WO2017129029A1 - 一种基于波导的显示系统 - Google Patents

一种基于波导的显示系统 Download PDF

Info

Publication number
WO2017129029A1
WO2017129029A1 PCT/CN2017/071673 CN2017071673W WO2017129029A1 WO 2017129029 A1 WO2017129029 A1 WO 2017129029A1 CN 2017071673 W CN2017071673 W CN 2017071673W WO 2017129029 A1 WO2017129029 A1 WO 2017129029A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
waveguide
sub
light
display system
Prior art date
Application number
PCT/CN2017/071673
Other languages
English (en)
French (fr)
Inventor
郑昱
王耀彰
方雪阳
Original Assignee
北京灵犀微光科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京灵犀微光科技有限公司 filed Critical 北京灵犀微光科技有限公司
Publication of WO2017129029A1 publication Critical patent/WO2017129029A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0081Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for altering, e.g. enlarging, the entrance or exit pupil
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/02Viewing or reading apparatus
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0056Means for improving the coupling-out of light from the light guide for producing polarisation effects, e.g. by a surface with polarizing properties or by an additional polarizing elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0112Head-up displays characterised by optical features comprising device for genereting colour display
    • G02B2027/0114Head-up displays characterised by optical features comprising device for genereting colour display comprising dichroic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0112Head-up displays characterised by optical features comprising device for genereting colour display
    • G02B2027/0116Head-up displays characterised by optical features comprising device for genereting colour display comprising devices for correcting chromatic aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0118Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0118Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility
    • G02B2027/012Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility comprising devices for attenuating parasitic image effects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view
    • G02B2027/0125Field-of-view increase by wavefront division
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0132Head-up displays characterised by optical features comprising binocular systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings

Definitions

  • the present invention relates to the field of waveguide technology, and in particular to a waveguide-based display system.
  • the helmet display system has grown with miniature display devices along with the development of high resolution display devices.
  • VR Virtual Reality
  • its application areas mainly include: military, industrial production, simulation training, 3D display and video games, medical and so on.
  • helmet-based display systems based on 45° semi-transparent mirrors, retroreflective screen technology, off-axis synthesizers, and free-form prisms mainly have the disadvantages of being difficult to process, complicated in structure, high in weight, large in size, and small in field of view.
  • waveguide-based head-mounted display systems are compact, lightweight, and small.
  • CN101896844A entitled “Light Guide and Eye Vision Optical System”
  • a microstructured waveguide which is based on a microstructured waveguide to simulate a holographic waveguide by using a surface relief microstructure
  • the Prague selection effect so the continuous surface relief structure must be made into a sub-wavelength grating tilt structure with a high aspect ratio, so it is difficult to produce on a large scale.
  • All of these waveguide display systems are limited by the critical angle of total internal reflection (ie, the minimum angle of incidence of light propagating within the waveguide), so the field of view angle that can be achieved is relatively small.
  • a splicing helmet display device comprising an optical component comprising a plurality of free forms A surface prism, each prism being a wedge prism comprising a first optical surface, a second optical surface, and a third optical surface.
  • a single free-form surface can achieve an angle of view of about 30 degrees, and a field of view angle of 70 degrees to 100 degrees in the horizontal direction and 30 degrees to 50 degrees in the vertical direction can be achieved by splicing.
  • the free-surface prism splicing method can realize a large field of view, there are several disadvantages as follows: First, the volume of a single free-form prism is already large, the thickness is greater than 10 mm, the thickness after splicing is constant, and the lateral dimension is increased. It is even larger and does not meet the portable requirements of modern head-mounted display systems. Second, the free-form surface prism is a wedge-shaped optical system with power. The wedge shape causes the prism to produce a curved light effect that causes the external light to deviate from the optical axis of the eye. In addition, the prism with power makes the external scene significantly shift and causes huge aberrations.
  • the system needs to add a free-form surface compensation prism to form a combined free-form prism to solve the above problem.
  • a free-form surface compensation prism to form a combined free-form prism to solve the above problem.
  • the main object of the embodiments of the present invention is to provide a waveguide-based display system to solve the problem that the existing helmet display technology has a small field of view and a structure that is not compact enough.
  • an embodiment of the present invention provides a waveguide-based display system, including:
  • An image dividing unit configured to divide the image to be displayed into a first sub image and a second sub image
  • a light emitting unit configured to generate a first light beam according to image data of the first sub image, and generate a second light beam according to image data of the second sub image;
  • a coupling unit for processing the first beam into collimated light and coupled into the first waveguide substrate, processing the second beam into collimated light and coupling into the second waveguide substrate;
  • the first waveguide substrate has two parallel first surfaces, and a first interface disposed between the two first surfaces and having an angle with the first surface, the first waveguide substrate making the first beam Total reflection occurs on the first surface, and a front surface of the first interface is reflected and coupled out of the first waveguide substrate to form a first coupled beam for imaging the first sub-image;
  • the second waveguide substrate has two parallel second surfaces, and a second interface disposed between the two second surfaces and having an angle with the second surface, the second waveguide substrate making the second beam Total reflection occurs on the second surface, Reflecting on the front side of the second interface and coupling out the second waveguide substrate to form a second coupled beam for imaging the second sub-image;
  • the first interface is spaced apart from the second interface by a predetermined distance, so that a first sub-image formed by imaging the first coupled-out beam and a second sub-image formed by imaging the second coupled-out beam are spliced into The image to be displayed.
  • the present invention divides the entire image to be displayed into two sub-images, and then respectively images the two sub-images by using two layers of waveguide substrates, and the invention can significantly increase the field of view compared to the prior art.
  • the angle is not limited by the limit angle, and it is convenient to manufacture a display system with compact structure and large field of view, which is beneficial to improving the user experience of the wearable display system.
  • FIG. 1 is a block diagram showing the structure of a waveguide-based display system provided by the present invention.
  • Figure 2 is a schematic illustration of the first light beam transmitted in the first waveguide substrate
  • FIG. 3 is an optical geometrical diagram of a first light beam transmitted in a first waveguide substrate
  • FIG. 5 is a schematic structural diagram of a waveguide-based display system according to Embodiment 1;
  • FIG. 6 is a schematic structural diagram of a waveguide-based display system provided in Embodiment 2;
  • FIG. 7 is a schematic structural diagram of a waveguide-based display system provided in Embodiment 3.
  • Embodiment 8 is a schematic structural diagram of a waveguide-based display system provided in Embodiment 4.
  • Embodiment 9 is a schematic structural diagram of a waveguide-based display system provided in Embodiment 5.
  • FIG. 10 is a schematic structural diagram of a waveguide-based display system having a video acquisition unit
  • FIG. 11 is a schematic structural view of a waveguide-based display system having an image correcting unit.
  • the invention provides a waveguide-based display system, which first divides an image to be displayed into two sub-images, then emits two clusters of light beams generated according to the two sub-images, and then couples the two clusters of light beams into two waveguide substrates respectively.
  • Each of the waveguide substrates couples the light beams coupled thereto to form a corresponding sub-image, and finally the sub-images formed by the two images are collectively spliced into an image to be displayed.
  • the invention can significantly increase the angle of view and is beneficial to improving the user experience.
  • an exemplary system of a waveguide-based display system includes: an image dividing unit 3, a light emitting unit 4, a coupling unit 5, and a first waveguide substrate 1.
  • the image dividing unit 3 is configured to divide the image to be displayed into a first sub image and a second sub image (hereinafter collectively referred to as “sub images”).
  • the light emitting unit 4 is configured to generate a first light beam according to the image data of the first sub image, and generate a second light beam according to the image data of the second sub image.
  • the coupling unit 5 is configured to process the first beam into collimated light and couple it into the first waveguide substrate 1, and process the second beam into collimated light and couple it into the second waveguide substrate 2.
  • the first waveguide substrate 1 has two parallel first surfaces and one or more parallel first interfaces, the first interface being disposed between the two first surfaces and having an angle with the first surface.
  • the first waveguide substrate 1 causes total reflection of the first light beam on the first surface, and reflects on the front surface of the first interface to form a first coupling of the first waveguide substrate 1 for imaging to form a first sub-image. A coupling out of the beam.
  • the second waveguide substrate 2 has two parallel second surfaces and one or more parallel second interfaces, and the second interface is disposed between the two second surfaces and at an angle to the second surface.
  • the second waveguide substrate 2 causes total reflection of the second light beam on the second surface, and reflects on the front surface of the second interface to form a second coupling of the second waveguide substrate 2 for imaging to form a second sub-image. Two coupled out of the beam.
  • the first interface is spaced apart from the second interface by a predetermined distance, so that a first sub-image formed by imaging the first coupled-out beam and a second sub-image formed by imaging the second coupled-out beam are spliced into The image to be displayed.
  • the image dividing unit 3, the light emitting unit 4, the coupling unit 5, the first waveguide substrate 1, and the second waveguide substrate 2 will be described in detail below.
  • the image dividing unit 3 may divide the image to be displayed along the horizontal field of view or the vertical field of view.
  • the horizontal field of view of the image to be displayed is H
  • the vertical field of view is V
  • the horizontal field of view of the first sub-image is H 1
  • the vertical field of view is V 1
  • the horizontal field of view of the second sub-image is H 2 .
  • the vertical field of view is V 2
  • when segmented along the horizontal field of view, H H 1 + H 2
  • the first sub image and the second sub image can be continuously spliced to form a complete image to be displayed
  • the first sub-image can be The image and the second sub-image have a part of the same image area, and when the two are spliced, the same image areas are overlapped to ensure that the image is continuous.
  • M M 1 + M 0 + M 2 .
  • the light-emitting unit 4 may be an active light-emitting image display such as an OLED (organic light-emitting diode) display, or may be a display such as a LCOS (Liquid Crystal on Silicon) display or LCD liquid crystal display is a passive light-emitting image display. If an OLED display is used, an additional illumination source is not needed, and the organic light emitting diode is directly controlled to form a corresponding light beam according to the image data of the sub image. If a passive illumination type image display device is used, an additional illumination source is needed, and the illumination is required. The light source is irradiated on the liquid crystal molecules arranged according to the image data of the sub image to form a corresponding light beam.
  • OLED organic light-emitting diode
  • LCD liquid crystal display is a passive light-emitting image display.
  • the light-emitting unit 4 needs to respectively generate corresponding light beams according to the image data of the two sub-images.
  • the first and second sub-images may be respectively generated by using two independent image displays to display the first sub-image and the second sub-image respectively.
  • two independent image displays takes up more space and costs more.
  • a unified image display can be used in the implementation.
  • the first beam and the second beam are sequentially generated in such a manner that the first sub image and the second sub image are sequentially displayed.
  • the coupling unit 5 needs to couple the first light beam and the second light beam generated by the light emitting unit 4 into the first waveguide substrate 1 and the second waveguide substrate 2, respectively, due to the presence of two waveguide substrates,
  • the first and second beams can be coupled into the corresponding waveguide substrate by separate coupling channels, but for application neighborhoods such as helmet displays, the two separate coupling channels are used.
  • the method occupies more space and has higher cost.
  • the first coupling beam and the second beam may be sequentially coupled into the corresponding waveguide substrate by means of a unified coupling channel. in.
  • a unified image display and a unified coupling channel can be simultaneously utilized, and the first beam and the second beam are sequentially generated by sequential illumination and sequential coupling.
  • the light beam couples the first beam and the second beam into the corresponding waveguide substrate.
  • FIG. 2 A schematic view of the first waveguide substrate 1 as shown in FIG. 2, including a first surface 11 parallel to each other, a first surface 12, and a first interface 13, a front surface of the first interface 13 and the first surface 12 The angle between them is ⁇ .
  • a standard
  • the first beam of direct light is coupled into the first waveguide substrate 1
  • total reflection occurs on the first surfaces 11 and 12, and the front surface of the first interface 13 is reflected and coupled out from the first surface 12 to form a first coupling.
  • the beam 14, the first coupled beam 14 is imaged on the retina of the human eye to form a first sub-image.
  • the first coupled beam is coupled out of the first surface 12, and herein the "first surface 12" is also referred to as the "first coupling surface 12".
  • i c is the incident angle of the central ray of the first beam at the first surface 11; Is the divergence angle of the first beam; the range of the angle of incidence of the edge ray of the first beam at the first surface 11 is i e is the minimum incident angle of the edge ray of the first beam at the first surface 11; i TIR is the total reflection angle of the first surfaces 11 and 12.
  • a first beam (collimated light, belonging to a fundamental mode Gaussian beam) is transmitted in the first waveguide substrate 1
  • a portion of the light is reflected at the front surface of the first interface 13 to form a coupling out of the first waveguide substrate 1.
  • the first coupled beam 14 is partially refracted at the first interface 13 to form a first refracted beam 15, which is totally reflected at the first surface 11 and then reaches the opposite side of the first interface 13.
  • first refracted light beam 15 is reflected on the reverse side of the first interface 13 a ghost image is formed, and the ghost image affects the human eye to view the first sub-image formed by the first coupled-out beam 14 image, so it is not desirable
  • the first refracted beam 15 is reflected on the opposite side of the first interface 13. Referring to FIG. 2, since the first interface 13 has an angle with the first surface 12 or 11, the first refracted light beam 15 reaches a large angle when it reaches the reverse side of the first interface 13 (the incident angle is relatively large, generally greater than 45).
  • a coating may be applied on the reverse side of the first interface 13. Layer, the effect of this coating is to absorb or transmit light incident on the surface of the coating and having an incident angle greater than or equal to a predetermined angle. In a specific implementation, all the light in the first refracted light beam 15 can be analyzed according to the angle between the first interface 13 and the first surface 12 or 11 and the transmission condition of the first light beam in the first waveguide substrate 1.
  • An incident angle of the opposite side of the interface 13 determines an incident angle of the light in the first refracted light beam 15 that may be reflected on the opposite side of the first interface 13 and forms a ghost image, and the smallest incident angle is determined as the preset angle Size, and then coating the coating on the reverse side of the first interface 13 with a certain material, and the coating has a special surface structure, so that the coating has absorption or transmission incident on its surface and the incident angle is greater than or equal to The effect of the light at a preset angle. Among them, it is possible to determine whether the absorption or transmission is greater than or equal to the predetermined angle by changing the material and surface structure of the coating.
  • the coating layer may be a film layer formed by using materials such as titanium, calcium fluoride, and zinc sulfide.
  • ⁇ c is the incident angle of the central ray of the first refracted beam 15 on the opposite side of the first interface 13;
  • the divergence angle of the first refracted beam 15 (consistent with the divergence angle of the first beam); the variation of the incident angle of the edge ray of the first refracted beam 15 on the opposite side of the first interface 13 is
  • ⁇ e is the maximum incident angle of the edge ray of the first refracted beam 15 on the opposite side of the first interface 13;
  • ⁇ Limit is the total reflection angle of the first interface 13 .
  • L1, L2 are the normals of the first surfaces 11 and 12
  • L3 is the normal to the first interface 13
  • is the angle between the front surface of the first interface 13 and the first coupling surface 12.
  • M is the intersection of the first beam with the first surface 12
  • N' is the intersection of the first refracted beam 15 and the first surface 11
  • S is the intersection of the first refracted beam 15 with the first interface 13
  • T is the normal L2
  • Q is the intersection of the normal L3 and the first surface
  • O' is the intersection of the normal L1 and the first surface 12.
  • L4 is normal to the first surface 11 and 12
  • L5 is the normal of the first interface 13
  • ⁇ out light beam 14 is coupled with a first angle between the normal L4
  • M is the first The intersection of a light beam with the first surface 12
  • N is the intersection of the first light beam with the first interface 13
  • O is the intersection of the normal line L4 and the first surface 12
  • P is the intersection of the normal line L5 and the first surface 12
  • M ' is the intersection of the first refracted beam 15 and the first surface 12
  • N' is the intersection of the first refracted beam 15 and the first surface 11
  • O' is the intersection of the normal L1 and the first surface 12, according to the optical geometric relationship :
  • Equations 3 and 4 the parameters ⁇ Limit , i TIR , the materials used depending on the first surfaces 11 and 12 of the first waveguide substrate 1 and the first interface 13 are used.
  • the parameters ⁇ Limit , i TIR are fixed values. Under this precondition, the deformation according to formula 3 And the variant of formula 4 Study ⁇ and Change relationship can be drawn Maximum value for:
  • the divergence angle of the first coupled-out beam 14 is equal to the divergence angle of the first beam coupled into the first waveguide substrate 1, ie, Therefore, the maximum value of the divergence angle of the first coupled-out beam 14 is
  • the transmission of the second light beam in the second waveguide substrate 2 is similar to the transmission of the first light beam in the first waveguide substrate 1, and reference can be made to the above description of the first beam transmission.
  • the second waveguide substrate 2 includes two second surfaces that are parallel to each other, and a second interface, the front surface of the second interface and the second coupling surface (ie, the second surface that is coupled out of the second coupled light beam) The angle is ⁇ '. After the second beam that becomes the collimated light is coupled into the second waveguide substrate 2, total reflection occurs on the second surface, and the front surface of the second interface is reflected and coupled out of the second waveguide substrate 2 to form a second coupled beam. The second coupled beam is imaged on the retina of the human eye to form a second sub-image.
  • the second beam (collimated light, belonging to the fundamental mode Gaussian beam) is transmitted in the second waveguide substrate 2
  • a portion of the light is reflected at the front surface of the second interface to form a second coupled beam that is coupled out of the second waveguide substrate 2.
  • a portion of the light is refracted at the second interface to form a second refracted beam, and the second refracted beam is totally reflected on the second surface and then reaches the opposite side of the second interface. If the second refracted beam is reflected on the opposite side of the second interface, a ghost image is formed, and the ghost image affects the human eye to view the second sub-image formed by the second coupled-out beam imaging, so the second refraction is not desired.
  • the beam is reflected on the opposite side of the second interface.
  • the second refracted beam reaches a large angle of incidence when it reaches the opposite side of the second interface (the incident angle is relatively large, generally greater than 45°), in which case, in order to It is ensured that the second refracted beam does not reflect on the opposite side of the second interface.
  • a coating may be applied on the reverse side of the second interface, and the effect of the coating is to absorb or transmit the incident to On top of it A light with an angle greater than or equal to a predetermined angle.
  • all the light rays in the second refracted light beam are analyzed on the reverse side of the second interface.
  • the incident angle determines the incident angle of the light in the second refracted beam that may reflect on the opposite side of the second interface and forms a ghost image, and determines the minimum incident angle as the size of the preset angle, and then uses a certain material at
  • the coating is applied to the reverse side of the second interface, and the coating has a special surface structure such that the coating has the function of absorbing or transmitting light incident on its surface and having an incident angle greater than or equal to the predetermined angle.
  • the coating layer may be a film layer formed by using materials such as titanium, calcium fluoride, and zinc sulfide.
  • condition 4 in order to further ensure that the second refracted beam does not occur on the reverse side of the second interface. For reflection, condition 4 must be satisfied: ⁇ ' e ⁇ ⁇ Limit .
  • ⁇ ' c is the incident angle of the central ray of the second refracted beam on the opposite side of the second interface;
  • the divergence angle of the second refracted beam (consistent with the divergence angle of the second beam); the variation angle of the incident angle of the edge ray of the second refracted beam on the opposite side of the second interface is ⁇ ′ e is the maximum incident angle of the edge ray of the second refracted beam on the opposite side of the second interface;
  • ⁇ Limit is the total reflection angle of the second interface (the first interface is the same as the material of the second interface, and the total reflection of the second interface The angle is equal to the total reflection angle of the first interface).
  • ′' is the angle between the front surface of the second interface and the second coupling-out surface
  • ⁇ ' out is the angle between the second coupled-out beam and the normal of the second surface, which is obtained according to the optical geometric relationship:
  • Equations 8 and 9 the parameters ⁇ Limit , i TIR depend on the material used in the second surface of the second waveguide substrate 2 and the second interface.
  • the parameters ⁇ Limit , i TIR are fixed values. Under this precondition, the deformation according to formula 8 And the variant of Equation 9 Study ⁇ ' and Change relationship can be drawn Maximum value for:
  • the divergence angle of the second coupled-out beam is equal to the divergence angle of the second beam coupled into the second waveguide substrate 2, that is, Therefore, the maximum value of the divergence angle of the second coupled-out beam is
  • the maximum value of the divergence angle of the first coupled-out beam is The maximum value of the divergence angle of the second coupled beam is According to the formula 5 and the formula 10, the maximum field of view angle of the entire image to be displayed formed by splicing the first sub image and the second sub image for:
  • Equation 11 Comparing Equation 11 with Equation 12, we know that It can be seen that the maximum field of view angle that can be achieved with a double-layer waveguide substrate is significantly greater than the maximum field of view angle that can be achieved with a single-layer waveguide substrate.
  • the first interface and the first interface can be set according to the distance to the human eye.
  • the position of the second interface is such that the first interface and the second interface are separated by a certain distance to ensure that the coupling of the first coupled beam and the second coupled beam is not blocked, and the first coupled beam and the second coupling are
  • the first sub-image and the second sub-image formed by imaging the light beam on the retina of the human eye can be smoothly spliced into a complete image to be displayed.
  • the human eye is centered relative to the display system to ensure images of the first coupled beam and the second coupled beam on the retina of the human eye (first sub-image and second sub-image) It is also centered, so that the coupling direction of the first coupled beam and the second coupled beam are both toward the centered position of the human eye.
  • the first interface can be ensured by setting the first interface, the tilt angle of the second interface relative to the first surface and the second surface, and adjusting the direction in which the first beam and the second beam are coupled into the corresponding waveguide substrate.
  • the coupling direction of the beam and the second coupled beam are both toward the centered position of the human eye.
  • the waveguide-based display system may further include: an image correcting unit 7 configured to perform trapezoidal correction on the first sub-image and the second sub-image obtained by dividing the image dividing unit 3 to ensure the first coupling out
  • the image of the beam and the second coupled beam on the retina of the human eye is a standard rectangle rather than a trapezoid.
  • the inlet end of the first waveguide substrate 1 and the inlet end of the second waveguide substrate 2 may be located on the same side or opposite sides of the entire display system.
  • a uniform image display and a uniform coupling channel may be used, or two independent Image display And two independent coupling channels.
  • the inlet end of the first waveguide substrate 1 and the inlet end of the second waveguide substrate 2 may be formed in the form of a bevel that cooperates with the coupling unit 5 so as to be coupled into the unit 5 to combine the first beam and The second beam is coupled into a corresponding waveguide substrate.
  • a prism for example, a total reflection prism may be added to the coupling unit 5 to help couple the first beam and the second beam into the corresponding waveguide substrate.
  • the light received by the human eye is derived from the reflection of the first light beam on the front surface of the plurality of parallel first interfaces, and the second sub-image is formed for imaging, the human eye
  • the received light comes from the reflection of the second beam on the front faces of the plurality of parallel second interfaces.
  • R eye is the distance from the human eye to the waveguide substrate
  • d eye is the pupil of the human eye.
  • Diameter, to achieve The angle of view of the waveguide substrate is such that the exit pupil E p satisfies the following formula:
  • the number of the first interfaces arranged in parallel in the first waveguide substrate 1 and the number of the second interfaces arranged in parallel in the second waveguide substrate 2 can be increased.
  • the present invention does not specifically limit the number of the first interface and the second interface, and the number of the first interface and the second interface may be set according to actual needs.
  • the waveguide-based display system provided by the present invention can be used to display a static picture or to display a dynamic video stream.
  • the waveguide-based display system may further include: a video acquiring unit 6 configured to acquire a video stream, and determine each frame image sequentially appearing in the video stream as the image to be displayed.
  • the image is divided into units 3.
  • the image segmentation unit 3 sequentially divides the received image to be displayed, and transmits the segmented first sub image and the second sub image to the light emitting unit 4.
  • the light emitting unit 4 generates a first light beam and a second light beam according to the first sub image and the second sub image sequentially received, so that the first sub image and the second sub image formed by the imaging are combined into a to-be-displayed image composition. Said video stream.
  • the first sub-image formed by imaging the first beam and the second sub-image formed by imaging the second beam should be spliced into
  • the frame rate of the image to be displayed is greater than or equal to 24 frames/second, which means that for different images to be displayed in the video stream, the hair is
  • the light unit 4 should generate the first light beam and the second light beam at a frequency greater than or equal to 24 beams/second.
  • the frame rate of the video stream finally seen by the human eye is 24 frames/second.
  • each image display is 24 frames per second.
  • the frame rate displays the corresponding sub-image and emits a corresponding beam.
  • the image display is required to rotate at a frame rate of 48 frames per second. The first sub-image and the second sub-image are displayed, and the first beam and the second beam are alternately emitted.
  • the frame rate of the corresponding sub-image displayed by the image display in the light-emitting unit 4 (that is, the frequency at which the corresponding light beam is emitted) is generally set according to the frame rate of the video stream acquired by the video acquiring unit 6 to achieve the final view of the human eye.
  • the frame rate of the obtained video stream coincides with the frame rate of the video stream acquired by the video acquisition unit 6.
  • the light in the first coupled beam and the second coupled beam is parallel light, which corresponds to the human eye having normal vision (visual 1.5) at infinity of the object. Objects at infinity can be seen, so people with normal vision can see a clear image through the waveguide-based display system.
  • the specific implementation can be A coupling lens of a certain degree is mounted on the coupling-out side of the two waveguide substrates so that a clear imaging can be seen by a person of corresponding degree of myopia. This eliminates the need for myopic users to use the waveguide-based display system to wear additional glasses, which is beneficial to improve user embody.
  • a certain number of convex lenses can be mounted on the coupling-out side of the two waveguide substrates so that the user of the corresponding far-sight degree can see clear imaging. This eliminates the need for the hyperopic eye user to use the waveguide-based display system and then wear the other distance vision glasses, which is beneficial to improve the user's expression.
  • the concave lens or the convex lens with the waveguide substrate.
  • a zoom lens such as a liquid lens, a liquid crystal lens, etc.
  • the situation dynamically changes the focal length of the lens so that the final imaging can match the user's vision.
  • the present embodiment such as the waveguide-based display system shown in FIG. 5, includes: an image dividing unit (not shown in FIG. 5), a first image display 51, a first collimator 52, a first waveguide substrate 53, and a second Image display 54, second collimator 55, and second waveguide substrate 56.
  • the entrance end of the first waveguide substrate 53 and the entrance end of the second waveguide substrate 56 are respectively located on both sides of the entire display system; the first image display 51 and the first collimator are disposed on the first waveguide base. At the entrance end of the sheet 53, the second image display 54 and the second collimator are disposed at the inlet end of the second waveguide substrate 56.
  • the first sub image is sent to the first image display 51, and the second sub image is sent to the second image display 54.
  • the first image display 51 displays the first sub-image and emits a first light beam.
  • the first light beam is processed by the first collimator to become collimated light, and then coupled into the first waveguide substrate 53 to form a first waveguide.
  • the first coupled beam reaching the retina of the human eye to complete imaging of the first sub-image; the second image display 54 displaying the second sub-image and emitting a second beam, second
  • the beam is processed by the second collimator to become collimated light, which is then coupled into the second waveguide substrate 56 to form a second coupled beam that is coupled out of the second waveguide substrate 56.
  • the beam reaches the retina of the human eye to complete imaging of the second sub-image.
  • the process of the first image display 51 emitting the first light beam and the second image display 54 emitting the second light beam may be performed simultaneously. If the two processes are performed simultaneously, the first coupled beam and the second coupled beam are simultaneously imaged on the human eye retina to form the first sub image and the second sub image; If the two processes are performed in sequence, the first coupled beam and the second coupled beam are sequentially imaged on the human retina to form the first sub-image and the second sub-image, and rely on the visual persistence phenomenon of the human eye. To achieve splicing of two sub-images.
  • the entrance ends of the two waveguide substrates are respectively located on both sides of the entire display system, and two independent image displays and two independent coupling channels are respectively used (the first collimator 52 and the second quasi-reference) Straight 55), the advantage of this arrangement is that the first interface and the second interface can be tilted at a wider range of angles, and the maximum angle of view that can be achieved eventually is greater, but compared to the adoption
  • the uniform lighting unit and the arrangement of the coupling channel, the manufacturing cost of the embodiment is higher, and the occupied space is also larger.
  • the first image display 51 and the second image display 54 may adopt an OLED display or an LCOS display or a liquid crystal display LCD.
  • the present embodiment such as the waveguide-based display system shown in FIG. 6, includes: an image dividing unit (not shown in FIG. 6), a first image display 61, a first collimator 62, a first waveguide substrate 63, and a second Image display 64, second collimator 65, and second waveguide substrate 66.
  • the entrance end of the first waveguide substrate 63 and the entrance end of the second waveguide substrate 66 are both located on the same side of the entire display system; the first image display 61 and the first collimator 62 are disposed on the first waveguide.
  • the entrance end of the substrate 63, The second image display 64 and the second collimator 65 are disposed at the entrance end of the second waveguide substrate 66.
  • the first sub image is sent to the first image display 61
  • the second sub image is sent to the second image display 64.
  • the first image display 61 emits a first light beam for displaying the first sub-image
  • the first light beam is processed by the first collimator 62 to become collimated light, and then coupled into the first waveguide substrate 63 to form a first coupled light beam coupled from the first waveguide substrate 63, the first coupled light beam reaching the retina of the human eye to complete imaging of the first sub-image
  • the second image display 64 emitting a second sub-image for displaying
  • the second beam which is processed by the second collimator 65, becomes collimated light and then coupled into the second waveguide substrate 66 to form a second coupling out of the second waveguide substrate 66.
  • the beam, the second coupled beam of light reaches the retina of the human eye to complete imaging of the second sub-image.
  • the process of the first image display 61 emitting the first light beam and the second image display 64 emitting the second light beam may be performed simultaneously. If the two processes are performed simultaneously, the first coupled beam and the second coupled beam are simultaneously imaged on the human eye retina to form the first sub image and the second sub image; If the two processes are performed in sequence, the first coupled beam and the second coupled beam are sequentially imaged on the human retina to form the first sub-image and the second sub-image, and rely on the visual persistence phenomenon of the human eye. To achieve splicing of two sub-images.
  • the entrance ends of the two waveguide substrates are located on the same side of the entire display system, and two independent image displays and two independent coupling channels are respectively used.
  • the angles at which the first interface and the second interface can be tilted are smaller, and the maximum angle of view achieved by the final imaging is also smaller.
  • the first image display 61 and the second image display 64 may adopt an OLED display or an LCOS display or a liquid crystal display LCD, and the first collimator 62 and the second collimator 65 may adopt a collimator.
  • the present embodiment such as the waveguide-based display system shown in FIG. 7, includes: an image dividing unit (not shown in FIG. 7), an image display 71, a first beam splitting unit 72, a polarization modulating unit 73, a collimating unit 74, and a second The light splitting unit 75, the first prism 76, the second prism 77, the first waveguide substrate 78, and the second waveguide substrate 79.
  • the entrance end of the first waveguide substrate and the entrance end of the second waveguide substrate are located on the same side of the entire display system; the image display 71, the first beam splitting unit 72, the polarization modulating unit 73, the collimating unit 74, The second beam splitting unit 75 is also disposed on the side of the entire display system.
  • the first sub image and the second sub image are sent to the image display 71; the image display 71 sequentially displays the first sub image. And the second sub-image, the first light beam is emitted when the first sub-image is displayed, and the second light beam is emitted when the second sub-image is displayed;
  • the beam splitting unit 72 splits the first light beam and the second light beam into P-polarized light; the polarization modulating unit 73 directly transmits the first light beam of the P-polarized light, and deflects the second light beam of the P-polarized light into the S-polarized light.
  • the collimating unit 74 processes the first beam of P-polarized light and the second beam of S-polarized light into collimated light; the second beam splitting unit 75 directly transmits collimated light and is P-polarized. a first light beam, and reflected as collimated light and a second light beam of S-polarized light; the first prism 76 couples the first light beam that becomes collimated light and is P-polarized light into the first waveguide substrate 78; The second prism 77 will be collimated light and the second beam of S-polarized light is coupled into the second waveguide substrate 79.
  • the process of the first image display 71 emitting the first light beam and the second image display 71 emitting the second light beam are sequentially performed.
  • the first coupled beam and the second coupled beam are sequentially imaged on the human retina to form a first sub-image and a second sub-image, and rely on the persistence phenomenon of the human eye to achieve splicing of the two sub-images.
  • first prism 76 and the second prism 77 function to help couple the first beam and the second beam into different waveguide substrates, respectively.
  • the entrance ends of the two waveguide substrates are located on the same side of the entire display system, and a unified image display 71 and a unified coupling channel are used.
  • the embodiment is It takes up less space and is more conducive to making a more compact display system.
  • the first beam splitting unit 72 and the second beam splitting unit 75 may be a polarization beam splitting prism or a polarization beam splitter; the polarization modulating unit 73 may be a polarization modulator or a twisted nematic TN liquid crystal panel.
  • the embodiment is improved on the basis of the third embodiment, specifically on the coupling side of the first waveguide substrate 78 and the second waveguide substrate 79 (ie, the first coupling beam is formed and A side of the second coupled beam is added with a concave lens 81 for use by myopia users.
  • the degree of the concave lens 81 may be fixed or dynamically changed.
  • the focal length can be dynamically changed to change the degree.
  • the embodiment is improved on the basis of the third embodiment, specifically on the coupling side of the first waveguide substrate 78 and the second waveguide substrate 79 (ie, the first coupling beam is formed and A side of the second coupled beam is added with a convex lens 91 for use by a far vision user.
  • the degree of the convex lens 91 may be fixed or dynamically changed.
  • the focal length can be dynamically changed to change the degree.
  • the waveguide-based display system provided by the present invention has the following beneficial effects:
  • a general purpose processor may be a microprocessor.
  • the general purpose processor may be any conventional processor, controller, microcontroller, or state machine.
  • the processor may also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a digital signal processor core, or any other similar configuration. achieve.
  • the steps of the method or algorithm described in the embodiments of the present invention may be directly embedded in hardware, software executed by the processor. Module, or a combination of the two.
  • the software modules can be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium in the art.
  • the storage medium can be coupled to the processor such that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium can also be integrated into the processor.
  • the processor and the storage medium may be disposed in an ASIC, and the ASIC may be disposed in the user terminal. Alternatively, the processor and the storage medium may also be disposed in different components in the user terminal.
  • the above-described functions described in the embodiments of the present invention may be implemented in hardware, software, firmware, or any combination of the three. If implemented in software, these functions may be stored on a computer readable medium or transmitted as one or more instructions or code to a computer readable medium.
  • Computer readable media includes computer storage media and communication media that facilitates the transfer of computer programs from one place to another.
  • the storage medium can be any available media that any general purpose or special computer can access.
  • Such computer-readable media can include, but is not limited to, RAM, ROM, EEPROM, CD-ROM or other optical disk storage, disk storage or other magnetic storage device, or any other device or data structure that can be used for carrying or storing Other media that can be read by a general purpose or special computer, or a general purpose or special processor.
  • any connection can be appropriately defined as a computer readable medium, for example, if the software is from a website site, server, or other remote source through a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) Or wirelessly transmitted in, for example, infrared, wireless, and microwave, is also included in the defined computer readable medium.
  • DSL digital subscriber line
  • the disks and discs include compact disks, laser disks, optical disks, DVDs, floppy disks, and Blu-ray disks. Disks typically replicate data magnetically, while disks typically optically replicate data with a laser. Combinations of the above may also be included in a computer readable medium.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

一种基于波导的显示系统,包括:图像分割单元(3)将待显示图像分割为第一子图像和第二子图像;发光单元(4)根据第一子图像和第二子图像生成第一光束和第二光束;耦入单元(5)将第一光束耦入第一波导基片(1),将第二光束耦入第二波导基片(2);第一波导基片使第一光束在第一界面(13)发生反射,形成用以对第一子图像成像的第一耦出光束(14);第二波导基片(2)使第二光束在第二界面发生反射,形成用以对第二子图像成像的第二耦出光束;第一耦出光束成像形成的第一子图像与第二耦出光束成像形成的第二子图像拼接成待显示图像。这种显示系统可以显著增大视场角,避免受极限角度的限制,便于制造结构紧凑、超大视场的显示系统,有利于提高用户对可穿戴显示系统的体验度。

Description

一种基于波导的显示系统 技术领域
本发明涉及波导技术领域,具体地,涉及一种基于波导的显示系统。
背景技术
头盔显示系统以微型显示器件伴随着高分辨率显示器件的发展而逐渐成长起来。特别是虚拟现实(Virtual Reality,VR)技术的发展以及现代数字化部队的装备需要,使得头盔系统在这些领域占据了重要的地位。目前,其应用领域主要包括:军事、工业生产、模拟训练、3D显示和电子游戏、医疗等。以往基于45°半透半反镜波导,回射屏技术,离轴合成器,自由曲面棱镜等技术的头盔显示系统主要存在不易加工、结构复杂、重量高、体积大、视场小等缺点。相比之下,基于波导的头戴式显示系统结构紧凑、重量小、体积小。现有的基于波导的显示系统分为阵列波导、全息波导和微结构波导。公开号为CN1867853A,名称为“基片导波的光学装置”的中国专利申请主要涉及阵列波导,该结构存在加工难度大、不易实现等缺点;申请号为CN201410226105.9,名称为“一种基于集成化自由曲面光学元件的波导显示器”的中国专利申请涉及一种利用全息波导的显示系统,基于全息结构的波导对环境要求苛刻,同时全息波导的光谱带比较窄,因此它只能对于单色光作用,不利于彩色显示;公开号为CN101896844A,名称为“光导和眼睛视觉光学系统”的中国专利申请涉及一种微结构的波导,基于微结构的波导由于要利用表面浮雕微结构模拟全息波导中的布拉格选择效应,因此连续表面浮雕结构必须做成具有高横纵比的亚波长光栅倾斜结构,因此很难在大规模上进行生产。所有这些波导显示系统都受限于全内反射临界角(即光线在波导内传播的最小入射角度),因此可实现的视场角比较小。
为了实现大视野的显示,已有的一种解决方案是使用自由曲面棱镜拼接技术。例如申请号为CN201080015063.4,名称为“宽视场高分辨率拼接式头盔显示装置”的中国专利申请中提供了一种拼接式头盔显示装置,包括光学部件,该光学部件包括多个自由形式表面棱镜,每个棱镜为包含第一光学面、第二光学面和第三光学面的楔形棱镜。该方案中,单个自由曲面能实现30度左右的视场角,通过拼接可以实现水平方向70度~100度,垂直方向30度~50度的视场角度。
自由曲面棱镜拼接的方式虽然能实现大的视场,但是存在如下几种缺点:首先,单个自由曲面棱镜的体积已经很大,厚度大于10mm,拼接以后厚度不变,横向尺寸增加, 体积更为庞大,不符合现代头戴式显示系统的便携式要求。其次,自由曲面棱镜是一个具有光焦度的楔形光学系统,楔形会使棱镜产生弯曲光线的效应,这种效应会导致外部光线偏离眼睛的光轴。还有,具有光焦度的棱镜使外部景象产生显著的偏移,同时造成巨大的像差,因而系统中需要加入自由曲面补偿棱镜,从而构成组合自由曲面棱镜来解决上述问题,组合自由曲面棱镜能够成功地消除穿透式光学系统的屈光效应和棱镜效应,但是补偿棱镜的引入会增加光学系统的重量和体积,因而不利于其在电子消费领域的发展。
为了实现大视野的显示,已有的另一种解决方案是使用阵列波导显示的方案。例如,公开号为CN1867853A,名称为“基片导波的光学装置”的中国专利申请提供的方案。但是这种解决方案也存在很多缺点:1、受限于全内反射角,在波导内传播的光线的入射角度必须大于全反射角,因此可以在波导中传播的光线角度范围有限,限制了视场角。2、为了确保整个耦出系统的反射面都有光线射出而不至于出现明显的暗区域,波导中传播的光线的角度必须小于耦入面的角度,限制了视场角。3、为了确保不出现二次反射的重影区域,使用选择性涂层对大角度入射的光线全部透射,但是对于相对于掠入射的情况,存在极限角度限制了视场角。
发明内容
本发明实施例的主要目的在于提供一种基于波导的显示系统,以解决现有的头盔显示技术视场角较小、结构不够紧凑的问题。
为了实现上述目的,本发明实施例提供一种基于波导的显示系统,包括:
图像分割单元,用于将待显示图像分割为第一子图像和第二子图像;
发光单元,用于根据所述第一子图像的图像数据生成第一光束,根据所述第二子图像的图像数据生成第二光束;
耦入单元,用于将所述第一光束处理成为准直光并耦入第一波导基片,将所述第二光束处理成为准直光并耦入第二波导基片;
第一波导基片具有两个平行的第一表面、以及设置于两个第一表面之间且与第一表面具有夹角的第一界面,所述第一波导基片使所述第一光束在所述第一表面发生全反射,在所述第一界面的正面发生反射并耦出第一波导基片,形成用以对第一子图像成像的第一耦出光束;
第二波导基片具有两个平行的第二表面、以及设置于两个第二表面之间且与第二表面具有夹角的第二界面,所述第二波导基片使所述第二光束在所述第二表面发生全反射, 在所述第二界面的正面发生反射并耦出第二波导基片,形成用以对第二子图像成像的第二耦出光束;
所述第一界面与所述第二界面相距一预设距离,以使所述第一耦出光束成像形成的第一子图像与所述第二耦出光束成像形成的第二子图像拼接成所述待显示图像。
借助于上述技术方案,本发明将整幅待显示图像分割成两个子图像,再采用两层波导基片分别对两个子图像进行成像,相比于现有技术,本发明可以显著增大视场角,避免受极限角度的限制,便于制造结构紧凑、超大视场的显示系统,有利于提高用户对可穿戴显示系统的体验度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明提供的基于波导的显示系统的结构框图;
图2是第一光束在第一波导基片中传输的示意图;
图3是第一光束在第一波导基片中传输时的光学几何示意图;
图4是第一光束在第一波导基片中传输时的光学几何示意图;
图5是实施例一提供的基于波导的显示系统的结构示意图;
图6是实施例二提供的基于波导的显示系统的结构示意图;
图7是实施例三提供的基于波导的显示系统的结构示意图;
图8是实施例四提供的基于波导的显示系统的结构示意图;
图9是实施例五提供的基于波导的显示系统的结构示意图;
图10是具有视频获取单元的基于波导的显示系统的结构示意图;
图11是具有图像校正单元的基于波导的显示系统的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
发明原理
本发明提供的一种基于波导的显示系统,首先将待显示图像分割为两个子图像,然后发出根据这两个子图像生成的两簇光束,再将这两簇光束分别耦入两个波导基片中,每个波导基片将耦入其中的光束耦出以成像形成相应的子图像,最终这两个成像形成的子图像共同拼接成待显示图像。
由于利用了两个波导基片分别耦出光束成像形成子图像,再由子图像拼接成整幅的待显示图像,相比于仅利用一个波导基片耦出光束形成整幅待显示图像的情况,本发明能显著增大视场角,有利于提高用户的体验度。
示例性系统
如图1所示,为本发明提供的一种基于波导的显示系统的示例性系统,该显示系统包括:图像分割单元3、发光单元4、耦入单元5、第一波导基片1、第二波导基片2。
图像分割单元3,用于将待显示图像分割为第一子图像和第二子图像(以下统称为“子图像”)。
发光单元4,用于根据第一子图像的图像数据生成第一光束,根据第二子图像的图像数据生成第二光束。
耦入单元5,用于将所述第一光束处理成为准直光并耦入第一波导基片1,将所述第二光束处理成为准直光并耦入第二波导基片2。
第一波导基片1具有两个平行的第一表面、以及一个或多个平行的第一界面,第一界面设置于两个第一表面之间且与第一表面具有夹角。第一波导基片1使所述第一光束在第一表面发生全反射,并在所述第一界面的正面反射形成耦出第一波导基片1且用以成像形成第一子图像的第一耦出光束。
第二波导基片2具有两个平行的第二表面、以及一个或多个平行的第二界面,第二界面设置于两个第二表面之间且与第二表面具有夹角。第二波导基片2使所述第二光束在第二表面发生全反射,并在所述第二界面的正面反射形成耦出第二波导基片2且用以成像形成第二子图像的第二耦出光束。
所述第一界面与所述第二界面相距一预设距离,以使所述第一耦出光束成像形成的第一子图像与所述第二耦出光束成像形成的第二子图像拼接成所述待显示图像。
以下分别对图像分割单元3、发光单元4、耦入单元5、第一波导基片1、第二波导基片2进行详细介绍。
(1)图像分割单元3可以是沿水平视场或垂直视场分割待显示图像。例如,假设待显示图像的水平视场为H,垂直视场为V,第一子图像的水平视场为H1,垂直视场为 V1,第二子图像的水平视场为H2,垂直视场为V2,当沿水平视场分割时,H=H1+H2,V=V1=V2,而当沿垂直视场分割时,V=V1+V2,H=H1=H2
具体实施时,为了确保最终显示给人眼的图像是完整的待显示图像,即第一子图像和第二子图像能够连续地拼接形成完整的待显示图像,可选地,可以令第一子图像和第二子图像具有一部分相同的图像区域,二者拼接时,令这部分相同的图像区域重合,以确保图像是连续的。例如,假设待显示图像的整个视场为M,第一子图像的视场为M1+M0,第二子图像的视场为M2+M0,重合的图像区域对应的视场为M0,则M=M1+M0+M2
(2)发光单元4可以是采用如OLED(organic light-emitting diode,有机发光二极管)显示器这种主动发光型的图像显示器,也可以是采用如LCOS(Liquid Crystal on Silicon,液晶附硅)显示器或LCD液晶显示器这种被动发光型的图像显示器。若采用OLED显示器,则不需要额外的照明光源,直接根据子图像的图像数据控制有机发光二极管发光形成相应的光束,若采用被动发光型的图像显示器件,则还需要额外的照明光源,由照明光源照射在根据子图像的图像数据排列的液晶分子上形成相应的光束。
发光单元4需要根据两个子图像的图像数据分别生成相应的光束,具体实施时可以采用独立的两个图像显示器分别显示第一子图像和第二子图像的方式来生成第一光束和第二光束,但是对于例如头盔显示等应用领域来说,这种采用独立的两个图像显示器的方式会占用较多的空间,且成本较高,考虑到这些,具体实施时还可以利用统一的图像显示器采用依次显示第一子图像和第二子图像的方式依次生成第一光束和第二光束。
(3)耦入单元5需要将发光单元4生成的第一光束和第二光束分别耦入第一波导基片1和第二波导基片2中,由于存在两个波导基片,具体实施时可以采用独立的两个耦入通道分别将第一光束和第二光束耦入对应的波导基片中,但是对于例如头盔显示等应用邻域来说,这种采用独立的两个耦入通道的方式会占用较多的空间,且成本较高,考虑到这些,具体实施时还可以利用统一的耦入通道采用依次耦入的方式将第一光束和第二光束依次耦入对应的波导基片中。
具体实施时,为了从整体上解决空间占用和降低成本的问题,还可以同时利用统一的图像显示器和统一的耦入通道,采用依次发光和依次耦入的方式,依次生成第一光束和第二光束,并依次将第一光束和第二光束耦入对应的波导基片中。
(4)如图2所示为第一波导基片1的示意图,包括相互平行的第一表面11、第一表面12,以及第一界面13,第一界面13的正面与第一表面12之间的夹角为α。成为准 直光的第一光束耦入第一波导基片1之后,在第一表面11和12上发生全反射,到达第一界面13的正面发生反射并从第一表面12耦出形成第一耦出光束14,第一耦出光束14在人眼视网膜上成像形成第一子图像。第一耦出光束是从第一表面12中耦出,本文中将“第一表面12”也称为“第一耦出表面12”。
为了确保第一光束在第一表面11和12上发生全反射,需要满足条件①:ie≥iTIR
条件①中,
Figure PCTCN2017071673-appb-000001
ic为第一光束的中心光线在第一表面11的入射角;
Figure PCTCN2017071673-appb-000002
为第一光束的发散角;第一光束的边缘光线在第一表面11的入射角的变化范围是
Figure PCTCN2017071673-appb-000003
Figure PCTCN2017071673-appb-000004
ie为第一光束的边缘光线在第一表面11的最小入射角;iTIR为第一表面11和12的全反射角。
参考图2,第一光束(准直光,属于基模高斯光束)在第一波导基片1中传输时,一部分光线在第一界面13的正面发生反射形成耦出第一波导基片1的第一耦出光束14,一部分光线在第一界面13发生折射形成第一折射光束15,第一折射光束15在第一表面11发生全反射,然后到达第一界面13的反面。如果第一折射光束15在第一界面13的反面发生反射,就会形成重像,而这种重像会影响人眼观看第一耦出光束14成像形成的第一子图像,因此并不希望第一折射光束15在第一界面13的反面发生反射。参考图2可知,由于第一界面13与第一表面12或11之间具有夹角,第一折射光束15到达第一界面13的反面时是属于大角度入射(入射角度比较大,一般大于45°),这种情况下,为了尽可能地确保第一折射光束15不会在第一界面13的反面发生反射,可选地,具体实施时,可在第一界面13的反面涂布一涂层,这一涂层的作用是吸收或透射入射至该涂层的表面且入射角度大于或等于某一预设角度的光线。具体实施时,可根据第一界面13和第一表面12或11之间的夹角大小以及第一光束在第一波导基片1中的传输情况,分析第一折射光束15中所有光线在第一界面13的反面的入射角度,确定第一折射光束15中那些可能在第一界面13的反面发生反射并形成重像的光线的入射角度,将其中最小的入射角度确定为该预设角度的大小,然后利用一定的材料在第一界面13的反面涂布涂层,并使该涂层具有特殊的表面结构,以使该涂层具备吸收或透射入射至其表面且入射角度大于或等于该预设角度的光线的作用。其中,可通过改变涂层的材料和表面结构决定是吸收还是透射大于或等于该预设角度的光线。具体实施时,这种涂层可以是利用钛、氟化钙、硫化锌等材料堆叠成的膜层。
但是根据光学原理可知,对于入射角接近于90度的光线来说,是无法完全消去发射光的,考虑到这一点,为了进一步尽可能地确保第一折射光束15不会在第一界面13的 反面发生反射,需要满足条件②:θe≤θLimit
条件②中,
Figure PCTCN2017071673-appb-000005
θc为第一折射光束15的中心光线在第一界面13的反面的入射角;
Figure PCTCN2017071673-appb-000006
为第一折射光束15的发散角(与第一光束的发散角一致);第一折射光束15的边缘光线在第一界面13的反面的入射角的变化范围是
Figure PCTCN2017071673-appb-000007
θe为第一折射光束15的边缘光线在第一界面13的反面的最大入射角;θLimit为第一界面13的全反射角。
如图3所示,L1、L2是第一表面11和12的法线,L3是第一界面13的法线,α是第一界面13的正面与第一耦出表面12之间的夹角,M是第一光束与第一表面12的交点,N’是第一折射光束15与第一表面11的交点,S是第一折射光束15与第一界面13的交点,T是法线L2与第一表面11的交点,Q是法线L3与第一表面的交点,O’是法线L1与第一表面12的交点,根据光学几何关系可知:
∠QST=α
∠QS N’=θc
∠TSN’=∠SN’O’=∠MN’O’=ic
∠QS N’=θc=∠QST+∠TSN’=α+ic
从而可得:θc=ic+α(公式1)
如图4所示,L4是第一表面11和12的法线,L5是第一界面13的法线,γout是第一耦出光束14与法线L4之间的夹角,M是第一光束与第一表面12的交点,N是第一光束与第一界面13的交点,O是法线L4与第一表面12的交点,P是法线L5与第一表面12的交点,M’是第一折射光束15与第一表面12的交点,N’是第一折射光束15与第一表面11的交点,O’是法线L1与第一表面12的交点,根据光学几何关系可知:
∠MNO=∠MN’O’=ic
∠PNO=α
∠M’NO=γout
∠MNP=∠M’NP=∠M’NO+∠PNO=γout
∠MNO=ic=∠MNP+∠PNO=γout+α+α
从而可得:ic=2α+γout(公式2)
具体实施时,当该显示系统同时满足以上条件①和②时,将公式1和公式2代入条件①和②可得:
Figure PCTCN2017071673-appb-000008
Figure PCTCN2017071673-appb-000009
公式3和公式4中,参数θLimit、iTIR、取决于第一波导基片1中第一表面11、12以及第一界面13所采用的材料。对于某一具体的显示系统来说,参数θLimit、iTIR、是固定值,在这一前提条件下,根据公式3的变形式
Figure PCTCN2017071673-appb-000010
和公式4的变形式
Figure PCTCN2017071673-appb-000011
研究α与
Figure PCTCN2017071673-appb-000012
的变化关系,可以得出
Figure PCTCN2017071673-appb-000013
的最大值
Figure PCTCN2017071673-appb-000014
为:
Figure PCTCN2017071673-appb-000015
由于第一耦出光束14的发散角等于耦入到第一波导基片1中的第一光束的发散角,即,都是
Figure PCTCN2017071673-appb-000016
因此,第一耦出光束14的发散角的最大值为
Figure PCTCN2017071673-appb-000017
(5)第二光束在第二波导基片2中的传输情况与第一光束在第一波导基片1中的传输情况类似,可以参考以上对第一光束传输情况的介绍。
第二波导基片2包括两个相互平行的第二表面,以及第二界面,第二界面的正面与第二耦出表面(即耦出第二耦出光束的第二表面)之间的夹角为α′。成为准直光的第二光束耦入第二波导基片2之后,在第二表面上发生全反射,到达第二界面的正面发生反射并耦出第二波导基片2形成第二耦出光束,第二耦出光束在人眼视网膜上成像形成第二子图像。
为了确保第二光束在第二表面发生全反射,需要满足条件③:i′e≥iTIR
条件③中,
Figure PCTCN2017071673-appb-000018
i′c为第二光束的中心光线在第二表面的入射角;
Figure PCTCN2017071673-appb-000019
为第二光束的发散角;第二光束的边缘光线在第二表面的入射角的变化范围是
Figure PCTCN2017071673-appb-000020
Figure PCTCN2017071673-appb-000021
i′e为第二光束的边缘光线在第二表面的最小入射角;iTIR为第二表面的全反射角(第一波导基片1与第二波导基片2的材质相同,第二表面的全反射角与第一表面的全反射角相等)。
第二光束(准直光,属于基模高斯光束)在第二波导基片2中传输时,一部分光线在第二界面的正面发生反射形成耦出第二波导基片2的第二耦出光束,一部分光线在第二界面发生折射形成第二折射光束,第二折射光束在第二表面发生全反射,然后到达第二界面的反面。如果第二折射光束在第二界面的反面发生反射,就会形成重像,而这种重像会影响人眼观看第二耦出光束成像形成的第二子图像,因此并不希望第二折射光束在第二界面的反面发生反射。由于第二界面与第二表面之间具有夹角,第二折射光束到达第二界面的反面时是属于大角度入射(入射角度比较大,一般大于45°),这种情况下,为了尽可能地确保第二折射光束不会在第二界面的反面发生反射,可选地,具体实施时,可在第二界面的反面涂布一涂层,这一涂层的作用是吸收或透射入射至其上且入 射角度大于或等于某一预设角度的光线。具体实施时,可根据第二界面和第二表面之间的夹角大小以及第二光束在第二波导基片2中的传输情况,分析第二折射光束中所有光线在第二界面的反面的入射角度,确定第二折射光束中那些可能在第二界面的反面发生反射并形成重像的光线的入射角度,将其中最小的入射角度确定为该预设角度的大小,然后利用一定的材料在第二界面的反面涂布涂层,并使该涂层具有特殊的表面结构,以使该涂层具备吸收或透射入射至其表面且入射角度大于或等于该预设角度的光线的作用。其中,可通过改变涂层的材料和表面结构决定是吸收还是透射大于或等于该预设角度的光线。具体实施时,这种涂层可以是利用钛、氟化钙、硫化锌等材料堆叠成的膜层。
但是根据光学原理可知,对于入射角接近于90度的光线来说,是无法完全消去发射光的,考虑到这一点,为了进一步尽可能地确保第二折射光束不会在第二界面的反面发生反射,需要满足条件④:θ′e≤θLimit
条件④中,
Figure PCTCN2017071673-appb-000022
θ′c为第二折射光束的中心光线在第二界面的反面的入射角;
Figure PCTCN2017071673-appb-000023
为第二折射光束的发散角(与第二光束的发散角一致);第二折射光束的边缘光线在第二界面的反面的入射角的变化范围是
Figure PCTCN2017071673-appb-000024
θ′e为第二折射光束的边缘光线在第二界面的反面的最大入射角;θLimit为第二界面的全反射角(第一界面与第二界面的材质相同,第二界面的全反射角与第一界面的全反射角相等)。
α′是第二界面的正面与第二耦出表面之间的夹角,γ′out是第二耦出光束与第二表面的法线之间的夹角,根据光学几何关系可得:
θ′c=i′c+α′    (公式6)
i′c=2α′+γ′out    (公式7)
具体实施时,当该显示系统同时满足以上条件③和④时,将公式6和公式7代入条件③和④可得:
Figure PCTCN2017071673-appb-000025
Figure PCTCN2017071673-appb-000026
公式8和公式9中,参数θLimit、iTIR取决于第二波导基片2中第二表面以及第二界面所采用的材料。对于某一具体的显示系统来说,参数θLimit、iTIR、是固定值,在这一前提条件下,根据公式8的变形式和公式9的变形式
Figure PCTCN2017071673-appb-000028
Figure PCTCN2017071673-appb-000029
研究α′与
Figure PCTCN2017071673-appb-000030
的变化关系,可以得出
Figure PCTCN2017071673-appb-000031
的最大值
Figure PCTCN2017071673-appb-000032
为:
Figure PCTCN2017071673-appb-000033
由于第二耦出光束的发散角等于耦入到第二波导基片2中的第二光束的发散角,即, 都是
Figure PCTCN2017071673-appb-000034
因此,第二耦出光束的发散角的最大值为
Figure PCTCN2017071673-appb-000035
(6)第一耦出光束的发散角的最大值为
Figure PCTCN2017071673-appb-000036
第二耦出光束的发散角的最大值为
Figure PCTCN2017071673-appb-000037
根据公式5和公式10,第一子图像与第二子图像拼接形成的整个待显示图像的视场角最大值
Figure PCTCN2017071673-appb-000038
为:
Figure PCTCN2017071673-appb-000039
如果是采用单层波导基片传输一簇光束来成像整幅待显示图像的情况,从波导基片中耦出的光束应是垂直于波导基片的表面出射,然后到达人眼视网膜成像,例如仅采用第一波导基片1传输一簇光束来显示整幅的待显示图像,耦出的光束垂直出射则有γout=0°,其视场角的最大值为:
Figure PCTCN2017071673-appb-000040
比较公式11和公式12可知,
Figure PCTCN2017071673-appb-000041
可见采用双层波导基片所能达到的视场角最大值明显大于采用单层波导基片所能达到的视场角最大值。
(7)为了确保第一耦出光束与第二耦出光束成像形成的第一子图像和第二子图像能够顺利拼接,具体实施时,可根据到人眼的距离来设置第一界面和第二界面的位置,例如,使第一界面和第二界面相距一定的距离,以确保不阻挡第一耦出光束与第二耦出光束的耦出,且使第一耦出光束和第二耦出光束在人眼视网膜上成像形成的第一子图像和第二子图像能够顺利拼接成完整的待显示图像。
(8)一般情况下,人眼相对于显示系统是居中的,若要保证第一耦出光束和第二耦出光束在人眼视网膜上所成的像(第一子图像和第二子图像)也是居中的,就要使第一耦出光束和第二耦出光束的耦出方向都朝向人眼所在的居中位置。
具体实施时,可以通过设置第一界面、第二界面相对于第一表面、第二表面的倾斜角度,以及调整第一光束和第二光束耦入相应波导基片的方向,确保第一耦出光束和第二耦出光束的耦出方向都朝向人眼所在的居中位置。
如图11所示,该基于波导的显示系统还可以包括:图像校正单元7,用于对图像分割单元3分割得到的第一子图像和第二子图像进行梯形校正,以确保第一耦出光束和第二耦出光束在人眼视网膜上所成的像是标准的矩形,而非梯形。
(9)本发明中,第一波导基片1的入口端和第二波导基片2的入口端可以是位于整个显示系统的同一侧或相对立的两侧。
当第一波导基片1的入口端和第二波导基片2的入口端是位于整个显示系统的同一侧时,可以采用统一的图像显示器和统一的耦入通道,也可以采用两个独立的图像显示 器和两个独立的耦入通道。
当第一波导基片1的入口端和第二波导基片2的入口端是位于整个显示系统的两侧时,一般采用两个独立的图像显示器和两个独立的耦入通道。
(10)本发明中,第一波导基片1的入口端和第二波导基片2的入口端可以制作成与耦入单元5相配合的斜面形式,以便耦入单元5将第一光束和第二光束耦入相应的波导基片。
具体实施时,也可在耦入单元5中增设棱镜(例如全反射棱镜)来帮助将第一光束和第二光束耦入相应的波导基片中。
(11)本发明中,对于成像形成第一子图像,人眼收到的光线来自于第一光束在平行的多个第一界面的正面上的反射,对于成像形成第二子图像,人眼收到的光线来自于第二光束在平行的多个第二界面的正面上的反射,根据已有的光学知识,假设Reye是人眼到波导基片的距离,deye是人眼瞳孔的直径,要实现
Figure PCTCN2017071673-appb-000042
的视场角,需使得波导基片的出瞳Ep满足以下公式:
Figure PCTCN2017071673-appb-000043
根据公式13可知,若想增大出瞳值,可以通过增加第一波导基片1中平行设置的第一界面的数量,以及增加第二波导基片2中平行设置的第二界面的数量来实现,但考虑到生产成本和空间占用大小的问题,具体实施时,可以根据实际需要设置第一界面和第二界面的数量,本发明对此不作具体限定。
(12)本发明提供的基于波导的显示系统可以用于显示静态的图片,也可以用于显示动态的视频流。
如图10所示,该基于波导的显示系统还可以包括:视频获取单元6,用于获取一视频流,并将所述视频流中依次出现的每一帧图像确定为所述待显示图像发送给所述图像分割单元3。
所述图像分割单元3对接收的待显示图像依次进行分割,并将分割得到的第一子图像和第二子图像发送给所述发光单元4。
所述发光单元4根据依次接收的第一子图像和第二子图像生成第一光束和第二光束,以使成像形成的第一子图像和第二子图像所拼接成的待显示图像组成所述视频流。
基于人眼的视觉暂留现象,为了确保人眼最终看到的视频流是动态连续的,应使得第一光束成像形成的第一子图像和第二光束成像形成的第二子图像所拼接成的待显示图像的帧率大于或等于24帧/秒,这就意味着,针对视频流中的不同待显示图像,所述发 光单元4应以大于或等于24束/秒的频率生成所述第一光束和所述第二光束。
例如,人眼最终看到的视频流的帧率是24帧/秒,在采用独立的两个图像显示器分别生成第一光束和第二光束的实施例中,每个图像显示器按照24帧/秒的帧率显示相应的子图像并发出相应的光束即可,而对于采用统一的图像显示器依次生成第一光束和第二光束的实施例中,就需要图像显示器按照48帧/秒的帧率轮流显示第一子图像和第二子图像,并轮流发出第一光束和第二光束。
具体实施时,一般根据视频获取单元6获取的视频流的帧率来设定发光单元4中图像显示器显示相应子图像的帧率(也即发出相应光束的频率),以达到使人眼最终看到的视频流的帧率与视频获取单元6获取的视频流的帧率相一致。
(13)在本发明提供的基于波导的显示系统中,第一耦出光束和第二耦出光束中的光线是平行光,相当于物体在无穷远,具有正常视力(视力1.5)的人眼可以看到无穷远处的物体,因此正常视力的人通过该基于波导的显示系统可以看到清晰的像。
但是由于完全平行光无法被近视眼的人看清楚(近视眼无法看到无穷远的物体),为了解决近视眼用户通过该基于波导的显示系统看到清晰成像的问题,具体实施时,可以在两个波导基片的耦出侧安装一定度数的凹透镜,以便相应近视度数的人群观看到清晰的成像。这就不需要近视眼用户使用该基于波导的显示系统时再另外佩戴近视眼镜了,有利于提高用户体现度。
类似的,对于远视眼的用户来说,可以在两个波导基片的耦出侧安装一定度数的凸透镜,以便相应远视度数的用户观看到清晰的成像。这就不需要远视眼用户使用该基于波导的显示系统时再另外佩戴远视眼镜了,有利于提高用户体现度。
为了使得整个显示系统更紧凑一些,较佳的,可以将凹透镜或凸透镜与波导基片做成一体。
考虑同一显示系统可适应于具有不同视力的用户使用,较佳的,可以在两个波导基片的耦出侧安装一变焦透镜(例如液体透镜、液晶透镜等),这样就可以根据用户的视力情况动态地改变透镜的焦距,以使得最终的成像能够与用户的视力相匹配。
实施例一
本实施例如图5所示的基于波导的显示系统,包括:图像分割单元(图5中未示出)、第一图像显示器51、第一准直器52、第一波导基片53、第二图像显示器54、第二准直器55、第二波导基片56。
本实施例中,第一波导基片53的入口端和第二波导基片56的入口端分别位于整个显示系统的两侧;第一图像显示器51和第一准直器设置于第一波导基片53的入口端,第二图像显示器54和第二准直器设置于第二波导基片56的入口端。
本实施例中,图像分割单元将待显示图像分割为第一子图像和第二子图像后,将第一子图像发送给第一图像显示器51,将第二子图像发送给第二图像显示器54。第一图像显示器51显示第一子图像并发出第一光束,第一光束经过第一准直器处理后变成准直光,然后耦入第一波导基片53中,最终形成从第一波导基片53中耦出的第一耦出光束,该第一耦出光束到达人眼视网膜完成对第一子图像的成像;第二图像显示器54显示第二子图像并发出第二光束,第二光束经过第二准直器处理后变成准直光,然后耦入第二波导基片56中,最终形成从第二波导基片56中耦出的第二耦出光束,该第二耦出光束到达人眼视网膜完成对第二子图像的成像。
本实施例中,对于同一待显示图像分割出的第一子图像和第二子图像,第一图像显示器51发出第一光束的过程与第二图像显示器54发出第二光束的过程可以是同时执行的,也可以是依次执行的;如果这两个过程是同时执行的,则第一耦出光束和第二耦出光束就是同时在人眼视网膜上成像形成第一子图像和第二子图像;如果这两个过程是依次执行的,则第一耦出光束和第二耦出光束就是依次在人眼视网膜上成像形成第一子图像和第二子图像,并依赖人眼的视觉暂留现象,实现两个子图像的拼接。
本实施例中,两个波导基片的入口端分别位于整个显示系统的两侧,分别采用了两个独立的图像显示器和两个独立的耦入通道(第一准直器52和第二准直器55),这种设置方式的优点是第一界面和第二界面可倾斜的角度范围更广一些,最终所能达到的视场角的最大值也会更大一些,但是相比于采用统一的发光单元和耦入通道的设置方式,本实施例的制作成本会更高,所占用的空间也更大一些。
本实施例中,第一图像显示器51、第二图像显示器54可以采用OLED显示器或LCOS显示器或液晶显示器LCD。
实施例二
本实施例如图6所示的基于波导的显示系统,包括:图像分割单元(图6中未示出)、第一图像显示器61、第一准直器62、第一波导基片63、第二图像显示器64、第二准直器65、第二波导基片66。
本实施例中,第一波导基片63的入口端和第二波导基片66的入口端均位于整个显示系统的同一侧;第一图像显示器61和第一准直器62设置于第一波导基片63的入口端, 第二图像显示器64和第二准直器65设置于第二波导基片66的入口端。
本实施例中,图像分割单元将待显示图像分割为第一子图像和第二子图像后,将第一子图像发送给第一图像显示器61,将第二子图像发送给第二图像显示器64;第一图像显示器61发出用于显示第一子图像的第一光束,第一光束经过第一准直器62处理后变成准直光,然后耦入第一波导基片63中,最终形成从第一波导基片63中耦出的第一耦出光束,该第一耦出光束到达人眼视网膜完成对第一子图像的成像;第二图像显示器64发出用于显示第二子图像的第二光束,第二光束经过第二准直器65处理后变成准直光,然后耦入第二波导基片66中,最终形成从第二波导基片66中耦出的第二耦出光束,该第二耦出光束到达人眼视网膜完成对第二子图像的成像。
本实施例中,对于同一待显示图像分割出的第一子图像和第二子图像,第一图像显示器61发出第一光束的过程与第二图像显示器64发出第二光束的过程可以是同时执行的,也可以是依次执行的;如果这两个过程是同时执行的,则第一耦出光束和第二耦出光束就是同时在人眼视网膜上成像形成第一子图像和第二子图像;如果这两个过程是依次执行的,则第一耦出光束和第二耦出光束就是依次在人眼视网膜上成像形成第一子图像和第二子图像,并依赖人眼的视觉暂留现象,实现两个子图像的拼接。
本实施例中,两个波导基片的入口端位于整个显示系统的同一侧,分别采用了两个独立的图像显示器和两个独立的耦入通道,相比于实施例一,本实施例中第一界面和第二界面可倾斜的角度范围要小一些,最终成像所达到的视场角最大值也会偏小一些。
本实施例中,第一图像显示器61、第二图像显示器64可以采用OLED显示器或LCOS显示器或液晶显示器LCD,第一准直器62、第二准直器65可以采用准直器。
实施例三
本实施例如图7所示的基于波导的显示系统,包括:图像分割单元(图7中未示出)、图像显示器71、第一分光单元72、偏振调制单元73、准直单元74、第二分光单元75、第一棱镜76,第二棱镜77、第一波导基片78、第二波导基片79。
本实施例中,第一波导基片的入口端和第二波导基片的入口端位于整个显示系统的同一侧;图像显示器71、第一分光单元72、偏振调制单元73、准直单元74、第二分光单元75也都设置于整个显示系统的该侧。
本实施例中,图像分割单元将待显示图像分割为第一子图像和第二子图像后,将第一子图像和第二子图像发送给图像显示器71;图像显示器71依次显示第一子图像和第二子图像,在显示第一子图像时发出第一光束,显示第二子图像时发出第二光束;第一 分光单元72将第一光束和第二光束分光处理成P-偏振光;偏振调制单元73直接透射P-偏振光的第一光束,并使P-偏振光的第二光束偏转成为S-偏振光后再透射;准直单元74将P-偏振光的第一光束和S-偏振光的第二光束处理成准直光;第二分光单元75直接透射成为准直光且为P-偏振光的第一光束,并反射成为准直光且为S-偏振光的第二光束;第一棱镜76将成为准直光且为P-偏振光的第一光束耦入第一波导基片78;第二棱镜77将成为准直光且为S-偏振光的第二光束耦入第二波导基片79。
本实施例中,对于同一待显示图像分割出的第一子图像和第二子图像,第一图像显示器71发出第一光束的过程与第二图像显示器71发出第二光束的过程是依次执行的;第一耦出光束和第二耦出光束依次在人眼视网膜上成像形成第一子图像和第二子图像,并依赖人眼的视觉暂留现象,实现两个子图像的拼接。
本实施例中,第一棱镜76和第二棱镜77的作用是帮助将第一光束和第二光束分别耦入不同的波导基片中。
本实施例中,两个波导基片的入口端位于整个显示系统的同一侧,采用了统一的图像显示器71和统一的耦入通道,相比于实施例一和实施例二,本实施例所占用的空间更小一些,有利于制作更紧凑的显示系统。
本实施例中,第一分光单元72、所述第二分光单元75可以采用偏振分光棱镜或者偏振分束器;偏振调制单元73可以采用偏振调制器或扭曲向列型TN液晶面板。
实施例四
如图8所示,本实施例是在实施例三的基础上进行了改进,具体是在第一波导基片78和第二波导基片79的耦出侧(即形成第一耦出光束和第二耦出光束的一侧)增加一凹透镜81,以适用于近视用户使用。
本实施例中,凹透镜81的度数可以是固定的,也可以是动态变化的,例如采用液晶变焦透镜,可以动态地改变焦距,从而改变度数。
实施例五
如图9所示,本实施例是在实施例三的基础上进行了改进,具体是在第一波导基片78和第二波导基片79的耦出侧(即形成第一耦出光束和第二耦出光束的一侧)增加一凸透镜91,以适用于远视用户使用。
本实施例中,凸透镜91的度数可以是固定的,也可以是动态变化的,例如采用液晶变焦透镜,可以动态地改变焦距,从而改变度数。
综上,本发明提供的基于波导的显示系统具有如下有益效果:
(1)通过将整幅待显示图像分割成两个子图像,再采用两层波导基片分别对两个子图像进行成像,相比于现有技术,可以显著增大视场角;
(2)通过条件①和③的约束,确保第一耦出光束和第二耦出光束顺利耦出相应的波导基片,完成在人眼视网膜上的成像;
(3)通过在第一界面和第二界面的反面涂布涂层的方式,消去大量会导致重像的反射光,有利于提高图像清晰程度;
(4)通过条件②和④的约束,进一步确保不会因反射光形成重像,进一步提高图像的清晰程度;
(5)通过采用统一的图像显示器和耦入通道的方式,降低制作成本,减小空间占用,有利于制造结构紧凑、超大视场的显示系统,提高用户对可穿戴显示系统的体验度;
(6)通过设置透镜为近视用户和远视用户提供便利。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
本领域技术人员还可以了解到本发明实施例列出的各种说明性逻辑块(illustrative logical block),单元,和步骤可以通过电子硬件、电脑软件,或两者的结合进行实现。为清楚展示硬件和软件的可替换性(interchangeability),上述的各种说明性部件(illustrative components),单元和步骤已经通用地描述了它们的功能。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本发明实施例保护的范围。
本发明实施例中所描述的各种说明性的逻辑块,或单元,或装置都可以通过通用处理器,数字信号处理器,专用集成电路(ASIC),现场可编程门阵列或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本发明实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件 模块、或者这两者的结合。软件模块可以存储于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中,ASIC可以设置于用户终端中。可选地,处理器和存储媒介也可以设置于用户终端中的不同的部件中。
在一个或多个示例性的设计中,本发明实施例所描述的上述功能可以在硬件、软件、固件或这三者的任意组合来实现。如果在软件中实现,这些功能可以存储与电脑可读的媒介上,或以一个或多个指令或代码形式传输于电脑可读的媒介上。电脑可读媒介包括电脑存储媒介和便于使得让电脑程序从一个地方转移到其它地方的通信媒介。存储媒介可以是任何通用或特殊电脑可以接入访问的可用媒体。例如,这样的电脑可读媒体可以包括但不限于RAM、ROM、EEPROM、CD-ROM或其它光盘存储、磁盘存储或其它磁性存储装置,或其它任何可以用于承载或存储以指令或数据结构和其它可被通用或特殊电脑、或通用或特殊处理器读取形式的程序代码的媒介。此外,任何连接都可以被适当地定义为电脑可读媒介,例如,如果软件是从一个网站站点、服务器或其它远程资源通过一个同轴电缆、光纤电缆、双绞线、数字用户线(DSL)或以例如红外、无线和微波等无线方式传输的也被包含在所定义的电脑可读媒介中。所述的碟片(disk)和磁盘(disc)包括压缩磁盘、镭射盘、光盘、DVD、软盘和蓝光光盘,磁盘通常以磁性复制数据,而碟片通常以激光进行光学复制数据。上述的组合也可以包含在电脑可读媒介中。

Claims (20)

  1. 一种基于波导的显示系统,其特征在于,包括:
    图像分割单元,用于将待显示图像分割为第一子图像和第二子图像;
    发光单元,用于根据所述第一子图像的图像数据生成第一光束,根据所述第二子图像的图像数据生成第二光束;
    耦入单元,用于将所述第一光束处理成为准直光并耦入第一波导基片,将所述第二光束处理成为准直光并耦入第二波导基片;
    第一波导基片具有两个平行的第一表面、以及设置于两个第一表面之间且与第一表面具有夹角的第一界面,所述第一波导基片使所述第一光束在所述第一表面发生全反射,在所述第一界面的正面发生反射并耦出第一波导基片,形成用以对第一子图像成像的第一耦出光束;
    第二波导基片具有两个平行的第二表面、以及设置于两个第二表面之间且与第二表面具有夹角的第二界面,所述第二波导基片使所述第二光束在所述第二表面发生全反射,在所述第二界面的正面发生反射并耦出第二波导基片,形成用以对第二子图像成像的第二耦出光束;
    所述第一界面与所述第二界面相距一预设距离,以使所述第一耦出光束成像形成的第一子图像与所述第二耦出光束成像形成的第二子图像拼接成所述待显示图像。
  2. 根据权利要求1所述的基于波导的显示系统,其特征在于,
    所述第一界面的反面涂布有第一涂层,该第一涂层用于吸收或透射入射角度大于或等于第一预设角的光线;
    所述第二界面的反面涂布有第二涂层,该第二涂层用于吸收或透射入射角度大于或等于第二预设角的光线。
  3. 根据权利要求2所述的基于波导的显示系统,其特征在于,所述耦入单元还用于使耦入第一波导基片的第一光束在历经第一界面的折射、第一表面的全反射之后入射至第一界面的反面时,其边缘光线的入射角度小于或等于第一界面的全反射角;以及,
    所述耦入单元还用于使耦入第二波导基片的第二光束在历经第二界面的折射、第二表面的全反射之后入射至第二界面的反面时,其边缘光线的入射角度小于或等于第二界面的全反射角。
  4. 根据权利要求1所述的基于波导的显示系统,其特征在于,所述第一波导基片的 入口端与所述第二波导基片的入口端分别位于所述基于波导的显示系统的两侧。
  5. 根据权利要求1所述的基于波导的显示系统,其特征在于,所述第一波导基片的入口端与所述第二波导基片的入口端位于所述基于波导的显示系统的同一侧。
  6. 根据权利要求1所述的基于波导的显示系统,其特征在于,
    所述发光单元包括:
    第一图像显示器,用于根据所述第一子图像的图像数据生成第一光束;
    第二图像显示器,用于根据所述第二子图像的图像数据生成第二光束;
    所述耦入单元包括:
    第一准直器,用于将所述第一光束处理成为准直光;
    第二准直器,用于将所述第二光束处理成为准直光。
  7. 根据权利要求6所述的基于波导的显示系统,其特征在于,所述耦入单元还包括:第一棱镜和第二棱镜;
    所述第一棱镜,用于将成为准直光的第一光束反射至第一波导基片中;
    所述第二棱镜,用于将成为准直光的第二光束反射至第二波导基片中。
  8. 根据权利要求6所述的基于波导的显示系统,其特征在于,所述第一图像显示器生成第一光束与所述第二图像显示器生成第二光束是同时进行的。
  9. 根据权利要求6所述的基于波导的显示系统,其特征在于,所述第一图像显示器生成第一光束与所述第二图像显示器生成第二光束是依次进行的。
  10. 根据权利要求1所述的基于波导的显示系统,其特征在于,
    所述发光单元包括:
    图像显示器,用于根据所述第一子图像的图像数据和所述第二子图像的图像数据依次生成第一光束和第二光束;
    所述耦入单元包括依次排布的第一分光单元、偏振调制单元、准直单元、第二分光单元;
    第一分光单元,用于将所述发光单元发出的第一光束和第二光束分光处理成P-偏振光;
    偏振调制单元,用于直接透射P-偏振光的第一光束,使P-偏振光的第二光束偏转成为S-偏振光后再透射;
    准直单元,用于准直P-偏振光的第一光束和S-偏振光的第二光束;
    第二分光单元,用于直接透射成为准直光且为P-偏振光的第一光束,并反射成为准 直光且为S-偏振光的第二光束。
  11. 根据权利要求10所述的基于波导的显示系统,其特征在于,所述耦入单元还包括:第一棱镜和第二棱镜;
    所述第一棱镜,用于将成为准直光且为P-偏振光的第一光束反射至第一波导基片中;
    所述第二棱镜,用于将成为准直光且为S-偏振光的第二光束反射至第二波导基片中。
  12. 根据权利要求10所述的基于波导的显示系统,其特征在于,所述第一分光单元和/或所述第二分光单元为偏振分束器。
  13. 根据权利要求10所述的基于波导的显示系统,其特征在于,所述偏振调制单元为扭曲向列型TN液晶面板。
  14. 根据权利要求1所述的基于波导的显示系统,其特征在于,所述基于波导的显示系统还包括:
    透镜,设置于所述第一波导基片和所述第二波导基片的耦出侧,用于透射所述第一耦出光束和第二耦出光束。
  15. 根据权利要求14所述的基于波导的显示系统,其特征在于,所述透镜为以下几种中的一种:凹透镜,凸透镜,变焦透镜。
  16. 根据权利要求1所述的基于波导的显示系统,其特征在于,所述第一子图像和第二子图像具有相同的图像区域。
  17. 根据权利要求1所述的基于波导的显示系统,其特征在于,所述发光单元包括有机发光二极管OLED显示器或液晶附硅LCOS显示器或液晶显示器LCD。
  18. 根据权利要求1所述的基于波导的显示系统,其特征在于,还包括:视频获取单元,用于获取一视频流,并将所述视频流中依次出现的每一帧图像确定为所述待显示图像发送给所述图像分割单元;
    所述图像分割单元对接收的待显示图像依次进行分割,并将分割得到的第一子图像和第二子图像发送给所述发光单元;
    所述发光单元根据依次接收的第一子图像和第二子图像生成第一光束和第二光束,以使成像形成的第一子图像和第二子图像所拼接成的待显示图像组成所述视频流。
  19. 根据权利要求18所述的基于波导的显示系统,其特征在于,所述发光单元以大于或等于每秒24束的频率生成所述第一光束和所述第二光束,以使所述第一光束成像形成的第一子图像和所述第二光束成像形成的第二子图像所拼接成的待显示图像的帧率大于或等于每秒24帧。
  20. 根据权利要求1所述的基于波导的显示系统,其特征在于,还包括:图像校正单元,用于对所述图像分割单元分割得到的第一子图像和第二子图像进行梯形校正,然后将校正后的第一子图像和第二子图像发送给所述发光单元。
PCT/CN2017/071673 2016-01-29 2017-01-19 一种基于波导的显示系统 WO2017129029A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610066574.8A CN107024769B (zh) 2016-01-29 2016-01-29 一种基于波导的显示系统
CN201610066574.8 2016-01-29

Publications (1)

Publication Number Publication Date
WO2017129029A1 true WO2017129029A1 (zh) 2017-08-03

Family

ID=59397477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/071673 WO2017129029A1 (zh) 2016-01-29 2017-01-19 一种基于波导的显示系统

Country Status (2)

Country Link
CN (1) CN107024769B (zh)
WO (1) WO2017129029A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107797290A (zh) * 2017-12-08 2018-03-13 深圳创维新世界科技有限公司 虚拟现实显示光学系统及虚拟现实眼镜
CN107807448A (zh) * 2017-12-08 2018-03-16 深圳创维新世界科技有限公司 虚拟现实显示光学系统
CN107831593A (zh) * 2017-12-08 2018-03-23 深圳创维新世界科技有限公司 增强现实显示光学系统及增强现实眼镜
EP3640709A1 (en) * 2018-10-18 2020-04-22 Samsung Electronics Co., Ltd. See-through display apparatus
CN112130321A (zh) * 2019-06-24 2020-12-25 成都理想境界科技有限公司 一种波导模组及基于波导的近眼显示模组及设备
EP3822693A3 (en) * 2019-09-26 2021-08-18 Himax Technologies Limited Head-mounted display
EP4024120A4 (en) * 2019-08-26 2022-09-07 BOE Technology Group Co., Ltd. OPTICAL DISPLAY SYSTEM AND METHOD AND DISPLAY DEVICE
EP4256396A4 (en) * 2021-07-04 2024-05-29 Lumus Ltd. DISPLAY WITH STACKED FIBER OPTICS TO PROVIDE DIFFERENT PARTS OF THE FIELD OF VIEW

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108803022A (zh) * 2018-02-13 2018-11-13 成都理想境界科技有限公司 单眼大视场近眼显示设备及双目大视场近眼显示设备
CN108803023A (zh) * 2018-02-13 2018-11-13 成都理想境界科技有限公司 单眼大视场近眼显示模组、显示方法及头戴式显示设备
CN108681067A (zh) * 2018-05-16 2018-10-19 上海鲲游光电科技有限公司 一种扩展视场角的波导显示装置
CN108646467A (zh) * 2018-06-29 2018-10-12 深圳创维新世界科技有限公司 背光模组、液晶显示屏及虚拟现实显示头盔
CN108919488A (zh) * 2018-07-06 2018-11-30 成都理想境界科技有限公司 一种单眼大视场近眼显示模组
CN109001907A (zh) * 2018-07-06 2018-12-14 成都理想境界科技有限公司 一种高分辨率显示模组
CN108957749A (zh) * 2018-07-06 2018-12-07 成都理想境界科技有限公司 一种单眼大视场近眼显示模组
CN108873346A (zh) * 2018-07-10 2018-11-23 杭州光粒科技有限公司 紧凑型波导光场增强现实显示装置
CN110873962B (zh) * 2018-08-31 2022-05-20 成都理想境界科技有限公司 一种基于波导的显示系统
US11914148B2 (en) * 2018-09-07 2024-02-27 Adeia Semiconductor Inc. Stacked optical waveguides
CN114624807B (zh) * 2018-10-08 2024-05-28 成都理想境界科技有限公司 一种波导模组、基于波导的显示模组及近眼显示设备
CN111142256A (zh) * 2018-11-02 2020-05-12 成都理想境界科技有限公司 一种vr光学显示模组及显示设备
CN111142255A (zh) * 2018-11-02 2020-05-12 成都理想境界科技有限公司 一种ar光学显示模组及显示设备
CN110515209A (zh) * 2019-08-28 2019-11-29 瑞声通讯科技(常州)有限公司 基于波导的增强现实显示装置
CN112444970B (zh) * 2019-08-30 2022-10-18 成都理想境界科技有限公司 一种大视场ar波导
CN112444969B (zh) * 2019-08-30 2022-10-18 成都理想境界科技有限公司 一种大视场双层深度ar波导
CN111221128B (zh) * 2020-02-28 2022-03-04 深圳珑璟光电科技有限公司 一种扩大视场角的近眼波导显示设备
WO2021238560A1 (zh) * 2020-05-29 2021-12-02 深圳惠牛科技有限公司 一种具有大视场角的波导ar显示器件及其实现方法
CN114326123B (zh) * 2021-12-27 2023-03-21 北京灵犀微光科技有限公司 一种近眼显示装置
CN114755828B (zh) * 2022-04-20 2023-12-05 未来光学(上饶)科研院有限公司 一种大视场多波导系统及近眼显示设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101896844A (zh) * 2007-12-13 2010-11-24 奥普特发明公司 光导和眼睛视觉光学系统
US20130322810A1 (en) * 2012-06-04 2013-12-05 Steven John Robbins Multiple waveguide imaging structure
CN104090330A (zh) * 2014-05-26 2014-10-08 北京理工大学 一种基于集成化自由曲面光学元件的波导显示器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7573640B2 (en) * 2005-04-04 2009-08-11 Mirage Innovations Ltd. Multi-plane optical apparatus
JP6035793B2 (ja) * 2012-03-14 2016-11-30 ソニー株式会社 画像表示装置及び画像生成装置
US9664905B2 (en) * 2013-06-28 2017-05-30 Microsoft Technology Licensing, Llc Display efficiency optimization by color filtering

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101896844A (zh) * 2007-12-13 2010-11-24 奥普特发明公司 光导和眼睛视觉光学系统
US20130322810A1 (en) * 2012-06-04 2013-12-05 Steven John Robbins Multiple waveguide imaging structure
CN104090330A (zh) * 2014-05-26 2014-10-08 北京理工大学 一种基于集成化自由曲面光学元件的波导显示器

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107797290A (zh) * 2017-12-08 2018-03-13 深圳创维新世界科技有限公司 虚拟现实显示光学系统及虚拟现实眼镜
CN107807448A (zh) * 2017-12-08 2018-03-16 深圳创维新世界科技有限公司 虚拟现实显示光学系统
CN107831593A (zh) * 2017-12-08 2018-03-23 深圳创维新世界科技有限公司 增强现实显示光学系统及增强现实眼镜
US11048031B2 (en) 2018-10-18 2021-06-29 Samsung Electronics Co., Ltd. See-through display apparatus
CN111077672A (zh) * 2018-10-18 2020-04-28 三星电子株式会社 透视显示装置
EP3640709A1 (en) * 2018-10-18 2020-04-22 Samsung Electronics Co., Ltd. See-through display apparatus
CN111077672B (zh) * 2018-10-18 2023-06-30 三星电子株式会社 透视显示装置
CN112130321A (zh) * 2019-06-24 2020-12-25 成都理想境界科技有限公司 一种波导模组及基于波导的近眼显示模组及设备
CN112130321B (zh) * 2019-06-24 2023-06-27 成都理想境界科技有限公司 一种波导模组及基于波导的近眼显示模组及设备
EP4024120A4 (en) * 2019-08-26 2022-09-07 BOE Technology Group Co., Ltd. OPTICAL DISPLAY SYSTEM AND METHOD AND DISPLAY DEVICE
US20220326538A1 (en) * 2019-08-26 2022-10-13 Beijing Boe Optoelectronics Technology Co., Ltd. Optical display system and method, and display device
US11719935B2 (en) 2019-08-26 2023-08-08 Beijing Boe Optoelectronics Technology Co., Ltd. Optical display system having optical waveguides for guiding polarized lights and method, and display device having the same
EP3822693A3 (en) * 2019-09-26 2021-08-18 Himax Technologies Limited Head-mounted display
US11372250B2 (en) 2019-09-26 2022-06-28 Himax Technologies Limited Head-mounted display having reflective elements
EP4256396A4 (en) * 2021-07-04 2024-05-29 Lumus Ltd. DISPLAY WITH STACKED FIBER OPTICS TO PROVIDE DIFFERENT PARTS OF THE FIELD OF VIEW

Also Published As

Publication number Publication date
CN107024769A (zh) 2017-08-08
CN107024769B (zh) 2019-12-27

Similar Documents

Publication Publication Date Title
WO2017129029A1 (zh) 一种基于波导的显示系统
US20210199971A1 (en) Gradient refractive index grating for display leakage reduction
TWI778178B (zh) 光耦合器、波導型近眼顯示器、利用波導型近眼顯示器顯示影像的方法
US20220206232A1 (en) Layered waveguide fabrication by additive manufacturing
US20210199873A1 (en) Dual-side antireflection coatings for broad angular and wavelength bands
US10107994B2 (en) Wide field-of-view virtual image projector
WO2019179136A1 (zh) 显示装置及显示方法
WO2020172007A1 (en) Micro led display system
CN104678555B (zh) 屈光度矫正的齿形镶嵌平面波导光学器件
US11460701B2 (en) Display waveguide with a high-index portion
US10609364B2 (en) Pupil swim corrected lens for head mounted display
US11099309B2 (en) Outward coupling suppression in waveguide display
CN108732767A (zh) 一种紧凑型自由曲面波导近眼显示光学装置
EP3928146A1 (en) Color management of display device
US11774758B2 (en) Waveguide display with multiple monochromatic projectors
CN105093529A (zh) 显示装置
US11415794B2 (en) Low-obliquity pupil relay for near-eye display
US10845526B1 (en) Outward coupling suppression in waveguide display
CN114730091A (zh) 用于利用低周期出耦光栅传送图像的高指数波导
WO2018195983A1 (zh) 一种光波导结构及光学系统
US11709358B2 (en) Staircase in-coupling for waveguide display
JP3524569B2 (ja) 視覚表示装置
JP2021076839A (ja) ニアアイ光学システム
TWI769783B (zh) 光學模組及近眼顯示裝置
CN210166569U (zh) 基于自由曲面和光波导的增强现实光学系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17743644

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17743644

Country of ref document: EP

Kind code of ref document: A1