WO2019227428A1 - 下行控制信令检测方法、装置及存储介质 - Google Patents

下行控制信令检测方法、装置及存储介质 Download PDF

Info

Publication number
WO2019227428A1
WO2019227428A1 PCT/CN2018/089359 CN2018089359W WO2019227428A1 WO 2019227428 A1 WO2019227428 A1 WO 2019227428A1 CN 2018089359 W CN2018089359 W CN 2018089359W WO 2019227428 A1 WO2019227428 A1 WO 2019227428A1
Authority
WO
WIPO (PCT)
Prior art keywords
control signaling
detection
wake
downlink control
sequence
Prior art date
Application number
PCT/CN2018/089359
Other languages
English (en)
French (fr)
Inventor
朱亚军
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN201880000767.0A priority Critical patent/CN108702708B/zh
Priority to PCT/CN2018/089359 priority patent/WO2019227428A1/zh
Publication of WO2019227428A1 publication Critical patent/WO2019227428A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a method, device, and storage medium for detecting downlink control signaling.
  • the terminal performs uplink and downlink transmission based on the scheduling of the base station.
  • the base station sends downlink or uplink scheduling signaling to instruct the terminal to receive data at the corresponding resource location in a notification manner or send.
  • the endurance of the terminal is an important factor affecting the performance of the terminal, and the overhead of the terminal for controlling the signaling detection is an important reason for the power consumption of the terminal.
  • the dormant state of the terminal is defined.
  • the terminal can enter the dormant state without data interaction to avoid detection of control signaling.
  • the terminal needs to periodically monitor the PDCCH (Physical Downlink Control Channel) based on the configuration of the base station to determine whether it needs to enter the active state.
  • PDCCH Physical Downlink Control Channel
  • the present disclosure provides a method, device, and storage medium for detecting downlink control signaling.
  • a method for detecting downlink control signaling is provided.
  • the method is applied to a terminal, and the method includes: stopping the control signal for the downlink control signaling when the terminal is in a connected state. Order detection; receiving a wake-up sequence sent by a base station, the wake-up sequence including indication information, the indication information being used to indicate a detection attribute detected by the control signaling; and according to the indication information in the wake-up sequence Detecting attributes, and performing the control signaling detection.
  • a method for detecting downlink control signaling is provided.
  • the method is applied to a base station.
  • the method includes: judging whether a preset wake-up time has arrived, and the preset wake-up time is executed by a wake-up terminal. Time for detection of control signaling for downlink control signaling; before the preset wake-up time arrives, a wake-up sequence is sent to the terminal, the wake-up sequence includes indication information, the indication information is used to indicate the control signaling
  • the detection attributes of the detection are provided.
  • a device for detecting downlink control signaling is provided.
  • the device is applied to a terminal, and the device includes a stopping module configured to stop controlling downlink control when the terminal is in a connected state.
  • Control signaling detection of signaling a first receiving module configured to receive a wake-up sequence sent by a base station, the wake-up sequence including indication information, the indication information being used to indicate a detection attribute of the control signaling detection; an execution module And is configured to perform the control signaling detection according to a detection attribute indicated by the instruction information in the wake-up sequence.
  • a device for detecting downlink control signaling is provided.
  • the device is applied to a base station.
  • the device includes a determination module for determining whether a preset wake-up time has arrived, and the preset wake-up time.
  • the time is the time at which the terminal performs control signaling detection for downlink control signaling;
  • the first sending module is configured to send a wake-up sequence to the terminal before the preset wake-up time arrives, and the wake-up sequence includes instruction information,
  • the indication information is used to indicate a detection attribute detected by the control signaling.
  • a downlink control signaling detection device which is applied to a terminal and includes: a processor; a memory for storing processor-executable instructions; wherein the processor is Configured to stop control signaling detection for downlink control signaling when the terminal is in a connected state;
  • the wake-up sequence including indication information, the indication information being used to indicate a detection attribute detected by the control signaling; and according to the detection attribute indicated by the indication information in the wake-up sequence, Performing the control signaling detection.
  • a non-transitory computer-readable storage medium is provided, and when an instruction in the storage medium is executed by a processor, the processor is enabled to execute the method described in the first aspect of the present disclosure. method.
  • a downlink control signaling detection device which is applied to a base station and includes: a processor; a memory for storing processor-executable instructions; wherein the processor is Configured to determine whether a preset wake-up time has arrived, the preset wake-up time is a time at which the terminal performs control signaling detection for downlink control signaling, and sends a wake-up sequence to the terminal before the preset wake-up time arrives,
  • the wake-up sequence includes indication information, and the indication information is used to indicate a detection attribute detected by the control signaling.
  • a non-transitory computer-readable storage medium is provided, and when an instruction in the storage medium is executed by a processor, the processor is enabled to execute the method according to the second aspect of the present disclosure. Methods.
  • the technical solution provided by the embodiments of the present disclosure may include the following beneficial effects:
  • the method for detecting downlink control signaling in the embodiments of the present disclosure stops the control signaling detection for the downlink control signaling when the terminal is in a connected state, and according to the received
  • the detection attribute indicated by the indication information in the wake-up sequence sent by the base station performs control signaling detection for downlink control signaling, so that the terminal can perform control signaling detection for downlink control signaling according to the instruction of the base station, reducing the terminal Control signaling detection overhead for downlink control signaling.
  • Fig. 1 is a flow chart showing a method for detecting downlink control signaling according to an exemplary embodiment.
  • Fig. 2 is a schematic diagram illustrating using a wake-up sequence to indicate a detection attribute according to an exemplary embodiment.
  • Fig. 3 is a schematic diagram illustrating the use of a wake-up sequence to indicate two detection attributes according to an exemplary embodiment.
  • Fig. 4 is a flow chart showing a method for detecting downlink control signaling according to an exemplary embodiment.
  • Fig. 5 is a flow chart showing a method for detecting downlink control signaling according to an exemplary embodiment.
  • Fig. 6 is a flow chart showing a method for detecting downlink control signaling according to an exemplary embodiment.
  • Fig. 7 is a flow chart showing a method for detecting downlink control signaling according to an exemplary embodiment.
  • Fig. 8 is a block diagram of a device for detecting downlink control signaling according to an exemplary embodiment.
  • Fig. 9 is a block diagram of a device for detecting downlink control signaling according to an exemplary embodiment.
  • Fig. 10 is a block diagram of a device for detecting downlink control signaling according to an exemplary embodiment.
  • Fig. 11 is a block diagram of a device for detecting downlink control signaling according to an exemplary embodiment.
  • Fig. 12 is a block diagram of a device for detecting downlink control signaling according to an exemplary embodiment.
  • Fig. 13 is a block diagram of a device for detecting downlink control signaling according to an exemplary embodiment.
  • Fig. 14 is a block diagram of a device for detecting downlink control signaling according to an exemplary embodiment.
  • Fig. 1 is a flowchart illustrating a method for detecting downlink control signaling according to an exemplary embodiment.
  • the method is applied to a terminal.
  • the method can be executed by a terminal.
  • the method includes the following steps:
  • Step 101 stop the control signaling detection for the downlink control signaling when the terminal is in a connected state
  • Step 102 Receive a wake-up sequence sent by the base station, where the wake-up sequence includes indication information, and the indication information is used to indicate a detection attribute of control signaling detection;
  • Step 103 Perform control signaling detection according to the detection attribute indicated by the indication information in the wake-up sequence.
  • the control signaling detection for the downlink control signaling is stopped, and according to the received indication information in the wake-up sequence (hereinafter also referred to as a sequence) sent by the base station.
  • the indicated detection attribute performs control signaling detection for the downlink control signaling, so that the terminal can perform control signaling detection for the downlink control signaling according to the instruction of the base station, which reduces the detection of the control signaling for the downlink control signaling by the terminal. Overhead.
  • stopping the control signaling detection for the downlink control signaling when the terminal is in the connected state may be to stop the downlink signaling after the terminal enters the connected state or enters the connected state and completes one or more data interactions.
  • Control signaling detection (hereinafter also referred to as “downlink control signaling detection"), until the wake-up sequence sent by the base station is received, control signaling detection for downlink control signaling may be performed according to the wake-up sequence.
  • RRC Radio Resource Control
  • the data interaction performed by the terminal is, for example, that the terminal receives a data packet sent by a base station or sends a data packet to a base station. Stopping the downlink control signaling detection when the terminal is in the connected state can prevent the terminal from starting periodic downlink signaling detection on its own, reducing the overhead of the terminal for downlink signaling detection, thereby reducing the power consumption of the terminal.
  • the terminal may stop the downlink control signaling detection after finding that the data packet transmission ends, or the base station may send the downlink control signaling to the terminal to notify the terminal to stop the downlink control signaling detection.
  • the detection attribute includes a type of the detection attribute and / or a parameter of the detection attribute
  • the type of the detection attribute may include at least the number of times of performing downlink control signaling detection, the location of the downlink control signaling to be detected, The aggregation level of the downlink control signaling to be detected and the format of the downlink control signaling to be detected, wherein the format of the downlink control signaling to be detected is DCI (Downlink Control Information) of the downlink control signaling. Format, where the aggregation level of the downlink control signaling refers to the amount of resources occupied by the downlink control signaling transmission.
  • DCI Downlink Control Information
  • the type of the detection attribute is the number of times that the downlink control signaling detection is performed, and the parameter of the detection attribute is 5; if the base station wants to instruct the terminal to detect the downlink control signaling, The number of the resource location in a subframe is 2, the type of the detection attribute is the position of the downlink control signaling to be detected, and the parameter of the detection attribute is 2; if the base station wants to instruct the terminal to detect the downlink control with a degree of aggregation of 2 Signaling, the type of the detected attribute is the aggregation level, and the parameter of the detected attribute is 2; if the base station instructs the terminal to detect the downlink control signaling with the DCI format of 2, the type of the detected attribute is the DCI format, and the parameter of the attribute is 2 .
  • the base station can instruct the terminal to perform control signaling detection for different downlink control signaling based on a variety of different indication information. For the terminal, identifying these instructions can be performed according to the instructions of the base station. Corresponding downlink control signaling detection reduces the complexity of downlink signaling detection on the terminal side.
  • the parameter of the detection attribute may be a value corresponding to the detection attribute.
  • the type of the detection attribute is the aggregation level of the downlink control signaling, it indicates that the terminal needs to aggregate the downlink control signaling.
  • Level detection when the parameter of the detection attribute is 2, it can indicate that the terminal needs to detect the downlink control signaling with the level of aggregation of 2.
  • the wake-up sequence is, for example, a character sequence.
  • one wake-up sequence may indicate one or more detection attributes.
  • Fig. 2 is a schematic diagram illustrating using a wake-up sequence to indicate a detection attribute according to an exemplary embodiment.
  • the detection attribute corresponding to sequence 1 is a degree of aggregation of 2
  • the degree of aggregation corresponding to sequence 2 is 4
  • the degree of aggregation corresponding to sequence 3 is 8,
  • the degree of aggregation corresponding to sequence 4 is 16. If the base station sends the sequence 1 shown in FIG. 2 to the terminal, after receiving the sequence 1, the terminal can perform control signaling detection for the downlink control signaling with the aggregation degree level 2 within a predefined time window, where , The pre-defined time window can be defined in advance by the base station; if the base station sends sequence 2 shown in FIG.
  • the terminal executes, for the aggregation level level 4, within a predefined time window after receiving the sequence 2 Detection of downlink control signaling, sequence 3 and sequence 4 and so on.
  • the first few characters of the sequence may be used to identify the category of the detection attribute, and the last or last few characters may be used to identify the parameters of the detection attribute.
  • all characters of the sequence can be directly used to uniquely identify a certain detection attribute, for example, a sequence is used to directly identify the aggregation degree level 2.
  • the base station may directly use the wake-up sequence indicating that there is a detection attribute to instruct the terminal.
  • Fig. 3 is a schematic diagram illustrating the use of a wake-up sequence to indicate two detection attributes according to an exemplary embodiment.
  • the detection attribute corresponding to sequence 1 is the aggregation degree level 2, the DCI format is 1, and the sequence 2 corresponds.
  • the detection attributes are 4 for aggregation level, 1 for DCI format, and so on. If the base station sends sequence 1 shown in FIG. 3 to the terminal, after receiving the sequence 1, the terminal can perform downlink control signaling for the aggregation degree level 2 and downlink with the DCI format 1 within a predefined time window. Control signaling performs control signaling detection.
  • some consecutive characters in the sequence can be used to identify the category of the first detection attribute, other consecutive characters can be used to identify the parameters of the detection attribute, some consecutive characters can be used to identify the category of the second detection attribute, and other consecutive characters
  • the character identifies the parameter of the second detection attribute.
  • the sequence is divided into a first subsequence and a second subsequence, the first subsequence corresponds to a degree of aggregation level 1, and the second subsequence corresponds to a degree of aggregation level 2.
  • one sequence may indicate multiple detection attributes, and this embodiment uses only one sequence to indicate two detection attributes as an example for illustration.
  • this embodiment uses only one sequence to indicate two detection attributes as an example for illustration.
  • the base station can directly send indication information to the terminal indicating that there are multiple detection attributes without having to send the indication information to the terminal multiple times , Reducing the number of data interactions between the base station and the terminal.
  • Fig. 4 is a flowchart illustrating a method for detecting downlink control signaling according to an exemplary embodiment.
  • the method is based on the method for detecting downlink control signaling shown in Fig. 1.
  • it may further include step 401: receiving the correspondence between the sequence sent by the base station and the detection attribute, or obtaining the correspondence between the pre-stored sequence and the detection attribute, wherein the base station may use RRC signaling, MAC (Medium / Media Access Control (Media Access Control) CE (Control Element) or physical layer signaling sends the corresponding relationship to the terminal.
  • the correspondence relationship may be a sequence corresponding to one detection attribute, or a sequence corresponding to multiple detection attributes.
  • the base station sends the correspondence between the sequence and the detection attribute to the terminal in advance, so that the terminal can know the correspondence in advance.
  • the terminal After the terminal receives the sequence from the base station, it can directly learn the corresponding downlink control signaling detection correspondence based on the correspondence. Detect attributes.
  • the correspondence between the sequence and the detection attributes can also be predefined in the communication protocol. In this case, the base station does not need to send the correspondence to the terminal through control signaling, and the terminal can store the correspondence in advance. It should be understood that this embodiment does not limit the execution order between step 401 and other steps.
  • Fig. 5 is a flowchart illustrating a method for detecting downlink control signaling according to an exemplary embodiment.
  • the method can be applied to a base station.
  • the method can be performed by a base station.
  • the method includes the following steps:
  • Step 501 Determine whether a preset wake-up time has arrived, and the preset wake-up time is a time when the wake-up terminal performs control signaling detection for downlink control signaling;
  • Step 502 Before the preset wake-up time arrives, send a wake-up sequence to the terminal.
  • the wake-up sequence includes indication information, and the indication information is used to indicate a detection attribute of control signaling detection.
  • the preset wake-up time of the base station may be a time that periodically arrives at a fixed time interval as a cycle.
  • the base station determines the wake-up time based on the arrival or absence of user data. For example, if there is data to be transmitted to the terminal on the base station side, it is determined that a wake-up sequence needs to be sent to the terminal, or there is a transmission on the terminal side to the base station The terminal sends an instruction message to the base station. After receiving the instruction message, the terminal station sends a finger wake-up sequence to the terminal.
  • the base station sends a wake-up sequence to the terminal when a preset wake-up time arrives, so that the terminal performs downlink control signaling detection based on the wake-up sequence, so that the terminal can perform downlink according to an instruction from the base station.
  • Control signaling detection reduces the overhead of the terminal's control signaling detection for downlink control signaling.
  • the detection attribute includes a category of the detection attribute and / or a parameter of the detection attribute, and the detection attribute may include at least the number of downlink control signaling detections to be performed, a location of the downlink control signaling to be detected, One of a degree of aggregation of the downlink control signaling to be detected and a format of the downlink control signaling to be detected.
  • Fig. 6 is a flow chart showing a method for detecting downlink control signaling according to an exemplary embodiment.
  • the method may further include step 601 on the basis of the method shown in Fig. 5, where: Step 601 includes: generating a first set including a plurality of instruction information, and the detection attributes indicated by the instruction information included in each first set are the same, or generating a second set including the instruction information, and the instruction information included in the second set includes The indication detection attributes are different; based on this, the step of sending the wake-up sequence to the terminal may be performed in step 602, which includes sending the indication information in the first set or the second set to one or more terminals. Each set of the first set has indication information indicating different detection attributes.
  • the indication information in set 1 in the first set is used to indicate the degree of aggregation, and the indication information in set 2 in the first set is used.
  • the second set has instruction information indicating various detection attributes.
  • the first set and the second set may be generated in advance by the base station before sending the wake-up sequence to the terminal.
  • the base station may instruct the terminal to perform downlink control signaling detection based on a category of detection attributes through the wake-up sequence, and may also instruct the terminal to perform downlink signaling detection based on multiple categories of detection attributes through the wake-up sequence.
  • the base station generates the first set and / or the second set in advance, and sends the indication information in the first set and / or the second set to one or more terminals when the detection time arrives, which can conveniently and quickly control one or one
  • the group terminal performs downlink control signaling detection. It should be understood that this embodiment does not limit the order between steps 601 and 602 and between them and other steps.
  • Fig. 7 is a flowchart illustrating a method for detecting downlink control signaling according to an exemplary embodiment.
  • a wake-up sequence such as a character sequence is shown in Fig. 7. The method is based on the method shown in Fig. 5 and further It may include step 701 and step 702.
  • Step 701 includes: setting the correspondence between the wake-up sequence and the detection attribute;
  • step 702 includes: sending the correspondence between the wake-up sequence and the detection attribute to one or more terminals.
  • a wake-up sequence may indicate one or more detection attributes.
  • Fig. 8 is a block diagram of a device for detecting downlink control signaling according to an exemplary embodiment.
  • the device can be applied to a terminal.
  • the device 80 includes the following components:
  • a stopping module 81 configured to stop control signaling detection for downlink control signaling when the terminal is in a connected state
  • the first receiving module 82 is configured to receive a wake-up sequence sent by a base station, and the wake-up sequence includes indication information, where the indication information is used to indicate a detection attribute of control signaling detection;
  • the execution module 83 is configured to perform control signaling detection according to the detection attribute indicated by the indication information in the wake-up sequence.
  • the detection attribute includes a category of the detection attribute and / or a parameter of the detection attribute, and the category of the detection attribute includes at least one of the following:
  • Fig. 9 is a block diagram of a device for detecting downlink control signaling according to an exemplary embodiment. As shown in Fig. 9, the device 90 may further include:
  • the second receiving module 91 is configured to receive a correspondence between the wake-up sequence and the detection attribute sent by the base station.
  • a wake-up sequence may indicate one or more detection attributes.
  • Fig. 10 is a block diagram of a device for detecting downlink control signaling according to an exemplary embodiment.
  • the device is applied to a base station.
  • the device 100 includes the following components:
  • the judging module 101 is configured to judge whether a preset wake-up time has arrived, and the preset wake-up time is a time when the wake-up terminal performs control signaling detection for downlink control signaling;
  • the first sending module 102 is configured to send a wake-up sequence to the terminal when a preset wake-up time arrives.
  • the wake-up sequence includes indication information, and the indication information is used to indicate a detection attribute of control signaling detection.
  • the detection attribute may include a category of the detection attribute and / or a parameter of the detection attribute, and the category of the detection attribute includes at least one of the following:
  • Fig. 11 is a block diagram of a device for detecting downlink control signaling according to an exemplary embodiment. As shown in Fig. 11, the device 110 may further include:
  • the generating module 111 is configured to generate a first set including a plurality of indication information, and the detection attributes indicated by the indication information included in each first set are the same, or generate a second set including the indication information, and the indication included in the second set.
  • the detection attributes indicated by the information are different;
  • the above-mentioned first sending module may be configured to send the indication information in the first set or the second set to one or more terminals.
  • Fig. 12 is a block diagram of a device for detecting downlink control signaling according to an exemplary embodiment. As shown in Fig. 12, the device 120 may further include:
  • a setting module 121 configured to set a correspondence between a wake-up sequence and a detection attribute
  • the second sending module 122 is configured to send the corresponding relationship to one or more terminals.
  • a wake-up sequence indicates one or more detection attributes.
  • Fig. 13 is a block diagram of a device for detecting downlink control signaling according to an exemplary embodiment.
  • the device 800 may be a mobile phone, a computer, a digital broadcasting terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, and the like.
  • the device 800 may include one or more of the following components: a processing component 802, a memory 804, a power component 806, a multimedia component 808, an audio component 810, an input / output (I / O) interface 812, a sensor component 814, And communication component 816.
  • the processing component 802 generally controls the overall operations of the device 800, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 802 may include one or more processors 820 to execute instructions to complete all or part of the steps of the method described above.
  • the processing component 802 may include one or more modules to facilitate the interaction between the processing component 802 and other components.
  • the processing component 802 may include a multimedia module to facilitate the interaction between the multimedia component 808 and the processing component 802.
  • the memory 804 is configured to store various types of data to support operation at the device 800. Examples of such data include instructions for any application or method for operating on the device 800, contact data, phone book data, messages, pictures, videos, and the like.
  • the memory 804 may be implemented by any type of volatile or non-volatile storage devices or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), Programming read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM Programming read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • the power component 806 provides power to various components of the device 800.
  • the power component 806 may include a power management system, one or more power sources, and other components associated with generating, managing, and distributing power for the device 800.
  • the multimedia component 808 includes a screen that provides an output interface between the device 800 and a user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive an input signal from a user.
  • the touch panel includes one or more touch sensors to sense touch, swipe, and gestures on the touch panel. The touch sensor may not only sense the boundary of a touch or slide action, but also detect the duration and pressure related to the touch or slide operation.
  • the multimedia component 808 includes a front camera and / or a rear camera. When the device 800 is in an operation mode, such as a shooting mode or a video mode, the front camera and / or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 810 is configured to output and / or input audio signals.
  • the audio component 810 includes a microphone (MIC).
  • the microphone When the device 800 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode, the microphone is configured to receive an external audio signal.
  • the received audio signal may be further stored in the memory 804 or transmitted via the communication component 816.
  • the audio component 810 further includes a speaker for outputting audio signals.
  • the I / O interface 812 provides an interface between the processing component 802 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, or the like. These buttons can include, but are not limited to: a home button, a volume button, a start button, and a lock button.
  • the sensor component 814 includes one or more sensors for providing status assessment of various aspects of the device 800.
  • the sensor component 814 can detect the on / off state of the device 800 and the relative positioning of the components, such as the display and keypad of the device 800.
  • the sensor component 814 can also detect the change of the position of the device 800 or a component of the device 800 , The presence or absence of the user's contact with the device 800, the orientation or acceleration / deceleration of the device 800, and the temperature change of the device 800.
  • the sensor component 814 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • the sensor component 814 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 814 may further include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 816 is configured to facilitate wired or wireless communication between the device 800 and other devices.
  • the device 800 can access a wireless network based on a communication standard, such as WiFi, 2G, or 3G, or a combination thereof.
  • the communication component 816 receives a broadcast signal or broadcast-related information from an external broadcast management system via a broadcast channel.
  • the communication component 816 further includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra wideband (UWB) technology, Bluetooth (BT) technology, and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra wideband
  • Bluetooth Bluetooth
  • the device 800 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor, or other electronic component implementation is used to perform the above method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor, or other electronic component implementation is used to perform the above method.
  • a non-transitory computer-readable storage medium including instructions may be executed by the processor 820 of the device 800 to complete the foregoing downlink control signaling detection method.
  • the non-transitory computer-readable storage medium may be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, an optical data storage device, and the like.
  • Fig. 14 is a block diagram of a device for detecting downlink control signaling according to an exemplary embodiment.
  • the device 1900 may be provided as a server.
  • the device 1900 includes a processing component 1922, which further includes one or more processors, and a memory resource represented by a memory 1932, for storing instructions executable by the processing component 1922, such as an application program.
  • the application program stored in the memory 1932 may include one or more modules each corresponding to a set of instructions.
  • the processing component 1922 is configured to execute an instruction to perform the above-mentioned downlink control signaling detection method.
  • the device 1900 may further include a power supply component 1926 configured to perform power management of the device 1900, a wired or wireless network interface 1950 configured to connect the device 1900 to a network, and an input / output (I / O) interface 1958.
  • the device 1900 can operate based on an operating system stored in the memory 1932, such as Windows ServerTM, Mac OSXTM, UnixTM, LinuxTM, FreeBSDTM, or the like.
  • a non-transitory computer-readable storage medium including instructions may be executed by the processing component 1922 of the device 1900 to complete the foregoing downlink control signaling detection method.
  • the non-transitory computer-readable storage medium may be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, an optical data storage device, and the like.

Abstract

本公开是关于一种下行控制信令检测方法、装置及存储介质。其中,应用于终端侧的下行控制信令检测方法包括:在所述终端处于连接态时,停止针对下行控制信令的控制信令检测;接收基站发送的唤醒序列,所述唤醒序列中包括指示信息,所述指示信息用于指示所述控制信令检测的检测属性;根据所述唤醒序列中的所述指示信息所指示的检测属性,执行所述控制信令检测。本公开降低了终端进行针对下行控制信令的控制信令检测的开销。

Description

下行控制信令检测方法、装置及存储介质 技术领域
本公开涉及通信技术领域,尤其涉及一种下行控制信令检测方法、装置及存储介质。
背景技术
在LTE(Long Term Evolution,长期演进)中,终端基于基站的调度进行上下行传输,基站通过发送下行或上行的调度信令来指示终端在相应的资源位置上以通知的方式进行数据的接收或发送。
通常,终端的续航能力是影响终端性能的一个重要因素,而终端用于控制信令检测的开销是终端耗电的一个重要原因。当终端没有数据需要交互时,基站没有控制信令发送给终端,相应的终端进行控制信令检测时也无法检测到任何控制信令。
在LTE系统中,为了降低终端的检测开销,定义了终端的休眠状态,终端可以在没有数据交互的情况下进入休眠的状态以避免控制信令的检测。终端在处于休眠态时,需要基于基站的配置,周期性的去监听PDCCH(Physical Downlink Control Channel,物理下行控制信道),以确定是否需要进入激活态。但周期性监听PDCCH仍会导致终端进行控制信令检测的开销过大。
基于此,需要获知如何能进一步降低终端进行控制信令检测的开销。
发明内容
为克服相关技术中存在的问题,本公开提供一种下行控制信令检测方法、装置及存储介质。
根据本公开的第一个方面,提供了一种下行控制信令检测方法,所述方法应用于终端,所述方法包括:在所述终端处于连接态时,停止针对下行控制信令的控制信令检测;接收基站发送的唤醒序列,所述唤醒序列中包括指示信息,所述指示信息用于指示所述控制信令检测的检测属性;根据所述唤醒序列中的所述指示信息所指示的检测属性,执行所述控制信令检测。
根据本公开的第二个方面,提供了一种下行控制信令检测方法,所述方法应用于基站,所述方法包括:判断预设唤醒时刻是否到来,所述预设唤醒时刻为唤醒终端执行针对下行控制信令的控制信令检测的时刻;在所述预设唤醒时刻到来之前,向终端发送唤醒序列,所述唤醒序列中包括指示信息,所述指示信息用于指示所述控制信令检测的检测属性。
根据本公开的第三个方面,提供了一种下行控制信令检测装置,所述装置应用于终端,所述装置包括:停止模块,用于在所述终端处于连接态时,停止针对下行控制信令的控制信令检测;第一接收模块,用于接收基站发送的唤醒序列,所述唤醒序列中包括指示信息,所述指示信息用于指示所述控制信令检测的检测属性;执行模块,用于根据所述唤醒序列中的所述指示信息所指示的检测属性,执行所述控制信令检测。
根据本公开的第四个方面,提供了一种下行控制信令检测装置,所述装置应用于基站,所述装置包括:判断模块,用于判断预设唤醒时刻是否到来,所述预设唤醒时刻为唤醒终端执行针对下行控制信令的控制信令检测的时刻;第一发送模块,用于在所述预设唤醒时刻到来前,向终端发送唤醒序列,所述唤醒序列中包括指示信息,所述指示信息用于指示所述控制信令检测的检测属性。
根据本公开的第五个方面,提供了一种下行控制信令检测装置,所述装置应用于终端,包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器被配置为:在所述终端处于连接态时,停止针对下行控制信令的控制信令检测;
接收基站发送的唤醒序列,所述唤醒序列中包括指示信息,所述指示信息用于指示所述控制信令检测的检测属性;根据所述唤醒序列中的所述指示信息所指示的检测属性,执行所述控制信令检测。
根据本公开的第六个方面,提供了一种非临时性计算机可读存储介质,当所述存储介质中的指令由处理器执行时,使得处理器能够执行本公开第一个方面所述的方法。
根据本公开的第七个方面,提供了一种下行控制信令检测装置,所述装置应用于基站,包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器被配置为:判断预设唤醒时刻是否到来,所述预设唤醒时刻为唤醒终端执行针对下行控制信令的控制信令检测的时刻;在所述预设唤醒时刻到来之前,向终端发送唤醒序列,所述唤醒序列中包括指示信息,所述指示信息用于指示所述控制信令检测的检测属性。
根据本公开的第八个方面,提供了一种非临时性计算机可读存储介质,当所述存储介质中的指令由处理器执行时,使得处理器能够执行根据本公开第二个方面所述的方法。
本公开的实施例提供的技术方案可以包括以下有益效果:本公开的实施例的下行控制信令检测方法,在终端处于连接态时,停止针对下行控制信令的控制信令检测,根据接收到的基站发送的唤醒序列中的指示信息所指示的检测属性执行针对下行控制信令的控制信令检测,从而使得终端可以根据基站的指示进行针对下行控制信令的控制信令检测,降低了终端针对下行控制信令的控制信令检测的开销。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是根据一示例性实施例示出的一种下行控制信令检测方法的流程图。
图2是根据一示例性实施例示出的使用一个唤醒序列指示一种检测属性的示意图。
图3是根据一示例性实施例示出的使用一个唤醒序列指示两种检测属性的示意图。
图4是根据一示例性实施例示出的一种下行控制信令检测方法的流程图。
图5是根据一示例性实施例示出的一种下行控制信令检测方法的流程图。
图6是根据一示例性实施例示出的一种下行控制信令检测方法的流程图。
图7是根据一示例性实施例示出的一种下行控制信令检测方法的流程图。
图8是根据一示例性实施例示出的一种下行控制信令检测装置的框图。
图9是根据一示例性实施例示出的一种下行控制信令检测装置的框图。
图10是根据一示例性实施例示出的一种下行控制信令检测装置的框图。
图11是根据一示例性实施例示出的一种下行控制信令检测装置的框图。
图12是根据一示例性实施例示出的一种下行控制信令检测装置的框图。
图13是根据一示例性实施例示出的一种下行控制信令检测装置的框图。
图14是根据一示例性实施例示出的一种下行控制信令检测装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
图1是根据一示例性实施例示出的一种下行控制信令检测方法的流程图,该方法应用于终端,例如该方法可由终端来执行,如图1所示,该方法包括如下步骤:
步骤101:在终端处于连接态时,停止针对下行控制信令的控制信令检测;
步骤102:接收基站发送的唤醒序列,该唤醒序列中包括指示信息,指示信息用于指示控制信令检测的检测属性;
步骤103:根据唤醒序列中的指示信息所指示的检测属性,执行控制信令检测。
本实施例的下行控制信令检测方法,在终端处于连接态时,停止针对下行控制信令的控制信令检测,根据接收到的基站发送的唤醒序列(以下也称序列)中的指示信息所指示的检测属性执行针对下行控制信令的控制信令检测,从而使得终端可以根据基站的指示进行针对下行控制信令的控制信令检测,降低了终端针对下行控制信令的控制信令检测的开销。
在一种可实现方式中,在终端处于连接态时停止针对下行控制信令的控制信令检测可以是终端进入连接态或进入连接态并完成一次或多次数据交互之后,停止针对下行信令的控制信令检测(以下也称“下行控制信令检测”),直到接收到基站发送的唤醒序列后,可根据唤醒序列执行针对下行控制信令的控制信令检测。当终端完成RRC(Radio Resource Control,无线资源控制)连接建立时,终端从空闲模式转换到连接模式,终端运行在连接模式时即可认为终端处于连接态。其中,终端完成的数据交互,例如是终端接收基站发送的数据包,或发送数据包给基站。在终端处于连接态时停止下行控制信令检测可以避免终端自行开始周期性的下行信令检测,减少了终端进行下行信令检测的开销,进而降低了终端的功耗。
在一种可能的实现方式中,终端可以是在发现数据包传输结束后,停止下行控制信令检测,还可以是基站向终端发送下行控制信令通知终端停止下行控制信令检测。
在一种可实现方式中,检测属性包括检测属性的类别和/或检测属性的参数,检测属性的类别至少可包括:执行下行控制信令检测的次数、待检测的下行控制信令的位置、待检测的下行控制信令的聚合度等级以及待检测的下行控制信令的格式,其中,待检测的下行控制信令的格式,为下行控制信令的DCI(Downlink Control Information,下行控制信息)格式,其中,下行控制信令的聚合度等级指的是下行控制信令传输占用的资源量。例如,如果基站要指示终端执行5次下行控制信令检测,则检测属性的类别为执行下行控制信令检测的次数,检测属性的参数为5;如果基站要指示终端检测的下行控制信令的在一个子帧内的资源位置的编号为2,则检测属性的类别为待检测的下行控制信令的位置,检测属性的参数为2;如果基站要指示终端检测聚合度等级为2的下行控制信令,则检测属性的类别为聚合度等级,检测属性的参数为2;如果基站要指示终端检测DCI格式为2的下行控制信令,则检测属性的类别为DCI格式,属性的参数为2。基于多种不同的检测属性,基站可以基于多种不同的指示信息来指示终端进行针对不同的下行控制信令的控制信令检测,对于终端而言识别这些指示信息即可按照基站的指示来进行相应的下行控制信令检测,降低了终端侧进行下行信令检测的复杂度。
在一种可实现方式中,检测属性的参数可为检测属性对应的数值,例如,当检测属性的类别为下行控制信令的聚合度等级的情况下,表示终端需要对下行控制信令的聚合度等级进行检测,在检测属性的参数为2时,则可表示终端需要对聚合度等级为2的下行控制信令进行检测。
在一种可能的实现方式中,唤醒序列例如字符序列。其中,一个唤醒序列可以指示一种或多种检测属性。
图2是根据一示例性实施例示出的使用一个唤醒序列指示一种检测属性的示意图。如图2所示,序列1对应的检测属性为聚合度等级为2,序列2对应的聚合度等级为4,序列3对应的聚合度等级为8,序列4对应的聚合度等级为16。如果基站将图2中所示的序列1发送给终端,终端在接收到该序列1后可在预先定义的时间窗口内执行针对聚合度等级为2的下行控制信令进行控制信令检测,其中,预先定义的时间窗口可由基站预先进行定义;如果基站将图2中所示的序列2发送给终端,终端在接收到该序列2后在预先定义的时间窗口内执行针对聚合度等级为4的下行控制信令检测,序列3以及序列4依此类推。在本实施例中,可以使用序列的前几个字符标识检测属性的类别,最后一个或最后几个字符标识检测属性的参数。此外,还可以直接使用序列的所有字符来唯一标识某一检测属性,例如,用一个序列直接来标识聚合度等级2。在基站确认终端需进行针对一种检测属性进行下行控制信令检测时,基站可直接利用指示有一种检测属性的唤醒序列来指示终端。
图3是根据一示例性实施例示出的使用一个唤醒序列指示两种检测属性的示意图,如图3所示,序列1对应的检测属性为聚合度等级为2,DCI格式为1,序列2对应的检测属性为聚合度等级为4,DCI格式为1,依此类推。如果基站将图3中所示的序列1发送给终端,终端在接收到该序列1后可在预先定义的时间窗口内执行针对聚合度等级为2的下行控制信令以及DCI格式为1的下行控制信令进行控制信令检测。其中,可以使用序列中的一些连续的字符标识第一种检测属性的类别,另一些连续的字符标识该检测属性的参数,一些连续的字符标识第二种检测属性的类别,以及另一些连续的字符标识第二种检测属性的参数。此外,也可以用序列中的一部分连续的字符来唯一标识第一种检测属性的类别及参数,用序列中的另一部分连续的字符来唯一标识第二种检测属性的类别及参数,例如,将序列分为第一子序列以及第二子序列,第一子序对应聚合度等级1,第二子序列对应聚合度等级2。需要说明的是,一个序列可以指示多种检测属性,本实施例仅以一个序列指示两种检测属性为例进行示例说明。对于一个序列指示两种以上检测属性的情况,可参考本实施例所示例的方式进行。在基站确认终端需进行针对下行控制信令的至少 两种检测属性进行下行控制信令检测时,基站可直接向终端发送指示有多种检测属性的指示信息,而无需多次向终端发送指示信息,降低了基站与终端之间的数据交互次数。
图4是根据一示例性实施例示出的一种下行控制信令检测方法的流程图,在该实施例中,如图4所示,该方法在图1所示的下行控制信令检测方法的基础上,还可包括,步骤401:接收基站发送的序列与检测属性的对应关系,或者获取预先存储的序列与检测属性的对应关系,其中,基站可通过RRC信令、MAC(Medium/Media Access Control,媒体访问控制)CE(控制元素)或物理层信令向终端发送该对应关系。该对应关系可以是一个序列与一种检测属性对应,还可以是一个序列与多种检测属性对应。基站预先将序列与检测属性的对应关系发送至终端,使得终端能够预先获知该对应关系,在终端接收到来自基站的序列后,可以直接基于该对应关系获知需执行的下行控制信令检测对应的检测属性。此外,序列与检测属性的对应关系还可以在通信协议中预先定义的,在这种情况下,基站则无需通过控制信令向终端发送该对应关系,终端可预先存储该对应关系。应理解,本实施例不限制步骤401与其他步骤之间的执行顺序。
图5是根据一示例性实施例示出的一种下行控制信令检测方法的流程图,该方法可应用于基站,例如该方法可由基站来执行,如图5所示,该方法包括如下步骤:
步骤501:判断预设唤醒时刻是否到来,该预设唤醒时刻为唤醒终端执行针对下行控制信令的控制信令检测的时刻;
步骤502:在预设唤醒时刻到来之前,向终端发送唤醒序列,该唤醒序列中包括指示信息,指示信息用于指示控制信令检测的检测属性。
在一种可实现方式中,基站预设的唤醒时刻,可以是以一个固定的时间间隔为周期,周期性到达的一个时刻。在另外一种可方式中,基站基于用户数据的达到与否,确定唤醒时刻,例如,基站侧存在需要传输给终端的数据,则确定需要向终端发送唤醒序列,或者终端侧存在需传输给基站的数据,终端会向基站发送一个指示信息,基站接收到该指示信息后,会向终端发送指唤醒序列。
本实施例的下行控制信令检测方法,基站在预设的唤醒时刻到来时,向终端发送唤醒序列,以使终端基于该唤醒序列进行下行控制信令检测,使得终端可以根据基站的指示进行下行控制信令检测,降低了终端针对下行控制信令的控制信令检测的开销。
在一种可实现方式中,检测属性包括检测属性的类别和/或检测属性的参数,检测属性至少可包括:待执行的下行控制信令检测的次数、待检测的下行控制信令的位置、待检测的下行控制信令的聚合度等级以及待检测的下行控制信令的格式中的一种。
图6是根据一示例性实施例示出的一种下行控制信令检测方法的流程图,如图6所示,该方法在图5所示的方法的基础上,还可包括步骤601,其中,步骤601包括:生成包含多个指示信息的第一集合,各第一集合中包括的指示信息所指示的检测属性相同,或者生成包含指示信息的第二集合,第二集合中包含的指示信息所指示的检测属性不同;基于此,向终端发送唤醒序列的步骤可由步骤602来执行,步骤602包括:将第一集合或第二集合中的指示信息发送至一个或多个终端。其中,第一集合的各集合中具有指示不同检测属性的指示信息,例如,第一集合中的集合1中的指示信息用于指示聚合度等级,第一集合中的集合2中的指示信息用于指示执行下行信令检测的次数;第二集合中具有指示各种不同检测属性的指示信息。其中,第一集合以及第二集合可由基站在向终端发送唤醒序列之前预先生成。基站可通过唤醒序列指示终端基于一个类别的检测属性进行下行控制信令检测,还可以通过唤醒序列指示终端基于多个类别的检测属性进行下行信令检测。基站通过预先生成第一集合和/或第二集合,在检测时刻到达时,将第一集合和/或第二集合中的指示信息发送至一个或多个终端,可以方便快捷的控制一个或一组终端进行下行控制信令的检测。应理解,本实施例不限制步骤601、602之间,以及其与其他步骤之间的顺序。
图7是根据一示例性实施例示出的一种下行控制信令检测方法的流程图,唤醒序列例如字符序列,如图7所示,该方法在上述图5所示的方法的基础上,还可包括步骤701以及步骤702,步骤701包括:设置唤醒序列与检测属性的对应关系;步骤702包括:将唤醒序列与检测属性的对应关系发送至一个或多个终端。一个唤醒序列可指示一种或多种检测属性。
应理解,本实施例不限制步骤701、702之间,以及其与其他步骤之间的顺序。
其中,唤醒序列与检测属性的对应关系可参考图2-图4,以及对图2--图4的说明,此处不再赘述。
图8是根据一示例性实施例示出的一种下行控制信令检测装置的框图,在本实施例中,该装置可应用于终端,如图8所示,该装置80包括如下组成部分:
停止模块81,用于在终端处于连接态时,停止针对下行控制信令的控制信令检测;
第一接收模块82,用于接收基站发送的唤醒序列,唤醒序列中包括指示信息,指示信息用于指示控制信令检测的检测属性;
执行模块83,用于根据唤醒序列中的指示信息所指示的检测属性,执行控制信令检测。
在一种可实现方式中,检测属性包括检测属性的类别和/或检测属性的参数,检测属 性的类别至少包括以下一种:
待执行的下行控制信令检测的次数、待检测的下行控制信令的位置、待检测的下行控制信令的聚合度等级以及待检测的下行控制信令的格式。
图9是根据一示例性实施例示出的一种下行控制信令检测装置的框图,如图9所示,该装置90在装置80的基础上还可包括:
第二接收模块91,用于接收基站发送的唤醒序列与检测属性的对应关系。
在一种可实现方式中,一个唤醒序列可指示一种或多种检测属性。
图10是根据一示例性实施例示出的一种下行控制信令检测装置的框图,该装置应用于基站,如图10所示,该装置100包括如下组成部分:
判断模块101,用于判断预设唤醒时刻是否到来,预设唤醒时刻为唤醒终端执行针对下行控制信令的控制信令检测的时刻;
第一发送模块102,用于在预设唤醒时刻到来时,向终端发送唤醒序列,唤醒序列中包括指示信息,指示信息用于指示控制信令检测的检测属性。
在一种可实现方式中,检测属性可包括检测属性的类别和/或检测属性的参数,检测属性的类别至少包括以下一种:
待执行的下行控制信令检测的次数、待检测的下行控制信令的位置、待检测的下行控制信令的聚合度等级以及待检测的下行控制信令的格式。
图11是根据一示例性实施例示出的一种下行控制信令检测装置的框图,如图11所示,该装置110在装置100的基础上还可包括:
生成模块111,用于生成包含多个指示信息的第一集合,各第一集合中包括的指示信息所指示的检测属性相同,或者生成包含指示信息的第二集合,第二集合中包含的指示信息所指示的检测属性不同;
上述第一发送模块可用于:将第一集合或第二集合中的指示信息发送至一个或多个终端。
图12是根据一示例性实施例示出的一种下行控制信令检测装置的框图,如图12所示,该装置120在装置100的基础上还可包括:
设置模块121,用于设置唤醒序列与检测属性的对应关系;
第二发送模块122,用于将对应关系发送至一个或多个终端。
在一种可实现方式中,一个唤醒序列指示一种或多种检测属性。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实 施例中进行了详细描述,此处将不做详细阐述说明。
图13是根据一示例性实施例示出的一种下行控制信令检测装置的框图。例如,装置800可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图13,装置800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制装置800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在装置800的操作。这些数据的示例包括用于在装置800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为装置800的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为装置800生成、管理和分配电力相关联的组件。
多媒体组件808包括在所述装置800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当装置800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当装置800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克 风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为装置800提供各个方面的状态评估。例如,传感器组件814可以检测到装置800的打开/关闭状态,组件的相对定位,例如所述组件为装置800的显示器和小键盘,传感器组件814还可以检测装置800或装置800一个组件的位置改变,用户与装置800接触的存在或不存在,装置800方位或加速/减速和装置800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于装置800和其他设备之间有线或无线方式的通信。装置800可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器804,上述指令可由装置800的处理器820执行以完成上述下行控制信令检测方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
图14是根据一示例性实施例示出的一种下行控制信令检测装置的框图。例如,装置1900可以被提供为一服务器。参照图14,装置1900包括处理组件1922,其进一步包括 一个或多个处理器,以及由存储器1932所代表的存储器资源,用于存储可由处理组件1922的执行的指令,例如应用程序。存储器1932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件1922被配置为执行指令,以执行上述下行控制信令检测方法。
装置1900还可以包括一个电源组件1926被配置为执行装置1900的电源管理,一个有线或无线网络接口1950被配置为将装置1900连接到网络,和一个输入输出(I/O)接口1958。装置1900可以操作基于存储在存储器1932的操作系统,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器1932,上述指令可由装置1900的处理组件1922执行以完成上述下行控制信令检测方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (22)

  1. 一种下行控制信令检测方法,其特征在于,所述方法应用于终端,所述方法包括:
    在所述终端处于连接态时,停止针对下行控制信令的控制信令检测;
    接收基站发送的唤醒序列,所述唤醒序列中包括指示信息,所述指示信息用于指示所述控制信令检测的检测属性;
    根据所述唤醒序列中的所述指示信息所指示的检测属性,执行所述控制信令检测。
  2. 根据权利要求1所述的方法,其特征在于,所述检测属性包括检测属性的类别和/或检测属性的参数,所述检测属性的类别至少包括以下一种:
    待执行的下行控制信令检测的次数、待检测的下行控制信令的位置、待检测的下行控制信令的聚合度等级以及待检测的下行控制信令的格式。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    接收基站发送的所述唤醒序列与所述检测属性的对应关系,或者获取预先存储的所述唤醒序列与所述检测属性的对应关系。
  4. 根据权利要求1所述的方法,其特征在于,一个所述唤醒序列指示一种或多种检测属性。
  5. 一种下行控制信令检测方法,其特征在于,所述方法应用于基站,所述方法包括:
    判断预设唤醒时刻是否到来,所述预设唤醒时刻为唤醒终端执行针对下行控制信令的控制信令检测的时刻;
    在所述预设唤醒时刻到来之前,向终端发送唤醒序列,所述唤醒序列中包括指示信息,所述指示信息用于指示所述控制信令检测的检测属性。
  6. 根据权利要求5所述的方法,其特征在于,
    所述检测属性包括检测属性的类别和/或检测属性的参数,所述检测属性的类别至少包括以下一种:
    待执行的下行控制信令检测的次数、待检测的下行控制信令的位置、待检测的下行控制信令的聚合度等级以及待检测的下行控制信令的格式。
  7. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    生成包含所述多个指示信息的第一集合,各所述第一集合中包括的所述指示信息所指示的检测属性相同,或者生成包含所述指示信息的第二集合,所述第二集合中包含的所述指示信息所指示的检测属性不同;
    向终端发送唤醒序列,包括:
    将所述第一集合或所述第二集合中的所述指示信息发送至一个或多个终端。
  8. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    设置所述唤醒序列与所述检测属性的对应关系;
    将所述对应关系发送至一个或多个终端。
  9. 根据权利要求5至8任一项所述的方法,其特征在于,一个唤醒序列指示一种或多种检测属性。
  10. 一种下行控制信令检测装置,其特征在于,所述装置应用于终端,所述装置包括:
    停止模块,用于在所述终端处于连接态时,停止针对下行控制信令的控制信令检测;
    第一接收模块,用于接收基站发送的唤醒序列,所述唤醒序列中包括指示信息,所述指示信息用于指示所述控制信令检测的检测属性;
    执行模块,用于根据所述唤醒序列中的所述指示信息所指示的检测属性,执行所述控制信令检测。
  11. 根据权利要求10所述的装置,其特征在于,所述检测属性包括检测属性的类别和/或检测属性的参数,所述检测属性的类别至少包括以下一种:
    待执行的下行控制信令检测的次数、待检测的下行控制信令的位置、待检测的下行控制信令的聚合度等级以及待检测的下行控制信令的格式。
  12. 根据权利要求10或11所述的装置,其特征在于,所述装置还包括:
    获取模块,用于接收基站发送的所述唤醒序列与所述检测属性的对应关系,或者获取预先存储的所述唤醒序列与所述检测属性的对应关系。
  13. 根据权利要求10所述的装置,其特征在于,一个唤醒序列指示一种或多种检测 属性。
  14. 一种下行控制信令检测装置,其特征在于,所述装置应用于基站,所述装置包括:
    判断模块,用于判断预设唤醒时刻是否到来,所述预设唤醒时刻为唤醒终端执行针对下行控制信令的控制信令检测的时刻;
    第一发送模块,用于在所述预设唤醒时刻到来前,向终端发送唤醒序列,所述唤醒序列中包括指示信息,所述指示信息用于指示所述控制信令检测的检测属性。
  15. 根据权利要求14所述的装置,其特征在于,
    所述检测属性包括检测属性的类别和/或检测属性的参数,所述检测属性的类别至少包括以下一种:
    待执行的下行控制信令检测的次数、待检测的下行控制信令的位置、待检测的下行控制信令的聚合度等级以及待检测的下行控制信令的格式。
  16. 根据权利要求14所述的装置,其特征在于,所述装置还包括:
    生成模块,用于生成包含所述多个指示信息的第一集合,各所述第一集合中包括的所述指示信息所指示的检测属性相同,或者生成包含所述指示信息的第二集合,所述第二集合中包含的所述指示信息所指示的检测属性不同;
    所述第一发送模块用于:将所述第一集合或所述第二集合中的所述指示信息发送至一个或多个终端。
  17. 根据权利要求14所述的装置,其特征在于,所述装置还包括:
    设置模块,用于设置所述唤醒序列与所述检测属性的对应关系;
    第二发送模块,用于将所述对应关系发送至一个或多个终端。
  18. 根据权利要求14至17任一项所述的装置,其特征在于,一个唤醒序列指示一种或多种检测属性。
  19. 一种下行控制信令检测装置,其特征在于,所述装置应用于终端,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    在所述终端处于连接态时,停止针对下行控制信令的控制信令检测;
    接收基站发送的唤醒序列,所述唤醒序列中包括指示信息,所述指示信息用于指示所述控制信令检测的检测属性;
    根据所述唤醒序列中的所述指示信息所指示的检测属性,执行所述控制信令检测。
  20. 一种非临时性计算机可读存储介质,当所述存储介质中的指令由处理器执行时,使得处理器能够执行根据权利要求1至4任一项所述的方法。
  21. 一种下行控制信令检测装置,其特征在于,所述装置应用于基站,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    判断预设唤醒时刻是否到来,所述预设唤醒时刻为唤醒终端执行针对下行控制信令的控制信令检测的时刻;
    在所述预设唤醒时刻到来之前,向终端发送唤醒序列,所述唤醒序列中包括指示信息,所述指示信息用于指示所述控制信令检测的检测属性。
  22. 一种非临时性计算机可读存储介质,当所述存储介质中的指令由处理器执行时,使得处理器能够执行根据权利要求5至9任一项的所述的方法。
PCT/CN2018/089359 2018-05-31 2018-05-31 下行控制信令检测方法、装置及存储介质 WO2019227428A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880000767.0A CN108702708B (zh) 2018-05-31 2018-05-31 下行控制信令检测方法、装置及存储介质
PCT/CN2018/089359 WO2019227428A1 (zh) 2018-05-31 2018-05-31 下行控制信令检测方法、装置及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/089359 WO2019227428A1 (zh) 2018-05-31 2018-05-31 下行控制信令检测方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2019227428A1 true WO2019227428A1 (zh) 2019-12-05

Family

ID=63841557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/089359 WO2019227428A1 (zh) 2018-05-31 2018-05-31 下行控制信令检测方法、装置及存储介质

Country Status (2)

Country Link
CN (1) CN108702708B (zh)
WO (1) WO2019227428A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3804415B1 (en) * 2018-07-06 2022-09-21 Huawei Technologies Oy (Finland) Co. Ltd. A network node and a user node for improving reliability of wake-up signaling in a wireless communication network, and corresponding methods therefor
WO2020107260A1 (zh) 2018-11-28 2020-06-04 北京小米移动软件有限公司 下行控制信令的检测方法、装置及系统
CN114980277B (zh) * 2021-02-19 2024-01-16 海能达通信股份有限公司 一种省电方法、窄带通信设备和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010124444A1 (zh) * 2009-04-27 2010-11-04 华为技术有限公司 信息发射与接收的方法和设备
WO2011038696A1 (zh) * 2009-09-30 2011-04-07 中兴通讯股份有限公司 一种调度信息传输的方法及系统
US20130229965A1 (en) * 2012-03-05 2013-09-05 Qualcomm Incorporated Paging during connected mode discontinuous reception (drx) operations

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108012312B (zh) * 2016-10-28 2021-01-15 华为技术有限公司 被寻呼装置、寻呼装置及方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010124444A1 (zh) * 2009-04-27 2010-11-04 华为技术有限公司 信息发射与接收的方法和设备
WO2011038696A1 (zh) * 2009-09-30 2011-04-07 中兴通讯股份有限公司 一种调度信息传输的方法及系统
US20130229965A1 (en) * 2012-03-05 2013-09-05 Qualcomm Incorporated Paging during connected mode discontinuous reception (drx) operations

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
3GPP: "Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control (MAC) protocol specification", 3GPP TS 36.321 V2.0.0, 11 December 2007 (2007-12-11), XP002502941 *

Also Published As

Publication number Publication date
CN108702708B (zh) 2020-07-10
CN108702708A (zh) 2018-10-23

Similar Documents

Publication Publication Date Title
US11844136B2 (en) Discontinuous reception (DRX) parameter configuration method and device
US20210243694A1 (en) Channel monitoring method and device
CN106604376B (zh) 信道监听控制方法、装置和用户终端
WO2020014960A1 (zh) 波束故障恢复请求发送方法、响应方法、装置及存储介质
WO2020034074A1 (zh) 唤醒方法、唤醒装置、电子设备和计算机可读存储介质
WO2020019218A1 (zh) 传输配置方法及装置
WO2019232807A1 (zh) 下行控制信令检测方法、装置及存储介质
US11553433B2 (en) User equipment power-saving method and device, user equipment and base station
WO2018195910A1 (zh) 一种分配调度请求sr资源的方法和装置
JP2017535085A (ja) 省エネルギーモードを開始するための方法及び装置
CN109314913B (zh) 接入控制限制方法及装置
CN109451838B (zh) 获取接入控制参数的方法、装置及存储介质
WO2020097810A1 (zh) 调度请求发送方法和装置
WO2019227430A1 (zh) 信道监测方法、装置、系统及存储介质
WO2019227428A1 (zh) 下行控制信令检测方法、装置及存储介质
WO2020056765A1 (zh) 资源感应结果上报方法、装置、用户设备及存储介质
WO2019237313A1 (zh) 定时器控制方法和装置、电子设备、计算机可读存储介质
WO2020042178A1 (zh) 载波激活方法、装置、设备、系统及存储介质
WO2019227405A1 (zh) 物理下行控制信令检测方法、装置及计算机可读存储介质
WO2019227318A1 (zh) 物理下行控制信道监测配置、监测方法及装置和基站
WO2020042116A1 (zh) 指示、确定传输单元的传输方向的方法、装置及存储介质
WO2020042118A1 (zh) 接入控制方法、装置及存储介质
JP2021513279A (ja) トリガ保持方法およびトリガ保持装置
WO2020042010A1 (zh) 接入控制限制方法及装置
WO2023015535A1 (zh) 一种执行小数据包传输和确定随机接入消息传输方式的方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18920663

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18920663

Country of ref document: EP

Kind code of ref document: A1