WO2019229915A1 - 飛行時間型質量分析装置 - Google Patents

飛行時間型質量分析装置 Download PDF

Info

Publication number
WO2019229915A1
WO2019229915A1 PCT/JP2018/020885 JP2018020885W WO2019229915A1 WO 2019229915 A1 WO2019229915 A1 WO 2019229915A1 JP 2018020885 W JP2018020885 W JP 2018020885W WO 2019229915 A1 WO2019229915 A1 WO 2019229915A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive signal
voltage
signal
switching element
time
Prior art date
Application number
PCT/JP2018/020885
Other languages
English (en)
French (fr)
Inventor
司朗 水谷
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2020522489A priority Critical patent/JP7040612B2/ja
Priority to PCT/JP2018/020885 priority patent/WO2019229915A1/ja
Priority to US17/053,397 priority patent/US11443935B2/en
Publication of WO2019229915A1 publication Critical patent/WO2019229915A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/40Time-of-flight spectrometers
    • H01J49/403Time-of-flight spectrometers characterised by the acceleration optics and/or the extraction fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/022Circuit arrangements, e.g. for generating deviation currents or voltages ; Components associated with high voltage supply
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/40Time-of-flight spectrometers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits

Definitions

  • the present invention relates to a time-of-flight mass spectrometer (hereinafter referred to as “TOFMS” as appropriate), and more specifically, to impart acceleration energy to ions in an ion ejection portion of the time-of-flight mass spectrometer.
  • TOFMS time-of-flight mass spectrometer
  • the present invention relates to a high voltage power supply apparatus that applies a high voltage to a predetermined electrode.
  • TOFMS various ions derived from a sample are ejected from an ion ejection unit, and the flight time required for the ions to fly a certain flight distance is measured. Since the flying ions have a velocity corresponding to the mass-to-charge ratio m / z, the flight time corresponds to the mass-to-charge ratio of the ions, and the mass-to-charge ratio can be obtained from the flight time.
  • OA-TOFMS orthogonal acceleration type TOFMS
  • ions to be measured are sandwiched between a flat-plate extrusion electrode and a flat-grid extraction electrode, which are arranged substantially parallel to each other. It is introduced into the orthogonal acceleration space in a direction substantially parallel to the spreading surface of these electrodes.
  • a predetermined high voltage pulse is applied to one or both of the extrusion electrode and the extraction electrode at a predetermined timing, ions passing through the orthogonal acceleration space are given acceleration energy in a direction substantially orthogonal to the traveling direction of the ions. . Due to this acceleration energy, ions are ejected from the orthogonal acceleration space and sent into the flight space, and are separated according to the mass-to-charge ratio and reach the detector while flying in the flight space.
  • Patent Document 1 discloses a power supply device for generating such a high voltage pulse.
  • this power supply apparatus has a circuit having the configuration shown in FIG.
  • the power supply device is a pulse that transmits a pulse signal from the control system circuit to the power system circuit while electrically isolating the control system circuit that operates at a low voltage from the power system circuit that operates at a high voltage.
  • a transformer 72 a primary side drive circuit 71 for driving the primary winding of the pulse transformer 72, a secondary side drive circuit 73 connected to the secondary winding of the pulse transformer 72, and a DC high voltage not shown
  • a switch circuit 74 including a plurality of MOSFETs 741 that turn on and off a DC voltage by the high voltage circuit in accordance with a control voltage applied through the secondary side drive circuit 73.
  • a high voltage pulse of +2500 V and 0 V in other periods can be output from the voltage output terminal 78.
  • the time of flight of each ion is measured starting from the time when the ion is ejected or accelerated. Therefore, in order to increase the mass accuracy, it is important that the time of flight start of measurement coincides with the timing at which the high voltage pulse for ion ejection is actually applied to the extrusion electrode or the like as much as possible.
  • One major factor causing this timing shift is a change in characteristics of a circuit element (such as a semiconductor component or a pulse transformer) due to a change in ambient temperature.
  • the ambient temperature of the power supply device is monitored, the power supply voltage of the primary drive circuit 71 is adjusted according to the temperature, and the timing at which the MOSFET 741 is turned on is adjusted. The misalignment is corrected.
  • the present invention has been made in order to solve these problems, and the object of the present invention is to determine the time between the start of flight time measurement and the time of ion injection due to various factors that cannot be solved by conventional measures. It is an object of the present invention to provide a time-of-flight mass spectrometer that can reduce deviation and achieve high mass accuracy and high mass resolution.
  • the present inventor has found through experiments that the above-described variation in the deviation of the generation timing of the high-voltage pulse within a short time is mainly due to jitter of the drive signal input to the power supply device, that is, temporal fluctuation. .
  • the high voltage pulse changes at the timing when the level of the input drive signal changes (specifically, rises), and therefore jitter occurs in the drive signal input to the power supply device. If there is, there will be a temporal variation in the change of the high voltage pulse, and the timing of the start of ion ejection will be shifted.
  • the present invention which has been made to solve the above-described problems, is an ion injection unit that applies acceleration energy to ions to be measured by an action of an electric field formed by a voltage applied to an electrode, and emits the ions toward a flight space.
  • a time-of-flight mass spectrometer comprising: a high-voltage pulse generator for generating a high-voltage pulse for ejecting ions and applying the high-voltage pulse to the electrode,
  • the high voltage pulse generator is a) a DC power supply that generates DC high voltage; b) a switch circuit including a semiconductor switching element that generates a high voltage pulse by switching the DC high voltage; c) Charging or discharging the capacity of the control terminal of the semiconductor switching element according to the drive signal output by the drive signal generation unit described later, thereby turning the switching element on or maintaining the on state, or the switching element A switching element driving unit for turning off or maintaining the off state; d) A primary drive signal and a secondary drive signal for maintaining the ON or OFF state of the switching element delayed from the primary drive signal based on an activation signal whose voltage level changes at the timing of ejecting ions.
  • a drive signal generation unit that outputs a primary drive signal that does not pass through the secondary drive number generation unit as a drive signal; It is characterized by having.
  • the activation signal input to the drive signal generation unit has a voltage level that can be processed by the drive signal generation unit.
  • the rising edge of the high voltage pulse is the timing of the start of ion ejection.
  • the switching element drive unit charges the capacitance of the control terminal of the semiconductor switching element (for example, the gate terminal when the semiconductor switching element is a MOSFET) when the drive signal is input from the drive signal generation unit at a predetermined timing, Turn on the switching element.
  • the capacitance of the control terminal of the semiconductor switching element is recharged according to the drive signal input from the drive signal generation unit.
  • capacitance of the control terminal of a semiconductor switching element can also utilize the input capacity of the element itself, when a capacitance is insufficient, a capacitor may be added separately.
  • the switching element driving unit is configured such that the capacity of the control terminal of the semiconductor switching element is almost completely discharged or charged to a reverse voltage in accordance with the driving signal input from the driving signal generation unit.
  • Charging hereinafter referred to as “new charging” in some cases for comparison with recharging
  • new charging in some cases for comparison with recharging
  • recharging but input at the timing of turning on the semiconductor switching element to raise a high voltage pulse
  • the drive signal is a primary drive signal that does not pass through the secondary drive signal generator in the drive signal generator.
  • the drive signal input to recharge the capacity of the control terminal of the semiconductor switching element is a secondary drive signal that has passed through the secondary drive signal generator in the drive signal generator.
  • the number of circuit elements inserted in the signal path from the input terminal to the output terminal of the drive signal generation unit is larger in the secondary drive signal during recharging than in the primary drive signal during new charging. .
  • the possibility of adding jitter generated in each circuit element increases. That is, the primary drive signal input to the switching element drive unit at the time of new charging with a relatively small number of circuit elements inserted in series is recharged at a relatively large number of circuit elements inserted in series.
  • signal fluctuations associated with changes in jitter and ambient temperature can be suppressed.
  • timing fluctuation due to jitter and temperature change at the rising edge of the high-voltage pulse when starting ion ejection becomes smaller than that in the prior art, and deviation in timing of ion ejection start can be reduced.
  • the drive signal generation unit uses, as a primary drive signal, a drive signal that has passed through at least the necessary circuit elements at the timing at which the semiconductor switching element is turned on so that at least the ion emission unit starts to emit ions. It is desirable to output.
  • the minimum required circuit element is, for example, an edge detection circuit that detects a voltage level change (that is, an edge) when ions are ejected in the activation signal, and a predetermined level is determined at the timing when the voltage level change occurs. It is a circuit element that forms a circuit that outputs a voltage signal of a magnitude.
  • the circuit formed by this circuit element preferably does not include an active element such as a semiconductor element that causes jitter, such as a CR differential circuit composed of a capacitor element and a resistance element. Accordingly, in the drive signal generation unit, switching (or gating) of driving signal output / output stop according to switching between execution and stop of measurement, switching of polarity according to switching of positive ionization / negative ionization, and When performing various processes such as noise removal superimposed on a signal, at least at the timing when the semiconductor switching element is turned on to start the ejection of ions in the ion ejection section, a plurality of circuit elements including the semiconductor elements for such processes A drive signal that does not pass through is preferably output as a primary drive signal.
  • an active element such as a semiconductor element that causes jitter
  • the switch circuit includes a plus-side semiconductor switching element that outputs a plus-side voltage from the DC power supply unit to a voltage output terminal when the switch circuit is in an on state, and the DC circuit when the switch circuit is in an on state.
  • the switching element driving unit includes a first switching element driving unit that charges a control terminal to a voltage at which the positive-side semiconductor switching element is turned on or a voltage that maintains an on state in response to a first driving signal; A second switching element driving unit that charges the control terminal to a voltage at which the negative-side semiconductor switching element is turned on or a voltage to maintain the on state according to a driving signal;
  • the secondary drive signal generation unit further includes a distribution unit that distributes a signal based on the input activation signal into a signal corresponding to the first switching element driving unit and a signal corresponding to the second switching element driving unit.
  • a secondary drive signal for maintaining the on-state or the off-state of the plus-side semiconductor switching element every predetermined time based on the signal after being distributed by the distribution unit, and the minus every predetermined time The secondary drive signal for maintaining the on-state or the off-state of the side semiconductor switching element can be generated independently.
  • the positive side voltage and the negative side voltage do not refer to voltages having positive and negative polarities, but mean that the former is a relatively higher voltage than the latter. Therefore, for example, both the positive side voltage and the negative side voltage may be positive, and the positive side voltage and the negative side voltage may both be negative.
  • the term “plus side” in the plus side semiconductor switching element means, for example, that the semiconductor switching element is arranged between the plus side voltage and the voltage output end, so that the voltage output end is turned on. It means that it functions to output a positive voltage.
  • minus side in the minus side semiconductor switching element means that, for example, the semiconductor switching element is disposed between the minus side voltage and the voltage output terminal, so that the voltage output terminal has a minus side. It means that it functions to output a voltage of.
  • the first primary drive signal and the high voltage pulse are lowered (changed to a voltage at which ions are not emitted).
  • the second primary drive signal is supplied from the drive signal generator to the switching element driver through a different signal path, that is, through a separate signal line.
  • the drive signal generation unit includes a distribution unit, but the first primary drive signal that does not pass through the circuit element in the distribution unit at the timing when the semiconductor switching element is turned on so that the ion emission unit starts to emit ions. Is output as a drive signal.
  • temporal fluctuations in the timing of high voltage change and fluctuations due to temperature changes when ions are ejected toward the flight space in the ion ejection portion can be reduced as compared with the prior art.
  • the time lag between the measurement start time of flight time and the ion ejection time can be further reduced, and high mass accuracy and high mass resolution can be achieved.
  • the schematic block diagram of OA-TOFMS which is one Example of this invention.
  • FIG. 1 is a schematic configuration diagram of the OA-TOFMS of this embodiment
  • FIG. 3 is a schematic circuit configuration diagram of an acceleration voltage generation unit in the OA-TOFMS of this embodiment
  • FIG. 2 is an acceleration voltage generation of the OA-TOFMS of this embodiment. It is a wave form diagram of the principal part in a section.
  • ions generated from a sample by an ion source are introduced into the ion ejection unit 1 in the Z-axis direction as indicated by a downward arrow in FIG.
  • the ion ejection part 1 includes a flat plate-like extrusion electrode 11 and a grid-like extraction electrode 12 which are arranged to face each other.
  • the drive signal generator 6 generates a drive signal for generating a high voltage pulse based on the input signal.
  • the acceleration voltage generator 7 generates a high voltage pulse based on the drive signal, and applies the high voltage pulse to both or one of the extrusion electrode 11 and the extraction electrode 12.
  • ions passing between the extrusion electrode 11 and the extraction electrode 12 are given acceleration energy in the X-axis direction orthogonal to the Z-axis, and are ejected from the ion ejection unit 1 and sent into the flight space 2.
  • the ions enter the reflector 3 after flying through the flight space 2 which is an electric field.
  • the reflector 3 includes a plurality of annular reflection electrodes 31 and a back plate 32, and a predetermined DC voltage is applied to the reflection electrode 31 and the back plate 32 from the reflection voltage generator 5. As a result, a reflected electric field is formed in the space surrounded by the reflective electrode 31, and ions are reflected by this electric field and fly again in the flight space 2 to reach the detector 4.
  • the detector 4 generates an ion intensity signal corresponding to the amount of ions that have reached and inputs the signal to a data processing unit (not shown).
  • the data processing unit measures the flight time starting from the time when the ions are ejected from the ion ejection unit 1, and creates a flight time spectrum indicating the relationship between the flight time and the ion intensity signal. Further, the mass spectrum is calculated by converting the flight time into the mass-to-charge ratio based on the mass calibration information obtained in advance.
  • the configuration and operation of the acceleration voltage generation unit 7 are basically the same as those of the acceleration voltage generation unit in TOFMS described in Patent Document 1.
  • the acceleration voltage generator 7 is added to the acceleration voltage generator in the TOFMS described in PCT / JP2017 / 039691 previously filed by the applicant of the present application. It may be one that introduces technical matters that have been introduced.
  • the acceleration voltage generator 7 includes a primary side drive circuit 71, a pulse transformer 72, a secondary side drive circuit 73, and a switch circuit 74.
  • the primary side drive circuit 71, the pulse transformer 72, and the secondary side drive circuit 73 correspond to the switching element drive unit in the present invention.
  • the switch circuit 74 is a switching element in which power MOSFETs 741 are connected in multiple stages in series on the plus side (above the voltage output terminal 78 in FIG. 3) and the minus side (below the voltage output terminal 78 in FIG. 3). Includes a series circuit. Voltages + V and ⁇ V applied to both ends of this switching element series circuit from a high voltage power supply unit (not shown) are the polarity of ions to be measured and the electrode to which a high voltage pulse is applied (extruded electrode 11 or extraction electrode 12).
  • the description will be made assuming that the ion is a positive ion and a high voltage pulse is applied to the extrusion electrode 11.
  • the ion may be a negative ion. .
  • a high voltage pulse may be applied to the extraction electrode 12 to eject ions.
  • the pulse transformer 72 is a ring core type transformer, the ring core is provided corresponding to the gate terminal of the MOSFET 741 of each stage of the switch circuit 74, and the secondary winding wound around each ring core is the MOSFET 731 of the secondary drive circuit 73,
  • a one-turn cable wire connected to 732 and penetrated through the ring core is defined as a primary winding 72a.
  • a high-voltage insulated wire is used for this cable line, thereby electrically insulating the primary side and the secondary side. The number of secondary windings can be determined appropriately.
  • the primary side drive circuit 71 includes a plurality of MOSFETs 711, 712, 715 to 718 and a plurality of transformers 713, 714, and the drive signals a and b are input from the drive signal generation unit 6 to the plus side drive signal input terminal 771 and the minus side drive signal input. Each is input to the end 772.
  • the term “plus side” at the plus side drive signal input terminal 771 means that the plus side MOSFET 741 is turned on (or turned on) by inputting a high level signal to the input terminal, as will be described later.
  • the term “minus side” at the minus side drive signal input terminal 772 inputs a high level signal to this input terminal as the circuit operation will be described later. This means that the minus-side MOSFET 741 functions to be turned on (or maintained in the on-state).
  • a high level drive signal a is input to the plus side drive signal input terminal 771 at time t0 while the gate voltage A is maintained at a negative voltage and the gate voltage B is maintained at a positive voltage. Then, the MOSFET 711 is turned on. As a result, a current flows through the primary winding of the transformer 713, and a predetermined voltage is induced across the secondary winding. As a result, both MOSFETs 715 and 716 are turned on. At this time, since the MOSFET 712 is in the off state, no current flows through the primary winding of the transformer 714, and both the MOSFETs 717 and 718 are in the off state. Therefore, the voltage VDD supplied from a primary power source (not shown) is applied to both ends of the primary winding 72a of the pulse transformer 72, and a current flows downward in FIG. 3 through the primary winding 72a.
  • a voltage (hereinafter referred to as “gate voltage”) applied to the gate terminal of each MOSFET 741 via the MOSFETs 731 and 732 and the gate discharge resistor 733 included in the secondary side drive circuit 73 is approximated by the following equation. Can be expressed.
  • the level of the drive signal b input to the minus side drive signal input terminal 772 changes to a low level (voltage zero)
  • the voltage at both ends of the primary winding of the pulse transformer 72 becomes zero.
  • the gate voltage of the MOSFET 741 is maintained at substantially the same value by the charge accumulated in the input capacitance of the gate terminal of the six-stage MOSFET 741, that is, by the charge voltage of the gate terminal. Thereby, the output voltage from the voltage output terminal 78 is maintained at 0V.
  • the switch circuit 74 adds a positive signal after the drive signal a changes from the high level to the low level. It is necessary to continue to turn on the MOSFET 741 on the side, and conversely turn off the MOSFET 741 on the minus side.
  • the input capacitance of the gate terminal of the MOSFET 741 is charged by the current flowing from the secondary winding 72b of the pulse transformer 72 when the drive signal b is at a high level, and the charge voltage remains even after the drive signal b changes to a low level. Although it remains, the voltage gradually decreases with the passage of time due to the spontaneous discharge. Therefore, in order to ensure that the gate voltage of the minus-side MOSFET 741 is maintained to be equal to or higher than the threshold voltage, the minus-side drive signal is input at an appropriate time interval even during a period in which a high voltage pulse is not generated (0 V).
  • a pulse voltage is applied to the gate terminal of the negative MOSFET 741 to recharge the input capacitance of the gate terminal.
  • the drive signal a is supplied to the plus side drive signal input terminal 771 at an appropriate time interval in order to reliably maintain the gate voltage of the plus side MOSFET 741 at or above the threshold voltage.
  • the drive signal a for newly charging the input capacitance of the gate terminal of the plus-side MOSFET 741 is [P1]
  • the drive signal a for recharging the gate terminal is [P2].
  • the drive signal b for newly charging the input capacitance of the gate terminal of the negative side MOSFET 741 is indicated by [Q1]
  • the drive signal b for recharging the gate terminal is indicated by [Q2] and [Q3].
  • the recharge time interval is preferably determined in accordance with the measurement cycle, that is, the ion injection time interval, but here it is related to the gist of the present invention. The explanation is omitted here.
  • the drive signal generator 6 generates two systems of drive signals a and b to be input to the acceleration voltage generator 7.
  • the TOFMS of this embodiment is characterized by the configuration of the drive signal generator 6.
  • FIG. 4 is a schematic block diagram of the drive signal generator 6 in the TOFMS of this embodiment
  • FIG. 5 is a waveform diagram of the main part of the drive signal generator 6.
  • the drive signal generation unit 6 includes edge detection circuits 691 and 692, a secondary drive signal generation circuit 6B, selection circuits 671 and 672, and switching signal generation circuits 681 and 682.
  • a signal level conversion circuit 60 is connected to the previous stage of the drive signal generation unit 6.
  • the measurement start by OA-TOFMS that is, the timing of ion ejection is performed by a LVDS (Low Voltage Differential Signaling) method suitable for high-speed signal transmission from a substrate on which another electric circuit is mounted.
  • the activation signal to decide is sent.
  • the signal level conversion circuit 60 converts the voltage level of the start signal, which is a low-voltage differential signal, into a standard LCTL or LVCMOS voltage level (typically 3.3 V).
  • This level-converted start signal (see FIG. 5A): hereinafter, unless otherwise specified, the level-converted start signal is simply referred to as “start-up signal”) edge detection circuits 691 and 692 of the drive signal generator 6. And input to the secondary drive signal generator 6B.
  • Edge detection circuits 691 and 692 are CR differentiating circuits, detect rising edges of the activation signal, generate edge detection signals (see FIG. 5B), and output them to the selection circuits 671 and 672.
  • the secondary drive signal generation unit 6B generates a secondary drive signal (see FIG. 5E) based on the activation signal and outputs it to the selection circuits 671 and 672.
  • the selection circuits 671 and 672 are based on a circuit that generates a signal having a predetermined time width as a primary drive signal from the rising edge of the input edge detection signal, and a switching control signal input from the switching signal generation circuits 681 and 672. A circuit that selects either the primary drive signal or the secondary drive signal and outputs it as a drive signal.
  • the edge detection circuits 691 and 692 are circuits for detecting the rising edge of the activation signal and it is not necessary to detect the falling edge of the activation signal.
  • a configuration is adopted in which an edge detection signal on the negative voltage side is not output by clamping most of the negative voltage side of a certain output signal with a diode (not shown).
  • the secondary drive signal generator 6B includes an on / off circuit 61, a positive / negative mode switching circuit 62, a noise removal circuit 63, two systems of A / B input distribution circuits 641 and 642, and two systems of clock generation circuits. 651 and 652 and two systems of pulse shaping circuits 661 and 662, and a secondary drive signal is generated based on the input start signal.
  • the on / off circuit 61 is an on / off circuit that switches whether or not to actually generate a high voltage pulse from another control system circuit, that is, whether or not to operate the acceleration voltage generation unit 7.
  • ON / OFF control signal is input, and the ON / OFF circuit 61 passes the activation signal only when the ON / OFF control signal is in the ON state (for example, high level), and the ON / OFF control signal is in the OFF state ( For example, the activation signal is cut off when the signal level is low.
  • the output of the on / off circuit 61 is input to the positive / negative mode switching circuit 62 and the switching signal generation circuits 681 and 682. Therefore, when the on / off control signal is in the off state, no significant signal is input to the positive / negative mode switching circuit 62 or the switching signal generation circuits 681 and 682.
  • the positive / negative mode switching circuit 62 is supplied with a P / N control signal for switching the positive / negative ionization mode from another control system circuit, and the positive / negative mode switching circuit 62 receives an activation signal according to the voltage level of the P / N control signal. Is output as is or inverted. Specifically, when the P / N control signal is at a level corresponding to the positive ionization mode, the positive / negative mode switching circuit 62 passes the output signal of the on / off circuit 61 and outputs it, so that FIG. The activation signal shown in a) is output almost as it is.
  • the noise removal circuit 63 is a filter for removing, when there is a pulse-like noise at a short time interval due to noise jumping from the outside in the signal line output from the positive / negative mode switching circuit 62. In generating the secondary drive signal, the noise removing circuit 63 is not essential and can be omitted.
  • the signal from which noise has been removed by the noise removal circuit 63 and the signal whose polarity has been inverted in accordance with the voltage level of the P / N control signal are input to the two A / B input distribution circuits 641 and 642, respectively.
  • the / B input distribution circuits 641 and 642 distribute the input signals so as to correspond to the positive drive signal input terminal 771 and the negative drive signal input terminal 772, respectively. That is, in the positive ionization mode, the A / B input distribution circuit 641 outputs a signal that becomes high level while the output signal of the noise removal circuit 63 that is output based on the activation signal is high level ( (Refer FIG.5 (c)).
  • the A / B input distribution circuit 642 outputs a signal that becomes low level while the output signal of the noise removal circuit 63 that is output based on the activation signal is at high level (see FIG. 5G). .
  • the signals output from the A / B input distribution circuits 641 and 642 are almost interchanged.
  • Each of the two clock generation circuits 651 and 652 receives an input signal and generates a rectangular clock signal having a predetermined frequency.
  • FIG. 5D is a clock signal generated corresponding to the signal shown in FIG. 5C
  • FIG. 5H is a clock signal generated corresponding to the signal shown in FIG. Signal. This clock signal is generated only during a period when the input signals to the clock generation circuits 651 and 652 are at a high level.
  • Clock signals output from the clock generation circuits 651 and 652 are input to the pulse shaping circuits 661 and 662 and the switching signal generation circuits 681 and 682.
  • the pulse shaping circuits 661 and 662 detect rising edges of the clock signals generated by the clock generation circuits 651 and 652, respectively, and generate signals having a predetermined width that rise at the detected edges.
  • FIG. 5E shows a signal generated corresponding to the clock signal shown in FIG. 5D, and in this example, includes three secondary drive signals.
  • FIG. 5 (i) is a signal generated corresponding to the clock signal shown in FIG. 5 (h), and in this example, includes three secondary drive signals.
  • the clock generation circuits 651 and 652 and the pulse shaping circuits 661 and 662 are mainly for generating a secondary drive signal for recharging. As will be described later, the MOSFET is turned off in order to terminate ion ejection.
  • the drive signal generated by the secondary drive signal generation circuit 6B is used as the drive signal at the turn-on timing.
  • the frequency of the clock signal generated by the clock generation circuits 651 and 652 may be changed according to the measurement cycle.
  • the selection circuits 671 and 672 are generated inside the selection circuits 671 and 672 based on the edge detection signals generated by the edge detection circuits 691 and 692 in response to the switching control signals input from the switching signal generation circuits 681 and 682.
  • the primary drive signal thus switched and the secondary drive signal output from the pulse shaping circuits 661 and 662 are switched and output.
  • the switching signal generating circuits 681 and 682 are input with a starting signal after gating by the on / off circuit 61, that is, a starting signal generated only when a high voltage pulse is actually generated and a positive / negative mode switching signal. Is done.
  • the switching control signals output from the switching signal generation circuits 681 and 682 are switched by this positive / negative mode switching signal.
  • the switching signal generation circuit 681 selects the primary drive signal for a predetermined time from the rising edge of the activation signal, In other periods, a switching control signal for selecting the secondary drive signal that is the output of the pulse shaping circuit 661 is supplied to the selection circuit 671 while the clock signal input from the clock generation circuits 651 and 652 is at a high level. give. Accordingly, at this time, the output of the selection circuit 671 is as shown in FIG.
  • the drive signal a including the primary drive signal for turning on the final-stage MOSFET in the acceleration voltage generation unit 7 and the secondary drive signal for recharging the gate capacitance in order to maintain the MOSFET in the ON state is obtained. can get.
  • the switching signal generation circuit 682 gives a switching control signal that always selects the secondary drive signal that is the output of the pulse shaping circuit 662 to the other selection circuit 67. With this switching control signal from the switching signal generation circuit 682, the selection circuit 672 continues to output the secondary drive signal that is the output of the pulse shaping circuit 662 as it is. Accordingly, the output of the selection circuit 672 at this time is substantially the same as that shown in FIG. 5 (i) as shown in FIG. 5 (j).
  • the driving signal b including the primary driving signal for turning off the final-stage MOSFET in the acceleration voltage generator 7 and the secondary driving signal for recharging the gate capacitance in order to maintain the MOSFET in the off state is obtained. can get.
  • the primary drive signal at this time is not based on the edge detection signal, but is generated by the secondary drive signal generation circuit 6B.
  • the drive signal generation circuit 6 By outputting the drive signals a and b from the drive signal generation circuit 6 as described above, for example, in the positive ionization mode, a positive high voltage pulse as shown in FIG. Is done.
  • the negative ionization mode since the operations of the switching signal generation circuits 681 and 682 are switched, the operations of the selection circuits 671 and 672 are also switched accordingly. That is, the selection circuit 672 generates a primary drive signal based on the edge detection signal obtained from the edge detection circuit 692, and switches between the primary drive signal and the secondary drive signal input from the pulse shaping circuit 662. Output. Conversely, the selection circuit 671 continues to output the secondary drive signal input from the pulse shaping circuit 661 as it is. As a result, a negative high voltage pulse as shown in FIG. Of course, the polarity of the high voltage pulse differs depending on whether the pulse is applied to the extraction electrode 12 or the extrusion electrode 11.
  • What is important in the drive signal generation unit 6 is the timing of the level change of the high voltage pulse (edges indicated by arrows in FIGS. 5 (k) and 5 (L)) when the ion ejection unit 1 starts ejecting ions.
  • the drive signal that is generated by the secondary drive signal generation circuit 6B is used as the drive signal that determines the timing of the level change of the high voltage pulse when the ion ejection in the ion ejection unit 1 is terminated.
  • the primary drive signal is a signal in the drive signal generation unit 6 as compared with the secondary drive signal that is the output of the secondary drive signal generation circuit 6B including a large number of circuit elements.
  • the number of logic circuit elements that pass through is small.
  • the edge detection circuits 691 and 692 are CR differentiation circuits here, no active elements (semiconductor elements) are included.
  • circuit elements are factors of time fluctuation of signals caused by jitter and temperature change. Therefore, the smaller the number of circuit elements, particularly semiconductor elements, through which signals pass, the more time fluctuation of signals caused by jitter and temperature changes. Few.
  • the drive signal generation unit 6 adopts the characteristic configuration as described above, so that the rise of the primary drive signal that determines the timing of the level change of the high voltage pulse when the ion ejection is started and the temperature change are considered. It is possible to reduce the time variation of the signal caused. As a result, deviations and fluctuations in the timing of ion ejection start can be suppressed, and high timing accuracy and mass resolution can be achieved by accurately matching the timing of the start of flight measurement and the timing of ion ejection start in the data processing unit. be able to.
  • a circuit for generating a drive signal as shown in FIGS. 2A and 2B or FIGS. 5F and 5J is not limited to the block configuration shown in FIG. Therefore, the circuit configuration of the drive signal generation unit 6 can be appropriately modified. However, the timing of the level change of the high voltage pulse when the ion ejection is started, no matter how it is modified. It is obvious that the object of the present invention can be achieved by configuring the signal path of the primary drive signal that determines the other to drive the other circuit for generating the secondary drive signal.
  • the TOFMS in the above embodiment has a function of switching between positive and negative ionization modes, it is obvious that a configuration without such a function of switching is also possible.
  • the acceleration voltage generator 7 controls the on / off of the plurality of MOSFETs in the final stage based on the two systems of drive signals, but the on / off of the plurality of MOSFETs in the final stage based on the one system of drive signals. It is also possible to adopt a configuration for controlling the off. In that case, it is natural that the circuit configuration of the drive signal generator 6 changes accordingly.
  • the present invention is applied to OA-TOFMS.
  • the present invention accelerates ions held in other TOFMS, for example, a three-dimensional quadrupole type or linear type ion trap, to thereby increase the flight space.
  • the present invention can also be applied to a time-of-flight mass spectrometer that accelerates ions generated from a sample by an ion trap time-of-flight mass spectrometer or a MALDI ion source that sends them to the flight space.
  • acceleration voltage generation unit 71 ... primary side drive circuits 711, 712, 715, 716, 717, 718 ... MOSFET 713, 714 ... Transformer 72 ... Pulse transformer 72a ... Primary winding 72b ... Secondary winding 73 ... Secondary side drive circuits 731, 732 ... MOSFET 733 ... Gate discharge resistor 74 ... Switch circuit 741 ... Power MOSFET 771... Plus side drive signal input terminal 772... Negative side drive signal input terminal 78.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

加速電圧発生部は、駆動信号に基づいて電力用MOSFETをオン/オフさせることで直流高電圧を切り替え、イオン射出部からイオンを射出させるための高電圧パルスを生成する。駆動信号は電力用MOSFETをターンオンするとともに該MOSFETをオン状態に維持するためにゲート容量を再充電する2次駆動信号を含む。駆動信号生成部(6)において、選択回路(671、672)はイオンの射出開始のタイミングを決める駆動信号を出力する期間には、エッジ検出回路(691、692)で起動信号から生成されたエッジ検出信号の信号幅を調整した1次駆動信号を選択し、それ以外の期間には、半導体素子を含む多数の回路素子を含む2次駆動信号生成回路(6B)で生成された2次駆動信号を選択して出力する。これにより、イオン射出開始のタイミングを決める1次駆動信号のジッタや温度変化に起因する信号変動を軽減することができ、イオン射出開始のタイミングと飛行時間計測開始のタイミングとの時間ズレを抑えて質量精度や質量分解能を向上させるこができる。

Description

飛行時間型質量分析装置
 本発明は飛行時間型質量分析装置(以下、適宜「TOFMS」と称す)に関し、さらに詳しくは、飛行時間型質量分析装置のイオン射出部においてイオンを飛行させるための加速エネルギをイオンに付与するべく所定の電極に高電圧を印加する高電圧電源装置に関する。
 TOFMSでは、イオン射出部から試料由来の各種イオンを射出し、該イオンが一定の飛行距離を飛行するのに要する飛行時間を計測する。飛行するイオンはその質量電荷比m/zに応じた速度を有するため、上記飛行時間はそのイオンの質量電荷比に応じたものとなり、飛行時間から質量電荷比を求めることができる。
 TOFMSの一つの方式として、直交加速方式のTOFMSが知られている(以下、適宜「OA-TOFMS」と称す)。特許文献1に開示されているように、OA-TOFMSでは、測定対象であるイオンを、互いに略平行に対向して配置されている平板状の押出電極と平板グリッド状の引出電極とで挟まれる直交加速空間に、それら電極の拡がり面に略平行な方向に導入する。所定のタイミングで押出電極と引出電極との一方又はその両方に所定の高電圧パルスを印加すると、直交加速空間を通過するイオンはそのイオンの進行方向と略直交する方向に加速エネルギを付与される。この加速エネルギにより、イオンは該直交加速空間から射出されて飛行空間に送り込まれ、飛行空間を飛行する間に質量電荷比に応じて分離されて検出器に到達する。
 OA-TOFMSでは、イオンを直交加速空間から射出する際に、短い時間幅で且つkVオーダーである高電圧パルスを押出電極や引出電極に印加する必要がある。特許文献1には、こうした高電圧パルスを生成するための電源装置が開示されている。詳しくは後で説明するが、この電源装置は図3に示す構成の回路を有している。概略的に言えば、電源装置は、低電圧で動作する制御系回路と高電圧で動作する電力系回路とを電気的に絶縁しつつパルス信号を制御系回路から電力系回路へと伝送するパルストランス72と、該パルストランス72の一次巻線を駆動する一次側駆動回路71と、パルストランス72の二次巻線に接続された二次側駆動回路73と、直流高電圧を生成する図示しない高電圧回路と、上記二次側駆動回路73を通して与えられる制御電圧に応じて上記高電圧回路による直流電圧をオン/オフしてパルス化する複数のMOSFET741を含むスイッチ回路74と、を含む。
 プラス側駆動信号入力端771に入力される駆動信号がハイレベルになると、パルストランス72の一次巻線に下向きに電流が流れ、その二次巻線の両端には所定の電圧が誘起される。この電圧が二次側駆動回路73を通してプラス側の(図3において電圧出力端78よりも上側に記載されている)複数のMOSFET741のゲート端子に印加され、該複数のMOSFET741はオンする。一方、マイナス側の(図3において電圧出力端78よりも下側に記載されている)複数のMOSFET741はオフ状態であり、電圧供給端+Vに印加されている電圧(例えば+2500V)が電圧出力端78から出力される。プラス側駆動信号入力端771に入力される駆動信号がローレベルに変化すると、パルストランス72の一次巻線の両端電圧はゼロになるが、それまでに各MOSFET741のゲート端子の入力容量に蓄積されていた電荷によって、そのゲート電圧は概ね同じ値に維持される。そのためにプラス側のMOSFET741はオン状態を維持し、電圧出力端78からは電圧供給端+Vに印加されている高電圧が出力され続ける。
 次にマイナス側駆動信号入力端772に入力される駆動信号がハイレベルになると、パルストランス72の一次巻線に上向きに電流が流れ、その二次巻線の両端には先の電圧とは逆極性の電圧が誘起される。この電圧が二次側駆動回路73を通してマイナス側の複数のMOSFET741のゲート端子に印加され、該複数のMOSFET741はオンする。一方、プラス側の複数のMOSFET741はオフする。それにより、電圧供給端-Vに印加されている電圧(例えば0V)が電圧出力端78から出力される。このようにして、プラス側駆動信号入力端771に入力された駆動信号がハイレベルとなった時点からマイナス側駆動信号入力端772に入力される駆動信号がハイレベルとなる時点までの期間中、例えば+2500Vであり、それ以外の期間には0Vであるような高電圧パルスを電圧出力端78から出力することができる。
 上述したように、TOFMSではイオンが射出される又はイオンが加速される時点を起点として各イオンの飛行時間を計測する。そのため、質量精度を高めるには、飛行時間の計測開始時点と、実際にイオン射出のための高電圧パルスが押出電極等に印加されるタイミングと、ができるだけ一致していることが重要である。このタイミングのズレを引き起こす一つの大きな要因は、周囲温度の変化による回路素子(半導体部品やパルストランスなど)の特性の変化である。こうした課題を解決するために、特許文献1に記載の電源装置では、電源装置の周囲温度をモニタしてその温度に応じて一次側駆動回路71の電源電圧を調整し、MOSFET741がターンオンするタイミングのズレを補正するようにしている。
国際公開第2018/037440号
 温度などの影響による高電圧パルスの発生タイミングのズレを上述したような手法により低減するという対策は、質量精度を向上させるうえでかなり有効である。一方で、本発明者らは、上記のような電源装置に関連する対策だけでは、高電圧パルスの発生タイミングのズレの低減に限界があることを実験的に確認した。特に、温度の影響による高電圧パルスの発生タイミングのズレの変動は時間的に比較的緩慢であるのに対し、非常に短い時間で高電圧パルスの発生タイミングのズレが変動することも実験的に判明している。TOFMSでは、複数回の測定を繰り返し実行して得られた複数のマススペクトル(飛行時間スペクトル)データを積算して一つのマススペクトルを作成することもよくあるが、上述したように短い時間内で高電圧パルスの発生タイミングのズレが変動すると、積算により得られるマススペクトルの質量分解能が低下するという問題が生じる。
 本発明はこうした課題を解決するために成されたものであり、その目的とするところは、従来の対策では解消し得ない、様々な要因による飛行時間の計測開始時点とイオン射出時点との時間ズレを軽減し、高い質量精度及び高い質量分解能を達成することができる飛行時間型質量分析装置を提供することである。
 本発明者は、上述した短い時間内での高電圧パルスの発生タイミングのズレの変動が、主として電源装置へ入力される駆動信号のジッタつまりは時間的な揺らぎに起因することを実験により見いだした。特許文献1等に記載のTOFMSにおける電源装置では、入力される駆動信号のレベルが変化する(具体的には立ち上がる)タイミングで高電圧パルスが変化するため、電源装置へ入力される駆動信号にジッタがあると高電圧パルスの変化にも時間的な変動が生じ、イオン射出開始のタイミングがズレてしまう。また、電源装置において周囲温度の影響を軽減するような補正を行っても、該電源装置へ入力される駆動信号自体の温度変化による変動の影響は殆ど補正されず、それが高電圧パルスの発生タイミングのズレの変動の一因であることも判明した。本発明者はこうした知見に基づき、本発明をするに至った。
 即ち、上記課題を解決するために成された本発明は、電極に印加される電圧によって形成される電場の作用により測定対象のイオンに加速エネルギを与えて飛行空間へ向けて射出するイオン射出部と、イオンを射出させるための高電圧パルスを生成して前記電極に印加する高電圧パルス生成部と、を具備する飛行時間型質量分析装置であって、
 前記高電圧パルス生成部は、
 a)直流高電圧を発生する直流電源部と、
 b)前記直流高電圧をスイッチングすることで高電圧パルスを生成する半導体スイッチング素子を含むスイッチ回路と、
 c)後記駆動信号生成部により出力された駆動信号に応じて前記半導体スイッチング素子の制御端子の容量を充電又は放電させることで、該スイッチング素子をターンオンさせる若しくはオン状態を維持させる、又は該スイッチング素子をターンオフさせる若しくはオフ状態を維持させるスイッチング素子駆動部と、
 d)イオンを射出させるタイミングで電圧レベルが変化する起動信号に基づいて、1次駆動信号及び該1次駆動信号から遅れて該スイッチング素子のオン状態又はオフ状態を維持するための2次駆動信号を駆動信号として出力するものであって、前記2次駆動信号を生成する2次駆動信号生成部を含み、少なくとも前記イオン射出部でイオンの射出を開始させるべく前記半導体スイッチング素子をターンオンさせるタイミングでは前記2次駆動号生成部を経ない1次駆動信号を駆動信号として出力する駆動信号生成部と、
 を備えることを特徴としている。
 なお、ここで、駆動信号生成部に入力される起動信号は該駆動信号生成部での処理が可能な電圧レベルであるものとする。
 本発明に係るTOFMSにおいて、例えば高電圧パルス生成部からイオン射出部に入力される高電圧パルスが立ち上がると、該イオン射出部ではイオンが加速されて飛行空間に向けて射出され始める。つまり、高電圧パルスの立ち上がりがイオン射出開始のタイミングである。スイッチ回路において半導体スイッチング素子がターンオンすると高電圧パルスが立ち上がる。スイッチング素子駆動部は駆動信号生成部から駆動信号が所定のタイミングで入力されたときに半導体スイッチング素子の制御端子(例えば半導体スイッチング素子がMOSFETである場合にはゲート端子)の容量を充電し、該スイッチング素子をターンオンさせる。また、半導体スイッチング素子を所定時間以上に亘ってオン状態に維持する際には、駆動信号生成部から入力される駆動信号に応じて半導体スイッチング素子の制御端子の容量を再充電する。なお、半導体スイッチング素子の制御端子の容量はその素子自体の入力容量を利用することもできるが、キャパシタンスが不足する場合には別途、キャパシタを追加することもある。
 即ち、スイッチング素子駆動部は駆動信号生成部から入力される駆動信号に応じて半導体スイッチング素子の制御端子の容量を、それ以前のほぼ完全に放電されている状態又は逆電圧に充電されている状態から充電(以下、再充電と対比するために「新規充電」という場合がある)する場合と再充電する場合とがあるが、高電圧パルスを立ち上げるために半導体スイッチング素子をターンオンさせるタイミングで入力される駆動信号は駆動信号生成部において2次駆動信号生成部を経ない1次駆動信号である。一方、半導体スイッチング素子の制御端子の容量を再充電するために入力される駆動信号は、駆動信号生成部において2次駆動信号生成部を経た2次駆動信号である。
 したがって、駆動信号生成部の入力端から出力端までの信号経路中に挿入されている回路素子の数は、新規充電時の1次駆動信号に比べて再充電時の2次駆動信号のほうが多い。直列に挿入される回路素子の数が多いほど、各回路素子において生じるジッタが加算される可能性が高くなる。即ち、直列に挿入される回路素子の数が相対的に少ない新規充電時にスイッチング素子駆動部に入力される1次駆動信号は、直列に挿入される回路素子の数が相対的に多い再充電時にスイッチング素子駆動部に入力される2次駆動信号に比べて、ジッタや周囲温度の変化に伴う信号変動が抑えられる。それにより、イオンの射出を開始する際の高電圧パルスの立ち上がりにおけるジッタや温度変化によるタイミングの変動が従来よりも小さくなり、イオン射出開始のタイミングのズレを低減することができる。
 なお、本発明において駆動信号生成部では、少なくともイオン射出部でイオンの射出を開始させるべく半導体スイッチング素子をターンオンさせるタイミングで、最低限必要である回路素子のみを経た駆動信号を1次駆動信号として出力することが望ましい。ここで最低限必要である回路素子とは、例えば前記起動信号においてイオンを射出させる際の電圧レベル変化(つまりエッジ)を検出するエッジ検出回路等であり、その電圧レベル変化が生じるタイミングに所定の大きさの電圧信号を出力するような回路を形成する回路素子である。この回路素子により形成される回路は、コンデンサ素子と抵抗素子とで構成されるCR微分回路等、ジッタの原因となるような半導体素子等の能動素子を含まないものであることが望ましい。したがって、駆動信号生成部において、測定の実行と停止との切替えに応じた駆動信号の出力/出力停止の切替え(又はゲーティング)や、正イオン化/負イオン化の切替えに応じた極性切替え、さらには信号に重畳するノイズ除去などの各種の処理を実施する場合、少なくともイオン射出部でイオンの射出を開始させるべく半導体スイッチング素子をターンオンさせるタイミングでは、こうした処理のための半導体素子を含む複数の回路素子を経ない駆動信号を1次駆動信号として出力するとよい。
 また本発明の一実施態様として、前記スイッチ回路は、オン状態であるときに前記直流電源部によるプラス側電圧を電圧出力端に出力するプラス側半導体スイッチング素子と、オン状態であるときに前記直流電源部によるマイナス側電圧を前記電圧出力端に出力するマイナス側半導体スイッチング素子とを含み、
 前記スイッチング素子駆動部は、第1の駆動信号に応じて前記プラス側半導体スイッチング素子がターンオンする電圧又はオン状態を維持する電圧に制御端子を充電する第1のスイッチング素子駆動部と、第2の駆動信号に応じて前記マイナス側半導体スイッチング素子がターンオンする電圧又はオン状態を維持する電圧に制御端子を充電する第2のスイッチング素子駆動部とを含み、
 前記2次駆動信号生成部は、入力された起動信号に基づく信号を前記第1のスイッチング素子駆動部に対応する信号と前記第2のスイッチング素子駆動部に対応する信号とに振り分ける振分け部をさらに含み、該振分部で振り分けられたあとの信号に基づいて、所定時間毎に前記プラス側半導体スイッチング素子のオン状態又はオフ状態を維持するための2次駆動信号と、所定時間毎に前記マイナス側半導体スイッチング素子のオン状態又はオフ状態を維持するための2次駆動信号と、をそれぞれ独立に生成する構成とすることができる。
 なお、本明細書において、プラス側電圧及びマイナス側電圧とは正負の極性を有する電圧を指すのではなく、前者が後者に対して相対的に高い電圧であることを意味する。したがって、例えばプラス側電圧及びマイナス側電圧が共に正極性である場合もあればプラス側電圧及びマイナス側電圧が共に負極性である場合もあり得る。また、プラス側半導体スイッチング素子における「プラス側」という用語は、例えばこの半導体スイッチング素子がプラス側電圧と電圧出力端との間に配置されることで、オン状態となったときに電圧出力端にプラス側電圧を出力するように機能するものであることを意味する。またマイナス側半導体スイッチング素子における「マイナス側」という用語は、例えばこの半導体スイッチング素子がマイナス側電圧と電圧出力端の間に配置されることで、オン状態となったときに電圧出力端にマイナス側の電圧を出力するように機能するものであることを意味する。
 この構成では、高電圧パルスを立ち上げる(イオンを射出させるための電圧に変化させる)際の第1の1次駆動信号と高電圧パルスを立ち下げる(イオンを射出しない電圧に変化させる)際の第2の1次駆動信号とが異なる信号経路を通して、つまりは別々の信号線を経て駆動信号生成部からスイッチング素子駆動部に供給される。この場合、駆動信号生成部は振分け部を含むが、イオン射出部でイオンの射出を開始させるべく半導体スイッチング素子をターンオンさせるタイミングでは、上記振分け部における回路素子も経ない第1の1次駆動信号が駆動信号として出力される。
 本発明によれば、イオン射出部においてイオンを飛行空間に向けて射出する際の高電圧の変化のタイミングの時間的な揺らぎや温度変化による変動を従来よりも低減することができる。それにより、飛行時間の計測開始時点とイオン射出時点との時間ズレをより一層軽減し、高い質量精度及び高い質量分解能を達成することができる。
本発明の一実施例であるOA-TOFMSの概略構成図。 本実施例のOA-TOFMSの加速電圧発生部における要部の波形図。 本実施例のOA-TOFMSにおける加速電圧発生部の概略回路構成図。 本実施例のOA-TOFMSにおける駆動信号生成部の概略ブロック構成図。 本実施例のOA-TOFMSにおける駆動信号生成部の要部の波形図。
 以下、本発明の一実施例であるOA-TOFMSについて、添付図面を参照して説明する。
 図1は本実施例のOA-TOFMSの概略構成図、図3は本実施例のOA-TOFMSにおける加速電圧発生部の概略回路構成図、図2は本実施例のOA-TOFMSの加速電圧発生部における要部の波形図である。
 本実施例のOA-TOFMSにおいて、図示しないイオン源で試料から生成されたイオンは図1中に下向き矢印で示すようにZ軸方向にイオン射出部1に導入される。イオン射出部1は、対向して配置されている平板状の押出電極11とグリッド状の引出電極12とを含む。駆動信号生成部6は入力信号に基づいて高電圧パルスを生成するための駆動信号を生成する。また加速電圧発生部7は、駆動信号に基づいて高電圧パルスを生成し、該高電圧パルスを押出電極11と引出電極12の両方又は一方に印加する。これにより、押出電極11と引出電極12との間を通過するイオンはZ軸に直交するX軸方向に加速エネルギを付与され、イオン射出部1から射出されて飛行空間2に送り込まれる。イオンは無電場である飛行空間2中を飛行したあとリフレクタ3に入射する。
 リフレクタ3は円環状である複数の反射電極31とバックプレート32を含み、該反射電極31及びバックプレート32にはそれぞれ反射電圧発生部5から所定の直流電圧が印加される。これにより、反射電極31で囲まれる空間には反射電場が形成され、この電場によってイオンは反射されて飛行空間2中を再び飛行して検出器4に到達する。検出器4は到達したイオンの量に応じたイオン強度信号を生成し図示しないデータ処理部に入力する。データ処理部は、イオン射出部1からイオンが射出された時点を起点として飛行時間を計測し、その飛行時間とイオン強度信号との関係を示す飛行時間スペクトルを作成する。また、予め求めておいた質量校正情報に基づいて飛行時間を質量電荷比に換算することでマススペクトルを算出する。
 次に、加速電圧発生部7の詳細な構成と動作について説明する。なお、この加速電圧発生部7の構成と動作は特許文献1に記載されているTOFMSにおける加速電圧発生部と基本的に同様である。また、この加速電圧発生部7は、該特許文献において加えられている変形や、本出願人が先に出願しているPCT/JP2017/039691号に記載されているTOFMSにおける加速電圧発生部に加えられている技術事項を導入したものであってもよい。
 図3に示すように、加速電圧発生部7は、一次側駆動回路71、パルストランス72、二次側駆動回路73、及び、スイッチ回路74、を含む。一次側駆動回路71、パルストランス72、及び二次側駆動回路73が本発明におけるスイッチング素子駆動部に相当する。
 スイッチ回路74は、プラス側(図3中の電圧出力端78よりも上側)、マイナス側(図3中の電圧出力端78よりも下側)それぞれ、電力用MOSFET741を直列に多段接続したスイッチング素子直列回路を含む。図示しない高電圧電源部からこのスイッチング素子直列回路の両端に印加される電圧+V及び-Vは、測定対象であるイオンの極性及び高電圧パルスを印加する対象の電極(押出電極11又は引出電極12)に依存し、イオンが正イオンであって高電圧パルスを押出電極11に印加するときには例えば+V=2500V、-V=0V、イオンが負イオンであって高電圧パルスを押出電極11に印加するときには例えば+V=0V、-V=-2500Vである。なお、一般的にはイオンが正イオンである場合が多いので、イオンが正イオンであり高電圧パルスを押出電極11に印加するものとして説明を進めるが、イオンが負イオンであっても構わない。また、高電圧パルスを引出電極12に印加してイオンを射出させるものでも構わない。
 パルストランス72はリングコア形のトランスであり、リングコアをスイッチ回路74の各段のMOSFET741のゲート端子に対応して設け、各リングコアに巻回した二次巻線を二次側駆動回路73のMOSFET731、732に接続し、リングコアに貫通させた1ターンのケーブル線を一次巻線72aとする。このケーブル線には高圧絶縁電線を使用し、これによって一次側と二次側とを電気的に絶縁する。なお、二次側の巻線数は適当に定めることができる。
 一次側駆動回路71は複数のMOSFET711、712、715~718、複数のトランス713、714を含み、駆動信号生成部6から駆動信号a、bがプラス側駆動信号入力端771及びマイナス側駆動信号入力端772にそれぞれ入力される。このプラス側駆動信号入力端771における「プラス側」という用語は、後述する回路動作の通り、この入力端にハイレベルの信号を入力することでプラス側のMOSFET741がオン状態となる(或いはオン状態を維持する)ように機能するものであることを意味し、またマイナス側駆動信号入力端772における「マイナス側」という用語は、後述する回路動作の通り、この入力端にハイレベルの信号を入力することでマイナス側のMOSFET741がオン状態となる(或いはオン状態を維持する)ように機能すること意味する。
 いま図2に示すように、ゲート電圧Aが負電圧に、ゲート電圧Bが正電圧に維持されている状態で、時刻t0においてプラス側駆動信号入力端771にハイレベルの駆動信号aが入力されるとMOSFET711はオンする。これにより、トランス713の一次巻線に電流が流れ、その二次巻線の両端に所定の電圧が誘起される。これにより、MOSFET715、716は共にオンする。このとき、MOSFET712はオフ状態であるからトランス714の一次巻線には電流が流れず、MOSFET717、718は共にオフ状態である。そのため、パルストランス72の一次巻線72aの両端には図示しない一次側電源部から与えられる電圧VDDが印加され、その一次巻線72aには図3において下向きに電流が流れる。
 これによってパルストランス72の各二次巻線72bの両端には所定の電圧が誘起される。このとき、二次側駆動回路73に含まれる、MOSFET731、732、ゲート放電抵抗733を介して各MOSFET741のゲート端子に印加される電圧(以下「ゲート電圧」と称す)は、次の式で近似的に表すことができる。
  [ゲート電圧]≒{[パルストランス72の一次側電圧]/[スイッチ回路74のMOSFET741の直列段数]}×[パルストランス72の二次巻線数]   …(1)
 例えば、パルストランス72の一次側電圧(VDD)を175V、スイッチ回路74のMOSFET741の直列段数を12段、パルストランス72の二次巻線数を1ターンとすると、175/14=14V程度の電圧が各MOSFET741のゲート端子に印加される。
 スイッチ回路74のプラス側の6段のMOSFET741のゲート端子-ソース端子間に上記電圧が順方向に印加されると、それらMOSFET741は一斉にオンする。一方、スイッチ回路74のマイナス側の6段のMOSFET741のゲート端子-ソース端子間には上記電圧が逆方向に印加されるため、それら6段のMOSFET741はオフする。その結果、高電圧電源部からの電圧供給端+Vと電圧出力端78とがほぼ直結し、該電圧出力端78に+V=+2500Vの電圧が出力される。
 時刻t1において、プラス側駆動信号入力端771に入力される駆動信号aのレベルがローレベル(電圧ゼロ)に変化すると、パルストランス72の一次巻線72aの両端電圧はゼロになるが、それ以前にMOSFET741のゲート端子の入力容量に蓄積された電荷によって、つまりゲート端子の充電電圧によって、MOSFET741のゲート電圧は概ね同じ値に維持される。電圧出力端78からの出力電圧は+V=+2500Vに維持される。そのあと時刻t2において、マイナス側駆動信号入力端772に入力される駆動信号bのレベルがハイレベルに変化すると、今度は、MOSFET712がオンし、それに伴ってMOSFET717、718がオンして、パルストランス72の一次巻線72aの両端には先と逆方向に電圧が印加され、逆方向に電流が流れる。それにより、パルストランス72の二次巻線72bの両端にはそれぞれ、先と逆方向に電圧が誘起され、スイッチ回路74のプラス側の6段のMOSFET741はオフし、マイナス側の6段のMOSFET741はオンする。その結果、電圧出力端78から出力される電圧はゼロ(-Vの値)に変化する。
 マイナス側駆動信号入力端772に入力される駆動信号bのレベルがローレベル(電圧ゼロ)に変化すると、パルストランス72の一次巻線の両端の電圧はゼロになるが、それ以前にマイナス側の6段のMOSFET741のゲート端子の入力容量に蓄積された電荷によって、つまりゲート端子の充電電圧によって、該MOSFET741のゲート電圧は概ね同じ値に維持される。それにより、電圧出力端78からの出力電圧は0Vに維持される。
 加速電圧発生部7は基本的に上述した動作によって、プラス側駆動信号入力端771及びマイナス側駆動信号入力端772に入力される駆動信号a、bに応じたタイミングで、波高値が+2500Vである高電圧パルスを生成する。図2から明らかであるように、この高電圧パルスのパルス幅は駆動信号aの立ち上がり時点から次に駆動信号bが立ち上がる時点までの期間にほぼ等しい。図2(e)に示すように高電圧パルスを発生したあと次に高電圧パルスを発生させるまでの期間、電圧出力端78の電圧は-V(上記例では-V=0)に保たれるが、そのためには、駆動信号bがハイレベルからローレベルになったあとも、スイッチ回路74においてマイナス側のMOSFET741をオンさせ続け、逆にプラス側のMOSFET741をオフさせ続けることが必要である。また、高電圧パルスのハイレベルの期間が或る程度長い場合、電圧出力端78の電圧を+Vに保つには、駆動信号aがハイレベルからローレベルになったあとも、スイッチ回路74においてプラス側のMOSFET741をオンさせ続け、逆にマイナス側のMOSFET741をオフさせ続けることが必要である。
 例えば駆動信号bがハイレベルであるときにパルストランス72の二次巻線72bから流れる電流によってMOSFET741のゲート端子の入力容量は充電され、駆動信号bがローレベルに変化したあともその充電電圧は残るものの、自然放電があるために時間の経過に伴い徐々に電圧は低下する。そこで、マイナス側のMOSFET741のゲート電圧を確実に閾値電圧以上に維持するために、高電圧パルスを生成しない(0Vである)期間にも、適宜の時間間隔で駆動信号bをマイナス側駆動信号入力端772に入力することにより、マイナス側のMOSFET741のゲート端子にパルス状の電圧を印加して該ゲート端子の入力容量を再充電する。また、高電圧パルスをハイレベルに維持する期間には、プラス側のMOSFET741のゲート電圧を確実に閾値電圧以上に維持するために、適宜の時間間隔で駆動信号aをプラス側駆動信号入力端771に入力することにより、プラス側のMOSFET741のゲート端子にパルス状の電圧を印加して該ゲート端子の入力容量を再充電する。
 図2(e)には、プラス側のMOSFET741のゲート端子の入力容量を新たに充電するための駆動信号aを[P1]で、該ゲート端子を再充電するための駆動信号aを[P2]、[P3]で示している。また、マイナス側のMOSFET741のゲート端子の入力容量を新たに充電するための駆動信号bを[Q1]で、該ゲート端子を再充電するための駆動信号bを[Q2]、[Q3]で示している。なお、PCT/JP2017/039691号に記載されているように、再充電の時間間隔は測定周期つまりはイオン射出の時間間隔に応じて定めることが好ましいが、ここでは、それは本発明の趣旨に関係しないので説明を省略する。いずれにしても、適切な時間間隔でゲート端子の入力容量を再充電するための駆動信号a、bを与えることで、自然放電によるMOSFET741の充電電圧の低下の影響を軽減して、高電圧パルスの変化のタイミングの時間ズレを抑えることができる。
 上述したように駆動信号生成部6は加速電圧発生部7に入力する2系統の駆動信号a、bを生成するものであるが、本実施例のTOFMSはこの駆動信号生成部6の構成に特徴を有する。図4は本実施例のTOFMSにおける駆動信号生成部6の概略ブロック構成図、図5は該駆動信号生成部6の要部の波形図である。
 図4に示すように、駆動信号生成部6は、エッジ検出回路691、692と、2次駆動信号生成回路6Bと、選択回路671、672と、切替信号生成回路681、682と、を含む。駆動信号生成部6の前段には信号レベル変換回路60が接続されている。
 信号レベル変換回路60には、別の電気回路が搭載された基板から例えば高速の信号伝送に適したLVDS(Low Voltage Differential Signaling)方式により、OA-TOFMSでの測定開始つまりはイオン射出のタイミングを決める起動信号が送られてくる。信号レベル変換回路60は、低電圧差動信号である起動信号の電圧レベルを標準的なLCTTLやLVCMOSの電圧レベル(典型的には3.3V)に変換する。このレベル変換後の起動信号(図5(a))参照:以下、特に断らない限り、レベル変換後の起動信号を単に「起動信号」という)が駆動信号生成部6のエッジ検出回路691、692及び2次駆動信号生成部6Bに入力される。
 エッジ検出回路691、692はCR微分回路であり、起動信号の立ち上がりエッジを検出してエッジ検出信号(図5(b)参照)を生成し、選択回路671、672に出力する。一方、2次駆動信号生成部6Bは上記起動信号に基づいて2次駆動信号(図5(e)参照)を生成して選択回路671、672に出力する。選択回路671、672は、入力されたエッジ検出信号の立ち上がりエッジから所定時間幅の信号を1次駆動信号として生成する回路と、切替信号生成回路681、672から入力された切替制御信号に基づいて、1次駆動信号と2次駆動信号とのいずれかを選択して駆動信号として出力する回路と、を含む。なお、上記エッジ検出回路691、692は起動信号の立ち上がりエッジを検出するための回路であり起動信号の立ち下がりエッジの検出は不要であるため、このエッジ検出回路691、692では、エッジ検出結果である出力信号の負電圧側の大部分を図示しないダイオードでクランプすることで負電圧側のエッジ検出信号が出力されないような構成が採られている。
 2次駆動信号生成部6Bは、オン/オフ回路61と、正負モード切替回路62と、ノイズ除去回路63と、2系統のA/B入力振分回路641、642と、2系統のクロック発生回路651、652と、2系統のパルス整形回路661、662とを含み、入力された起動信号を基に2次駆動信号を生成する。
 より詳しく説明すると、オン/オフ回路61には、別の制御系回路から実際に高電圧パルスを生成するか否か、つまりは加速電圧発生部7を動作させるか否かを切り替えるオン/オフ(ON/OFF)制御信号が入力され、オン/オフ回路61はオン/オフ制御信号がオン状態(例えばハイレベル)であるときにのみ上記起動信号を通過させ、オン/オフ制御信号がオフ状態(例えばローレベル)であるときには該起動信号を遮断する。このオン/オフ回路61の出力は、正負モード切替回路62と切替信号生成回路681、682とに入力される。したがって、オン/オフ制御信号がオフ状態であるときには、正負モード切替回路62や切替信号生成回路681、682には有意な信号が入力されない。
 正負モード切替回路62には、別の制御系回路から正負のイオン化モードを切り替えるP/N制御信号が入力され、正負モード切替回路62は、このP/N制御信号の電圧レベルに応じて起動信号をそのまま又は反転させて出力する。具体的には、P/N制御信号が正イオン化モードに対応するレベルである場合には、正負モード切替回路62は、オン/オフ回路61の出力信号を通過させて出力するから、図5(a)に示した起動信号がほぼそのまま出力される。
 ノイズ除去回路63は、正負モード切替回路62から出力される信号線に外部から飛び込むノイズ等に起因する短い時間間隔のパルス状のノイズが存在する場合に、これを除去するフィルタである。なお、2次駆動信号を生成するうえで、このノイズ除去回路63は必須ではなく省略することができる。
 ノイズ除去回路63でノイズが除去されたあとの信号及びP/N制御信号の電圧レベルに応じて極性反転された信号は2系統のA/B入力振分回路641、642にそれぞれ入力され、A/B入力振分回路641、642は入力された信号をそれぞれプラス側駆動信号入力端771、マイナス側駆動信号入力端772に対応するように振り分ける。即ち、正イオン化モードである場合、A/B入力振分回路641は、起動信号に基づいて出力されるノイズ除去回路63の出力信号がハイレベルである期間にハイレベルになる信号を出力する(図5(c)参照)。一方、A/B入力振分回路642は、起動信号に基づいて出力されるノイズ除去回路63の出力信号がハイレベルである期間にローレベルになる信号を出力する(図5(g)参照)。なお、負イオン化モードにおいては、A/B入力振分回路641、642から出力される信号はほぼ入れ替わる。
 2系統のクロック発生回路651、652はそれぞれ、入力信号を受けて所定の周波数の矩形状のクロック信号を生成する。図5(d)は図5(c)に示した信号に対応して生成されるクロック信号であり、図5(h)は図5(g)に示した信号に対応して生成されるクロック信号である。このクロック信号はクロック発生回路651、652への入力信号がハイレベルである期間にのみ生成される。このクロック発生回路651、652から出力されるクロック信号は、パルス整形回路661、662と切替信号生成回路681、682とに入力される。
 パルス整形回路661、662はそれぞれ、クロック発生回路651、652で生成されたクロック信号の立ち上がりのエッジを検出し、検出したエッジで立ち上がる所定幅の信号を生成する。図5(e)は図5(d)に示したクロック信号に対応して生成される信号であり、この例では三つの2次駆動信号を含む。また、図5(i)は図5(h)に示したクロック信号に対応して生成される信号であり、この例では三つの2次駆動信号を含む。
 このクロック発生回路651、652及びパルス整形回路661、662は、主として再充電用の2次駆動信号を生成するためのものであるが、後述するようにイオン射出を終了させるためにMOSFETをターンオフ、ターンオンさせるタイミングでの駆動信号には、2次駆動信号生成回路6Bで生成された駆動信号が用いられる。測定周期に応じて再充電用の2次駆動信号の周期を変更したい場合には、クロック発生回路651、652で生成されるクロック信号の周波数を測定周期に応じて変更する構成とすればよい。
 選択回路671、672は切替信号生成回路681、682から入力される切替制御信号に応じて、エッジ検出回路691、692で生成されたエッジ検出信号に基づいて当該選択回路671、672の内部で生成した1次駆動信号と、パルス整形回路661、662の出力である2次駆動信号とを切り替えて出力する。切替信号生成回路681、682には、オン/オフ回路61でゲーティングされたあとの起動信号、つまりは実際に高電圧パルスを生成するときにのみに発生する起動信号と正負モード切替信号が入力される。この正負モード切替信号によって、切替信号生成回路681、682からそれぞれ出力される切替制御信号は切り替わる。
 例えば、正イオン化モードであって図5(k)に示すような高電圧パルスを生成したい場合、切替信号生成回路681は、起動信号の立ち上がりエッジから所定の時間だけ1次駆動信号を選択し、それ以外の期間でクロック発生回路651、652から入力されるクロック信号がハイレベルである期間にはパルス整形回路661の出力である2次駆動信号を選択するような切替制御信号を選択回路671に与える。したがって、このとき選択回路671の出力は図5(f)に示すようになる。これにより、加速電圧発生部7において最終段のMOSFETをターンオンさせる1次駆動信号とそのMOSFETをオン状態に維持するためにゲート容量を再充電するための2次駆動信号とを含む駆動信号aが得られる。
 選択回路671が上記のように動作するとき、切替信号生成回路682は、パルス整形回路662の出力である2次駆動信号を常に選択するような切替制御信号をもう一方の選択回路67に与える。切替信号生成回路682からのこの切替制御信号により、選択回路672はパルス整形回路662の出力である2次駆動信号をそのまま出力し続ける。したがって、このときの選択回路672の出力は図5(j)に示すように図5(i)とほぼ同じとなる。これにより、加速電圧発生部7において最終段のMOSFETをターンオフさせる1次駆動信号とそのMOSFETをオフ状態に維持するためにゲート容量を再充電するための2次駆動信号とを含む駆動信号bが得られる。但し、このときの1次駆動信号はエッジ検出信号に基づくものではなく、2次駆動信号生成回路6Bで生成されたものである。
 上記のような駆動信号a、bが駆動信号生成回路6から出力されることで、例えば正イオン化モードでは加速電圧発生部7から図5(k)に示すような正極性の高電圧パルスが出力される。
 一方、負イオン化モードでは、切替信号生成回路681、682の動作が入れ替わるため、それに応じて選択回路671、672の動作も入れ替わる。即ち、選択回路672は、エッジ検出回路692から得られるエッジ検出信号に基づいて1次駆動信号を生成し、この1次駆動信号とパルス整形回路662から入力される2次駆動信号とを切り替えて出力する。逆に選択回路671は、パルス整形回路661から入力される2次駆動信号をそのまま出力し続ける。これにより、加速電圧発生部7から図5(L)に示すような負極性の高電圧パルスが出力される。もちろん、高電圧パルスの極性は該パルスを引出電極12、押出電極11のいずれに印加するのかによって相違する。
 上記駆動信号生成部6において重要なことは、イオン射出部1でイオンの射出が開始されるときの高電圧パルスのレベル変化(図5(k)(L)において矢印で示したエッジ)のタイミングを決める駆動信号が、起動信号からエッジ検出回路691、692で生成されたエッジ検出信号に基づき、選択回路671、672でその信号幅が調整されただけの1次駆動信号であるという点である。一方、イオン射出部1でイオンの射出が終了されるときの高電圧パルスのレベル変化のタイミングを決める駆動信号は、2次駆動信号生成回路6Bで生成された駆動信号が利用される。
 即ち、図4から明らかであるように、上記1次駆動信号は、多数の回路素子を含む2次駆動信号生成回路6Bの出力である2次駆動信号に比べて、駆動信号生成部6において信号が通過する論理回路素子の数が少ない。特に、ここではエッジ検出回路691、692がCR微分回路から成るため、能動素子(半導体素子)を含まない。一般に、回路素子はジッタや温度変化に起因する信号の時間変動の要因であるから、信号が通過する回路素子、特に半導体素子の数が少ないほど、ジッタや温度変化に起因する信号の時間変動が少ない。
 駆動信号生成部6では上記のような特徴的な構成を採ることで、イオンの射出が開始されるときの高電圧パルスのレベル変化のタイミングを決める1次駆動信号の立ち上がりのジッタや温度変化に起因する信号の時間変動を軽減することができる。それにより、イオン射出開始のタイミングのズレや変動を抑えることができ、データ処理部での飛行時間計測開始のタイミングとイオン射出開始のタイミングとを正確に合わせて高い質量精度や質量分解能を達成することができる。
 なお、図2(a)、(b)又は図5(f)、(j)に示すような駆動信号を生成するための回路が図4に示すブロック構成に限らないことは当然である。したがって、駆動信号生成部6の回路構成は適宜に変形することが可能であるが、どのように変形した場合であっても、イオンの射出が開始されるときの高電圧パルスのレベル変化のタイミングを決める1次駆動信号の信号経路を、それ以外の2次駆動信号を生成するための回路をショートカットするように構成することで、本発明の目的を達成し得ることは明白である。
 また、上記実施例におけるTOFMSは、正負のイオン化モードの切替えの機能を有していたが、そうした切替えの機能を有さない構成とすることも可能であることは明らかである。また、加速電圧発生部7では2系統の駆動信号に基づいて最終段の複数のMOSFETのオン・オフを制御していたが、1系統の駆動信号に基づいて最終段の複数のMOSFETのオン・オフを制御する構成とすることも可能である。その場合には、それに合わせて駆動信号生成部6の回路構成が変わることは当然である。
 さらにまた、上記実施例は本発明の一例にすぎず、本発明の趣旨の範囲で適宜に変形、追加、修正を行っても本願特許請求の範囲に包含されることは当然である。
 例えば上記実施例は本発明をOA-TOFMSに適用したものであるが、本発明はそれ以外のTOFMS、例えば三次元四重極型又はリニア型のイオントラップに保持したイオンを加速して飛行空間へと送り出すイオントラップ飛行時間型質量分析装置やMALDIイオン源等により試料から生成されたイオンを加速して飛行空間へと送り出す飛行時間型質量分析装置にも適用可能である。
1…イオン射出部
11…押出電極
12…引出電極
2…飛行空間
3…リフレクタ
31…反射電極
32…バックプレート
4…検出器
5…反射電圧発生部
6…駆動信号生成部
6B…2次駆動信号生成部
60…信号レベル変換回路
61…オン/オフ回路
62…正負モード切替回路
63…ノイズ除去回路
641、642…A/B入力振分回路
651、652…クロック発生回路
661、662…パルス整形回路
671、672…選択回路
681、682…切替信号生成回路
691、692…エッジ検出回路
7…加速電圧発生部
71…一次側駆動回路
711、712、715、716、717、718…MOSFET
713、714…トランス
72…パルストランス
72a…一次巻線
72b…二次巻線
73…二次側駆動回路
731、732…MOSFET
733…ゲート放電抵抗
74…スイッチ回路
741…電力用MOSFET
771…プラス側駆動信号入力端
772…マイナス側駆動信号入力端
78…電圧出力端

Claims (6)

  1.  電極に印加される電圧によって形成される電場の作用により測定対象のイオンに加速エネルギを与えて飛行空間へ向けて射出するイオン射出部と、イオンを射出させるための高電圧パルスを生成して前記電極に印加する高電圧パルス生成部と、を具備する飛行時間型質量分析装置であって、
     前記高電圧パルス生成部は、
     a)直流高電圧を発生する直流電源部と、
     b)前記直流高電圧をスイッチングすることで高電圧パルスを生成する半導体スイッチング素子を含むスイッチ回路と、
     c)後記駆動信号生成部により出力された駆動信号に応じて前記半導体スイッチング素子の制御端子の容量を充電又は放電させることで、該スイッチング素子をターンオンさせる若しくはオン状態を維持させる、又は該スイッチング素子をターンオフさせる若しくはオフ状態を維持させるスイッチング素子駆動部と、
     d)イオンを射出させるタイミングで電圧レベルが変化する起動信号に基づいて、1次駆動信号及び該1次駆動信号から遅れて該スイッチング素子のオン状態又はオフ状態を維持するための2次駆動信号を駆動信号として出力するものであって、前記2次駆動信号を生成する2次駆動信号生成部を含み、少なくとも前記イオン射出部でイオンの射出を開始させるべく前記半導体スイッチング素子をターンオンさせるタイミングでは前記2次駆動号生成部を経ない1次駆動信号を駆動信号として出力する駆動信号生成部と、
  2.  請求項1に記載の飛行時間型質量分析装置であって、
     前記駆動信号生成部は、前記起動信号においてイオンを射出させる際の電圧レベル変化を検出するエッジ検出回路をさらに含み、前記1次駆動信号は、前記エッジ検出回路の出力信号に基づいて生成された信号であることを特徴とする飛行時間型質量分析装置。
  3.  請求項2に記載の飛行時間型質量分析装置であって、
     前記エッジ検出回路は、コンデンサ素子と抵抗素子により構成される微分回路であることを特徴とする飛行時間型質量分析装置。
  4.  請求項1に記載の飛行時間型質量分析装置であって、
     前記2次駆動信号生成部は、前記駆動信号の出力状態と出力停止状態とを切り替えるための駆動信号出力切替え部をさらに含むことを特徴とする飛行時間型質量分析装置。
  5.  請求項1に記載の飛行時間型質量分析装置であって、
     前記2次駆動信号生成部は、正負のイオン化モードの切替えに応じて、入力された前記起動信号の極性を反転させる正負切替部を含むことを特徴とする飛行時間型質量分析装置。
  6.  請求項1に記載の飛行時間型質量分析装置であって、
     前記スイッチ回路は、オン状態であるときに前記直流電源部によるプラス側電圧を電圧出力端に出力するプラス側半導体スイッチング素子と、オン状態であるときに前記直流電源部によるマイナス側電圧を前記電圧出力端に出力するマイナス側半導体スイッチング素子とを含み、
     前記スイッチング素子駆動部は、第1の駆動信号に応じて前記プラス側半導体スイッチング素子がターンオンする電圧又はオン状態を維持する電圧に制御端子を充電する第1のスイッチング素子駆動部と、第2の駆動信号に応じて前記マイナス側半導体スイッチング素子がターンオンする電圧又はオン状態を維持する電圧に制御端子を充電する第2のスイッチング素子駆動部とを含み、
     前記2次駆動信号生成部は、入力された起動信号に基づく信号を前記第1のスイッチング素子駆動部に対応する信号と前記第2のスイッチング素子駆動部に対応する信号とに振り分ける振分け部をさらに含み、該振分部で振り分けられたあとの信号に基づいて、所定時間毎に前記プラス側半導体スイッチング素子のオン状態又はオフ状態を維持するための2次駆動信号と、所定時間毎に前記マイナス側半導体スイッチング素子のオン状態又はオフ状態を維持するための2次駆動信号と、をそれぞれ独立に生成することを特徴とする飛行時間型質量分析装置。
PCT/JP2018/020885 2018-05-31 2018-05-31 飛行時間型質量分析装置 WO2019229915A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020522489A JP7040612B2 (ja) 2018-05-31 2018-05-31 飛行時間型質量分析装置
PCT/JP2018/020885 WO2019229915A1 (ja) 2018-05-31 2018-05-31 飛行時間型質量分析装置
US17/053,397 US11443935B2 (en) 2018-05-31 2018-05-31 Time-of-flight mass spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/020885 WO2019229915A1 (ja) 2018-05-31 2018-05-31 飛行時間型質量分析装置

Publications (1)

Publication Number Publication Date
WO2019229915A1 true WO2019229915A1 (ja) 2019-12-05

Family

ID=68698362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020885 WO2019229915A1 (ja) 2018-05-31 2018-05-31 飛行時間型質量分析装置

Country Status (3)

Country Link
US (1) US11443935B2 (ja)
JP (1) JP7040612B2 (ja)
WO (1) WO2019229915A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019229915A1 (ja) * 2018-05-31 2019-12-05 株式会社島津製作所 飛行時間型質量分析装置
CN115549652A (zh) * 2022-11-29 2022-12-30 浙江迪谱诊断技术有限公司 一种自恢复高压脉冲驱动器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011522365A (ja) * 2008-05-30 2011-07-28 サーモ フィッシャー サイエンティフィック (ブレーメン) ゲーエムベーハー 質量分析計
WO2018037440A1 (ja) * 2016-08-22 2018-03-01 株式会社島津製作所 飛行時間型質量分析装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011138669A2 (en) * 2010-05-07 2011-11-10 Dh Technologies Development Pte. Ltd. Triple switch topology for delivering ultrafast pulser polarity switching for mass spectrometry
JP6437002B2 (ja) * 2013-12-24 2018-12-12 ディーエイチ テクノロジーズ デベロップメント プライベート リミテッド 高速極性スイッチ飛行時間型質量分析計
EP3404695B1 (en) * 2016-01-12 2019-11-27 Shimadzu Corporation Time-of-flight mass spectrometer
US11101127B2 (en) * 2017-11-02 2021-08-24 Shimadzu Corporation Time-of-flight mass spectrometer
WO2019229915A1 (ja) * 2018-05-31 2019-12-05 株式会社島津製作所 飛行時間型質量分析装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011522365A (ja) * 2008-05-30 2011-07-28 サーモ フィッシャー サイエンティフィック (ブレーメン) ゲーエムベーハー 質量分析計
WO2018037440A1 (ja) * 2016-08-22 2018-03-01 株式会社島津製作所 飛行時間型質量分析装置

Also Published As

Publication number Publication date
JPWO2019229915A1 (ja) 2021-03-11
US11443935B2 (en) 2022-09-13
JP7040612B2 (ja) 2022-03-23
US20210233762A1 (en) 2021-07-29

Similar Documents

Publication Publication Date Title
JP6468370B2 (ja) 飛行時間型質量分析装置
US10460911B2 (en) High voltage resistive output stage circuit
US10229822B2 (en) Mass spectrometer with high-voltage power source
US9431226B2 (en) High-voltage power unit and mass spectrometer using the power unit
KR20210111841A (ko) 나노초 펄서 회로의 효율적 에너지 회수
US7764025B2 (en) Power supply apparatus and high-frequency circuit system
JP6544490B2 (ja) 飛行時間型質量分析装置
WO2019229915A1 (ja) 飛行時間型質量分析装置
CN109791869B (zh) 质谱分析装置
KR102141684B1 (ko) 전류 펄스를 제어하는 모듈레이터 및 그 방법
US7778007B2 (en) Optical emission analysis apparatus
WO2019087347A1 (ja) 飛行時間型質量分析装置
US20080315688A1 (en) Pulsed power supply
CN114038731B (zh) 一种质谱仪的离子筛选方法和系统
JPWO2019043943A1 (ja) 質量分析装置
JP2002231179A (ja) 垂直加速型飛行時間型質量分析装置
US20240371620A1 (en) Ion screening method and system for mass spectrometer, high-voltage pulse circuit, and selection circuit
JP2005183280A (ja) イオントラップ装置
AU2022389627A1 (en) Ion screening method and system for mass spectrometer, high-voltage pulse circuit, and selection circuit
CN112514254A (zh) 空间可变晶圆偏置功率系统
JP2000331642A (ja) 垂直加速型飛行時間型質量分析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18920803

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020522489

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18920803

Country of ref document: EP

Kind code of ref document: A1