまりESD保護性能を確保しつつ)、高周波信号を通過させることができる。 For example, when the transient voltage suppressor of this embodiment is applied to a circuit that performs high-speed data communication in accordance with the USB 3.1 Gen2 standard, the ESD protection element needs to have a low capacity in order to pass a high-frequency signal. This is because it is necessary to increase the self-resonance frequency due to the parasitic capacitance of the ESD protection element and the equivalent series inductance (ESL) in order to pass a high-frequency signal. However, there is a problem that generally low capacity capacitors have low ESD protection performance. In the present embodiment, as described above, in order to perform impedance matching, a T-type matching circuit including two inductors that are coupled in a coupled manner using the capacitance of the ESD protection element 1 is configured. As a result, the ESL of the ESD protection element 1 can be canceled, the self-resonance frequency of the ESD protection element 1 can be increased, and the high frequency without increasing the parasitic capacitance of the ESD protection element 1 (that is, while ensuring the ESD protection performance). A signal can be passed.
 次に、ESD保護素子1との整合およびESLの相殺を行う整合回路31と、ESD保護素子1と、を個別の部品で構成する場合の例について、図15、図16を参照して示す。 Next, an example in which the matching circuit 31 that performs matching with the ESD protection element 1 and cancellation of ESL and the ESD protection element 1 are configured by individual components will be described with reference to FIGS. 15 and 16.
 図15は過渡電圧サプレッサの回路図である。この回路は、図9に示した過渡電圧サプレッサ21に相当する。整合回路31は、図12に示した再配線層部分が独立した一つの素子として構成されたものであり、端子Pa,Pb,Pcを備える。また、ESD保護素子1は、図12に示した半導体基板1部分が独立した一つの素子として構成されたものであり、端子T1,T2を備える。 FIG. 15 is a circuit diagram of a transient voltage suppressor. This circuit corresponds to the transient voltage suppressor 21 shown in FIG. The matching circuit 31 is configured as one element in which the rewiring layer portion illustrated in FIG. 12 is independent, and includes terminals Pa, Pb, and Pc. Further, the ESD protection element 1 is configured as one element in which the semiconductor substrate 1 portion shown in FIG. 12 is independent, and includes terminals T1 and T2.
 図16は、信号ラインに対する整合回路31およびESD保護素子1の接続構造を示す平面図である。この例では、整合回路31、ESD保護素子1いずれも直方体状のチップ部品であり、整合回路31は、信号ラインの途中に挿入されるように基材に実装される。ESD保護素子1は、端子T1が基材上の導体パターンを介して整合回路31の端子Pcに接続され、端子T2がグランド電極に接続される。 FIG. 16 is a plan view showing a connection structure of the matching circuit 31 and the ESD protection element 1 to the signal line. In this example, both the matching circuit 31 and the ESD protection element 1 are rectangular parallelepiped chip components, and the matching circuit 31 is mounted on the base material so as to be inserted in the middle of the signal line. In the ESD protection element 1, the terminal T1 is connected to the terminal Pc of the matching circuit 31 through the conductor pattern on the base material, and the terminal T2 is connected to the ground electrode.
 このようにESD保護素子1と整合回路31とを分離すれば、所望の特性を有するESD保護素子1を選択使用できる利点がある。 Thus, separating the ESD protection element 1 and the matching circuit 31 has an advantage that the ESD protection element 1 having desired characteristics can be selectively used.
《他の実施形態》
 図1では、コモンモードチョークコイル10と過渡電圧サプレッサ20を備えたモジュール部品101を示したが、コモンモードチョークコイル10単体の部品を、同様に積層体に構成してもよい。
<< Other embodiments >>
In FIG. 1, the module component 101 provided with the common mode choke coil 10 and the transient voltage suppressor 20 is shown, but the component of the common mode choke coil 10 alone may be similarly configured as a laminate.
 以上に示した第3コイルは、複数の第2層に形成された第3導体パターンで構成された例であったが、この第2層は単一層であってもよい。 The third coil described above is an example configured with a third conductor pattern formed in a plurality of second layers, but the second layer may be a single layer.
 図6では、第1コイルL1および第2コイルL2が形成された「第1層」の上層側に、第3コイルL3が形成された「第2層」が配置される例を示したが、「第1層」と「第2層」の上下関係は逆であってもよい。 FIG. 6 shows an example in which the “second layer” in which the third coil L3 is formed is arranged on the upper layer side of the “first layer” in which the first coil L1 and the second coil L2 are formed. The vertical relationship between the “first layer” and the “second layer” may be reversed.
 図6,図7等では、樹脂多層基板にコモンモードチョークコイルを構成する例を示したが、同様にしてセラミック多層基板にコモンモードチョークコイルを構成してもよい。 6 and 7 show examples in which the common mode choke coil is configured on the resin multilayer substrate, but the common mode choke coil may be configured on the ceramic multilayer substrate in the same manner.
 最後に、上述の実施形態はすべての点で例示であって制限的なものではない。当業者にとって変形および変更が適宜可能である。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲内と均等の範囲内での実施形態からの変更が含まれる。 Finally, the above-described embodiment is illustrative in all respects and not restrictive. Modifications and changes can be made as appropriate by those skilled in the art. The scope of the present invention is shown not by the above embodiments but by the claims. Furthermore, the scope of the present invention includes modifications from the embodiments within the scope equivalent to the claims.
C1…第1キャパシタ
C2…第2キャパシタ
C3…第3キャパシタ
CAa,CAb…キャビティ用開口
CN…USBコネクタ
Da,Db,Dc…ツェナーダイオード
DP1a,DP1b,DP1c,DP1d,DP1e,DP1f,DP1g…流動防止用ダミーパターン
DP2a,DP3a,DP4a,DP2b,DP3b,DP4b…流動防止用ダミーパターン
DTL…差動伝送線路
L1…第1コイル
L1a,L1b,L1c,L1d…第1コイル用導体パターン
L2…第2コイル
L2a,L2b,L2c,L2d…第2コイル用導体パターン
L3…第3コイル
L3a,L3b…第3コイル用導体パターン
L3a…第3コイル用導体パターンの第1導体パターン
L3b…第3コイル用導体パターンの第2導体パターン
La,Lb,Lc,Ld…インダクタ
MC…主回路
P1,P2,P3,P4,PGND,Pa,Pb,Pc…端子電極
S1~S17…絶縁性基材層
SC…副回路
SL1…第1信号線
SL2…第2信号線
TF…上面
UF…実装面
1,2…ESD保護素子
3…第1コイル
6…第2コイル
10…コモンモードチョークコイル
20,21…過渡電圧サプレッサ
100…積層体
101,102…モジュール部品
200…電子機器
201…USBデバイスコントローラ
202…CPU
C1 ... 1st capacitor C2 ... 2nd capacitor C3 ... 3rd capacitor CAa, CAb ... Cavity opening CN ... USB connector Da, Db, Dc ... Zener diode DP1a, DP1b, DP1c, DP1d, DP1e, DP1f, DP1g ... Flow prevention Dummy pattern DP2a, DP3a, DP4a, DP2b, DP3b, DP4b ... Dummy pattern for flow prevention DTL ... Differential transmission line L1 ... First coil L1a, L1b, L1c, L1d ... First coil conductor pattern L2 ... Second coil L2a, L2b, L2c, L2d ... 2nd coil conductor pattern L3 ... 3rd coil L3a, L3b ... 3rd coil conductor pattern L3a ... 1st conductor pattern L3b of 3rd coil conductor pattern ... 3rd coil conductor pattern Second conductor pattern La, Lb, Lc, L ... inductor MC ... main circuit P1, P2, P3, P4, P GND, Pa, Pb, Pc ... terminal electrodes S1 ~ S17 ... insulating substrate layer SC ... subcircuit SL1 ... first signal line SL2 ... second signal line TF ... Upper surface UF ... Mounting surface 1, 2 ... ESD protection element 3 ... First coil 6 ... Second coil 10 ... Common mode choke coils 20, 21 ... Transient voltage suppressor 100 ... Laminate 101, 102 ... Module component 200 ... Electronics Device 201 ... USB device controller 202 ... CPU

Claims (12)

  1.  第1信号線に設けられた第1コイルと、前記第1信号線と共に差動伝送線路を構成する第2信号線に設けられ前記第1コイルに磁界結合する第2コイルとを含む主回路と、
     前記第1コイルおよび前記第2コイルに磁界結合する第3コイルと、当該第3コイルに接続されたキャパシタを含んで構成された副回路と、
     を有し、
     前記第1コイル、前記第2コイルおよび前記第3コイルは、複数の絶縁性基材層が積層され実装面を有する積層体に構成され、
     前記第1コイルおよび前記第2コイルは、前記複数の絶縁性基材層のうち第1層に形成され、互いに並走する第1コイル用導体パターンおよび第2コイル用導体パターンにてそれぞれ構成され、
     前記第3コイルは、前記複数の絶縁性基材層のうち第2層において、且つ平面視で前記第1コイル用導体パターンおよび前記第2コイル用導体パターンと重なる位置に形成された第3コイル用導体パターンにて構成され、
     前記第1層は単一層または複数層で構成され、
     前記第2層は単一層または複数層で構成され、前記第1層の上層側または下層側に設けられる、
     コモンモードチョークコイル。
    A main circuit including a first coil provided on the first signal line, and a second coil magnetically coupled to the first coil provided on a second signal line constituting a differential transmission line together with the first signal line; ,
    A third coil magnetically coupled to the first coil and the second coil, and a sub-circuit configured to include a capacitor connected to the third coil;
    Have
    The first coil, the second coil, and the third coil are configured as a laminate having a mounting surface in which a plurality of insulating base material layers are laminated,
    The first coil and the second coil are each formed of a first coil conductor pattern and a second coil conductor pattern that are formed in the first layer of the plurality of insulating base layers and run parallel to each other. ,
    The third coil is a third coil formed in a second layer of the plurality of insulating base layers and at a position overlapping the first coil conductor pattern and the second coil conductor pattern in plan view. Consists of conductor patterns for
    The first layer is composed of a single layer or multiple layers,
    The second layer is composed of a single layer or a plurality of layers, and is provided on the upper layer side or the lower layer side of the first layer.
    Common mode choke coil.
  2.  前記第1層は前記第2層より前記積層体の前記実装面側に配置されている、請求項1に記載のコモンモードチョークコイル。 The common mode choke coil according to claim 1, wherein the first layer is disposed closer to the mounting surface of the multilayer body than the second layer.
  3.  前記第3コイル用導体パターンは、前記第2層の複数層のうち前記第1層に近い側の層に形成された第1導体パターンと、前記第1層から遠い側の層に形成され前記第1導体パターンと積層方向に対向する第2導体パターンとを含み、
     前記キャパシタは、前記第1導体パターンと前記第2導体パターンとの間に生じる容量によって構成される、
     請求項1または2に記載のコモンモードチョークコイル。
    The third coil conductor pattern is formed in a first conductor pattern formed on a layer closer to the first layer among a plurality of layers of the second layer, and formed on a layer far from the first layer. Including a first conductor pattern and a second conductor pattern facing in the stacking direction;
    The capacitor is constituted by a capacitance generated between the first conductor pattern and the second conductor pattern.
    The common mode choke coil according to claim 1 or 2.
  4.  前記第1導体パターンの線幅は前記第2導体パターンの線幅よりも細い、請求項3に記載のコモンモードチョークコイル。 The common mode choke coil according to claim 3, wherein a line width of the first conductor pattern is narrower than a line width of the second conductor pattern.
  5.  前記第3コイル用導体パターンの外形は、前記第1コイル用導体パターンおよび前記第2コイル用導体パターンの外形よりも小さい、請求項1から4のいずれかに記載のコモンモードチョークコイル。 The common mode choke coil according to any one of claims 1 to 4, wherein an outer shape of the third coil conductor pattern is smaller than an outer shape of the first coil conductor pattern and the second coil conductor pattern.
  6.  前記第1層は複数層で構成され、前記第1層のうち互いに異なる層に形成された前記第1コイル用導体パターン間に、および前記第2コイル用導体パターン間に、それぞれ容量が形成されている、請求項1から5のいずれかに記載のコモンモードチョークコイル。 The first layer is composed of a plurality of layers, and capacitances are formed between the first coil conductor patterns and the second coil conductor patterns formed in different layers of the first layer. The common mode choke coil according to any one of claims 1 to 5.
  7.  コモンモードチョークコイルとESD保護素子とを備え、
     前記コモンモードチョークコイルは、
     第1信号線に設けられた第1コイルと、前記第1信号線と共に差動伝送線路を構成する第2信号線に設けられ前記第1コイルに磁界結合する第2コイルとを含む主回路と、
     前記第1コイルおよび前記第2コイルに磁界結合する第3コイルと、当該第3コイルに接続されたキャパシタを含んで構成された副回路と、
     を有し、
     前記第1コイル、前記第2コイルおよび前記第3コイルは、複数の絶縁性基材層が積層され実装面を有する積層体に構成され、
     前記第1コイルおよび前記第2コイルは、前記複数の絶縁性基材層のうち第1層に形成され、互いに並走する第1コイル用導体パターンおよび第2コイル用導体パターンにてそれぞれ構成され、
     前記第3コイルは、前記複数の絶縁性基材層のうち第2層において、且つ平面視で前記第1コイル用導体パターンおよび前記第2コイル用導体パターンと重なる位置に形成された第3コイル用導体パターンにて構成され、
     前記第1層は単一層または複数層で構成され、
     前記第2層は単一層または複数層で構成され、前記第1層の上層側または下層側に設けられ、
     前記ESD保護素子は、前記積層体に一体化され、前記主回路に接続された、
     モジュール部品。
    A common mode choke coil and an ESD protection element;
    The common mode choke coil is
    A main circuit including a first coil provided on the first signal line, and a second coil magnetically coupled to the first coil provided on a second signal line constituting a differential transmission line together with the first signal line; ,
    A third coil magnetically coupled to the first coil and the second coil, and a sub-circuit configured to include a capacitor connected to the third coil;
    Have
    The first coil, the second coil, and the third coil are configured as a laminate having a mounting surface in which a plurality of insulating base material layers are laminated,
    The first coil and the second coil are each formed of a first coil conductor pattern and a second coil conductor pattern that are formed in the first layer of the plurality of insulating base layers and run parallel to each other. ,
    The third coil is a third coil formed in a second layer of the plurality of insulating base layers and at a position overlapping the first coil conductor pattern and the second coil conductor pattern in plan view. Consists of conductor patterns for
    The first layer is composed of a single layer or multiple layers,
    The second layer is composed of a single layer or a plurality of layers, and is provided on the upper layer side or the lower layer side of the first layer,
    The ESD protection element is integrated into the laminate and connected to the main circuit.
    Module parts.
  8.  前記ESD保護素子は、前記コモンモードチョークコイルより前記積層体の前記実装面側に配置されている、請求項7に記載のモジュール部品。 The module component according to claim 7, wherein the ESD protection element is disposed closer to the mounting surface of the multilayer body than the common mode choke coil.
  9.  前記第1信号線に直列に挿入された第4コイルと第5コイルと、を備え、
     前記ESD保護素子は、前記第4コイルと前記第5コイルとの接続点と、グランドとの間に接続され、
     前記第4コイルと前記第5コイルとは和動接続する、
     請求項7または8に記載のモジュール部品。
    A fourth coil and a fifth coil inserted in series with the first signal line,
    The ESD protection element is connected between a connection point between the fourth coil and the fifth coil and a ground,
    The fourth coil and the fifth coil are connected in a Japanese-style manner.
    The module component according to claim 7 or 8.
  10.  前記第1信号線に直列に挿入された第4コイルと第5コイルと、前記第2信号線に直列に挿入された第6コイルと第7コイルと、を備え、
     前記ESD保護素子は、第1ツェナーダイオードと第2ツェナーダイオードと第3ツェナーダイオードと、を備え、
     前記第1ツェナーダイオードと前記第2ツェナーダイオードとは、前記第4コイルと前記第5コイルとの接続点と、前記第6コイルと前記第7コイルとの接続点と、の間に直列接続され、
     前記第3ツェナーダイオードは、前記第1ツェナーダイオードと前記第2ツェナーダイオードとの接続点と、グランドとの間に接続され、
     前記第4コイルと前記第5コイルとは和動接続し、
     前記第6コイルと前記第7コイルとは和動接続する、
     請求項7または8に記載のモジュール部品。
    A fourth coil and a fifth coil inserted in series with the first signal line; a sixth coil and a seventh coil inserted in series with the second signal line;
    The ESD protection element includes a first Zener diode, a second Zener diode, and a third Zener diode,
    The first Zener diode and the second Zener diode are connected in series between a connection point between the fourth coil and the fifth coil and a connection point between the sixth coil and the seventh coil. ,
    The third Zener diode is connected between a connection point of the first Zener diode and the second Zener diode and a ground;
    The fourth coil and the fifth coil are connected in a Japanese-style manner,
    The sixth coil and the seventh coil are connected in a Japanese-style manner.
    The module component according to claim 7 or 8.
  11.  差動伝送線路を有するコモンモードチョークコイルと、前記差動伝送線路に接続された電子回路とを備え、
     前記コモンモードチョークコイルは、
     第1信号線に設けられた第1コイルと、前記第1信号線と共に前記差動伝送線路を構成する第2信号線に設けられ前記第1コイルに磁界結合する第2コイルとを含む主回路と、
     前記第1コイルおよび前記第2コイルに磁界結合する第3コイルと、当該第3コイルに接続されたキャパシタを含んで構成された副回路と、
     を有し、
     前記第1コイル、前記第2コイルおよび前記第3コイルは、複数の絶縁性基材層が積層され実装面を有する積層体に構成され、
     前記第1コイルおよび前記第2コイルは、前記複数の絶縁性基材層のうち第1層に形成され、互いに並走する第1コイル用導体パターンおよび第2コイル用導体パターンにてそれぞれ構成され、
     前記第3コイルは、前記複数の絶縁性基材層のうち第2層において、且つ平面視で前記第1コイル用導体パターンおよび前記第2コイル用導体パターンと重なる位置に形成された第3コイル用導体パターンにて構成され、
     前記第1層は単一層または複数層で構成され、
     前記第2層は単一層または複数層で構成され、前記第1層の上層側または下層側に設けられた、
     電子機器。
    A common mode choke coil having a differential transmission line, and an electronic circuit connected to the differential transmission line,
    The common mode choke coil is
    A main circuit including a first coil provided on a first signal line and a second coil magnetically coupled to the first coil provided on a second signal line that constitutes the differential transmission line together with the first signal line When,
    A third coil magnetically coupled to the first coil and the second coil, and a sub-circuit configured to include a capacitor connected to the third coil;
    Have
    The first coil, the second coil, and the third coil are configured as a laminate having a mounting surface in which a plurality of insulating base material layers are laminated,
    The first coil and the second coil are each formed of a first coil conductor pattern and a second coil conductor pattern that are formed in the first layer of the plurality of insulating base layers and run parallel to each other. ,
    The third coil is a third coil formed in a second layer of the plurality of insulating base layers and at a position overlapping the first coil conductor pattern and the second coil conductor pattern in plan view. Consists of conductor patterns for
    The first layer is composed of a single layer or multiple layers,
    The second layer is composed of a single layer or a plurality of layers, and is provided on the upper layer side or the lower layer side of the first layer.
    Electronics.
  12.  請求項7から10のいずれかに記載のモジュール部品と、前記差動伝送線路と、当該差動伝送線路に接続された電子回路とを備えた電子機器。 An electronic apparatus comprising the module component according to claim 7, the differential transmission line, and an electronic circuit connected to the differential transmission line.
PCT/JP2018/003332 2017-02-14 2018-02-01 Common mode choke coil, module component, and electronic device WO2018150881A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018568093A JP6642742B2 (en) 2017-02-14 2018-02-01 Common mode choke coils, module components and electronic equipment

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-024557 2017-02-14
JP2017024557 2017-02-14
JP2017155118 2017-08-10
JP2017-155118 2017-08-10

Publications (1)

Publication Number Publication Date
WO2018150881A1 true WO2018150881A1 (en) 2018-08-23

Family

ID=63169857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003332 WO2018150881A1 (en) 2017-02-14 2018-02-01 Common mode choke coil, module component, and electronic device

Country Status (2)

Country Link
JP (1) JP6642742B2 (en)
WO (1) WO2018150881A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019230027A1 (en) * 2018-05-31 2019-12-05 株式会社村田製作所 Impedance matching element, and communication device
JP2021005842A (en) * 2019-06-27 2021-01-14 株式会社村田製作所 Noise reduction circuit, transmission module, and SerDes circuit
JP2022514606A (en) * 2018-12-20 2022-02-14 エイブイエックス コーポレイション Multilayer filter with capacitors connected to at least two vias
WO2022049927A1 (en) * 2020-09-04 2022-03-10 株式会社村田製作所 Filter, filter module, and electronic device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001197665A (en) * 2000-01-14 2001-07-19 Fuji Electric Co Ltd Input line filter
JP2007013723A (en) * 2005-06-30 2007-01-18 Tdk Corp Surge absorbing circuit
JP2012019504A (en) * 2010-06-07 2012-01-26 Mitsubishi Electric Corp Noise filter
WO2013136936A1 (en) * 2012-03-16 2013-09-19 株式会社村田製作所 Common mode choke coil
WO2015087794A1 (en) * 2013-12-09 2015-06-18 株式会社村田製作所 Common-mode filter and common-mode filter with esd protection circuit
WO2016067746A1 (en) * 2014-10-30 2016-05-06 日立オートモティブシステムズ株式会社 Laminated capacitor and in-vehicle control device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001197665A (en) * 2000-01-14 2001-07-19 Fuji Electric Co Ltd Input line filter
JP2007013723A (en) * 2005-06-30 2007-01-18 Tdk Corp Surge absorbing circuit
JP2012019504A (en) * 2010-06-07 2012-01-26 Mitsubishi Electric Corp Noise filter
WO2013136936A1 (en) * 2012-03-16 2013-09-19 株式会社村田製作所 Common mode choke coil
WO2015087794A1 (en) * 2013-12-09 2015-06-18 株式会社村田製作所 Common-mode filter and common-mode filter with esd protection circuit
WO2016067746A1 (en) * 2014-10-30 2016-05-06 日立オートモティブシステムズ株式会社 Laminated capacitor and in-vehicle control device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019230027A1 (en) * 2018-05-31 2019-12-05 株式会社村田製作所 Impedance matching element, and communication device
JP2022514606A (en) * 2018-12-20 2022-02-14 エイブイエックス コーポレイション Multilayer filter with capacitors connected to at least two vias
JP7288055B2 (en) 2018-12-20 2023-06-06 キョーセラ・エイブイエックス・コンポーネンツ・コーポレーション Multilayer filter comprising a capacitor connected with at least two vias
JP2021005842A (en) * 2019-06-27 2021-01-14 株式会社村田製作所 Noise reduction circuit, transmission module, and SerDes circuit
JP7363128B2 (en) 2019-06-27 2023-10-18 株式会社村田製作所 Noise reduction circuit, transmission module, and SerDes circuit
WO2022049927A1 (en) * 2020-09-04 2022-03-10 株式会社村田製作所 Filter, filter module, and electronic device

Also Published As

Publication number Publication date
JP6642742B2 (en) 2020-02-12
JPWO2018150881A1 (en) 2019-11-07

Similar Documents

Publication Publication Date Title
US9755606B2 (en) Common mode filter and ESD-protection-circuit-equipped common mode filter
US10193336B2 (en) ESD protection circuit, differential transmission line, common mode filter circuit, ESD protection device, and composite device
JP6642742B2 (en) Common mode choke coils, module components and electronic equipment
JP6102871B2 (en) Common mode choke coil and high frequency electronic equipment
US10886730B2 (en) Filter having an ESD protection device
US10749494B2 (en) Noise filter circuit
EP2669906A1 (en) An integrated circuit based transformer
KR101422950B1 (en) Series inductor array comprising one coil and filter comprising the same
US8421577B2 (en) Planar inductive unit and an electronic device comprising a planar inductive unit
US20040263308A1 (en) Inductor formed between two layout layers
US10950381B2 (en) Surface-mounted LC device
US9350316B1 (en) Wideband baluns and methods of their manufacture
WO2018008422A1 (en) Inductor with esd protection function
US10004144B2 (en) Connector module
US10008757B2 (en) High-frequency module
US11870412B2 (en) Multilayer substrate, circuit device, and filter circuit substrate
US20230047936A1 (en) Filter circuit
US10911014B2 (en) Electronic component
JP2020155875A (en) Noise filter
JP2008263074A (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18754103

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018568093

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18754103

Country of ref document: EP

Kind code of ref document: A1