WO2019229791A1 - Inverter device and inverter system - Google Patents

Inverter device and inverter system Download PDF

Info

Publication number
WO2019229791A1
WO2019229791A1 PCT/JP2018/020301 JP2018020301W WO2019229791A1 WO 2019229791 A1 WO2019229791 A1 WO 2019229791A1 JP 2018020301 W JP2018020301 W JP 2018020301W WO 2019229791 A1 WO2019229791 A1 WO 2019229791A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
control unit
regenerative
inverter
detection
Prior art date
Application number
PCT/JP2018/020301
Other languages
French (fr)
Japanese (ja)
Inventor
洸駿 風間
奥田 哲也
一喜 渡部
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/020301 priority Critical patent/WO2019229791A1/en
Publication of WO2019229791A1 publication Critical patent/WO2019229791A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/81Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor

Definitions

  • the present application relates to an inverter device that converts DC power into AC power, and an inverter system that includes a plurality of inverter devices, and particularly relates to regenerative power processing.
  • each inverter device has a regenerative circuit having a resistor
  • Conventional techniques for consuming with resistors are known.
  • a regenerative circuit is configured by a series circuit of a resistor and a switching element, and the on-voltage level of the switching element in the regenerative circuit is independent depending on the regenerative operation state of the inverter device. To make it variable.
  • the power consumption of the regenerative circuit of each inverter device can be equalized with a simple system configuration without requiring information exchange between the inverter devices or between the host system and the inverter device.
  • the inverter device responsible for processing regenerative power is sequentially changed by changing the on-voltage level.
  • the inverter device having the lowest on-voltage level processes the regenerative power, so that the total regenerative power is limited.
  • the load on the regenerative circuit of each inverter device tends to be excessive, and there is a problem that the regenerative circuit is deteriorated.
  • the present application discloses a technique for solving the above-described problems, and is an inverter device that can prevent deterioration of the regenerative circuit by preventing the load of the regenerative circuit from becoming excessive, and other inverters
  • An object of the present invention is to provide an inverter device that can increase the total regenerative power when the device is operated in parallel with the device.
  • the load of the regenerative circuit of each inverter device can be prevented from being excessively suppressed, deterioration of the regenerative circuit can be suppressed, and regenerative power can be increased. To do.
  • An inverter device disclosed in the present application includes a power converter that converts DC power from a DC bus into AC power and supplies power to a load, a smoothing capacitor connected between the DC buses, and a DC between the DC buses.
  • a voltage detection unit for detecting a voltage, a series circuit of a resistor and a switching element connected between the DC buses, a regenerative circuit for processing regenerative power from the power conversion unit, and the regenerative circuit
  • a regeneration control unit that controls the switching element.
  • the regeneration control unit includes a first control unit and a second control unit. The first control unit controls the switching element based on a comparison between a detection voltage from the voltage detection unit and a preset start voltage and stop voltage. The second control unit controls the switching element by detecting a voltage drop of the detection voltage at a predetermined determination voltage or higher when the switching element is in an OFF state.
  • the inverter system disclosed in the present application includes a plurality of the inverter devices, and the DC buses of the plurality of inverter devices are connected in parallel.
  • the inverter device disclosed in the present application it is possible to prevent the load of the regenerative circuit from becoming excessive, and to suppress deterioration of the regenerative circuit.
  • the total regenerative power can be increased and continuous operation can be performed with good reliability.
  • the load on the regenerative circuit of each inverter device can be prevented from being excessively suppressed to suppress deterioration of the regenerative circuit, and continuous operation can be performed with good reliability.
  • the regenerative power can be increased.
  • FIG. 4 is a flowchart illustrating an operation of a regeneration control unit of the inverter device according to the first embodiment. It is a figure explaining the regenerative electric power process of each inverter apparatus by Embodiment 1.
  • FIG. 6 is a block diagram illustrating a configuration of a regeneration control unit according to Embodiment 2.
  • FIG. 10 is a diagram illustrating a configuration of a first control unit of a regeneration control unit according to Embodiment 2. It is a figure which shows the structure of the 2nd control part of the regeneration control part by Embodiment 2.
  • FIG. 10 is a wave diagram of each part for explaining the operation of the regeneration control unit according to the second embodiment.
  • FIG. 1 is a diagram showing a schematic configuration of an inverter system according to the first embodiment.
  • the inverter system 100 includes three inverter devices 3x, 3y, and 3z connected in parallel on the DC side, and each inverter device 3x, 3y, and 3z receives DC power from the DC power supply 1.
  • This is a system that converts AC power and drives the motors 4x, 4y, and 4z, which are the respective loads.
  • the DC buses 2x, 2y, and 2z of the inverter devices 3x, 3y, and 3z are connected in parallel on the DC power source 1 side of the inverter devices 3x, 3y, and 3z and connected to the DC power source 1.
  • the inverter system 100 may include the DC power supply 1 and the motors 4x, 4y, and 4z, or one or both of the DC power supply 1 and the motors 4x, 4y, and 4z may be provided outside the inverter system 100. .
  • the motors 4x, 4y, and 4z are three-phase motors. For example, three servo motors that perform three-axis operations of the x-axis, y-axis, and z-axis are used. Motors 4x, 4y, and 4z are not limited to three-phase motors. Further, the number of the motors 4x, 4y, 4z and the number of the inverter devices 3x, 3y, 3z may be a plurality other than 3, and the inverter devices 3x, 3y, 3z that drive the motors 4x, 4y, 4z are provided. Any device connected in parallel on the DC side may be used.
  • the inverter devices 3x, 3y, and 3z include DC buses 2x, 2y, and 2z, power conversion units 31x, 31y, and 31z, smoothing capacitors 32x, 32y, and 32z, and voltage detection units 33x, 33y, and 33z. Furthermore, the inverter devices 3x, 3y, and 3z include regenerative circuits 34x, 34y, and 34z that process regenerative power, and regenerative control units 35x, 35y, and 35z that control the regenerative circuits 34x, 34y, and 34z.
  • the regenerative circuits 34x, 34y, 34z include a series circuit of resistors 341x, 341y, 341z and switching elements 342x, 342y, 342z.
  • Cx *, Cy *, and Cz * are the command values of the inverter devices 3x, 3y, and 3z given to the power converters 31x, 31y, and 31z from the outside, and Vdcx, Vdcy, and Vdcz are the voltage detectors 33x,
  • the detection voltages Imx, Imy, and Imz from 33y and 33z are state information of the motors 4x, 4y, and 4z.
  • the command values Cx *, Cy *, Cz * are, for example, a desired rotation speed, a desired torque, or a desired movement distance (rotation angle) including time change information of the motors 4x, 4y, 4z.
  • Each motor 4x, motor 4y, and motor 4z is, for example, an x-axis, y-axis, or z-axis operation motor of a stacker device, or a robot root operation motor, a joint operation motor, or a wrist operation motor.
  • the desired movement is different. Therefore, the command values Cx *, Cy *, Cz * of the inverter devices 3x, 3y, 3z are generally different from each other.
  • the state information Imx, Imy, Imz is position information about the axes of the motors 4x, 4y, 4z. This is obtained from a rotation position information detection circuit such as a resolver or encoder attached to the motors 4x, 4y, and 4z.
  • a rotation position information detection circuit such as a resolver or encoder attached to the motors 4x, 4y, and 4z.
  • Each command value Cx *, Cy *, Cz * is different, or each motor 4x, 4y, 4z has a different frictional force, so that the state information Imx, Imy, Imz of each motor 4x, 4y, 4z is also different. It is common.
  • the detection voltages Vdcx, Vdcy, and Vdcz are obtained by detecting the DC voltage Vdc between the DC buses 2x, 2y, and 2z by the voltage detection units 33x, 33y, and 33z.
  • Each of the voltage detectors 33x, 33y, 33z includes, for example, a resistor having a high resistance value R1 (hereinafter, resistor R1) and a resistor having a low resistance value R2 (hereinafter, resistors) between the DC buses 2x, 2y, and 2z. And a circuit in which R2) is connected in series.
  • a smoothing capacitor 32x is connected between the DC buses 2x, and the smoothing capacitor 32x equalizes the voltage of DC power and temporarily stores regenerative power.
  • the voltage detector 33x detects the voltage Vdc between the DC buses 2x, that is, the voltage of the smoothing capacitor 32x, and outputs a detection voltage Vdcx.
  • the power conversion unit 31x includes a main circuit having a switching element and a control circuit. Then, based on the command value Cx *, the state information Imx, and the detection voltage Vdcx, the DC power from the DC bus 2x is converted into AC power having an arbitrary amplitude and frequency, and the motor 4x is supplied with electric power. Drive. Further, when the motor 4x decelerates or stops, the power conversion unit 31x supplies regenerative power generated by the motor 4x functioning as a generator to the DC bus 2x. That is, when the motor 4x generates regenerative power, the regenerative power is supplied to the DC bus 2x via the power converter 31x.
  • the regenerative power from the power conversion unit 31x is not only the smoothing capacitor 32x in the inverter device 3x but also the inverter device 3y.
  • the smoothing capacitor 32y and the smoothing capacitor 32z in the inverter device 3z are also charged.
  • the regenerative circuit 34x is configured by a series circuit in which a resistor 341x and a switching element 342x are connected in series between the DC bus 2x.
  • the switching element 342x in the regenerative circuit 34x is controlled to be turned on / off, that is, in a conductive state or a cut-off state by a control signal SWx that is an output of the regenerative control unit 35x.
  • the case where the control signal SWx turns on the switching element 342x is referred to as “1” level as the state of the control signal SWx.
  • the case where the control signal SWx turns off the switching element 342x is referred to as “0” level as the state of the control signal SWx.
  • the switching element 342x When the control signal SWx is at the “1” level, in the regenerative circuit 34x, the switching element 342x is turned on, and the regenerative power stored in the smoothing capacitor 32x is consumed and processed by the resistor 341x. Since the DC buses 2x, 2y, and 2z of the three inverter devices 3x, 3y, and 3z are connected in parallel, when the switching element 342x in the regenerative circuit 34x of the inverter device 3x is turned on, only the smoothing capacitor 32x in the inverter device 3x. Instead, all the electric power stored in the smoothing capacitors 32x, 32y, 32z in the three inverter devices 3x, 3y, 3z is consumed by the resistor 341x of the regenerative circuit 34x.
  • the regeneration control unit 35x outputs a control signal SWx to the regeneration circuit 34x based on the detected voltage Vdcx from the voltage detection unit 33x.
  • the regeneration control unit 35x is configured to include a processor (microprocessor) 5 that performs arithmetic processing using software.
  • the processor 5 outputs a read command to the storage circuit 6 and reads necessary information (no load voltage Vdc0, start voltage Von, stop voltage Voff, determination voltage Vmin, compensation voltage ⁇ ) from the storage circuit 6. These necessary information will be described later. Then, the processor 5 calculates and outputs the control signal SWx.
  • the internal storage unit of the processor 5 may be used as the storage circuit.
  • the no-load voltage Vdc0, the start voltage Von, the stop voltage Voff, the determination voltage Vmin, and the compensation voltage ⁇ are values that are preset and stored, and are the same values with no difference between the three inverter devices 3x, 3y, and 3z. . It is assumed that the DC power source 1 performs full-wave rectification on commercial AC power having an effective value of 200 V and supplies power to the DC buses 2x, 2y, and 2z. When all the motors 4x, 4y, and 4z are stopped, that is, the no-load voltage Vdc0 that is the DC voltage Vdc at no load is about 283V.
  • the start voltage Von is a voltage set in advance to start the regenerative power process
  • the stop voltage Voff is a voltage set in advance to stop the regenerative power process.
  • the regenerative control unit 35x detects that the detection voltage Vdcx has dropped when the control signal SWx is at “0” level, the regenerative power processing is performed by setting the control signal SWx to “1” level.
  • the regeneration control unit 35x generates the second stop voltage Vspx using the compensation voltage ⁇ , and when the detection voltage Vdcx drops and reaches the second stop voltage Vspx by the regenerative power process, the control signal SWx is set to the “0” level.
  • the start voltage Von is 380V
  • the stop voltage Voff is 350V
  • the determination voltage Vmin is 365V.
  • the detection error due to the element variation of the voltage detection unit 33x is 2% or less.
  • the voltage value of the actual voltage is described with a unit of VR.
  • the maximum possible voltage of each Vonx, Vony, and Vonz is 388 VR, and the minimum possible voltage is 373 VR.
  • the maximum possible voltage of each Voffx, Voffy, and Voffz is 357 VR, and the minimum possible voltage is 343 VR.
  • the determination voltage Vmin is set between the start voltage Von and the stop voltage Voff. However, since the actual voltage corresponding to the start voltage Von and the stop voltage Voff is between the minimum possible voltage and the maximum possible voltage as described above, it corresponds to the minimum possible voltage corresponding to the start voltage Von and the stop voltage Voff.
  • the determination voltage Vmin is set between the maximum possible voltage.
  • the maximum possible voltage of each Vminx, Vminy, and Vminz is 372 VR, and the minimum possible voltage is 358 VR.
  • the start voltage Von ( 380 V)
  • the stop voltage Voff ( 350 V)
  • step S01 when the inverter system 100 starts to operate, the control signal SWx is initialized to “0” level (step S01).
  • step S02 it is determined whether or not the inverter system 100 is in the operation end process (step S02). If the inverter system 100 is in the operation end process, the operation of the regeneration control unit 35x is also ended. If the inverter system 100 is not in the operation end process in step S02, it is determined whether or not the detected voltage Vdcx is equal to or higher than the no-load voltage Vdc0 (step S10), and if the detected voltage Vdcx is less than the no-load voltage Vdc0. Return to step S02. This is a function that does not operate the regeneration control unit 35x in a state where regenerative power is not generated in the entire inverter system 100.
  • step S10 if the detection voltage Vdcx is equal to or higher than the no-load voltage Vdc0, it is determined whether or not the detection voltage Vdcx is equal to or higher than the start voltage Von (step S11), and if the detection voltage Vdcx is equal to or higher than the start voltage Von.
  • the control signal SWx is set to “1” level (step S12).
  • step S13 it is determined whether or not the detection voltage Vdcx is equal to or lower than the stop voltage Voff (step S13). When the detection voltage Vdcx is higher than the stop voltage Voff, the process returns to step S12, and the control signal SWx is maintained at the “1” level.
  • step S13 If the detection voltage Vdcx is equal to or lower than the stop voltage Voff in step S13, the control signal SWx is changed to “0” level (step S14), and the process returns to step S02. If regenerative power is continuously generated, the processing from step S10 is resumed.
  • step S11 if the detection voltage Vdcx is less than the start voltage Von, it is determined whether or not the detection voltage Vdcx is greater than or equal to the determination voltage Vmin (step S20). If the detection voltage Vdcx is less than the determination voltage Vmin, step is performed. Return to S02. In step S20, if the detection voltage Vdcx is equal to or higher than the determination voltage Vmin, it is determined whether or not the detection voltage Vdcx has continuously dropped. Here, it is determined whether or not the detection voltage Vdcx has dropped for three periods continuously in the system clock (step S21).
  • the processing in step S21 can be realized, for example, by temporarily storing the data of the detection voltage Vdcx for three cycles with the system clock and sequentially comparing the data for determination.
  • detecting the voltage drop continuously for three cycles is to prevent malfunction due to noise of the detection voltage Vdcx, and is not limited to three cycles. If the influence of the noise of the detection voltage Vdcx is small, the time width for continuously detecting the voltage drop can be reduced. On the contrary, if the influence of the noise of the detection voltage Vdcx is large, it is necessary to increase the time width for continuously detecting the voltage drop.
  • step S21 when it is detected that the detection voltage Vdcx has continuously dropped, the detection voltage Vdcx at that time is stored as the second start voltage Vstx. Further, the second stop voltage Vspx is generated and stored by the following equation (1) (step S22).
  • Vspx Vstx ⁇ (Von ⁇ Voff) + ⁇ (1)
  • the compensation voltage ⁇ is set so as to satisfy the following expression (2). Vonmin ⁇ Vonmin ⁇ (Von ⁇ Voff) + ⁇ ⁇ Voffmax (2) That is, 30 ⁇ ⁇ ⁇ 14
  • the compensation voltage ⁇ is 20V.
  • step S23 the control signal SWx is set to “1” level (step S23).
  • step S24 it is determined whether or not the detection voltage Vdcx is equal to or lower than the second stop voltage Vspx (step S24).
  • the process returns to step S23, and the control signal SWx is maintained at the “1” level.
  • the control signal SWx is changed to “0” level (step S25), and the process returns to step S02. If regenerative power is continuously generated, the processing from step S10 is resumed.
  • the regeneration control unit 35x controls the regeneration circuit 34x by the processing of Step S01 to Step S25.
  • the control related to steps S10 to S14 is a first control unit
  • the control related to steps S20 to S25 is a second control unit.
  • the first control unit controls the regeneration circuit 34x based on a comparison between the detection voltage Vdcx, the start voltage Von, and the stop voltage Voff. That is, when the detection voltage Vdcx rises above the start voltage Von, the regenerative power process is started. When the detection voltage Vdcx drops and reaches the stop voltage Voff, the regenerative power process is stopped.
  • the second control unit by detecting that the regenerative circuit 34y of another inverter device, for example, the inverter device 3y is performing regenerative power processing, in step S21, detecting that the detection voltage Vdcx has continuously dropped. Detect. Further, by detecting this continuous voltage drop in the region of the determination voltage Vmin or higher, it is ensured that the continuous voltage drop is caused by the regenerative power process of the other inverter device 3y. And the 2nd control part starts regenerative electric power processing so that other regenerative circuit 34y may track also in its regenerative circuit 34x. Further, the second stop voltage Vspx is generated to be equal to or higher than the maximum possible voltage corresponding to the stop voltage Voff, and when the detection voltage Vdcx drops and reaches the second stop voltage Vspx, the regenerative power process is stopped.
  • the regenerative control unit 35y turns on the switching element 342y of the regenerative circuit 34y and starts regenerative power processing.
  • the regenerative control unit 35y turns off the switching element 342y of the regenerative circuit 34y and stops the regenerative power process (steps S20 to S25). reference).
  • the continuous voltage drop is detected.
  • the time when the regenerative control unit 35x of the inverter device 3x starts the regenerative power process is earlier than the time when the regenerative control units 35y and 35z of the inverter devices 3y and 3z start the regenerative power process. Moreover, the time when the regenerative control unit 35x of the inverter device 3x stops the regenerative power process is later than the time when the regenerative control units 35y and 35z of the inverter devices 3y and 3z stop the regenerative power process.
  • the regeneration controllers 35y and 35z perform the process of step S25, and then proceed to step S02 ⁇ step S10 ⁇ step S11 ⁇ step S20 ⁇ step S02. This loop continues until the regeneration control unit 35x of the inverter device 3x finishes the process of step S14.
  • step S02 When regenerative power is generated at the time when the regeneration control unit 35x of the inverter device 3x finishes the process of step S14, the regeneration control units 35x, 35y, and 35z of the inverter devices 3x, 3y, and 3z are both step S02. ⁇ Restart the process of step S10 ⁇ step S11. On the other hand, when regenerative power is not generated at the time when the regeneration control unit 35x of the inverter device 3x finishes the process of step S14, the loop of step S02 ⁇ step S10 ⁇ step S02 is circulated.
  • the first control unit of the regeneration control unit 35x performs the detection voltage Vdcx from the voltage detection unit 33x and the preset start voltage Von and stop voltage Voff. Based on the comparison, the switching element 342x of the regenerative circuit 34x is controlled. Then, the second control unit of the regeneration control unit 35x controls the switching element 342x by detecting a voltage drop of the detection voltage Vdcx at a predetermined determination voltage Vmin or higher when the switching element 342x is in the OFF state.
  • the inverter device 3x detects the regenerative power processing by the other inverter device 3y (3z) connected in parallel by detecting that the detection voltage Vdcx has continuously dropped, and the other inverter device 3y.
  • the regenerative power process can be started so as to follow (3z). Thereby, it can prevent that the load of the regeneration circuit 34x becomes heavy, and can suppress degradation of the regeneration circuit 34x.
  • the entire regenerative power can be increased.
  • inverter system 100 in which a plurality of inverter devices 3x, 3y, and 3z are operated in parallel, it is possible to prevent only one inverter device 3x (3y and 3z) from performing regenerative power processing.
  • a large amount of regenerative power is generated, it is not processed only by the resistor 341x of the regenerative circuit 34x of the inverter device 3x that has started the regenerative power processing first, but the regenerative circuits 34x, 34y of all the inverter devices 3x, 3y, 3z. 34z can perform regenerative power processing. For this reason, the effect shown below is acquired.
  • the regenerative power is consumed simultaneously by the plurality of regenerative circuits 34x, 34y, 34z, the bias of the processing time of each regenerative circuit 34x, 34y, 34z is reduced, and the regenerative circuits 34x, 34y, 34z, especially resistors 341x, 341y. , 341z can be extended in life. Further, since the regenerative power is consumed by the plurality of regenerative circuits 34x, 34y, 34z at the same time, the total regenerative power increases, and the ratings of the resistors 341x, 341y, 341z in the regenerative circuits 34x, 34y, 34z are increased. The possibility of exceeding power consumption is reduced. For this reason, the operation stop frequency of each inverter apparatus 3x, 3y, 3z can be reduced, and the reliability of inverter apparatus 3x, 3y, 3z and the inverter system 100 improves.
  • the regeneration control unit 35x is configured using the processor 5, the number of parts of the regeneration control unit 35x is small, and a small and inexpensive inverter device 3x can be realized, and the failure frequency is reduced. , Improve reliability.
  • the processor 5 of the regeneration control unit 35x can be shared with the microprocessor in the control circuit of the power conversion unit 31x, so that cost reduction, downsizing, and failure frequency can be reduced.
  • ⁇ a (Von ⁇ Voff) ⁇ ) may be used instead of ⁇ as the compensation voltage used in the above embodiment.
  • the second stop voltage Vspx is calculated by Vstx ⁇ a.
  • the regeneration control unit 35x in the inverter device 3x is configured to include the processor 5.
  • an operational amplifier, a comparator, a logic circuit, a storage element, a register, a flip-flop, and the like The regeneration control unit 35x is configured by a circuit that operates by hardware. Except for the configuration of the regeneration control unit 35x, the configuration is the same as that of the first embodiment.
  • the inverter system is configured by connecting the three inverter devices 3x, 3y, and 3z in parallel.
  • the regeneration control unit 35x in the inverter device 3x will be described in detail. Since it is the same also about the other regeneration control parts 35y and 35z, detailed description is abbreviate
  • omitted the regeneration control unit 35x in the inverter device 3x.
  • the regeneration control unit 35x outputs the control signal SWx to the regeneration circuit 34x based on the detection voltage Vdcx from the voltage detection unit 33x.
  • the no-load voltage Vdc0, the start voltage Von, the stop voltage Voff, the determination voltage Vmin, and the compensation voltage ⁇ are preset and stored, and are set to the same voltage values as in the first embodiment.
  • the regenerative control unit 35x sets the control signal SWx to the “1” level and starts regenerative power processing.
  • the regenerative control unit 35x changes the control signal SWx to “0” level and stops the regenerative power process.
  • the regenerative control unit 35x detects that the detection voltage Vdcx has dropped when the control signal SWx is at “0” level, the regenerative power processing is performed by setting the control signal SWx to “1” level. Start. Then, the regeneration control unit 35x generates the second stop voltage Vspx using the compensation voltage ⁇ , and when the detection voltage Vdcx drops and reaches the second stop voltage Vspx by the regenerative power process, the control signal SWx is set to the “0” level. To stop the regenerative power processing.
  • FIG. 7 is a block diagram showing a configuration of the regeneration control unit 35x according to the second embodiment. Note that the system clock for managing the operation time and the power supply circuit of each hardware are omitted.
  • the regeneration control unit 35x includes a first control unit 36x, a second control unit 37x, and a combining unit 38x.
  • the first control unit 36x receives the detection voltage Vdcx from the voltage detection unit 33x, and outputs a signal SW1x and a regenerative voltage width Vd.
  • the second control unit 37x receives the detection voltage Vdcx from the voltage detection unit 33x, the signal SW1x and the regenerative voltage width Vd from the first control unit 36x, and outputs a signal SW2x.
  • FIG. 8 is a diagram illustrating a configuration of the first control unit 36x of the regeneration control unit 35x according to the second embodiment.
  • the first control unit 36x includes a first storage circuit 361, a second storage circuit 362, comparators 363 and 364, a state determination circuit 365, and a subtractor 366.
  • the first and second memory circuits 361 and 362 are constituted by, for example, a register or a semiconductor memory.
  • the first memory circuit 361 stores the start voltage Von
  • the second memory circuit 362 stores the stop voltage Voff.
  • the comparators 363 and 364 are composed of, for example, operational amplifiers and comparators.
  • the comparator 363 compares the detection voltage Vdcx with the start voltage Von output from the first memory circuit 361. When Vdcx ⁇ Von, the signal F1x is set to “1” level, and when Vdcx ⁇ Von, the signal F1x Is set to “0” level and output.
  • the comparator 364 compares the detection voltage Vdcx with the stop voltage Voff output from the second memory circuit 362, sets the signal F2x to “1” level when Vdcx ⁇ Voff, and sets the signal F2x when Vdcx> Voff. Is set to “0” level and output.
  • the state determination circuit 365 is configured by, for example, a set-reset type flip-flop (RS-FF), inputs the signal F1x to the S terminal, inputs the signal F2x to the R terminal, and outputs the signal SW1x.
  • the signal SW1x output from the state determination circuit 365 becomes “1” level when the signal F1x changes from “0” level to “1” level, and the time when the signal F2x changes from “0” level to “1” level.
  • the level becomes “0” and continues at other times without changing the level of the signal SW1x. That is, the signal SW1x becomes “1” level when the detection voltage Vdcx becomes equal to or higher than the start voltage Von, and then changes to “0” level when the detection voltage Vdcx drops and becomes equal to or lower than the stop voltage Voff.
  • the subtractor 366 outputs a value obtained by subtracting the stop voltage Voff output from the second storage circuit 362 from the start voltage Von output from the first storage circuit 361, that is, Von ⁇ Voff as the regenerative voltage width Vd.
  • FIG. 9 is a diagram illustrating a configuration of the second control unit 37x of the regeneration control unit 35x according to the second embodiment.
  • the second control unit 37x includes first to fourth delay circuits 371 to 374, third and fourth storage circuits 375 and 376, and comparators 377 to 379. Further, negative logic circuits 390 and 393, logical product circuits 391 and 392, a value determination circuit 394, a subtracter 395, an adder 396, and a state determination circuit 397 are provided.
  • the first to fourth delay circuits 371 to 374 and the third and fourth memory circuits 375 and 376 are constituted by, for example, a register or a semiconductor memory.
  • the comparators 377 to 379 are constituted by operational amplifiers or comparators, for example.
  • the first to fourth delay circuits 371 to 374 delay the input signal by one system clock cycle and output it.
  • the first delay circuit 371 outputs a signal Vdcx ⁇ 1 that is delayed by one system clock cycle with respect to the detection voltage Vdcx.
  • the comparator 377 compares the signal Vdcx ⁇ 1 that is the output of the first delay circuit 371 with the detection voltage Vdcx. When Vdcx ⁇ 1 ⁇ Vdcx, the signal F3x is set to “1” level, and when Vdcx ⁇ 1 ⁇ Vdcx, the signal F3x is set to “ Set to "0" level and output. When the detection voltage Vdcx drops, the signal F3x becomes “1” level.
  • the second delay circuit 372 outputs a signal F3x ⁇ 1 delayed by one system clock cycle with respect to the signal F3x that is the output of the comparator 377.
  • the third delay circuit 373 outputs a signal F3x ⁇ 2 delayed by one system clock cycle with respect to F3x ⁇ 1 that is the output of the second delay circuit 372.
  • the third memory circuit 375 stores the determination voltage Vmin
  • the fourth memory circuit 376 stores the compensation voltage ⁇ .
  • the comparator 378 compares the detection voltage Vdcx with the determination voltage Vmin output from the third memory circuit 375. When Vdcx ⁇ Vmin, the signal F4x is set to “1” level, and when Vdcx ⁇ Vmin, the signal F4x Is set to “0” level and output.
  • the negative logic circuit 390 receives the signal SW1x that is the output of the first control unit 36x, and inverts the level of the input signal. When the level of the signal SW1x is “1” level, the signal F5x is set to “0” level, and when the level of the signal SW1x is “0” level, the signal F5x is set to “1” level and output.
  • the AND circuit 391 includes five output signals F3x and F4x from the comparators 377 and 378, five output signals F3x ⁇ 1 and F3x ⁇ 2 from the second and third delay circuits 372 and 373, and an output signal F5x from the negative logic circuit 390.
  • a signal is input, and a signal G1x that is a logical product of these signals is generated.
  • the signal G1x is at “1” level only when all five signals input to the AND circuit 391 are at “1” level. That is, when the level of the signal SW1x is “0”, the detection voltage Vdcx is equal to or higher than the determination voltage Vmin, and the detection voltage Vdcx drops continuously for three periods by the system clock, the signal G1x is “1”. "Become a level.
  • the fourth delay circuit 374 outputs a signal G1x ⁇ 1 that is delayed by one system clock cycle with respect to the signal G1x that is the output of the AND circuit 391.
  • the negative logic circuit 393 receives the signal G1x ⁇ 1 and inverts the level of the input signal. When the level of the signal G1x ⁇ 1 is “1” level, the signal G2x is set to “0” level, and when the level of the signal G1x ⁇ 1 is “0” level, the signal G2x is set to “1” level and output.
  • the logical product circuit 392 receives the signal G1x, which is the output of the logical product circuit 391, and the G2x, which is the output of the negative logical circuit 393, and outputs a signal T0x that is the logical product of these signals.
  • This signal T0x is a time signal indicating the timing when the signal G1x changes from the “0” level to the “1” level, and is a pulse for one cycle of the system clock holding the rising timing of the signal G1x.
  • the value determination circuit 394 is configured by, for example, a D-type flip-flop (D-FF), inputs a signal T0x as a time signal, inputs a detection voltage Vdcx to a D terminal, and outputs a second start voltage Vstx. .
  • the detection voltage Vdcx at the rising time of the signal T0x is output as the second start voltage Vstx.
  • the regenerative voltage width Vd and the second start voltage Vstx from the first control unit 36x are input to the subtractor 395, and the subtractor 395 generates a value Vax obtained by subtracting the regenerative voltage width Vd from the second start voltage Vstx. Output.
  • the output Vax of the subtracter 395 and the compensation voltage ⁇ output from the fourth memory circuit 376 are input to the adder 396 and added to output the second stop voltage Vspx.
  • Vspx Vstx ⁇ (Von ⁇ Voff) + ⁇ .
  • the comparator 379 compares the second stop voltage Vspx, which is the output of the adder 396, with the detection voltage Vdcx, sets the signal F6x to “1” level when Vdcx ⁇ Vspx, and sets the signal F6x when Vdcx> Vspx. Set to "0" level and output.
  • the state determination circuit 397 is composed of, for example, a set-reset type flip-flop (RS-FF), and inputs the signal T0x from the AND circuit 392 to the S terminal, inputs the signal F6x to the R terminal, and outputs the signal SW2x Is output.
  • RS-FF set-reset type flip-flop
  • the signal SW2x output from the state determination circuit 397 becomes “1” level when the signal T0x changes from “0” level to “1” level, and the time when the signal F6x changes from “0” level to “1” level. The level becomes “0” and continues at other times without changing the level of the signal SW2x.
  • the signal SW2x is “1” when the level of the signal SW1x is “0”, the detection voltage Vdcx is equal to or higher than the determination voltage Vmin, and the detection voltage Vdcx is “1” at the time when the voltage drops continuously for three cycles by the system clock. "Become a level. Thereafter, when the detection voltage Vdcx drops and becomes equal to or lower than the second stop voltage Vspx, the level changes to “0” level.
  • the voltage waveform shown in FIG. 10 is a DC voltage Vdc, which is an actual voltage, and a voltage Vdc ⁇ 1 obtained by delaying the DC voltage Vdc by one system clock cycle. Comparing the detection voltages Vdcx, Vdcy, Vdcz with each Von, Voff, Vmin is to compare Vdc with each Vonx, Vony, Vonz, Voffx, Voffy, Voffz, Vminx, Vminy, Vminz in actual voltage It is.
  • the voltage Vdc ⁇ 1 is an actual voltage corresponding to the voltage Vdcx ⁇ 1 (Vdcy ⁇ 1, Vdcz ⁇ 1).
  • the signal SW1x becomes “1” level
  • the control signal SWx of the inverter device 3x also becomes “1” level.
  • the inverter device 3x the regenerative power process is started, and the DC voltage Vdc drops.
  • the signal F3 (F3x, F3y, F3z) becomes the “1” level.
  • the signal F3 ⁇ 1 (F3x ⁇ 1, F3y ⁇ 1, F3z ⁇ 1) becomes the “1” level.
  • the signal F3 ⁇ 2 (F3x ⁇ 2, F3y ⁇ 2, F3z ⁇ 2) becomes the “1” level.
  • the levels of the signals SW1y and SW1z continue to be “0” level, and the signals G1y and G1z become “1” level.
  • the signals T0y and T0z rise to the “1” level. Further, the signals T0y and T0z become “0” level after one cycle of the system clock by the signals G2y and G2z generated based on the signals G1y and G1z.
  • the signals T0y and T0z become “1” level
  • the signals SW2y and SW2z become “1” level
  • the control signals SWy and SWz of the inverter devices 3y and 3z also become “1” level. Then, in the inverter devices 3y and 3z, the regenerative power process is started.
  • This second embodiment also has the same effect as the first embodiment. That is, it is possible to prevent the load on the regenerative circuit 34x of the inverter device 3x from becoming excessive, and to suppress the deterioration of the regenerative circuit 34x. Moreover, when performing parallel operation with the other inverter devices 3y and 3z, the entire regenerative power can be increased. Further, in the inverter system 100 that operates the plurality of inverter devices 3x, 3y, and 3z in parallel, it is possible to prevent only one inverter device 3x (3y, 3z) from performing the regenerative power process.
  • 2x, 2y, 2z DC bus 3x, 3y, 3z inverter device, 31x, 31y, 31z power converter, 32x, 32y, 32z smoothing capacitor, 33x, 33y, 33z voltage detector, 34x, 34y, 34z regeneration circuit, 35x, 35y, 35z regeneration control unit, 36x first control unit, 37x second control unit, 341x, 341y, 341z resistor, 342x, 342y, 342z switching element, Vdcx, Vdcy, Vdcz detection voltage, Vmin judgment voltage, Von Start voltage, Voff stop voltage, Vstx second start voltage, Vspx second stop voltage, ⁇ , ⁇ a compensation voltage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

An inverter device (3x) comprises: a voltage detection unit (33x) that detects a direct-current voltage between DC busbars (2x) and outputs a detected voltage (Vdcx); a regeneration circuit (34x) that has a series circuit of a resistor (341x) and a switching element (342x) connected between the DC busbars (2x), and that processes regenerative power from a power conversion unit (31x); and a regeneration control unit (35x). The regeneration control unit (35x) controls the switching element (342x) on the basis of a comparison between the detected voltage (Vdcx), and a set start voltage (Von) and stop voltage (Voff), and when the switching element (342x) is in an off state, the regeneration control unit detects a voltage drop in the detected voltage (Vdcx) by a set determination voltage (Vmin) or more, and controls the switching element (342x).

Description

インバータ装置およびインバータシステムInverter device and inverter system
 本願は、直流電力を交流電力に変換するインバータ装置、およびインバータ装置を複数台備えたインバータシステムに関し、特に、回生電力処理に関するものである。 The present application relates to an inverter device that converts DC power into AC power, and an inverter system that includes a plurality of inverter devices, and particularly relates to regenerative power processing.
 複数台のインバータ装置を並列に接続して構成されるインバータシステムにおいて、モータ等の負荷から供給される回生電力を処理するため、各インバータ装置内に抵抗器を有する回生回路を備え、回生電力を抵抗器にて消費する従来技術が知られている。
 特許文献1に記載される技術は、抵抗器とスイッチング素子との直列回路により回生回路を構成し、回生回路内のスイッチング素子のオン電圧レベルを、当該インバータ装置の回生動作状態に応じてそれぞれ独立して可変とするものである。これにより、インバータ装置間あるいは上位システムとインバータ装置との間で情報のやりとりを要することなく、簡単なシステム構成によって各インバータ装置の回生回路の消費電力を均等化できる。
In an inverter system configured by connecting a plurality of inverter devices in parallel, in order to process regenerative power supplied from a load such as a motor, each inverter device has a regenerative circuit having a resistor, Conventional techniques for consuming with resistors are known.
In the technique described in Patent Document 1, a regenerative circuit is configured by a series circuit of a resistor and a switching element, and the on-voltage level of the switching element in the regenerative circuit is independent depending on the regenerative operation state of the inverter device. To make it variable. Thereby, the power consumption of the regenerative circuit of each inverter device can be equalized with a simple system configuration without requiring information exchange between the inverter devices or between the host system and the inverter device.
特開2010-110139号公報JP 2010-110139 A
 上記従来の手法では、オン電圧レベルを変化させることで、回生電力の処理を担うインバータ装置を順次変更するものである。しかしながら、複数のインバータ装置の中で、オン電圧レベルが最小のインバータ装置のみが回生電力の処理を行うため、全体の回生可能電力が限定的であった。また、各インバータ装置の回生回路の負荷が過重になり易く、回生回路の劣化を招くという問題点があった。 In the conventional method described above, the inverter device responsible for processing regenerative power is sequentially changed by changing the on-voltage level. However, among the plurality of inverter devices, only the inverter device having the lowest on-voltage level processes the regenerative power, so that the total regenerative power is limited. In addition, the load on the regenerative circuit of each inverter device tends to be excessive, and there is a problem that the regenerative circuit is deteriorated.
 本願は、上記のような課題を解決するための技術を開示するものであり、回生回路の負荷が過重になることを防止して回生回路の劣化を抑制できるインバータ装置であって、他のインバータ装置と共に並列運転する際に、全体の回生可能電力を増大できるインバータ装置を提供することを目的とする。 The present application discloses a technique for solving the above-described problems, and is an inverter device that can prevent deterioration of the regenerative circuit by preventing the load of the regenerative circuit from becoming excessive, and other inverters An object of the present invention is to provide an inverter device that can increase the total regenerative power when the device is operated in parallel with the device.
 また、複数のインバータ装置を並列運転させるインバータシステムにおいて、各インバータ装置の回生回路の負荷が過重になることを防止して回生回路の劣化を抑制できると共に、回生可能電力を増大させることを目的とする。 In addition, in an inverter system in which a plurality of inverter devices are operated in parallel, the load of the regenerative circuit of each inverter device can be prevented from being excessively suppressed, deterioration of the regenerative circuit can be suppressed, and regenerative power can be increased. To do.
 本願に開示されるインバータ装置は、直流母線からの直流電力を交流電力に変換して負荷に電力供給する電力変換部と、上記直流母線間に接続される平滑コンデンサと、上記直流母線間の直流電圧を検出する電圧検出部と、抵抗器とスイッチング素子との直列回路を上記直流母線間に接続して有し、上記電力変換部からの回生電力を処理する回生回路と、上記回生回路の上記スイッチング素子を制御する回生制御部とを備える。上記回生制御部は、第1制御部と第2制御部とを備える。上記第1制御部は、上記電圧検出部からの検出電圧と、予め設定された開始電圧および停止電圧との比較に基づいて上記スイッチング素子を制御する。上記第2制御部は、上記スイッチング素子がオフ状態の時に、予め設定された判定電圧以上で上記検出電圧の電圧降下を検出して、上記スイッチング素子を制御する。 An inverter device disclosed in the present application includes a power converter that converts DC power from a DC bus into AC power and supplies power to a load, a smoothing capacitor connected between the DC buses, and a DC between the DC buses. A voltage detection unit for detecting a voltage, a series circuit of a resistor and a switching element connected between the DC buses, a regenerative circuit for processing regenerative power from the power conversion unit, and the regenerative circuit And a regeneration control unit that controls the switching element. The regeneration control unit includes a first control unit and a second control unit. The first control unit controls the switching element based on a comparison between a detection voltage from the voltage detection unit and a preset start voltage and stop voltage. The second control unit controls the switching element by detecting a voltage drop of the detection voltage at a predetermined determination voltage or higher when the switching element is in an OFF state.
 また、本願に開示されるインバータシステムは、上記インバータ装置を複数台備え、該複数台のインバータ装置の上記各直流母線が並列接続されるものである。 The inverter system disclosed in the present application includes a plurality of the inverter devices, and the DC buses of the plurality of inverter devices are connected in parallel.
 本願に開示されるインバータ装置によれば、回生回路の負荷が過重になることが防止され回生回路の劣化を抑制できる。また他のインバータ装置と共に並列運転する際に、全体の回生可能電力を増大できると共に、良好な信頼性で継続運転が可能になる。 According to the inverter device disclosed in the present application, it is possible to prevent the load of the regenerative circuit from becoming excessive, and to suppress deterioration of the regenerative circuit. In parallel operation with other inverter devices, the total regenerative power can be increased and continuous operation can be performed with good reliability.
 また、本願に開示されるインバータシステムによれば、各インバータ装置の回生回路の負荷が過重になることを防止して回生回路の劣化を抑制し、良好な信頼性で継続運転が可能にできると共に、回生可能電力を増大できる。 In addition, according to the inverter system disclosed in the present application, the load on the regenerative circuit of each inverter device can be prevented from being excessively suppressed to suppress deterioration of the regenerative circuit, and continuous operation can be performed with good reliability. The regenerative power can be increased.
実施の形態1によるインバータシステムの概略構成を示す図である。It is a figure which shows schematic structure of the inverter system by Embodiment 1. FIG. 実施の形態1によるインバータ装置の回生制御部を説明する図である。It is a figure explaining the regeneration control part of the inverter apparatus by Embodiment 1. FIG. 実施の形態1による各インバータ装置における開始電圧および停止電圧を説明する図である。It is a figure explaining the starting voltage and stop voltage in each inverter apparatus by Embodiment 1. FIG. 実施の形態1による各インバータ装置における開始電圧、停止電圧および判定電圧を示す図である。It is a figure which shows the start voltage, stop voltage, and determination voltage in each inverter apparatus by Embodiment 1. FIG. 実施の形態1によるインバータ装置の回生制御部の動作を説明するフローチャートである。4 is a flowchart illustrating an operation of a regeneration control unit of the inverter device according to the first embodiment. 実施の形態1による各インバータ装置の回生電力処理を説明する図である。It is a figure explaining the regenerative electric power process of each inverter apparatus by Embodiment 1. FIG. 実施の形態2による回生制御部の構成を示すブロック図である。6 is a block diagram illustrating a configuration of a regeneration control unit according to Embodiment 2. FIG. 実施の形態2による回生制御部の第1制御部の構成を示す図である。FIG. 10 is a diagram illustrating a configuration of a first control unit of a regeneration control unit according to Embodiment 2. 実施の形態2による回生制御部の第2制御部の構成を示す図である。It is a figure which shows the structure of the 2nd control part of the regeneration control part by Embodiment 2. FIG. 実施の形態2による回生制御部の動作を説明する各部の波系図である。FIG. 10 is a wave diagram of each part for explaining the operation of the regeneration control unit according to the second embodiment.
実施の形態1.
 図1は、実施の形態1によるインバータシステムの概略構成を示す図である。
 図1に示すように、インバータシステム100は、3台のインバータ装置3x、3y、3zを直流側で並列接続して備え、各インバータ装置3x、3y、3zが、直流電源1からの直流電力を交流電力に変換して、それぞれの負荷であるモータ4x、4y、4zを駆動するシステムである。各インバータ装置3x、3y、3zの直流母線2x、2y、2zは、インバータ装置3x、3y、3zの直流電源1側で並列接続されて直流電源1に接続される。
 なお、インバータシステム100が、直流電源1およびモータ4x、4y、4zを備えても良いし、直流電源1およびモータ4x、4y、4zの一方、あるいは双方をインバータシステム100の外部に設けても良い。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a schematic configuration of an inverter system according to the first embodiment.
As shown in FIG. 1, the inverter system 100 includes three inverter devices 3x, 3y, and 3z connected in parallel on the DC side, and each inverter device 3x, 3y, and 3z receives DC power from the DC power supply 1. This is a system that converts AC power and drives the motors 4x, 4y, and 4z, which are the respective loads. The DC buses 2x, 2y, and 2z of the inverter devices 3x, 3y, and 3z are connected in parallel on the DC power source 1 side of the inverter devices 3x, 3y, and 3z and connected to the DC power source 1.
The inverter system 100 may include the DC power supply 1 and the motors 4x, 4y, and 4z, or one or both of the DC power supply 1 and the motors 4x, 4y, and 4z may be provided outside the inverter system 100. .
 モータ4x、4y、4zは、三相モータで、例えばx軸、y軸、z軸の3軸動作を担う3個のサーボモータが用いられる。
 なお、モータ4x、4y、4zは、三相モータに限定されるものではない。また、モータ4x、4y、4zの個数およびインバータ装置3x、3y、3zの台数は、3以外の複数であっても良く、各モータ4x、4y、4zを駆動するインバータ装置3x、3y、3zが直流側で並列接続されるものであれば良い。
The motors 4x, 4y, and 4z are three-phase motors. For example, three servo motors that perform three-axis operations of the x-axis, y-axis, and z-axis are used.
Motors 4x, 4y, and 4z are not limited to three-phase motors. Further, the number of the motors 4x, 4y, 4z and the number of the inverter devices 3x, 3y, 3z may be a plurality other than 3, and the inverter devices 3x, 3y, 3z that drive the motors 4x, 4y, 4z are provided. Any device connected in parallel on the DC side may be used.
 インバータ装置3x、3y、3zは、直流母線2x、2y、2zと、電力変換部31x、31y、31zと、平滑コンデンサ32x、32y、32zと、電圧検出部33x、33y、33zとを備える。さらに、インバータ装置3x、3y、3zは、回生電力を処理する回生回路34x、34y、34zと、回生回路34x、34y、34zを制御する回生制御部35x、35y、35zとを備える。回生回路34x、34y、34zは、抵抗器341x、341y、341zとスイッチング素子342x、342y、342zとの直列回路を備える。
 なお、Cx*、Cy*、Cz*は、外部から電力変換部31x、31y、31zに与えられる各インバータ装置3x、3y、3zの指令値、Vdcx、Vdcy、Vdczは、各電圧検出部33x、33y、33zからの検出電圧、Imx、Imy、Imzは、各モータ4x、4y、4zの状態情報である。
The inverter devices 3x, 3y, and 3z include DC buses 2x, 2y, and 2z, power conversion units 31x, 31y, and 31z, smoothing capacitors 32x, 32y, and 32z, and voltage detection units 33x, 33y, and 33z. Furthermore, the inverter devices 3x, 3y, and 3z include regenerative circuits 34x, 34y, and 34z that process regenerative power, and regenerative control units 35x, 35y, and 35z that control the regenerative circuits 34x, 34y, and 34z. The regenerative circuits 34x, 34y, 34z include a series circuit of resistors 341x, 341y, 341z and switching elements 342x, 342y, 342z.
Note that Cx *, Cy *, and Cz * are the command values of the inverter devices 3x, 3y, and 3z given to the power converters 31x, 31y, and 31z from the outside, and Vdcx, Vdcy, and Vdcz are the voltage detectors 33x, The detection voltages Imx, Imy, and Imz from 33y and 33z are state information of the motors 4x, 4y, and 4z.
 指令値Cx*、Cy*、Cz*は、例えば、モータ4x、4y、4zの時刻変化情報を含んだ所望の回転速度あるいは所望のトルクもしくは所望の移動距離(回転角度)である。各モータ4x、モータ4y、モータ4zは、例えば、スタッカ装置のx軸、y軸、z軸の動作用モータ、あるいは、ロボットの根元動作用モータ、関節動作用モータ、手首部動作用モータの様に所望の動きが異なる。従って、各インバータ装置3x、3y、3zの指令値Cx*、Cy*、Cz*は、それぞれ異なることが一般的である。 The command values Cx *, Cy *, Cz * are, for example, a desired rotation speed, a desired torque, or a desired movement distance (rotation angle) including time change information of the motors 4x, 4y, 4z. Each motor 4x, motor 4y, and motor 4z is, for example, an x-axis, y-axis, or z-axis operation motor of a stacker device, or a robot root operation motor, a joint operation motor, or a wrist operation motor. The desired movement is different. Therefore, the command values Cx *, Cy *, Cz * of the inverter devices 3x, 3y, 3z are generally different from each other.
 状態情報Imx、Imy、Imzは、モータ4x、4y、4zの軸に関する位置情報である。これは、モータ4x、4y、4zに付属するレゾルバまたはエンコーダなど、回転位置情報の検出回路から得られる。
 各指令値Cx*、Cy*、Cz*が異なる事、あるいは、各モータ4x、4y、4zの摩擦力が異なる事により、各モータ4x、4y、4zの状態情報Imx、Imy、Imzもそれぞれ異なることが一般的である。
The state information Imx, Imy, Imz is position information about the axes of the motors 4x, 4y, 4z. This is obtained from a rotation position information detection circuit such as a resolver or encoder attached to the motors 4x, 4y, and 4z.
Each command value Cx *, Cy *, Cz * is different, or each motor 4x, 4y, 4z has a different frictional force, so that the state information Imx, Imy, Imz of each motor 4x, 4y, 4z is also different. It is common.
 また、検出電圧Vdcx、Vdcy、Vdczは、直流母線2x、2y、2z間の直流電圧Vdcを電圧検出部33x、33y、33zにて検出して得られる。各電圧検出部33x、33y、33zは、例えば、直流母線2x、2y、2z間に、高抵抗値R1の抵抗器(以下、抵抗器R1)と低抵抗値R2の抵抗器(以下、抵抗器R2)とを直列接続した回路を設けて構成する。そして、抵抗器R2の両端電圧値をアナログ/ディジタル(A/D)変換した後、{(R1+R2)/R2}倍して検出電圧Vdcx、Vdcy、Vdczを得る。
 直流母線2x、2y、2zは並列接続されているため、直流母線2x、2y、2z間の実際の直流電圧Vdcは共通である。しかしながら、各電圧検出部33x、33y、33zの抵抗器R1、R2およびA/D変換器などの素子バラツキに起因して、検出電圧Vdcx、Vdcy、Vdczにはそれぞれ検出誤差が個別に含まれて同一になる保証は無い。
The detection voltages Vdcx, Vdcy, and Vdcz are obtained by detecting the DC voltage Vdc between the DC buses 2x, 2y, and 2z by the voltage detection units 33x, 33y, and 33z. Each of the voltage detectors 33x, 33y, 33z includes, for example, a resistor having a high resistance value R1 (hereinafter, resistor R1) and a resistor having a low resistance value R2 (hereinafter, resistors) between the DC buses 2x, 2y, and 2z. And a circuit in which R2) is connected in series. Then, after analog / digital (A / D) conversion is performed on the voltage value across the resistor R2, it is multiplied by {(R1 + R2) / R2} to obtain detection voltages Vdcx, Vdcy, and Vdcz.
Since the DC buses 2x, 2y, and 2z are connected in parallel, the actual DC voltage Vdc between the DC buses 2x, 2y, and 2z is common. However, the detection voltages Vdcx, Vdcy, and Vdcz individually include detection errors due to element variations such as resistors R1 and R2 and A / D converters of the voltage detection units 33x, 33y, and 33z. There is no guarantee that they will be identical.
 以下、インバータ装置3xについて詳細に説明する。インバータ装置3y、3zはインバータ装置3xと同様であるため、詳細説明は省略する。
 直流母線2x間に平滑コンデンサ32xが接続され、平滑コンデンサ32xは直流電力の電圧を平準化すると共に、回生電力を一時的に蓄電する。
 電圧検出部33xは、直流母線2x間の電圧Vdc、即ち、平滑コンデンサ32xの電圧を検出して検出電圧Vdcxを出力する。
Hereinafter, the inverter device 3x will be described in detail. Since the inverter devices 3y and 3z are the same as the inverter device 3x, detailed description thereof is omitted.
A smoothing capacitor 32x is connected between the DC buses 2x, and the smoothing capacitor 32x equalizes the voltage of DC power and temporarily stores regenerative power.
The voltage detector 33x detects the voltage Vdc between the DC buses 2x, that is, the voltage of the smoothing capacitor 32x, and outputs a detection voltage Vdcx.
 電力変換部31xは、スイッチング素子を有する主回路と制御回路とを有して構成される。そして、指令値Cx*と、状態情報Imxと、検出電圧Vdcxとに基づいて、直流母線2xからの直流電力を任意の振幅および周波数の交流電力に変換してモータ4xに電力供給してモータ4xを駆動する。
 また、電力変換部31xは、モータ4xが減速または停止する場合に、モータ4xが発電機として機能して発生する回生電力を直流母線2xへ給電する。即ち、モータ4xが回生電力を生起した場合、回生電力は電力変換部31xを介して直流母線2xへ供給される。
The power conversion unit 31x includes a main circuit having a switching element and a control circuit. Then, based on the command value Cx *, the state information Imx, and the detection voltage Vdcx, the DC power from the DC bus 2x is converted into AC power having an arbitrary amplitude and frequency, and the motor 4x is supplied with electric power. Drive.
Further, when the motor 4x decelerates or stops, the power conversion unit 31x supplies regenerative power generated by the motor 4x functioning as a generator to the DC bus 2x. That is, when the motor 4x generates regenerative power, the regenerative power is supplied to the DC bus 2x via the power converter 31x.
 3つのインバータ装置3x、3y、3zの直流母線2x、2y、2zは並列接続されているため、電力変換部31xからの回生電力は、インバータ装置3x内の平滑コンデンサ32xだけでなく、インバータ装置3y内の平滑コンデンサ32y、およびインバータ装置3z内の平滑コンデンサ32zにも蓄電される。 Since the DC buses 2x, 2y, and 2z of the three inverter devices 3x, 3y, and 3z are connected in parallel, the regenerative power from the power conversion unit 31x is not only the smoothing capacitor 32x in the inverter device 3x but also the inverter device 3y. The smoothing capacitor 32y and the smoothing capacitor 32z in the inverter device 3z are also charged.
 回生回路34xは、直流母線2x間に抵抗器341xとスイッチング素子342xとが直列に接続された直列回路で構成される。回生回路34x内のスイッチング素子342xは、回生制御部35xの出力である制御信号SWxにより、オンオフ制御、即ち、導通状態または遮断状態に制御される。
 この場合、制御信号SWxがスイッチング素子342xをオン状態にする場合を、制御信号SWxの状態として「1」レベルと呼ぶ。制御信号SWxがスイッチング素子342xをオフ状態にする場合を、制御信号SWxの状態として「0」レベルと呼ぶ。
The regenerative circuit 34x is configured by a series circuit in which a resistor 341x and a switching element 342x are connected in series between the DC bus 2x. The switching element 342x in the regenerative circuit 34x is controlled to be turned on / off, that is, in a conductive state or a cut-off state by a control signal SWx that is an output of the regenerative control unit 35x.
In this case, the case where the control signal SWx turns on the switching element 342x is referred to as “1” level as the state of the control signal SWx. The case where the control signal SWx turns off the switching element 342x is referred to as “0” level as the state of the control signal SWx.
 制御信号SWxが「1」レベルの場合、回生回路34xでは、スイッチング素子342xがオンし、平滑コンデンサ32xに蓄えられた回生電力が抵抗器341xにて、熱として消費されて処理される。
 3つのインバータ装置3x、3y、3zの直流母線2x、2y、2zは並列接続されているため、インバータ装置3xの回生回路34x内のスイッチング素子342xがオンすると、インバータ装置3x内の平滑コンデンサ32xだけでなく、3つのインバータ装置3x、3y、3z内の平滑コンデンサ32x、32y、32zに蓄えられている電力が全て回生回路34xの抵抗器341xにて消費される。
When the control signal SWx is at the “1” level, in the regenerative circuit 34x, the switching element 342x is turned on, and the regenerative power stored in the smoothing capacitor 32x is consumed and processed by the resistor 341x.
Since the DC buses 2x, 2y, and 2z of the three inverter devices 3x, 3y, and 3z are connected in parallel, when the switching element 342x in the regenerative circuit 34x of the inverter device 3x is turned on, only the smoothing capacitor 32x in the inverter device 3x. Instead, all the electric power stored in the smoothing capacitors 32x, 32y, 32z in the three inverter devices 3x, 3y, 3z is consumed by the resistor 341x of the regenerative circuit 34x.
 回生制御部35xは、電圧検出部33xからの検出電圧Vdcxに基づいて、制御信号SWxを回生回路34xへ出力する。
 この実施の形態では、回生制御部35xは、図2に示すように、ソフトウェアを用いて演算処理するプロセッサ(マイクロプロセッサ)5を有して構成される。プロセッサ5は記憶回路6に読み出し指令を出力し、記憶回路6から必要な情報(無負荷時電圧Vdc0、開始電圧Von、停止電圧Voff、判定電圧Vmin、補償電圧δ)を読み出す。これら、必要な情報については後述する。そして、プロセッサ5により制御信号SWxを演算して出力する。
 なお、プロセッサ5の外部に、レジスタあるいはメモリを用いた記憶回路6を設置する場合を図示したが、プロセッサ5の内蔵記憶部を記憶回路として用いても良い。
The regeneration control unit 35x outputs a control signal SWx to the regeneration circuit 34x based on the detected voltage Vdcx from the voltage detection unit 33x.
In this embodiment, as shown in FIG. 2, the regeneration control unit 35x is configured to include a processor (microprocessor) 5 that performs arithmetic processing using software. The processor 5 outputs a read command to the storage circuit 6 and reads necessary information (no load voltage Vdc0, start voltage Von, stop voltage Voff, determination voltage Vmin, compensation voltage δ) from the storage circuit 6. These necessary information will be described later. Then, the processor 5 calculates and outputs the control signal SWx.
In addition, although the case where the storage circuit 6 using a register or a memory is installed outside the processor 5 is illustrated, the internal storage unit of the processor 5 may be used as the storage circuit.
 無負荷時電圧Vdc0、開始電圧Von、停止電圧Voff、判定電圧Vminおよび補償電圧δは、予め設定されて記憶される値で、3つのインバータ装置3x、3y、3zで差は無く同じ値である。
 直流電源1は、実効値200Vの商用交流電力を全波整流して直流母線2x、2y、2zへ給電するものとする。全てのモータ4x、4y、4zが停止している時、即ち無負荷時の直流電圧Vdcである無負荷時電圧Vdc0は、約283Vである。
The no-load voltage Vdc0, the start voltage Von, the stop voltage Voff, the determination voltage Vmin, and the compensation voltage δ are values that are preset and stored, and are the same values with no difference between the three inverter devices 3x, 3y, and 3z. .
It is assumed that the DC power source 1 performs full-wave rectification on commercial AC power having an effective value of 200 V and supplies power to the DC buses 2x, 2y, and 2z. When all the motors 4x, 4y, and 4z are stopped, that is, the no-load voltage Vdc0 that is the DC voltage Vdc at no load is about 283V.
 また、開始電圧Vonは、回生電力処理を開始する為に予め設定された電圧、停止電圧Voffは、回生電力処理を停止する為に予め設定された電圧である。回生制御部35xは、検出電圧Vdcxが開始電圧Von以上に上昇すると、制御信号SWxを「1」レベルにして回生電力処理を開始する。そして、回生制御部35xは、回生電力処理により検出電圧Vdcxが降下し停止電圧Voffに達すると、制御信号SWxを「0」レベルに変化させて回生電力処理を停止する。 The start voltage Von is a voltage set in advance to start the regenerative power process, and the stop voltage Voff is a voltage set in advance to stop the regenerative power process. When the detection voltage Vdcx rises above the start voltage Von, the regenerative control unit 35x sets the control signal SWx to “1” level and starts regenerative power processing. When the detection voltage Vdcx drops and reaches the stop voltage Voff by the regenerative power process, the regenerative control unit 35x changes the control signal SWx to “0” level and stops the regenerative power process.
 さらに、回生制御部35xは、制御信号SWxが「0」レベルの時に、検出電圧Vdcxが判定電圧Vmin以上において電圧降下したことを検出すると、制御信号SWxを「1」レベルにして回生電力処理を開始する。そして、回生制御部35xは、補償電圧δを用いて第2停止電圧Vspxを生成し、回生電力処理により検出電圧Vdcxが降下し第2停止電圧Vspxに達すると、制御信号SWxを「0」レベルに変化させて回生電力処理を停止する。
 ここでは、開始電圧Vonを380V、停止電圧Voffを350V、判定電圧Vminを365Vとする。
Furthermore, when the regenerative control unit 35x detects that the detection voltage Vdcx has dropped when the control signal SWx is at “0” level, the regenerative power processing is performed by setting the control signal SWx to “1” level. Start. Then, the regeneration control unit 35x generates the second stop voltage Vspx using the compensation voltage δ, and when the detection voltage Vdcx drops and reaches the second stop voltage Vspx by the regenerative power process, the control signal SWx is set to the “0” level. To stop the regenerative power processing.
Here, the start voltage Von is 380V, the stop voltage Voff is 350V, and the determination voltage Vmin is 365V.
 電圧検出部33xの素子バラツキによる検出誤差は2%以下で製造されているものとする。以後、検出電圧Vdcxの電圧値に対して、実電圧の電圧値はVRの単位を付して記載する。
 電圧検出部33xは、直流電圧Vdcが373VRから388VRまでの範囲で、検出電圧Vdcxが開始電圧Von(=380V)になったと判断する可能性がある。同様に、電圧検出部33xは、直流電圧Vdcが343VRから357VRまでの範囲で、検出電圧Vdcxが停止電圧Voff(=350V)になったと判断する可能性が生じる。
It is assumed that the detection error due to the element variation of the voltage detection unit 33x is 2% or less. Hereinafter, with respect to the voltage value of the detection voltage Vdcx, the voltage value of the actual voltage is described with a unit of VR.
The voltage detection unit 33x may determine that the detection voltage Vdcx has reached the start voltage Von (= 380 V) when the DC voltage Vdc is in the range from 373 VR to 388 VR. Similarly, there is a possibility that the voltage detection unit 33x determines that the detection voltage Vdcx becomes the stop voltage Voff (= 350V) when the DC voltage Vdc is in the range from 343VR to 357VR.
 各インバータ装置3x、3y、3zの電圧検出部33x、33y、33zからの検出電圧Vdcx、Vdcy、Vdczが開始電圧Von(=380V)と一致するときの実電圧をVonx、Vony、Vonzとする。また、検出電圧Vdcx、Vdcy、Vdczが停止電圧Voff(=350V)と一致するときの実電圧をVoffx、Voffy、Voffzとする。即ち、Vonxは、Vdcx=Von、の時の実電圧であり、Voffxは、Vdcx=Voff、の時の実電圧である。
 図3に示すように、各Vonx、Vony、Vonzの最大可能電圧は388VR、最小可能電圧は373VRとなる。また、各Voffx、Voffy、Voffzの最大可能電圧は357VR、最小可能電圧は343VRとなる。
The actual voltages when the detection voltages Vdcx, Vdcy, and Vdcz from the voltage detection units 33x, 33y, and 33z of the inverter devices 3x, 3y, and 3z coincide with the start voltage Von (= 380 V) are defined as Vonx, Vony, and Vonz. Further, actual voltages when the detection voltages Vdcx, Vdcy, Vdcz coincide with the stop voltage Voff (= 350 V) are Voffx, Voffy, Voffz. That is, Vonx is an actual voltage when Vdcx = Von, and Voffx is an actual voltage when Vdcx = Voff.
As shown in FIG. 3, the maximum possible voltage of each Vonx, Vony, and Vonz is 388 VR, and the minimum possible voltage is 373 VR. In addition, the maximum possible voltage of each Voffx, Voffy, and Voffz is 357 VR, and the minimum possible voltage is 343 VR.
 また、判定電圧Vminは、開始電圧Vonと停止電圧Voffとの間に設定される。但し、開始電圧Vonおよび停止電圧Voffに対応する実電圧は上述したように最小可能電圧から最大可能電圧までの間であるため、開始電圧Vonに対応する最小可能電圧と、停止電圧Voffに対応する最大可能電圧との間に、判定電圧Vminは設定される。
 ここでは、判定電圧Vminは開始電圧Vonと停止電圧Voffとの中央値の365Vの場合を例に取り、開始電圧Vonに対応する最小可能電圧(=373VR)と、停止電圧Voffに対応する最大可能電圧(=357VR)との間に設定されている。
The determination voltage Vmin is set between the start voltage Von and the stop voltage Voff. However, since the actual voltage corresponding to the start voltage Von and the stop voltage Voff is between the minimum possible voltage and the maximum possible voltage as described above, it corresponds to the minimum possible voltage corresponding to the start voltage Von and the stop voltage Voff. The determination voltage Vmin is set between the maximum possible voltage.
Here, the determination voltage Vmin is taken as an example of a median value of 365 V between the start voltage Von and the stop voltage Voff, and the minimum possible voltage (= 373 VR) corresponding to the start voltage Von and the maximum possible corresponding to the stop voltage Voff. Voltage (= 357 VR).
 検出電圧Vdcx、Vdcy、Vdczが判定電圧Vmin(=365V)と一致するときの実電圧をVminx、Vminy、Vminzとする。各Vminx、Vminy、Vminzの最大可能電圧は372VR、最小可能電圧は358VRとなる。
 この実施の形態における、各インバータ装置3x、3y、3zの回生制御部35x、35y、35zに設定される開始電圧Von(=380V)、停止電圧Voff(=350V)および判定電圧Vmin(=365V)に対応する実電圧を、図4に示す値とする。
The actual voltages when the detection voltages Vdcx, Vdcy, Vdcz coincide with the determination voltage Vmin (= 365 V) are defined as Vminx, Vminy, Vminz. The maximum possible voltage of each Vminx, Vminy, and Vminz is 372 VR, and the minimum possible voltage is 358 VR.
In this embodiment, the start voltage Von (= 380 V), the stop voltage Voff (= 350 V), and the determination voltage Vmin (= 365 V) set in the regeneration control units 35 x, 35 y, and 35 z of the inverter devices 3 x, 3 y, and 3 z. Let the actual voltage corresponding to the values shown in FIG.
 次に、回生制御部35xの動作を図5に示すフローチャートに基づいて以下に説明する。
 先ず、インバータシステム100が動作し始めると、制御信号SWxを「0」レベルに初期化する(ステップS01)。
 次いで、インバータシステム100が動作終了処理にあるか否かを判定し(ステップS02)、動作終了処理にあれば、回生制御部35xの動作も終了する。
 ステップS02においてインバータシステム100が動作終了処理に無い場合、検出電圧Vdcxが無負荷時電圧Vdc0以上であるか否かを判定し(ステップS10)、検出電圧Vdcxが無負荷時電圧Vdc0未満であれば、ステップS02へ戻る。これは、インバータシステム100全体で回生電力が生じていない状態では回生制御部35xを動作させない機能である。
Next, operation | movement of the regeneration control part 35x is demonstrated below based on the flowchart shown in FIG.
First, when the inverter system 100 starts to operate, the control signal SWx is initialized to “0” level (step S01).
Next, it is determined whether or not the inverter system 100 is in the operation end process (step S02). If the inverter system 100 is in the operation end process, the operation of the regeneration control unit 35x is also ended.
If the inverter system 100 is not in the operation end process in step S02, it is determined whether or not the detected voltage Vdcx is equal to or higher than the no-load voltage Vdc0 (step S10), and if the detected voltage Vdcx is less than the no-load voltage Vdc0. Return to step S02. This is a function that does not operate the regeneration control unit 35x in a state where regenerative power is not generated in the entire inverter system 100.
 ステップS10において、検出電圧Vdcxが無負荷時電圧Vdc0以上であれば、検出電圧Vdcxが開始電圧Von以上であるか否かを判定し(ステップS11)、検出電圧Vdcxが開始電圧Von以上であれば、制御信号SWxを「1」レベルにする(ステップS12)。
 次に、検出電圧Vdcxが停止電圧Voff以下であるか否かを判定する(ステップS13)。検出電圧Vdcxが停止電圧Voffより高い場合は、ステップS12へ戻り、制御信号SWxを「1」レベルに維持する。
 ステップS13において、検出電圧Vdcxが停止電圧Voff以下であれば、制御信号SWxを「0」レベルに変化させ(ステップS14)、ステップS02へ戻る。回生電力が継続して発生する場合は、再びステップS10からの処理が再開される。
In step S10, if the detection voltage Vdcx is equal to or higher than the no-load voltage Vdc0, it is determined whether or not the detection voltage Vdcx is equal to or higher than the start voltage Von (step S11), and if the detection voltage Vdcx is equal to or higher than the start voltage Von. The control signal SWx is set to “1” level (step S12).
Next, it is determined whether or not the detection voltage Vdcx is equal to or lower than the stop voltage Voff (step S13). When the detection voltage Vdcx is higher than the stop voltage Voff, the process returns to step S12, and the control signal SWx is maintained at the “1” level.
If the detection voltage Vdcx is equal to or lower than the stop voltage Voff in step S13, the control signal SWx is changed to “0” level (step S14), and the process returns to step S02. If regenerative power is continuously generated, the processing from step S10 is resumed.
 ステップS11において、検出電圧Vdcxが開始電圧Von未満であれば、検出電圧Vdcxが判定電圧Vmin以上であるか否かを判定し(ステップS20)、検出電圧Vdcxが判定電圧Vmin未満であれば、ステップS02へ戻る。
 ステップS20において、検出電圧Vdcxが判定電圧Vmin以上であれば、検出電圧Vdcxが連続して電圧降下したか否かを判定する。ここでは、検出電圧Vdcxが、システムクロックで3周期分連続して電圧降下したか否かを判定する(ステップS21)。
In step S11, if the detection voltage Vdcx is less than the start voltage Von, it is determined whether or not the detection voltage Vdcx is greater than or equal to the determination voltage Vmin (step S20). If the detection voltage Vdcx is less than the determination voltage Vmin, step is performed. Return to S02.
In step S20, if the detection voltage Vdcx is equal to or higher than the determination voltage Vmin, it is determined whether or not the detection voltage Vdcx has continuously dropped. Here, it is determined whether or not the detection voltage Vdcx has dropped for three periods continuously in the system clock (step S21).
 ステップS21の処理は、例えば、システムクロックで3周期分の検出電圧Vdcxのデータを一時記憶して、そのデータを順次比較して判断する事で実現できる。ここで、3周期分連続の電圧降下を検出することは、検出電圧Vdcxのノイズに拠る誤動作を防止するためであり、3周期分に限らない。検出電圧Vdcxのノイズの影響が小さければ、連続して電圧降下を検出する時間幅は小さくできる。逆に、検出電圧Vdcxのノイズの影響が大きければ、連続して電圧降下を検出する時間幅は大きくする必要が生じる。 The processing in step S21 can be realized, for example, by temporarily storing the data of the detection voltage Vdcx for three cycles with the system clock and sequentially comparing the data for determination. Here, detecting the voltage drop continuously for three cycles is to prevent malfunction due to noise of the detection voltage Vdcx, and is not limited to three cycles. If the influence of the noise of the detection voltage Vdcx is small, the time width for continuously detecting the voltage drop can be reduced. On the contrary, if the influence of the noise of the detection voltage Vdcx is large, it is necessary to increase the time width for continuously detecting the voltage drop.
 ステップS21において、検出電圧Vdcxに連続電圧降下がない場合は、ステップS02へ戻る。
 ステップS21において、検出電圧Vdcxが連続して電圧降下した事を検出すると、その時点の検出電圧Vdcxを第2開始電圧Vstxとして記憶する。また、第2停止電圧Vspxを、以下の式(1)により生成して記憶する(ステップS22)。
 Vspx=Vstx-(Von-Voff)+δ   ・・・(1)
 なお、開始電圧Vonに対応する最小可能電圧をVonmin、停止電圧Voffに対応する最大可能電圧をVoffmaxで表すと、補償電圧δは、以下の式(2)を満たすように設定される。
Vonmin≧Vonmin-(Von-Voff)+δ≧Voffmax・・・(2)
 即ち、30≧δ≧14
 ここでは、補償電圧δは20Vとする。
If there is no continuous voltage drop in the detected voltage Vdcx in step S21, the process returns to step S02.
In step S21, when it is detected that the detection voltage Vdcx has continuously dropped, the detection voltage Vdcx at that time is stored as the second start voltage Vstx. Further, the second stop voltage Vspx is generated and stored by the following equation (1) (step S22).
Vspx = Vstx− (Von−Voff) + δ (1)
When the minimum possible voltage corresponding to the start voltage Von is represented by Vonmin and the maximum possible voltage corresponding to the stop voltage Voff is represented by Voffmax, the compensation voltage δ is set so as to satisfy the following expression (2).
Vonmin ≧ Vonmin− (Von−Voff) + δ ≧ Voffmax (2)
That is, 30 ≧ δ ≧ 14
Here, the compensation voltage δ is 20V.
 次に、制御信号SWxを「1」レベルにする(ステップS23)。
 次に、検出電圧Vdcxが第2停止電圧Vspx以下であるか否かを判定する(ステップS24)。検出電圧Vdcxが第2停止電圧Vspxより高い場合は、ステップS23へ戻り、制御信号SWxを「1」レベルに維持する。
 ステップS24において、検出電圧Vdcxが第2停止電圧Vspx以下であれば、制御信号SWxを「0」レベルに変化させ(ステップS25)、ステップS02へ戻る。回生電力が継続して発生する場合は、再びステップS10からの処理が再開される。
Next, the control signal SWx is set to “1” level (step S23).
Next, it is determined whether or not the detection voltage Vdcx is equal to or lower than the second stop voltage Vspx (step S24). When the detection voltage Vdcx is higher than the second stop voltage Vspx, the process returns to step S23, and the control signal SWx is maintained at the “1” level.
If the detection voltage Vdcx is equal to or lower than the second stop voltage Vspx in step S24, the control signal SWx is changed to “0” level (step S25), and the process returns to step S02. If regenerative power is continuously generated, the processing from step S10 is resumed.
 上述したように回生制御部35xは、ステップS01~ステップS25の処理により回生回路34xを制御する。ステップS10~ステップS14に係る制御を第1制御部とし、ステップS20~ステップS25に係る制御を第2制御部とする。
 第1制御部では、検出電圧Vdcxと、開始電圧Vonおよび停止電圧Voffとの比較に基づいて、回生回路34xを制御する。即ち、検出電圧Vdcxが開始電圧Von以上に上昇すると、回生電力処理を開始し、それにより検出電圧Vdcxが降下して停止電圧Voffに達すると、回生電力処理を停止する。
As described above, the regeneration control unit 35x controls the regeneration circuit 34x by the processing of Step S01 to Step S25. The control related to steps S10 to S14 is a first control unit, and the control related to steps S20 to S25 is a second control unit.
The first control unit controls the regeneration circuit 34x based on a comparison between the detection voltage Vdcx, the start voltage Von, and the stop voltage Voff. That is, when the detection voltage Vdcx rises above the start voltage Von, the regenerative power process is started. When the detection voltage Vdcx drops and reaches the stop voltage Voff, the regenerative power process is stopped.
 第2制御部では、他のインバータ装置、例えばインバータ装置3yの回生回路34yが回生電力処理をしている事を、ステップS21において、検出電圧Vdcxが連続して電圧降下した事を検出する事で検知する。また、この連続した電圧降下の検出を、判定電圧Vmin以上の領域で行う事により、連続した電圧降下が他のインバータ装置3yの回生電力処理によって発生したものである事を担保する。
 そして、第2制御部は、自身の回生回路34xにおいても他の回生回路34yに追従するように回生電力処理を開始する。また、停止電圧Voffに対応する最大可能電圧以上に第2停止電圧Vspxを生成し、検出電圧Vdcxが降下して第2停止電圧Vspxに達すると、回生電力処理を停止する。
In the second control unit, by detecting that the regenerative circuit 34y of another inverter device, for example, the inverter device 3y is performing regenerative power processing, in step S21, detecting that the detection voltage Vdcx has continuously dropped. Detect. Further, by detecting this continuous voltage drop in the region of the determination voltage Vmin or higher, it is ensured that the continuous voltage drop is caused by the regenerative power process of the other inverter device 3y.
And the 2nd control part starts regenerative electric power processing so that other regenerative circuit 34y may track also in its regenerative circuit 34x. Further, the second stop voltage Vspx is generated to be equal to or higher than the maximum possible voltage corresponding to the stop voltage Voff, and when the detection voltage Vdcx drops and reaches the second stop voltage Vspx, the regenerative power process is stopped.
 次に、3つのインバータ装置3x、3y、3zの回生電力処理の態様を図6に基づいて説明する。なお、各インバータ装置3x、3y、3zの電圧検出部33x、33y、33zによる検出電圧Vdcx、Vdcy、Vdczのバラツキは、図4に示す電圧値に基づく。
 3つのインバータ装置3x、3y、3zにおいて、検出電圧Vdcx、Vdcy、Vdczが開始電圧Von(=380V)と一致するときの実電圧Vonx、Vony、Vonzが最も低いものは、インバータ装置3xのVonx(=373VR)である。
Next, the aspect of the regenerative power process of the three inverter devices 3x, 3y, and 3z will be described with reference to FIG. Note that variations in the detection voltages Vdcx, Vdcy, Vdcz by the voltage detection units 33x, 33y, 33z of the inverter devices 3x, 3y, 3z are based on the voltage values shown in FIG.
Among the three inverter devices 3x, 3y, and 3z, the lowest actual voltages Vonx, Vony, and Vonz when the detection voltages Vdcx, Vdcy, and Vdcz coincide with the start voltage Von (= 380 V) = 373VR).
 実電圧である直流電圧Vdcが上昇してVonx(=373VR)以上になると、インバータ装置3xの検出電圧Vdcxが開始電圧Von(=380V)以上となり、回生制御部35xは、回生回路34xのスイッチング素子342xをオンさせて回生電力処理を開始する。その後、直流電圧Vdcが降下してVoffx(=357VR)以下になると、検出電圧Vdcxが降下して停止電圧Voff(=350V)以下になり、回生制御部35xは、回生回路34xのスイッチング素子342xをオフさせて回生電力処理を停止する(ステップS11~S14参照)。 When the DC voltage Vdc, which is the actual voltage, rises to Vonx (= 373 VR) or higher, the detection voltage Vdcx of the inverter device 3 x becomes higher than the start voltage Von (= 380 V), and the regenerative control unit 35 x performs switching elements of the regenerative circuit 34 x. 342x is turned on to start regenerative power processing. Thereafter, when the DC voltage Vdc drops to Voffx (= 357 VR) or lower, the detection voltage Vdcx drops to lower than the stop voltage Voff (= 350 V), and the regenerative control unit 35x switches the switching element 342x of the regenerative circuit 34x. The regenerative power process is stopped by turning it off (see steps S11 to S14).
 直流電圧Vdc=Vonx(=373VR)においてインバータ装置3xで回生電力処理が開始されると、直流電圧Vdcは降下するため、インバータ装置3y、3zの検出電圧Vdcy、Vdczも降下する。 When the regenerative power process is started in the inverter device 3x at the DC voltage Vdc = Vonx (= 373VR), the DC voltage Vdc drops, so that the detection voltages Vdcy and Vdcz of the inverter devices 3y and 3z also drop.
 インバータ装置3yでは、直流電圧Vdcが、判定電圧Vminに対応するVminy(=365VR)以上の領域でVony(=380VR)に至る前に電圧降下し、回生制御部35yは、検出電圧Vdcyの連続した電圧降下を検出する。そして、検出電圧Vdcyを第2開始電圧Vsty(=373V)として第2停止電圧Vspy(=363V)を生成する。この場合、電圧降下分は小さく、第2開始電圧Vstyの実電圧(=373VR)はVonxと同じ電圧として説明している。回生制御部35yは、回生回路34yのスイッチング素子342yをオンさせて回生電力処理を開始する。その後、検出電圧Vdcyが降下して第2停止電圧Vspy(=363V)以下になると、回生制御部35yは、回生回路34yのスイッチング素子342yをオフさせて回生電力処理を停止する(ステップS20~S25参照)。 In the inverter device 3y, the DC voltage Vdc drops before reaching Vony (= 380VR) in a region equal to or higher than Vminy (= 365VR) corresponding to the determination voltage Vmin, and the regeneration control unit 35y causes the detection voltage Vdcy to continue. Detect voltage drop. Then, the second stop voltage Vspy (= 363 V) is generated with the detection voltage Vdcy as the second start voltage Vsty (= 373 V). In this case, the voltage drop is small, and the actual voltage (= 373VR) of the second start voltage Vsty is described as the same voltage as Vonx. The regenerative control unit 35y turns on the switching element 342y of the regenerative circuit 34y and starts regenerative power processing. Thereafter, when the detection voltage Vdcy drops and becomes equal to or lower than the second stop voltage Vspy (= 363 V), the regenerative control unit 35y turns off the switching element 342y of the regenerative circuit 34y and stops the regenerative power process (steps S20 to S25). reference).
 同様に、インバータ装置3zでは、直流電圧Vdcが、判定電圧Vminに対応するVminz(=372VR)以上の領域でVonz(=387VR)に至る前に電圧降下し、回生制御部35zは、検出電圧Vdczの連続した電圧降下を検出する。そして、検出電圧Vdczを第2開始電圧Vstz(=366V)として第2停止電圧Vspz(=356V)を生成する。この場合も、電圧降下分は小さく、第2開始電圧Vstzの実電圧(=373VR)はVonxと同じ電圧として説明している。続いて、回生制御部35zは、回生回路34zのスイッチング素子342zをオンさせて回生電力処理を開始する。その後、検出電圧Vdczが降下して第2停止電圧Vspz(=356V)以下になると、回生制御部35zは、回生回路34zのスイッチング素子342zをオフさせて回生電力処理を停止する(ステップS20~S25参照)。 Similarly, in the inverter device 3z, the DC voltage Vdc drops before reaching Vonz (= 387VR) in a region equal to or higher than Vminz (= 372VR) corresponding to the determination voltage Vmin, and the regeneration control unit 35z receives the detection voltage Vdcz. The continuous voltage drop is detected. Then, the second stop voltage Vspz (= 356 V) is generated with the detection voltage Vdcz as the second start voltage Vstz (= 366 V). Also in this case, the voltage drop is small, and the actual voltage (= 373VR) of the second start voltage Vstz is described as the same voltage as Vonx. Subsequently, the regenerative control unit 35z turns on the switching element 342z of the regenerative circuit 34z and starts regenerative power processing. Thereafter, when the detection voltage Vdcz drops and becomes equal to or lower than the second stop voltage Vspz (= 356 V), the regenerative control unit 35z turns off the switching element 342z of the regenerative circuit 34z and stops the regenerative power process (steps S20 to S25). reference).
 インバータ装置3xの回生制御部35xが回生電力処理を開始する時刻は、インバータ装置3y、3zの回生制御部35y、35zが回生電力処理を開始する時刻より早い。また、インバータ装置3xの回生制御部35xが回生電力処理を停止する時刻は、インバータ装置3y、3zの回生制御部35y、35zが回生電力処理を停止する時刻より遅い。
 インバータ装置3y、3zでは、回生制御部35y、35zは、ステップS25の処理を実行した後、ステップS02→ステップS10→ステップS11→ステップS20→ステップS02と移行する。このループは、インバータ装置3xの回生制御部35xがステップS14の処理を終了するまで継続する。
The time when the regenerative control unit 35x of the inverter device 3x starts the regenerative power process is earlier than the time when the regenerative control units 35y and 35z of the inverter devices 3y and 3z start the regenerative power process. Moreover, the time when the regenerative control unit 35x of the inverter device 3x stops the regenerative power process is later than the time when the regenerative control units 35y and 35z of the inverter devices 3y and 3z stop the regenerative power process.
In the inverter devices 3y and 3z, the regeneration controllers 35y and 35z perform the process of step S25, and then proceed to step S02 → step S10 → step S11 → step S20 → step S02. This loop continues until the regeneration control unit 35x of the inverter device 3x finishes the process of step S14.
 インバータ装置3xの回生制御部35xがステップS14の処理を終了した時刻において、回生電力の発生がある場合は、インバータ装置3x、3y、3zの回生制御部35x、35y、35zは、共に、ステップS02→ステップS10→ステップS11の処理を再開する。一方、インバータ装置3xの回生制御部35xがステップS14の処理を終了した時刻において、回生電力が発生しない場合は、ステップS02→ステップS10→ステップS02のループを循環する。 When regenerative power is generated at the time when the regeneration control unit 35x of the inverter device 3x finishes the process of step S14, the regeneration control units 35x, 35y, and 35z of the inverter devices 3x, 3y, and 3z are both step S02. → Restart the process of step S10 → step S11. On the other hand, when regenerative power is not generated at the time when the regeneration control unit 35x of the inverter device 3x finishes the process of step S14, the loop of step S02 → step S10 → step S02 is circulated.
 以上のように、この実施の形態によるインバータ装置3xでは、回生制御部35xの第1制御部は、電圧検出部33xからの検出電圧Vdcxと、予め設定された開始電圧Vonおよび停止電圧Voffとの比較に基づいて回生回路34xのスイッチング素子342xを制御する。そして回生制御部35xの第2制御部は、スイッチング素子342xがオフ状態の時に、予め設定された判定電圧Vmin以上で検出電圧Vdcxの電圧降下を検出して、スイッチング素子342xを制御する。
 このため、インバータ装置3xは、並列接続された他のインバータ装置3y(3z)による回生電力処理を、検出電圧Vdcxが連続して電圧降下した事を検出する事で検知し、他のインバータ装置3y(3z)に追従するように回生電力処理を開始する事ができる。これにより、回生回路34xの負荷が過重になることを防止でき、回生回路34xの劣化を抑制できる。また、他のインバータ装置3y、3zと並列運転する際に、全体の回生可能電力を増大できる。
As described above, in the inverter device 3x according to this embodiment, the first control unit of the regeneration control unit 35x performs the detection voltage Vdcx from the voltage detection unit 33x and the preset start voltage Von and stop voltage Voff. Based on the comparison, the switching element 342x of the regenerative circuit 34x is controlled. Then, the second control unit of the regeneration control unit 35x controls the switching element 342x by detecting a voltage drop of the detection voltage Vdcx at a predetermined determination voltage Vmin or higher when the switching element 342x is in the OFF state.
For this reason, the inverter device 3x detects the regenerative power processing by the other inverter device 3y (3z) connected in parallel by detecting that the detection voltage Vdcx has continuously dropped, and the other inverter device 3y. The regenerative power process can be started so as to follow (3z). Thereby, it can prevent that the load of the regeneration circuit 34x becomes heavy, and can suppress degradation of the regeneration circuit 34x. Moreover, when performing parallel operation with the other inverter devices 3y and 3z, the entire regenerative power can be increased.
 複数のインバータ装置3x、3y、3zを並列運転するインバータシステム100では、1つのインバータ装置3x(3y、3z)のみが回生電力処理を担うことが防止できる。大きな回生電力が発生した場合、先に回生電力処理を開始したインバータ装置3xの回生回路34xの抵抗器341xのみで処理するのではなく、全てのインバータ装置3x、3y、3zの回生回路34x、34y、34zが共に回生電力処理を行う事ができる。このため、以下に示す効果が得られる。 In the inverter system 100 in which a plurality of inverter devices 3x, 3y, and 3z are operated in parallel, it is possible to prevent only one inverter device 3x (3y and 3z) from performing regenerative power processing. When a large amount of regenerative power is generated, it is not processed only by the resistor 341x of the regenerative circuit 34x of the inverter device 3x that has started the regenerative power processing first, but the regenerative circuits 34x, 34y of all the inverter devices 3x, 3y, 3z. 34z can perform regenerative power processing. For this reason, the effect shown below is acquired.
 回生電力を複数の回生回路34x、34y、34zで一斉に消費するので、各回生回路34x、34y、34zの処理時間の偏りが減少して回生回路34x、34y、34z、特に抵抗器341x、341y、341zの長寿命化が可能になる。
 また、回生電力を複数の回生回路34x、34y、34zで一斉に消費するので、全体の回生可能電力が増大すると共に、各回生回路34x、34y、34z内の抵抗器341x、341y、341zの定格消費電力を超過する可能性が減少する。このため、各インバータ装置3x、3y、3zの運転停止頻度を減少でき、インバータ装置3x、3y、3zおよびインバータシステム100の信頼性が向上する。
Since the regenerative power is consumed simultaneously by the plurality of regenerative circuits 34x, 34y, 34z, the bias of the processing time of each regenerative circuit 34x, 34y, 34z is reduced, and the regenerative circuits 34x, 34y, 34z, especially resistors 341x, 341y. , 341z can be extended in life.
Further, since the regenerative power is consumed by the plurality of regenerative circuits 34x, 34y, 34z at the same time, the total regenerative power increases, and the ratings of the resistors 341x, 341y, 341z in the regenerative circuits 34x, 34y, 34z are increased. The possibility of exceeding power consumption is reduced. For this reason, the operation stop frequency of each inverter apparatus 3x, 3y, 3z can be reduced, and the reliability of inverter apparatus 3x, 3y, 3z and the inverter system 100 improves.
 さらに、この実施の形態では、回生制御部35xをプロセッサ5を用いて構成したため、回生制御部35xの部品数が少なくて済み、小型で安価なインバータ装置3xを実現できると共に、故障頻度が低下し、信頼性が向上する。
 なお、回生制御部35xのプロセッサ5は、電力変換部31xの制御回路内のマイクロプロセッサと共用することも可能であり、コスト削減、小型化および故障頻度の低下が図れる。
Furthermore, in this embodiment, since the regeneration control unit 35x is configured using the processor 5, the number of parts of the regeneration control unit 35x is small, and a small and inexpensive inverter device 3x can be realized, and the failure frequency is reduced. , Improve reliability.
Note that the processor 5 of the regeneration control unit 35x can be shared with the microprocessor in the control circuit of the power conversion unit 31x, so that cost reduction, downsizing, and failure frequency can be reduced.
 なお、上記実施の形態で用いた補償電圧は、δの代わりにδa(=(Von-Voff)-δ)を用いても良い。この場合、第2停止電圧Vspxは、Vstx-δaで演算される。また補償電圧δaは、以下の式を満たすように設定される。
 Vonmin≧Vonmin-δa≧Voffmax
 即ち、16≧δa≧0
 この場合、δa=10V、とすると、δ=20Vとした上記実施の形態と同様の動作が得られる。
Note that δa (= (Von−Voff) −δ) may be used instead of δ as the compensation voltage used in the above embodiment. In this case, the second stop voltage Vspx is calculated by Vstx−δa. The compensation voltage δa is set so as to satisfy the following expression.
Vonmin ≧ Vonmin−δa ≧ Voffmax
That is, 16 ≧ δa ≧ 0
In this case, assuming that δa = 10V, the same operation as in the above embodiment in which δ = 20V is obtained.
実施の形態2.
 次に、実施の形態2によるインバータ装置およびインバータシステムについて説明する。上記実施の形態1では、インバータ装置3x内の回生制御部35xをプロセッサ5を有して構成したが、この実施の形態2では、オペアンプ、コンパレータ、論理回路、記憶素子、レジスタ、フリップフロップなどのハードウェアで動作する回路にて回生制御部35xを構成する。回生制御部35xの構成以外は、上記実施の形態1と同様である。
 この場合も、3つのインバータ装置3x、3y、3zが並列接続されてインバータシステムが構成される。以下、インバータ装置3x内の回生制御部35xについて詳細に説明する。他の回生制御部35y、35zについても同様であるため詳細説明は省略する。
Embodiment 2. FIG.
Next, an inverter device and an inverter system according to Embodiment 2 will be described. In the first embodiment, the regeneration control unit 35x in the inverter device 3x is configured to include the processor 5. However, in the second embodiment, an operational amplifier, a comparator, a logic circuit, a storage element, a register, a flip-flop, and the like The regeneration control unit 35x is configured by a circuit that operates by hardware. Except for the configuration of the regeneration control unit 35x, the configuration is the same as that of the first embodiment.
Also in this case, the inverter system is configured by connecting the three inverter devices 3x, 3y, and 3z in parallel. Hereinafter, the regeneration control unit 35x in the inverter device 3x will be described in detail. Since it is the same also about the other regeneration control parts 35y and 35z, detailed description is abbreviate | omitted.
 上記実施の形態1と同様に、回生制御部35xは、電圧検出部33xからの検出電圧Vdcxに基づいて、制御信号SWxを回生回路34xへ出力する。この場合も、無負荷時電圧Vdc0、開始電圧Von、停止電圧Voff、判定電圧Vminおよび補償電圧δは、予め設定されて記憶され、上記実施の形態1と同様の電圧値とする。
 また、回生制御部35xは、検出電圧Vdcxが開始電圧Von以上に上昇すると、制御信号SWxを「1」レベルにして回生電力処理を開始する。そして、回生制御部35xは、回生電力処理により検出電圧Vdcxが降下し停止電圧Voffに達すると、制御信号SWxを「0」レベルに変化させて回生電力処理を停止する。
Similar to the first embodiment, the regeneration control unit 35x outputs the control signal SWx to the regeneration circuit 34x based on the detection voltage Vdcx from the voltage detection unit 33x. Also in this case, the no-load voltage Vdc0, the start voltage Von, the stop voltage Voff, the determination voltage Vmin, and the compensation voltage δ are preset and stored, and are set to the same voltage values as in the first embodiment.
Further, when the detection voltage Vdcx rises above the start voltage Von, the regenerative control unit 35x sets the control signal SWx to the “1” level and starts regenerative power processing. When the detection voltage Vdcx drops and reaches the stop voltage Voff by the regenerative power process, the regenerative control unit 35x changes the control signal SWx to “0” level and stops the regenerative power process.
 さらに、回生制御部35xは、制御信号SWxが「0」レベルの時に、検出電圧Vdcxが判定電圧Vmin以上において電圧降下したことを検出すると、制御信号SWxを「1」レベルにして回生電力処理を開始する。そして、回生制御部35xは、補償電圧δを用いて第2停止電圧Vspxを生成し、回生電力処理により検出電圧Vdcxが降下し第2停止電圧Vspxに達すると、制御信号SWxを「0」レベルに変化させて回生電力処理を停止する。 Furthermore, when the regenerative control unit 35x detects that the detection voltage Vdcx has dropped when the control signal SWx is at “0” level, the regenerative power processing is performed by setting the control signal SWx to “1” level. Start. Then, the regeneration control unit 35x generates the second stop voltage Vspx using the compensation voltage δ, and when the detection voltage Vdcx drops and reaches the second stop voltage Vspx by the regenerative power process, the control signal SWx is set to the “0” level. To stop the regenerative power processing.
 図7は、この実施の形態2による回生制御部35xの構成を示すブロック図である。
 なお、動作の時刻管理を行うシステムクロックと各ハードウェアの電源回路は省略している。
 図7に示すように、回生制御部35xは、第1制御部36xと、第2制御部37xと、合成部38xとを備える。
 第1制御部36xは、電圧検出部33xからの検出電圧Vdcxを入力して、信号SW1xと回生電圧幅Vdとを出力する。第2制御部37xは、電圧検出部33xからの検出電圧Vdcxと、第1制御部36xからの信号SW1xおよび回生電圧幅Vdとを入力して、信号SW2xを出力する。
FIG. 7 is a block diagram showing a configuration of the regeneration control unit 35x according to the second embodiment.
Note that the system clock for managing the operation time and the power supply circuit of each hardware are omitted.
As shown in FIG. 7, the regeneration control unit 35x includes a first control unit 36x, a second control unit 37x, and a combining unit 38x.
The first control unit 36x receives the detection voltage Vdcx from the voltage detection unit 33x, and outputs a signal SW1x and a regenerative voltage width Vd. The second control unit 37x receives the detection voltage Vdcx from the voltage detection unit 33x, the signal SW1x and the regenerative voltage width Vd from the first control unit 36x, and outputs a signal SW2x.
 合成部38xは、第1制御部36xからの信号SW1xと、第2制御部37xからの信号SW2xとを入力して、これらの論理和である制御信号SWxを出力する。即ち、SWx=SW1x+SW2xである。 The synthesizing unit 38x receives the signal SW1x from the first control unit 36x and the signal SW2x from the second control unit 37x, and outputs a control signal SWx that is a logical sum of these signals. That is, SWx = SW1x + SW2x.
 図8は、この実施の形態2による回生制御部35xの第1制御部36xの構成を示す図である。図8に示すように、第1制御部36xは、第1記憶回路361と、第2記憶回路362と、比較器363、364と、状態決定回路365と減算器366とを備える。
 第1、第2記憶回路361、362は、例えばレジスタや半導体メモリで構成される。第1記憶回路361は開始電圧Vonを格納し、第2記憶回路362は停止電圧Voffを格納する。
FIG. 8 is a diagram illustrating a configuration of the first control unit 36x of the regeneration control unit 35x according to the second embodiment. As shown in FIG. 8, the first control unit 36x includes a first storage circuit 361, a second storage circuit 362, comparators 363 and 364, a state determination circuit 365, and a subtractor 366.
The first and second memory circuits 361 and 362 are constituted by, for example, a register or a semiconductor memory. The first memory circuit 361 stores the start voltage Von, and the second memory circuit 362 stores the stop voltage Voff.
 比較器363、364は、例えばオペアンプやコンパレータで構成される。比較器363は、検出電圧Vdcxと、第1記憶回路361から出力された開始電圧Vonとを比較し、Vdcx≧Vonの時、信号F1xを「1」レベルとし、Vdcx<Vonの時、信号F1xを「0」レベルに設定して出力する。比較器364は、検出電圧Vdcxと、第2記憶回路362から出力された停止電圧Voffとを比較し、Vdcx≦Voffの時、信号F2xを「1」レベルとし、Vdcx>Voffの時、信号F2xを「0」レベルに設定して出力する。 The comparators 363 and 364 are composed of, for example, operational amplifiers and comparators. The comparator 363 compares the detection voltage Vdcx with the start voltage Von output from the first memory circuit 361. When Vdcx ≧ Von, the signal F1x is set to “1” level, and when Vdcx <Von, the signal F1x Is set to “0” level and output. The comparator 364 compares the detection voltage Vdcx with the stop voltage Voff output from the second memory circuit 362, sets the signal F2x to “1” level when Vdcx ≦ Voff, and sets the signal F2x when Vdcx> Voff. Is set to “0” level and output.
 状態決定回路365は、例えば、セット-リセット型フリップフロップ(RS-FF)で構成され、信号F1xをS端子に入力し、信号F2xをR端子に入力して、信号SW1xを出力する。状態決定回路365が出力する信号SW1xは、信号F1xが「0」レベルから「1」レベルへ変化する時刻で「1」レベルとなり、信号F2xが「0」レベルから「1」レベルへ変化する時刻で「0」レベルとなり、その他の時刻では信号SW1xのレベルを変化させず継続する。
 即ち、信号SW1xは、検出電圧Vdcxが開始電圧Von以上になると「1」レベルになり、その後検出電圧Vdcxが降下して停止電圧Voff以下になると「0」レベルに変化する。
The state determination circuit 365 is configured by, for example, a set-reset type flip-flop (RS-FF), inputs the signal F1x to the S terminal, inputs the signal F2x to the R terminal, and outputs the signal SW1x. The signal SW1x output from the state determination circuit 365 becomes “1” level when the signal F1x changes from “0” level to “1” level, and the time when the signal F2x changes from “0” level to “1” level. The level becomes “0” and continues at other times without changing the level of the signal SW1x.
That is, the signal SW1x becomes “1” level when the detection voltage Vdcx becomes equal to or higher than the start voltage Von, and then changes to “0” level when the detection voltage Vdcx drops and becomes equal to or lower than the stop voltage Voff.
 減算器366は、第1記憶回路361から出力された開始電圧Vonから、第2記憶回路362から出力された停止電圧Voffを減じた値、即ち、Von-Voffを回生電圧幅Vdとして出力する。回生電圧幅Vdは、電圧検出部33xの素子バラツキに関係無く、30V(Von-Voff=380V-350V)を出力する。 The subtractor 366 outputs a value obtained by subtracting the stop voltage Voff output from the second storage circuit 362 from the start voltage Von output from the first storage circuit 361, that is, Von−Voff as the regenerative voltage width Vd. The regenerative voltage width Vd outputs 30 V (Von−Voff = 380 V−350 V) regardless of the element variation of the voltage detector 33x.
 図9は、この実施の形態2による回生制御部35xの第2制御部37xの構成を示す図である。図9に示すように、第2制御部37xは、第1~第4遅延回路371~374と、第3、第4記憶回路375、376と、比較器377~379とを備える。さらに、否定論理回路390、393と、論理積回路391、392と、値確定回路394と、減算器395と、加算器396と、状態決定回路397とを備える。
 第1~第4遅延回路371~374および第3、第4記憶回路375、376は、例えばレジスタや半導体メモリで構成される。比較器377~379は、例えばオペアンプやコンパレータで構成される。
FIG. 9 is a diagram illustrating a configuration of the second control unit 37x of the regeneration control unit 35x according to the second embodiment. As shown in FIG. 9, the second control unit 37x includes first to fourth delay circuits 371 to 374, third and fourth storage circuits 375 and 376, and comparators 377 to 379. Further, negative logic circuits 390 and 393, logical product circuits 391 and 392, a value determination circuit 394, a subtracter 395, an adder 396, and a state determination circuit 397 are provided.
The first to fourth delay circuits 371 to 374 and the third and fourth memory circuits 375 and 376 are constituted by, for example, a register or a semiconductor memory. The comparators 377 to 379 are constituted by operational amplifiers or comparators, for example.
 第1~第4遅延回路371~374は、入力信号をシステムクロック1周期分だけ遅延させて出力する。
 第1遅延回路371は、検出電圧Vdcxに対してシステムクロック1周期分だけ遅延させた信号VdcxΔ1を出力する。比較器377は、第1遅延回路371の出力である信号VdcxΔ1と検出電圧Vdcxとを比較し、VdcxΔ1≧Vdcxの時、信号F3xを「1」レベルとし、VdcxΔ1<Vdcxの時、信号F3xを「0」レベルに設定して出力する。検出電圧Vdcxが降下すると、信号F3xは「1」レベルになる。
 第2遅延回路372は、比較器377の出力である信号F3xに対してシステムクロック1周期分だけ遅延させた信号F3xΔ1を出力する。第3遅延回路373は、第2遅延回路372の出力であるF3xΔ1に対してシステムクロック1周期分だけ遅延させた信号F3xΔ2を出力する。
The first to fourth delay circuits 371 to 374 delay the input signal by one system clock cycle and output it.
The first delay circuit 371 outputs a signal VdcxΔ1 that is delayed by one system clock cycle with respect to the detection voltage Vdcx. The comparator 377 compares the signal VdcxΔ1 that is the output of the first delay circuit 371 with the detection voltage Vdcx. When VdcxΔ1 ≧ Vdcx, the signal F3x is set to “1” level, and when VdcxΔ1 <Vdcx, the signal F3x is set to “ Set to "0" level and output. When the detection voltage Vdcx drops, the signal F3x becomes “1” level.
The second delay circuit 372 outputs a signal F3xΔ1 delayed by one system clock cycle with respect to the signal F3x that is the output of the comparator 377. The third delay circuit 373 outputs a signal F3xΔ2 delayed by one system clock cycle with respect to F3xΔ1 that is the output of the second delay circuit 372.
 第3記憶回路375は判定電圧Vminを格納し、第4記憶回路376は補償電圧δを格納する。
 比較器378は、検出電圧Vdcxと、第3記憶回路375から出力された判定電圧Vminとを比較し、Vdcx≧Vminの時、信号F4xを「1」レベルとし、Vdcx<Vminの時、信号F4xを「0」レベルに設定して出力する。
 否定論理回路390は、第1制御部36xの出力である信号SW1xを入力して、入力信号のレベルを反転させる。信号SW1xのレベルが「1」レベルの時、信号F5xを「0」レベルに設定し、信号SW1xのレベルが「0」レベルの時、信号F5xを「1」レベルに設定して出力する。
The third memory circuit 375 stores the determination voltage Vmin, and the fourth memory circuit 376 stores the compensation voltage δ.
The comparator 378 compares the detection voltage Vdcx with the determination voltage Vmin output from the third memory circuit 375. When Vdcx ≧ Vmin, the signal F4x is set to “1” level, and when Vdcx <Vmin, the signal F4x Is set to “0” level and output.
The negative logic circuit 390 receives the signal SW1x that is the output of the first control unit 36x, and inverts the level of the input signal. When the level of the signal SW1x is “1” level, the signal F5x is set to “0” level, and when the level of the signal SW1x is “0” level, the signal F5x is set to “1” level and output.
 論理積回路391は、比較器377、378の出力信号F3x、F4xと、第2、第3遅延回路372、373の出力信号F3xΔ1、F3xΔ2と、否定論理回路390の出力信号F5xとの5個の信号を入力して、これらの論理積である信号G1xを生成する。信号G1xは、論理積回路391に入力される5個の信号が全て「1」レベルの場合のみ、「1」レベルとなる。
 即ち、信号SW1xのレベルが「0」レベルであって、検出電圧Vdcxが判定電圧Vmin以上で、しかも検出電圧Vdcxがシステムクロックで3周期分連続して電圧降下した場合に、信号G1xは「1」レベルになる。
The AND circuit 391 includes five output signals F3x and F4x from the comparators 377 and 378, five output signals F3xΔ1 and F3xΔ2 from the second and third delay circuits 372 and 373, and an output signal F5x from the negative logic circuit 390. A signal is input, and a signal G1x that is a logical product of these signals is generated. The signal G1x is at “1” level only when all five signals input to the AND circuit 391 are at “1” level.
That is, when the level of the signal SW1x is “0”, the detection voltage Vdcx is equal to or higher than the determination voltage Vmin, and the detection voltage Vdcx drops continuously for three periods by the system clock, the signal G1x is “1”. "Become a level.
 第4遅延回路374は、論理積回路391の出力である信号G1xに対してシステムクロック1周期分だけ遅延させた信号G1xΔ1を出力する。
 否定論理回路393は、信号G1xΔ1を入力して、入力信号のレベルを反転させる。信号G1xΔ1のレベルが「1」レベルの時、信号G2xを「0」レベルに設定し、信号G1xΔ1のレベルが「0」レベルの時、信号G2xを「1」レベルに設定して出力する。
 論理積回路392は、論理積回路391の出力である信号G1xと、否定論理回路393の出力であるG2xとを入力として、これらの論理積である信号T0xを出力する。この信号T0xは、信号G1xが「0」レベルから「1」レベルに変化したタイミングを示す時刻信号であり、信号G1xの立上りタイミングを保持したシステムクロック1周期分のパルスである。
The fourth delay circuit 374 outputs a signal G1xΔ1 that is delayed by one system clock cycle with respect to the signal G1x that is the output of the AND circuit 391.
The negative logic circuit 393 receives the signal G1xΔ1 and inverts the level of the input signal. When the level of the signal G1xΔ1 is “1” level, the signal G2x is set to “0” level, and when the level of the signal G1xΔ1 is “0” level, the signal G2x is set to “1” level and output.
The logical product circuit 392 receives the signal G1x, which is the output of the logical product circuit 391, and the G2x, which is the output of the negative logical circuit 393, and outputs a signal T0x that is the logical product of these signals. This signal T0x is a time signal indicating the timing when the signal G1x changes from the “0” level to the “1” level, and is a pulse for one cycle of the system clock holding the rising timing of the signal G1x.
 値確定回路394は、例えば、D型フリップフロップ(D-FF)で構成され、時刻信号となる信号T0xを入力すると共に、検出電圧VdcxをD端子に入力し、第2開始電圧Vstxを出力する。信号T0xの立上り時刻における検出電圧Vdcxが、第2開始電圧Vstxとして出力される。
 第1制御部36xからの回生電圧幅Vdと第2開始電圧Vstxとは減算器395に入力され、減算器395は、第2開始電圧Vstxから回生電圧幅Vdを減じた値Vaxを生成して出力する。即ち、Vax=Vstx-Vd=Vstx-(Von-Voff)である。
 減算器395の出力Vaxと、第4記憶回路376から出力された補償電圧δとは加算器396に入力されて加算され、第2停止電圧Vspxが出力される。Vspx=Vstx-(Von-Voff)+δとなる。
The value determination circuit 394 is configured by, for example, a D-type flip-flop (D-FF), inputs a signal T0x as a time signal, inputs a detection voltage Vdcx to a D terminal, and outputs a second start voltage Vstx. . The detection voltage Vdcx at the rising time of the signal T0x is output as the second start voltage Vstx.
The regenerative voltage width Vd and the second start voltage Vstx from the first control unit 36x are input to the subtractor 395, and the subtractor 395 generates a value Vax obtained by subtracting the regenerative voltage width Vd from the second start voltage Vstx. Output. That is, Vax = Vstx−Vd = Vstx− (Von−Voff).
The output Vax of the subtracter 395 and the compensation voltage δ output from the fourth memory circuit 376 are input to the adder 396 and added to output the second stop voltage Vspx. Vspx = Vstx− (Von−Voff) + δ.
 比較器379は、加算器396の出力である第2停止電圧Vspxと検出電圧Vdcxとを比較し、Vdcx≦Vspxの時、信号F6xを「1」レベルとし、Vdcx>Vspxの時、信号F6xを「0」レベルに設定して出力する。
 状態決定回路397は、例えば、セット-リセット型フリップフロップ(RS-FF)で構成され、論理積回路392からの信号T0xをS端子に入力し、信号F6xをR端子に入力して、信号SW2xを出力する。状態決定回路397が出力する信号SW2xは、信号T0xが「0」レベルから「1」レベルへ変化する時刻で「1」レベルとなり、信号F6xが「0」レベルから「1」レベルへ変化する時刻で「0」レベルとなり、その他の時刻では信号SW2xのレベルを変化させず継続する。
The comparator 379 compares the second stop voltage Vspx, which is the output of the adder 396, with the detection voltage Vdcx, sets the signal F6x to “1” level when Vdcx ≦ Vspx, and sets the signal F6x when Vdcx> Vspx. Set to "0" level and output.
The state determination circuit 397 is composed of, for example, a set-reset type flip-flop (RS-FF), and inputs the signal T0x from the AND circuit 392 to the S terminal, inputs the signal F6x to the R terminal, and outputs the signal SW2x Is output. The signal SW2x output from the state determination circuit 397 becomes “1” level when the signal T0x changes from “0” level to “1” level, and the time when the signal F6x changes from “0” level to “1” level. The level becomes “0” and continues at other times without changing the level of the signal SW2x.
 即ち、信号SW2xは、信号SW1xのレベルが「0」レベルであって、検出電圧Vdcxが判定電圧Vmin以上で、しかも検出電圧Vdcxがシステムクロックで3周期分連続して電圧降下したタイミングで「1」レベルになる。その後、検出電圧Vdcxが降下して第2停止電圧Vspx以下になると「0」レベルに変化する。 In other words, the signal SW2x is “1” when the level of the signal SW1x is “0”, the detection voltage Vdcx is equal to or higher than the determination voltage Vmin, and the detection voltage Vdcx is “1” at the time when the voltage drops continuously for three cycles by the system clock. "Become a level. Thereafter, when the detection voltage Vdcx drops and becomes equal to or lower than the second stop voltage Vspx, the level changes to “0” level.
 次に、3つのインバータ装置3x、3y、3zの回生制御部35x、35y、35zの動作を、図10に示す各部の波系図に基づいて説明する。なお、各インバータ装置3x、3y、3zの電圧検出部33x、33y、33zによる検出電圧Vdcx、Vdcy、Vdczのバラツキは、図4に示す電圧値に基づく。また、インバータ装置3x、3y、3zの回生電力処理の態様は、図6で示したものと同様である。 Next, the operation of the regeneration control units 35x, 35y, and 35z of the three inverter devices 3x, 3y, and 3z will be described based on the wave diagram of each unit shown in FIG. Note that variations in the detection voltages Vdcx, Vdcy, Vdcz by the voltage detection units 33x, 33y, 33z of the inverter devices 3x, 3y, 3z are based on the voltage values shown in FIG. Moreover, the aspect of the regenerative power process of the inverter devices 3x, 3y, and 3z is the same as that shown in FIG.
 図10に示す電圧波形は、実電圧である直流電圧Vdcと、直流電圧Vdcをシステムクロック1周期分だけ遅延させた電圧VdcΔ1である。検出電圧Vdcx、Vdcy、Vdczと、各Von、Voff、Vminとを比較することは、実電圧では、Vdcと各Vonx、Vony、Vonz、Voffx、Voffy、Voffz、Vminx、Vminy、Vminzと比較することである。また、電圧VdcΔ1は、電圧VdcxΔ1(VdcyΔ1、VdczΔ1)に対応する実電圧である。
 なお、ここでは、生成された第2停止電圧Vspy(=363V)、Vspz(=356V)についても、対応する実電圧363VRで示した。
The voltage waveform shown in FIG. 10 is a DC voltage Vdc, which is an actual voltage, and a voltage VdcΔ1 obtained by delaying the DC voltage Vdc by one system clock cycle. Comparing the detection voltages Vdcx, Vdcy, Vdcz with each Von, Voff, Vmin is to compare Vdc with each Vonx, Vony, Vonz, Voffx, Voffy, Voffz, Vminx, Vminy, Vminz in actual voltage It is. The voltage VdcΔ1 is an actual voltage corresponding to the voltage VdcxΔ1 (VdcyΔ1, VdczΔ1).
Here, the generated second stop voltages Vspy (= 363 V) and Vspz (= 356 V) are also indicated by the corresponding actual voltage 363 VR.
 直流電圧Vdcが上昇し、時刻T1において、Vminx、Vminy(=365VR)以上になると、検出電圧Vdcx、Vdcyが判定電圧Vmin以上となり、信号F4x、F4yが「1」レベルとなる。
 直流電圧Vdcがさらに上昇し、時刻T2において、Vminz(=372VR)以上になると、検出電圧Vdczが判定電圧Vmin以上となり、信号F4zが「1」レベルとなる。
 直流電圧Vdcがさらに上昇し、時刻T3において、Vonx(=373VR)以上になると、検出電圧Vdcxが開始電圧Von以上となり、信号F1xが「1」レベルとなる。これにより、信号SW1xが「1」レベルとなり、インバータ装置3xの制御信号SWxも「1」レベルとなる。そして、インバータ装置3xでは、回生電力処理が開始され、直流電圧Vdcは降下する。
When the DC voltage Vdc rises and becomes equal to or higher than Vminx and Vminy (= 365VR) at time T1, the detection voltages Vdcx and Vdcy become equal to or higher than the determination voltage Vmin, and the signals F4x and F4y become “1” level.
When DC voltage Vdc further rises and becomes equal to or higher than Vminz (= 372VR) at time T2, detection voltage Vdcz becomes equal to or higher than determination voltage Vmin, and signal F4z becomes “1” level.
When the DC voltage Vdc further rises and becomes Vonx (= 373VR) or more at time T3, the detection voltage Vdcx becomes more than the start voltage Von, and the signal F1x becomes “1” level. As a result, the signal SW1x becomes “1” level, and the control signal SWx of the inverter device 3x also becomes “1” level. In the inverter device 3x, the regenerative power process is started, and the DC voltage Vdc drops.
 時刻T4において、直流電圧Vdcが電圧VdcΔ1より低くなると、信号F3(F3x、F3y、F3z)が「1」レベルとなる。これにより、システムクロック1周期後の時刻T5において、信号F3Δ1(F3xΔ1、F3yΔ1、F3zΔ1)が「1」レベルとなる。
 さらに、システムクロック1周期後の時刻T6において、信号F3Δ2(F3xΔ2、F3yΔ2、F3zΔ2)が「1」レベルとなる。このとき、信号SW1y、SW1zのレベルは「0」レベルを継続しており、信号G1y、G1zは「1」レベルとなる。同時に信号T0y、T0zが「1」レベルに立ち上がる。また、信号G1y、G1zに基づいて生成された信号G2y、G2zにより、信号T0y、T0zは、システムクロック1周期後に「0」レベルになる。
 信号T0y、T0zが「1」レベルとなると、信号SW2y、SW2zが「1」レベルとなり、インバータ装置3y、3zの制御信号SWy、SWzも「1」レベルとなる。そして、インバータ装置3y、3zでは、回生電力処理が開始される。
At time T4, when the DC voltage Vdc becomes lower than the voltage VdcΔ1, the signal F3 (F3x, F3y, F3z) becomes the “1” level. As a result, at time T5 after one cycle of the system clock, the signal F3Δ1 (F3xΔ1, F3yΔ1, F3zΔ1) becomes the “1” level.
Further, at time T6 after one cycle of the system clock, the signal F3Δ2 (F3xΔ2, F3yΔ2, F3zΔ2) becomes the “1” level. At this time, the levels of the signals SW1y and SW1z continue to be “0” level, and the signals G1y and G1z become “1” level. At the same time, the signals T0y and T0z rise to the “1” level. Further, the signals T0y and T0z become “0” level after one cycle of the system clock by the signals G2y and G2z generated based on the signals G1y and G1z.
When the signals T0y and T0z become “1” level, the signals SW2y and SW2z become “1” level, and the control signals SWy and SWz of the inverter devices 3y and 3z also become “1” level. Then, in the inverter devices 3y and 3z, the regenerative power process is started.
 時刻T7において、直流電圧VdcがVminz(=372VR)未満になると、検出電圧Vdczが判定電圧Vmin未満となり、信号F4zが「0」レベルとなり、信号G1zは「0」レベルとなる。
 時刻T8において、直流電圧VdcがVminx、Vminy(=365VR)未満になると、検出電圧Vdcx、Vdcyが判定電圧Vmin未満となり、信号F4x、F4yが「0」レベルとなる。そして、信号G1yは「0」レベルとなる。
At time T7, when the DC voltage Vdc becomes less than Vminz (= 372VR), the detection voltage Vdcz becomes less than the determination voltage Vmin, the signal F4z becomes “0” level, and the signal G1z becomes “0” level.
When the DC voltage Vdc becomes less than Vminx and Vminy (= 365VR) at time T8, the detection voltages Vdcx and Vdcy become less than the determination voltage Vmin, and the signals F4x and F4y become “0” level. Then, the signal G1y becomes “0” level.
 時刻T9において、直流電圧Vdcが363VR(Vspy、Vspzに対応する実電圧)以下になると、検出電圧Vdczが第2停止電圧Vspy、Vspz以下になり、信号F6y、F6zが「1」レベルとなる。これにより、信号SW2y、SW2zが「0」レベルとなり、インバータ装置3y、3zの制御信号SWy、SWzも「0」レベルとなる。そして、インバータ装置3y、3zでは、回生電力処理が停止される。
 時刻T10において、直流電圧VdcがVoffx(=357VR)以下になると、検出電圧Vdczが停止電圧Voff以下になり、信号F2xが「1」レベルとなる。これにより、信号SW1xが「0」レベルとなり、インバータ装置3xの制御信号SWxも「0」レベルとなる。そして、インバータ装置3xでは、回生電力処理が停止される。
At time T9, when the DC voltage Vdc becomes 363 VR (actual voltage corresponding to Vspy, Vspz) or lower, the detection voltage Vdcz becomes lower than the second stop voltages Vspy, Vspz, and the signals F6y, F6z become “1” level. As a result, the signals SW2y and SW2z become “0” level, and the control signals SWy and SWz of the inverter devices 3y and 3z also become “0” level. Then, in the inverter devices 3y and 3z, the regenerative power process is stopped.
At time T10, when the DC voltage Vdc becomes Voffx (= 357VR) or less, the detection voltage Vdcz becomes less than the stop voltage Voff, and the signal F2x becomes “1” level. As a result, the signal SW1x becomes “0” level, and the control signal SWx of the inverter device 3x also becomes “0” level. In the inverter device 3x, the regenerative power process is stopped.
 全てのインバータ装置3x、3y、3zの回生電力処理が停止すると、直流電圧Vdcが上昇するため、信号F2xは「0」レベルとなる。その後、時刻T11において、検出電圧Vdczが第2停止電圧Vspy、Vspzを超えると、信号F6y、F6zも「0」レベルとなる。
 この後、回生電力の発生がある場合は、以上の動作を繰り返すことになる。
When the regenerative power processing of all the inverter devices 3x, 3y, and 3z is stopped, the DC voltage Vdc rises, so that the signal F2x becomes “0” level. Thereafter, when the detection voltage Vdcz exceeds the second stop voltages Vspy and Vspz at time T11, the signals F6y and F6z also become “0” level.
Thereafter, when regenerative power is generated, the above operation is repeated.
 この実施の形態2においても、上記実施の形態1と同様の効果を奏する。即ち、インバータ装置3xの回生回路34xの負荷が過重になることを防止でき、回生回路34xの劣化を抑制できる。また、他のインバータ装置3y、3zと並列運転する際に、全体の回生可能電力を増大できる。
 また、複数のインバータ装置3x、3y、3zを並列運転するインバータシステム100では、1つのインバータ装置3x(3y、3z)のみが回生電力処理を担うことが防止できる。大きな回生電力が発生した場合、先に回生電力処理を開始したインバータ装置3xの回生回路34xの抵抗器341xのみで処理するのではなく、全てのインバータ装置3x、3y、3zの回生回路34x、34y、34zが共に回生電力処理を行う事ができる。
This second embodiment also has the same effect as the first embodiment. That is, it is possible to prevent the load on the regenerative circuit 34x of the inverter device 3x from becoming excessive, and to suppress the deterioration of the regenerative circuit 34x. Moreover, when performing parallel operation with the other inverter devices 3y and 3z, the entire regenerative power can be increased.
Further, in the inverter system 100 that operates the plurality of inverter devices 3x, 3y, and 3z in parallel, it is possible to prevent only one inverter device 3x (3y, 3z) from performing the regenerative power process. When a large amount of regenerative power is generated, it is not processed only by the resistor 341x of the regenerative circuit 34x of the inverter device 3x that has started the regenerative power processing first, but the regenerative circuits 34x, 34y of all the inverter devices 3x, 3y, 3z. 34z can perform regenerative power processing.
 さらに、回生電力処理にソフトウエアによる演算処理を用いないため、インバータ装置3x全体で、ソフトウエアによる演算処理の負荷が減少し、インバータ装置3xにおけるアーム短絡保護や地絡保護などの緊急性が要求される保護処理への対応時間が短縮できる。これにより、インバータ装置3xの故障回避または長寿命化に効果を奏する。 Furthermore, since software calculation processing is not used for regenerative power processing, the load of calculation processing by software is reduced in the entire inverter device 3x, and urgency such as arm short circuit protection and ground fault protection is required in the inverter device 3x. The response time for the protection processing to be performed can be shortened. Thereby, there is an effect in avoiding failure or extending the life of the inverter device 3x.
 本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
Although this application describes various exemplary embodiments and examples, various features, aspects, and functions described in one or more embodiments may be applied to particular embodiments. The present invention is not limited to this, and can be applied to the embodiments alone or in various combinations.
Accordingly, innumerable modifications not illustrated are envisaged within the scope of the technology disclosed in the present application. For example, the case where at least one component is deformed, the case where the component is added or omitted, the case where the at least one component is extracted and combined with the component of another embodiment are included.
 2x,2y,2z 直流母線、3x,3y,3z インバータ装置、31x,31y,31z 電力変換部、32x,32y,32z 平滑コンデンサ、33x,33y,33z 電圧検出部、34x,34y,34z 回生回路、35x,35y,35z 回生制御部、36x 第1制御部、37x 第2制御部、341x,341y,341z 抵抗器、342x,342y,342z スイッチング素子、Vdcx,Vdcy,Vdcz 検出電圧、Vmin 判定電圧、Von 開始電圧、Voff 停止電圧、Vstx 第2開始電圧、Vspx 第2停止電圧、δ,δa 補償電圧。 2x, 2y, 2z DC bus, 3x, 3y, 3z inverter device, 31x, 31y, 31z power converter, 32x, 32y, 32z smoothing capacitor, 33x, 33y, 33z voltage detector, 34x, 34y, 34z regeneration circuit, 35x, 35y, 35z regeneration control unit, 36x first control unit, 37x second control unit, 341x, 341y, 341z resistor, 342x, 342y, 342z switching element, Vdcx, Vdcy, Vdcz detection voltage, Vmin judgment voltage, Von Start voltage, Voff stop voltage, Vstx second start voltage, Vspx second stop voltage, δ, δa compensation voltage.

Claims (12)

  1.  直流母線からの直流電力を交流電力に変換して負荷に電力供給する電力変換部と、
     上記直流母線間に接続される平滑コンデンサと、
     上記直流母線間の直流電圧を検出する電圧検出部と、
     抵抗器とスイッチング素子との直列回路を上記直流母線間に接続して有し、上記電力変換部からの回生電力を処理する回生回路と、
     上記回生回路の上記スイッチング素子を制御する回生制御部とを備え、
     上記回生制御部は、
      上記電圧検出部からの検出電圧と、予め設定された開始電圧および停止電圧との比較に基づいて上記スイッチング素子を制御する第1制御部と、
      上記スイッチング素子がオフ状態の時に、予め設定された判定電圧以上で上記検出電圧の電圧降下を検出して、上記スイッチング素子を制御する第2制御部とを備える
    インバータ装置。
    A power converter that converts DC power from the DC bus into AC power and supplies the load to the load;
    A smoothing capacitor connected between the DC buses;
    A voltage detector for detecting a DC voltage between the DC buses;
    A series circuit of a resistor and a switching element connected between the DC buses, and a regenerative circuit for processing regenerative power from the power converter;
    A regeneration control unit that controls the switching element of the regeneration circuit;
    The regeneration control unit
    A first control unit that controls the switching element based on a comparison between a detection voltage from the voltage detection unit and a preset start voltage and stop voltage;
    An inverter device comprising: a second control unit that detects a voltage drop of the detection voltage at a predetermined determination voltage or higher when the switching element is in an OFF state and controls the switching element.
  2.  上記回生制御部の上記第2制御部は、上記判定電圧以上で上記検出電圧が設定時間以上連続して降下したことで上記電圧降下を検出する
    請求項1に記載のインバータ装置。
    2. The inverter device according to claim 1, wherein the second control unit of the regeneration control unit detects the voltage drop when the detection voltage drops continuously for a set time or more at the determination voltage or more.
  3.  上記判定電圧は、上記開始電圧と上記停止電圧との間に設定される
    請求項1または請求項2に記載のインバータ装置。 
    The inverter device according to claim 1, wherein the determination voltage is set between the start voltage and the stop voltage.
  4.  上記回生制御部の上記第2制御部は、上記判定電圧と上記停止電圧との間に第2停止電圧を生成し、上記判定電圧以上で上記検出電圧の電圧降下を検出して、上記スイッチング素子をオンし、その後上記検出電圧が降下して上記第2停止電圧に達すると上記スイッチング素子をオフする
    請求項3に記載のインバータ装置。
    The second control unit of the regeneration control unit generates a second stop voltage between the determination voltage and the stop voltage, detects a voltage drop of the detection voltage above the determination voltage, and detects the switching element. 4. The inverter device according to claim 3, wherein the switching element is turned off when the detection voltage drops and reaches the second stop voltage.
  5.  上記回生制御部の上記第2制御部は、上記電圧降下を検出した時点の上記検出電圧を第2開始電圧として保持し、該第2開始電圧および予め設定された補償電圧に基づいて上記第2停止電圧を生成する
    請求項4に記載のインバータ装置。
    The second control unit of the regenerative control unit holds the detected voltage at the time when the voltage drop is detected as a second start voltage, and the second control unit based on the second start voltage and a preset compensation voltage. The inverter apparatus of Claim 4 which produces | generates a stop voltage.
  6.  上記検出電圧の検出誤差範囲に基づいて、上記第2停止電圧が上記停止電圧よりも高くなるように上記補償電圧が設定される
    請求項5に記載のインバータ装置。
    The inverter device according to claim 5, wherein the compensation voltage is set based on a detection error range of the detection voltage so that the second stop voltage is higher than the stop voltage.
  7.  上記検出電圧の検出誤差範囲に基づいて、上記判定電圧が設定される
    請求項3から請求項6のいずれか1項に記載のインバータ装置。
    The inverter device according to claim 3, wherein the determination voltage is set based on a detection error range of the detection voltage.
  8.  上記回生制御部の上記第1制御部は、上記検出電圧が上記開始電圧以上になると上記スイッチング素子をオンし、その後上記検出電圧が降下して上記停止電圧に達すると上記スイッチング素子をオフする
    請求項1から請求項7のいずれか1項に記載のインバータ装置。
    The first control unit of the regeneration control unit turns on the switching element when the detected voltage becomes equal to or higher than the start voltage, and then turns off the switching element when the detected voltage drops and reaches the stop voltage. The inverter device according to any one of claims 1 to 7.
  9.  上記回生制御部は、ソフトウェアを用いて演算処理するプロセッサを有して構成される
    請求項1から請求項8のいずれか1項に記載のインバータ装置。
    The inverter device according to any one of claims 1 to 8, wherein the regeneration control unit includes a processor that performs arithmetic processing using software.
  10.  上記回生制御部は、ハードウェアとして動作する回路にて構成される
    請求項1から請求項8のいずれか1項に記載のインバータ装置。
    The inverter device according to claim 1, wherein the regeneration control unit is configured by a circuit that operates as hardware.
  11. 請求項1から請求項10のいずれか1項に記載のインバータ装置を複数台備え、該複数台のインバータ装置の上記各直流母線が並列接続される
    インバータシステム。
    An inverter system comprising a plurality of inverter devices according to any one of claims 1 to 10, wherein the DC buses of the plurality of inverter devices are connected in parallel.
  12. 上記回生電力が処理される際、上記複数台のインバータ装置の内、少なくとも1台のインバータ装置の上記回生制御部は、上記第1制御部により上記回生回路を動作させ、その他の全てのインバータ装置の上記回生制御部は、上記第2制御部により上記回生回路を動作させる
    請求項11に記載のインバータシステム。
    When the regenerative power is processed, the regenerative control unit of at least one of the plurality of inverter devices operates the regenerative circuit by the first control unit, and all other inverter devices 12. The inverter system according to claim 11, wherein the regeneration control unit operates the regeneration circuit by the second control unit.
PCT/JP2018/020301 2018-05-28 2018-05-28 Inverter device and inverter system WO2019229791A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/020301 WO2019229791A1 (en) 2018-05-28 2018-05-28 Inverter device and inverter system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/020301 WO2019229791A1 (en) 2018-05-28 2018-05-28 Inverter device and inverter system

Publications (1)

Publication Number Publication Date
WO2019229791A1 true WO2019229791A1 (en) 2019-12-05

Family

ID=68696857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020301 WO2019229791A1 (en) 2018-05-28 2018-05-28 Inverter device and inverter system

Country Status (1)

Country Link
WO (1) WO2019229791A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114012786A (en) * 2021-10-27 2022-02-08 北京京东乾石科技有限公司 Emergency stop control device and robot

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008141877A (en) * 2006-12-01 2008-06-19 Toshiba Corp Electric vehicle controller
JP2011166954A (en) * 2010-02-10 2011-08-25 Toshiba Mitsubishi-Electric Industrial System Corp Device for control of electric motor
WO2015194013A1 (en) * 2014-06-19 2015-12-23 三菱電機株式会社 Ac motor drive system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008141877A (en) * 2006-12-01 2008-06-19 Toshiba Corp Electric vehicle controller
JP2011166954A (en) * 2010-02-10 2011-08-25 Toshiba Mitsubishi-Electric Industrial System Corp Device for control of electric motor
WO2015194013A1 (en) * 2014-06-19 2015-12-23 三菱電機株式会社 Ac motor drive system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114012786A (en) * 2021-10-27 2022-02-08 北京京东乾石科技有限公司 Emergency stop control device and robot

Similar Documents

Publication Publication Date Title
JP5947109B2 (en) Uninterruptible power supply, control method of uninterruptible power supply
JP4762824B2 (en) Power conversion circuit
JP4431604B2 (en) Converter device
JP6630539B2 (en) Power conversion device and electric power steering device
JP5867297B2 (en) Power conversion system and its voltage detection device
JP5909622B2 (en) Motor drive device
JP2016158323A (en) Harmonic restraint device with active filter
WO2019229791A1 (en) Inverter device and inverter system
JP6816307B1 (en) Abnormality detection method for power supply and AC power supply
JP6967470B2 (en) Control device
JP2001292580A (en) Method and apparatus for detecting missing phase of output and inverter
WO2017154334A1 (en) Inverter device
JP4577062B2 (en) Inverter control device
JP7424407B2 (en) Control devices, motor drive devices and motor drive systems
JP2020043672A (en) Inverter controller
US11283368B2 (en) Open phase detection system for power conversion system
WO2013051100A1 (en) Elevator control device
US11777429B2 (en) Control device and failure determination method
JP4367555B2 (en) Energization timing determination circuit and motor energization timing determination method
US20220385204A1 (en) Power Conversion Device and Press Apparatus
JP2001309669A (en) Phase failure sensing method for voltage source type inverter and its circuit
WO2019163110A1 (en) Motor drive device
JP2010226806A (en) Power conversion device
JP5473071B2 (en) Load control device
JPWO2021028976A1 (en) Power converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18921261

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18921261

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP