WO2019227439A1 - 机身、机臂、旋翼组件、机架以及多旋翼无人机 - Google Patents

机身、机臂、旋翼组件、机架以及多旋翼无人机 Download PDF

Info

Publication number
WO2019227439A1
WO2019227439A1 PCT/CN2018/089380 CN2018089380W WO2019227439A1 WO 2019227439 A1 WO2019227439 A1 WO 2019227439A1 CN 2018089380 W CN2018089380 W CN 2018089380W WO 2019227439 A1 WO2019227439 A1 WO 2019227439A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuselage
arm
control system
flight control
rotor
Prior art date
Application number
PCT/CN2018/089380
Other languages
English (en)
French (fr)
Inventor
任冠男
潘子荣
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2018/089380 priority Critical patent/WO2019227439A1/zh
Priority to CN201880031603.4A priority patent/CN110662696A/zh
Publication of WO2019227439A1 publication Critical patent/WO2019227439A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/16Flying platforms with five or more distinct rotor axes, e.g. octocopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/40Modular UAVs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/80Arrangement of on-board electronics, e.g. avionics systems or wiring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/29Constructional aspects of rotors or rotor supports; Arrangements thereof
    • B64U30/291Detachable rotors or rotor supports

Definitions

  • the invention relates to a fuselage, an arm, a rotor assembly, a frame and a multi-rotor unmanned aerial vehicle, and belongs to the technical field of unmanned aerial vehicles.
  • Drones are referred to as "unmanned aerial vehicles” and abbreviated as "UAV”. They are unmanned aircrafts controlled by radio remote control equipment and self-provided program control devices, or are operated completely or intermittently autonomously by on-board computers. With the rapid development of science and technology and economy, drones have gradually expanded from a simple and simple field to more fields such as agricultural plant protection, logistics and transportation, and engineering rescue. However, the drones used in different fields in the market now need to be customized to provide the appropriate power to carry different weight loads, that is, each different type of drone on the market is It is designed for a single application scenario. For example, aerial drones are generally used for aerial aerial photography, logistics drones are generally used for logistics transportation, and plant protection drones are generally used for sowing and fertilizing.
  • embodiments of the present invention provide a fuselage, an arm, a rotor assembly, a frame, and a multi-rotor unmanned aerial vehicle.
  • a rack including: a fuselage, a flight control system, a quick release mechanism, and a plurality of arms; the fuselage has a plurality of mounting portions, and the flight control system is mounted on The fuselage; a plurality of the arms are radially arranged around the fuselage, and at least part of the arms are detachably connected to the mounting portion of the fuselage through the quick release mechanism; When the arm is connected to the fuselage, the arm is also electrically connected to the flight control system; the flight control system controls the output of the flight control system according to the number of arms connected to the fuselage. Preset power mode.
  • a multi-rotor unmanned aerial vehicle which includes a frame and a plurality of power systems.
  • the power system includes a motor and a propeller.
  • Each arm of the frame is equipped with one or A plurality of the power systems;
  • the frame includes: a fuselage, a flight control system, a quick release mechanism, and a plurality of arms;
  • the fuselage has a plurality of mounting parts, and the flight control system is mounted on the A fuselage, and the flight control system is electrically connected to the power system through the arm;
  • a plurality of the arms are radially arranged around the fuselage, and at least some of the arms are passed through the quick release
  • the mechanism is detachably connected to the mounting portion of the fuselage; when the aircraft arm is connected to the fuselage, the aircraft arm is also electrically connected to the flight control system; the flight control system is connected to The number of arms of the fuselage controls the flight control system to output a corresponding preset power mode.
  • a fuselage is provided, the fuselage has a plurality of mounting parts, and the fuselage is equipped with a flight control system; at least part of the mounting parts form a first part of a quick release mechanism For detachably connecting with the second part of the quick-release mechanism formed on the arm of the multi-rotor drone, and when the first part is detachably connected with the second part, the arm It is electrically connected to the flight control system; the flight control system controls the flight control system to output a preset power mode corresponding to the number of arms connected to the fuselage.
  • an air boom is provided, and one end of the air boom is formed with a second part of a quick release mechanism for connecting with the quick release structure formed on the fuselage of a multi-rotor drone.
  • the first part is detachably connected; the body has a plurality of mounting parts, at least part of which is formed with the first part; when the second part is detachably connected to the first part, the machine
  • the arm is electrically connected to a flight control system installed in the fuselage; the flight control system controls the flight control system to output a corresponding preset power mode according to the number of arms connected to the fuselage.
  • a rotor assembly which includes a power system including a motor and a propeller.
  • the power system is mounted on the arm; one end of the arm is formed with
  • the second part of the quick release mechanism is used to be detachably connected to the first part of the quick release structure formed on the fuselage of the multi-rotor drone;
  • the fuselage has a plurality of mounting parts, at least part of which is installed
  • the first part is formed in the part; when the second part is detachably connected to the first part, the arm is electrically connected with a flight control system installed in the fuselage; the flight control system is based on The number of arms connected to the fuselage controls the flight control system to output a corresponding preset power mode.
  • the arms are detachably connected to the mounting portion of the fuselage through a quick release mechanism, and the flight control system controls the flight control system to output corresponding pre-controls according to the number of arms connected to the fuselage.
  • the power mode is set so that the type of the multi-rotor drone can be changed by adjusting the number of arms in different application scenarios to match the specific application scenario.
  • FIG. 1 is an exploded view of a partial structure of a first multi-rotor drone according to an embodiment of the present invention
  • FIG. 2 is an exploded view of a partial structure of a second multi-rotor drone provided by an embodiment of the present invention
  • FIG. 4 is a front view of a fuselage according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a rotor assembly according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of another rotor assembly according to an embodiment of the present invention.
  • the second electrical connection member 303.
  • the second electrical connection member 304.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present invention, the meaning of "a plurality” is at least two, for example, two, three, etc., unless it is specifically and specifically defined otherwise.
  • the multi-rotor UAV includes: a fuselage 10, a plurality of arms 20 radially surrounding the periphery of the fuselage 10, and one or more power systems 40 mounted on each of the arms 20. , Flight control system and quick release mechanism 30.
  • the fuselage 10, the arm 20 connected to the fuselage 10, the flight control system, and the quick release mechanism 30 are collectively referred to as a frame; the arm 20 and the power system 40 mounted on the arm 20 Collectively referred to as rotor assemblies.
  • the fuselage 10 can be made into a tetrahedron, pentahedron, hexahedron, octahedron, dodecahedron, or other polyhedron with a closed cavity.
  • the closed cavity can be used to install flight control systems and other electronic components.
  • the flight control system can also be installed in other positions of the fuselage 10, for example, in a separate installation structure on the fuselage 10 or above the fuselage 10.
  • a portion of the robotic arm may extend into the closed cavity.
  • FIG. 1 shows an octahedral fuselage 10 which includes a top plate and a bottom plate opposite to each other, and eight side plates located between the top plate and the bottom plate, the side plates having sides.
  • the top plate, bottom plate, and side plate can be made separately, and then the three are assembled together to form the fuselage 10; or the side plate and the top plate or bottom plate can be integrally formed and then assembled together; of course, it can also be
  • the side plate is divided into two parts, the upper part is integrally formed with the top plate, the lower part is integrally formed with the bottom plate, and then assembled together. It can be understood that the top plate, the bottom plate, and the side plates may also be frame structures with hollows and the like.
  • the mounting portion 101 may extend obliquely from the top plate away from the center of the top plate; or it may extend obliquely from the bottom plate away from the center of the bottom plate; it may also be Extending from the side plate to the outside of the outer body 10.
  • the plurality of mounting portions 101 may be disposed on one or more of the top plate, the bottom plate, and the side plate according to actual design requirements.
  • FIGS. 1 to 3 show examples in which all the mounting portions 101 are provided on the side plate of the body 10.
  • each of the arms 20 is mounted on the fuselage 10 through a mounting portion 101 so that the arms 20 radially surround the periphery of the fuselage 10.
  • at least part of the arms 20 having the same length or different lengths is detachably connected to the mounting portion 101 through the quick release mechanism 30.
  • the drone may include a base number of arms 20 connected to the fuselage 10 in a non-removable manner.
  • the base number of arms 20 ensure that the drone takes off normally and completes some preset functions. When a larger load or a further increase in power is required, a removable arm 20 may be further installed. It can be understood that when the number of the arms 20 radially surrounding the fuselage 10 changes, models such as four-rotor (see FIG. 1), six-rotor (see FIG. 2), and eight-rotor (see FIG. 3) can be formed. .
  • the mounting portions 101 are each equipped with an arm 20, and a quadrotor drone is formed at this time, see FIG. 1; or, six of the mounting portions 101 are each equipped with an arm 20, and then formed
  • the six-rotor drone is shown in Figure 2.
  • the arms 20 should surround the body 10 radially as described above.
  • one side can be spaced between the two adjacent arms 20, that is, the four arms 20 are center symmetrical about the center of the fuselage 10 to improve
  • the quadrotor drone's balance improves flight performance.
  • other even-numbered arms 20 can be center symmetrical about the center of the fuselage 10 to improve balance.
  • the arms 20 can be detachably connected to the mounting portion 101, in order to save the storage space of the multi-rotor drone, thereby facilitating storage or transportation, it can also be as shown in FIGS. 1 to 3 As shown, all the arms 20 are detachably connected to the mounting portion 101 of the fuselage 10 through a quick release structure.
  • the airframe 20 when the airframe 20 is connected to the fuselage 10, the airframe 20 is also electrically connected to a flight control system installed on the airframe 10, so that the flight control system can be connected according to the connection.
  • the preset power mode corresponding to the output of the flight system is controlled by the number of the arms 20 of the fuselage 10.
  • the flight control system can output a four-rotor power mode for a four-rotor drone with four arms 20, or a six-rotor power mode for a six-rotor drone with six arms 20, or
  • An eight-rotor power mode is output for an eight-rotor drone having eight arms 20, and a twelve-rotor power mode can be output for a twelve-rotor drone having twelve arms 20.
  • the number of the arms 20 and the power mode output by the drone are not limited to this, and are not limited in this embodiment.
  • FIGS. 5 and 6 are schematic structural diagrams of two types of rotor assemblies provided in this embodiment.
  • the rotor assembly includes a boom 20 and one or more power systems 40 mounted on the boom 20.
  • Each power system 40 is electrically connected to the flight control system through the arm 20, so as to provide flight power for the multi-rotor drone according to the above-mentioned power mode output by the flight control system, thereby driving the multi-rotor drone to rise, descend, and suspend. Stop, turn, etc.
  • the power system 40 includes a motor and a propeller.
  • the motor can be installed at any position of the arm 20.
  • the motor is installed at the end of the arm 20 remote from the fuselage 10; in other examples, the motor is installed between the two ends of the arm 20.
  • the motor of one of the power systems 40 can be installed at the end of the arm 20 away from the fuselage 10
  • the motors of the other power systems 40 are installed between the two ends of the arm 20.
  • the propeller can be installed above or below the motor, or one propeller can be installed above or below the motor.
  • a single-shaft single-screw propeller 401 as shown in FIG. 5 may be used, or a single-shaft double-screw propeller 402 as shown in FIG. 6 may be used.
  • the battery installed in the arm 20 is not necessary, and the power installed in the arm 20 can be provided by the battery installed in the fuselage 10.
  • a battery may be installed in all of the plurality of arms 20, or a part of the batteries may be installed, and the other part obtains power through an electrical connection with the flight control system or shares batteries with other arms 20 Obtain power, which can be provided by a battery installed on the fuselage 10 or by a battery-mounted arm 20.
  • the arm 20 is detachably connected to the mounting portion 101 of the fuselage 10 through the quick release mechanism 30, and the flight control system controls the output of the flight control system according to the number of the arms 20 connected to the fuselage 10.
  • the preset power mode of the multi-rotor drone can be changed by adjusting the number of arms 20 in different application scenarios to match the specific application scenario. For example, when a multi-rotor drone is needed for aerial photography, four arms 20 may be connected to the fuselage 10; and when a multi-rotor drone is required for logistics transportation, a quick release mechanism 30 may be added A larger number (eg, two, four, or eight) of arms 20 are connected to the fuselage 10, thereby providing stronger lift for transporting goods. Conversely, when a small lift is required in the current application scenario, a certain number of the arms 20 connected to the fuselage 10 through the quick release mechanism 30 can be removed from the fuselage 10.
  • the quick release mechanism 30 may be any suitable mechanism, as long as it can quickly mount the arm 20 to the mounting portion 101 of the fuselage 10 and quickly remove it from the mounting portion 101.
  • the quick release mechanism 30 may include a first portion and a second portion detachably connected to the first portion. Among them, at least part of the mounting portion 101 is used to form a first part of the quick-release structure, and the arm 20 is used to form a second part of the quick-release structure. . It can be understood that, in some specific examples, all the mounting portions 101 are formed with the first part of the quick release structure.
  • the arm 20 and the flight control system are electrically connected through the first and second parts' electrical coupling.
  • the first part of the quick release structure is integrally formed with the mounting portion 101
  • the second part of the quick release mechanism 30 is also integrally formed with the arm 20 to simplify the installation steps and improve quick disassembly. s efficiency.
  • the second part of the quick release mechanism 30 formed on the arm 20 and the first part formed of the mounting part 101 of the fuselage 10 may be quickly disassembled through various detachable connection methods such as screw connection and snap connection.
  • the purpose of loading may be a bolt formed on one end of the arm 20 near the fuselage 10, and the first part is a threaded hole formed on the mounting portion 101 to cooperate with the bolt, so that the arm 20 needs to be installed when needed When the fuselage 10 is detached from the fuselage 10, it can be easily realized by only rotating the arm 20.
  • the bolt formed on the arm 20 and formed on the arm 20 may be integrally formed with the arm 20, for example, the end of the arm 20 near the fuselage 10 is formed by an existing processing method such as molding or casting. bolt.
  • a buckle structure capable of detachably connecting is provided.
  • the first part of the quick-release structure formed on the mounting portion 101 is a groove 301
  • the second part of the quick-release structure formed on the arm 20 is a protrusion for detachably clamping in the groove 301.
  • Block 302. When it is necessary to install the arm 20 on the fuselage 10, the purpose of quickly installing the arm 20 on the fuselage 10 is to simply snap the projection 302 of the quick release mechanism 30 into its groove 301; When removing the arm 20 mounted on the fuselage 10, it is only necessary to pull out the projection 302 that is caught in the groove 301, which is not only fast but also simple and convenient.
  • the groove 301 may be configured as a dovetail groove
  • the convex block 302 is configured as a dovetail block to improve the connection strength of the quick release mechanism 30 and the mounting portion 101.
  • a first electrical connection member 304 electrically connected to the arm 20 is provided on the projection 302, and a contact
  • the flight control system is electrically connected to the second electrical connector 303, so that when the aircraft arm 20 is detachably connected to the mounting portion 101, the first electrical connector and the second electrical connector are electrically coupled.
  • the first electrical connection member includes a pin plug or a metal contact provided on the bump 302, and accordingly, the second electrical connection member includes a pin provided in the groove 301.
  • Female sockets or contacts for electrical coupling of pin plugs or metal contacts are not exclude swapping the pin plug and the pin hole socket, that is, the pin plug is set in the groove 301, and the pin hole socket is set on the projection 302 accordingly. Metal contacts and contacts can also be reversed.
  • the fuselage 10 and the machine arm 20 may be electrically connected and / or communicated through the aforementioned first and second electrical connections 304 and 303 which are electrically coupled.
  • the above-mentioned pin plug may include a power supply pin and a communication pin
  • a pinhole type socket may include a power supply jack matched with the power supply pin and a communication jack matched with the communication pin. Therefore, when the projection 302 of the quick release mechanism 30 is snapped into its groove 301, the arm 20 and the flight control system can be powered by the coupling of the power supply pin and the power supply jack, or the communication pin and the communication jack. Coupling to communicate.
  • the battery installed on the fuselage 10 supplies power directly or indirectly through the ESC to the motor of the power system 40 installed on the arm 20 through the power supply pins and power supply jacks, and the flight control system (or motor )
  • the control signals are transmitted to the motor (or flight control system) directly or indirectly through the ESC through the communication pins and communication jacks.
  • the power of the battery in the arm 20 can also be supplied to the flight control system of the fuselage 10 or the power installed on the other arm 20 through the power supply pins and power supply jacks.
  • the motor of the system 40 and the like.
  • the flight control system When the arm 20 is detachably connected to the mounting portion 101 through a quick release structure, the flight control system obtains a confirmation signal, which is used to indicate that one of the mounting portions 101 has been detachably connected to the arm 20, thereby
  • the flight control system may determine the number of the arms 20 detachably connected to the mounting portion 101 according to the number of the received confirmation signals. For example, when four arms 20 are detachably connected to the mounting portion 101 through the quick release mechanism 30, the flight control system receives four confirmation signals, and the flight control system counts the confirmation signals (for example, by a counter ), It can be confirmed that there are four detachable arms 20 connected to the mounting portion 101 of the fuselage 10.
  • the flight control system determines that the number of the arms 20 that are finally connected to the fuselage 10 is four, so as to control the output of the four-rotor power mode; 10 There are two mounting portions 101 that are inseparably connected to the two arms 20, respectively. Then the flight control system determines through calculation (for example, by computer executable code or arithmetic circuit) that the number of the arms 20 that are finally connected to the mounting portion 101 is Six, thus controlling the output six-rotor power mode. Further, the flight control system can confirm the position of the arm 20 detachably connected to the mounting portion 101 through the quick release mechanism 30 to output a suitable preset power mode.
  • the flight control system when the four arms 20 are center symmetrical about the center of the fuselage 10, the flight control system outputs the first quadrotor power mode.
  • the flight control system when the four arms 20 are non-center symmetrical about the center of the fuselage 10, the flight control system outputs a corresponding second quadrotor power mode.
  • sensors may be provided on one or more of the fuselage 10, the quick-release mechanism 30, and the boom 20, and these sensors fly toward the aircraft when the boom 20 is detachably connected to the mounting portion 101.
  • the control system sends the above-mentioned confirmation signal, so that the flight control system can obtain the number of the arms 20 mounted on the mounting portion 101 of the fuselage 10 according to the received confirmation signal.
  • the sensor may be a suitable sensor such as a photoelectric counting sensor, a pressure sensor, and the sensor may be disposed on one or more of the body 10, the quick release mechanism 30, and the machine arm 20.
  • an infrared receiver is provided on the fuselage 10
  • an infrared transmitter is provided on the arm 20.
  • the arm 20 When the arm 20 is detachably connected to the mounting portion 101 of the body 10, The infrared light emitted by the infrared transmitter on the arm 20 is received by the infrared receiver provided on the fuselage 10, thereby confirming that the arm 20 is connected to the fuselage 10, and sending a confirmation signal to the flight control system.
  • the arm 20 when the arm 20 is detachably connected to the mounting portion 101 through the quick release mechanism 30, a certain circuit or circuits in the arm 20 will be conducted, thereby activating the inside of the arm 20
  • the set communication element sends the above-mentioned confirmation signal to the flight control system.
  • a communication element is connected in series with a communication pin of the quick release mechanism 30 and the communication element continuously transmits a communication signal.
  • the communication pins of the quick release mechanism 30 are inserted into the communication jack, and the communication element and the communication circuit of the flight control system are conducted, and the communication element
  • the confirmation signal is sent to the flight control system through the coupled communication pin and communication jack. It can be understood that, in the above example, the communication element does not continuously send the confirmation signal, but starts to send the confirmation signal only after the communication pin and the communication jack are coupled.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Toys (AREA)

Abstract

一种机架,包括:机身(10)、飞行控制系统、快拆机构(30)、以及多个机臂(20)。机身(10)具有多个安装部(101),飞行控制系统安装于机身(10);多个机臂(20)呈放射状环绕设置于机身(10),且至少有部分机臂(20)通过快拆机构(30)与机身(10)的安装部(101)可拆卸地连接,当机臂(20)连接于机身(10)时,机臂(20)还与飞行控制系统电性连接;飞行控制系统根据连接于机身(10)的机臂数量控制飞行控制系统输出对应的预设动力模式。这种机架可以通过增减与机身连接的机臂数量来适应不同应用场景的需要,并且飞行控制系统能够根据连接的机臂数量来匹配相应的动力模式。还提供了一种机身(10)、机臂(20)、旋翼组件及多旋翼无人飞机。

Description

机身、机臂、旋翼组件、机架以及多旋翼无人机 技术领域
本发明涉及一种机身、机臂、旋翼组件、机架以及多旋翼无人机,属于无人机技术领域。
背景技术
无人驾驶飞机简称“无人机”,英文缩写为“UAV”,是利用无线电遥控设备和自备的程序控制装置操纵的不载人飞机,或者由车载计算机完全地或间歇地自主地操作。随着科技和经济的飞速发展,无人机已经从最初简单的单一领域逐步拓展到了农业植保、物流运输、工程抢险等更多的应用领域。然而,现在市场上在不同领域中应用的无人机均需要进行定制化生产以便提供合适的动力来搭载不同重量的负载,也即是说,市场上的每一种不同类型的无人机均是为单一应用场景设计的。例如,航拍无人机一般用于进行空中航拍,物流无人机一般用于进行物流运输,植保无人机一般用于进行播种、施肥等。而且,生产商在设计不同应用场景的无人机时,会充分考虑不同应用场景的特点,从而对不同应用场景的无人机进行特定的优化。举例而言,对于航拍的无人机来说,生产商会优化无人机的稳定性,从而保证拍摄质量;而对于物流运输的无人机来说,生产商会优化动力输出,以保证无人机具有较大的拉伸力从而搭载更大重量的货物。但是,在实际应用中,用户可能在某一些时间需要使用无人机进行航拍,在另一些时间需要使用无人机运送一些物品,但现在的无人机却无法满足上述需求。
发明内容
为了解决现有技术中存在的上述或其他潜在问题,本发明实施例提供一种机身、机臂、旋翼组件、机架以及多旋翼无人机。
根据本发明的一些实施例,提供一种机架,包括:机身、飞行控制系统、快拆机构、以及多个机臂;所述机身具有多个安装部,所述飞行控制系统安装于所述机身;多个所述机臂呈放射状环绕设置于所述机身,且至少有部分机臂通过所述快拆机构与所述机身的安装部可拆卸地连接;当所述机臂连接于所述机身时,所述机臂还与所述飞行控制系统电性连接;所述飞行控制系统根据连接于所述机身的机臂的数量控制所述飞行控制系统输出对应的预设动力模式。
根据本发明的一些实施例,提供一种多旋翼无人机,包括机架以及多个动力系统,所述动力系统包括电机和螺旋桨,所述机架的每一个机臂上均安装有一个或者多个所述动力系统;所述机架,包括:机身、飞行控制系统、快拆机构、以及多个机臂;所述机身具有多个安装部,所述飞行控制系统安装于所述机身,且所述飞行控制系统通过所述机臂与所述动力系统电性连接;多个所述机臂呈放射状环绕设置于所述机身,且至少有部分机臂通过所述快拆机构与所述机身的安装部可拆卸地连接;当所述机臂连接于所述机身时,所述机臂还与所述飞行控制系统电性连接;所述飞行控制系统根据连接于所述机身的机臂的数量控制所述飞行控制系统输出对应的预设动力模式。
根据本发明的一些实施例,提供一种机身,所述机身具有多个安装部,且所述机身安装有飞行控制系统;至少有部分所述安装部形成有快拆机构的第一部分,用于与多旋翼无人机的机臂上所形成的快拆机构的第二部分可拆卸地连接,且当所述第一部分与所述第二部分可拆卸地连接时,所述机臂与所述飞行控制系统电性连接;所述飞行控制系统根据连接于所述机身的机臂的数量控制所述飞行控制系统输出对应的预设动力模式。
根据本发明的一些实施例,提供一种机臂,所述机臂的一端形成有快拆机构的第二部分,用于与多旋翼无人机的机身上形成的所述快拆结构的第一部分可拆卸地连接;所述机身具有多个安装部,至少部分所述安装部形成有所述第一部分;当所述第二部分可拆卸地连接于所述第一部分时,所述机臂与所述机身内安装的飞行控制系统电性连接;所述飞行控制系统根据连接到所述机身的机臂的数量控制所述飞行控制系统输出对应的预设动力模式。
根据本发明的一些实施例,提供一种旋翼组件,包括动力系统以及机臂,所述动力系统包括电机和螺旋桨,所述动力系统安装在所述机臂上;所述机 臂的一端形成有快拆机构的第二部分,用于与多旋翼无人机的机身上形成的所述快拆结构的第一部分可拆卸地连接;所述机身具有多个安装部,至少部分所述安装部形成有所述第一部分;当所述第二部分可拆卸地连接于所述第一部分时,所述机臂与所述机身内安装的飞行控制系统电性连接;所述飞行控制系统根据连接到所述机身的机臂的数量控制所述飞行控制系统输出对应的预设动力模式。
根据本发明的实施例,通过使至少部分机臂通过快拆机构与机身的安装部可拆卸地连接,并使得飞行控制系统根据连接于机身的机臂数量控制飞行控制系统输出对应的预设动力模式,从而可以在不同的应用场景下通过对机臂数量的调整来改变多旋翼无人机的机型,以便与特定的应用场景相匹配。
本发明的附加方面的优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
通过参照附图的以下详细描述,本发明实施例的上述和其他目的、特征和优点将变得更容易理解。在附图中,将以示例以及非限制性的方式对本发明的多个实施例进行说明,其中:
图1为本发明实施例提供的第一种多旋翼无人机的局部结构的爆炸图;
图2为本发明实施例提供的第二种多旋翼无人机的局部结构的爆炸图;
图3为本发明实施例提供的第三种多旋翼无人机的局部结构的爆炸图。
图4为本发明实施例提供的一种机身的正视图;
图5为本发明实施例提供的一种旋翼组件的结构示意图;
图6为本发明实施例提供的另一种旋翼组件的结构示意图;
图中:
10、机身;                  101、安装部;
20、机臂;                  30、快拆机构;
301、凹槽;                 302、凸块;
303、第二电连接件;         304、第一电连接件;
40、动力系统;               401、单轴单螺旋桨;
402、单轴双螺旋桨。
具体实施方式
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
在本发明的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸地连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
图1至图3为本实施例提供的三种多旋翼无人机的局部结构爆炸图。如图1至图3所示,多旋翼无人机包括:机身10、呈放射状环绕在机身10外周的多个机臂20、每个机臂20上安装的一个或者多个动力系统40、飞行控制系统以及快拆机构30。
在本实施例中,将机身10、与该机身10连接的机臂20、飞行控制系统和快拆机构30统称为机架;将机臂20以及安装在机臂20上的动力系统40统称为旋翼组件。
具体的,机身10的横截面可以是圆形、椭圆形、多边形或者其他合适的形状。机身10的顶板和底板可以平行设置,也可以根据实际需要倾斜一定角度设置。在底板的下方可选地搭载有一个或者多个搭载物,该搭载物可以是诸如成像装置以及用于容纳液体的容器在内的任意物体,本实施例不作限定。
为了诸如制作方便以及拆装机臂20容易等原因,在本实施例中,机身10可以制作成具有封闭空腔的四面体、五面体、六面体、八面体、十二面体或者其他多面体,该封闭空腔可以用于安装飞行控制系统以及其他电子零部件。当然,飞行控制系统也可以安装于机身10的其他位置,例如,机身10上单独设置的安装结构内或机身10上方。在一种实施例中,机臂的一部分可以伸入该封闭空腔内。
图1示出了一种八面体机身10,其包括相对设置的顶板和底板,以及位于顶板和底板之间的八个侧板,所述侧板具有侧面。在制作时,可以分别制作顶板、底板和侧板,然后将三者组装在一起以形成机身10;或者也可以将侧板和顶板或者底板一体成形,然后再组装到一起;当然,也可以将侧板分成上下两部分,上部分与顶板一体成形,下部分与底板一体成形,然后再组装到一起。可以理解,所述顶板、底板及侧板也可为有镂空等的框架结构。
图4为本实施例提供的一种机身10的正视图。如图1至图4所示,在本实施例中,机身10上还设置有多个安装部101,这些安装部101可以垂直于机身10的顶板和/或底板设置;或者也可以倾斜于机身10的顶板和/或底板设置,以延伸到机身10的侧方,也即安装部101位于机身10的侧方。举例而言,假如安装部101位于机身10的侧方,其可以是从顶 板往斜上方延伸以远离顶板的中心;或者也可以是从底板往斜下方延伸以远离底板的中心;还可以是从侧板往外机身10外延伸。应当理解,多个安装部101可以根据实际设计需要设置于顶板、底板和侧板中的一个或者多个上。比如,图1至图3示出了将全部安装部101设置于机身10的侧板的示例。
继续参考图1至图3,在本实施例中,每个机臂20均通过一个安装部101安装于机身10上,以使这些机臂20呈放射状的环绕在机身10的外周。而且,这些长度相同或者不同的机臂20中至少有部分通过快拆机构30与安装部101可拆卸地连接。举例来说,当有四个机臂20时,其中的一个、两个、三个或者四个可以通过快拆机构30与安装部101可拆卸地连接,而剩下的机臂20则可以通过诸如与安装部101一体成型或者焊接等方式与机身10不可拆卸地连接。或者,所述无人机可包括基础数目的机臂20以不可拆卸的方式连接于机身10,该基础数目的机臂20保证无人机正常起飞并完成一些预设功能,当需要挂载更大负载或需要进一步增加动力时,可进一步安装可拆卸的机臂20。可以理解,呈放射状环绕在机身10周围的机臂20的数量发生变化时,可以形成诸如四旋翼(参见图1)、六旋翼(参见图2)、八旋翼(参见图3)等机型。
为了适应上述机臂20数量的变化,机身10上的安装部101可以被配置成与机臂20的数量相同。当然,也可以将机身10上的安装部101配置成与机臂20的数量不同。例如,机身10可以为一个八面体,在该八面体的每个侧面上均形成有上述安装部101。显然,该八面体的每个侧面上所形成的安装部101均可以安装一个机臂20,而且当每个安装部101都安装有机臂20时,就可以形成一个八旋翼无人机,参见图3。当然,这八个侧面上形成的八个安装部101也可以只是部分安装有机臂20。例如,其中四个安装部101各安装有一个机臂20,则此时形成四旋翼无人机,参见图1;或者,其中六个安装部101各安装有一个机臂20,则此时形成的是六旋翼无人机,参见图2。当然,当八面体的机身10上安装有少于八个机臂20时,这些机臂20应该如上所述的呈放射状环绕在机身10的周围。举例来说,当安装四个机臂20时,则这相邻两个机臂20之间可以间隔一个侧面,也即,这四个机臂20关于机身10的中心呈中心对称,以提高该四旋翼无 人机的平衡性,从而提高飞行性能。同理的,其他偶数数量的机臂20均可以关于机身10的中心呈中心对称来提高平衡性。
此外,虽然在本实施例中可以将部分机臂20以与安装部101不可拆卸地连接,但为了节省多旋翼无人机的存放空间,从而便于储藏或者运输,也可以如图1至图3所示的将所有的机臂20均通过快拆结构与机身10的安装部101可拆卸地连接。
如图4所示,在本实施例中,当机臂20连接到机身10上时,该机臂20还与安装于机身10的飞行控制系统电性连接,从而飞行控制系统可以根据连接于该机身10的机臂20的数量来控制飞行系统输出对应的预设动力模式。举例来说,飞行控制系统可以为具有四个机臂20的四旋翼无人机输出四旋翼动力模式,也可以为具有六个机臂20的六旋翼无人机输出六旋翼动力模式,还可以为具有八个机臂20的八旋翼无人机输出八旋翼动力模式,以及可以为具有十二个机臂20的十二旋翼无人机输出十二旋翼动力模式。可以理解,机臂20的数量与无人机输出的动力模式不限于此,本实施例不作限定。
图5和图6为本实施例提供的两种旋翼组件的结构示意图。如图5和图6所示,旋翼组件包括机臂20以及安装在机臂20上的一个或者多个动力系统40。每个动力系统40均通过机臂20与飞行控制系统电性连接,以便根据飞行控制系统输出的上述动力模式为多旋翼无人机提供飞行动力,从而驱动多旋翼无人机上升、下降、悬停、转向等。可选地,动力系统40包括有电机和螺旋桨。
在本实施例中,电机可以安装在机臂20的任意位置。例如,在一些示例中,电机安装在机臂20远离机身10的端部;而在另一些示例中,电机则安装在机臂20的两个端部之间。当然,如果机臂20上安装有多个动力系统40以为多旋翼无人机提供更多的飞行动力时,则可以将其中一个动力系统40的电机安装在机臂20远离机身10的端部,其他动力系统40的电机则安装在机臂20的两端之间。螺旋桨可以安装在电机的上方或者下方,也可以在电机的上方或者下方各安装一个螺旋桨。在本实施例中,可以使用如图5所示的单轴单螺旋桨401,也可以使用如图6所示的单轴双螺旋桨402。
在一些可选的示例中,为了控制动力系统40的工作,在机臂20内还可以安装电调,该电调与飞行控制系统电性连接,例如通过快拆机构30与飞行控制系统电性连接,以便根据飞行控制系统输出的动力模式控制电机的转速、转向、加速度等一个或者多个参数,从而控制螺旋桨的转动速度、转动方向或者加速度等中的一种或者多种。可选地,为了给安装于机臂20上的动力系统40提供电力,还可以在机臂20内安装电池,该电池与电调电性连接,以便通过电调的供电线为电机供电。当然,安装在机臂20内的电池并非是必须的,也可以通过机身10上安装的电池为安装于机臂20上的动力系统40提供电力。而且,在本实施例中,多个机臂20中可以全部安装有电池,也可以一部分安装电池,而另一部分通过与飞行控制系统的电性连接来获取电力或与其他机臂20共用电池来获取电力,这些电力可以是机身10上安装的电池所提供的,也可以是安装有电池的机臂20所提供的。
本实施例通过使至少部分机臂20通过快拆机构30与机身10的安装部101可拆卸地连接,并使得飞行控制系统根据连接于机身10的机臂20数量控制飞行控制系统输出对应的预设动力模式,从而可以在不同的应用场景下通过对机臂20数量的调整来改变多旋翼无人机的机型,以便与特定的应用场景相匹配。例如,当需要使用多旋翼无人机进行航拍时,可以将四个机臂20连接于机身10上;而当需要使用多旋翼无人机进行物流运输时,则可以增加通过快拆机构30将更多数量(例如两个、四个或者八个)机臂20连接于机身10,从而提供更强的升力,以便运送货物。反之,当目前应用场景需要较小的升力时,则将一定数量的通过快拆机构30连接于机身10的机臂20从机身10上拆卸下来即可。
在本实施例中,快拆机构30可以是任意合适的机构,只需要其能够将机臂20快速安装到机身10的安装部101,以及将其快速的从安装部101拆卸下来即可。例如,在一些可选的示例中,快拆机构30可以包括第一部分以及与第一部分可拆卸地连接的第二部分。其中,至少部分安装部101用于形成快拆结构的第一部分,机臂20则用于形成快拆结构的第二部分,例如,在机臂20靠近机身10的端面上形成该第二部分。可以理解,在一些具体的示例中,所有的安装部101均形成有快拆结构的第一部分。当第 一部分与第二部分可拆卸地连接时,机臂20与飞行控制系统通过该第一部分和第二部分的电耦合实现电性连接。可选地,快拆结构的第一部分与安装部101为一体成型的一体件,快拆机构30的第二部分与机臂20也为一体成型的一体件,以简化安装步骤,提高快速拆装的效率。
具体的,机臂20上形成的快拆机构30的第二部分与机身10的安装部101所形成的第一部分可以是通过螺纹连接、卡扣连接等各种可拆卸地连接方式实现快速拆装的目的。例如,第二部分可以是形成于机臂20靠近机身10的一端上的螺栓,而第一部分则是形成在安装部101上的与该螺栓配合的螺纹孔,从而在需要将机臂20安装到机身10、或者从机身10上拆卸下来时,只需要旋转该机臂20就可以轻易的实现。当然,固定在机臂20上的形成在机臂20上的螺栓可以与机臂20一体成型,例如,通过模塑或者铸造等现有加工方式在机臂20靠近机身10的一端上形成该螺栓。
继续参照图1至图3,在本实施例中,提供一种能够实现可拆卸地连接的卡扣结构。具体来说,安装部101上形成的快拆结构的第一部分为凹槽301,机臂20上形成的快拆结构的第二部分为用于可拆卸的卡设在该凹槽301内的凸块302。当需要在机身10上安装机臂20时,只需要将快拆机构30的凸块302卡入其凹槽301内就可以实现将机臂20快速安装在机身10上的目的;当需要将安装在机身10上的机臂20拆卸下来时,只需要将卡入凹槽301内的凸块302拔出即可,不仅快速而且简单方便。可选的,凹槽301可以配置为燕尾槽,相应的,凸块302则配置为燕尾块,以提高快拆机构30与安装部101的连接强度。
进一步,参照图4,为了实现机臂20与飞行控制系统的电性连接,在凸块302上设置有与机臂20电性连接的第一电连接件304,在凹槽301内设置有与飞行控制系统电性连接的第二电连接件303,从而当机臂20可拆卸地连接于安装部101时,上述第一电性连接件和第二电性连接件电耦合。例如,在一些具体的示例中,第一电性连接件包括设置在凸块302上的针式插头或者金属触头,相应的,第二电性连接件则包括设置在凹槽301内的针孔式插座或者触点,以便于针式插头或者金属触头电耦合。当然,本实施例也不排除将针式插头和针孔式插座对调,也即,将针式插头 设置在凹槽301内,相应的,将针孔式插座设置在凸块302上。金属触头和触点也同样可以对调设置。
此外,机身10和机臂20可以通过上述电耦合的第一电连接件304和第二电连接件303进行电性连接和/或通信。例如,上述针式插头可以包括供电插针和通信插针,针孔式插座则包括与供电插针配合的供电插孔以及与通信插针配合的通信插孔。从而当快拆机构30的凸块302卡入其凹槽301时,机臂20与飞行控制系统可以通过供电插针和供电插孔的耦合来供电,也可以通过通信插针和通信插孔的耦合来通信。举例而言,机身10上安装的电池通过上述供电插针和供电插孔将电力直接或者通过电调间接供应给机臂20上安装的动力系统40的电机,同时,飞行控制系统(或者电机)的控制信号通过通信插针和通信插孔直接或者通过电调间接传递给电机(或者飞行控制系统)。当然,当机臂20内安装有电池时,也可以通过上述供电插针和供电插孔将机臂20内的电池的电力供应给机身10的飞行控制系统或者其他机臂20上安装的动力系统40的电机等。
以下结合机臂20通过快拆机构30与机身10通信连接,简要介绍飞行控制系统获取连接于机身10的机臂20的数量的方式:
当机臂20通过快拆结构可拆卸地连接到安装部101时,飞行控制系统会获取到一个确认信号,该确认信号用于表征其中一个安装部101已经与机臂20可拆卸地连接,从而飞行控制系统可以根据接收到的确认信号的数量确定可拆卸地连接于安装部101的机臂20的数量。例如,当有四个机臂20通过快拆机构30可拆卸地连接于安装部101时,则飞行控制系统会接收到四个确认信号,则飞行控制系统对上述确认信号进行计数(例如通过计数器)就可以确定有四个可拆卸地机臂20连接到了机身10的安装部101。假如该机身10没有安装部101与机臂20不可拆卸地连接,则飞行控制系统确定最终连接到机身10的机臂20数量为四个,从而控制输出四旋翼动力模式;假如该机身10有两个安装部101分别与两个机臂20不可拆卸地连接,则飞行控制系统通过计算(例如通过计算机可执行代码或者运算电路等)确定最终连接到安装部101的机臂20数量为六个,从而控制输出六旋翼动力模式。进一步地,所述飞行控制系统可以确认通过快拆机构30可拆卸地连接于安装部101的机臂20的位置,以输出合适的 预设动力模式。例如,当四个机臂20关于机身10的中心呈中心对称时,飞行控制系统输出第一四旋翼动力模式。可选地,当四个机臂20关于机身10的中心非中心对称时,飞行控制系统输出对应的第二四旋翼动力模式。
在一些可选的示例中,可以在机身10、快拆机构30和机臂20的一个或者多个上设置传感器,这些传感器在检测到机臂20可拆卸地连接于安装部101时向飞行控制系统发送上述确认信号,从而飞行控制系统可以根据接收到的确认信号来得到安装于机身10的安装部101的机臂20数量。具体地,所述传感器可以为光电计数传感器、压力传感器等合适的传感器,所述传感器可以设置在机身10、快拆机构30和机臂20的一个或者多个上。例如,在一种实施方式中,机身10上设置有红外接收器,机臂20上设置有红外发射器,当机臂20可拆卸地连接于机身10的安装部101上时,设置在机臂20上的红外发射器发射的红外光被机身10上设置的红外接收器接收到,从而确认该机臂20与机身10连接,并向飞行控制系统发送确认信号。
在另一些可选的示例中,当机臂20通过快拆机构30与安装部101可拆卸地连接时,机臂20内的某个或者某些电路会被导通,从而激活机臂20内设置的通信元件向飞行控制系统发送上述确认信号。例如,通信元件与快拆机构30的通信插针串联并且该通信元件持续发送通信信号。当机臂20通过快拆机构30与安装部101可拆卸地连接时,快拆机构30的通信插针插入通信插孔内,通信元件和飞行控制系统的该通信电路导通,该通信元件所发出的确认信号通过耦合的通信插针和通信插孔发送给飞行控制系统。可以理解,在上述示例中,通信元件并不持续发送确认信号,而仅仅是在通信插针和通信插孔耦合后才开始发送确认信号。
最后,尽管已经在这些实施例的上下文中描述了与本技术的某些实施例相关联的优点,但是其他实施例也可以包括这样的优点,并且并非所有实施例都详细描述了本发明的所有优点,由实施例中的技术特征所客观带来的优点均应视为本发明区别于现有技术的优点,均属于本发明的保护范围。

Claims (78)

  1. 一种机架,其特征在于,包括:机身、飞行控制系统、快拆机构、以及多个机臂;
    所述机身具有多个安装部,所述飞行控制系统安装于所述机身;
    多个所述机臂呈放射状环绕设置于所述机身,且至少有部分机臂通过所述快拆机构与所述机身的安装部可拆卸地连接;
    当所述机臂连接于所述机身时,所述机臂还与所述飞行控制系统电性连接;
    所述飞行控制系统根据连接于所述机身的机臂的数量控制所述飞行控制系统输出对应的预设动力模式。
  2. 根据权利要求1所述的机架,其特征在于,所述机身包括多个位于侧方的安装部。
  3. 根据权利要求2所述的机架,其特征在于,所述机身为具有多个侧面的多面体,所述安装部设置于所述侧面。
  4. 根据权利要求1所述的机架,其特征在于,所有的机臂均通过所述快拆机构与所述机身的安装部可拆卸地连接。
  5. 根据权利要求1所述的机架,其特征在于,所述机身的安装部的数量与所述机臂的数量相同。
  6. 根据权利要求1所述的机架,其特征在于,所述多个机臂的长度相等。
  7. 根据权利要求1所述的机架,其特征在于,所述机身结构为四面体、六面体、八面体、十二面体中的一种。
  8. 根据权利要求7所述的机架,其特征在于,所述预设动力模式包括四旋翼动力模式、六旋翼动力模式、八旋翼动力模式和十二旋翼动力模式。
  9. 根据权利要求1所述的机架,其特征在于,所述安装部形成有所述快拆结构的第一部分,所述机臂的一端形成有所述快拆结构的第二部分,且当所述快拆机构的第一部分和第二部分可拆卸地连接时,所述机臂通过所述第一部分和第二部分的电耦合实现与所述机身的电性连接。
  10. 根据权利要求9所述的机架,其特征在于,所述第一部分为凹槽,所述第二部分为用于可拆卸的卡设在所述凹槽内的凸块。
  11. 根据权利要求10所述的机架,其特征在于,所述凹槽为燕尾槽,所 述凸块为燕尾块。
  12. 根据权利要求10所述的机架,其特征在于,所述凸块上设置有与所述机臂电性连接的第一电连接件,所述凹槽内设置有与所述飞行控制系统电性连接的第二电连接件,当所述机臂可拆卸地连接于所述安装部时,所述第一电连接件和第二电连接件电耦合。
  13. 根据权利要求12所述的机架,其特征在于,所述机身和机臂通过电耦合的所述第一电连接件和第二电连接件进行电性连接和/或通信。
  14. 根据权利要求12所述的机架,其特征在于,所述第一电连接件包括设置在所述凸块上的针式插头,所述第二电连接件包括设置在所述凹槽内的针孔式插座。
  15. 根据权利要求14所述的机架,其特征在于,所述针式插头包括供电插针和通信插针,所述针孔式插座包括供电插孔和通信插孔。
  16. 根据权利要求12所述的机架,其特征在于,所述第一电连接件包括设置在所述凸块上的金属触头,所述第二电连接件包括设置在所述凹槽内的触点。
  17. 根据权利要求1-16任一项所述的机架,其特征在于,所述机身的飞行控制系统,用于获取所述机臂可拆卸地连接于所述安装部的确认信号,并根据获取到的所述确认信号确定可拆卸地连接于所述安装部的所述机臂的数量。
  18. 根据权利要求17所述的机架,其特征在于,所述确认信号由所述机臂内设置的通信元件发送给所述飞行控制系统。
  19. 根据权利要求17所述的机架,其特征在于,所述机身、快拆机构和机臂中的一个或者多个设置有传感器,所述传感器用于在检测到所述机臂可拆卸地连接于所述安装部时向所述飞行控制系统发送所述确认信号。
  20. 根据权利要求1-16任一项所述的机架,其特征在于,所述机臂内安装有电调;所述电调还通过所述快拆机构与所述飞行控制系统电性连接。
  21. 根据权利要求20所述的机架,其特征在于,所述机臂和/或机身内安装有电池,所述电池与所述电调电性连接。
  22. 一种多旋翼无人机,其特征在于,包括:机架以及多个动力系统,所述动力系统包括电机和螺旋桨,所述机架的每一个机臂上均安装有一个或 者多个所述动力系统;
    所述机架,包括:机身、飞行控制系统、快拆机构、以及多个机臂;
    所述机身具有多个安装部,所述飞行控制系统安装于所述机身,且所述飞行控制系统通过所述机臂与所述动力系统电性连接;
    多个所述机臂呈放射状环绕设置于所述机身,且至少有部分机臂通过所述快拆机构与所述机身的安装部可拆卸地连接;
    当所述机臂连接于所述机身时,所述机臂还与所述飞行控制系统电性连接;
    所述飞行控制系统根据连接于所述机身的机臂的数量控制所述飞行控制系统输出对应的预设动力模式。
  23. 根据权利要求22所述的多旋翼无人机,其特征在于,所述螺旋桨为单轴单螺旋桨。
  24. 根据权利要求22所述的多旋翼无人机,其特征在于,所述螺旋桨为单轴双螺旋桨。
  25. 根据权利要求22所述的多旋翼无人机,其特征在于,所述电机安装在所述机臂远离所述机身的端部,所述螺旋桨安装在所述电机的上方和/或下方。
  26. 根据权利要求22所述的多旋翼无人机,其特征在于,所述机身包括多个位于侧方的安装部。
  27. 根据权利要求26所述的多旋翼无人机,其特征在于,所述机身为具有多个侧面的多面体,所述安装部设置于所述侧面。
  28. 根据权利要求22所述的多旋翼无人机,其特征在于,所有的机臂均通过所述快拆机构与所述机身的安装部可拆卸地连接。
  29. 根据权利要求22所述的多旋翼无人机,其特征在于,所述机身的安装部的数量与所述机臂的数量相同。
  30. 根据权利要求22所述的多旋翼无人机,其特征在于,所述多个机臂的长度相等。
  31. 根据权利要求22所述的多旋翼无人机,其特征在于,所述机身结构为四面体、六面体、八面体、十二面体中的一种。
  32. 根据权利要求31所述的多旋翼无人机,其特征在于,所述预设动力 模式包括四旋翼动力模式、六旋翼动力模式、八旋翼动力模式和十二旋翼动力模式。
  33. 根据权利要求22所述的多旋翼无人机,其特征在于,所述安装部形成有所述快拆结构的第一部分,所述机臂的一端形成有所述快拆结构的第二部分,且当所述快拆机构第一部分和第二部分可拆卸地连接时,所述机臂通过所述第一部分和第二部分的电耦合实现与所述机身的电性连接。
  34. 根据权利要求33所述的多旋翼无人机,其特征在于,所述第一部分为凹槽,所述第二部分为用于可拆卸的卡设在所述凹槽内的凸块。
  35. 根据权利要求34所述的多旋翼无人机,其特征在于,所述凹槽为燕尾槽,所述凸块为燕尾块。
  36. 根据权利要求34所述的多旋翼无人机,其特征在于,所述凸块上设置有与所述机臂电性连接的第一电连接件,所述凹槽内设置有与所述飞行控制系统电性连接的第二电连接件,当所述机臂可拆卸地连接于所述安装部时,所述第一电连接件和第二电连接件电耦合。
  37. 根据权利要求36所述的多旋翼无人机,其特征在于,所述机身和机臂通过电耦合的所述第一电连接件和第二电连接件进行电性连接和/或通信。
  38. 根据权利要求36所述的多旋翼无人机,其特征在于,所述第一电连接件包括设置在所述凸块上的针式插头,所述第二电连接件包括设置在所述凹槽内的针孔式插座。
  39. 根据权利要求38所述的多旋翼无人机,其特征在于,所述针式插头包括供电插针和通信插针,所述针孔式插座包括供电插孔和通信插孔。
  40. 根据权利要求36所述的多旋翼无人机,其特征在于,所述第一电连接件包括设置在所述凸块上的金属触头,所述第二电连接件包括设置在所述凹槽内的触点。
  41. 根据权利要求22-40任一项所述的多旋翼无人机,其特征在于,所述机身的飞行控制系统,用于获取所述机臂可拆卸地连接于所述安装部的确认信号,并根据获取到的所述确认信号确定可拆卸地连接于所述安装部的所述机臂的数量。
  42. 根据权利要求41所述的多旋翼无人机,其特征在于,所述确认信号由所述机臂内设置的通信元件发送给所述飞行控制系统。
  43. 根据权利要求41所述的多旋翼无人机,其特征在于,所述机身、快拆机构和机臂中的一个或者多个设置有传感器,所述传感器用于在检测到所述机臂可拆卸地连接于所述安装部时向所述飞行控制系统发送所述确认信号。
  44. 根据权利要求22-40任一项所述的多旋翼无人机,其特征在于,所述机臂内安装有电调;所述电调还通过所述快拆机构与所述飞行控制系统电性连接。
  45. 根据权利要求44所述的多旋翼无人机,其特征在于,所述机臂和/或机身内安装有电池,所述电池与所述电调电性连接。
  46. 根据权利要求23至40任一项所述的多旋翼无人机,其特征在于,还包括搭载在所述机身下方的搭载物。
  47. 根据权利要求46所述的多旋翼无人机,其特征在于,所述搭载物为成像装置。
  48. 根据权利要求46所述的多旋翼无人机,其特征在于,所述搭载物为容纳液体的容器。
  49. 一种机身,其特征在于,所述机身具有多个安装部,且所述机身安装有飞行控制系统;
    至少有部分所述安装部形成有快拆机构的第一部分,用于与多旋翼无人机的机臂上所形成的快拆机构的第二部分可拆卸地连接,且当所述第一部分与所述第二部分可拆卸地连接时,所述机臂与所述飞行控制系统电性连接;
    所述飞行控制系统根据连接于所述机身的机臂的数量控制所述飞行控制系统输出对应的预设动力模式。
  50. 根据权利要求49所述的机身,其特征在于,所述机身包括多个位于侧方的安装部。
  51. 根据权利要求50所述的机身,其特征在于,所述机身为具有多个侧面的多面体,所述安装部设置于所述侧面。
  52. 根据权利要求49所述的机身,其特征在于,所述多个机臂的长度相等。
  53. 根据权利要求49所述的机身,其特征在于,所述第一部分为凹槽,所述第二部分为与所述凹槽配合的凸块。
  54. 根据权利要求53所述的机身,其特征在于,所述凹槽为燕尾槽,所 述凸块为燕尾块。
  55. 根据权利要求49所述的机身,其特征在于,所述机身的全部侧面均形成有所述第一部分。
  56. 根据权利要求49至55任一项所述的机身,其特征在于,所述机身内安装有与所述飞行控制系统电性连接的电池。
  57. 根据权利要求56所述的机身,其特征在于,所述电池通过所述快拆机构为所述机臂供电。
  58. 根据权利要求49至55任一项所述的机身,其特征在于,所述机身结构为四面体、六面体、八面体、十二面体中的一种。
  59. 根据权利要求58所述的机身,其特征在于,所述预设动力模式包括四旋翼动力模式、六旋翼动力模式、八旋翼动力模式和十二旋翼动力模式。
  60. 一种机臂,其特征在于,所述机臂的一端形成有快拆机构的第二部分,用于与多旋翼无人机的机身上形成的所述快拆结构的第一部分可拆卸地连接;所述机身具有多个安装部,至少部分所述安装部形成有所述第一部分;
    当所述第二部分可拆卸地连接于所述第一部分时,所述机臂与所述机身内安装的飞行控制系统电性连接;
    所述飞行控制系统根据连接到所述机身的机臂的数量控制所述飞行控制系统输出对应的预设动力模式。
  61. 根据权利要求60所述的机臂,其特征在于,所述机身包括多个位于侧方的安装部。
  62. 根据权利要求61所述的机臂,其特征在于,所述机身为具有多个侧面的多面体,所述安装部设置于所述侧面。
  63. 根据权利要求60所述的机臂,其特征在于,所述多个机臂的长度相等。
  64. 根据权利要求60所述的机臂,其特征在于,所述第二部分为凸块,所述第一部分为与所述凸块配合的凹槽。
  65. 根据权利要求64所述的机臂,其特征在于,所述凸块为燕尾块,所述凹槽为燕尾槽。
  66. 根据权利要求60至65任一项所述的机臂,其特征在于,所述机臂内安装有电调。
  67. 根据权利要求66所述的机臂,其特征在于,所述机臂内还安装有与所述电调电性连接的电池。
  68. 一种旋翼组件,其特征在于,包括:动力系统以及机臂,所述动力系统包括电机和螺旋桨,所述动力系统安装在所述机臂上;
    所述机臂的一端形成有快拆机构的第二部分,用于与多旋翼无人机的机身上形成的所述快拆结构的第一部分可拆卸地连接;所述机身具有多个安装部,至少部分所述安装部形成有所述第一部分;
    当所述第二部分可拆卸地连接于所述第一部分时,所述机臂与所述机身内安装的飞行控制系统电性连接;
    所述飞行控制系统根据连接到所述机身的机臂的数量控制所述飞行控制系统输出对应的预设动力模式。
  69. 根据权利要求68所述的旋翼组件,其特征在于,所述机身包括多个位于侧方的安装部。
  70. 根据权利要求69所述的旋翼组件,其特征在于,所述机身为具有多个侧面的多面体,所述安装部设置于所述侧面。
  71. 根据权利要求68所述的旋翼组件,其特征在于,所述多个机臂的长度相等。
  72. 根据权利要求68所述的旋翼组件,其特征在于,所述第二部分为凸块,所述第一部分为与所述凸块配合的凹槽。
  73. 根据权利要求72所述的旋翼组件,其特征在于,所述凸块为燕尾块,所述凹槽为燕尾槽。
  74. 根据权利要求68至73任一项所述的旋翼组件,其特征在于,所述机臂内安装有电调。
  75. 根据权利要求74所述的旋翼组件,其特征在于,所述机臂内还安装有与所述电调电性连接的电池。
  76. 根据权利要求68至73任一项所述的旋翼组件,其特征在于,所述螺旋桨为单轴单螺旋桨。
  77. 根据权利要求68至73任一项所述的旋翼组件,其特征在于,所述螺旋桨为单轴双螺旋桨。
  78. 根据权利要求68至73任一项所述的旋翼组件,其特征在于,所述 电机安装在所述机臂远离所述机身的端部,所述螺旋桨安装在所述电机的上方和/或下方。
PCT/CN2018/089380 2018-05-31 2018-05-31 机身、机臂、旋翼组件、机架以及多旋翼无人机 WO2019227439A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/089380 WO2019227439A1 (zh) 2018-05-31 2018-05-31 机身、机臂、旋翼组件、机架以及多旋翼无人机
CN201880031603.4A CN110662696A (zh) 2018-05-31 2018-05-31 机身、机臂、旋翼组件、机架以及多旋翼无人机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/089380 WO2019227439A1 (zh) 2018-05-31 2018-05-31 机身、机臂、旋翼组件、机架以及多旋翼无人机

Publications (1)

Publication Number Publication Date
WO2019227439A1 true WO2019227439A1 (zh) 2019-12-05

Family

ID=68697718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/089380 WO2019227439A1 (zh) 2018-05-31 2018-05-31 机身、机臂、旋翼组件、机架以及多旋翼无人机

Country Status (2)

Country Link
CN (1) CN110662696A (zh)
WO (1) WO2019227439A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112208742A (zh) * 2020-10-15 2021-01-12 重庆工程职业技术学院 一种无人机轻量化结构及工艺方法
FR3110894A1 (fr) * 2020-06-02 2021-12-03 Thales Drone modulaire multi-mission amélioré
WO2022066390A1 (en) * 2020-09-03 2022-03-31 Aerial Response Solutions, Llc ("Ars") Airframe and motor assembly for an unmanned aircraft
WO2022183361A1 (zh) * 2021-03-02 2022-09-09 深圳市大疆创新科技有限公司 多旋翼无人飞行器
KR102463939B1 (ko) * 2022-04-05 2022-11-03 (주)프리뉴 무인 비행체 전력 공급 시스템 및 그 방법

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022141474A1 (zh) * 2020-12-31 2022-07-07 深圳市大疆创新科技有限公司 无人飞行器和感知模组

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160117780A (ko) * 2015-03-31 2016-10-11 주식회사 아소아 자체 부력을 구비한 무인 비행체 및 이를 이용한 유해동물 퇴치장치
CN205633008U (zh) * 2016-05-27 2016-10-12 合肥赛为智能有限公司 一种旋转翼数量可调式无人机
CN106394892A (zh) * 2016-12-07 2017-02-15 四川天辰智创科技有限公司 无人机
CN106477039A (zh) * 2016-12-21 2017-03-08 深圳市道通智能航空技术有限公司 一种旋翼无人机
CN106542077A (zh) * 2016-11-01 2017-03-29 顺丰科技有限公司 一种多旋翼无人机的机架
CN206407115U (zh) * 2016-11-21 2017-08-15 西安三翼航空科技有限公司 一种大载重的多旋翼无人飞行器
CN206968961U (zh) * 2017-05-09 2018-02-06 四川建筑职业技术学院 一种无人机的机架盘及采用该机架盘的无人机机架

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002334708A1 (en) * 2001-10-01 2003-04-14 Kline And Walker, Llc Pfn/trac system faa upgrades for accountable remote and robotics control
CN202666406U (zh) * 2012-06-06 2013-01-16 张锦海 一种六臂模型飞机螺旋架
CN205469810U (zh) * 2016-04-01 2016-08-17 江苏数字鹰科技发展有限公司 一种新型的农业植保机
EP3272652B1 (en) * 2016-05-27 2023-08-23 Uvify Co., Ltd. Unmanned aerial vehicle
CN206068148U (zh) * 2016-09-28 2017-04-05 数字鹰(泰州)农业科技有限公司 一种新型植保无人机
CN206427266U (zh) * 2016-11-16 2017-08-22 北京韦加无人机科技股份有限公司 一种可拆卸多旋翼植保无人机
CN107264767A (zh) * 2017-06-02 2017-10-20 上海交通大学 一种新型轻量化六旋翼无人机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160117780A (ko) * 2015-03-31 2016-10-11 주식회사 아소아 자체 부력을 구비한 무인 비행체 및 이를 이용한 유해동물 퇴치장치
CN205633008U (zh) * 2016-05-27 2016-10-12 合肥赛为智能有限公司 一种旋转翼数量可调式无人机
CN106542077A (zh) * 2016-11-01 2017-03-29 顺丰科技有限公司 一种多旋翼无人机的机架
CN206407115U (zh) * 2016-11-21 2017-08-15 西安三翼航空科技有限公司 一种大载重的多旋翼无人飞行器
CN106394892A (zh) * 2016-12-07 2017-02-15 四川天辰智创科技有限公司 无人机
CN106477039A (zh) * 2016-12-21 2017-03-08 深圳市道通智能航空技术有限公司 一种旋翼无人机
CN206968961U (zh) * 2017-05-09 2018-02-06 四川建筑职业技术学院 一种无人机的机架盘及采用该机架盘的无人机机架

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3110894A1 (fr) * 2020-06-02 2021-12-03 Thales Drone modulaire multi-mission amélioré
WO2021245054A1 (fr) * 2020-06-02 2021-12-09 Thales Drone modulaire multi-mission amélioré
WO2022066390A1 (en) * 2020-09-03 2022-03-31 Aerial Response Solutions, Llc ("Ars") Airframe and motor assembly for an unmanned aircraft
CN112208742A (zh) * 2020-10-15 2021-01-12 重庆工程职业技术学院 一种无人机轻量化结构及工艺方法
WO2022183361A1 (zh) * 2021-03-02 2022-09-09 深圳市大疆创新科技有限公司 多旋翼无人飞行器
KR102463939B1 (ko) * 2022-04-05 2022-11-03 (주)프리뉴 무인 비행체 전력 공급 시스템 및 그 방법

Also Published As

Publication number Publication date
CN110662696A (zh) 2020-01-07

Similar Documents

Publication Publication Date Title
WO2019227439A1 (zh) 机身、机臂、旋翼组件、机架以及多旋翼无人机
US11214368B2 (en) Systems and methods for charging, transporting, and operating flying machines
US10870479B2 (en) Multi-architecture modular unmanned aerial system
US11811224B2 (en) Distributed-battery aerial vehicle and a powering method therefor
US20180327093A1 (en) Aircraft-retrieval system
CN107207087B (zh) 无人飞行器
US20150014482A1 (en) Unmanned aerial vehicle (uav) with inter-connecting wing sections
US9975644B1 (en) Aerial vehicle propulsion modules
US9815554B2 (en) Unmanned aerial vehicle
WO2018152785A1 (zh) 无人飞行器
EP3272652A1 (en) Unmanned aerial vehicle
JP5260781B1 (ja) 無人ヘリコプタ
CN103025609A (zh) 可重新构造的蓄电池运行的交通工具系统
US20180134383A1 (en) Decentralized redundant architecture for an unmanned aircraft for simplified integration of sensor systems
JP6830187B2 (ja) 複数機連繋方式の電動回転翼式無人飛行機
US9764835B1 (en) Aerial vehicle configuration
CN112672955B (zh) 自主空中运载工具系统
US20220001980A1 (en) Group configurations for a modular drone system
WO2018086227A1 (zh) 无人机
US20180281919A1 (en) Aircraft fuselage and aircraft with same
KR102254921B1 (ko) 무인비행기의 무정전배터리 교체장치 및 방법
US20220001971A1 (en) Modular flat-packable drone kit
WO2019113845A1 (zh) 无人机及无人机系统
WO2018153136A1 (zh) 电机及电机固定结构
WO2020062169A1 (zh) 一种机器人关节模组及其无线供电装置、系统和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18920298

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18920298

Country of ref document: EP

Kind code of ref document: A1