WO2019227881A1 - 一种地层压力测试物理模拟与刻度装置及方法 - Google Patents

一种地层压力测试物理模拟与刻度装置及方法 Download PDF

Info

Publication number
WO2019227881A1
WO2019227881A1 PCT/CN2018/117456 CN2018117456W WO2019227881A1 WO 2019227881 A1 WO2019227881 A1 WO 2019227881A1 CN 2018117456 W CN2018117456 W CN 2018117456W WO 2019227881 A1 WO2019227881 A1 WO 2019227881A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
formation
hydraulic cylinder
control system
servo motor
Prior art date
Application number
PCT/CN2018/117456
Other languages
English (en)
French (fr)
Inventor
马天寿
陈平
汪兴明
付建红
Original Assignee
西南石油大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西南石油大学 filed Critical 西南石油大学
Priority to US16/604,518 priority Critical patent/US11067492B2/en
Publication of WO2019227881A1 publication Critical patent/WO2019227881A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/082Investigating permeability by forcing a fluid through a sample
    • G01N15/0826Investigating permeability by forcing a fluid through a sample and measuring fluid flow rate, i.e. permeation rate or pressure change
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/06Measuring temperature or pressure
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/006Measuring wall stresses in the borehole
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/082Investigating permeability by forcing a fluid through a sample
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/02Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells by mechanically taking samples of the soil

Definitions

  • the basic principle of formation pressure testing while drilling Install a test probe on the side wall of the test tool.
  • the test probe is pushed against the well wall and the formation fluid is pumped by the suction system to generate a pressure drop.
  • the pressure in the pre-test chamber is recorded by a pressure gauge.
  • the test pressure response can be roughly divided into (a) before the test, pushing the probe (b), pressure drop (c), and pressure recovery. (d) and (e) five stages after testing.
  • Three servo motors drive the second reducer, the third reducer, the second ball screw, and the third ball screw to drive the pistons in the second hydraulic cylinder and the third hydraulic cylinder to push out the simulated fluid of formation pressure and annulus pressure into Core holder to realize the application of formation pressure and annulus pressure; simulate the physical environment of formation rocks during formation pressure test by applying confining pressure, formation pressure and annulus pressure, including confining pressure, formation pressure and annulus The pressure is automatically controlled by the computer;
  • Step S7 The test end sequence controls the corresponding servo motor to drive the reducer and the ball screw through the drive control system to drive the piston in the hydraulic cylinder to retract to release the confining pressure, formation pressure and annulus pressure; the fourth is controlled by the drive control system The servo motor drives the fourth reducer and the fourth ball screw, with the power sensor, thrust rod and analog probe unsealed from the right end face of the rock core; the fifth servo motor is controlled by the drive control system to drive the fifth reducer and the fifth ball The lead screw drives the piston in the fifth hydraulic cylinder to discharge formation fluid;
  • the suction system includes a fifth servo motor 25.
  • One end of the fifth servo motor 25 is connected to the drive control system 1, and the other end is connected to the fifth reducer 35, the fifth ball screw 45, the fifth hydraulic cylinder 55, and the fifth
  • the high-pressure cut-off valve 16 is finally connected to the thrust rod 12 through a pipeline;
  • the fifth hydraulic cylinder 55 is provided with a fifth pressure sensor 65, and the fifth pressure sensor 65 collects a suction signal and feeds it back to the drive control system 1.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geology (AREA)
  • Chemical & Material Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Health & Medical Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Dispersion Chemistry (AREA)
  • Remote Sensing (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Geophysics (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

公开了一种地层压力测试物理模拟与刻度装置及方法,该装置包括有岩芯夹持器(10),岩芯夹持器(10)内设有岩芯(14);还包括围压模拟模块、地层压力模拟模块、环空压力模拟模块、抽吸系统、推靠力模拟模块和驱动控制系统(1),推靠力模拟模块上设有推力杆(12),推力杆(12)贯通岩芯夹持器(10)一侧腔壁;推力杆(12)前端设置有模拟探头(13),抽吸系统连接于推力杆(12)上;围压模拟模块、地层压力模拟模块、环空压力模拟模块、推靠力模拟模块和抽吸系统均与驱动控制系统(1)连接。该装置可模拟地层压力测试的物理环境,实现对地层压力测试的物理模拟,并可校准和刻度地层压力测试器,提升地层压力测试能力和控制精度。

Description

一种地层压力测试物理模拟与刻度装置及方法 技术领域
本发明涉及油气资源勘探开发领域的随钻地层压力测量仪器技术领域,尤其是涉及一种地层压力测试物理模拟与刻度装置及方法。
背景技术
地层压力是指地层孔隙内流体(油、气、水)的压力,亦称为地层压力。对于深地勘探、油气开采、地热开发、CO 2地质埋存、核废料地质处置等涉及深井钻井的工程,地层压力是重要的基础参数之一,准确地预测、检测地层压力意义重大。地层压力通常随深度线性增加,若以静水压力梯度增加则为正常压力,若低于正常压力梯度则为异常低压,若高于正常压力梯度则为异常高压。异常地层压力给钻井工程、油气开采、地热开发、CO 2地质埋存、核废料地质处置带来了一系列挑战,如果不能准确地预测、检测,轻者造成工程复杂,重者可能造成经济损失和人员伤亡,后果非常严重。
常规地层压力获取方法主要包括地震波法、钻速法、测井法和地层测试法,但常规地层压力获取方法往往存在精度不高、时间滞后等诸多问题。随着电缆地层测试技术的不断应用、发展以及钻井工程新需求的推动,20世纪90年代中后期,结合随钻测量技术提出了随钻地层压力测试的概念,将测试器安装于井底钻具组合中,在钻井作业暂停期间测试地层压力。为了解决这一问题,Halliburton公司在电缆地层测试器基础上研发出了一种探头结构的随钻地层测试器—Geo-Tap系统;随后,国外各大油服公司相继研发出了类似探头结构的测试器,如Baker Hughes公司的Tes-Trak系统,Schlumberger公司的Stetho-Scope系统,Weatherford公司的Compact-MFT系统。随钻地层压力测试在钻井过程中进行地层压力测试,有效解决了传统方法存在的耗时长、成本高、风险大、时间滞后等一系列难题。近年来,国内也在积极开展随钻地层压力测试器的研发,但是,随钻地层压力测试器主要由国外大型油服公司垄断,国内尚无完全成熟且具有自主知识产权的随钻地层压力测试器,国内研制的SDC-I型随钻地层压力测试器相对成熟,但稳定性和可靠性仍存在较多问题,迫切需要进一步开展相关物理模拟、测试技术和测试工具的研究。
地层压力随钻测试的基本原理:在测试工具侧壁上安装测试探头,测试探头推靠后贴紧井壁地层,由抽吸系统抽吸地层流体产生压降,通过压力计记录预测试室压力随时间的变化曲线,当时间足够长时,测试探头附近地层压力恢复至原始地层压力。地层压力随钻测试过 程中,抽吸系统预测试室的压力动态响应非常关键,测试压力响应可大致分为测试前(a)、探测头推靠(b)、压力下降(c)、压力恢复(d)和测试后(e)五个阶段。由于地层压力随钻测试不可能进行长期的压力恢复测试,因此,必须根据测试压力响应曲线计算出地层压力、渗透率、流体流度、地层损害程度等地层的动态参数,此时,压力下降(c)和压力恢复(d)两个阶段关系就显得至关重要,直接影响地层压力等参数的测试精度。为了准确计算或刻度地层压力随钻测试过程中的地层压力等动态参数,物理模拟实验是一种重要手段。但是,针对地层压力测试开展的物理模拟实验和刻度研究工作还很少,现有实验装置在解释与刻度地层渗透率、流度等其他动态参数时精度不够,主要由于现有实验装置的地层压力、围压和井筒压力控制精度不够,而且未见高地层压力情况下的物模实验装置报道。因此,有必要设计并研制高压力高精度的地层压力测试物理模拟与刻度的伺服控制装置,提升地层压力测试的设计、验证与研制能力和水平,加速我国随钻地层压力测试器的研发进程。
发明内容
为了解决上述问题,本发明提出了一种地层压力测试物理模拟与刻度装置及方法,该装置采用了五路液压伺服控制方案分别控制模拟围压、地层压力、环空压力和测试探头推靠力,可以模拟地层压力测试的物理环境和地层流体抽吸测试过程,实现对地层压力测试的物理模拟,通过数据解释和分析实现地层压力、地层流度、地层渗透率、仪器参数等参数的刻度。
为了实现上述目的,本发明采用如下技术方案:一种地层压力测试物理模拟与刻度装置,该装置包括设置于外部的机箱架体、用于提供动力的伺服电机和作为测试标的的岩芯。
所述装置包括有设置在机箱架体上的岩芯夹持器,岩芯夹持器内设置有岩芯,岩芯与岩芯夹持器之间留有环空间隙,环空间隙被密封垫片分隔为位于岩芯周侧的围压腔和位于岩芯前后两端的地层压力腔、环空压力腔;所述岩芯夹持器在围压腔、地层压力腔和环空压力腔对应的腔壁上分别开设有围压注入孔、地层压力注入孔和环空压力注入孔,围压注入孔、地层压力注入孔和环空压力注入孔的输入端分别连接围压模拟模块、地层压力模拟模块和环空压力模拟模块。
所述装置还包括推靠力模拟模块,推靠力模拟模块上设置有推力杆,推力杆贯通岩芯夹持器一侧腔壁,并由密封垫片密封;所述推力杆前端设置有模拟探头,模拟探头与岩芯夹持器腔壁之间留有环空间隙。
所述装置还包括抽吸系统,抽吸系统与推力杆连接。
所述装置还包括驱动控制系统,围压模拟模块、地层压力模拟模块、环空压力模拟模块、推靠力模拟模块和抽吸系统均与驱动控制系统连接。
进一步地,所述围压模拟模块包括第一伺服电机,第一伺服电机的一端连接驱动控制系统,另一端依次连接第一减速器、第一滚珠丝杠、第一液压缸、第一组高压截止阀B和第一安全阀,最终连接至围压注入孔;所述围压模拟模块还包括有油箱,油箱中装入液压油,油箱设置于第一液压缸和第一组高压截止阀B之间,且与油箱的连接管路上还设置有第一组高压截止阀A;所述第一液压缸上设置有第一压力传感器,第一压力传感器采集围压信号反馈给驱动控制系统。
进一步地,所述地层压力模拟模块包括第二伺服电机,第二伺服电机的一端连接驱动控制系统,另一端依次连接第二减速器、第二滚珠丝杠、第二液压缸、第二组高压截止阀B和第二安全阀,最终连接至地层压力注入孔;所述地层压力模拟模块还包括有第二容器,第二容器装入模拟地层流体,第二容器设置于第二液压缸和第二组高压截止阀B之间,且与第二容器的连接管路上还设置有第二组高压截止阀A;所述第二液压缸上设置有第二压力传感器,第二压力传感器采集地层压力信号反馈给驱动控制系统。
进一步地,所述环空压力模拟模块包括第三伺服电机,第三伺服电机的一端连接驱动控制系统,另一端依次连接第三减速器、第三滚珠丝杠、第三液压缸、第三组高压截止阀B和第三安全阀,最终连接至环空压力注入孔;所述环空压力模拟模块还包括有第三容器,第三容器装入模拟钻井液,第三容器设置于第三液压缸和第三组高压截止阀B之间,且与第三容器的连接管路上还设置有第三组高压截止阀A;所述第三液压缸上设置有第三压力传感器,第三压力传感器采集环空压力信号反馈给驱动控制系统。
进一步地,所述推靠力模拟模块还包括第四伺服电机,第四伺服电机的一端连接驱动控制系统,另一端依次连接第四减速器、第四滚珠丝杠和第四液压缸,第四液压缸与推力杆连接,且第四液压缸与推力杆之间设置有力传感器,力传感器采集推靠力信号反馈给驱动控制系统。
进一步地,所述抽吸系统包括第五伺服电机,第五伺服电机的一端连接驱动控制系统,另一端依次连接第五减速器、第五滚珠丝杠、第五液压缸和第五高压截止阀,最终通过管路与推力杆连接;所述第五液压缸上设置有第五压力传感器,第五压力传感器采集抽吸信号反馈给驱动控制系统。
优化地,所述抽吸系统与推力杆连接的管路上还设置有外接抽吸系统接口,可连接外部抽吸系统,外接抽吸系统接口的前端设置有第六高压截止阀。
进一步地,所述岩芯外侧包裹有橡胶套。
本发明装置的模拟与刻度方法,包括以下步骤:
步骤S1.准备阶段,根据试验需求制备岩芯,以及准备模拟流体;
步骤S2.安装岩芯,关闭第一组所有高压截止阀B,拆卸岩芯夹持器,手动更换好岩芯和模拟探头的密封垫片,再装好岩芯夹持器;
步骤S3.注入模拟流体,关闭所有高压截止阀A,并分别向油箱、第二容器和第三容器中注入液压油、模拟地层流体和模拟钻井液;打开系统电源,打开所有高压截止阀A,通过驱动控制系统分别控制对应的伺服电机驱动减速器以及滚珠丝杠,带动液压缸中的活塞吸入相应的模拟流体进入液压缸;
步骤S4.施加物理模拟环境压力,关闭所有高压截止阀A,打开所有高压截止阀B,关闭第五高压截止阀、第六高压截止阀;首先,通过驱动控制系统控制第一伺服电机驱动第一减速器和第一滚珠丝杠,带动第一液压缸中的活塞推出围压的液压油流体进入岩芯夹持器,实现围压的施加;然后,通过驱动控制系统控制第二伺服电机、第三伺服电机驱动第二减速器、第三减速器和第二滚珠丝杠、第三滚珠丝杠,带动第二液压缸、第三液压缸中的活塞推出地层压力和环空压力的模拟流体进入岩芯夹持器,实现地层压力和环空压力的施加;通过施加围压、地层压力和环空压力模拟地层压力测试过程中地层岩石所处的物理环境,其中围压、地层压力和环空压力的大小通过计算机自动控制;
步骤S5.探头座封,打开第五高压截止阀或第六高压截止阀,然后通过驱动控制系统控制第四伺服马达驱动第四减速器和第四滚珠丝杠,带动力传感器、推力杆使模拟探头座封在岩芯的右端面,推靠力和推靠位移通过计算机自动控制;
步骤S6.启动抽吸序列,通过驱动控制系统控制第五伺服马达驱动第五减速器和第五滚珠丝杠,带动第五液压缸中的活塞从岩芯中吸入模拟地层流体,模拟地层流体经过模拟探头、推力杆、高压截止阀进入第五液压缸,抽吸完成后继续等待压力恢复,而第五压力传感器记录抽吸测试过程中的压力响应;如果压力进行分步多次抽吸测试,重复步骤S即可实现;
步骤S7.测试结束序列,通过驱动控制系统控制相应伺服电机驱动减速器和滚珠丝杠,带动液压缸中的活塞缩回,释放围压、地层压力和环空压力;通过驱动控制系统控制第四伺服马达驱动第四减速器和第四滚珠丝杠,带动力传感器、推力杆和模拟探头从岩芯的右端面解封;通过驱动控制系统控制第五伺服电机驱动第五减速器和第五滚珠丝杠,带动第五液压缸中的活塞排出地层流体;
步骤S8.结束测试,关闭第一组所有高压截止阀B,打开所有高压截止阀A,通过驱动控制系统控制相应伺服电机驱动减速器和滚珠丝杠,带动液压缸中的活塞排出相应的模拟流体;关闭电源,拆卸岩芯夹持器,手动取出岩芯和模拟探头的密封垫片,并装好岩芯夹持器,整理实验平台。
需要说明的是,在步骤S6中如果采用外接抽吸系统,其操作步骤如下,通过外部驱动控 制系统控制外接抽吸系统吸入模拟地层流体,模拟地层流体经过模拟探头、推力杆、高压截止阀进入抽吸系统液压缸,抽吸完成后继续等待压力恢复,同时系统压力传感器记录抽吸测试过程中的压力响应;如果压力进行分步多次抽吸测试,重复步骤S6即可实现;
对于步骤S7,如果采用外接抽吸系统,通过外部驱动控制系统控制抽吸系统排出模拟地层流体,如果压力进行多次重复式抽吸测试,重复步骤S6和步骤S7即可实现。
与现有技术相比,本发明的有益效果在于:可模拟地层压力测试的物理环境和地层流体抽吸测试过程,实现对地层压力测试的物理模拟,可以校准和刻度地层压力测试器,提升地层压力测试能力和控制精度;能够提升我国在地层压力测试的设计、验证与研制能力的水平,加快我国对于地层压力测试器的研发进程。
附图说明
图1为本发明的结构原理示意图;
图2为本发明的系统参数控制精度监控图;
图3为本发明的地层压力测试压力相应曲线图;
附图标记说明:1-驱动控制系统;21-第一伺服电机;22-第二伺服电机;23-第三伺服电机;24-第四伺服电机;25-第五伺服电机;31-第一减速器;32-第二减速器;33-第三减速器;34-第四减速器;35-第五减速器;41-第一滚珠丝杠;42-第二滚珠丝杠;43-第三滚珠丝杠;44-第四滚珠丝杠;45-第五滚珠丝杠;51-第一液压缸;52-第二液压缸;53-第三液压缸;55-第五液压缸;61-第一压力传感器;62-第二压力传感器;63-第三压力传感器;65-第五压力传感器;71-第一组高压截止阀A;72-第二组高压截止阀A;73-第三组高压截止阀A;81-第一组高压截止阀B;82-第二组高压截止阀B;83-第三组高压截止阀B;91-油箱;92-第二容器;93-第三容器;10-岩芯夹持器;11-力传感器;12-推力杆;13-模拟探头;14-岩芯;151-第一安全阀;152-第二安全阀;153-第三安全阀;16-第五高压截止阀;17第六高压截止阀。
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图说明本发明的具体实施方式,但本发明的保护范围不局限于以下所述。
如图1所示,一种地层压力测试物理模拟与刻度装置,该装置包括设置于外部的机箱架体、用于提供动力的伺服电机和作为测试标的的岩芯14。
所述装置包括有设置在机箱架体上的岩芯夹持器10,岩芯夹持器10内设置有岩芯14,岩芯14与岩芯夹持器10之间留有环空间隙,环空间隙被密封垫片分隔为位于岩芯14周侧的围压腔和位于岩芯14前后两端的地层压力腔、环空压力腔;所述岩芯夹持器10在围压腔、 地层压力腔和环空压力腔对应的腔壁上分别开设有围压注入孔、地层压力注入孔和环空压力注入孔,围压注入孔、地层压力注入孔和环空压力注入孔的输入端分别连接围压模拟模块、地层压力模拟模块和环空压力模拟模块。
所述装置还包括推靠力模拟模块,推靠力模拟模块上设置有推力杆12,推力杆12贯通岩芯夹持器10一侧腔壁,并由密封垫片密封;所述推力杆12前端设置有模拟探头13,模拟探头13与岩芯夹持器10腔壁之间留有环空间隙。
所述装置还包括抽吸系统,抽吸系统与推力杆12连接。
所述装置还包括驱动控制系统1,围压模拟模块、地层压力模拟模块、环空压力模拟模块、推靠力模拟模块和抽吸系统均与驱动控制系统1连接。
所述围压模拟模块包括第一伺服电机21,第一伺服电机21的一端连接驱动控制系统1,另一端依次连接第一减速器31、第一滚珠丝杠41、第一液压缸51、第一组高压截止阀B81和第一安全阀151,最终连接至围压注入孔;所述围压模拟模块还包括有油箱91,油箱91中装入液压油,油箱91设置于第一液压缸51和第一组高压截止阀B81之间,且与油箱91的连接管路上还设置有第一组高压截止阀A71;所述第一液压缸51上设置有第一压力传感器61,第一压力传感器61采集围压信号反馈给驱动控制系统1。
所述地层压力模拟模块包括第二伺服电机22,第二伺服电机22的一端连接驱动控制系统1,另一端依次连接第二减速器32、第二滚珠丝杠42、第二液压缸52、第二组高压截止阀B82和第二安全阀152,最终连接至地层压力注入孔;所述地层压力模拟模块还包括有第二容器92,第二容器92装入模拟地层流体,第二容器92设置于第二液压缸52和第二组高压截止阀B82之间,且与第二容器92的连接管路上还设置有第二组高压截止阀A72;所述第二液压缸52上设置有第二压力传感器62,第二压力传感器62采集地层压力信号反馈给驱动控制系统1。
所述环空压力模拟模块包括第三伺服电机23,第三伺服电机23的一端连接驱动控制系统1,另一端依次连接第三减速器33、第三滚珠丝杠43、第三液压缸53、第三组高压截止阀B83和第三安全阀153,最终连接至环空压力注入孔;所述环空压力模拟模块还包括有第三容器93,第三容器93装入模拟钻井液,第三容器93设置于第三液压缸53和第三组高压截止阀B83之间,且与第三容器93的连接管路上还设置有第三组高压截止阀A73;所述第三液压缸53上设置有第三压力传感器63,第三压力传感器63采集环空压力信号反馈给驱动控制系统1。
所述推靠力模拟模块还包括第四伺服电机24,第四伺服电机24的一端连接驱动控制系统1,另一端依次连接第四减速器34、第四滚珠丝杠44和第四液压缸54,第四液压缸54与 推力杆12连接,且第四液压缸54与推力杆12之间设置有力传感器11,力传感器11采集推靠力信号反馈给驱动控制系统1。
所述抽吸系统包括第五伺服电机25,第五伺服电机25的一端连接驱动控制系统1,另一端依次连接第五减速器35、第五滚珠丝杠45、第五液压缸55和第五高压截止阀16,最终通过管路与推力杆12连接;所述第五液压缸55上设置有第五压力传感器65,第五压力传感器65采集抽吸信号反馈给驱动控制系统1。
所述抽吸系统与推力杆12连接的管路上还设置有外接抽吸系统接口,可连接外部抽吸系统,外接抽吸系统接口的前端设置有第六高压截止阀17。
所述岩芯14外侧包裹有橡胶套。
如图1~图3所示,本发明装置的模拟与刻度方法,包括以下步骤:
步骤S1.准备阶段,根据试验需求制备岩芯14,以及准备模拟流体;
步骤S2.安装岩芯14,关闭所有高压截止阀B,拆卸岩芯夹持器10,手动更换好岩芯14和模拟探头13的密封垫片,再装好岩芯夹持器10;
步骤S3.注入模拟流体,关闭所有高压截止阀A,并分别向油箱91、第二容器92和第三容器93中分别注入液压油、模拟地层流体和模拟钻井液;打开系统电源,打开所有高压截止阀A,通过驱动控制系统1分别控制对应的伺服电机驱动减速器以及滚珠丝杠,带动液压缸中的活塞吸入相应的模拟流体进入液压缸;
步骤S4.施加物理模拟环境压力,关闭所有高压截止阀A,打开所有高压截止阀B,关闭第五高压截止阀16、第六高压截止阀17;首先,通过驱动控制系统1控制第一伺服电机21驱动第一减速器31和第一滚珠丝杠41,带动第一液压缸51中的活塞推出围压的液压油流体进入岩芯夹持器10,实现围压的施加;然后,通过驱动控制系统1控制第二伺服电机22、第三伺服电机23驱动第二减速器32、第三减速器33和第二滚珠丝杠42、第三滚珠丝杠43,带动第二液压缸52、第三液压缸53中的活塞推出地层压力和环空压力的模拟流体进入岩芯夹持器10,实现地层压力和环空压力的施加;通过施加围压、地层压力和环空压力模拟地层压力测试过程中地层岩石所处的物理环境,其中围压、地层压力和环空压力的大小通过计算机自动控制;
步骤S5.探头座封,打开第五高压截止阀16或第六高压截止阀17,然后通过驱动控制系统1控制第四伺服马达24驱动第四减速器34和第四滚珠丝杠44,带动力传感器11、推力杆12使模拟探头13座封在岩芯14的右端面,推靠力和推靠位移通过计算机自动控制;
步骤S6.启动抽吸序列,通过驱动控制系统1控制第五伺服马达25驱动第五减速器35和第五滚珠丝杠45,带动第五液压缸55中的活塞从岩芯14中吸入模拟地层流体,模拟地层 流体经过模拟探头13、推力杆12、高压截止阀16进入第五液压缸55,抽吸完成后继续等待压力恢复,而第五压力传感器65记录抽吸测试过程中的压力响应;如果压力进行分步多次抽吸测试,重复步骤S6即可实现;
步骤S7.测试结束序列,通过驱动控制系统1控制相应伺服电机驱动减速器和滚珠丝杠,带动液压缸中的活塞缩回,释放围压、地层压力和环空压力;通过驱动控制系统1控制第四伺服马达24驱动第四减速器34和第四滚珠丝杠44,带动力传感器11、推力杆12和模拟探头13从岩芯14的右端面解封;通过驱动控制系统1控制第五伺服电机55驱动第五减速器35和第五滚珠丝杠45,带动第五液压缸55中的活塞排出地层流体;
步骤S8.结束测试,关闭第一组所有高压截止阀B,打开所有高压截止阀A,通过驱动控制系统1控制相应伺服电机驱动减速器和滚珠丝杠,带动液压缸中的活塞排出相应的模拟流体;关闭电源,拆卸岩芯夹持器10,手动取出岩芯14和模拟探头13的密封垫片,并装好岩芯夹持器14,整理实验平台。
需要说明的是,在步骤S6中如果采用外接抽吸系统,其操作步骤如下,通过外部驱动控制系统控制外接抽吸系统吸入模拟地层流体,模拟地层流体经过模拟探头13、推力杆12、高压截止阀17进入抽吸系统液压缸,抽吸完成后继续等待压力恢复,同时系统压力传感器记录抽吸测试过程中的压力响应;如果压力进行分步多次抽吸测试,重复步骤S6即可实现;
对于步骤S7,如果采用外接抽吸系统,通过外部驱动控制系统控制抽吸系统排出模拟地层流体,如果压力进行多次重复式抽吸测试,重复步骤S6和步骤S7即可实现。
本发明装置对于各设定数据的控制精度如下:(1)围压控制精度10Psi;(2)地层压力控制精度10Psi;(3)环空压力控制精度10Psi;(4)探头推靠力控制精度200N。
如图2所示,给出了1000s内环空压力、地层压力、围压和推靠力的控制监测结果,环空压力、地层压力、围压和推靠力的控制目标分别为1200psi、1150psi、1750psi、20kN,对应的控制波动幅度大约为0.07psi、0.08psi、0.11psi、0.11kN,均满足设计的控制精度,压力控制精度为±1.0psi,推靠力控制精度为±1.0%。
如图3所示,给出了4种典型的砂岩测试结果,测试参数和结果如下表1所示,不难发现,地层压力测试与解释结果的误差均在1.0%以内,最高误差仅-0.92%,说明系统的精度满足设计需求。
序号 参数名称 样品1 样品2 样品3 样品4
1 岩性 粗粉砂 粗粉砂 细粉砂 细粉砂
2 渗透率/mD 203.5 105.2 50.8 10.2
3 围压/psi 4500 4500 4500 4500
4 环空压力/psi 3900 3900 3900 3900
5 地层压力/psi 3000 3000 3000 3000
6 压力抽吸时间t 0/s 5.0 5.0 5.0 5.0
7 抽吸速率q 0/(ml/s) 3.0 1.5 1.0 0.5
8 最低压力/psi 788 467 200 50
9 压降幅度/psi 3112 3433 3700 3850
10 最终恢复压力/psi 2904 2898 2858 2827
11 压力恢复幅度/psi 2116 2431 2658 2777
12 压降时间t1/s 90 185 550 1300
13 地层压力解释结果/psi 2903.12 2895.12 2880.50 2873.22
14 绝对误差/psi 3.12 -4.88 -19.50 -26.78
15 相对误差/% 0.11 -0.17 -0.67 -0.92
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (10)

  1. 一种地层压力测试物理模拟与刻度装置,该装置包括设置于外部的机箱架体、用于提供动力的伺服电机和作为测试标的的岩芯(14),其特征在于:
    所述装置包括有设置在机箱架体上的岩芯夹持器(10),岩芯夹持器(10)内设置有岩芯(14),岩芯(14)与岩芯夹持器(10)之间留有环空间隙,环空间隙被密封垫片分隔为位于岩芯(14)周侧的围压腔和位于岩芯(14)前后两端的地层压力腔、环空压力腔;所述岩芯夹持器(10)在围压腔、地层压力腔和环空压力腔对应的腔壁上分别开设有围压注入孔、地层压力注入孔和环空压力注入孔,围压注入孔、地层压力注入孔和环空压力注入孔的输入端分别连接围压模拟模块、地层压力模拟模块和环空压力模拟模块;
    所述装置还包括推靠力模拟模块,推靠力模拟模块上设置有推力杆(12),推力杆(12)贯通岩芯夹持器(10)一侧腔壁,并由密封垫片密封;所述推力杆(12)前端设置有模拟探头(13),模拟探头(13)与岩芯夹持器(10)腔壁之间留有环空间隙;
    所述装置还包括抽吸系统,抽吸系统与推力杆(12)连接;
    所述装置还包括驱动控制系统(1),围压模拟模块、地层压力模拟模块、环空压力模拟模块、推靠力模拟模块和抽吸系统均与驱动控制系统(1)连接。
  2. 如权利要求1所述的一种地层压力测试物理模拟与刻度装置,其特征在于:所述围压模拟模块包括第一伺服电机(21),第一伺服电机(21)的一端连接驱动控制系统(1),另一端依次连接第一减速器(31)、第一滚珠丝杠(41)、第一液压缸(51)、第一组高压截止阀B(81)和第一安全阀(151),最终连接至围压注入孔;所述围压模拟模块还包括有油箱(91),油箱(91)中装入液压油,油箱(91)设置于第一液压缸(51)和第一组高压截止阀B(81)之间,且与油箱(91)的连接管路上还设置有第一组高压截止阀A(71);所述第一液压缸(51)上设置有第一压力传感器(61),第一压力传感器(61)采集围压信号反馈给驱动控制系统(1)。
  3. 如权利要求1所述的一种地层压力测试物理模拟与刻度装置,其特征在于:所述地层压力模拟模块包括第二伺服电机(22),第二伺服电机(22)的一端连接驱动控制系统(1),另一端依次连接第二减速器(32)、第二滚珠丝杠(42)、第二液压缸(52)、第二组高压截止阀B(82)和第二安全阀(152),最终连接至地层压力注入孔;所述地层压力模拟模块还包括有第二容器(92),第二容器(92)装入模拟地层流体,第二容器(92)设置于第二液压缸(52)和第二组高压截止阀B(82)之间,且与第二容器(92)的连接管路上还设置有第二组高压截止阀A(72);所述第二液压缸(52)上设置有第二压力传感器(62),第二压力传感器(62)采集地层压力信号反馈给驱动控制系统(1)。
  4. 如权利要求1所述的一种地层压力测试物理模拟与刻度装置,其特征在于:所述环空压力模拟模块包括第三伺服电机(23),第三伺服电机(23)的一端连接驱动控制系统(1), 另一端依次连接第三减速器(33)、第三滚珠丝杠(43)、第三液压缸(53)、第三组高压截止阀B(83)和第三安全阀(153),最终连接至环空压力注入孔;所述环空压力模拟模块还包括有第三容器(93),第三容器(93)装入模拟钻井液,第三容器(93)设置于第三液压缸(53)和第三组高压截止阀B(83)之间,且与第三容器(93)的连接管路上还设置有第三组高压截止阀A(73);所述第三液压缸(53)上设置有第三压力传感器(63),第三压力传感器(63)采集环空压力信号反馈给驱动控制系统(1)。
  5. 如权利要求1所述的一种地层压力测试物理模拟与刻度装置,其特征在于:所述推靠力模拟模块还包括第四伺服电机(24),第四伺服电机(24)的一端连接驱动控制系统(1),另一端依次连接第四减速器(34)、第四滚珠丝杠(44)和第四液压缸(54),第四液压缸(54)与推力杆(12)连接,且第四液压缸(54)与推力杆(12)之间设置有力传感器(11),力传感器(11)采集推靠力信号反馈给驱动控制系统(1)。
  6. 如权利要求1所述的一种地层压力测试物理模拟与刻度装置,其特征在于:所述抽吸系统包括第五伺服电机(25),第五伺服电机(25)的一端连接驱动控制系统(1),另一端依次连接第五减速器(35)、第五滚珠丝杠(45)、第五液压缸(55)和第五高压截止阀(16),最终通过管路与推力杆(12)连接;所述第五液压缸(55)上设置有第五压力传感器(65),第五压力传感器(65)采集抽吸信号反馈给驱动控制系统(1)。
  7. 如权利要求6所述的一种地层压力测试物理模拟与刻度装置,其特征在于:所述抽吸系统与推力杆(12)连接的管路上还设置有外接抽吸系统接口,可连接外部抽吸系统,外接抽吸系统接口的前端设置有第六高压截止阀(17)。
  8. 如权利要求1所述的一种地层压力测试物理模拟与刻度装置,其特征在于:所述岩芯(14)外侧包裹有橡胶套。
  9. 一种如权利要求1~8任意一项所述的一种地层压力测试物理模拟与刻度方法,其特征在于,包括以下步骤:
    S1.准备阶段,根据试验需求制备岩芯(14),以及准备模拟流体;
    S2.安装岩芯(14),关闭所有高压截止阀B,拆卸岩芯夹持器(10),手动更换好岩芯(14)和模拟探头(13)的密封垫片,再装好岩芯夹持器(10);
    S3.注入模拟流体,关闭所有高压截止阀A,并分别向油箱(91)、第二容器(92)和第三容器(93)中注入液压油、模拟地层流体和模拟钻井液;打开系统电源,打开所有高压截止阀A,通过驱动控制系统(1)分别控制对应的伺服电机驱动减速器以及滚珠丝杠,带动液压缸中的活塞吸入相应的模拟流体进入液压缸;
    S4.施加物理模拟环境压力,关闭所有高压截止阀A,打开所有高压截止阀B,关闭第五 高压截止阀(16)、第六高压截止阀(17);首先,通过驱动控制系统(1)控制第一伺服电机(21)驱动第一减速器(31)和第一滚珠丝杠(41),带动第一液压缸(51)中的活塞推出围压的液压油流体进入岩芯夹持器(10),实现围压的施加;然后,通过驱动控制系统(1)控制第二伺服电机(22)、第三伺服电机(23)驱动第二减速器(32)、第三减速器(33)和第二滚珠丝杠(42)、第三滚珠丝杠(43),带动第二液压缸(52)、第三液压缸(53)中的活塞推出地层压力和环空压力的模拟流体进入岩芯夹持器(10),实现地层压力和环空压力的施加;通过施加围压、地层压力和环空压力模拟地层压力测试过程中地层岩石所处的物理环境,其中围压、地层压力和环空压力的大小通过计算机自动控制;
    S5.探头座封,打开第五高压截止阀(16)或第六高压截止阀(17),然后通过驱动控制系统(1)控制第四伺服马达(24)驱动第四减速器(34)和第四滚珠丝杠(44),带动力传感器(11)、推力杆(12)使模拟探头(13)座封在岩芯(14)的右端面,推靠力和推靠位移通过计算机自动控制;
    S6.启动抽吸序列,通过驱动控制系统(1)控制第五伺服马达(25)驱动第五减速器(35)和第五滚珠丝杠(45),带动第五液压缸(55)中的活塞从岩芯(14)中吸入模拟地层流体,模拟地层流体经过模拟探头(13)、推力杆(12)、高压截止阀(16)进入第五液压缸(55),抽吸完成后继续等待压力恢复,而第五压力传感器(65)记录抽吸测试过程中的压力响应;如果压力进行分步多次抽吸测试,重复步骤S6即可实现;
    S7.测试结束序列,通过驱动控制系统(1)控制相应伺服电机驱动减速器和滚珠丝杠,带动液压缸中的活塞缩回,释放围压、地层压力和环空压力;通过驱动控制系统(1)控制第四伺服马达(24)驱动第四减速器(34)和第四滚珠丝杠(44),带动力传感器(11)、推力杆(12)和模拟探头(13)从岩芯(14)的右端面解封;通过驱动控制系统(1)控制第五伺服电机(55)驱动第五减速器(35)和第五滚珠丝杠(45),带动第五液压缸(55)中的活塞排出地层流体;
    S8.结束测试,关闭所有高压截止阀B,打开所有高压截止阀A,通过驱动控制系统(1)控制相应伺服电机驱动减速器和滚珠丝杠,带动液压缸中的活塞排出相应的模拟流体;关闭电源,拆卸岩芯夹持器(10),手动取出岩芯(14)和模拟探头(13)的密封垫片,并装好岩芯夹持器(14),整理实验平台。
  10. 如权利要求9所述的一种地层压力测试物理模拟与刻度方法,其特征在于:在步骤S6中如果采用外接抽吸系统,其操作步骤如下,通过外部驱动控制系统控制外接抽吸系统吸入模拟地层流体,模拟地层流体经过模拟探头(13)、推力杆(12)、高压截止阀(17)进入抽吸系统液压缸,抽吸完成后继续等待压力恢复,同时系统压力传感器记录抽吸测试过程中 的压力响应;如果压力进行分步多次抽吸测试,重复步骤S6即可实现;对于步骤S7,如果采用外接抽吸系统,通过外部驱动控制系统控制抽吸系统排出模拟地层流体,如果压力进行多次重复式抽吸测试,重复步骤S6和步骤S7即可实现。
PCT/CN2018/117456 2018-05-31 2018-11-26 一种地层压力测试物理模拟与刻度装置及方法 WO2019227881A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/604,518 US11067492B2 (en) 2018-05-31 2018-11-26 Physical simulation and calibration device and method for formation pressure testing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810551836.9A CN108505993A (zh) 2018-05-31 2018-05-31 一种地层压力测试物理模拟与刻度装置及方法
CN201810551836.9 2018-05-31

Publications (1)

Publication Number Publication Date
WO2019227881A1 true WO2019227881A1 (zh) 2019-12-05

Family

ID=63402495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117456 WO2019227881A1 (zh) 2018-05-31 2018-11-26 一种地层压力测试物理模拟与刻度装置及方法

Country Status (3)

Country Link
US (1) US11067492B2 (zh)
CN (1) CN108505993A (zh)
WO (1) WO2019227881A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111044382A (zh) * 2019-12-30 2020-04-21 西南石油大学 一种液压式模拟套管非均匀围压的实验装置及使用方法
CN111997593A (zh) * 2020-09-08 2020-11-27 中国石油天然气集团有限公司 随钻地层压力测量装置的液压控制装置
CN114279898A (zh) * 2021-12-24 2022-04-05 西安交通大学 一种覆压孔渗核素对流与弥散联测的实验系统及实验方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108505993A (zh) 2018-05-31 2018-09-07 西南石油大学 一种地层压力测试物理模拟与刻度装置及方法
CN113756784B (zh) * 2021-09-29 2023-11-17 中海石油(中国)有限公司海南分公司 一种模拟油藏形成演化过程的实验装置及方法
CN114544461B (zh) * 2022-02-15 2023-11-21 中国矿业大学 一种超临界co2封存与损伤监测试验系统及方法
CN115951032A (zh) * 2022-10-17 2023-04-11 中国矿业大学(北京) 地下水淋滤模拟装置和方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070062273A1 (en) * 2005-09-16 2007-03-22 Bj Services Company Fluid flow model and method of using the same
CN102691497A (zh) * 2012-05-28 2012-09-26 中国石油大学(北京) 一种预测不同井底压差下岩石可钻性级值的方法
CN103233725A (zh) * 2013-04-17 2013-08-07 西南石油大学 高温高压全直径岩心泥浆污染评价的测定装置及方法
CN105464649A (zh) * 2014-08-26 2016-04-06 中国石油化工股份有限公司 地层压力测量短节和地层压力模拟测量装置
CN106593414A (zh) * 2017-01-10 2017-04-26 中国石油大学(北京) 一种测试水泥环与套管胶结强度的实验装置及方法
CN107762482A (zh) * 2017-09-04 2018-03-06 中国石油大学(华东) 一种岩石裂隙渗流地热开采模拟系统
CN108505993A (zh) * 2018-05-31 2018-09-07 西南石油大学 一种地层压力测试物理模拟与刻度装置及方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2777759B2 (ja) * 1991-12-24 1998-07-23 一郎 上村 推力適応制御機能を備えた電気式推力発生装置
JP2005335017A (ja) * 2004-05-27 2005-12-08 Kyoho Mach Works Ltd 圧入装置
CN102108858B (zh) * 2011-01-05 2013-07-10 中国海洋石油总公司 一种随钻地层压力地面模拟测量装置及模拟测量方法
CN201963295U (zh) * 2011-01-05 2011-09-07 中国海洋石油总公司 一种随钻地层压力地面模拟测量装置
CN102162359B (zh) * 2011-04-18 2013-02-13 中国海洋石油总公司 一种地层测试器用高精密泵抽装置
CN102748015B (zh) * 2011-04-22 2015-08-26 中国石油化工股份有限公司 一种地层压力模拟装置及方法
CN103075147B (zh) * 2011-10-26 2015-12-02 中国石油化工股份有限公司 一种井下环境模拟装置及方法
US20150184729A1 (en) * 2014-01-02 2015-07-02 National Chung Cheng University Ball screw capable of sensing push force in real time
CN203809229U (zh) * 2014-04-18 2014-09-03 西南石油大学 一种超高压高精度岩心驱替泵
CN104500031B (zh) * 2014-11-20 2017-03-29 中国科学院广州能源研究所 天然气水合物地层钻井模拟装置
CN106246496B (zh) * 2016-10-10 2019-04-02 长春市科意试验仪器有限公司 一种基于岩石室内实验的高压低流量岩芯驱替泵
CN107201899A (zh) * 2017-07-27 2017-09-26 张艳红 地层流体压力测量装置
US10845354B2 (en) * 2018-05-21 2020-11-24 Newpark Drilling Fluids Llc System for simulating in situ downhole drilling conditions and testing of core samples
CN208252113U (zh) * 2018-05-31 2018-12-18 西南石油大学 一种地层压力测试物理模拟与刻度装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070062273A1 (en) * 2005-09-16 2007-03-22 Bj Services Company Fluid flow model and method of using the same
CN102691497A (zh) * 2012-05-28 2012-09-26 中国石油大学(北京) 一种预测不同井底压差下岩石可钻性级值的方法
CN103233725A (zh) * 2013-04-17 2013-08-07 西南石油大学 高温高压全直径岩心泥浆污染评价的测定装置及方法
CN105464649A (zh) * 2014-08-26 2016-04-06 中国石油化工股份有限公司 地层压力测量短节和地层压力模拟测量装置
CN106593414A (zh) * 2017-01-10 2017-04-26 中国石油大学(北京) 一种测试水泥环与套管胶结强度的实验装置及方法
CN107762482A (zh) * 2017-09-04 2018-03-06 中国石油大学(华东) 一种岩石裂隙渗流地热开采模拟系统
CN108505993A (zh) * 2018-05-31 2018-09-07 西南石油大学 一种地层压力测试物理模拟与刻度装置及方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111044382A (zh) * 2019-12-30 2020-04-21 西南石油大学 一种液压式模拟套管非均匀围压的实验装置及使用方法
CN111044382B (zh) * 2019-12-30 2024-03-22 西南石油大学 一种液压式模拟套管非均匀围压的实验装置及使用方法
CN111997593A (zh) * 2020-09-08 2020-11-27 中国石油天然气集团有限公司 随钻地层压力测量装置的液压控制装置
CN111997593B (zh) * 2020-09-08 2023-07-07 中国石油天然气集团有限公司 随钻地层压力测量装置的液压控制装置
CN114279898A (zh) * 2021-12-24 2022-04-05 西安交通大学 一种覆压孔渗核素对流与弥散联测的实验系统及实验方法
CN114279898B (zh) * 2021-12-24 2024-01-16 西安交通大学 一种覆压孔渗核素对流与弥散联测的实验系统及实验方法

Also Published As

Publication number Publication date
US11067492B2 (en) 2021-07-20
CN108505993A (zh) 2018-09-07
US20200300746A1 (en) 2020-09-24

Similar Documents

Publication Publication Date Title
WO2019227881A1 (zh) 一种地层压力测试物理模拟与刻度装置及方法
CN111220484B (zh) 一种往复式岩石裂缝摩擦-渗流特性测试装置及测试方法
CN108801799B (zh) 岩石压裂物理模拟系统及试验方法
CN104819914A (zh) 超声波促进气体渗流的实验装置
CN109611085B (zh) 水力压裂煤系储层裂缝延伸形态模拟装置及其模拟方法
CN102108858A (zh) 一种随钻地层压力地面模拟测量装置及模拟测量方法
CN109975140A (zh) 超临界二氧化碳脉冲致裂与渗透率测试一体化的实验装置及方法
CN112781765B (zh) 一种新型简易的地应力测试装置及试验方法
US10732086B2 (en) Device and method for measuring magnitude of seepage force and its influence on effective stress of formation
CN106869909B (zh) 确定倾斜填充裂隙水文地质参数的测试装置及其测试方法
CN106323842A (zh) 可测量致密岩石气体渗透率的真/假三轴试验的方法
CN203756155U (zh) 一种固井胶结失效的评价装置
CN110056335A (zh) 一种三轴多裂纹水力压裂实验装置及实验方法
CN116411959A (zh) 一种模拟真实地层环境下的油气井压裂试验装置及方法
CN106289943B (zh) 钻井扰动下井周围岩应力实时监测实验系统
CN208252113U (zh) 一种地层压力测试物理模拟与刻度装置
CN114753834A (zh) 一种井壁各向异性水平地应力测量方法
CN105275461B (zh) 煤层气直井钻进过程煤粉产出测试装置
CN106014402B (zh) 一种用于井壁变形检测的填充介质测量仪
CN111581819A (zh) 模拟地层中的可变裂缝的方法以及堵漏液的优化方法
CN201963295U (zh) 一种随钻地层压力地面模拟测量装置
CN208473837U (zh) 一种井下套管形变模拟装置
Clarke et al. Pressuremeter Testing in Ground Investigation. Part 1-Site Operations.
Spane Jr et al. Applicability of slug interference tests for hydraulic characterization of unconfined aquifers:(2) field test examples
CN103806901A (zh) 油井井下快速测试系统及测试方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18921170

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18921170

Country of ref document: EP

Kind code of ref document: A1