WO2019228173A1 - 变频控制系统及其控制方法 - Google Patents

变频控制系统及其控制方法 Download PDF

Info

Publication number
WO2019228173A1
WO2019228173A1 PCT/CN2019/086405 CN2019086405W WO2019228173A1 WO 2019228173 A1 WO2019228173 A1 WO 2019228173A1 CN 2019086405 W CN2019086405 W CN 2019086405W WO 2019228173 A1 WO2019228173 A1 WO 2019228173A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
speed
chiller
module
temperature
Prior art date
Application number
PCT/CN2019/086405
Other languages
English (en)
French (fr)
Inventor
叶路萍
叶文龙
Original Assignee
羾领节能科技(冷吨保)香港有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 羾领节能科技(冷吨保)香港有限公司 filed Critical 羾领节能科技(冷吨保)香港有限公司
Priority to CN201980030405.0A priority Critical patent/CN112074693A/zh
Publication of WO2019228173A1 publication Critical patent/WO2019228173A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits

Definitions

  • the invention relates to the technical field of central air-conditioning, in particular to a variable frequency control system and a control method thereof.
  • the central air conditioner as a temperature adjustment device, can provide the required cooling capacity or heat to offset the cooling load or heat load of the indoor environment, thereby providing people with a comfortable indoor environment.
  • the central air conditioner usually consists of one or more cold and heat source systems (refrigeration or / and heating systems) and multiple air conditioning systems.
  • the refrigeration system is a vital part of the central air conditioner. The way and structure form directly affect the economy, efficiency and rationality of central air-conditioning in operation.
  • central air conditioning is a kind of high energy consumption device, especially the central air conditioner equipped with power frequency chiller, not only needs to consume a large amount of power when running at full load, but also needs to consume almost the same load at low load operation. At the same time, this caused a huge waste, which is not in line with the current trend of energy conservation, environmental protection and sustainable development.
  • several conventional energy-saving solutions have appeared on the market. For example, under the premise of meeting industrial requirements or comfort, adjusting the temperature of the chilled water is used to adapt.
  • An object of the present invention is to provide a variable frequency control system and a control method thereof, which can greatly reduce the energy consumption of a central air conditioner during low load operation, so as to meet the current trend of energy saving, environmental protection and sustainable development.
  • Another object of the present invention is to provide a variable frequency control system and a control method thereof, which can perform energy saving transformation on an existing central air conditioner to improve the energy saving efficiency of the existing central air conditioner.
  • Another object of the present invention is to provide a variable-frequency control system and a control method thereof, wherein the variable-frequency control system can specifically perform energy-saving transformation for screw-type or centrifugal chiller units with constant power frequency and constant speed to improve the screw-type or Energy-saving efficiency of centrifugal chiller.
  • Another object of the present invention is to provide a variable frequency control system and a control method thereof, which can perform a fully automatic intelligent frequency conversion adjustment specifically for a compressor of a power frequency chiller according to a change in a user's demand for cooling and heating loads, so that the compressor is always Keep running under optimal conditions to significantly reduce energy consumption during operation.
  • Another object of the present invention is to provide a variable frequency control system and a control method thereof, which can automatically perform variable frequency control on the compressor of the unit under the condition of ensuring the normal and safe operation of the original unit to reduce the unit's operation at low load. Energy consumption.
  • Another object of the present invention is to provide a variable frequency control system and a control method thereof, which can enhance the safety of a unit, extend the service life of the compressor, and directly reduce the maintenance cost of the unit.
  • Another object of the present invention is to provide a variable frequency control system and a control method thereof, which are convenient to connect to the original system of a unit, and can further reduce the unit's original capacity without affecting the normal operation of the unit's original system. Operational energy consumption.
  • Another object of the present invention is to provide a variable frequency control system and a control method thereof, which can simultaneously optimize the rotation speed of the compressor motor and the opening degree of the blades of the unit, so as to adapt to various loads, thereby reducing operating energy consumption.
  • Another object of the present invention is to provide a variable frequency control system and a control method thereof, which can reduce the noise generated by the unit during operation, so as to optimize the operating environment of the unit.
  • Another object of the present invention is to provide a variable frequency control system and a control method thereof.
  • it is not necessary to use expensive materials or complicated structures in the present invention. Therefore, the present invention successfully and effectively provides a solution, which not only provides a variable frequency control system and its control method, but also increases the practicability and reliability of the variable frequency control system and its control method.
  • variable frequency control system for controlling a chiller of a central air conditioner, including:
  • a detection module configured to detect and obtain a water temperature information, a position information, an actual speed information, an evaporation pressure information and a condensation pressure information of the chiller;
  • a comparison module for obtaining a temperature deviation information and a head information of the chiller based on the effluent temperature information, the condensing pressure information and the evaporation pressure information;
  • An analysis module for obtaining a rotational speed margin information of the chiller based on the actual rotational speed information and the head information
  • a control module is configured to control and adjust the rotation speed of the motor of the compressor and the opening degree of the guide vane of the regulating valve based on the position information, the temperature deviation information, and the rotation speed margin information.
  • the detection module includes a temperature detection module, a position detection module, a speed detection module, and two pressure detection modules, wherein the temperature detection module is used to detect the chilled water in the chiller. Outlet temperature to obtain the outlet temperature information; the position detection module is used to detect the position of the guide vane of a control valve of a compressor in the chiller to obtain the position information; the rotation speed detection module is used to detect The actual rotation speed of a motor of the compressor in the chiller to obtain the actual rotation speed information; one of the two pressure detection modules is used to detect the evaporation pressure of an evaporator in the chiller to obtain the evaporation pressure information; The other of the two pressure detection modules is used to detect the condensation pressure of a condenser in the chiller to obtain the condensation pressure information.
  • the comparison module includes a temperature comparison module and a pressure comparison module, wherein the temperature comparison module and the temperature detection module are communicably connected to receive and compare the water temperature information. And a preset temperature information to obtain the temperature deviation information; the pressure comparison module is communicably connected to the two pressure detection modules and is configured to receive and compare the condensation pressure information and the evaporation pressure information to obtain the pressure Header information.
  • the analysis module includes a head analysis module and a speed analysis module communicably connected to each other, wherein the head analysis module is communicably connected to the pressure comparison module, and Receiving and analyzing the head information to obtain a minimum speed information of the chiller; the speed analysis module and the speed detection module are communicably connected to receive and analyze the actual speed information and the minimum speed information To get the speed margin information.
  • the control module includes a rotation speed control module and an opening degree control module, wherein the rotation speed control module and the position detection module, the temperature comparison module, and the rotation speed analysis module may be Communicatively connected for generating and sending a speed control signal to the motor of the compressor based on the position information, the temperature deviation information, and the speed margin information to automatically adjust the speed of the motor; the opening degree
  • the control module is communicably connected with the position detection module, the temperature comparison module, and the rotational speed analysis module, and is configured to generate and send an opening degree control based on the position information, the temperature deviation information, and the rotational speed margin information. Signal to the regulating valve of the compressor to automatically adjust the opening degree of the guide vane of the regulating valve.
  • a frequency conversion module is further included, wherein the frequency conversion module is communicably connected with the speed control module and the motor, and the frequency conversion module is configured to change to The frequency of the power provided by the motor changes the speed of the motor.
  • the temperature detection module is a temperature probe provided at a chilled water outlet of the chiller
  • the position detection module is a guide of the regulating valve provided at the compressor.
  • Flow vane position probe one of the two pressure detection modules is a pressure probe installed in the evaporator of the chiller, and the other of the two pressure detection modules is a condenser installed in the chiller
  • the rotation speed detection module is a rotation speed probe of the motor provided in the compressor.
  • the present invention also provides a variable frequency control method, including steps:
  • the method further includes steps:
  • the position information is 1 and the speed margin information is positive, the opening degree of the guide vane of the regulating valve is kept unchanged, and adjustment is performed to reduce the speed of the motor until the temperature The deviation information is zero;
  • the position information is less than 1, and the speed margin information is positive, while adjusting to reduce the opening degree of the guide vane of the control valve, adjust to increase the speed of the motor .
  • the method further includes steps:
  • the position information is 1 and the speed margin information is a positive value, the opening degree of the guide vane of the regulating valve is kept unchanged, and the rotation speed of the motor is adjusted to increase the speed until the temperature The deviation information is zero;
  • the position information is less than 1 and the speed margin information is zero, the rotation speed of the motor is kept unchanged, and the opening of the guide vane of the regulating valve is increased until the temperature deviation Information is zero;
  • the position information is less than 1, and the speed margin information is a positive value, while adjusting to increase the opening degree of the guide vane of the control valve, adjust to reduce the speed of the motor .
  • the steps of obtaining a water temperature information, a position information, an evaporation pressure information, a condensation pressure information, and an actual speed information of a chiller of a central air conditioner respectively include the steps:
  • a speed detection module detects the actual speed of a motor of the compressor of the chiller to obtain the actual speed information.
  • the step of comparing the effluent temperature information with a preset temperature information to obtain a temperature deviation information of the chiller includes the steps:
  • a temperature comparison module is used to solve the difference between the effluent temperature information and the preset temperature information to obtain the temperature deviation information.
  • the step of comparing the condensing pressure information and the evaporating pressure information to obtain a head information of the chiller includes the steps:
  • the difference between the condensation pressure information and the evaporation pressure information is solved to obtain the head information.
  • the step of analyzing the head information and the actual speed information to obtain a speed margin information of the chiller includes the steps:
  • a speed analysis module is used to solve the difference between the actual speed information and the minimum speed information to obtain the speed margin information.
  • the automatic control is performed to adjust a rotational speed of a motor of the chiller and an opening degree of a guide vane of a regulating valve.
  • the step of keeping the temperature deviation information to zero includes the steps:
  • An opening degree control module generates and sends an opening degree control signal to the chiller based on the temperature deviation information, the position information, and the rotational speed margin information to adjust the opening degree of the guide vane of the regulating valve.
  • the speed control module generates and sends a speed control signal to the chiller based on the temperature deviation information, the position information, and the speed margin information to control and adjust.
  • the steps of the speed of the motor include the steps:
  • a frequency conversion module based on the speed control signal, it is adjusted to change the power frequency provided to the motor, and then controlled to change the speed of the motor.
  • FIG. 1 is a block diagram of a variable frequency control system according to a preferred embodiment of the present invention.
  • FIG. 2 is a schematic diagram of control steps of the variable frequency control system according to the above-mentioned preferred embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a control method of the variable frequency control system according to the above preferred embodiment of the present invention.
  • the term “a” in the claims and the description should be understood as “one or more”, that is, in one embodiment, the number of one element may be one, and in other embodiments, the number of the element Can be multiple. Unless the number of the element is explicitly indicated in the disclosure of the present invention, the term “a” is not to be understood as being unique or singular, and the term “a” is not to be understood as a limitation on the number.
  • the present invention provides a variable frequency control system and a control method for controlling a central air conditioner's chiller with variable frequency so as to reduce the energy consumption of the central air conditioner, thereby truly turning on the host of the screw chiller and the centrifugal chiller. Frequency conversion era.
  • a central air conditioner generally includes an air conditioning system 10 and a chiller 20, wherein the chiller 20 provides the required heat or cooling capacity for the air conditioning system 10 for Offset the cold or hot load of the indoor environment.
  • the centrifugal chiller 20 includes an evaporator 21, a condenser 22, and a compressor 23.
  • the compressor 23 is in communication with the evaporator 21 and the condenser 22 and is located on the evaporator 21.
  • the compressor 23 when the compressor 23 is operating, the compressor 23 continuously sucks the refrigerant vapor with a lower pressure from the evaporator 21, and performs work on the refrigerant vapor to increase The pressure of the refrigerant vapor forms a higher-pressure refrigerant vapor, and then the higher-pressure refrigerant vapor enters the condenser 22 to be condensed to form a refrigerant liquid, which provides cooling for the air-conditioning system 10 the amount.
  • the compressor 23 may be, but is not limited to, implemented as a centrifugal compressor, and may also be implemented as a screw compressor, which is not limited in the present invention.
  • the compressor 23 includes a compressor main body 231, a motor 232, and a regulating valve 233, wherein the motor 232 and the regulating valve 233 are respectively connected to the compressor main body 231. Coupling, wherein the motor 232 provides kinetic energy for the compressor body 231, and the opening degree of the guide vane of the regulating valve 233 can be controlled to regulate the flow rate of the refrigerant entering the compressor body 231.
  • the regulating valve 233 may be implemented as, but not limited to, a PRV valve to regulate the flow rate of the refrigerant by controlling the opening degree of the PRV of the PRV valve.
  • the central air conditioner when the central air conditioner performs low-load operation, it is necessary to lower the head of the compressor main body 231 of the compressor 23 (that is, the head of the compressor main body 231 is equal to the refrigeration
  • the existing central air conditioning control system generally adjusts the flow rate of the refrigerant by controlling the opening degree of the guide vane of the adjustment valve 233, and then adjusts the pressure head of the compressor main body 231 by adjusting the flow rate of the refrigerant to To achieve the purpose of reducing energy consumption.
  • the present invention adjusts the compressor in a wide range by simultaneously adjusting the opening degree of the guide vane of the regulating valve 233 and adjusting the rotation speed of the motor 232.
  • the pressure head of the main body 231 further meets the requirements of the compressor 23 to reduce power consumption during unloading or low-load operation.
  • the variable frequency control system 30 includes a detection module 31, a comparison module 32, and an analysis. Module 33 and a control module 34, wherein the detection module 31 is used to detect various parameter information of the chiller 20; the comparison module 32 is used to receive and analyze the parameter information to obtain the chiller 20 A temperature deviation information, a position information, and a head information; the analysis module 33 is configured to receive and analyze the head information of the chiller 20 to obtain the rotational speed margin information of the chiller 20; The control module 34 is configured to control and adjust the motor of the compressor 23 of the chiller 20 based on the temperature deviation information, the position information, and the rotational speed margin information of the chiller 20.
  • the rotation speed of 232 and / or the opening degree of the guide vane of the regulating valve 233 is such that the rotation speed of the motor 232 and / or the opening degree of the guide vane of the regulating valve
  • the detection module 31 includes a temperature detection module 311, a position detection module 312, two pressure detection modules 313, and a rotation speed detection module 314, wherein the temperature detection module 311
  • the position detection module 312 is configured to detect position information (i.e., the position) of the guide vanes of the regulating valve 233 of the chiller 20.
  • the information is the opening degree of the guide vane, which ranges from 0 to 1), to obtain the opening degree information of the guide vane of the regulating valve 233; the two pressure detection modules 313 are respectively used to detect the chiller The evaporation pressure information of the evaporator 21 of the 20 and the condensation pressure information of the condenser 22 of the chiller 20; the rotation speed detecting module 314 is used to detect the position of the compressor 23 of the chiller 20 The actual speed information of the motor 232 is described.
  • the comparison module 32 includes a temperature comparison module 321 and a pressure comparison module 322, wherein the temperature comparison module 321 is communicably connected to the temperature detection module 311 of the detection module 31, and is configured to receive and solve the problem.
  • the difference between the chilled water outlet temperature information and a preset temperature information in the chiller 20 to obtain a temperature deviation information that is, the temperature deviation information is between the outlet temperature information and the preset temperature information
  • the difference between the pressure comparison module 322 and the pressure detection module 313 is communicably connected to receive and solve the difference between the condensation pressure information and the evaporation pressure information of the chiller 20 To obtain a head information of the chiller 20 (that is, the head information is a difference between the condensation pressure information and the evaporation pressure information).
  • the analysis module 33 includes a head analysis module 331 and a rotation speed analysis module 332 which are communicably connected to each other, wherein the head analysis module 331 and the pressure comparison module 322 are communicably connected to each other for receiving and analyzing The head information of the chiller 20 and a surge map information of the chiller 20 to obtain a minimum speed information of the motor 232 of the compressor 23 of the chiller 20; the speed The analysis module 332 is communicably connected to the rotation speed detection module 314 and is configured to receive and solve a difference between the actual rotation speed information and the minimum rotation speed information of the motor 232 to obtain a value of the motor 232.
  • Rotational speed margin information that is, the rotational speed margin information is a difference between the actual rotational speed information and the minimum rotational speed information).
  • the control module 34 includes a speed control module 341 and an opening control module 342, wherein the speed control module 341 is communicably connected to the temperature comparison module 321, the analysis module 33, and the position detection module 312.
  • the speed control module 341 can control based on the speed control signal
  • the rotation speed of the motor 232 of the compressor 23; the opening degree control module 342 is communicably connected to the temperature comparison module 321, the analysis module 33, and the position detection module 312 for The temperature deviation information, the position information, and the rotation speed margin information of the chiller 20 generate an opening degree control signal, wherein the opening degree control module 342 can control the compression based on the opening degree control signal.
  • the opening of the guide vane of the regulating valve 233 of the engine 23 enables the motor 232 and the regulating valve 233 to cooperate together to reduce the power consumption of the compressor 23, thereby achieving The effect of reducing the energy consumption of the central air conditioner.
  • the motor 232 of the compressor 23 is a variable frequency motor with a frequency converter.
  • the frequency conversion control system 30 further includes a frequency conversion module 35, wherein the frequency conversion module 35 is communicably communicable with the speed control module 241 and the motor 232 of the compressor 23. It is connected, and the frequency conversion module 35 can change the power frequency provided to the motor 232 based on the rotation speed control signal to change the rotation speed of the motor 232.
  • the rotation speed control module 341 is controlled to reduce the compressor 23 first.
  • the actual rotation speed of the motor 232 makes the cooling capacity provided by the chiller 20 smaller; then, when the actual rotation speed of the motor 232 is equal to the minimum rotation speed of the motor 232 (that is, the rotation speed margin is zero) , Keeping the rotation speed of the motor 232 constant, and controlling the opening degree control module 342 to reduce the opening degree of the guide vane of the regulating valve 233, so that the amount of cooling provided by the chiller 20 is further changed Small; then, when the opening degree of the guide vane of the regulating valve 233 is reduced to the operating state of the chiller 20 near the surge zone of the chiller 20, the rotation speed control module 341 controls Increasing the actual speed of the motor 232, At the same time, the opening degree control module 342 controls to further reduce the opening degree of the guide vane of the regulating valve 233, so that the cooling capacity provided by the chiller unit 20 is further reduced until the chiller unit 20 Uninstall completely.
  • the chiller unit 20 of the central air conditioner needs to be loaded, that is, the chilled water outlet temperature of the chiller unit 20 is higher than the temperature set value (that is, the temperature deviation is positive Value), firstly controlled by the rotation speed control module 341 to reduce the actual rotation speed of the motor 232, and controlled by the opening degree control module 342 to increase the guide vane of the regulating valve 233 Opening degree to increase the amount of cooling provided by the chiller 20; then, when the actual speed of the motor 232 drops to the minimum speed of the motor 232, keeping the actual speed of the motor 232 unchanged, Continue to be controlled by the opening degree control module 342 to increase the opening degree of the guide vane of the regulating valve 233, and further increase the amount of cooling provided by the chiller unit 20; finally, when When the opening degree of the guide vane is 1 (that is, the regulating valve 233 is fully opened), while maintaining the opening degree of the guide vane of the regulating valve 233, it is controlled by the rotation speed control module 341 to increase The actual speed of
  • the frequency conversion control system 30 controls the chiller 20 to be unloaded, it is preferred to reduce the rotation speed of the motor 232 of the compressor 23 of the chiller 20 to reduce the speed of the motor 232.
  • Input power in order to greatly reduce the power consumption of the chiller 20, thereby reducing the energy consumption of the central air conditioner during low load operation; and to ensure the normal operation of the chiller 20, when the motor 232's
  • the opening of the guide vane of the regulating valve 233 of the compressor 23 of the chiller 20 is further adjusted to further reduce the The cooling capacity is convenient to further reduce the energy consumption of the central air conditioner when running at a lower load.
  • the temperature detection module 311 is implemented as a temperature probe disposed at a chilled water outlet of the chiller 20; the position detection module 312 is implemented Is a PRV position probe provided on the regulating valve 233 of the compressor 23; the pressure detection module 313 is implemented as a pressure probe provided on the evaporator 21 of the chiller 20 and a A pressure probe of the condenser 22 provided in the chiller 20; and the rotation speed detecting module 314 is implemented as a rotation speed probe of the motor 232 provided in the compressor 23.
  • the frequency conversion module 35 is preferably implemented as a frequency conversion device for providing a variable power frequency to the motor 232 of the compressor 23 to adjust the actual speed of the motor 232.
  • the chiller 20 of the central air conditioner operates on average 99% of the time under partial load conditions, and only 1% of the time operates on full load conditions, the chiller The energy consumption of 20 running under partial load conditions is an important indicator for evaluating the performance of the chiller 20.
  • the frequency conversion control system 30 of the present invention may adjust the refrigerant in the chiller 20 by adjusting the opening degree of the guide vane of the regulating valve 233 of the compressor 23 of the chiller 20 And adjust the flow rate of the refrigerant by adjusting the rotation speed of the motor 232 of the compressor 23 of the chiller 20, thereby adjusting the power consumption of the compressor 23, so that the chiller 20
  • the amount of cooling provided corresponds to the heat load of the central air conditioner to reduce the energy consumption of the central air conditioner during low load operation.
  • the present invention controls the motor 232 of the chiller 20 to perform low-speed operation for most of the time, that is, the frequency conversion control system 30 reduces the speed of the motor 232 of the chiller 20, The airflow speed of the refrigerant is further reduced, thereby reducing the noise generated by the chiller 20 during operation, so that the central air conditioner can provide a quiet operating environment.
  • variable frequency control system 30 allows the chiller 20 to operate near a surge point, the chiller 20 can operate safely at a minimum rotation speed, thereby ensuring that the energy saving efficiency of the chiller 20 reaches a maximum.
  • the frequency conversion control system 30 can directly monitor the operating state of the chiller 20 to control the operating state of the chiller 20 to avoid the surge zone, which is convenient to ensure that the chiller 20 is safe at the lowest speed
  • the frequency conversion control system 30 optimizes the rotation speed of the motor 232 of the chiller 20 and the opening degree of the guide vanes of the regulating valve 233 of the chiller 20, so that the chiller 20 can run at a low speed at a low load, thereby reducing the input power of the motor 232 of the chiller 20, thereby increasing the power factor of the motor 232 of the chiller 20, which usually reaches above 0.95. In order to reduce the power consumption of the chiller 20.
  • the inverter control system 30 is not only suitable for being applied to a newly built central air-conditioning system, so that the newly-built central air-conditioning system can be controlled by the inverter control system 30 to reduce its energy consumption during low-load operation.
  • the variable frequency control system 30 is also suitable for being applied to transform an existing central air-conditioning system, so that the power-frequency constant-speed chiller of the existing central air-conditioning system can be frequency-adjusted by the variable-frequency control system 30 In order to keep the existing chiller of the existing central air-conditioning system running under the best match, the energy consumption of the existing central air-conditioning system during low load operation is reduced.
  • variable frequency control system 30 can also optimize the starting performance of the chiller 20 of the central air conditioner, so as to ensure the smooth start of the chiller 20, it can also The running wear of the transmission system of the chiller 20 is minimized.
  • a startup control signal is sent to the frequency conversion module 35 through the rotation speed control module 341 of the frequency conversion control system 30, and then the frequency conversion module 35 sends
  • the motor 232 of the compressor 23 of the chiller 20 provides a low-to-high power frequency, so that the motor 232 of the compressor 23 starts from 1 Hz, which not only can ensure that the motor 232 runs smoothly It can also prevent the startup current of the motor 232 from exceeding the full load current of the motor 232 to ensure the safe start of the chiller 20.
  • the working speed of the motor 232 of the chiller 20 is less than the design speed or full-load speed of the motor 232 most of the time, so that the wear of the compressor 23 is small and it is convenient to
  • the present invention further provides a variable frequency control method, including steps:
  • the step S2 may be performed before the step S3, or may be performed in the step S3.
  • the step S3 is performed after the step S3, and may also be performed in synchronization with the step S3.
  • the step S4 may be performed before the step S2.
  • the guide vane of the regulating valve 233 is first maintained The opening degree is unchanged, and is adjusted to reduce the rotation speed of the motor 232, so that the speed margin information is reduced; then, when the speed margin information is reduced to zero, the rotation speed of the motor 232 is kept constant Adjusting to reduce the position information of the guide vane of the control valve 233, so that the opening degree of the guide vane of the control valve 233 decreases; finally, as the position information decreases, when When the operating state of the chiller 20 is close to the surge zone of the chiller 20, while continuing to adjust to reduce the opening degree of the guide vane of the regulating valve 233, it is adjusted to increase the motor 232 The rotation speed until the opening degree of the guide vane of the regulating valve 233 is zero.
  • the adjustment is continued to increase the While the opening of the guide vane is adjusted to reduce the rotation speed of the motor 232 so that the speed margin information becomes smaller; then, when the speed margin information is zero, the speed of the motor 232 is maintained.
  • the rotation speed does not change, and adjustment is continued to increase the position information of the guide vane of the control valve 233, so that the opening degree of the guide vane of the control valve 233 becomes larger; finally, when the When the position information is 1, the opening degree of the guide vane of the regulating valve 233 is maintained unchanged, and the rotation speed of the motor 232 is adjusted to increase until the chiller 20 runs at full load.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一变频控制系统及其控制方法。其中该变频控制系统供控制一中央空调的一冷水机组,包括一探测模块、一比较模块、一分析模块以及一控制模块。该探测模块用于探测以获得该冷水机组的一出水温度信息、一位置信息、一实际转速信息、一蒸发压力信息以及一冷凝压力信息。该比较模块用于基于该出水温度信息、该冷凝压力信息以及该蒸发压力信息,获得该冷水机组的一温度偏差信息和一压头信息。该分析模块用于基于该实际转速信息和该压头信息,获得该冷水机组的一转速余量信息。该控制模块用于基于该位置信息、该温度偏差信息以及该转速余量信息,控制并调节该压缩机的该电机的转速和该调节阀的导流叶片开度。

Description

变频控制系统及其控制方法 技术领域
本发明涉及一中央空调技术领域,特别是涉及一变频控制系统及其控制方法。
背景技术
中央空调作为一种温度调节装置,能够提供所需的冷量或热量,以抵消室内环境的冷负荷或热负荷,从而能够为人们提供舒适的室内环境。该中央空调通常由一个或多个冷热源系统(制冷系统或/和制热系统)和多个空气调节系统组成,而制冷系统作为中央空调中至关重要的部分,其采用的种类、运行方式、结构形式等直接影响了中央空调在运行中的经济型、高效性、合理性。
众所周知,中央空调是一种高耗能装置,特别是配置有工频冷水机组的中央空调,不仅在满负荷运行时需要消耗大量的电能,而且在低负荷运行时也需要消耗几乎与满负荷运行时相同的电能,这就造成了极大地浪费,不符合当今节能环保、可持续发展的发展潮流。为了降低该中央空调在低负荷运行时所消耗的电能,目前,市场上出现了几种常规的节能方案,例如:在满足工业要求或舒适性的前提下,采用改变冷冻水温的调节方式来适应中央空调的负荷变化;优化控制水冷机组的启停时间顺序,以减小能量耗损;采用智能化管理系统来提高中央空调的运行管理水准,以避免不必要的浪费;采用环保节能新风处理系统来减小能量耗损,等等。
然而,以上几种节能方案对中央空调的进行改造时,平均每年可获得大约3~5%的节电率,这几种节能方案显然无法大幅地降低中央空调的能耗,仍然存在大量的浪费,更无法满足当今节能环保、可持续发展的潮流。
发明内容
本发明的一目的在于提供一变频控制系统及其控制方法,其能够大幅降低一中央空调在低负荷运行时的能耗,以满足当下节能环保和可持续发展的潮流。
本发明的另一目的在于提供一变频控制系统及其控制方法,其能够对现有的中央空调进行节能改造,以提高该现有的中央空调的节能效率。
本发明的另一目的在于提供一变频控制系统及其控制方法,其中所述变频控制系统能专门针对各种工频恒速的螺杆式或离心式冷水机组进行节能改造,以提高该螺杆式或离心式冷水机组的节能效率。
本发明的另一目的在于提供一变频控制系统及其控制方法,其能够根据用户对冷热负荷需求的变化,专门针对工频冷水机组的压缩机进行全自动智能变频调节,使得该压缩机始终保持在最佳条件下运行,以大幅减小运行过程中的能耗。
本发明的另一目的在于提供一变频控制系统及其控制方法,其能够在确保原机组安全正常运行的情况下,自动地对该机组的压缩机进行变频控制,以降低该机组在低负荷运行时的能耗。
本发明的另一目的在于提供一变频控制系统及其控制方法,其能够增强一机组的安全性,延长压缩机的使用寿命,进而直接降低了该机组的维护成本。
本发明的另一目的在于提供一变频控制系统及其控制方法,其便于接入一机组的原有系统,并且在不影响该机组的原有系统正常工作的情况下,能够进一步降低该机组的运行能耗。
本发明的另一目的在于提供一变频控制系统及其控制方法,其能够同步优化该机组的压缩机电机的转速和叶片的开度,以适应各种不同的负荷,从而降低运行能耗。
本发明的另一目的在于提供一变频控制系统及其控制方法,其能够减小该机组在运行时所制造的噪音,以便优化该机组的运行环境。
本发明的另一目的在于提供一变频控制系统及其控制方法,其中为了达到上述目的,在本发明中不需要采用昂贵的材料或复杂的结构。因此,本发明成功和有效地提供一解决方案,不只提供一变频控制系统及其控制方法,同时还增加了所变频控制系统及其控制方法的实用性和可靠性。
为了实现上述至少一发明目的或其他目的和优点,本发明提供了一变频控制系统,供控制一中央空调的一冷水机组,包括:
一探测模块,用于探测以获得该冷水机组的一出水温度信息、一位置信息、一实际转速信息、一蒸发压力信息以及一冷凝压力信息;
一比较模块,用于基于该出水温度信息、该冷凝压力信息以及该蒸发压力信息,获得该冷水机组的一温度偏差信息和一压头信息;
一分析模块,用于基于该实际转速信息和该压头信息,获得该冷水机组的一 转速余量信息;以及
一控制模块,用于基于该位置信息、该温度偏差信息以及该转速余量信息,控制并调节该压缩机的该电机的转速和该调节阀的导流叶片开度。
在本发明的一些实施例中,所述探测模块包括一温度探测模块、一位置探测模块、一转速探测模块以及两压力探测模块,其中所述温度探测模块用于探测该冷水机组中冷冻水的出水温度,以获得该出水温度信息;所述位置探测模块用于探测该冷水机组中一压缩机的一调节阀的导流叶片的位置,以获得该位置信息;所述转速探测模块用于探测该冷水机组中该压缩机的一电机的实际转速,以获得该实际转速信息;所述两压力探测模块之一用于探测该冷水机组中一蒸发器的蒸发压力,以获得该蒸发压力信息;所述两压力探测模块之另一用于探测该冷水机组中一冷凝器的冷凝压力,以获得该冷凝压力信息。
在本发明的一些实施例中,所述比较模块包括一温度比较模块和一压力比较模块,其中所述温度比较模块与所述温度探测模块可通信地连接,用于接收并比较该出水温度信息和一预设温度信息,以获得该温度偏差信息;所述压力比较模块与所述两压力探测模块可通信地连接,用于接收并比较该冷凝压力信息和该蒸发压力信息,以获得该压头信息。
在本发明的一些实施例中,所述分析模块包括相互可通信地连接的一压头分析模块和一转速分析模块,其中所述压头分析模块与所述压力比较模块可通信地连接,用于接收并分析该压头信息,以获得该冷水机组的一最小转速信息;所述转速分析模块与所述转速探测模块可通信地连接,用于接收并分析该实际转速信息和该最小转速信息,以获得该转速余量信息。
在本发明的一些实施例中,所述控制模块包括一转速控制模块和一开度控制模块,其中所述转速控制模块与所述位置探测模块、所述温度比较模块以及所述转速分析模块可通信地连接,用于基于该位置信息、该温度偏差信息以及该转速余量信息,生成并发送一转速控制信号至该压缩机的该电机,以自动地调节该电机的转速;所述开度控制模块与所述位置探测模块、所述温度比较模块以及所述转速分析模块可通信地连接,用于基于该位置信息、该温度偏差信息以及该转速余量信息,生成并发送一开度控制信号至该压缩机的该调节阀,以自动地调节该调节阀的导流叶片开度。
在本发明的一些实施例中,还包括一变频模块,其中所述变频模块与所述转 速控制模块和该电机可通信地连接,其中所述变频模块用于基于所述转速控制信号,改变为该电机提供的电源频率,进而改变该电机的转速。
在本发明的一些实施例中,所述温度探测模块为一被设置于该冷水机组的冷冻水出口处的温度探头,所述位置探测模块为一被设置于该压缩机的该调节阀的导流叶片位置探头,所述两压力探测模块之一为一被设置于该冷水机组的该蒸发器的压力探头,所述两压力探测模块之另一为一被设置于该冷水机组的该冷凝器的压力探头,所述转速探测模块为一被设置于该压缩机的该电机的转速探头。
根据本发明的另一方面,本发明还提供了一变频控制方法,包括步骤:
分别获得一中央空调的一冷水机组的一出水温度信息、一位置信息、一蒸发压力信息、一冷凝压力信息以及一实际转速信息;
比较该出水温度信息和一预设温度信息,以获得该冷水机组的一温度偏差信息;
比较该冷凝压力信息和该蒸发压力信息,以获得该冷水机组的一压头信息;
分析该压头信息和该实际转速信息,以获得该冷水机组的一转速余量信息;以及
基于该温度偏差信息、该位置信息以及该转速余量信息,自动地控制以调节该冷水机组的一电机的转速和一调节阀的导流叶片开度,使得所述温度偏差信息保持为零。
在本发明的一些实施例中,还包括步骤:
当该温度偏差信息为负值,该位置信息为1以及该速度余量信息为正值时,保持该调节阀的导流叶片开度不变,调节以减小该电机的转速,直至该温度偏差信息为零;
当该温度偏差信息为负值,该位置信息小于1以及该速度余量信息为零时,保持该电机的转速不变,调节以减小该调节阀的导流叶片开度,直至该温度偏差信息为零;以及
当该温度偏差信息为负值,该位置信息小于1以及该速度余量信息为正值时,在调节以减小该调节阀的导流叶片开度的同时,调节以增大该电机的转速。
在本发明的一些实施例中,还包括步骤:
当该温度偏差信息为正值,该位置信息为1以及该速度余量信息为正值时,保持该调节阀的导流叶片开度不变,调节以增大该电机的转速,直至该温度偏差 信息为零;
当该温度偏差信息为正值,该位置信息小于1以及该速度余量信息为零时,保持该电机的转速不变,调节以增大该调节阀的导流叶片开度,直至该温度偏差信息为零;以及
当该温度偏差信息为正值,该位置信息小于1以及该速度余量信息为正值时,在调节以增大该调节阀的导流叶片开度的同时,调节以减小该电机的转速。
在本发明的一些实施例中,所述分别获得一中央空调的一冷水机组的一出水温度信息、一位置信息、一蒸发压力信息、一冷凝压力信息以及一实际转速信息的步骤,包括步骤:
藉由一温度探测模块,探测该冷水机组的冷冻水的出水温度,以获得该出水温度信息;
藉由一位置探测模块,探测该冷水机组的一压缩机的一调节阀的导流叶片位置,以获得该位置信息;
藉由两压力探测模块,分别探测该冷水机组的一蒸发器的蒸发压力和一冷凝器的冷凝压力,以获得该蒸发压力信息和该冷凝压力信息;以及
藉由一转速探测模块,探测该冷水机组的该压缩机的一电机的实际转速,以获得该实际转速信息。
在本发明的一些实施例中,所述比较该出水温度信息和一预设温度信息,以获得该冷水机组的一温度偏差信息的步骤,包括步骤:
藉由一温度比较模块,求解该出水温度信息和该预设温度信息之间的差值,以获得该温度偏差信息。
在本发明的一些实施例中,所述比较该冷凝压力信息和该蒸发压力信息,以获得该冷水机组的一压头信息的步骤,包括步骤:
藉由一压力比较模块,求解该冷凝压力信息和该蒸发压力信息之间的差值,以获得该压头信息。
在本发明的一些实施例中,所述分析该压头信息和该实际转速信息,以获得该冷水机组的一转速余量信息的步骤,包括步骤:
藉由一压头分析模块,分析该冷水机组的该压头信息,以获得该冷水机组的一最小转速信息;和
藉由一转速分析模块,求解该实际转速信息和该最小转速信息之间的差值, 以获得该转速余量信息。
在本发明的一些实施例中,所述基于该温度偏差信息、该位置信息以及该转速余量信息,自动地控制以调节该冷水机组的一电机的转速和一调节阀的导流叶片开度,使得所述温度偏差信息保持为零的步骤,包括步骤:
藉由一转速控制模块,基于该温度偏差信息、该位置信息以及该转速余量信息,生成并发送一转速控制信号至该冷水机组,以控制并调节该电机的转速;和
藉由一开度控制模块,基于该温度偏差信息、该位置信息以及该转速余量信息,生成并发送一开度控制信号至该冷水机组,以调节该调节阀的导流叶片开度。
在本发明的一些实施例中,所述藉由一转速控制模块,基于该温度偏差信息、该位置信息以及该转速余量信息,生成并发送一转速控制信号至该冷水机组,以控制并调节该电机的转速的步骤,包括步骤:
藉由一变频模块,基于该转速控制信号,调节以改变为该电机提供的电源频率,进而控制以改变该电机的转速。
通过对随后的描述和附图的理解,本发明进一步的目的和优势将得以充分体现。
本发明的这些和其它目的、特点和优势,通过下述的详细说明,附图和权利要求得以充分体现。
附图说明
图1是根据本发明的一较佳实施例的一变频控制系统的框图示意图。
图2是根据本发明的上述较佳实施例的所述变频控制系统的控制步骤的示意图。
图3是根据本发明的上述较佳实施例的所述变频控制系统的控制方法的流程示意图。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本发明的精神和范围的其他技术方案。
在本发明中,权利要求和说明书中术语“一”应理解为“一个或多个”,即在一个实施例,一个元件的数量可以为一个,而在另外的实施例中,该元件的数量可以为多个。除非在本发明的揭露中明确示意该元件的数量只有一个,否则术语“一”并不能理解为唯一或单一,术语“一”不能理解为对数量的限制。
在本发明的描述中,需要理解的是,属于“第一”、“第二”等仅用于描述目的,而不能理解为指示或者暗示相对重要性。本发明的描述中,需要说明的是,除非另有明确的规定和限定,属于“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接或者一体地连接;可以是机械连接,也可以是电连接;可以是直接连接,也可以是通过媒介间接连结。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
随着人类社会的发展和进步,人们越来越重视节能环保以及可持续发展。而中央空调作为一种高耗能装置,特别是配置有工频冷水机组的中央空调,不仅在满负荷运行时需要消耗大量的电能,而且在低负荷运行时也需要消耗几乎与满负荷运行时相同的电能,这就造成了极大的浪费,不符合当今节能环保、可持续发展的发展潮流。因此,本发明提供了一变频控制系统及其控制方法,供变频地控制一中央空调的冷水机组,以降低所述中央空调的能耗,从而真正开启螺杆式冷水机组和离心式冷水机组的主机变频时代。
示例性地,如图1所示,一中央空调通常包括一空气调节系统10和一冷水机组20,其中所述冷水机组20为所述空气调节系统10提供所需的热量或冷量,用于抵消室内环境的冷负荷或热负荷。所述离心式冷水机组20包括一蒸发器21、一冷凝器22以及一压缩机23,其中所述压缩机23与所述蒸发器21和所述冷凝器22连通,并位于所述蒸发器21和所述冷凝器22之间,以在所述压缩机23工作时,所述压缩机23自所述蒸发器21不断地吸入压力较低的制冷剂蒸汽,并 对该制冷剂蒸汽做功以增加该制冷剂蒸汽的压力,以形成压力较高的制冷剂蒸汽,接着该压力较高的制冷剂蒸汽进入所述冷凝器22进行冷凝,以形成制冷剂液体,为所述空气调节系统10提供冷量。应当理解,所述压缩机23可以但不限于被实施为一离心式压缩机,也可以被实施为一螺杆式压缩机,在本发明中对此不作限制。
更具体地,如图1所示,所述压缩机23包括一压缩机主体231、一电机232以及一调节阀233,其中所述电机232和所述调节阀233分别与所述压缩机主体231耦接,其中所述电机232为所述压缩机主体231提供动能,所述调节阀233的导流叶片开度能被控制以调节进入所述压缩机主体231的该制冷剂的流量。应当理解,所述调节阀233可以但不限于被实施为PRV阀,以通过控制所述PRV阀的PRV的开度来调节该制冷剂的流量。
值得注意的是,当所述中央空调进行低负荷运行时,需要降低所述压缩机23的所述压缩机主体231的压头(即:所述压缩机主体231的所述压头等于该制冷剂的冷凝压力Pc与该制冷剂的蒸发压力Pe之间的差值),以减少所述压缩机23的功耗,进而降低所述中央空调的能耗。而现有的中央空调控制系统一般通过控制所述调节阀233的导流叶片开度来调节该制冷剂的流量,进而通过调节该制冷剂流量来调节所述压缩机主体231的压头,以实现降低能耗的目的。但是,仅通过控制所述调节阀233的导流叶片开度的方式,很难大范围地调节所述压缩机主体231的压头,以无法大范围地降低所述压缩机23的输入功率,进而无法满足所述压缩机23在卸载或低负荷运行时降低功耗的要求。
然而,根据流体力学知识可知,由于该制冷剂的流量与所述电机232的转速呈正比,所述压缩机主体的压头与所述电机232的转速的平方成正比,使得所述压缩机23的输入功率与所述电机232的转速的立方成正比,因此,本发明通过同时调节所述调节阀233的导流叶片开度和调节所述电机232的转速来大范围地调节所述压缩机主体231的压头,进而满足所述压缩机23在卸载或低负荷运行时降低功耗的要求。
具体地,参考附图之图1至图3所示,根据本发明的一变频控制系统及其控制方法被阐明,其中所述变频控制系统30包括一探测模块31、一比较模块32、一分析模块33以及一控制模块34,其中所述探测模块31用于探测所述冷水机组20的各种参数信息;所述比较模块32用于接收和分析所述参数信息,以获得 所述冷水机组20的一温度偏差信息、一位置信息和一压头信息;所述分析模块33用于接收和分析所述冷水机组20的所述压头信息,以获得所述冷水机组20的转速余量信息;所述控制模块34用于基于所述冷水机组20的所述温度偏差信息、所述位置信息和所述转速余量信息,控制并调节所述冷水机组20的所述压缩机23的所述电机232的转速和/或所述调节阀233的导流叶片开度,使得所述电机232的转速和/或所述调节阀233的导流叶片开度与所述中央空调的负荷相匹配,以降低所述中央空调的能耗。
更具体地,如图1和图2所示,所述探测模块31包括一温度探测模块311、一位置探测模块312、两压力探测模块313以及一转速探测模块314,其中所述温度探测模块311用于探测所述冷水机组20中冷冻水的出水温度信息;所述位置探测模块312用于探测所述冷水机组20的所述调节阀233的所述导流叶片的位置信息(即所述位置信息为所述导流叶片开度,其范围为0~1),以获得所述调节阀233的所述导流叶片开度信息;所述两压力探测模块313分别用于探测所述冷水机组20的所述蒸发器21的蒸发压力信息和所述冷水机组20的所述冷凝器22的冷凝压力信息;所述转速探测模块314用于探测所述冷水机组20的所述压缩机23的所述电机232的实际转速信息。
所述比较模块32包括一温度比较模块321和一压力比较模块322,其中所述温度比较模块321与所述探测模块31的所述温度探测模块311可通信地连接,用于接收并求解所述冷水机组20中冷冻水的出水温度信息与一预设温度信息之间的差值,以获得一温度偏差信息(即所述温度偏差信息为所述出水温度信息和所述预设温度信息之间的差值);所述压力比较模块322与所述压力探测模块313可通信地连接,用于接收并求解所述冷水机组20的所述冷凝压力信息和所述蒸发压力信息之间的差值,以获得所述冷水机组20的一压头信息(即所述压头信息为所述冷凝压力信息和所述蒸发压力信息之间的差值)。
所述分析模块33包括相互可通信地连接的一压头分析模块331和一转速分析模块332,其中所述压头分析模块331与所述压力比较模块322可通信地连接,用于接收并分析所述冷水机组20的所述压头信息和该冷水机组20的一喘振图信息,以获得所述冷水机组20的所述压缩机23的所述电机232的一最小转速信息;所述转速分析模块332与所述转速探测模块314可通信地连接,用于接收并求解所述电机232的所述实际转速信息与所述最小转速信息之间的差值,以获得所述 电机232的一转速余量信息(即所述转速余量信息为所述实际转速信息和所述最小转速信息之间的差值)。
所述控制模块34包括一转速控制模块341和一开度控制模块342,其中所述转速控制模块341与所述温度比较模块321、所述分析模块33以及所述位置探测模块312可通信地连接,用于基于所述冷水机组20的所述温度偏差信息、所述位置信息和所述转速余量信息,生成一转速控制信号,其中所述转速控制模块341能基于所述转速控制信号来控制所述压缩机23的所述电机232的转速;所述开度控制模块342与所述温度比较模块321、所述分析模块33以及所述位置探测模块312可通信地连接,用于基于所述冷水机组20的所述温度偏差信息、所述位置信息和所述转速余量信息,生成一开度控制信号,其中所述开度控制模块342能基于所述开度控制信号来控制所述压缩机23的所述调节阀233的导流叶片开度,使得所述电机232和所述调节阀233共同配合,以降低所述压缩机23的功耗,进而实现减小所述中央空调的能耗的效果。应当理解,在本发明的所述较佳实施例中,所述压缩机23的所述电机232为一带有变频器的变频电机。
在本发明的一些其他实施例中,所述变频控制系统30还包括一变频模块35,其中所述变频模块35与所述转速控制模块241和所述压缩机23的所述电机232可通信地连接,并且所述变频模块35能基于所述转速控制信号,改变为所述电机232提供的电源频率,以改变所述电机232的转速。
值得一提的是,当所述中央空调的所述冷水机组20需要卸载,也就是说,所述冷水机组20的所述冷冻水出水温度低于所述温度设定值(即所述温度偏差为负值)时,首先在保持所述压缩机23的所述调节阀233的所述导流叶片开度不变的情况下,通过所述转速控制模块341控制以减小所述压缩机23的所述电机232的实际转速,使得所述冷水机组20提供的冷量变小;接着,当所述电机232的实际转速等于所述电机232的最小转速(即所述转速余量为零)时,将所述电机232的转速保持不变,通过所述开度控制模块342控制以减小所述调节阀233的所述导流叶片开度,使得所述冷水机组20提供的冷量进一步变小;然后,当所述调节阀233的所述导流叶片开度减小至所述冷水机组20的运行状态临近所述冷水机组20的喘振区时,通过所述转速控制模块341控制以增加所述电机232的实际转速,与此同时,通过所述开度控制模块342控制以进一步减小所述调节阀233的所述导流叶片开度,使得所述冷水机组20提供的冷量进一步变小, 直至所述冷水机组20完全卸载。应当理解,通过上述精准的控制,能够确保所述冷水机组20提供的冷量刚好满足环境所需冷量,使得所述中央空调始终处于高效的运行状态(即所述中央空调在低负荷运行时,所述冷水机组20提供较小的冷量),以防所述中央空调在低负荷运行时产生较大的能耗。
相应地,当所述中央空调的所述冷水机组20需要载入,也就是说,所述冷水机组20的所述冷冻水出水温度高于所述温度设定值(即所述温度偏差为正值)时,首先在通过所述转速控制模块341控制以减小所述电机232的实际转速的同时,通过所述开度控制模块342控制以增大所述调节阀233的所述导流叶片开度,以增大所述冷水机组20提供的冷量;接着,当所述电机232的实际转速降至所述电机232的所述最小转速时,保持所述电机232的实际转速不变,继续通过所述开度控制模块342控制以增大所述调节阀233的所述导流叶片开度,进一步增大所述冷水机组20提供的冷量;最后,当所述调节阀233的所述导流叶片开度为1(即所述调节阀233处于全开)时,保持所述调节阀233的所述导流叶片开度不变的同时,通过所述转速控制模块341控制以增加所述电机232的实际转速,使得所述冷水机组20提供的冷量进一步变大,直至所述冷水机组20能提供最大冷量。
值得注意的是,在所述变频控制系统30控制所述冷水机组20卸载时,优先选择降低所述冷水机组20的所述压缩机23的所述电机232的转速,来降低所述电机232的输入功率,以便大幅度地降低所述冷水机组20的功耗,从而减小所述中央空调在低负荷运行时的能耗;而为了确保所述冷水机组20正常运行,当所述电机232的转速达到所述电机232的最小转速时,再通过调节所述冷水机组20的所述压缩机23的所述调节阀233的所述导流叶片开度来进一步降低所述冷水机组20所提供的冷量,便于进一步减小所述中央空调在较低负荷运行时的能耗。
在本发明的所述较佳实施例中,优选地,所述温度探测模块311被实施为一被设置于所述冷水机组20的冷冻水出口处的温度探头;所述位置探测模块312被实施为一被设置于所述压缩机23的所述调节阀233的PRV位置探头;所述压力探测模块313被实施为一被设置于所述冷水机组20的所述蒸发器21的压力探头和一被设置于所述冷水机组20的所述冷凝器22的压力探头;以及所述转速探测模块314被实施为一被设置于所述压缩机23的所述电机232的转速探头。此 外,所述变频模块35优选地被实施为一变频装置,用于为所述压缩机23的所述电机232提供一可变化的电源频率,进而调整所述电机232的实际转速。
值得注意的是,由于所述中央空调的所述冷水机组20平均99%的时间在部分负荷的工况下运行,仅有1%的时间在满负荷的工况下运行,因此所述冷水机组20在部分负荷工况下运行的能耗才是评价所述冷水机组20性能的重要标志。本发明的所述变频控制系统30在所述冷水机组20中,可以通过调节所述冷水机组20的所述压缩机23的所述调节阀233的所述导流叶片开度来调节该制冷剂的流量,并通过调节所述冷水机组20的所述压缩机23的所述电机232的转速来调节该制冷剂的流量,从而调节所述压缩机23的功耗,使得所述冷水机组20所提供的冷量与所述中央空调的热负荷相对应地匹配,以降低所述中央空调在低负荷运行时的能耗。应当理解,由于所述冷水机组20通常99%以上的时间内在部分负荷的工况下运行,而所述冷水机组20的噪音主要是由高速制冷剂排气产生的,因此,本发明的所述变频控制系统30控制所述冷水机组20的所述电机232在大部分时间内进行低转速运行,也就是说,所述变频控制系统30降低了所述冷水机组20的所述电机232的转速,进而降低了该制冷剂的气流速度,从而减小了所述冷水机组20在运行时所产生的噪音,使得所述中央空调能提供一宁静的运行环境。
此外,由于所述变频控制系统30允许所述冷水机组20在喘振点附近运行,使得所述冷水机组20能在最低转速下安全运行,从而确保所述冷水机组20的节能效率达到最高。换句话说,所述变频控制系统30能直接监测所述冷水机组20的运行状态,以控制所述冷水机组20避开喘振区的运行状态,便于保证所述冷水机组20在最低转速下安全运行;与此同时,所述变频控制系统30通过优化所述冷水机组20的所述电机232的转速和所述冷水机组20的所述调节阀233的导流叶片开度,使得所述冷水机组20能在低负荷时以低转速的方式运行,进而降低所述冷水机组20的所述电机232的输入功率,从而提高所述冷水机组20的所述电机232的功率因数,通常达到0.95以上,以减小所述冷水机组20的功耗。
值得一提的是,所述变频控制系统30不仅适于被应用于一新建中央空调系统,使得该新建中央空调系统能被所述变频控制系统30控制以降低其在低负荷运行时的能耗;而且所述变频控制系统30还适于被应用于改造一现有的中央空调系统,使得该现有的中央空调系统的工频恒速式冷水机组能被所述变频控制系 统30进行变频调节,以使该现有的中央空调系统的冷水机组始终保持在最佳匹配下运行,从而降低该现有的中央空调系统在低负荷运行时的能耗。
在本发明的所述较佳实施例中,所述变频控制系统30还能够优化所述中央空调的所述冷水机组20的启动性能,以在保证所述冷水机组20平稳启动的同时,还能够将所述冷水机组20的传动系统运行磨损减小至最小。具体地,在启动所述中央空调的所述冷水机组20时,通过所述变频控制系统30的所述转速控制模块341发送一启动控制信号至所述变频模块35,接着所述变频模块35向所述冷水机组20的所述压缩机23的所述电机232提供一由低至高的电源频率,使得所述压缩机23的所述电机232从1Hz开始启动,不仅能够确保所述电机232平稳地启动,而且还能够避免所述电机232的启动电流超过所述电机232的满负荷电流,以保证所述冷水机组20安全启动。此外,所述冷水机组20的所述电机232的工作转速大部分时间都小于所述电机232的设计转速或满负荷转速,使得所述压缩机23的磨损较小,便于延长所述压缩机23的使用寿命。
根据本发明的另一方面,如图3所示,本发明进一步提供了一变频控制方法,包括步骤:
S1:分别获得一冷水机组2的一出水温度信息、一位置信息、一蒸发压力信息、一冷凝压力信息以及一实际转速信息;
S2:比较所述出水温度信息和一预设温度信息,以获得所述冷水机组20的一温度偏差信息;
S3:比较所述冷凝压力信息和所述蒸发压力信息,以获得所述冷水机组20的一压头信息;
S4:分析所述压头信息和所述实际转速信息,以获得所述冷水机组20的一转速余量信息;以及
S5:基于所述温度偏差信息、所述转速余量信息和所述位置信息,同步控制并调节所述电机232的转速和所述调节阀233的所述导流叶片开度,使得所述温度偏差信息保持为零。
值得注意的是,在所述变频控制方法中,对所述步骤S2和所述步骤S3的先后次序不做限制,换句话说,所述步骤S2可以在所述步骤S3之前执行,也可以在所述步骤S3之后执行,还可以与所述步骤S3同步执行。当然,所述步骤S4也可以在所述步骤S2之前被执行。
进一步地,在所述变频控制方法中,当所述温度偏差信息为负值,所述位置信息为1以及所述速度余量信息为正值时,先保持所述调节阀233的导流叶片开度不变,调节以减小所述电机232的转速,使得所述速度余量信息减小;接着,当所述速度余量信息减小至零时,保持所述电机232的转速不变,调节以减小所述调节阀233的所述导流叶片的位置信息,使得所述调节阀233的所述导流叶片开度减小;最后,随着所述位置信息的减小,当所述冷水机组20的运行状态邻近所述冷水机组20的喘振区时,在继续调节以减小所述调节阀233的所述导流叶片开度的同时,调节以增大所述电机232的转速,直至所述调节阀233的所述导流叶片开度为零为止。
此外,在所述变频控制方法中,当所述温度偏差信息为正值,所述位置信息为0以及所述速度余量信息为正值时,在继续调节以增大所述调节阀233的所述导流叶片开度的同时,调节以减小所述电机232的转速,使得所述速度余量信息变小;接着,当所述速度余量信息为零时,保持所述电机232的转速不变,继续调节以增大所述调节阀233的所述导流叶片的位置信息,使得所述调节阀233的所述导流叶片开度变大;最后,当所述调节阀233的所述位置信息为1时,保持所述调节阀233的所述导流叶片开度不变,调节以增大所述电机232的转速,直至所述冷水机组20满负荷运行为止。
本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为举例而并不限制本发明。本发明的目的已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发明的实施方式可以有任何变形或修改。

Claims (16)

  1. 一变频控制系统,供控制一中央空调的一冷水机组,其特征在于,包括:
    一探测模块,用于探测以获得该冷水机组的一出水温度信息、一位置信息、一实际转速信息、一蒸发压力信息以及一冷凝压力信息;
    一比较模块,用于基于该出水温度信息、该冷凝压力信息以及该蒸发压力信息,获得该冷水机组的一温度偏差信息和一压头信息;
    一分析模块,用于基于该实际转速信息和该压头信息,获得该冷水机组的一转速余量信息;以及
    一控制模块,用于基于该位置信息、该温度偏差信息以及该转速余量信息,控制并调节该压缩机的该电机的转速和该调节阀的导流叶片开度。
  2. 如权利要求1所述的变频控制系统,其中,所述探测模块包括一温度探测模块、一位置探测模块、一转速探测模块以及两压力探测模块,其中所述温度探测模块用于探测该冷水机组中冷冻水的出水温度,以获得该出水温度信息;所述位置探测模块用于探测该冷水机组中一压缩机的一调节阀的导流叶片的位置,以获得该位置信息;所述转速探测模块用于探测该冷水机组中该压缩机的一电机的实际转速,以获得该实际转速信息;所述两压力探测模块之一用于探测该冷水机组中一蒸发器的蒸发压力,以获得该蒸发压力信息;所述两压力探测模块之另一用于探测该冷水机组中一冷凝器的冷凝压力,以获得该冷凝压力信息。
  3. 如权利要求2所述的变频控制系统,其中,所述比较模块包括一温度比较模块和一压力比较模块,其中所述温度比较模块与所述温度探测模块可通信地连接,用于接收并比较该出水温度信息和一预设温度信息,以获得该温度偏差信息;所述压力比较模块与所述两压力探测模块可通信地连接,用于接收并比较该冷凝压力信息和该蒸发压力信息,以获得该压头信息。
  4. 如权利要求3所述的变频控制系统,其中,所述分析模块包括相互可通信地连接的一压头分析模块和一转速分析模块,其中所述压头分析模块与所述压力比较模块可通信地连接,用于接收并分析该压头信息,以获得该冷水机组的一最小转速信息;所述转速分析模块与所述转速探测模块可通信地连接,用于接收并分析该实际转速信息和该最小转速信息,以获得该转速余量信息。
  5. 如权利要求4所述的变频控制系统,其中,所述控制模块包括一转速控 制模块和一开度控制模块,其中所述转速控制模块与所述位置探测模块、所述温度比较模块以及所述转速分析模块可通信地连接,用于基于该位置信息、该温度偏差信息以及该转速余量信息,生成并发送一转速控制信号至该压缩机的该电机,以自动地调节该电机的转速;所述开度控制模块与所述位置探测模块、所述温度比较模块以及所述转速分析模块可通信地连接,用于基于该位置信息、该温度偏差信息以及该转速余量信息,生成并发送一开度控制信号至该压缩机的该调节阀,以自动地调节该调节阀的导流叶片开度。
  6. 如权利要求5所述的变频控制系统,还包括一变频模块,其中所述变频模块与所述转速控制模块和该电机可通信地连接,其中所述变频模块用于基于所述转速控制信号,改变为该电机提供的电源频率,进而改变该电机的转速。
  7. 如权利要求2~6中任一所述的变频控制系统,其中,所述温度探测模块为一被设置于该冷水机组的冷冻水出口处的温度探头,所述位置探测模块为一被设置于该压缩机的该调节阀的导流叶片位置探头,所述两压力探测模块之一为一被设置于该冷水机组的该蒸发器的压力探头,所述两压力探测模块之另一为一被设置于该冷水机组的该冷凝器的压力探头,所述转速探测模块为一被设置于该压缩机的该电机的转速探头。
  8. 一变频控制方法,其特征在于,包括步骤:
    分别获得一中央空调的一冷水机组的一出水温度信息、一位置信息、一蒸发压力信息、一冷凝压力信息以及一实际转速信息;
    比较该出水温度信息和一预设温度信息,以获得该冷水机组的一温度偏差信息;
    比较该冷凝压力信息和该蒸发压力信息,以获得该冷水机组的一压头信息;
    分析该压头信息和该实际转速信息,以获得该冷水机组的一转速余量信息;以及
    基于该温度偏差信息、该位置信息以及该转速余量信息,自动地控制以调节该冷水机组的一电机的转速和一调节阀的导流叶片开度,使得所述温度偏差信息保持为零。
  9. 如权利要求8所述的变频控制方法,还包括步骤:
    当该温度偏差信息为负值,该位置信息为1以及该速度余量信息为正值时,保持该调节阀的导流叶片开度不变,调节以减小该电机的转速,直至该温度偏差 信息为零;
    当该温度偏差信息为负值,该位置信息小于1以及该速度余量信息为零时,保持该电机的转速不变,调节以减小该调节阀的导流叶片开度,直至该温度偏差信息为零;以及
    当该温度偏差信息为负值,该位置信息小于1以及该速度余量信息为正值时,在调节以减小该调节阀的导流叶片开度的同时,调节以增大该电机的转速。
  10. 如权利要求8所述的变频控制方法,还包括步骤:
    当该温度偏差信息为正值,该位置信息为1以及该速度余量信息为正值时,保持该调节阀的导流叶片开度不变,调节以增大该电机的转速,直至该温度偏差信息为零;
    当该温度偏差信息为正值,该位置信息小于1以及该速度余量信息为零时,保持该电机的转速不变,调节以增大该调节阀的导流叶片开度,直至该温度偏差信息为零;以及
    当该温度偏差信息为正值,该位置信息小于1以及该速度余量信息为正值时,在调节以增大该调节阀的导流叶片开度的同时,调节以减小该电机的转速。
  11. 如权利要求8~10中任一所述的变频控制方法,其中,所述分别获得一中央空调的一冷水机组的一出水温度信息、一位置信息、一蒸发压力信息、一冷凝压力信息以及一实际转速信息的步骤,包括步骤:
    藉由一温度探测模块,探测该冷水机组的冷冻水的出水温度,以获得该出水温度信息;
    藉由一位置探测模块,探测该冷水机组的一压缩机的一调节阀的导流叶片位置,以获得该位置信息;
    藉由两压力探测模块,分别探测该冷水机组的一蒸发器的蒸发压力和一冷凝器的冷凝压力,以获得该蒸发压力信息和该冷凝压力信息;以及
    藉由一转速探测模块,探测该冷水机组的该压缩机的一电机的实际转速,以获得该实际转速信息。
  12. 如权利要求8~10中任一所述的变频控制方法,其中,所述比较该出水温度信息和一预设温度信息,以获得该冷水机组的一温度偏差信息的步骤,包括步骤:
    藉由一温度比较模块,求解该出水温度信息和该预设温度信息之间的差值, 以获得该温度偏差信息。
  13. 如权利要求8~10中任一所述的变频控制方法,其中,所述比较该冷凝压力信息和该蒸发压力信息,以获得该冷水机组的一压头信息的步骤,包括步骤:
    藉由一压力比较模块,求解该冷凝压力信息和该蒸发压力信息之间的差值,以获得该压头信息。
  14. 如权利要求8~10中任一所述的变频控制方法,其中,所述分析该压头信息和该实际转速信息,以获得该冷水机组的一转速余量信息的步骤,包括步骤:
    藉由一压头分析模块,分析该冷水机组的该压头信息,以获得该冷水机组的一最小转速信息;和
    藉由一转速分析模块,求解该实际转速信息和该最小转速信息之间的差值,以获得该转速余量信息。
  15. 如权利要求8~10中任一所述的变频控制方法,其中,所述基于该温度偏差信息、该位置信息以及该转速余量信息,自动地控制以调节该冷水机组的一电机的转速和一调节阀的导流叶片开度,使得所述温度偏差信息保持为零的步骤,包括步骤:
    藉由一转速控制模块,基于该温度偏差信息、该位置信息以及该转速余量信息,生成并发送一转速控制信号至该冷水机组,以控制并调节该电机的转速;和
    藉由一开度控制模块,基于该温度偏差信息、该位置信息以及该转速余量信息,生成并发送一开度控制信号至该冷水机组,以调节该调节阀的导流叶片开度。
  16. 如权利要求15所述的变频控制方法,其中,所述藉由一转速控制模块,基于该温度偏差信息、该位置信息以及该转速余量信息,生成并发送一转速控制信号至该冷水机组,以控制并调节该电机的转速的步骤,包括步骤:
    藉由一变频模块,基于该转速控制信号,调节以改变为该电机提供的电源频率,进而控制以改变该电机的转速。
PCT/CN2019/086405 2018-06-01 2019-05-10 变频控制系统及其控制方法 WO2019228173A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980030405.0A CN112074693A (zh) 2018-06-01 2019-05-10 变频控制系统及其控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810558049.7A CN108826602A (zh) 2018-06-01 2018-06-01 变频控制系统及其控制方法
CN201810558049.7 2018-06-01

Publications (1)

Publication Number Publication Date
WO2019228173A1 true WO2019228173A1 (zh) 2019-12-05

Family

ID=64145846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086405 WO2019228173A1 (zh) 2018-06-01 2019-05-10 变频控制系统及其控制方法

Country Status (2)

Country Link
CN (2) CN108826602A (zh)
WO (1) WO2019228173A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108826602A (zh) * 2018-06-01 2018-11-16 羾领节能科技(冷吨保)香港有限公司 变频控制系统及其控制方法
CN112283817A (zh) * 2020-09-17 2021-01-29 珠海格力电器股份有限公司 中央空调系统及其控制方法
CN115493318A (zh) 2021-06-17 2022-12-20 开利公司 离心压缩机的控制方法及空气调节系统
CN113864974B (zh) * 2021-09-27 2022-09-30 珠海格力电器股份有限公司 一种空调机组及其控制方法、装置、存储介质及处理器
CN116242069B (zh) * 2023-02-22 2023-11-14 哲弗智能系统(上海)有限公司 水冷机系统的控制方法和装置、水冷机系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1904503A (zh) * 2006-08-01 2007-01-31 周锋 恒速离心式冷水机组压缩机变频节能改造装置
CN105381890A (zh) * 2015-11-27 2016-03-09 重庆美的通用制冷设备有限公司 离心机机组的负荷调节方法和装置
CN108826602A (zh) * 2018-06-01 2018-11-16 羾领节能科技(冷吨保)香港有限公司 变频控制系统及其控制方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007101093A (ja) * 2005-10-06 2007-04-19 Denso Corp 空調装置およびその運転制御方法
JP2013083361A (ja) * 2011-10-06 2013-05-09 Panasonic Corp 冷凍サイクル装置
JP6191447B2 (ja) * 2013-12-25 2017-09-06 株式会社富士通ゼネラル 空気調和装置
CN104864620B (zh) * 2014-02-26 2019-01-01 荏原冷热系统株式会社 离心式制冷机
CN204787045U (zh) * 2015-06-25 2015-11-18 山东格瑞德集团有限公司 制冷空调冷媒流量实时控制装置
CN105004086B (zh) * 2015-07-20 2017-10-31 重庆美的通用制冷设备有限公司 螺杆冷水机组的控制方法、控制装置以及空调器
CN105805953A (zh) * 2016-03-18 2016-07-27 广东美的暖通设备有限公司 制热水模式中压缩机控制方法和装置
WO2018037458A1 (ja) * 2016-08-22 2018-03-01 三菱電機株式会社 冷凍サイクル装置、空気調和装置およびヒートポンプ冷温水発生装置
CN207178212U (zh) * 2016-09-14 2018-04-03 上海方久轧制油净化技术有限公司 带有冷冻装置的真空机组
CN106894977B (zh) * 2016-12-31 2020-02-21 卧龙电气驱动集团股份有限公司 多变频控制系统及控制方法
CN107367013B (zh) * 2017-06-06 2019-11-12 珠海格力电器股份有限公司 控制压缩机的方法、装置和系统
CN208750949U (zh) * 2018-06-01 2019-04-16 羾领节能科技(冷吨保)香港有限公司 变频控制系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1904503A (zh) * 2006-08-01 2007-01-31 周锋 恒速离心式冷水机组压缩机变频节能改造装置
CN105381890A (zh) * 2015-11-27 2016-03-09 重庆美的通用制冷设备有限公司 离心机机组的负荷调节方法和装置
CN108826602A (zh) * 2018-06-01 2018-11-16 羾领节能科技(冷吨保)香港有限公司 变频控制系统及其控制方法

Also Published As

Publication number Publication date
CN112074693A (zh) 2020-12-11
CN108826602A (zh) 2018-11-16

Similar Documents

Publication Publication Date Title
WO2019228173A1 (zh) 变频控制系统及其控制方法
CN105953602B (zh) 一种用于冷却塔的节能控制方法、装置及空调系统
CN109751911B (zh) 冷却塔风机频率自适应调节方法及空调系统
CN110260492B (zh) 一种变频空调制冷模式下的风机及压缩机控制方法
CN108895601B (zh) 基于磁悬浮主机的中央空调群控方法
CN113739371B (zh) 一种基于云端协同的中央空调系统及其控制方法
CN208365626U (zh) 一种热泵采暖变频系统
CN110822676B (zh) 控制方法、控制装置、空调器和计算机可读存储介质
CN107894045B (zh) 空调系统的节流控制方法、装置与空调器
CN113915719B (zh) 一种中央空调水泵实时变频控制方法及控制器
CN114459133B (zh) 一种中央空调系统节能控制方法及节能控制系统
CN110986276A (zh) 一种水多联系统防冻控制方法、计算机可读存储介质及空调
CN107906640A (zh) 一种用于数据中心的集成蓄冷空调系统及其控制方法
CN114611288A (zh) 一种中央空调系统智能化高效机房节能算法模型
CN108800480A (zh) 一种空调压缩机运行频率的控制系统及方法
CN108759033A (zh) 一种空调机组冷凝风机的控制方法
CN103307711B (zh) 空调控制系统及控制方法
CN114893851B (zh) 一种基于双蒸发温度制冷系统的实验室新风机组
CN107906682B (zh) 一种空调系统的控制方法、装置与空调器
CN113324312B (zh) 空调机组的控制方法和空调机组
CN117387250A (zh) 多模块空气源热泵系统及其分组控制方法
CN211345737U (zh) 热回收离心机组热回收侧控制系统
CN108534309B (zh) 空调系统及其控制方法
CN208750949U (zh) 变频控制系统
CN114992611A (zh) 一种热泵蒸汽供热装置以及控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19811000

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/04/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19811000

Country of ref document: EP

Kind code of ref document: A1