WO2019227618A1 - 一种led面光源及其制备方法、显示面板 - Google Patents

一种led面光源及其制备方法、显示面板 Download PDF

Info

Publication number
WO2019227618A1
WO2019227618A1 PCT/CN2018/095691 CN2018095691W WO2019227618A1 WO 2019227618 A1 WO2019227618 A1 WO 2019227618A1 CN 2018095691 W CN2018095691 W CN 2018095691W WO 2019227618 A1 WO2019227618 A1 WO 2019227618A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
leds
highly reflective
led
light source
Prior art date
Application number
PCT/CN2018/095691
Other languages
English (en)
French (fr)
Inventor
张桂洋
查国伟
崔宏青
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US16/152,705 priority Critical patent/US20190363070A1/en
Publication of WO2019227618A1 publication Critical patent/WO2019227618A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs

Definitions

  • the present invention relates to the field of LED technology, and in particular, to an LED surface light source, a preparation method thereof, and a display panel.
  • OLED Organic Light Emitting Display
  • Micro-LEDs of three colors of RGB (red, green, and blue) are used as display sub-pixels, and a TFT (Thin Film Transistor) is driven to control the switching of each sub-pixel for display (as shown in FIG. 1).
  • 1 ' is a driving substrate
  • 2' is a paint reflection layer
  • 3 ' is a transparent protective layer
  • 4' is a uniform light film
  • 5 ' is a brightness enhancement film
  • 6' is a micro-LED.
  • LED materials Compared with OLED materials, inorganic LED materials have higher luminous efficiency, and more importantly, they are not affected by water vapor, oxygen, or high temperature. Therefore, they have obvious advantages in terms of stability, service life, and operating temperature. Secondly, as display screens are used in mobile phones, wearable devices, and VR / AR devices, LED displays consume less power, use longer battery life, and have lower costs.
  • FIG. 2 1 'is a driving substrate, 2' is a paint reflection layer, 5 'is a brightness enhancement film, 7' is a fluorescent film, 8 'is a diffusion film, and 9' is a mini-LED.
  • FPC Flexible Printed Circuit
  • PCB Printed Circuit Board
  • the LED driving circuit is arranged thereon.
  • a paint reflective layer with a thickness of several tens of microns is applied.
  • the reflectivity of this paint layer is about 80%, which is difficult to meet the current light efficiency requirements of mini-LEDs.
  • the present invention provides an LED surface light source, a preparation method thereof, and a display panel, which can improve the light efficiency of the LED surface light source and also reduce the thickness of the LED surface light source.
  • the invention provides a method for preparing an LED surface light source, which includes the following steps:
  • a highly reflective dielectric film is formed on the driving substrate.
  • the highly reflective dielectric film includes two transparent organic films and a highly reflective metal film sandwiched between the two transparent organic films.
  • the highly reflective metal film is reflective Metal film with a rate greater than 90%;
  • a plurality of LEDs are respectively placed in the plurality of vias, and the plurality of LEDs are fixed on the driving substrate, and the plurality of LEDs are electrically connected to the driving substrate through the organic
  • An insulating film insulates the LED from the highly reflective metal film.
  • the light emitting layer is one of a fluorescent film, a quantum dot film, and a ceramic fluorescent sheet;
  • a brightness enhancement film is formed on the diffusion film.
  • the thickness of the two transparent organic films is in the range of 0.5 to 3 micrometers, and the thickness of the highly reflective metal film does not exceed 1 micrometer.
  • the shape of the via hole on the highly reflective dielectric film matches the shape of the LED.
  • Fixing the plurality of LEDs on the driving substrate is specifically:
  • the plurality of LEDs are respectively placed above the conductive adhesive layer in the plurality of vias, the plurality of LEDs are fixed on the driving substrate by reflow soldering.
  • a plurality of vias arranged in an array are etched on the highly reflective dielectric film by means of ion beam etching or electron beam etching.
  • the highly reflective metal film is one of metallic silver, metallic aluminum, and metallic rhodium;
  • the transparent organic film and the organic insulating film are each one of a PI material, a PCT material, a PET material, and an epoxy-based material.
  • the invention also provides an LED surface light source, comprising: a driving substrate, a highly reflective dielectric film on the driving substrate, and a plurality of LEDs;
  • the highly reflective medium film includes two transparent organic films and a highly reflective metal film sandwiched between the two transparent organic films, and the highly reflective metal film is a metal film having a reflectance greater than 90%;
  • a plurality of vias arranged in an array are etched on the highly reflective dielectric film, and an organic insulating film is formed in the plurality of vias or an organic insulating film is coated on a side of the plurality of LEDs;
  • the plurality of LEDs are respectively disposed in the plurality of via holes and the LEDs are insulated from the highly reflective metal film by the organic insulating film, and the plurality of LEDs are fixed on the driving substrate, The plurality of LEDs are electrically connected to the driving substrate.
  • the light-emitting layer further comprises a light-emitting layer, a diffusion film, and a brightness enhancement film that are sequentially stacked, and the light-emitting layer covers the plurality of LEDs;
  • the light-emitting layer is one of a fluorescent film, a quantum dot film, and a ceramic fluorescent sheet;
  • the highly reflective metal film is one of metallic silver, metallic aluminum, and metallic rhodium;
  • the transparent organic film and the organic insulating film are each one of a PI material, a PCT material, a PET material, and an epoxy-based material;
  • the driving substrate includes a plurality of driving circuits, the plurality of LEDs are divided into a plurality of LED areas, and each LED area corresponds to at least one LED;
  • each driving circuit is used to drive LEDs in an LED area.
  • the present invention also provides a display panel including an LED surface light source, the LED surface light source comprising: a driving substrate, a highly reflective dielectric film on the driving substrate, and a plurality of LEDs;
  • the highly reflective medium film includes two transparent organic films and a highly reflective metal film sandwiched between the two transparent organic films, and the highly reflective metal film is a metal film having a reflectance greater than 90%;
  • a plurality of vias arranged in an array are etched on the highly reflective dielectric film, and an organic insulating film is formed in the plurality of vias or an organic insulating film is coated on a side of the plurality of LEDs;
  • the plurality of LEDs are respectively disposed in the plurality of via holes and the LEDs are insulated from the highly reflective metal film by the organic insulating film, and the plurality of LEDs are fixed on the driving substrate, The plurality of LEDs are electrically connected to the driving substrate.
  • the LED surface light source further includes a light emitting layer, a diffusion film, and a brightness enhancement film that are sequentially stacked, and the light emitting layer covers the plurality of LEDs; the light emitting layer is a fluorescent film, a quantum dot film, and a ceramic fluorescent sheet.
  • the highly reflective metal film is one of metal silver, metal aluminum, and metal rhodium;
  • the transparent organic film and the organic insulating film are each one of a PI material, a PCT material, a PET material, and an epoxy-based material.
  • the driving substrate includes a plurality of driving circuits, the plurality of LEDs are divided into a plurality of LED regions, and each LED region corresponds to at least one LED;
  • each driving circuit is used to drive LEDs in an LED area.
  • the implementation of the present invention has the following beneficial effects:
  • the present invention uses a highly reflective dielectric film instead of the paint reflective layer.
  • the highly reflective dielectric film contains a highly reflective metal film, which can greatly provide the reflectivity of the highly reflective dielectric film, that is, improve the reflectivity.
  • the light efficiency of the LED surface light source, and the highly reflective dielectric film is a metal film. Compared with the paint reflection layer, the thickness can also be reduced, thereby reducing the overall thickness of the LED surface light source.
  • FIG. 1 is a schematic structural diagram of a micro-LED surface light source in the background art.
  • FIG. 2 is a schematic structural diagram of a mini-LED surface light source in the background art.
  • FIG. 3 is a flowchart of a method for manufacturing an LED surface light source provided by the present invention.
  • FIG. 4 is a schematic structural diagram of an LED surface light source provided by the present invention.
  • FIG. 5 is a schematic structural diagram of a highly reflective dielectric layer provided by the present invention.
  • FIG. 6 is a schematic diagram of a via hole etched on the highly reflective dielectric layer provided by the present invention.
  • FIG. 7 is a schematic diagram of injecting a conductive adhesive layer through a mesh of a steel mesh provided by the present invention.
  • FIG. 8 is a schematic diagram of placing an LED provided in a via hole of a highly reflective dielectric layer provided by the present invention.
  • FIG. 9 is a schematic structural diagram of a liquid crystal display panel provided by the present invention.
  • the present invention provides a method for preparing an LED (Light Emitting Diode, light emitting diode) surface light source 10. As shown in FIG. 3, the method includes the following steps:
  • a highly reflective dielectric film 2 is formed on the driving substrate 1.
  • the highly reflective dielectric film 2 includes two transparent organic films 21 and 23 and sandwiched between the two transparent organic films 21,
  • the highly reflective metal film 22 between 23, the highly reflective metal film 22 is a metal film with a reflectance greater than 90%; the highly reflective metal film 22 is one of metallic silver, metallic aluminum, and metallic rhodium.
  • the two transparent organic films 21 and 23 included in the highly reflective dielectric film 2 are heat-resistant transparent organic films.
  • the driving substrate 1 is provided with a driving circuit for driving the LED to emit light.
  • a plurality of vias 24 arranged in an array are etched on the highly reflective dielectric film 2; the shape of the vias 24 on the highly reflective dielectric film 2 matches the shape of the LED 6, for example, a square via
  • the holes or circular vias may also be vias of other shapes; the array arrangement is etched on the highly reflective dielectric film 2 by means of a high-precision etching process such as ion beam etching or electron beam etching. Multiple vias 24.
  • An organic insulating film is formed in the plurality of via holes 24 and the organic insulating film in the plurality of via holes 24 is cured, or an organic insulating film is coated on the sides of the plurality of LEDs 6 and an organic insulating film on the sides of the plurality of LEDs 6 is performed. Curing.
  • the plurality of mesh holes 81 on the steel mesh 8 are respectively aligned with the plurality of via holes 24 on the highly reflective dielectric film 2, and the conductive adhesive is injected into the plurality of via holes 24 through the plurality of mesh holes 81.
  • the conductive adhesive layer may be a solder paste or other easily cooled solidified metal.
  • the consistency of the height of the conductive adhesive layer in the different vias 24 of the highly reflective dielectric film 2 can be precisely controlled by controlling the concentration and content of the conductive adhesive layer and the duration of the conductive adhesive layer injection, that is, the difference in the high reflective dielectric film 2
  • the heights of the conductive adhesive layers in the via holes 24 are all the same, so that the uniformity of light emission of multiple LEDs 6 can be guaranteed.
  • a plurality of LEDs 6 are respectively placed in a plurality of via holes 24 by a transfer method, and a plurality of LEDs 6 are fixed on the driving substrate 1 through a conductive adhesive layer 7.
  • the LED 6 is electrically connected to the highly reflective metal film 22 through the organic adhesive film 7 to avoid short-circuiting between the highly reflective metal film 22 and the metal on the surface of the LED 6.
  • the use of the highly reflective metal film 22 instead of the paint reflection layer in the traditional technical solution can not only improve the light reflection effect, but also allow more light to be emitted from the surface of the surface light source, and greatly improve the LED surface light source 10.
  • the highly reflective metal film 22 can also be made very thin, generally not more than 1 micron, and the thickness of the LED surface light source 10 can be reduced relative to the thickness of the paint reflective layer of several tens of microns.
  • a high-reflective dielectric film 2 is sequentially formed on the driving substrate 1, and specifically includes:
  • a second transparent organic film 23 is formed on the highly reflective metal film 22, and the second transparent organic film 23 is dried and cured.
  • the first transparent organic film 21 can insulate the highly reflective metal layer from the circuit on the driving substrate 1, and can also serve as a buffer layer between the driving substrate 1 and the LED 6.
  • the first transparent organic film 21 and the second transparent organic film 23 can isolate the LED 6 from water and oxygen in the air.
  • the above-mentioned transparent organic film and organic insulating film are made of PI (polyimide) material, PCT (polycyclohexylene dimethylene terephthalate resin) material, and PET (polyethylene terephthalate) ) One of materials and epoxy resin materials.
  • the manufacturing method of the LED surface light source 10 further includes the following steps:
  • a light-emitting layer 3 is formed on the highly reflective dielectric film 2 and the light-emitting layer 3 covers a plurality of LEDs 6, wherein the light-emitting layer 3 is one of a fluorescent film, a quantum dot film, and a ceramic fluorescent sheet;
  • a brightness enhancement film 5 is formed on the diffusion film 4.
  • the thicknesses of the two transparent organic films 21 and 23 are in the range of 0.5 to 3 micrometers, and the thickness of the highly reflective metal film 22 does not exceed 1 micrometer.
  • Fixing a plurality of LEDs 6 on the driving substrate 1 is specifically:
  • the plurality of LEDs 6 are fixed on the driving substrate 1 by reflow soldering, that is, the conductive adhesive layers are heated and melted, and then performed. It is cured, and the LED 6 is fixed on the driving substrate 1 through the cured conductive adhesive layer, so that the LED 6 is tightly bonded to the driving substrate 1 and the highly reflective medium layer at the bottom of the conductive adhesive layer.
  • the subsequent LED 6 is further carried with a light-emitting layer 3 and related optical films (diffusion film 4 and brightness enhancement film 5) to form a direct type backlight.
  • the present invention also provides an LED surface light source 10, as shown in FIG. 4, comprising a driving substrate 1, a highly reflective dielectric film 2 on the driving substrate 1, and a plurality of LEDs 6.
  • the highly reflective dielectric film 2 includes two transparent organic films 21 and 23 and a highly reflective metal film 22 sandwiched between the two transparent organic films 21 and 23.
  • the highly reflective metal film 22 is reflective The film is more than 90%.
  • a plurality of via holes 24 arranged in an array are etched on the highly reflective dielectric film 2, an organic insulating film is formed in the plurality of via holes 24, or an organic insulation is coated on the sides of the plurality of LEDs 6. membrane.
  • a plurality of LEDs 6 are respectively disposed in a plurality of via holes 24 and the LEDs 6 are insulated from the highly reflective metal film 22 by an organic insulating film.
  • the substrates 1 are electrically connected.
  • the LED surface light source 10 further includes a light emitting layer 3, a diffusion film 4 and a brightness enhancement film 5 which are sequentially stacked, and the light emitting layer 3 covers a plurality of LEDs 6; the light emitting layer 3 is one of a fluorescent film, a quantum dot film, and a ceramic fluorescent sheet.
  • the above-mentioned highly reflective metal film 22 is one of metal silver, metal aluminum, and metal rhodium; the transparent organic film and the organic insulating film are all one of a PI material, a PCT material, a PET material, and an epoxy-based material.
  • the driving substrate 1 includes a plurality of driving circuits, and the plurality of LEDs 6 are divided into a plurality of LED areas, and each LED area corresponds to at least one LED 6; each driving circuit is used to drive the LEDs 6 in one LED area.
  • the invention also provides a display panel.
  • the display panel may be a liquid crystal display panel or a micro LED display panel.
  • the type of the display panel is not limited to this.
  • a liquid crystal display panel is taken as an example for description.
  • the liquid crystal display panel includes the above-mentioned LED surface light source 10 and a liquid crystal cell 20 located on the LED surface light source 10.
  • the liquid crystal cell 20 includes upper and lower polarizers and a liquid crystal sandwiched between the two polarizers.
  • the LED surface light source 10 is controlled in a partitioned manner.
  • the driving substrate 1 includes a PCB (Printed Circuit Board) board or an FPC (Flexible Printed Circuit) board, and the PCB or FPC board
  • a plurality of driving circuits are prepared on the entire surface, and the plurality of LEDs 6 on the entire surface are divided into m ⁇ n LED6 regions, where m and n are positive integers greater than or equal to 1.
  • the larger the number of LED6 areas the finer the control of the LED6 area light source, and the better the detail processing of the display screen.
  • the area-controlled LED6 area light source is matched with Local Dimming technology, which can save power consumption and improve the contrast of the display screen.
  • the other LED6 areas may not be lit. At this time, power consumption can be saved, and at the same time, the current used to control the other LED6 areas can be delivered to the ones that need to be lit. In an LED6 area, the brightness of the LED6 area will be higher, so the contrast of the display screen can be improved.
  • the present invention uses a highly reflective dielectric film 2 instead of a paint reflective layer.
  • the highly reflective dielectric film 2 includes a highly reflective metal film 22, which can greatly provide the reflectivity of the highly reflective dielectric film 2, that is, improve the reflectivity.
  • the light efficiency of the LED surface light source 10 and the high-reflective dielectric film 2 is a metal film. Compared with the paint reflection layer, the thickness can also be reduced, thereby reducing the overall thickness of the LED 6 surface light source.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Led Device Packages (AREA)
  • Electroluminescent Light Sources (AREA)
  • Liquid Crystal (AREA)

Abstract

本发明提供一种LED面光源及其制备方法、显示面板,该方法包括下述步骤:在驱动基板上形成高反射介质膜,高反射介质膜包含有两层透明有机膜以及夹持在两层透明有机膜之间的高反射金属膜,高反射金属膜为反射率大于90%的金属膜;在高反射介质膜上刻蚀出阵列排布的多个过孔;在多个过孔内形成有机绝缘膜并将多个过孔内的有机绝缘膜进行固化,或者将多个LED的侧面上涂布有机绝缘膜并将多个LED侧面的有机绝缘膜进行固化;将多个LED分别放置在多个过孔中,且将多个LED固定在所述驱动基板上,多个LED与驱动基板之间电性连接,通过有机绝缘膜将LED与高反射金属膜绝缘隔开。本发明可以提高LED面光源的光效,还可以降低LED面光源的厚度。

Description

一种LED面光源及其制备方法、显示面板
本申请要求于2018年5月28日提交中国专利局、申请号为201810520814.6、发明名称为“一种LED面光源及其制备方法、显示面板”的中国专利申请的优先权,上述专利的全部内容通过引用结合在本申请中。
技术领域
本发明涉及LED技术领域,尤其涉及一种LED面光源及其制备方法、显示面板。
背景技术
显示行业经过几十年的发展先后出现了CRT(Cathode Ray Tube,电子射线管)、PDP(Plasma Display Panel,等离子显示面板)和LCD(Liquid Crystal Display,液晶显示器)显示时代。仅存的LCD显示技术也经过了一系列的更新换代,到目前为止形成了基于LTPS(Low Temperature Poly-Silicon,低温多晶硅)的显示技术,并广泛应用在电视、手机、车载等领域。
近年来自发光OLED(Organic Light Emitting Display,有机发光显示器)逐渐在显示市场上崭露头角,以其高色域、响应速度快、高对比度、柔性可折叠、省功耗等特点备受广大消费者的青睐。但是OLED发光材料会受到空气中的水、氧气以及高温等因素的影响发生老化现象,所以它在寿命以及可靠性等方面会逊色于LTPS LCD。LCD生产商为了摆脱被市场淘汰的命运,致力于研发一种显示性能更优于OLED的新显示技术,于是micro-LED(微型LED)显示应运而生了。将RGB(红绿蓝)三种颜色的micro-LED用作显示的子像素,通过驱动TFT(Thin Film Transistor,薄膜晶体管)来控制每个子像素的开关进行显示(如图1所示)。图1中,1’为驱动基板,2’为油漆反射层,3’透明保护层,4’为匀光膜,5’为增亮膜,6’为micro-LED。
与OLED材料相比,无机LED材料的发光效率更高,更为重要的是不会受水汽、氧气或高温的影响,因而在稳定性、使用寿命、工作温度等方面均具有明显的优势。其次,作为显示屏应用于手机、穿戴式设备、VR/AR设 备,LED显示屏的功耗更低,更利用长期的续航,且其成本更低。
尽管micro-LED显示技术兼顾了LCD和OLED显示共同的优点,但是到目前为止这种技术还处于实验室研究阶段,目前的技术还不能完成这一宏伟目标。于是采用折中的办法,利用几何尺寸达到数百微米的mini-LED(迷你型LED)蓝光芯片搭配黄色荧光膜(如图2所示)或者量子点薄膜来制作新型LED直下式背光结构,同时搭配液晶面板来显示。图2中,1’为驱动基板,2’为油漆反射层,5’为增亮膜,7’为荧光膜,8’为扩散膜,9’为mini-LED。一般采用FPC(Flexible Printed Circuit,柔性印刷电路)或者PCB(Printed Circuit Board,印刷电路板)作为基底层,在其上布置LED驱动电路,为了避免短路和提高LED面光源的光效,通常在LED和电路之间涂布一层厚度为几十微米的油漆反射层。通常这种油漆层的反射率约为80%,很难满足目前mini-LED的光效需求。
发明内容
为解决上述技术问题,本发明提供一种LED面光源及其制备方法、显示面板,可以提高LED面光源的光效,还可以降低LED面光源的厚度。
本发明提供的一种LED面光源的制备方法,包括下述步骤:
在驱动基板上形成高反射介质膜,所述高反射介质膜包含有两层透明有机膜以及夹持在所述两层透明有机膜之间的高反射金属膜,所述高反射金属膜为反射率大于90%的金属膜;
在所述高反射介质膜上刻蚀出阵列排布的多个过孔;
在所述多个过孔内形成有机绝缘膜并将所述多个过孔内的有机绝缘膜进行固化,或者将多个LED的侧面上涂布有机绝缘膜并将所述多个LED侧面的有机绝缘膜进行固化;
将多个LED分别放置在所述多个过孔中,且将所述多个LED固定在所述驱动基板上,所述多个LED与所述驱动基板之间电性连接,通过所述有机绝缘膜将所述LED与所述高反射金属膜绝缘隔开。
优选地,还包括下述步骤:
在所述高反射介质膜上形成发光层,且所述发光层覆盖所述多个LED; 其中,所述发光层为荧光膜、量子点膜以及陶瓷荧光片中的一种;
在所述发光层上形成扩散膜;
在所述扩散膜上形成增亮膜。
优选地,所述两层透明有机膜的厚度范围均为0.5~3微米,所述高反射金属膜的厚度不超过1微米。
优选地,所述高反射介质膜上的过孔的形状与所述LED的形状相匹配。
优选地,还包括下述步骤:
将钢网上的多个网孔分别与所述高反射介质膜上的多个过孔对准,通过所述多个网孔往所述多个过孔中注入导电粘性层,并将所述多个LED分别放置在所述多个过孔中的导电粘性层的上方;
将所述多个LED固定在所述驱动基板上,具体为:
将所述多个LED分别放置在所述多个过孔中的导电粘性层的上方之后,通过回流焊的方式将所述多个LED固定在所述驱动基板上。
优选地,通过离子束刻蚀或者电子束刻蚀的方式在所述高反射介质膜上刻蚀出阵列排布的多个过孔。
优选地,所述高反射金属膜为金属银、金属铝、金属铑中的一种;
所述透明有机膜和所述有机绝缘膜均为PI材料、PCT材料、PET材料以及环氧树脂类材料中的一种。
本发明还提供一种LED面光源,包括:驱动基板、位于所述驱动基板上的高反射介质膜,以及多个LED;
所述高反射介质膜包含有两层透明有机膜,以及夹持在所述两层透明有机膜之间的高反射金属膜,所述高反射金属膜为反射率大于90%的金属膜;
其中,所述高反射介质膜上刻蚀有阵列排布的多个过孔,所述多个过孔内形成有有机绝缘膜或者所述多个LED的侧面上涂布有有机绝缘膜;
所述多个LED分别设置在所述多个过孔中且通过所述有机绝缘膜将所述LED与所述高反射金属膜绝缘隔开,所述多个LED固定在所述驱动基板上,所述多个LED与所述驱动基板之间电性连接。
优选地,还包括依次层叠的发光层、扩散膜以及增亮膜,且所述发光层覆盖所述多个LED;所述发光层为荧光膜、量子点膜以及陶瓷荧光片中的一 种;
所述高反射金属膜为金属银、金属铝、金属铑中的一种;
所述透明有机膜和所述有机绝缘膜均为PI材料、PCT材料、PET材料以及环氧树脂类材料中的一种;
所述驱动基板上包含有多个驱动电路,所述多个LED划分为多个LED区域,每一LED区域中对应有至少一个LED;
其中,每一个驱动电路均用于驱动一个LED区域内的LED。
本发明还提供一种显示面板,包括LED面光源,所述LED面光源包括:驱动基板、位于所述驱动基板上的高反射介质膜,以及多个LED;
所述高反射介质膜包含有两层透明有机膜,以及夹持在所述两层透明有机膜之间的高反射金属膜,所述高反射金属膜为反射率大于90%的金属膜;
其中,所述高反射介质膜上刻蚀有阵列排布的多个过孔,所述多个过孔内形成有有机绝缘膜或者所述多个LED的侧面上涂布有有机绝缘膜;
所述多个LED分别设置在所述多个过孔中且通过所述有机绝缘膜将所述LED与所述高反射金属膜绝缘隔开,所述多个LED固定在所述驱动基板上,所述多个LED与所述驱动基板之间电性连接。
优选地,所述LED面光源还包括依次层叠的发光层、扩散膜以及增亮膜,且所述发光层覆盖所述多个LED;所述发光层为荧光膜、量子点膜以及陶瓷荧光片中的一种;
所述高反射金属膜为金属银、金属铝、金属铑中的一种;
所述透明有机膜和所述有机绝缘膜均为PI材料、PCT材料、PET材料以及环氧树脂类材料中的一种。
优选地,所述驱动基板上包含有多个驱动电路,所述多个LED划分为多个LED区域,每一LED区域中对应有至少一个LED;
其中,每一个驱动电路均用于驱动一个LED区域内的LED。
实施本发明,具有如下有益效果:本发明采用高反射介质膜替代油漆反射层,高反射介质膜中包含有高反射金属膜,可以极大提供高反射介质膜的反射率,也即是提高了LED面光源的光效,并且高反射介质膜是金属膜,其相对于油漆反射层而言,厚度也可以降低,从而降低LED面光源的整体 厚度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是背景技术中micro-LED面光源的结构示意图。
图2是背景技术中mini-LED面光源的结构示意图。
图3是本发明提供的LED面光源的制备方法的流程图。
图4是本发明提供的LED面光源的结构示意图。
图5是本发明提供的高反射介质层的结构示意图。
图6是本发明提供的高反射介质层上刻蚀出过孔的示意图。
图7是本发明提供的通过钢网的网孔注入导电粘性层的示意图。
图8是本发明提供的LED放置在高反射介质层的过孔中的示意图。
图9是本发明提供的液晶显示面板的结构示意图。
具体实施方式
本发明提供一种LED(Light Emitting Diode,发光二极管)面光源10的制备方法,如图3所示,该制备方法包括下述步骤:
如图4所示,在驱动基板1上形成高反射介质膜2,如图5所示,高反射介质膜2包含有两层透明有机膜21、23以及夹持在两层透明有机膜21、23之间的高反射金属膜22,高反射金属膜22为反射率大于90%的金属膜;高反射金属膜22为金属银、金属铝、金属铑中的一种。高反射介质膜2中所包含的两层透明有机膜21、23为耐热型透明有机膜。驱动基板1上设置有用于驱动LED发光的驱动电路。
如图6所示,在高反射介质膜2上刻蚀出阵列排布的多个过孔24;高反射介质膜2上的过孔24的形状与LED6的形状相匹配,例如可以是方形过孔或者是圆形过孔,还可以是其他形状的过孔;通过离子束刻蚀或者电子束刻蚀的等高精度刻蚀工艺的方式在高反射介质膜2上刻蚀出阵列排布的多个过孔24。
在多个过孔24内形成有机绝缘膜并将多个过孔24内的有机绝缘膜进行固化,或者将多个LED6的侧面上涂布有机绝缘膜并将多个LED6侧面的有机绝缘膜进行固化。
如图7所示,将钢网8上的多个网孔81分别与高反射介质膜2上的多个过孔24对准,通过多个网孔81往多个过孔24中注入导电粘性层,往多个过孔24中注入导电粘性层之后的5~20分钟内,将多个LED6分别放置在多个过孔24中的导电粘性层的上方,使得LED6与导电粘性层接触。这里导电粘性层可以是锡膏或者其他易冷却固化金属。可以通过控制导电粘性层的浓度、含量以及注入导电粘性层的时长,来精确控制高反射介质膜2的不同过孔24中导电粘性层高度的一致性,也即是高反射介质膜2上不同过孔24中的导电粘性层的高度均相同,这样可以保证多个LED6发光的均匀性。
如图8所示,通过转印的方式将多个LED6分别放置在多个过孔24中,且将多个LED6通过导电粘性层7固定在驱动基板1上,多个LED6与驱动基板1之间通过导电粘性层7电性连接,通过有机绝缘膜将LED6与高反射金属膜22绝缘隔开,避免高反射金属膜22与LED6表面的金属之间短接。
本发明中,利用高反射金属膜22替代传统技术方案中的油漆反射层,不仅可以提高光的反射效果,使更多的光从面光源的表面出射,极大的提高了LED面光源10的亮度。其次,高反射金属膜22还可以制作的很薄,一般可以不超过1微米,相对于油漆反射层数十微米的厚度而言,可以降低LED面光源10的厚度。
在驱动基板1上依次形成高反射介质膜2,具体包括:
在驱动基板1上形成第一透明有机膜21,将第一透明有机膜21烘干固化;
在第一透明有机膜21上通过溅射或者蒸镀的方式制备高反射金属膜22;
在高反射金属膜22上形成第二透明有机膜23,将第二透明有机膜23烘干固化。
其中,第一透明有机膜21可以将高反射金属层与驱动基板1上的电路绝缘隔开,还可以作为驱动基板1与LED6之间的缓冲层。第一透明有机膜 21和第二透明有机膜23可以将LED6与空气中的水和氧气隔离。
上述的透明有机膜和有机绝缘膜均为PI(聚酰亚胺)材料、PCT(聚对苯二甲酸环己撑二亚甲基酯树脂)材料、PET(聚对苯二甲酸乙二醇酯)材料以及环氧树脂类材料中的一种。
LED面光源10的制备方法还包括下述步骤:
在高反射介质膜2上形成发光层3,且发光层3覆盖多个LED6;其中,发光层3为荧光膜、量子点膜以及陶瓷荧光片中的一种;
在发光层3上形成扩散膜4;
在扩散膜4上形成增亮膜5。
优选地,两层透明有机膜21、23的厚度范围均为0.5~3微米,高反射金属膜22的厚度不超过1微米。
将多个LED6固定在驱动基板1上,具体为:
将多个LED6分别放置在多个过孔24中的导电粘性层的上方之后,通过回流焊的方式将多个LED6固定在驱动基板1上,也即是将导电粘性层加热熔化后,再进行固化,通过固化后的导电粘性层将LED6固定在驱动基板1上,使得LED6与导电粘性层底部的驱动基板1、高反射介质层之间紧密结合。
在高反射介质膜2制备完成之后,再进行后续的LED6并搭载发光层3和相关的光学膜片(扩散膜4、增亮膜5)构成直下式背光源。
本发明还提供一种LED面光源10,如图4所示,其包括:驱动基板1、位于驱动基板1上的高反射介质膜2,以及多个LED6。
如图5所示,高反射介质膜2包含有两层透明有机膜21、23,以及夹持在两层透明有机膜21、23之间的高反射金属膜22,高反射金属膜22为反射率大于90%的金属膜。
其中,如图6所示,高反射介质膜2上刻蚀有阵列排布的多个过孔24,多个过孔24内形成有有机绝缘膜或者多个LED6的侧面上涂布有有机绝缘膜。
如图8所示,多个LED6分别设置在多个过孔24中且通过有机绝缘膜将LED6与高反射金属膜22绝缘隔开,多个LED6固定在驱动基板1上, 多个LED6与驱动基板1之间电性连接。
LED面光源10还包括依次层叠的发光层3、扩散膜4以及增亮膜5,且发光层3覆盖多个LED6;发光层3为荧光膜、量子点膜以及陶瓷荧光片中的一种。
上述的高反射金属膜22为金属银、金属铝、金属铑中的一种;透明有机膜和有机绝缘膜均为PI材料、PCT材料、PET材料以及环氧树脂类材料中的一种。
驱动基板1上包含有多个驱动电路,多个LED6划分为多个LED区域,每一LED区域中对应有至少一个LED6;其中,每一个驱动电路均用于驱动一个LED区域内的LED6。
本发明还提供一种显示面板。显示面板可以是液晶显示面板,或者micro LED显示面板,当然,显示面板的类型不限于此。在本实施例中,以液晶显示面板为例进行说明,如图9所示,该液晶显示面板包括上述的LED面光源10,以及位于LED面光源10上的液晶盒20。液晶盒20包含有上下两层偏光片以及夹持在两层偏光片之间的液晶。
具体地,LED面光源10采用分区的方式进行控制,驱动基板1上包含有PCB(Printed Circuit Board,印刷电路板)板或者FPC(Flexible Printed Circuit,柔性印刷电路)板,在PCB板或者FPC板上制备有多个驱动电路,将整面的多个LED6划分为m×n个LED6区域,m和n均是大于等于1的正整数。LED6区域的数量越多,对LED6面光源的控制就越精细,显示画面的细节处理就越好。分区控制的LED6面光源搭配Local dimming(区域调光)技术,能够在省功耗的同时,提高显示画面的对比度。例如,需要其中一个LED6区域进行显示时,那么其他的LED6区域则可以不点亮,此时,可以节省功耗,同时,还可以将用于控制其他LED6区域的电流都输送至需要点亮的一个LED6区域中,就会使得该LED6区域的亮度更高,因而可以提高显示画面的对比度。
综上所述,本发明采用高反射介质膜2替代油漆反射层,高反射介质膜2中包含有高反射金属膜22,可以极大提供高反射介质膜2的反射率,也即是提高了LED面光源10的光效,并且高反射介质膜2是金属膜,其相对于 油漆反射层而言,厚度也可以降低,从而降低LED6面光源的整体厚度。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (12)

  1. 一种LED面光源的制备方法,其中,包括下述步骤:
    在驱动基板上形成高反射介质膜,所述高反射介质膜包含有两层透明有机膜以及夹持在所述两层透明有机膜之间的高反射金属膜,所述高反射金属膜为反射率大于90%的金属膜;
    在所述高反射介质膜上刻蚀出阵列排布的多个过孔;
    在所述多个过孔内形成有机绝缘膜并将所述多个过孔内的有机绝缘膜进行固化,或者将多个LED的侧面上涂布有机绝缘膜并将所述多个LED侧面的有机绝缘膜进行固化;
    将多个LED分别放置在所述多个过孔中,且将所述多个LED固定在所述驱动基板上,所述多个LED与所述驱动基板之间电性连接,通过所述有机绝缘膜将所述LED与所述高反射金属膜绝缘隔开。
  2. 根据权利要求1所述的LED面光源的制备方法,其中,还包括下述步骤:
    在所述高反射介质膜上形成发光层,且所述发光层覆盖所述多个LED;其中,所述发光层为荧光膜、量子点膜以及陶瓷荧光片中的一种;
    在所述发光层上形成扩散膜;
    在所述扩散膜上形成增亮膜。
  3. 根据权利要求1所述的LED面光源的制备方法,其中,所述两层透明有机膜的厚度范围均为0.5~3微米,所述高反射金属膜的厚度不超过1微米。
  4. 根据权利要求1所述的LED面光源的制备方法,其中,所述高反射介质膜上的过孔的形状与所述LED的形状相匹配。
  5. 根据权利要求1所述的LED面光源的制备方法,其中,还包括下述步骤:
    将钢网上的多个网孔分别与所述高反射介质膜上的多个过孔对准,通过所述多个网孔往所述多个过孔中注入导电粘性层,并将所述多个LED分别放置在所述多个过孔中的导电粘性层的上方;
    将所述多个LED固定在所述驱动基板上,具体为:
    将所述多个LED分别放置在所述多个过孔中的导电粘性层的上方之后,通过回流焊的方式将所述多个LED固定在所述驱动基板上。
  6. 根据权利要求1所述的LED面光源的制备方法,其中,通过离子束刻蚀或者电子束刻蚀的方式在所述高反射介质膜上刻蚀出阵列排布的多个过孔。
  7. 根据权利要求1所述的LED面光源的制备方法,其中,
    所述高反射金属膜为金属银、金属铝、金属铑中的一种;
    所述透明有机膜和所述有机绝缘膜均为PI材料、PCT材料、PET材料以及环氧树脂类材料中的一种。
  8. 一种LED面光源,其中,包括:驱动基板、位于所述驱动基板上的高反射介质膜,以及多个LED;
    所述高反射介质膜包含有两层透明有机膜,以及夹持在所述两层透明有机膜之间的高反射金属膜,所述高反射金属膜为反射率大于90%的金属膜;
    其中,所述高反射介质膜上刻蚀有阵列排布的多个过孔,所述多个过孔内形成有有机绝缘膜或者所述多个LED的侧面上涂布有有机绝缘膜;
    所述多个LED分别设置在所述多个过孔中且通过所述有机绝缘膜将所述LED与所述高反射金属膜绝缘隔开,所述多个LED固定在所述驱动基板上,所述多个LED与所述驱动基板之间电性连接。
  9. 根据权利要求8所述的LED面光源,其中,还包括依次层叠的发光层、扩散膜以及增亮膜,且所述发光层覆盖所述多个LED;所述发光层为荧光膜、量子点膜以及陶瓷荧光片中的一种;
    所述高反射金属膜为金属银、金属铝、金属铑中的一种;
    所述透明有机膜和所述有机绝缘膜均为PI材料、PCT材料、PET材料以及环氧树脂类材料中的一种;所述驱动基板上包含有多个驱动电路,所述多个LED划分为多个LED区域,每一LED区域中对应有至少一个LED;
    其中,每一个驱动电路均用于驱动一个LED区域内的LED。
  10. 一种显示面板,其中,包括LED面光源,所述LED面光源包括:驱动基板、位于所述驱动基板上的高反射介质膜,以及多个LED;
    所述高反射介质膜包含有两层透明有机膜,以及夹持在所述两层透明有 机膜之间的高反射金属膜,所述高反射金属膜为反射率大于90%的金属膜;
    其中,所述高反射介质膜上刻蚀有阵列排布的多个过孔,所述多个过孔内形成有有机绝缘膜或者所述多个LED的侧面上涂布有有机绝缘膜;
    所述多个LED分别设置在所述多个过孔中且通过所述有机绝缘膜将所述LED与所述高反射金属膜绝缘隔开,所述多个LED固定在所述驱动基板上,所述多个LED与所述驱动基板之间电性连接。
  11. 根据权利要求10所述的显示面板,其中,所述LED面光源还包括依次层叠的发光层、扩散膜以及增亮膜,且所述发光层覆盖所述多个LED;所述发光层为荧光膜、量子点膜以及陶瓷荧光片中的一种;
    所述高反射金属膜为金属银、金属铝、金属铑中的一种;
    所述透明有机膜和所述有机绝缘膜均为PI材料、PCT材料、PET材料以及环氧树脂类材料中的一种。
  12. 根据权利要求10所述的显示面板,其中,
    所述驱动基板上包含有多个驱动电路,所述多个LED划分为多个LED区域,每一LED区域中对应有至少一个LED;
    其中,每一个驱动电路均用于驱动一个LED区域内的LED。
PCT/CN2018/095691 2018-05-28 2018-07-13 一种led面光源及其制备方法、显示面板 WO2019227618A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/152,705 US20190363070A1 (en) 2018-05-28 2018-10-05 Light emitting diode surface lighting source, and manufacturing method and display panel thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810520814.6A CN108761909A (zh) 2018-05-28 2018-05-28 一种led面光源及其制备方法、显示面板
CN201810520814.6 2018-05-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/152,705 Continuation US20190363070A1 (en) 2018-05-28 2018-10-05 Light emitting diode surface lighting source, and manufacturing method and display panel thereof

Publications (1)

Publication Number Publication Date
WO2019227618A1 true WO2019227618A1 (zh) 2019-12-05

Family

ID=64006495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/095691 WO2019227618A1 (zh) 2018-05-28 2018-07-13 一种led面光源及其制备方法、显示面板

Country Status (2)

Country Link
CN (1) CN108761909A (zh)
WO (1) WO2019227618A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220375911A1 (en) * 2020-02-17 2022-11-24 BOE MLED Technology Co., Ltd. Backplane and method for manufacturing the same, and display device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109709722A (zh) * 2019-03-12 2019-05-03 合肥京东方光电科技有限公司 直下式背光源及制备方法、背光模组以及显示装置
CN111524931A (zh) * 2020-05-11 2020-08-11 京东方科技集团股份有限公司 一种Mini LED显示面板及其制备方法和显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105068315A (zh) * 2015-09-01 2015-11-18 深圳Tcl新技术有限公司 蓝光led直下式背光模组和液晶显示屏
CN105301841A (zh) * 2015-11-23 2016-02-03 青岛海信电器股份有限公司 一种背光模组和液晶显示设备
CN105938273A (zh) * 2016-06-03 2016-09-14 深圳创维-Rgb电子有限公司 背光模组和显示设备
US20170199429A1 (en) * 2016-01-13 2017-07-13 Samsung Display Co., Ltd. Display device and method of manufacturing the same
CN107703568A (zh) * 2016-08-09 2018-02-16 柯尼卡美能达株式会社 光反射膜及液晶显示装置用背光单元
CN107797334A (zh) * 2016-09-02 2018-03-13 柯尼卡美能达株式会社 光反射膜及液晶显示装置用背光单元

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105068315A (zh) * 2015-09-01 2015-11-18 深圳Tcl新技术有限公司 蓝光led直下式背光模组和液晶显示屏
CN105301841A (zh) * 2015-11-23 2016-02-03 青岛海信电器股份有限公司 一种背光模组和液晶显示设备
US20170199429A1 (en) * 2016-01-13 2017-07-13 Samsung Display Co., Ltd. Display device and method of manufacturing the same
CN105938273A (zh) * 2016-06-03 2016-09-14 深圳创维-Rgb电子有限公司 背光模组和显示设备
CN107703568A (zh) * 2016-08-09 2018-02-16 柯尼卡美能达株式会社 光反射膜及液晶显示装置用背光单元
CN107797334A (zh) * 2016-09-02 2018-03-13 柯尼卡美能达株式会社 光反射膜及液晶显示装置用背光单元

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220375911A1 (en) * 2020-02-17 2022-11-24 BOE MLED Technology Co., Ltd. Backplane and method for manufacturing the same, and display device
US11960167B2 (en) * 2020-02-17 2024-04-16 BOE MLED Technology Co., Ltd. Backplane and method for manufacturing the same, and display device

Also Published As

Publication number Publication date
CN108761909A (zh) 2018-11-06

Similar Documents

Publication Publication Date Title
CN112863390B (zh) 发光模组、背光模组及显示装置
US11588085B2 (en) Light emitting drive substrate and manufacturing method thereof, light emitting substrate and display device
JP6431107B2 (ja) 発光装置
WO2018086211A1 (zh) 柔性tft基板及其制作方法
US20200185452A1 (en) Manufacturing method of micro light-emitting diode display panel
WO2019227618A1 (zh) 一种led面光源及其制备方法、显示面板
EP2743909A1 (en) Pixel structure, pixel unit structure, display panel and display apparatus
WO2021227098A1 (zh) 背光模组和显示面板
US11056550B2 (en) Display panel, manufacturing method thereof, and display module
CN105467670A (zh) 一种阵列基板、显示面板及液晶显示器
US20190363070A1 (en) Light emitting diode surface lighting source, and manufacturing method and display panel thereof
WO2022179370A1 (zh) 发光器件、显示组件和发光器件的制造方法
US20240036395A1 (en) Display backplane and display device
CN101740726A (zh) 有机电致发光器件及其制造方法
US20230106628A1 (en) Display panel and fabrication method thereof
US20080211992A1 (en) Diode substrate of LCD
US11562988B2 (en) Area light source, method for manufacturing the same and display device
WO2021128463A1 (zh) 显示面板及其制备方法
US11803079B2 (en) Quantum dot display panel, quantum dot display device, and preparation method thereof
KR20130015744A (ko) 방열 인쇄회로기판, 반도체 조명 장치 및 디스플레이 장치
WO2023087386A1 (zh) Oled显示面板和oled显示装置
WO2021223299A1 (zh) Oled 显示面板及其制作方法
CN112701114B (zh) 背光装置及其制作方法
KR100812350B1 (ko) 백라이트 유닛 및 평판 표시장치
US11532685B2 (en) Doubled-side display device and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18920717

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18920717

Country of ref document: EP

Kind code of ref document: A1