WO2019228488A1 - 抬头显示系统和显示方法、交通工具、抬头显示装置及计算机可读存储介质 - Google Patents

抬头显示系统和显示方法、交通工具、抬头显示装置及计算机可读存储介质 Download PDF

Info

Publication number
WO2019228488A1
WO2019228488A1 PCT/CN2019/089439 CN2019089439W WO2019228488A1 WO 2019228488 A1 WO2019228488 A1 WO 2019228488A1 CN 2019089439 W CN2019089439 W CN 2019089439W WO 2019228488 A1 WO2019228488 A1 WO 2019228488A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarized light
linearly polarized
display
head
image
Prior art date
Application number
PCT/CN2019/089439
Other languages
English (en)
French (fr)
Inventor
洪涛
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811142801.6A external-priority patent/CN109298529A/zh
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/633,599 priority Critical patent/US11320901B2/en
Priority to EP19811615.4A priority patent/EP3805843A4/en
Publication of WO2019228488A1 publication Critical patent/WO2019228488A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/013Eye tracking input arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/20Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor
    • B60K35/21Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor using visual output, e.g. blinking lights or matrix displays
    • B60K35/22Display screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/20Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor
    • B60K35/21Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor using visual output, e.g. blinking lights or matrix displays
    • B60K35/23Head-up displays [HUD]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K2360/00Indexing scheme associated with groups B60K35/00 or B60K37/00 relating to details of instruments or dashboards
    • B60K2360/1523Matrix displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K2360/00Indexing scheme associated with groups B60K35/00 or B60K37/00 relating to details of instruments or dashboards
    • B60K2360/20Optical features of instruments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K2360/00Indexing scheme associated with groups B60K35/00 or B60K37/00 relating to details of instruments or dashboards
    • B60K2360/20Optical features of instruments
    • B60K2360/23Optical features of instruments using reflectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K2360/00Indexing scheme associated with groups B60K35/00 or B60K37/00 relating to details of instruments or dashboards
    • B60K2360/20Optical features of instruments
    • B60K2360/25Optical features of instruments using filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K2360/00Indexing scheme associated with groups B60K35/00 or B60K37/00 relating to details of instruments or dashboards
    • B60K2360/20Optical features of instruments
    • B60K2360/29Holographic features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/10Input arrangements, i.e. from user to vehicle, associated with vehicle functions or specially adapted therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B27/0103Head-up displays characterised by optical features comprising holographic elements
    • G02B2027/0105Holograms with particular structures
    • G02B2027/0107Holograms with particular structures with optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/011Head-up displays characterised by optical features comprising device for correcting geometrical aberrations, distortion
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another

Definitions

  • the present disclosure relates to a heads-up display system and display method, a vehicle, a heads-up display device, and a computer-readable storage medium.
  • Head-up display also known as head-up display
  • the head-up display projects the information displayed by the instrument (such as speed information) and navigation information on the front windshield during the driving of the car, so that the driver can see the information in the instrument without looking down, which not only helps to lack experience in speed judgment Newbies control their speed, avoid violations of speeding rules in many speed-limit sections, and enable drivers to take instant readings under conditions that do not shift the field of vision, always keeping their heads in the best observation state and avoiding Look down at the meter display or the audio display and ignore the safety hazards caused by the rapid changes in the external environment.
  • users have increasingly higher requirements for the field of view of the head-up display system, and a large field of view has become a development trend of the head-up display system.
  • Some embodiments of the present disclosure provide a head-up display system including a display control module configured to output a first linearly polarized light for displaying a first image during a first period, and output a second for displaying a second period during a second period.
  • a polarizing beam splitting element disposed on the light exit path of the display control module is configured to deflect a propagation direction of the first linearly polarized light by a first angle to make the second linearly polarized light The propagation direction of is deflected by a second angle, and the first angle is different from the second angle.
  • the display control module is configured to alternately arrange a first period during which the first linearly polarized light is output and a second period during which the second polarized light is output.
  • the sum of the adjacent first and second periods is less than or equal to the response time of human vision persistence, and the output frequencies of the first and second periods are greater than or equal to human vision
  • the refresh rate is doubled.
  • the display control module includes: a display component configured to display the first image during the first period and display the second image during the second period; and disposed on the display component A first polarization conversion element on the image display side of the, configured to convert the light of the first image into a first linearly polarized light during the first period, and convert the light of the second image during the second period And converted into second linearly polarized light, and the vibration directions of the first linearly polarized light and the second linearly polarized light are perpendicular to each other.
  • the head-up display system further includes at least one mirror disposed on an optical path between the display control module and the polarization beam splitting element for changing the first linearly polarized light and the second linearly polarized light The direction of light propagation.
  • the mirror includes at least one of a flat mirror, a spherical mirror, an aspherical mirror, or a free-form mirror.
  • the head-up display system includes a non-planar mirror; or, the head-up display system includes at least two of the mirrors, including at least one non-planar mirror.
  • the polarization beam splitting element includes a polarization beam splitting prism
  • the polarization beam splitting prism includes two right-angle prisms whose optical axis directions are perpendicular to each other.
  • the polarization beam splitting element includes one polarization beam splitting prism; or the polarization beam splitting element includes at least two polarization beam splitting prisms, and at least two polarization beam splitting prisms are superimposed, and two Right-angled prisms with the same optical axis direction are in contact with each other.
  • the head-up display system further includes a first optical element disposed on the optical path of the first linearly polarized light after the deflection, and a second optical element disposed on the optical path of the second linearly polarized light after the deflection.
  • the first optical element is configured to reflect the first linearly polarized light to a human eye
  • the second optical element is configured to reflect the second linearly polarized light to a human eye.
  • the first optical element and the second optical element include a holographic optical element.
  • the first optical element and the second optical element are disposed on a windshield or a synthesizer of a vehicle in which the head-up display system is located.
  • the display control module further includes an image rendering component connected to the display component and configured to output the first image during the first period and output the first image during the second period. Two images.
  • the display control module further includes a system control component connected to the image rendering component and the first polarization conversion element, and configured to control the image rendering component to output the first image and the The timing and frequency of the second image, and controlling the first polarization conversion element to perform polarization conversion on the light of the first image and the light of the second image.
  • a system control component connected to the image rendering component and the first polarization conversion element, and configured to control the image rendering component to output the first image and the The timing and frequency of the second image, and controlling the first polarization conversion element to perform polarization conversion on the light of the first image and the light of the second image.
  • the display control module further includes an aberration compensation circuit, the aberration compensation circuit is respectively connected to the system control component and the image rendering circuit, and is configured to compensate for Aberration introduced by the light angle changing element, and an aberration compensation signal is input to the image rendering component.
  • the display control module further includes a collimator disposed on a light exit side of the display component and configured to collimate light emitted from the display component.
  • the light angle changing element includes At least one of the polarization beam splitting element and the collimator.
  • the head-up display system further includes a second polarization conversion element disposed on the light-emitting side of the polarization beam splitting element; the second polarization conversion element is configured to convert the first linearly polarized light into The second linearly polarized light or the second linearly polarized light is converted into the first linearly polarized light.
  • the second polarization conversion element is further configured to: under the control of the display control module, in the first period of time, the first linearly polarized light emitted from the polarization beam splitting element is The polarization direction is changed to the same polarization direction as the second linearly polarized light, and the polarization direction of the second linearly polarized light emitted from the polarization beam splitting element is not changed during the second period; or, during the first period The polarization direction of the first linearly polarized light emitted from the polarization beam splitting element is not changed, and the polarization direction of the second linearly polarized light emitted from the polarization beam splitting element is changed to be the same as the polarization direction in the second period.
  • the first linearly polarized light has the same polarization direction.
  • Some embodiments of the present disclosure provide a head-up display method, including a plurality of display periods, each of which includes a first period and a second period, wherein, during the first period, a first image to be displayed is output
  • the required first linearly polarized light deflects the propagation direction of the first linearly polarized light by a first angle, and reflects the first linearly polarized light to the human eye; in the second period, outputs the intended display
  • the second linearly polarized light required for the second image deflects the propagation direction of the second linearly polarized light by a second angle, reflects the second linearly polarized light to the human eye, the first angle and the second angle different.
  • the first and second angles in which the first linearly polarized light and the second linearly polarized light are deflected are different, so that the display areas of the first image and the second image are different and Arranged in a predetermined direction.
  • the predetermined direction is a direction parallel or perpendicular to a line connecting the eyes of the user.
  • the time of each display cycle is less than or equal to the response time of human vision persistence, and the output frequency of the first period and the second period is greater than or equal to the refresh of human vision persistence. Twice the frequency.
  • the method further includes the first linearly polarized light The polarization direction of is changed to the same polarization direction as the second linearly polarized light; or, in the second period, after the propagation direction of the second linearly polarized light is deflected by a second angle and reflected to the human eye, The method further includes changing a polarization direction of the second linearly polarized light to the same polarization direction as the first linearly polarized light.
  • Some embodiments of the present disclosure provide a vehicle including the head-up display system according to any one of the above.
  • Some embodiments of the present disclosure provide a head-up display device including: a memory configured to store non-transitory computer-readable instructions; and a processor configured to run the non-transitory computer-readable instructions, wherein When the non-transitory computer-readable instructions are executed by the processor, the head-up display method according to any one of the foregoing is performed.
  • Some embodiments of the present disclosure provide a computer-readable storage medium for storing non-transitory computer-readable instructions, and when the non-transitory computer-readable instructions are executed by a computer, the head-up display according to any one of the foregoing is performed. method.
  • FIG. 1 is a schematic structural diagram of a head-up display system according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a polarization beam splitting element according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of another polarization beam splitting element according to an embodiment of the present disclosure.
  • FIG. 4 is a flowchart of a head-up display method according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a display image observed by a driver applying a head-up display system provided by an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of another display image observed by a driver applying a head-up display system provided by an embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram of a head-up display system according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a head-up display system after a second polarization conversion element is added according to an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram of another display image observed by a driver of a head-up display system according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of another display image observed by a driver applying a head-up display system provided by an embodiment of the present disclosure
  • FIG. 11 schematically illustrates the deflection of the light after the s-polarized light passes through the optical path separator and the second polarization conversion element in the first period;
  • FIG. 12 schematically illustrates the deflection of the p-polarized light after passing through the optical path separator and the second polarization conversion element in the second period;
  • FIG. 13 schematically illustrates a case where a driver's field of view is enlarged by time division multiplexing of a polarization state
  • FIG. 14 shows the relationship between the reflectance and the incident angle of P-polarized light and S-polarized light
  • FIG. 15 schematically illustrates a head-up display device provided by an embodiment of the present disclosure.
  • a 2D display image is usually projected to a fixed distance in front of the driver.
  • the driver needs to adjust the focal length of the eyes to make the human eyes converge.
  • the head-up display system in the related technology uses a dual projection technology solution, and the display screen is divided into status information and augmented reality display information.
  • Status information refers to vehicle status such as vehicle speed, oil temperature, water temperature, etc.
  • augmented reality information such as instructions from external objects, navigation instructions, etc.
  • the far distance of the eyes of the crew such as 5 to 8 meters, such a distance does not require the human eye to adjust the focal distance significantly, and it is more comfortable to watch.
  • the projection distance of the augmented reality information is relatively long.
  • the mirrors in the head-up display system are mostly free-form surfaces, it is difficult to manufacture large-caliber free-form mirrors, and the large-caliber mirrors make the head-up display system larger in size. The above factors limit the large field of view. Looking up to show the development of the system.
  • the technical solution of the present disclosure proposes a head-up display system and a display method, which uses a polarization beam splitting element to deflect light, and adopts a time-division multiplexing method to achieve a larger field of view display of the head-up display system.
  • an embodiment of the present disclosure discloses a head-up display system.
  • the head-up display system can display a first image 51 and a second image 52 in each display period.
  • Each display period includes a first period and a second period. Time period.
  • the head-up display system includes a display control module 1 and a polarization beam splitting element 3.
  • the display control module 1 is configured to output the first linearly polarized light P required for the first image 51 during the first period and the second linearly polarized light S required for the second image 52 during the second period; the polarization beam splitting element 3 is arranged on the display
  • the light output path of the control module 1 is configured to deflect the propagation direction of the first linearly polarized light P by a first angle and deflect the propagation direction of the second linearly polarized light S by a second angle; the first linearly polarized light P and the The second linearly polarized light S is used to display the first image 51 and the second image 52, respectively.
  • the first angle and the second angle are different.
  • the display control module 1 outputs the first linearly polarized light P and the second linearly polarized light S according to the timing in different periods.
  • the first linearly polarized light P and the second linearly polarized light S pass through the polarization beam splitting element 3, and the light The propagation angle is deflected, and the first linearly polarized light P and the second linearly polarized light S after being deflected can display the first image 51 and the second image 52 at different positions after exiting from the polarization beam splitting element 3, respectively.
  • the polarizing beam splitting element 3 is used to generate different light deflection angles for the first linearly polarized light P and the second linearly polarized light S, which provides a prerequisite for the subsequent display of the image using the time division multiplexing method.
  • the display control module 1 controls the output timing and frequency of the images displayed by the first linearly polarized light P and the second linearly polarized light S, and alternately displays the first image 51 and the second image 52.
  • the human eye can see the first image 51 and the second image 52 at the same time, so that the display image area of the head-up display system is enlarged, and the display with a larger field of view is realized.
  • first angle and second angle are different, so that the first image and the second image can be displayed in different display areas to expand the field of view.
  • difference between the first angle and the second angle described herein may include different directions of the deflection direction of the propagation direction, or different angles of the deflection direction of the propagation direction, or different deflection angles and angles of the propagation direction.
  • the coordinate system used is defined by the plane containing the input and reflected beams. If the polarization vector of the light is in this plane, it is called P polarization, and if the polarization vector is perpendicular to this plane, it is called S polarization.
  • the first linearly polarized light P corresponds to P-polarized light
  • the second linearly-polarized light S corresponds to S-polarized light.
  • the display control module 1 includes an image rendering component 12, a display component 13, a polarization conversion element 14, and a system control component 11.
  • the image rendering component 12 is configured to output a first image in a first period. 51, the second image 52 is output in the second period;
  • the display unit 13 is connected to the image rendering unit 12 for displaying the first image 51 and the second image 52;
  • the polarization conversion element 14 is provided on the image display side of the display unit 13, and
  • the light of the first image 51 is converted into the first linearly polarized light P in the first period
  • the light of the second image 52 is converted into the second linearly polarized light S in the second period
  • the vibration directions of the light S are perpendicular to each other;
  • the system control unit 11 is connected to the image rendering unit 12 and the polarization conversion element 14 for controlling the timing and frequency of the image rendering unit 12 outputting the first image 51 and the second image 52, and controlling the polarization
  • the display control module 1 controls the image rendering unit 12 to output the required image to the display unit 13 at a certain timing and frequency according to the polarization state of the light converted by the polarization conversion element 14.
  • the image light displayed by the display unit 13 enters the polarization conversion element 14, and the polarization
  • the conversion element 14 converts the polarization state of the light passing through it, and changes the light of the image into the first linearly polarized light P or the second linearly polarized light S and outputs it.
  • the light is converted into the first linearly polarized light P and the second linearly polarized light S, and the two are output according to a certain timing and frequency, respectively.
  • the head-up display system further includes at least one reflector 2 disposed on the optical path between the display control module 1 and the polarization beam splitting element 3 (see FIG. 1) for changing the first linearly polarized light P and The propagation direction of the second linearly polarized light S.
  • the reflecting mirror 2 is disposed on the optical path between the display control module 1 and the polarization beam splitting element 3, which can effectively shorten the propagation distance of the optical path, thereby reducing the space occupied by the head-up display system.
  • the reflecting mirror 2 includes at least one of a flat reflecting mirror, a spherical reflecting mirror, an aspherical reflecting mirror, or a free-form reflecting mirror.
  • the head-up display system may include a non-planar mirror, such as a free-form mirror, or a spherical mirror.
  • the head-up display system can also include two or two More than two mirrors 2, including at least one non-planar mirror.
  • two mirrors 2 are set in a head-up display system, one of which is a flat mirror, and the other is an aspherical mirror; and another example is three mirrors 2 in a head-up display system, one of which is a spherical mirror and the other is Aspheric mirrors, the third is a free-form mirror.
  • at least one non-planar mirror 2 is included in this way, so that the mirror 2 can have optical power and the entire optical system can magnify the image.
  • the heads-up display system provided in the embodiment of the present disclosure since the heads-up display system provided in the embodiment of the present disclosure is provided with a polarization beam splitting element 3 and a display method using time division multiplexing, this embodiment uses a reflection of the same caliber as the prior art.
  • Mirror 2 can achieve a larger field of view display.
  • a person skilled in the art may obtain according to the technical solution provided by the embodiment of the present disclosure that when the display field required by the user side is the same, the head-up display system provided by the embodiment of the present disclosure may use a smaller-sized reflection for imaging.
  • Mirror 2 The size of the reflecting mirror 2 in the related art is generally determined according to the field of view angle and the display image distance of the head-up display system.
  • the diameter of the reflector 2 used in the related art is 320cm ⁇ 160cm.
  • a reflector is selected.
  • the size of 2 is 160cm ⁇ 80cm, which significantly reduces the size of the 2 diameter of the mirror. Therefore, the embodiments of the present disclosure can effectively avoid the problem that the size of the optical reflector 2 is too large in a head-up display system with a large field of view, which is difficult to process, manufacture, and detect, which effectively reduces the cost and further reduces the volume of the head-up display system. Reduce the space occupied by the head-up display system in vehicles and other vehicles.
  • the mirror is disposed on the optical path between the display control module and the polarization beam splitting element, that is, before the light is deflected by the polarization beam splitting element in different directions. Therefore, it is possible to obtain a larger range of field of view by using a smaller-diameter mirror.
  • the polarization beam splitting element 3 includes a polarization beam splitting prism, and the polarization beam splitting prism includes two right-angle prisms whose optical axis directions are perpendicular to each other.
  • Polarizing beam splitting prisms are used to separate two kinds of light with different polarization states.
  • they are beam splitting prisms made of materials with birefringent properties, such as Wollaston prisms.
  • the Wollaston prism material is calcite, which is a birefringent crystal material. Please refer to Figure 2.
  • a Wollaston prism is an optical device that can generate two beams of linearly polarized light that are separated from each other and whose vibration directions are perpendicular to each other.
  • n o and n e are the refractive indices of ordinary and abnormal light of calcite, respectively.
  • Calcite is a negative crystalline material, n o > n e .
  • the polarization beam splitting element 3 may be provided with one polarization beam splitting prism as shown in FIG. 2, or two or more polarization beam splitting prisms may be superposed to further expand the separation angle of the two polarization states.
  • FIG. 3 between two adjacent polarizing beam splitting prisms, right-angle prisms with the same optical axis direction are in contact with each other. It can be seen from the figure that the included angle of the two polarized light rays after passing through the two polarization beam splitting prisms is enlarged.
  • the head-up display system further includes a first optical element and a second optical element.
  • the first optical element 41 is disposed on the optical path of the first linearly polarized light P after being deflected, and is configured to convert the first linearly polarized light. P reflects to the human eye;
  • the second optical element 42 is disposed on the optical path of the second linearly polarized light S after being deflected to reflect the second linearly polarized light S to the human eye.
  • the first optical element 41 and the second optical element 42 include a holographic optical element.
  • a holographic optical element is an optical diffractive element made using the principle of optical interference. It can superimpose a reverse aberration on incident light with aberrations to cancel out the aberrations generated by the original optical system.
  • the holographic optical element The diffraction angle of the incident light after passing through the hologram element can be controlled to obtain the required diffraction angle.
  • the holographic optical element can reflect light to a specific angle. The selection of the holographic optical element should be performed according to the required diffraction angle and the aberration of the incident light, so as to meet the correction of the aberration and the required diffraction angle.
  • holographic elements can eliminate the chromatic aberrations produced by the polarization beam splitting element 3 or other aberrations in the optical path of the head-up display system (processing errors of optical components in the optical system or other optical aberrations generated by the optical path itself, which may include spherical aberration , Coma, astigmatism, field curvature, and distortion), and reflects light to the human eye at a predetermined angle, so that the driver can observe the first image 51 and the second image 52 at the same distance from the human eye.
  • the first optical element 41 and the second optical element 42 include a holographic grating.
  • a holographic grating is made from a master grating and subjected to a process similar to a reticle grating.
  • Master holographic gratings are usually made by exposing a photosensitive material to two interference laser beams. The interference pattern appears on the surface as a periodic pattern, and then it can be physically or chemically processed to reveal the surface pattern.
  • the first optical element 41 and the second optical element 42 may be disposed on the windshield glass 6 of the vehicle in which the head-up display system is located, as a matter of course, they may also be disposed on a synthesizer or other suitable components.
  • the time of each display cycle is less than or equal to the response time of human vision persistence, and the output frequency of the first period and the second period are both greater than or equal to twice the refresh frequency of human vision persistence.
  • the first image 51 is displayed in the first period, there is no image in the area where the second image 52 is displayed. Accordingly, when the second image 52 is displayed in the second period, there is no image in the area where the first image 51 is displayed.
  • Each display period is set. The time is less than or equal to the response time of human vision persistence, and the output frequency of the first period and the second period is greater than or equal to the refresh frequency of human vision persistence, which can make full use of the time division multiplexing method and human vision persistence.
  • the advantage of combining retention characteristics is that image conversion is performed at a refresh rate higher than that of human vision persistence, and the first image 51 and the second image 52 are alternately displayed on the display part 13, and the polarization conversion element 14 is also performed at the same frequency.
  • the polarization state of the light is converted so that the first image 51 displayed by the first linearly polarized light P is output during the first period, and the second image 52 displayed by the second linearly polarized light S is output during the second period, although the two images are not output at the same time,
  • the human eye has visual persistence characteristics, when two images are output alternately at high frequencies, the human eye can observe two display images at the same time, forming a large field of view. Display image.
  • an embodiment of the present disclosure further provides a head-up display method, including a plurality of display periods, each display period including a first period and a second period.
  • the first linearly polarized light P required for an image 51 deflects the propagation direction of the first linearly polarized light P by a first angle, and reflects the first linearly polarized light P to the human eye; in the second period, outputs the intended display
  • the second linearly polarized light S required by the second image 52 deflects the propagation direction of the second linearly polarized light S by a second angle, and reflects the second linearly polarized light S to the human eye.
  • the system control unit 11 in the display control module 1 controls the image rendering unit 12 to generate an image that needs to be displayed by the first linearly polarized light P. Displayed on the display unit 13.
  • the system control unit 11 controls the polarization conversion element 14 to change the polarization state of the light passing through the polarization conversion element 14 into the required first linearly polarized light P, and after being reflected by the mirror 2, it enters the polarization beam splitting element 3 and the first linearly polarized light After passing through the polarization beam splitting element 3, P is deflected at a certain angle, and then reflected by the first optical element 41 and enters the human eye, so that the human eye can observe the first image 51.
  • the process described in the first period is performed on the image displayed by the second linearly polarized light S so that human eyes can observe the second image 52.
  • the human eye observes the first image 51 and the second image 52 at the same time, forming a display image with a large field of view.
  • the display component 13 may be an organic light emitting diode display device, a liquid crystal display device, or the like, which is not particularly limited in the embodiments of the present disclosure.
  • a display image with a large field of view can be displayed in a vertical direction or a horizontal direction.
  • the first linearly polarized light P and the second linearly polarized light S are deflected in opposite directions in the vertical direction, and the first image 51 and the second image 52 can be displayed in the vertical direction.
  • the first linearly polarized light P and the second linearly polarized light S can be opposite in the horizontal direction.
  • the directions are deflected to display the first image 51 and the second image 52 in the horizontal direction (as shown in FIG. 6).
  • the display of the first image 51 and the second image 52 in different display areas may be arranged along a predetermined direction, so that the first image 51 and the second image 52 may be combined into a larger image to expand the field of view.
  • the first image 51 and the second image 52 may partially overlap, or they are in contact with each other but do not overlap, or there is a certain distance between the first image 51 and the second image 52.
  • the predetermined direction in which the first image 51 and the second image 52 are aligned is not particularly limited, and for example, it may be a direction parallel or perpendicular to the line connecting the eyes of the user.
  • the time of each display cycle is less than or equal to the response time of human vision persistence, and the output frequency of the first and second periods is greater than or equal to the refresh frequency of human vision persistence. Twice.
  • the head-up display system may include: a control element 110, a display source 120, a first polarization conversion element 130, an optical path separator 140, a first reflector 150, a second reflector 150 ', The collimator 160, the image rendering circuit 170, and the aberration compensation circuit 180.
  • the viewing position of the driver of the motor vehicle is also schematically drawn using human eyes.
  • the propagation path of the light emitted by the display source 120 in the entire system is shown by means of arrows.
  • the positions of the various components shown with respect to the propagation path of the light in FIG. 7 do not represent any limitation to the present disclosure. Without departing from the spirit and principle of the present invention, those skilled in the art should be able to flexibly arrange the various components as required.
  • the display source 120 in this embodiment may be a display component
  • the control element 110 may be a system control component
  • the optical path separator 140 may be a polarization beam splitting element.
  • the windshield 100 is a transflective element.
  • a transflective element that reflects the first linearly polarized light and the second linearly polarized light into the user's eyes and is imaged in the user's eyes can be used with the head-up display system in this application.
  • the head-up display system of the present application can also be applied to a train or an aircraft (such as an airplane).
  • the display source 120 may be configured to emit coded light. That is, display information may be encoded in the light emitted by the display source 120. Such display information may be generated by the image rendering circuit 170 and input into the display source 120.
  • the image rendering circuit 170 may also receive an aberration compensation signal from a further optional aberration compensation circuit 180, wherein the aberration compensation signal is configured to compensate for the light emitted by the display source 120 during the propagation process in the entire system.
  • the generated aberration for example, aberration caused by a light angle changing element
  • the light angle changing element includes, but is not limited to, a light path separator and a collimator.
  • the control element 110 controls the entire head-up display system during the first and second timings that alternate with each other, and in particular, controls the first polarization conversion element 130 so that a user (for example, a driver of a motor vehicle) can Different linearly polarized light containing different display information is seen during and second timing respectively.
  • the first polarization conversion element 130 may be a combination element of a polarizer and an electro-optic crystal element.
  • the control element 110 may control the first polarization conversion element 130 to receive the collimated light from the collimator 160 and convert it into the first linearly polarized light.
  • the control element 110 may also control the image rendering circuit 170 during the first timing sequence, so that the image rendering circuit 170 generates the first display information and provides it to the display source 120.
  • the display source 120 will generate light containing the first display information during the first timing sequence.
  • the first linearly polarized light output from the first polarization conversion element 130 will include the first display information.
  • the control element 110 may control the first polarization conversion element 130 to receive the collimated light from the collimator 160 and convert it to a direction perpendicular to the polarization direction of the first linearly polarized light as described above.
  • the second linearly polarized light may also control the image rendering circuit 170 during the second timing sequence, so that the image rendering circuit 170 generates second display information different from the first display information, and changes It is provided to the display source 120.
  • the display source 120 will generate light containing the second display information during the second timing sequence.
  • the second linearly polarized light output from the first polarization conversion element 130 will correspondingly include the second Display information.
  • the collimator 160 may be further configured to compensate for system aberrations.
  • the diffractive optical element has aberration characteristics opposite to that of the refractive prism, in such a collimator 160, the diffractive optical element can be used for compensation of aberrations.
  • multilayer diffractive optical (DO) lenses can be used.
  • the first display information may be selected as vehicle state information, such as vehicle speed, oil temperature, water temperature, and the like
  • the second display information may be selected as augmented reality information, such as instruction information of external objects, navigation information, and the like.
  • the first polarization conversion element 130 provides two kinds of linearly polarized light, such as s-polarized light and p-polarized light, during the first and second timings, respectively. And these two types of linearly polarized light can also contain different display information.
  • the first linearly polarized light or the second linearly polarized light will reach the optical path separator via the optional first and second mirrors 150 and 150 ', respectively. 140.
  • the two mirrors 150, 150 ' can also be omitted as needed, or the number becomes more or less, such as one, three, or the like.
  • the reflecting mirrors 150 and 150 include at least one of a flat reflecting mirror, a spherical reflecting mirror, an aspherical reflecting mirror, or a free-form reflecting mirror.
  • the head-up display system may include a non-planar mirror, such as a free-form mirror, or a spherical mirror.
  • a non-planar mirror such as a free-form mirror, or a spherical mirror.
  • the head-up display system can also include two or two
  • the above mirrors include at least one non-planar mirror.
  • two mirrors are set in a head-up display system, one of which is a flat mirror, and the other is an aspherical mirror; and another example is three mirrors in a head-up display system, one of which is a spherical mirror and the other is an aspheric Mirror, the third is a free-form mirror.
  • at least one non-planar mirror is included, so that the mirror can have optical power and the entire optical system can magnify the image.
  • FIG. 8 schematically illustrates a composition diagram of a head-up display system after adding a second polarization conversion element 190 according to an embodiment of the present disclosure.
  • a second polarization conversion element 190 is provided.
  • the second polarization element 190 is under the control of the control element 110 and does not change the s-polarized light in the first timing of time division multiplexing. In the second timing sequence, p-polarized light is changed to s-polarized light.
  • the deflection direction of the first linearly polarized light P and the second linearly polarized light S is adjusted by the optical path separator 140, so that the two beams of S-polarized light passing through the second polarization conversion element 190 can have different angles, and can be realized in a vertical direction or A display image with a large field of view is displayed in the horizontal direction. As shown in FIG. 9, the two S-polarized lights are deflected in the vertical direction in opposite directions, and the first image 51 'and the second image 52' can be displayed in the vertical direction. Keeping the plane of the bottom surface of the optical path separator 140 in FIG.
  • rotating the optical path separator 140 clockwise / counterclockwise by 90 ° can deflect the two beams of S-polarized light in opposite directions in the horizontal direction so as to horizontally
  • the first image 51 'and the second image 52' are displayed in directions (as shown in FIG. 10).
  • the relative positional relationship of the aforementioned images 51 'and 52' can also be changed.
  • the above-mentioned images 51 'and 52' are arranged in a certain direction or they are partially overlapped.
  • FIG. 11 and FIG. 12 schematically illustrate the light deflection of the s-polarized light and the p-polarized light after passing through the optical path separator and the second polarization conversion element at the first timing and the second timing, respectively.
  • the s-polarized light has higher reflectivity on the windshield than the p-polarized light within a certain range of incident angles
  • the polarization state of the light becomes s-polarized light.
  • the windshield 100 obtains a larger reflectivity, which increases the eye-brightness of the head-up display, thereby effectively reducing the brightness of the backlight source and reducing the power consumption of the entire head-up display system.
  • FIG. 13 schematically illustrates a case where a driver's field of view is enlarged by time division multiplexing of a polarization state.
  • FIG. 14 shows the relationship between the reflectance of the S-polarized light and the P-polarized light as a function of the angle of incidence.
  • the angle between the windshield and the horizontal plane is about 25 to 35 degrees.
  • the head-up display has a downward viewing angle of about 5 degrees. Therefore, the incident angle of the light from the head-up display system on the windshield is about 60 to 70 degrees.
  • the reflectances of the S and P polarized light are greatly different at an angle of incidence of 60 to 70 degrees. Therefore, converting the P-polarized light into the S-polarized light through the second polarization conversion element 190 can increase the brightness of the entire image and can reduce power consumption.
  • the second polarization conversion element 190 in the head-up display system according to this embodiment can also be applied to the embodiment shown in FIG. 1.
  • the second polarization conversion element 190 may be disposed on the light exit side of the polarization conversion element 3.
  • the head-up display method in the above embodiment may also be deflected by the first linearly polarized light for a first angle and reflected to the human eye during the first period. Changing the polarization direction of the first linearly polarized light to the same polarization direction as the second linearly polarized light; or, in the second period, after the propagation direction of the second linearly polarized light is deflected by a second angle and reflected Before the human eyes, the polarization direction of the second linearly polarized light is changed to the same polarization direction as the first linearly polarized light.
  • An embodiment of the present disclosure also provides a vehicle, such as a car, a train, an airplane, or the like, including the head-up display system described in the above embodiment.
  • the beneficial effects produced by the above-mentioned vehicles are the same as the beneficial effects of the head-up display system in this embodiment, and are not repeated here.
  • An embodiment of the present disclosure also provides a computer product including one or more processors configured to execute computer instructions to perform one or more steps in the head-up display method described in this embodiment.
  • An embodiment of the present disclosure further provides a computer-readable storage medium for storing non-transitory computer-readable instructions, and when the non-transitory computer-readable instructions are executed by a computer, a heads-up display according to this embodiment is performed.
  • a computer-readable storage medium for storing non-transitory computer-readable instructions, and when the non-transitory computer-readable instructions are executed by a computer, a heads-up display according to this embodiment is performed.
  • a module or component may be implemented at least in part by software so as to be executed by various types of processors.
  • an identified executable code module may include one or more physical or logical blocks of computer instructions, which may be constructed, for example, as an object, procedure, or function. Nevertheless, the executable code of the identified modules does not need to be physically located together, but may include different instructions stored in different physics. When these instructions are logically combined, they constitute a module and achieve the stated purpose of the module .
  • an executable code module can be a single instruction or many instructions, and can even be distributed across multiple different code segments, among different programs, and across multiple memory devices.
  • operational data may be identified within a module, and may be implemented in any suitable form and organized within any suitable type of data structure. The operational data may be collected as a single data set, or may be distributed in different locations (including on different storage devices), and at least partly may exist on the system or network only as electronic signals.
  • the module or component can be implemented by software, taking into account the current level of hardware technology, a module that can be implemented by software can be constructed by a person skilled in the art to implement the corresponding hardware circuit without considering the cost.
  • the hardware circuit includes a conventional very large scale integration (VLSI) circuit or a gate array, and an existing semiconductor such as a logic chip, a transistor, or other discrete components.
  • VLSI very large scale integration
  • Modules can also be implemented with programmable hardware devices, such as field programmable gate arrays, programmable array logic, and programmable logic devices.
  • the modules or components in some embodiments of the present application may be dedicated hardware devices for implementing some of the modules or components described above or All functions.
  • the above-mentioned module or component may be a circuit board or a combination of multiple circuit boards for implementing the functions described above.
  • the one or more circuit boards may include: (1) one or more processors; (2) one or more non-transitory computer-readable devices connected to the processors Memory; and (3) processor-executable firmware stored in the memory.
  • the above modules or components may also be a combination of a memory, a processor, and other hardware components.
  • the display control module may include a memory storing instructions and / or data, a processor that processes data signals, and a display component such as a display.
  • an embodiment of the present disclosure further provides a head-up display device including one or more processors and one or more memories.
  • the processor can process data signals and may include various computing structures, such as a complex instruction set computer (CISC) structure, a structured reduced instruction set computer (RISC) structure, or a structure that implements a combination of multiple instruction sets.
  • the memory may store instructions and / or data executed by the processor. These instructions and / or data may include code for implementing some or all functions of one or more devices described in the embodiments of the present application.
  • the memory includes dynamic random access memory (DRAM), static random access memory (SRAM), flash memory, optical memory, or other memories well known to those skilled in the art.
  • the processor may be a central processing unit (CPU) or other form of processing unit with data processing capabilities and / or program execution capabilities, such as an image processing unit (GPU), a field programmable gate array (FPGA), or a tensor processing unit ( TPU), etc .; for example, the central processing unit (CPU) can be X86 or ARM architecture and so on.
  • the head-up display device may further include other components such as a display, and the processor may control other components in the head-up display device to perform a desired function.
  • the memory may include any combination of one or more computer program products, and the computer program product may include various forms of computer-readable storage media, such as volatile memory and / or non-volatile memory.
  • the volatile memory may include, for example, a random access memory (RAM) and / or a cache memory (cache).
  • the non-volatile memory may include, for example, a read-only memory (ROM), a hard disk, an erasable programmable read-only memory (EPROM), a portable compact disk read-only memory (CD-ROM), a USB memory, a flash memory, and the like.
  • One or more non-transitory computer-readable instructions may be stored on a computer-readable storage medium, and the processor may run the non-transitory computer-readable instructions to implement various functions of the image processing apparatus.
  • the computer-readable storage medium may also store various application programs and various data, and various data used and / or generated by the application programs.
  • the above-mentioned module or component (for example, a system control component) includes code and a program stored in a memory; a processor may execute the code and program to implement the module or the component as described above. Some or all functions.
  • Some embodiments of the present application further provide a computer-readable storage medium for storing non-transitory computer-readable instructions, and performing the above-mentioned head-up display method when the non-transitory computer-readable instructions are executed by a computer.
  • the computer-readable storage medium may be a memory in the above-mentioned head-up display.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Human Computer Interaction (AREA)
  • Instrument Panels (AREA)

Abstract

一种抬头显示系统和显示方法、交通工具及计算机产品。抬头显示系统包括:显示控制模块(1),被配置为在第一时段输出用于显示第一图像(51)的第一线偏振光(P),在第二时段输出用于显示第二图像(52)的第二线偏振光(S);设置于显示控制模块(1)的出光光路上的偏振分光元件(3),被配置为使第一线偏振光(P)的传播方向偏折第一角度,使第二线偏振光(S)的传播方向偏折第二角度,第一角度与第二角度不同,可以扩大抬头显示系统的显示图像区域,从而扩大视野。

Description

抬头显示系统和显示方法、交通工具、抬头显示装置及计算机可读存储介质
本申请要求于2018年5月31日递交的中国专利申请第201810556363.1号和2018年9月28日递交的中国专利申请第201811142801.6号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开涉及一种抬头显示系统和显示方法、交通工具、抬头显示装置及计算机可读存储介质。
背景技术
抬头显示(HUD,Head Up Display),又称平视显示,逐步在汽车领域获得了广泛的应用。抬头显示把汽车行驶过程中仪表显示的信息(如车速信息)、导航信息等投射到前风挡玻璃上,可以使驾驶员不用低头就能看到仪表中的信息,不仅能够帮助对速度判断缺乏经验的新手控制自己的车速,避免在许多的限速路段中因超速而违章,而且能够使驾驶员在大视野不转移的条件下瞬间读数,始终头脑清醒地保持最佳观察状态,避免驾驶员因低头观看仪表显示或观看音响显示而忽略外界环境的快速变化所产生的安全隐患。随着抬头显示系统的广泛应用,用户对抬头显示系统的视野范围的要求越来越高,大视野成为抬头显示系统的一个发展趋势。
发明内容
本公开的一些实施例提供一种抬头显示系统,包括:显示控制模块,被配置为在第一时段输出用于显示第一图像的第一线偏振光,在第二时段输出用于显示第二图像的第二线偏振光;设置于所述显示控制模块的出光光路上的偏振分光元件,被配置为使所述第一线偏振光的传播方向偏折第一角度,使所述第二线偏振光的传播方向偏折第二角度,且所述第一角度与所述第二角度不同。
在一些示例中,所述显示控制模块被配置为输出所述第一线偏振光的第 一时段和输出所述第二偏振光的第二时段交替排列。
在一些示例中,相邻的第一时段和第二时段之和小于或等于人眼视觉暂留的响应时间,所述第一时段和所述第二时段的输出频率均大于或等于人眼视觉暂留的刷新频率的两倍。
在一些示例中,所述显示控制模块包括:显示部件,被配置为在所述第一时段显示所述第一图像和在所述第二时段显示所述第二图像;设置于所述显示部件的图像显示侧的第一偏振转换元件,被配置为在所述第一时段将所述第一图像的光线转换为第一线偏振光,在所述第二时段将所述第二图像的光线转换为第二线偏振光,所述第一线偏振光与所述第二线偏振光的振动方向互相垂直。
在一些示例中,抬头显示系统还包括至少一个反射镜,设置在所述显示控制模块与所述偏振分光元件之间的光路上,用于改变所述第一线偏振光和所述第二线偏振光的传播方向。
在一些示例中,所述反射镜包括平面反射镜、球面反射镜、非球面反射镜或自由曲面反射镜中的至少一种。
在一些示例中,所述抬头显示系统包括一个非平面反射镜;或者,所述抬头显示系统包括至少两个所述反射镜,其中至少包括一个非平面反射镜。
在一些示例中,所述偏振分光元件包括偏振分光棱镜,所述偏振分光棱镜包括光轴方向互相垂直的两个直角棱镜。
在一些示例中,所述偏振分光元件包括一个所述偏振分光棱镜;或者,所述偏振分光元件包括至少两个所述偏振分光棱镜,至少两个所述偏振分光棱镜叠加设置,相邻的两个所述偏振分光棱镜之间,光轴方向相同的直角棱镜互相接触。
在一些示例中,抬头显示系统还包括:设置于偏折后的第一线偏振光的光路上的第一光学元件,及设置于偏折后的第二线偏振光的光路上的第二光学元件,所述第一光学元件用于将所述第一线偏振光反射至人眼,所述第二光学元件用于将所述第二线偏振光反射至人眼。
在一些示例中,所述第一光学元件与所述第二光学元件包括全息光学元件。
在一些示例中,所述第一光学元件与所述第二光学元件设置在所述抬头 显示系统所在的交通工具的风挡玻璃或合成器上。
在一些示例中,所述显示控制模块还包括图像渲染部件,与所述显示部件相连,并被配置为在所述第一时段输出所述第一图像,在所述第二时段输出所述第二图像。
在一些示例中,所述显示控制模块还包括与所述图像渲染部件及所述第一偏振转换元件相连的系统控制部件,被配置为控制所述图像渲染部件输出所述第一图像和所述第二图像的时序和频率,以及,控制所述第一偏振转换元件对所述第一图像的光线和所述第二图像的光线进行偏振转换。
在一些示例中,所述显示控制模块还包括像差补偿电路,所述像差补偿电路分别与所述系统控制部件和所述图像渲染电路相连,并被配置为补偿所述抬头显示系统中的光线角度变化元件引入的像差,并将像差补偿信号输入所述图像渲染部件。
在一些示例中,所述显示控制模块还包括准直器,设置在所述显示部件的出光侧,并被配置为将从所述显示部件出射的光进行准直,所述光线角度变化元件包括所述偏振分光元件和所述准直器至少之一。
在一些示例中,所述抬头显示系统还包括,设置于所述偏振分光元件的出光侧的第二偏振转换元件;所述第二偏振转换元件被配置为将所述第一线偏振光转换为第二线偏振光或将所述第二线偏振光转换为第一线偏振光。
在一些示例中,所述第二偏振转换元件被进一步配置为:在所述显示控制模块的控制下,在所述第一时段将从所述偏振分光元件出射的所述第一线偏振光的偏振方向改变为与所述第二线偏振光相同的偏振方向,在所述第二时段不改变从所述偏振分光元件出射的所述第二线偏振光的偏振方向;或者,在所述第一时段不改变从所述偏振分光元件出射的所述第一线偏振光的偏振方向,在所述第二时段将从所述偏振分光元件出射的所述第二线偏振光的偏振方向改变为与所述第一线偏振光相同的偏振方向。
本公开的一些实施例提供一种抬头显示方法,包括多个显示周期,每个所述显示周期包括第一时段和第二时段,其中,在所述第一时段,输出拟显示的第一图像所需要的第一线偏振光,使所述第一线偏振光的传播方向偏折第一角度,将所述第一线偏振光反射至人眼;在所述第二时段,输出拟显示的第二图像所需要的第二线偏振光,使所述第二线偏振光的传播方向偏折第 二角度,将所述第二线偏振光反射至人眼,所述第一角度和所述第二角度不同。
在一些示例中,所述第一线偏振光与所述第二线偏振光被偏折的第一角度和第二角度不同,以使所述第一图像和所述第二图像的显示区域不同且沿一预定方向排列。
在一些示例中,所述预定方向为与用户双眼连线平行或垂直的方向。
在一些示例中,每个所述显示周期的时间小于或等于人眼视觉暂留的响应时间,所述第一时段和所述第二时段的输出频率均大于或等于人眼视觉暂留的刷新频率的两倍。
在一些示例中,在所述第一时段,在所述第一线偏振光的传播方向被偏折第一角度后且被反射至人眼前,所述方法还包括将所述第一线偏振光的偏振方向改变为与所述第二线偏振光相同的偏振方向;或者,在所述第二时段,在所述第二线偏振光的传播方向被偏折第二角度后且被反射至人眼前,所述方法还包括将所述第二线偏振光的偏振方向改变为与所述第一线偏振光相同的偏振方向。
本公开的一些实施例提供一种交通工具,包括上述任一项所述的抬头显示系统。
本公开的一些实施例提供一种抬头显示装置,包括:存储器,被配置为存储非暂时性计算机可读指令;以及处理器,被配置为运行所述非暂时性计算机可读指令,其中,所述非暂时性计算机可读指令被所述处理器运行时执行上述任一项所述的抬头显示方法。
本公开的一些实施例提供一种计算机可读存储介质,用于存储非暂时性计算机可读指令,当所述非暂时性计算机可读指令由计算机执行时执行上述任一项所述的抬头显示方法。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为本公开实施例所提供的抬头显示系统的结构示意图;
图2为本公开实施例所提供的偏振分光元件的结构示意图;
图3为本公开实施例所提供的另一种偏振分光元件的结构示意图;
图4为本公开实施例所提供的抬头显示方法的流程图;
图5为应用本公开实施例所提供的抬头显示系统驾驶员观察到的显示图像示意图;
图6为应用本公开实施例所提供的抬头显示系统驾驶员观察到的另一种显示图像示意图;
图7为根据本公开实施例所提供的抬头显示系统的结构示意图;
图8为根据本公开实施例的添加了第二偏振转换元件后的抬头显示系统的结构示意图;
图9为根据应用本公开实施例所提供的抬头显示系统驾驶员观察到的另一种显示图像示意图;
图10为应用本公开实施例所提供的抬头显示系统驾驶员观察到的另一种显示图像示意图;
图11示意性图示了s偏振态光线在第一时段通过光路分离器和第二偏振转换元件后光线偏折情况;
图12示意性图示了p偏振态光线在第二时段通过光路分离器和第二偏振转换元件后光线偏折情况;
图13示意性图示了偏振态时分复用扩大驾驶员的视场角的情况;
图14示出了P偏振光和S偏振光的反射率和入射角的关系;
图15示意性图示了本公开实施例提供的一种抬头显示装置。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
正如背景技术所述,目前的抬头显示中,通常是将一个2D显示图像投影到驾驶员前方一个固定的距离,在观看抬头显示的内容时,需要驾驶员调节眼睛的焦距,才能使得人眼汇聚到2D显示图像的成像面上。为了避免驾 驶员频繁调节眼睛的焦距而可能引起的安全问题,相关技术中的抬头显示系统采用双投影的技术方案,将显示画面分为状态信息和增强现实显示信息。状态信息指车辆状态如车速,机油温度,水温等车辆状态,这些信息显示到距离驾驶员眼睛大约2米的距离;增强现实信息如外界物体的指示信息,导航指示信息等,被显示到距离驾驶员眼睛较远的距离,如5至8米,这样的距离人眼无需大幅度调节焦距,观看较为舒适。双投影的抬头显示技术方案中,增强现实信息投影的距离比较远,由于同时需要保证用户头部在一定范围内移动都能完整的观看到信息,即有一定大小的视野,因此在保证视野范围较大的情况下只能使用口径很大的反射镜。由于抬头显示系统中的反射镜多为自由曲面的面型,加工制作大口径自由曲面的反射镜难度较大,而且大口径反射镜使抬头显示系统的体积较大,以上因素都限制了大视野抬头显示系统的发展。
基于上述现状,本公开的技术方案提出一种抬头显示系统和显示方法,利用偏振分光元件对光线进行偏折,并采用时分复用的方法,实现抬头显示系统更大视野的显示。
请参阅图1,本公开实施例公开了一种抬头显示系统,该抬头显示系统能够在每个显示周期内显示第一图像51和第二图像52,每个显示周期包括第一时段和第二时段。该抬头显示系统包括:显示控制模块1和偏振分光元件3。显示控制模块1用于在第一时段输出第一图像51所需要的第一线偏振光P,在第二时段输出第二图像52所需要的第二线偏振光S;偏振分光元件3设置在显示控制模块1的出光光路上,用于使第一线偏振光P的传播方向偏折第一角度,使第二线偏振光S的传播方向偏折第二角度;第一线偏振光P和所述第二线偏振光S分别用于显示第一图像51和第二图像52。例如,第一角度和第二角度不同。
本实施例中,显示控制模块1在不同的时段按照时序输出了第一线偏振光P和第二线偏振光S,该第一线偏振光P和第二线偏振光S通过偏振分光元件3,光线传播角度发生偏折,从偏振分光元件3中出射后,偏折后的第一线偏振光P和第二线偏振光S可以分别在不同位置显示出第一图像51和第二图像52。本实施例的抬头显示系统中利用偏振分光元件3对第一线偏振光P和第二线偏振光S产生不同的光线偏折角度,为后续采用时分复用的方 法显示图像提供了前提。通过显示控制模块1控制第一线偏振光P和第二线偏振光S所显示图像的输出时序和频率,交替显示第一图像51和第二图像52,同时利用人眼的视觉暂留特性,可以使人眼同时看到第一图像51和第二图像52,从而使抬头显示系统的显示图像区域扩大,实现更大视野的显示。
例如,上述第一角度和第二角度不同,从而使得第一图像和第二图像可以在不同的显示区域进行显示,以扩大视野。例如,这里所述的第一角度和第二角度不同可以包括传播方向偏转的方向不同或者传播方向偏转的角度大小不同或者传播方向偏转方向及偏转的角度大小均不同。
需要说明的是,当光线以非垂直角度穿透光学元件(如分光镜)的表面时,反射和透射特性均依赖于偏振现象。这种情况下,使用的坐标系是用含有输入和反射光束的那个平面定义的。如果光线的偏振矢量在这个平面内,则称为P偏振,如果偏振矢量垂直于该平面,则称为S偏振。本公开实施例中的第一线偏振光P对应P偏振光,第二线偏振光S对应S偏振光。
请参阅图1,在一些实施例中,显示控制模块1包括图像渲染部件12、显示部件13、偏振转换元件14和系统控制部件11,其中图像渲染部件12用于在第一时段输出第一图像51,在第二时段输出第二图像52;显示部件13与图像渲染部件12相连,用于显示第一图像51和第二图像52;偏振转换元件14设置于显示部件13的图像显示侧,用于在第一时段将第一图像51的光线转换为第一线偏振光P,在第二时段将第二图像52的光线转换为第二线偏振光S,第一线偏振光P与第二线偏振光S的振动方向互相垂直;系统控制部件11与图像渲染部件12及偏振转换元件14相连,用于控制图像渲染部件12输出第一图像51和第二图像52的时序和频率,以及,控制偏振转换元件14对第一图像51的光线和第二图像52的光线进行偏振转换。
显示控制模块1控制图像渲染部件12按照偏振转换元件14所转换的光线偏振状态将所需图像按一定时序和频率输出到显示部件13,显示部件13显示的图像光线入射到偏振转换元件14,偏振转换元件14在系统控制单元的控制下,对通过其内光线的偏振态进行转换,将图像的光线变为第一线偏振光P或者第二线偏振光S并输出。通过显示控制模块1内各部件的共同作用,实现了光线转换为第一线偏振光P与第二线偏振光S,并使二者分别按照一定时序和频率输出。
在一些实施例中,抬头显示系统还包括至少一个反射镜2,设置在显示控制模块1与偏振分光元件3之间的光路上(请参阅图1),用于改变第一线偏振光P和第二线偏振光S的传播方向。反射镜2设置在显示控制模块1与偏振分光元件3之间的光路上,可以有效缩短光路的传播距离,进而减小抬头显示系统所占用的空间。
按照实际使用需要,可以调整设置的反射镜2的类型和数量。反射镜2包括平面反射镜、球面反射镜、非球面反射镜或自由曲面反射镜中的至少一种。设置时,抬头显示系统可以包括一个非平面反射镜,例如设置一个自由曲面反射镜,或者设置一个球面反射镜。根据系统所需的视场角和成像距离,如果视场角较大,成像距离较大,一般需要多个反射镜2来进行光学像差的矫正,因此抬头显示系统也可以包括两个或两个以上的反射镜2,其中至少包括一个非平面反射镜。例如在抬头显示系统中设置两个反射镜2,其中一个为平面镜,另一个为非球面反射镜;又例如在抬头显示系统中设置三个反射镜2,其中一个为球面反射镜,另一个为非球面反射镜,第三个为自由曲面反射镜。无论设置几个反射镜2,其中至少包括一个非平面反射镜2,这样可以使反射镜2具有光焦度,使整个光学系统对图像有放大作用。
对于设置了反射镜2的抬头显示系统,本公开实施例提供的抬头显示系统由于设置了偏振分光元件3,以及采用了时分复用的显示方法,本实施例使用与现有技术相同口径的反射镜2即可实现更大视野的显示。相应的,本领域技术人员可根据本公开实施例提供的技术方案得出,在用户侧需求的显示视野相同的情况下,利用本公开实施例提供的抬头显示系统成像可以使用更小尺寸的反射镜2。相关技术中设置反射镜2的大小通常根据抬头显示系统的视场角和显示图像距离来确定。在一个例子中,视场角为10×5度,成像距离为7.5m的情况下,相关技术中选用的反射镜2口径为320cm×160cm,使用本公开所述的抬头显示系统,选用反射镜2尺寸为160cm×80cm,明显减小了反射镜2口径的尺寸。因此本公开实施例可以有效避免在大视野的抬头显示系统中光学反射镜2的尺寸过大,难于加工、制作和检测的问题,有效降低了成本,进而有效减小了抬头显示系统的体积,缩小所占空间,便于抬头显示系统在车辆等交通工具中的安放。
例如,在本公开的实施例中,反射镜设置在显示控制模块和偏振分光元 件之间的光路上,也就是,在光线被偏振分光元件将光向不同方向偏转之前。因此,可以使用较小口径的反射镜而获得较大范围的视野。
在一些实施例中,偏振分光元件3包括偏振分光棱镜,偏振分光棱镜包括光轴方向互相垂直的两个直角棱镜。偏振分光棱镜用于将两种不同偏振态的光线进行分离,通常为使用具有双折射特性的材料制作而成的分光棱镜,如沃拉斯顿棱镜等。沃拉斯顿棱镜材料为方解石,方解石是一种双折射率晶体材料。请参阅图2,沃拉斯顿棱镜是一种光学器件,能产生两束彼此分开的、振动方向互相垂直的线偏振光。它是由两个直角棱镜组成的,两个直角棱镜的光轴方向互相垂直,图2中的短横线和圆点图形分别表示两个互相垂直的光轴方向。当直角棱镜的顶角为θ时,出射的两个偏振光的夹角
Figure PCTCN2019089439-appb-000001
可以由以下公式估计:
Figure PCTCN2019089439-appb-000002
其中n o和n e分别为方解石的寻常光和异常光的折射率,方解石为负晶体材料,n o>n e
在一些实施例中,偏振分光元件3可以如图2所示设置一个偏振分光棱镜,也可以采用两个或两个以上偏振分光棱镜叠加设置的方式,从而进一步扩大两种偏振态光线的分离角度。请参阅图3,相邻的两个偏振分光棱镜之间,光轴方向相同的直角棱镜互相接触。由图中可以看出,两种偏振态的光线通过两个偏振分光棱镜后的夹角得到了扩大。需要说明的是,当光线入射角在发生折射的两个界面发生折射(分为光线在双折射材料内部界面的折射和光线在双折射材料和空气界面的折射)的时候,入射角大于全反射角的时候偏振分光棱镜就不能叠加了。该全反射角α的计算是公式是,
Figure PCTCN2019089439-appb-000003
在一些实施例中,抬头显示系统还包括第一光学元件和第二光学元件,第一光学元件41设置于偏折后的第一线偏振光P的光路上,用于将第一线偏振光P反射至人眼;第二光学元件42设置于偏折后的第二线偏振光S的光路上,用于将第二线偏振光S反射至人眼。第一光学元件41与第二光学元件42包括全息光学元件。全息光学元件是利用光学干涉的原理来制作的光学衍射元件,它可以在带有像差的入射光上叠加一个反向的像差从而抵消掉 原有光学系统产生的像差,同时全息光学元件可以控制入射光经过全息元件后的衍射角度,得到需要的衍射角度,与入射角与出射角相等的普通反射元件相比,全息光学元件可以将光线反射到特定角度。全息光学元件的选取要根据需要的衍射角度和入射光的像差来进行,以满足矫正像差和获取所需的衍射角度。全息元件的使用可以消除偏振分光元件3所产生的色差或抬头显示系统光路中存在的其它像差(光学系统中光学元器件的加工误差或者光路本身产生的其他光学像差,它可能包括球差、慧差、像散、场曲和畸变),并按照预定的角度将光线反射到人眼,使得驾驶员能观察到距人眼相同距离的第一图像51和第二图像52。例如,第一光学元件41与第二光学元件42包括全息光栅。例如,全息光栅由底版光栅为原料,经受类似于刻线光栅的过程而制造。底版全息光栅通常通过将光敏材料曝光到两束干涉激光束而制成。干涉图案在表面上以周期图案显现,然后它可以经过物理或化学处理来显现出表面图案。
第一光学元件41与第二光学元件42可以如图1所示设置在抬头显示系统所在的交通工具的风挡玻璃6上,当然也可以设置在合成器或其他适合的部件上。
在一些实施例中,每个显示周期的时间小于或等于人眼视觉暂留的响应时间,第一时段和第二时段的输出频率均大于或等于人眼视觉暂留的刷新频率的两倍。在第一时段显示第一图像51时,显示第二图像52的区域没有图像,相应的,在第二时段显示第二图像52时,显示第一图像51的区域没有图像,设置每个显示周期的时间小于或等于人眼视觉暂留的响应时间,第一时段和第二时段的输出频率均大于或等于人眼视觉暂留的刷新频率,可以充分发挥时分复用方法与人眼的视觉暂留特性相结合的优势,按照高于人眼视觉暂留的刷新频率进行图像变换,在显示部件13上交替显示第一图像51和第二图像52,同时偏振转换元件14也按照同样的频率进行光线偏振态的转换,从而在第一时段输出第一线偏振光P显示的第一图像51,在第二时段输出第二线偏振光S显示的第二图像52,虽然两个图像不是同时输出,但是由于人眼具有视觉暂留特性,在两个图像被高频交替输出的情况下,人眼可以同时观察到两个显示图像,形成大视野的显示图像。
请参阅图4,本公开的实施例还提供了一种抬头显示方法,包括多个显 示周期,每个显示周期包括第一时段和第二时段,其中,在第一时段,输出拟显示的第一图像51所需要的第一线偏振光P,使第一线偏振光P的传播方向偏折第一角度,将第一线偏振光P反射至人眼;在第二时段,输出拟显示的第二图像52所需要的第二线偏振光S,使第二线偏振光S的传播方向偏折第二角度,将第二线偏振光S反射至人眼。
示例性的,如图4所示,在一个显示周期开始时,首先在第一时段,显示控制模块1中的系统控制部件11控制图像渲染部件12,生成需要第一线偏振光P显示的图像显示于显示部件13上。系统控制部件11控制偏振转换元件14将通过偏振转换元件14的光线的偏振态变为所需第一线偏振光P,通过反射镜2的反射后,进入偏振分光元件3,第一线偏振光P通过偏振分光元件3后进行一定角度的偏折,然后通过第一光学元件41反射后进入人眼,使人眼能观察到第一图像51。在第二时段,对第二线偏振光S显示的图像进行如第一时段所述的流程,使人眼能观察到第二图像52。在时分复用的情况下人眼同时观察到第一图像51和第二图像52,形成大视野的显示图像。
例如,显示部件13可以为有机发光二极管显示装置、液晶显示装置等,本公开实施例对此没有特别限定。
上述抬头显示方法所产生的有益效果与本实施例中所述的抬头显示系统的有益效果相同,此处不再赘述。
通过调节第一线偏振光P与第二线偏振光S的偏折方向,可以实现在竖直方向或者水平方向上显示大视野的显示图像。如图1和图5所示,第一线偏振光P与第二线偏振光S沿竖直方向朝相反的方向偏折,可以在竖直方向显示第一图像51和第二图像52。保持图1中的偏振分光元件3的底面所在平面不变,将偏振分光元件3顺时针/逆时针旋转90°,可以使第一线偏振光P与第二线偏振光S沿水平方向朝相反的方向偏折,以在水平方向显示第一图像51和第二图像52(如图6所示)。
例如,第一图像51和第二图像52在不同的显示区域进行显示可以是沿一预定方向排列,从而第一图像51和第二图像52可以拼合成一个较大的图像以扩大视野。在一些示例中,第一图像51和第二图像52可以部分交叠、或者彼此相接但不交叠、或者第一图像51和第二图像52之间有一定的距离。例如,上述第一图像51和第二图像52排列的预定方向没有特别的限定,例 如,其可以是与用户双眼连线平行或垂直的方向。
在执行上述抬头显示方法的过程中,每个显示周期的时间小于或等于人眼视觉暂留的响应时间,第一时段和第二时段的输出频率均大于或等于人眼视觉暂留的刷新频率的两倍。
本公开的一些实施例还提供一种该抬头显示系统可以包括:控制元件110、显示源120、第一偏振转换元件130、光路分离器140、第一反射镜150、第二反射镜150'、准直器160、图像渲染电路170以及像差补偿电路180。另外,在图7中,还利用人眼示意性绘出了机动车驾驶员的观看位置。此外,需要指出的是,在图7中,借助于箭头示出了由显示源120发出的光在整个系统内的传播路径。然而,应当理解到,在图7中相对于光线的传播路径示出的各个组件的位置并不代表对本公开的任何限制。在没有脱离于本发明的精神和原理的情况下,本领域技术人员应当能够根据需要灵活地布置各个组件。
例如,本实施例中的显示源120可以为显示部件,控制元件110可以为系统控制部件,光路分离器140可以为偏振分光元件。
本领域技术人员能够理解,挡风玻璃100是一种半透半反元件。只要满足将所述第一线偏振光和所述第二线偏振光反射到用户眼睛中并且在用户眼睛中成像的半透半反元件都可以与本申请中的抬头显示系统一起使用。例如,火车、航空器(例如飞机)中也可以应用本申请的抬头显示系统。
继续参照图7,现在简要地描述根据本公开的实施例的抬头显示系统中的各个组件及其工作原理。
在抬头显示系统中,显示源120可以配置为发射编码光。也就是说,在由显示源120发射的光中可以编码显示信息。这样的显示信息可以由图像渲染电路170生成并且输入到显示源120中。此外,图像渲染电路170还可以从进一步可选的像差补偿电路180接收像差补偿信号,其中,该像差补偿信号配置用于补偿由显示源120发射的光在整个系统内的传播过程期间产生的像差(例如,将光线角度变化元件引起的像差),例如,光线角度变化元件包括但不限于光路分离器和准直器。
接下来将描述抬头显示系统中的时分复用过程,其中,借助于控制元件110来获得这样的时分复用。具体地,控制元件110在相互交替的第一 时序和第二时序期间控制整个抬头显示系统,特别地,控制第一偏振转换元件130,使得用户(例如,机动车驾驶员)能够在第一时序和第二时序期间分别看到包含不同显示信息的不同线偏振光。在本实施例的一种实施方式中,第一偏振转换元件130可以是偏振片和电光晶体元件的组合元件。
下面将结合控制元件110、第一偏振转换元件130和图像渲染电路170对这样的时序控制进行详细的描述。作为示例,在第一时序期间,控制元件110可以控制第一偏振转换元件130从准直器160接收经准直的光并且将其转换为第一线偏振光。在这样的情况下,作为进一步的可选示例,控制元件110还可以在第一时序期间对图像渲染电路170进行控制,使得图像渲染电路170生成第一显示信息并且将其提供给显示源120。由此,显示源120将在第一时序期间生成包含第一显示信息的光。此时,考虑到上文描述的控制元件110对第一偏振转换元件130的控制,在第一时序期间,从第一偏振转换元件130输出的第一线偏振光将包含第一显示信息。
以类似的方式,在第二时序期间,控制元件110可以控制第一偏振转换元件130从准直器160接收经准直的光并且将其转换为与上述第一线偏振光的偏振方向垂直的第二线偏振光。在这样的情况下,作为可选示例,控制元件110还可以在第二时序期间对图像渲染电路170进行控制,使得图像渲染电路170生成与上述第一显示信息不同的第二显示信息,并且将其提供给显示源120。由此,与第一时序过程相同,显示源120将在第二时序期间生成包含第二显示信息的光。此时,进一步地,考虑到上文描述的控制元件110对第一偏振转换元件130的控制,在第二时序期间,从第一偏振转换元件130输出的第二线偏振光将对应地包含第二显示信息。
可选地,在本公开的实施例提供的抬头显示系统中,准直器160还可以配置为补偿系统像差。例如,因为衍射光学元件具有与折射棱镜相反的像差特性,所以在这样的准直器160中,可以使用衍射光学元件进行像差的补偿。例如,可以采用多层衍射光学(DO)镜片。
作为示例,第一显示信息可以选择为车辆状态信息,诸如,车速、机油温度、水温等,并且第二显示信息可以选择为增强现实信息,诸如,外界物体的指示信息、导航信息等。
由此可见,借助于控制元件110对第一偏振转换元件130和图像渲染电路170的控制,实现了整个抬头显示系统的时分复用。这意味着,当抬 头显示系统正常工作时,第一偏振转换元件130分别在第一时序和第二时序期间提供偏振方向彼此垂直的两种线偏振光,诸如,s偏振光和p偏振光,并且这两种线偏振光还可以分别包含不同的显示信息。
沿着光的传播路径,在从第一偏振转换元件130出射之后,第一线偏振光或者第二线偏振光将分别经由可选的第一反射镜150和第二反射镜150'到达光路分离器140。此处,需要指出的是,两个反射镜150、150'也可以根据需要而省略,或者数目变得更多或更少,诸如,一个、三个等等。一般地,通过引入一个或多个反射镜150、150',有利于实现整个系统内的光路的灵活折叠,从而进一步减少系统可能占据的空间体积。
反射镜150和150’包括平面反射镜、球面反射镜、非球面反射镜或自由曲面反射镜中的至少一种。设置时,抬头显示系统可以包括一个非平面反射镜,例如设置一个自由曲面反射镜,或者设置一个球面反射镜。根据系统所需的视场角和成像距离,如果视场角较大,成像距离较大,一般需要多个反射镜来进行光学像差的矫正,因此抬头显示系统也可以包括两个或两个以上的反射镜,其中至少包括一个非平面反射镜。例如在抬头显示系统中设置两个反射镜,其中一个为平面镜,另一个为非球面反射镜;又例如在抬头显示系统中设置三个反射镜,其中一个为球面反射镜,另一个为非球面反射镜,第三个为自由曲面反射镜。无论设置多少个反射镜,其中至少包括一个非平面反射镜,这样可以使反射镜具有光焦度,使整个光学系统对图像有放大作用。
图8示意性地图示了根据本公开的实施例的添加了第二偏振转换元件190后抬头显示系统的组成示意图。在光线穿过光路分离器之后入射到挡风玻璃100之前,设置第二偏振转换元件190,第二偏振元件190在控制元件110控制下,在时分复用的第一时序中不改变s偏振光的偏振态,在第二时序中将p偏振光变成s偏振光。
通过光路分离器140调节第一线偏振光P与第二线偏振光S的偏折方向,使得经过第二偏振转换元件190的两束S偏振光可以具有不同的角度,可以实现在竖直方向或者水平方向上显示大视野的显示图像。如图9所示,两束S偏振光沿竖直方向朝相反的方向偏折,可以在竖直方向显示第一图像51’和第二图像52’。保持图8中的光路分离器140的底面所在平面不 变,将光路分离器140顺时针/逆时针旋转90°,可以使两束S偏振光沿水平方向朝相反的方向偏折,以在水平方向显示第一图像51’和第二图像52’(如图10所示)。此外,通过控制光路分离器140以及第二偏振转换元件190与挡风玻璃之间的距离或相对位置关系,也可以改变上述图像51’和52’的相对位置关系。例如,上述图像51’和52’沿某一方向排列或者二者部分重叠。
图11和图12分别示意性图示了s偏振光线和p偏振光线在第一时序时和第二时序时通过光路分离器和第二偏振转换元件后光线偏折情况。根据s偏振光在一定入射角范围内在挡风玻璃上比p偏振光具有较高反射率的性质,通过第二偏振转换元件190后,光线的偏振态都变成s偏振光,这样能在挡风玻璃100上获得更大的反射率,增加了抬头显示的入眼亮度,从而能有效降低背光源的亮度,减小整个抬头显示系统的功耗。同理,也可以设置在时分复用的一个时序中不改变p偏振光的偏振态,在另一个时序中将s偏振光变成p偏振光。由于s偏振光有较高的反射率,优选地,将两种线偏振光都转换为s偏振光。图13示意性图示了偏振态时分复用扩大驾驶员的视场角的情况。
图14示出了S偏振光和P偏振光的反射率随入射角之间的关系。在一些乘用车车中,风挡玻璃与水平面的夹角约为25至35度,一般抬头显示具有约5度左右的向下俯视角,所以抬头显示系统的光线在风挡玻璃的入射角约为60至70度。从图14中可以看出,S和P偏振光的反射率在60至70度的入射角时有很大的差异。因此,通过第二偏振转换元件190将P偏振光转化为S偏振光,可以提高整个图像的亮度,并能够减少功耗。
此外,根据本实施例的抬头显示系统中的第二偏振转换元件190也可以应用于图1所示的实施例。例如,第二偏振转换元件190可以设置于偏振转换元件3的出光侧。
需要说明的是,利用第二偏振转换元件,上述实施例中的抬头显示方法也可以在第一时段,在第一线偏振光的传播方向被偏折第一角度后且被反射至人眼前,将所述第一线偏振光的偏振方向改变为与所述第二线偏振光相同的偏振方向;或者,在第二时段,在第二线偏振光的传播方向被偏折第二角度后且被反射至人眼前,将所述第二线偏振光的偏振方向改变为 与所述第一线偏振光相同的偏振方向。
本公开的实施例还提供了一种交通工具,如汽车、火车、飞机等,包括上述实施例所述的抬头显示系统。
上述交通工具所产生的有益效果与本实施例中的抬头显示系统的有益效果相同,此处不再赘述。
本公开的实施例还提供了一种计算机产品,包括一个或多个处理器,处理器被配置成运行计算机指令,以执行本实施例所述的抬头显示方法中的一个或多个步骤。
本公开的实施例还提供了一种计算机可读存储介质,用于存储非暂时性计算机可读指令,当所述非暂时性计算机可读指令由计算机执行时执行本实施例所述的抬头显示方法中的一个或多个步骤。
本公开的实施例中,模块或部件(例如,显示控制模块、系统控制部件、图像渲染部件等)可以至少部分用软件实现,以便由各种类型的处理器执行。举例来说,一个标识的可执行代码模块可以包括计算机指令的一个或多个物理或者逻辑块,举例来说,其可以被构建为对象、过程或函数。尽管如此,所标识模块的可执行代码无需物理地位于一起,而是可以包括存储在不同物理上的不同的指令,当这些指令逻辑上结合在一起时,其构成模块并且实现该模块的规定目的。
实际上,可执行代码模块可以是单条指令或者是许多条指令,并且甚至可以分布在多个不同的代码段上,分布在不同程序当中,以及跨越多个存储器设备分布。同样地,操作数据可以在模块内被识别,并且可以依照任何适当的形式实现并且被组织在任何适当类型的数据结构内。所述操作数据可以作为单个数据集被收集,或者可以分布在不同位置上(包括在不同存储设备上),并且至少部分地可以仅作为电子信号存在于系统或网络上。
在模块或部件可以利用软件实现时,考虑到现有硬件工艺的水平,所以可以以软件实现的模块,在不考虑成本的情况下,本领域技术人员都可以搭建对应的硬件电路来实现对应的功能,所述硬件电路包括常规的超大规模集成(VLSI)电路或者门阵列以及诸如逻辑芯片、晶体管之类的现有半导体或者是其它分立的元件。模块还可以用可编程硬件设备,诸如现场可编程门阵列、可编程阵列逻辑、可编程逻辑设备等实现。
此外,在本申请的一些实施例中的模块或部件(例如,显示控制模块、系统控制部件、图像渲染部件等),可以是专用硬件器件,用来实现如上所述的模块或部件的一些或全部功能。例如,上述模块或部件可以是一个电路板或多个电路板的组合,用于实现如上所述的功能。在本申请实施例中,该一个电路板或多个电路板的组合可以包括:(1)一个或多个处理器;(2)与处理器相连接的一个或多个非暂时的计算机可读的存储器;以及(3)处理器可执行的存储在存储器中的固件。此外,上述模块或部件也可以为存储器、处理器以及其他硬件组件的组合。例如,显示控制模块可以可以包括由存储有指令和/或数据的存储器、处理数据信号的处理器以及诸如显示器的显示部件等。
例如,如图15所示,本公开的实施例还提供一种抬头显示装置,包括一个或多个处理器以及一个或多个存储器。处理器可以处理数据信号,可以包括各种计算结构,例如复杂指令集计算机(CISC)结构、结构精简指令集计算机(RISC)结构或者一种实行多种指令集组合的结构。存储器可以保存处理器执行的指令和/或数据。这些指令和/或数据可以包括代码,用于实现本申请实施例描述的一个或多个装置的一些功能或全部功能。例如,存储器包括动态随机存取存储器(DRAM)、静态随机存取存储器(SRAM)、闪存(flash memory)、光存储器(optical memory),或其他的本领域技术人员熟知的存储器。
处理器可以是中央处理单元(CPU)或者具有数据处理能力和/或程序执行能力的其它形式的处理单元,例如图像处理单元(GPU)、现场可编程门阵列(FPGA)或张量处理单元(TPU)等;例如,中央处理单元(CPU)可以为X86或ARM架构等。例如,该抬头显示装置还可以包括其他组件如显示器等,处理器可以控制抬头显示装置中的其它组件以执行期望的功能。
例如,存储器可以包括一个或多个计算机程序产品的任意组合,计算机程序产品可以包括各种形式的计算机可读存储介质,例如易失性存储器和/或非易失性存储器。易失性存储器例如可以包括随机存取存储器(RAM)和/或高速缓冲存储器(cache)等。非易失性存储器例如可以包括只读存储器(ROM)、硬盘、可擦除可编程只读存储器(EPROM)、便携式紧致盘只读存储器(CD-ROM)、USB存储器、闪存等。在计算机可读存储介质上可以存储 一个或多个非暂时性计算机可读指令,处理器可以运行所述非暂时性计算机可读指令,以实现图像处理装置的各种功能。在计算机可读存储介质中还可以存储各种应用程序和各种数据以及应用程序使用和/或产生的各种数据等。
例如,在本申请的一些实施例中,上述模块或部件(例如,系统控制部件)包括存储在存储器中的代码和程序;处理器可以执行该代码和程序以实现如上所述的模块或部件的一些功能或全部功能。
本申请的一些实施例还提供一种计算机可读存储介质,用于存储非暂时性计算机可读指令,当所述非暂时性计算机可读指令由计算机执行时执行上述的抬头显示方法。例如,该计算机可读存储介质可以是上述抬头显示中的存储器。
上述计算机产品所产生的有益效果与本实施例中的抬头显示系统的有益效果相同,此处不再赘述。
以上所述仅是本公开的示范性实施方式,而非用于限制本发明的保护范围,本发明的保护范围由所附的权利要求确定。

Claims (26)

  1. 一种抬头显示系统,包括:
    显示控制模块,被配置为在第一时段输出用于显示第一图像的第一线偏振光,在第二时段输出用于显示第二图像的第二线偏振光;
    设置于所述显示控制模块的出光光路上的偏振分光元件,被配置为使所述第一线偏振光的传播方向偏折第一角度,使所述第二线偏振光的传播方向偏折第二角度,且所述第一角度与所述第二角度不同。
  2. 根据权利要求1所述的抬头显示系统,其中,所述显示控制模块被配置为输出所述第一线偏振光的第一时段和输出所述第二偏振光的第二时段交替排列。
  3. 根据权利要求2所述的抬头显示系统,其中,相邻的第一时段和第二时段之和小于或等于人眼视觉暂留的响应时间,所述第一时段和所述第二时段的输出频率均大于或等于人眼视觉暂留的刷新频率的两倍。
  4. 根据权利要求1-3任一项所述的抬头显示系统,其中,所述显示控制模块包括:
    显示部件,被配置为在所述第一时段显示所述第一图像和在所述第二时段显示所述第二图像;
    设置于所述显示部件的图像显示侧的第一偏振转换元件,被配置为在所述第一时段将所述第一图像的光线转换为第一线偏振光,在所述第二时段将所述第二图像的光线转换为第二线偏振光,所述第一线偏振光与所述第二线偏振光的振动方向互相垂直。
  5. 根据权利要求1-4任一项所述的抬头显示系统,还包括至少一个反射镜,设置在所述显示控制模块与所述偏振分光元件之间的光路上,用于改变所述第一线偏振光和所述第二线偏振光的传播方向。
  6. 根据权利要求5所述的抬头显示系统,其中,所述反射镜包括平面反射镜、球面反射镜、非球面反射镜或自由曲面反射镜中的至少一种。
  7. 根据权利要求6所述的抬头显示系统,其中,所述抬头显示系统包括一个非平面反射镜;或者,
    所述抬头显示系统包括至少两个所述反射镜,其中至少包括一个非平面 反射镜。
  8. 根据权利要求1-7任一项所述的抬头显示系统,其中,所述偏振分光元件包括偏振分光棱镜,所述偏振分光棱镜包括光轴方向互相垂直的两个直角棱镜。
  9. 根据权利要求8所述的抬头显示系统,其中,所述偏振分光元件包括一个所述偏振分光棱镜;或者,
    所述偏振分光元件包括至少两个所述偏振分光棱镜,至少两个所述偏振分光棱镜叠加设置,相邻的两个所述偏振分光棱镜之间,光轴方向相同的直角棱镜互相接触。
  10. 根据权利要求1所述的抬头显示系统,其中,还包括:设置于偏折后的第一线偏振光的光路上的第一光学元件,及设置于偏折后的第二线偏振光的光路上的第二光学元件,所述第一光学元件用于将所述第一线偏振光反射至人眼,所述第二光学元件用于将所述第二线偏振光反射至人眼。
  11. 根据权利要求10所述的抬头显示系统,其中,所述第一光学元件与所述第二光学元件包括全息光学元件。
  12. 根据权利要求10或11所述的抬头显示系统,其中,所述第一光学元件与所述第二光学元件设置在所述抬头显示系统所在的交通工具的风挡玻璃或合成器上。
  13. 根据权利要求4所述的抬头显示系统,其中,所述显示控制模块还包括图像渲染部件,与所述显示部件相连,并被配置为在所述第一时段输出所述第一图像,在所述第二时段输出所述第二图像。
  14. 根据权利要求13所述的抬头显示系统,其中,所述显示控制模块还包括与所述图像渲染部件及所述第一偏振转换元件相连的系统控制部件,被配置为控制所述图像渲染部件输出所述第一图像和所述第二图像的时序和频率,以及,控制所述第一偏振转换元件对所述第一图像的光线和所述第二图像的光线进行偏振转换。
  15. 根据权利要求13或14所述的抬头显示系统,其中,所述显示控制模块还包括像差补偿电路,所述像差补偿电路分别与所述系统控制部件和所述图像渲染电路相连,并被配置为补偿所述抬头显示系统中的光线角度变化元件引入的像差,并将像差补偿信号输入所述图像渲染部件。
  16. 根据权利要求15所述的抬头显示系统,其中,所述显示控制模块还包括准直器,设置在所述显示部件的出光侧,并被配置为将从所述显示部件出射的光进行准直,所述光线角度变化元件包括所述偏振分光元件和所述准直器至少之一。
  17. 根据权利要求1-16任一项所述的抬头显示系统,还包括,设置于所述偏振分光元件的出光侧的第二偏振转换元件;所述第二偏振转换元件被配置为将所述第一线偏振光转换为第二线偏振光或将所述第二线偏振光转换为第一线偏振光。
  18. 根据权利要求17所述的抬头显示系统,其中,所述第二偏振转换元件被进一步配置为:在所述显示控制模块的控制下,在所述第一时段将从所述偏振分光元件出射的所述第一线偏振光的偏振方向改变为与所述第二线偏振光相同的偏振方向,在所述第二时段不改变从所述偏振分光元件出射的所述第二线偏振光的偏振方向;或者,在所述第一时段不改变从所述偏振分光元件出射的所述第一线偏振光的偏振方向,在所述第二时段将从所述偏振分光元件出射的所述第二线偏振光的偏振方向改变为与所述第一线偏振光相同的偏振方向。
  19. 一种抬头显示方法,包括多个显示周期,每个所述显示周期包括第一时段和第二时段,其中,
    在所述第一时段,输出拟显示的第一图像所需要的第一线偏振光,使所述第一线偏振光的传播方向偏折第一角度,将所述第一线偏振光反射至人眼;
    在所述第二时段,输出拟显示的第二图像所需要的第二线偏振光,使所述第二线偏振光的传播方向偏折第二角度,将所述第二线偏振光反射至人眼,
    所述第一角度和所述第二角度不同。
  20. 根据权利要求19所述的抬头显示方法,其中,所述第一线偏振光与所述第二线偏振光被偏折的第一角度和第二角度不同,以使所述第一图像和所述第二图像的显示区域不同且沿一预定方向排列。
  21. 根据权利要求20所述的抬头显示方法,其中,所述预定方向为与用户双眼连线平行或垂直的方向。
  22. 根据权利要求19-21所述的抬头显示方法,其中,每个所述显示周期的时间小于或等于人眼视觉暂留的响应时间,所述第一时段和所述第二时段的输出频率均大于或等于人眼视觉暂留的刷新频率的两倍。
  23. 根据权利要求19所述的抬头显示方法,其中,在所述第一时段,在所述第一线偏振光的传播方向被偏折第一角度后且被反射至人眼前,所述方法还包括将所述第一线偏振光的偏振方向改变为与所述第二线偏振光相同的偏振方向;或者,在所述第二时段,在所述第二线偏振光的传播方向被偏折第二角度后且被反射至人眼前,所述方法还包括将所述第二线偏振光的偏振方向改变为与所述第一线偏振光相同的偏振方向。
  24. 一种交通工具,其特征在于,包括权利要求1-18任一项所述的抬头显示系统。
  25. 一种抬头显示装置,包括:
    存储器,被配置为存储非暂时性计算机可读指令;以及
    处理器,被配置为运行所述非暂时性计算机可读指令,其中,所述非暂时性计算机可读指令被所述处理器运行时执行根据权利要求19-23任一项所述的抬头显示方法。
  26. 一种计算机可读存储介质,用于存储非暂时性计算机可读指令,当所述非暂时性计算机可读指令由计算机执行时执行根据权利要求19-23任一项所述的抬头显示方法。
PCT/CN2019/089439 2018-05-31 2019-05-31 抬头显示系统和显示方法、交通工具、抬头显示装置及计算机可读存储介质 WO2019228488A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/633,599 US11320901B2 (en) 2018-05-31 2019-05-31 Head-up display system and display method, vehicle, head-up display device, and computer-readable storage medium
EP19811615.4A EP3805843A4 (en) 2018-05-31 2019-05-31 HEAD-UP DISPLAY SYSTEM AND METHOD, VEHICLE, HEAD-UP DISPLAY DEVICE, AND COMPUTER READABLE STORAGE MEDIA

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810556363 2018-05-31
CN201810556363.1 2018-05-31
CN201811142801.6A CN109298529A (zh) 2018-01-18 2018-09-28 抬头显示系统、驱动方法、交通工具及计算机产品
CN201811142801.6 2018-09-28

Publications (1)

Publication Number Publication Date
WO2019228488A1 true WO2019228488A1 (zh) 2019-12-05

Family

ID=68698749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/089439 WO2019228488A1 (zh) 2018-05-31 2019-05-31 抬头显示系统和显示方法、交通工具、抬头显示装置及计算机可读存储介质

Country Status (3)

Country Link
US (1) US11320901B2 (zh)
EP (1) EP3805843A4 (zh)
WO (1) WO2019228488A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI738486B (zh) * 2020-09-01 2021-09-01 創智車電股份有限公司 具有雙虛像距離的車用抬頭顯示系統

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108181708B (zh) * 2018-01-02 2020-12-15 京东方科技集团股份有限公司 一种抬头显示系统及其控制方法
CN112596245A (zh) * 2020-12-28 2021-04-02 歌尔股份有限公司 一种光学组件及ar设备
FR3124279B1 (fr) * 2021-06-22 2024-02-16 Psa Automobiles Sa Procédé et dispositif de traitement optique de faisceaux lumineux comprenant des ensembles de données représentatives d’images flottantes d’un système de réalité augmentée pour véhicule
CN113870782B (zh) * 2021-09-22 2022-08-16 上海天马微电子有限公司 显示模组、平视显示系统及显示方法
CN116560083A (zh) * 2022-01-30 2023-08-08 华为技术有限公司 显示装置和交通工具

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015125247A1 (ja) * 2014-02-20 2015-08-27 パイオニア株式会社 投影装置
CN106773058A (zh) * 2017-01-17 2017-05-31 华为机器有限公司 虚拟现实的显示装置
CN108020920A (zh) * 2016-10-31 2018-05-11 株式会社日本显示器 显示装置
CN108196367A (zh) * 2018-01-18 2018-06-22 京东方科技集团股份有限公司 抬头显示系统及其驱动方法
CN109298529A (zh) * 2018-01-18 2019-02-01 京东方科技集团股份有限公司 抬头显示系统、驱动方法、交通工具及计算机产品

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8749886B2 (en) * 2012-03-21 2014-06-10 Google Inc. Wide-angle wide band polarizing beam splitter
JP6238072B2 (ja) * 2014-05-12 2017-11-29 パナソニックIpマネジメント株式会社 表示装置及びその表示方法
JP6455339B2 (ja) * 2015-06-26 2019-01-23 株式会社デンソー ヘッドアップディスプレイ装置
KR101912499B1 (ko) * 2016-05-23 2018-12-28 엘지전자 주식회사 차량용 헤드 업 디스플레이
CN106257321B (zh) * 2016-06-28 2021-11-30 京东方科技集团股份有限公司 3d抬头显示系统和方法
CN109143576B (zh) * 2017-06-27 2021-01-22 京东方科技集团股份有限公司 显示系统及其显示方法、交通工具
CN108490613B (zh) * 2018-03-28 2020-01-10 京东方科技集团股份有限公司 一种抬头显示装置及其控制方法、车辆

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015125247A1 (ja) * 2014-02-20 2015-08-27 パイオニア株式会社 投影装置
CN108020920A (zh) * 2016-10-31 2018-05-11 株式会社日本显示器 显示装置
CN106773058A (zh) * 2017-01-17 2017-05-31 华为机器有限公司 虚拟现实的显示装置
CN108196367A (zh) * 2018-01-18 2018-06-22 京东方科技集团股份有限公司 抬头显示系统及其驱动方法
CN109298529A (zh) * 2018-01-18 2019-02-01 京东方科技集团股份有限公司 抬头显示系统、驱动方法、交通工具及计算机产品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3805843A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI738486B (zh) * 2020-09-01 2021-09-01 創智車電股份有限公司 具有雙虛像距離的車用抬頭顯示系統

Also Published As

Publication number Publication date
EP3805843A1 (en) 2021-04-14
US20200209960A1 (en) 2020-07-02
EP3805843A4 (en) 2022-01-12
US11320901B2 (en) 2022-05-03

Similar Documents

Publication Publication Date Title
WO2019228488A1 (zh) 抬头显示系统和显示方法、交通工具、抬头显示装置及计算机可读存储介质
CN107850780B (zh) 全息近眼显示
JP6960936B2 (ja) 像面湾曲補正ディスプレイ
CN108490613B (zh) 一种抬头显示装置及其控制方法、车辆
WO2017129029A1 (zh) 一种基于波导的显示系统
JP6024452B2 (ja) 画像表示装置
KR20080050669A (ko) 차량용 헤드업 디스플레이 장치
US10823961B2 (en) On-vehicle display system
US11009701B2 (en) Display apparatus and method for driving the same
CN110297324B (zh) 显示装置和交通工具
EP3605191B1 (en) Virtual image display device
CN109298529A (zh) 抬头显示系统、驱动方法、交通工具及计算机产品
US11709358B2 (en) Staircase in-coupling for waveguide display
US10558040B2 (en) Vehicle-mounted head-up display system
KR102452391B1 (ko) 광학 패턴이 기록된 투명 광학 렌즈를 이용한 다중 시야각 모니터 시스템
US9164282B2 (en) Image-partitioned display device for virtual image
JP7305252B2 (ja) ホログラフィック導光板
CN117480429A (zh) 图像显示装置以及平视显示器系统
JP6187662B2 (ja) 画像表示装置
JP4194219B2 (ja) 画像表示装置および画像表示システム
CN219778042U (zh) 一种抬头显示系统及车辆
WO2024004288A1 (ja) 光学系、及び、画像表示装置
JP7261724B2 (ja) 映像表示装置及び映像表示システム
CN215494360U (zh) 一种近眼显示系统及装置
US20240192427A1 (en) Reflector orientation of geometrical and mixed waveguide for reducing grating conspicuity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19811615

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019811615

Country of ref document: EP

Effective date: 20210111