WO2019227348A1 - 一种透镜天线及无线设备 - Google Patents

一种透镜天线及无线设备 Download PDF

Info

Publication number
WO2019227348A1
WO2019227348A1 PCT/CN2018/089051 CN2018089051W WO2019227348A1 WO 2019227348 A1 WO2019227348 A1 WO 2019227348A1 CN 2018089051 W CN2018089051 W CN 2018089051W WO 2019227348 A1 WO2019227348 A1 WO 2019227348A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frequency
dielectric
lens
metal layer
layer
Prior art date
Application number
PCT/CN2018/089051
Other languages
English (en)
French (fr)
Inventor
程钰间
孔龙
陈一
罗昕
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2018/089051 priority Critical patent/WO2019227348A1/zh
Publication of WO2019227348A1 publication Critical patent/WO2019227348A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens

Definitions

  • Embodiments of the present invention relate to the field of semiconductor technology, and in particular, to a lens antenna and a wireless device.
  • a flat lens antenna is a lens antenna that has good rotational symmetry.
  • the structure of a flat lens antenna includes: a parallel plate waveguide, a Lambertian lens or a cylindrical dielectric lens sandwiched between the parallel plate waveguides, and an incident surface surrounding the lens. Multiple feeds on the circumference.
  • the structure of the above-mentioned flat lens antenna determines the antenna beam performance, and limits the spread of the flat lens antenna's elevation beam.
  • the embodiment of the invention discloses a lens antenna and a wireless device, which are used for expanding the beam width of the lens antenna pitch plane.
  • a first aspect discloses a lens antenna including a first metal layer, a second metal layer, a dielectric lens, and M feed antennas.
  • the dielectric lens is located between the first metal layer and the second metal layer and includes an N-layer dielectric, N
  • the dielectric constant of the layered medium decreases from the symmetrical side.
  • N is an odd number
  • the plane of symmetry coincides with the center plane of the middle layer of the N layer medium.
  • N is an even number
  • the plane of symmetry and the middle two layers of the N layer medium The interface of the dielectric coincides, and since the dielectric constant of the dielectric layer in the dielectric lens decreases from the symmetrical surface to both sides, the beam width of the lens antenna elevation plane can be widened.
  • M is an integer greater than or equal to 1
  • N is an integer greater than or equal to 3.
  • the phase distribution of the waves emitted from the exit surface of the lens antenna in the vertical direction of the lens antenna is different.
  • the phase change of the beam generated by the feed antenna in each layer of the N-layer medium is different.
  • the first metal layer, the second metal layer, and the dielectric lens are cylindrical, and the axes of the first metal layer, the second metal layer, and the dielectric lens coincide.
  • the focal point of the dielectric lens coincides with the phase centers of the M feed antennas, which can ensure that the lens antenna obtains the best performance.
  • the feed antenna includes a third metal layer, a fourth metal layer, and a dielectric layer.
  • the dielectric layer is located between the third metal layer and the fourth metal layer, and the third metal layer, the fourth metal layer, and the dielectric layer. It includes a plurality of through holes for forming a substrate integrated waveguide.
  • the radius of the dielectric lens is smaller than the radius of the first metal layer and the second metal layer, and a portion of the feed antenna is located between the first metal layer and the second metal layer.
  • the second aspect discloses a wireless device including a baseband, a radio frequency module, a cable, and the lens antenna disclosed in the first aspect or any possible implementation manner of the first aspect.
  • the radio frequency module is connected to the baseband and the lens antenna through a cable, respectively.
  • the digital signal is converted into an intermediate frequency analog signal and sent to a radio frequency module.
  • the radio frequency module converts the intermediate frequency analog signal into a radio frequency signal and sends it to a lens antenna.
  • the lens antenna converts the radio frequency signal into an electromagnetic wave signal and radiates to space.
  • the RF module converts the IF analog signal into a RF signal and sends it to the lens antenna.
  • the IF analog signal can be converted into a RF signal first, and then the RF signal is sequentially amplified and filtered to obtain a processed RF signal , And finally send the processed RF signal to the lens antenna.
  • the lens antenna converts a radio frequency signal into an electromagnetic wave signal.
  • the processed radio frequency signal can be converted into an electromagnetic wave signal.
  • a third aspect discloses a wireless device including a baseband, a radio frequency module, a cable, and the lens antenna disclosed in the first aspect or any possible implementation manner of the first aspect.
  • the radio frequency module is respectively connected to the baseband and the lens antenna through a cable.
  • the lens antenna Receive the electromagnetic wave signal, convert the electromagnetic wave signal into a radio frequency signal and send it to the radio frequency module.
  • the radio frequency module converts the radio frequency signal into an intermediate frequency analog signal and send it to the baseband.
  • the baseband converts the intermediate frequency analog signal into a digital signal.
  • the RF module converts the RF signal into an IF analog signal and sends it to the baseband.
  • the RF signal can be filtered and amplified in order to obtain the processed RF signal, and then the processed RF signal is converted into an IF analog. Signal, and finally send the IF analog signal to the baseband.
  • FIG. 1 is a schematic structural diagram of a longitudinal section of a lens antenna according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a longitudinal section of another lens antenna disclosed in an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a first metal layer, a second metal layer, and a dielectric lens disclosed in an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a longitudinal section of a lens antenna including a 5-layer dielectric disclosed in an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a longitudinal section of a lens antenna including a six-layer dielectric disclosed in an embodiment of the present invention
  • FIG. 6 is a simulation diagram of a beam width of a lens antenna with a uniformly varying thickness of a 5-layer medium disclosed in an embodiment of the present invention
  • FIG. 7 is a simulation diagram of a beam width of a lens antenna with different dielectric layers according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of simulation of a beam width of a pitch plane of a lens antenna when a dielectric constant varies according to an embodiment of the present invention
  • FIG. 9 is a simulation diagram of a H-direction pattern of a lens antenna according to an embodiment of the present invention.
  • FIG. 10 is a simulation diagram of a directional pattern of a lens antenna E surface according to an embodiment of the present invention.
  • FIG. 11 is a wireless device disclosed by an embodiment of the present invention.
  • the embodiment of the invention discloses a lens antenna and a wireless device, which are used for expanding the beam width of the lens antenna pitch plane. The details are described below.
  • FIG. 1 is a schematic structural diagram of a longitudinal section of a lens antenna according to an embodiment of the present invention.
  • the lens antenna may include a first metal layer 1, a second metal layer 2, a dielectric lens 3, and M feed antennas 4.
  • the dielectric lens 3 is located between the first metal layer 1 and the second metal layer 2.
  • the dielectric lens 3 includes an N-layer dielectric, and the dielectric constant of the N-layer dielectric decreases from both sides of the symmetrical surface.
  • N is an odd number
  • the plane of symmetry coincides with the center plane of the middle layer of the N-layer medium.
  • N is an even number
  • the symmetry plane coincides with the interface between the two intermediate layers in the N-layer medium
  • M is an integer greater than or equal to 1
  • N is an integer greater than or equal to 3.
  • the first metal layer 1, the second metal layer 2 and the N-layer dielectric are all PCB boards.
  • the feed antenna 4 is used to generate electromagnetic waves, and the first metal layer 1, the second metal layer 2, and the dielectric lens 3 are used to focus the electromagnetic waves generated by the feed antenna 4.
  • the lens antenna includes a plurality of feed antennas 4, the plurality of feed antennas 4 can work simultaneously or not at the same time.
  • the structure of the feed antenna 4 is different, and its positional relationship with the first metal layer 1, the second metal layer 2 and the dielectric lens 3 may be different, but it must be ensured that the beam of the feed antenna 4 is incident from the side of the dielectric lens 3.
  • the phase distribution of the waves emitted from the lens antenna exit surface in the vertical direction of the lens antenna is different.
  • the electromagnetic wave generated by the feed antenna 4 enters the dielectric lens 3 through the incident end surface of the dielectric lens 3. It can be obtained from the following formula (1) that the phase of the electromagnetic wave is related to the physical length through which the electromagnetic wave passes and the dielectric constant of the dielectric material. Therefore, when the N-layer dielectrics have the same radius and different dielectric constants, the electromagnetic waves travel through the dielectric structure with the same physical length. It can be seen that after passing through the dielectric layers with the same radius and different dielectric constants, the exit of the dielectric lens 3 Different phase distributions can be formed in the vertical direction of the end surface.
  • the phase change of the beam generated by the feed antenna 4 in each layer of the N-layer medium is different.
  • the first metal layer 1, the second metal layer 2, and the dielectric lens 3 are cylindrical, and the axes of the first metal layer 1, the second metal layer 2, and the dielectric lens 3 coincide.
  • the focal point of the dielectric lens 3 coincides with the phase centers of the M feed antennas 4.
  • the focal point of the dielectric lens is the convergence point of the beam incident on the dielectric lens after passing through the dielectric lens.
  • the phase center of the feed antenna is the isophase plane of the electromagnetic wave radiated from the feed antenna after a certain distance from the feed antenna. It is approximately a sphere, and the center of the sphere is the phase center of the feed antenna.
  • FIG. 2 is a schematic structural diagram of a longitudinal section of another lens antenna according to an embodiment of the present invention.
  • the feed antenna 4 includes a third metal layer 41, a fourth metal layer 42, and a dielectric layer 43.
  • the dielectric layer 43 is located between the third metal layer 41 and the fourth metal layer 42, and the third metal layer 41
  • the fourth metal layer 42 and the dielectric layer 43 include a plurality of through holes for forming a substrate integrated waveguide.
  • the dielectric layer 43 may be the same as any one of the N-layered media included in the dielectric lens 3, or may be different from the N-layered media included in the dielectric lens 3.
  • the first metal layer 1 and the second metal layer 2 use the same material and geometric structure
  • the third metal layer 41 and the fourth metal layer 42 use the same material and geometric structure
  • the first metal layer 1 and the third metal layer 41 use the same material and geometry.
  • geometric structure can be all the same, can be all the same, and can also be partially the same.
  • the radius of the dielectric lens 3 is smaller than the radius of the first metal layer 1 and the second metal layer 2, and a portion of the feed antenna 4 is located between the first metal layer 1 and the second metal layer 2.
  • FIG. 3 is a schematic structural diagram of a first metal layer, a second metal layer, and a dielectric lens disclosed in an embodiment of the present invention.
  • the first metal layer 1, the second metal layer 2, the first dielectric layer 31, the second dielectric layer 32, the third dielectric layer 33, the fourth dielectric layer 34, the fifth dielectric layer 35, and the screw hole 5 and the threaded hole 6, the first metal layer 1, the second metal layer 2, the first dielectric layer 31, the second dielectric layer 32, the third dielectric layer 33, the fourth dielectric layer 34 and the fifth dielectric layer 35 pass through The screw holes of the screw holes 5 and 6 are fixed.
  • the phase on the exit surface of each dielectric layer can be expressed as follows:
  • represents the phase on the exit surface of each dielectric layer
  • n represents the refractive index of the dielectric layer
  • ⁇ r represents the dielectric constant of the dielectric layer
  • R represents the radius of the dielectric lens
  • FIG. 4 is a schematic structural diagram of a longitudinal section of a lens antenna including a 5-layer dielectric according to an embodiment of the present invention.
  • the thicknesses of the five layers of media are h 2 , h 1 , h 0 , h -1 , h -2 .
  • the formula of the pattern with ⁇ 0 as the origin of the coordinates in Figure 4 can be expressed as follows:
  • E represents the electric field strength at any point in the far-field space of the lens antenna
  • E 0 , E 1 , E -1 , E 2, and E -2 respectively represent the electric field strength at the exit surface of the corresponding dielectric layer
  • is the phase constant of transmission
  • is the angle between the plane of the medium and any point in the far-field space.
  • the change range of ⁇ is the width of the lens antenna's elevation beam
  • is the gain of the lens antenna.
  • the normalized gain described below is the ratio of the maximum value in 20 log
  • N is an odd number
  • the electric field strength can be expressed as follows:
  • nlayer is (N-1) / 2
  • h n represents the thickness of the corresponding layer
  • ⁇ n represents the phase on the exit surface of the corresponding dielectric layer
  • n is 1, 2, ..., (N-1) / 2.
  • FIG. 5 is a schematic structural diagram of a longitudinal section of a lens antenna including a 6-layer dielectric according to an embodiment of the present invention.
  • the thickness of the six layers of media are h 3 , h 2 , h 1 , h -1 , h -2 , h -3 , and the formula of the pattern with the symmetry plane as the origin of the coordinates in Figure 5 can be expressed as follows:
  • nlayer is N / 2
  • d 1 h 1/2
  • d n h- (n-1) / 2 + h -n / 2
  • h n the thickness of the corresponding layer
  • ⁇ n the corresponding dielectric layer
  • the phase on the exit surface, n is 1, 2, ..., N / 2.
  • FIG. 6 is a simulation diagram of a beam width of a lens antenna with a uniformly varying thickness of a 5-layer medium according to an embodiment of the present invention.
  • the structure of the dielectric lens shown in FIG. 6 may be as shown in FIG. 4.
  • the thickness and dielectric constant of the five-layer dielectric shown in FIG. 6 are symmetrical with the center plane of the intermediate layer as the symmetry plane, that is, the layers 2 and 2 are The thickness and dielectric constant are the same, and the thickness and dielectric constant of layer 1 and layer-1 are the same.
  • the thicknesses of the five layers of media can be uniformly changed, that is, the thickness changes between adjacent two layers are the same, for example, the difference between h 2 and h 1 is equal to the difference between h 1 and h 0 .
  • the thickness changes of the five layers of media are simulated at 0.1mm, 0.25mm, and 0.4mm.
  • the abscissa is the beam width on the elevation plane, that is, the range of ⁇ variation, and the ordinate is the normalized gain, in dB . It can be seen from FIG. 6 that the change in the thickness of the dielectric layer has a small effect on the normalized gain of the lens antenna and the beam width on the elevation plane.
  • FIG. 7 is a schematic diagram of simulation of a beamwidth of a pitch plane of a lens antenna with different numbers of dielectric layers according to an embodiment of the present invention.
  • the thickness and dielectric constant of the dielectric layer included in the dielectric lens shown in FIG. 7 are symmetrical about the center plane of the intermediate layer as a symmetry plane, and the dielectric constant is uniformly decreased on both sides of the symmetrical surface, each time decreasing by 0.03.
  • the elevation beam width corresponding to the number of media layers is shown in Table 1:
  • the beam width of the elevation plane of the lens antenna of the present invention is wider than the beam width of the elevation plane of a lens antenna with only one layer of medium.
  • the 3dB beam width of the elevation plane increases first.
  • the 3dB beamwidth on the elevation plane slows down.
  • FIG. 8 is a schematic diagram of simulation of a beam width of a pitch plane of a lens antenna when a dielectric constant varies according to an embodiment of the present invention.
  • the dielectric lens shown in FIG. 8 includes five layers of dielectrics whose thickness and dielectric constant are symmetrical about the center plane of the intermediate layer as a symmetry plane, and the dielectric constant decreases uniformly on both sides of the symmetrical surface.
  • the maximum gain corresponding to different dielectric constant changes is shown in Table 2:
  • the dielectric lens includes five layers of dielectrics, and the numbers of the first metal layer, the five-layer dielectric, and the second metal layer are in order 1-7.
  • the structural parameters of the lens antenna are shown in Table 3:
  • Table 3 Structural parameters of the lens antenna Table 4 shows the dielectric substrate of each layer of the dielectric lens:
  • FIG. 9 is a schematic diagram of a simulation of the H-plane pattern of a lens antenna according to an embodiment of the present invention.
  • the abscissa is the horizontal plane beam width
  • the ordinate is the H-plane normalized gain.
  • the H-plane is the horizontal plane.
  • FIG. 10 is a simulation diagram of a directional pattern of the lens antenna E surface according to an embodiment of the present invention. As shown in FIG.
  • the abscissa is the beam width of the elevation plane, and the ordinate is the normalized gain of the E plane.
  • the E plane is a vertical plane. It can be seen from FIG. 10 that the elevation beam width is increased from 42.4 ° to 50.4 °, and the beam spread is 18.87%.
  • FIG. 11 is a wireless device disclosed by an embodiment of the present invention.
  • the wireless device includes a baseband 111, a radio frequency module 112, a cable 113, and a lens antenna 114.
  • the radio frequency module 112 is respectively connected to the baseband 111 and the lens antenna 114 through a cable 113.
  • the lens antenna 114 is a lens antenna disclosed in the embodiment of the present invention.
  • the baseband 111 is configured to convert a digital signal into an intermediate frequency analog signal and send it to the radio frequency module 112;
  • a radio frequency module 112 configured to convert an intermediate frequency analog signal into a radio frequency signal and send it to the lens antenna 114;
  • the lens antenna 114 is configured to convert a radio frequency signal into an electromagnetic wave signal and radiate the signal to space.
  • the radio frequency module 112 converting the intermediate frequency analog signal into a radio frequency signal and sending it to the lens antenna includes:
  • RF signals are amplified and filtered in order to obtain processed RF signals
  • the lens antenna 114 converts a radio frequency signal into an electromagnetic wave signal includes:
  • the lens antenna 114 is configured to receive an electromagnetic wave signal, convert the electromagnetic wave signal into a radio frequency signal, and send the radio frequency signal to the radio frequency module 112;
  • a radio frequency module 112 configured to convert a radio frequency signal into an intermediate frequency analog signal and send it to the baseband 111;
  • the baseband 111 is used to convert an intermediate frequency analog signal into a digital signal.
  • the radio frequency module 112 converting the radio frequency signal into an intermediate frequency analog signal and sending it to the baseband includes:
  • the RF signal is filtered and amplified in order to obtain the processed RF signal
  • the intermediate frequency analog signal is sent to the baseband 111.
  • a wireless device may have functions in one embodiment and in another embodiment.

Landscapes

  • Aerials With Secondary Devices (AREA)

Abstract

一种透镜天线方法及无线设备,该透镜天线包括包括第一金属层、第二金属层、介质透镜和M个馈源天线,该介质透镜位于第一金属层与第二金属层之间,该介质透镜包括N层介质,N层介质的介电常数由对称面向两边递减,当N为奇数时,对称面与N层介质中中间一层介质的中心平面重合,当N为偶数时,对称面与N层介质中中间两层介质的交界面重合,M为大于或等于1的整数,N为大于或等于3的整数。本发明实施例,可以展宽透镜天线俯仰面波束宽度。

Description

一种透镜天线及无线设备 技术领域
本发明实施例涉及半导体技术领域,具体涉及一种透镜天线及无线设备。
背景技术
天线是无线设备的重要组成部分,因此,为了保证无线设备的性能,需要天线具有较高的增益、能够工作在更高频段、具有较宽的工作带宽、在方位面和俯仰面能够实现更宽且波动较小的波束覆盖等功能。平板透镜天线是一种透镜天线,其具有良好的旋转对称性,平板透镜天线的结构包括:平行平板波导、夹在平行平板波导之间的龙伯透镜或者圆柱介质透镜以及围绕着透镜的入射面圆周上的多个馈源。上述平板透镜天线的结构决定了天线波束性能,限制了平板透镜天线俯仰面波束的展宽。
发明内容
本发明实施例公开了一种透镜天线及无线设备,用于展宽透镜天线俯仰面波束宽度。
第一方面公开一种透镜天线,包括第一金属层、第二金属层、介质透镜和M个馈源天线,介质透镜位于第一金属层与第二金属层之间且包括N层介质,N层介质的介电常数由对称面向两边递减,当N为奇数时,对称面与N层介质中中间一层介质的中心平面重合,当N为偶数时,对称面与N层介质中中间两层介质的交界面重合,由于介质透镜中介质层的介电常数由对称面向两边递减,因此,可以展宽透镜天线俯仰面波束宽度。其中,M为大于或等于1的整数,N为大于或等于3的整数。
在一个实施例中,馈源天线产生的波束经过介质透镜后,从透镜天线出射面出射的波在透镜天线垂直方向上的相位分布不同。
在一个实施例中,当N层介质的半径相同且每层介质的介电常数不同时,馈源天线产生的波束在N层介质中每层介质中的相位变化不同。
在一个实施例中,第一金属层、第二金属层和介质透镜为圆柱形,第一金属层、第二金属层和介质透镜的轴心重合。
在一个实施例中,介质透镜的的焦点与M个馈源天线的相位中心重合,可以保证透镜天线获得最佳的性能。
在一个实施例中,馈源天线包括第三金属层、第四金属层和介质层,介质层位于第三金属层与第四金属层之间,第三金属层、第四金属层和介质层包括多个通孔,用于形成基片集成波导。
在一个实施例中,介质透镜的半径小于第一金属层与第二金属层的半径,馈源天线的部分位于第一金属层与第二金属层之间。
第二方面公开一种无线设备,包括基带、射频模块、电缆和第一方面或第一方面任一种可能实现方式所公开的透镜天线,射频模块通过电缆分别与基带和透镜天线连接,基带将数字信号转换为中频模拟信号并发送给射频模块,射频模块将中频模拟信号转换为射频信号并发送给透镜天线,透镜天线将射频信号转换为电磁波信号并向空间辐射。
在一个实施例中,射频模块将中频模拟信号转换为射频信号并发送给透镜天线,可以是先将中频模拟信号转换为射频信号,之后将射频信号依次进行放大处理和滤波处理获得处理的射频信号,最后将处理的射频信号发送给透镜天线。透镜天线将射频信号转换为电磁波信号,可以是将处理的射频信号转换为电磁波信。
第三方面公开一种无线设备,包括基带、射频模块、电缆和第一方面或第一方面任一种可能实现方式所公开的透镜天线,射频模块通过电缆分别与基带和透镜天线连接,透镜天线接收电磁波信号,将电磁波信号转换为射频信号并发送给射频模块,射频模块将射频信号转换为中频模拟信号并发送给基带,基带将中频模拟信号转换为数字信号。
在一个实施例中,射频模块将射频信号转换为中频模拟信号并发送给基带,可以是先将射频信号依次进行滤波处理和放大处理获得处理的射频信号,之后将处理的射频信号转换为中频模拟信号,最后将中频模拟信号发送给基带。
附图说明
图1是本发明实施例公开的一种透镜天线的纵截面的结构示意图;
图2是本发明实施例公开的另一种透镜天线的纵截面的结构示意图;
图3是本发明实施例公开的一种第一金属层、第二金属层和介质透镜透的结构示意图;
图4是本发明实施例公开的一种包括5层介质的透镜天线的纵截面的结构示意图;
图5是本发明实施例公开的一种包括6层介质的透镜天线的纵截面的结构示意图;
图6是本发明实施例公开的一种5层介质的厚度均匀变化的透镜天线俯仰面波束宽度的仿真示意图;
图7是本发明实施例公开的一种介质层数不同的透镜天线俯仰面波束宽度的仿真示意图;
图8是本发明实施例公开的一种介电常数变化不同时透镜天线俯仰面波束宽度的仿真示意图;
图9是本发明实施例公开的一种透镜天线H面方向图的仿真示意图;
图10是本发明实施例公开的一种透镜天线E面方向图的仿真示意图;
图11是本发明实施例公开的一种无线设备。
具体实施方式
本发明实施例公开了一种透镜天线及无线设备,用于展宽透镜天线俯仰面波束宽度。以下进行详细说明。
请参阅图1,图1是本发明实施例公开的一种透镜天线的纵截面的结构示意图。如图1所示,该透镜天线可以包括第一金属层1、第二金属层2、介质透镜3和M个馈源天线4,介质透镜3位于第一金属层1与第二金属层2之间,介质透镜3包括N层介质,N层介质的介电常数由对称面向两边递减,当N为奇数时,对称面与N层介质中中间一层介质的中心平面重合,当N为偶数时,对称面与N层介质中中间两层介质的交界面重合,M为大于或等于1的整数,N为大于或等于3的整数。
本实施例中,第一金属层1、第二金属层2和N层介质均为PCB板。馈源天线4用于产生电磁波,第一金属层1、第二金属层2和介质透镜3用于对馈源天线4产生的电磁波进行聚焦。当透镜天线包括多个馈源天线4时,多个馈源天线4可以同时工作,也可以不同时工作。馈源天线4的结构不同,其与第一金属层1、第二金属层2和介质透镜3的位置关系可能不同,但必须保证馈源天线4的波束是从介质透镜3的侧面入射的。
作为一种可能实施方式,馈源天线4产生的波束经过介质透镜3后,从透镜天线出射面出射的波在透镜天线垂直方向上的相位分布不同。
本实施例中,馈源天线4产生的电磁波通过介质透镜3的入射端面进入介质透镜3。由下述公式(1)可以得到,电磁波的相位与电磁波经过的物理长度以及介质材料的介电常数相关。因此,当N层介质的半径相同且介电常数不同时,电磁波在介质结构中传输经过的物理长度相同,可见,在经过相同半径、不同介电常数的介质层之后,在介质透镜3的出射端面的垂直方向上能够形成不同的相位分布。
作为一种可能的实施方式,当N层介质的半径相同且每层介质的介电常数不同时,馈源天线4产生的波束在N层介质中每层介质中的相位变化不同。
本实施例中,入射的电磁波照射到介质透镜3的入射端面,经过介质透镜3表面进入不同介质层之后,根据下述公式(1)可知,当介质透镜3由具有相同半径且每层介电常数不同的N层介质构成时,经过相同的物理长度,因此,在N层介质中每层介质的相位变化不同。
作为一种可能的实施方式,第一金属层1、第二金属层2和介质透镜3为圆柱形,第一金属层1、第二金属层2和介质透镜3的轴心重合。
作为一种可能的实施方式,介质透镜3的的焦点与M个馈源天线4的相位中心重合。
本实施例中,介质透镜的的焦点为入射介质透镜的波束经过介质透镜后的汇聚点,馈源天线的相位中心为馈源天线所辐射的电磁波离开馈源天线一定距离后,其等相位面近似为一个球面,该球面的球心即为馈源天线的相位中心。
请参阅图2,图2是本发明实施例公开的另一种透镜天线的纵截面的结构示意图。如图2所示,馈源天线4包括第三金属层41、第四金属层42和介质层43,介质层43位于第三金属层41与第四金属层42之间,第三金属层41、第四金属层42和介质层43包括多个通孔,用于形成基片集成波导。
本实施例中,介质层43可以与介质透镜3包括的N层介质中的任一层介质相同,也可以与介质透镜3包括的N层介质均不同。第一金属层1与第二金属层2所用材料和几何结构相同,第三金属层41和第四金属层42所用材料和几何结构相同,但第一金属层1和第三金属层41所用材料和几何结构可以均相同,也可以均同,还可以部分相同。
作为一种可能的实施方式,介质透镜3的半径小于第一金属层1与第二金属层2的半径,馈源天线4的部分位于第一金属层1与第二金属层2之间。
请参阅图3,图3是本发明实施例公开的一种第一金属层、第二金属层和介质透镜透的结构示意图。如图3所示,第一金属层1、第二金属层2、第一介质层31、第二介质层32、第三介质层33、第四介质层34、第五介质层35、螺纹孔5和螺纹孔6,第一金属层1、 第二金属层2、第一介质层31、第二介质层32、第三介质层33、第四介质层34和第五介质层35由穿过螺纹孔5和螺纹孔6的螺纹钉固定。
由于透镜天线垂直方向,即沿介质透镜的轴心方向,上不同层的电磁波的相位变化分析较为复杂,对N层介质行分析。电磁波经过半径为R的介质透镜后,在每个介质层出射面上的相位可以表述如下:
Δφ=nR (1)
其中,Δφ表示每个介质层出射面上的相位,n表示介质层的折射率,
Figure PCTCN2018089051-appb-000001
ε r表示介质层的介电常数,R表示介质透镜的半径。
请参阅图4,图4是本发明实施例公开的一种包括5层介质的透镜天线的纵截面的结构示意图。如图4所示,五层介质的厚度分别为h 2、h 1、h 0、h -1、h -2,以图4中Δφ 0为坐标原点的方向图的公式可以表述如下:
Figure PCTCN2018089051-appb-000002
其中,E表示透镜天线的远场空间任意一点的电场强度,E 0、E 1、E -1、E 2和E -2分别表示相应介质层出射面上的电场强度,β为传输的相位常数,θ为介质平面与远场空间任意一点之间的夹角。θ的变化范围即透镜天线俯仰面波束的宽度,20log|E|即透镜天线的增益,下面描述的归一化增益为20log|E|与20log|E|中的最大值的比值。当N为奇数时,电场强度可以表示如下:
Figure PCTCN2018089051-appb-000003
其中,nlayer为(N-1)/2,h n表示对应层的厚度,Δφ n表示对应的介质层出射面上的相位,n为1,2,……,(N-1)/2。
请参阅图5,图5是本发明实施例公开的一种包括6层介质的透镜天线的纵截面的结构示意图。如图5所示,6层介质的厚度分别为h 3、h 2、h 1、h -1、h -2、h -3,以图5中对称面为坐标原点的方向图的公式可以表述如下:
Figure PCTCN2018089051-appb-000004
其中,d 1=h 1/2,d 2=h 1/2+h 2/2,d 3=h 2/2+h 3/2,d -1=h -1/2,d 2=h -1/2+h -2/2,d 3=h -2/2+h -3/2。当N为偶数时,电场强度可以表示如下:
Figure PCTCN2018089051-appb-000005
其中,nlayer为N/2,d 1=h 1/2,d n=h -(n-1)/2+h -n/2,h n表示对应层的厚度,Δφ n表示对应的介质层出射面上的相位,n为1,2,……,N/2。
为了更好的对透镜天线进行分析,本实施例采用建模仿真的方法对上述透镜天线的结构进行分析。请参阅图6,图6是本发明实施例公开的一种5层介质的厚度均匀变化的透镜天线俯仰面波束宽度的仿真示意图。图6所示的介质透镜的结构可以如图4所示,图6所示的五层介质的厚度和介电常数以中间层的中心面为对称面对称,即层2和层-2的厚度和介电常数相同,层1与层-1的厚度和介电常数相同。这5层介质的厚度可以是均匀变化的,即相邻两层之间的厚度变化是相同的,例如h 2与h 1的差值等于h 1与h 0的差值。如图6所示,对5层介质的厚度变化为0.1mm、0.25mm和0.4mm进行了仿真,横坐标为俯仰面波束宽度,即θ变化范围,纵坐标为归一化增益,单位为dB。从图6可知介质层厚度的变化对透镜天线归一化增益和俯仰面波束宽度的影响较小。
请参阅图7,图7是本发明实施例公开的一种介质层数不同的透镜天线俯仰面波束宽度的仿真示意图。图7所示的介质透镜包括的介质层的厚度和介电常数以中间层的中心面为对称面对称,且介电常数以对称面向两边均匀递减,每次递减0.03。介质层数不同对应的俯仰面波束宽度如表1所示:
介质层数 1 3 5 7
波束宽度 42.4° 48° 50.4° 52.2°
表1不同介质层对应的波束宽度
从图7和表1可知,本发明透镜天线的俯仰面波束宽度比只有一层介质的透镜天线的俯仰面波束宽度要宽,随着介质层数的增加,俯仰面3dB波束宽度先增加,当介质层数继续增加时,俯仰面3dB波束宽度增加减慢。
请参阅图8,图8是本发明实施例公开的一种介电常数变化不同时透镜天线俯仰面波束宽度的仿真示意图。图8所示的介质透镜包括5层介质的厚度和介电常数以中间层的中心面为对称面对称,且介电常数以对称面向两边均匀递减。不同介电常数变化对应的最大增益如表2所示:
介电常数差 0.02 0.03 0.04 0.05 0.06
最大增益 17.396 17.41 17.4 17.34 17.28
介电常数差 0.07 0.08 0.1 0.11 0.12
最大增益 17.2 17.12 17.09 17.02 16.92
介电常数差 0.13 0.14 0.15 0.16 0.2
最大增益 16.76 16.67 16.53 16.4 16.18
表2不同介电常数变化对应的最大增益
从图8和表2可知随着介电常数变化的增加,透镜天线的增益下降,透镜天线俯仰面波束宽度增加,当介电常数变化继续增加时,透镜天线俯仰面波束宽度增加减慢。
此外,假设介质透镜包括5层介质,第一金属层、5层介质和第二金属层的编号依次为1-7,透镜天线的结构参数如表3所示:
结构编号 结构层厚(mm) 结构半径(mm)
1 1 35
2 0.9 25
3 0.9 25
4 0.9 25
5 0.9 25
6 0.9 25
7 1 35
表3透镜天线的结构参数 介质透镜中各层介质基板如表4所示:
Figure PCTCN2018089051-appb-000006
表4质透镜中各层介质基
对该透镜天线进行仿真。请参阅图9,图9是本发明实施例公开的一种透镜天线H面方向图的仿真示意图。如图9所示,横坐标为水平面波束宽度,纵坐标为H面归一化增益,此实施例中H面为水平面。从图9可知本发明透镜天线与现有透镜天线的方位面(即水平面)波束宽度几乎保持不变。请参阅图10,图10是本发明实施例公开的一种透镜天线E面方向图的仿真示意图。如图10所示,横坐标为俯仰面波束宽度,纵坐标为E面归一化增益,此实施例中E面为垂直面。从图10可知,俯仰面波束宽度由42.4°增加到50.4°,波束展宽了18.87%。
请参阅图11,图11是本发明实施例公开的一种无线设备。如图11所示,该无线设备包括基带111、射频模块112,电缆113和透镜天线114。射频模块112通过电缆113分别与基带111和透镜天线114连接,透镜天线114为本发明实施例公开的透镜天线。
在一个实施例中,基带111,用于将数字信号转换为中频模拟信号并发送给射频模块112;
射频模块112,用于将中频模拟信号转换为射频信号并发送给透镜天线114;
透镜天线114,用于将射频信号转换为电磁波信号并向空间辐射。
作为一种可能的实施方式,射频模块112将中频模拟信号转换为射频信号并发送给透镜天线包括:
将中频模拟信号转换为射频信号;
将射频信号依次进行放大处理和滤波处理,获得处理的射频信号;
将处理的射频信号发送给透镜天线114;
透镜天线114将射频信号转换为电磁波信号包括:
将处理的射频信号转换为电磁波信。
在另一个实施例中,透镜天线114,用于接收电磁波信号,将电磁波信号转换为射频信号并发送给射频模块112;
射频模块112,用于将射频信号转换为中频模拟信号并发送给基带111;
基带111,用于将中频模拟信号转换为数字信号。
作为一种可能的实施方式,射频模块112将射频信号转换为中频模拟信号并发送给基带包括:
将射频信号依次进行滤波处理和放大处理,获得处理的射频信号;
将处理的射频信号转换为中频模拟信号;
将中频模拟信号发送给基带111。
在又一个实施例中,无线设备可以同时具有在一个实施例中和在另一个实施例中的功能。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。

Claims (11)

  1. 一种透镜天线,其特征在于,包括第一金属层、第二金属层、介质透镜和M个馈源天线,所述介质透镜位于所述第一金属层与所述第二金属层之间,所述介质透镜包括N层介质,所述N层介质的介电常数由对称面向两边递减,当所述N为奇数时,所述对称面与所述N层介质中中间一层介质的中心平面重合,当所述N为偶数时,所述对称面与所述N层介质中中间两层介质的交界面重合,所述M为大于或等于1的整数,所述N为大于或等于3的整数。
  2. 根据权利要求1所述的透镜天线,其特征在于,所述馈源天线产生的波束经过所述介质透镜后,从所述透镜天线出射面出射的波在所述透镜天线垂直方向上的相位分布不同。
  3. 根据权利要求2所述的透镜天线,其特征在于,当所述N层介质的半径相同且每层介质的介电常数不同时,所述波束在所述N层介质中每层介质中的相位变化不同。
  4. 根据权利要求1-3任一项所述的透镜天线,其特征在于,所述第一金属层、所述第二金属层和所述介质透镜为圆柱形,所述第一金属层、所述第二金属层和所述介质透镜的轴心重合。
  5. 根据权利要求1-4任一项所述的透镜天线,其特征在于,所述介质透镜的的焦点与所述M个馈源天线的相位中心重合。
  6. 根据权利要求1-5任一项所述的透镜天线,其特征在于,所述馈源天线包括第三金属层、第四金属层和介质层,所述介质层位于所述第三金属层与所述第四金属层之间,所述第三金属层、所述第四金属层和所述介质层包括多个通孔,用于形成基片集成波导。
  7. 根据权利要求6所述的透镜天线,其特征在于,所述介质透镜的半径小于所述第一金属层与所述第二金属层的半径,所述馈源天线的部分位于所述第一金属层与所述第二金属层之间。
  8. 一种无线设备,其特征在于,包括基带、射频模块、电缆和权利要求1-7任一项所述的透镜天线,其中:
    所述射频模块通过所述电缆分别与所述基带和所述透镜天线连接;
    所述基带,用于将数字信号转换为中频模拟信号并发送给所述射频模块;
    所述射频模块,用于将所述中频模拟信号转换为射频信号并发送给所述透镜天线;
    所述透镜天线,用于将所述射频信号转换为电磁波信号并向空间辐射。
  9. 根据权利要求8所述的无线设备,其特征在于,所述射频模块将所述中频模拟信号转换为射频信号并发送给所述透镜天线包括:
    将所述中频模拟信号转换为射频信号;
    将所述射频信号依次进行放大处理和滤波处理,获得处理的射频信号;
    将所述处理的射频信号发送给所述透镜天线;
    所述透镜天线将所述射频信号转换为电磁波信号包括:
    将所述处理的射频信号转换为电磁波信。
  10. 一种无线设备,其特征在于,包括基带、射频模块、电缆和权利要求1-7任一项所述的透镜天线,其中:
    所述射频模块通过所述电缆分别与所述基带和所述透镜天线连接;
    所述透镜天线,用于接收电磁波信号,将所述电磁波信号转换为射频信号并发送给所述射频模块;
    所述射频模块,用于将所述射频信号转换为中频模拟信号并发送给所述基带;
    所述基带,用于将所述中频模拟信号转换为数字信号。
  11. 根据权利要求10所述的无线设备,其特征在于,所述射频模块将所述射频信号转换为中频模拟信号并发送给所述基带包括:
    将所述射频信号依次进行滤波处理和放大处理,获得处理的射频信号;
    将所述处理的射频信号转换为中频模拟信号;
    将所述中频模拟信号发送给所述基带。
PCT/CN2018/089051 2018-05-30 2018-05-30 一种透镜天线及无线设备 WO2019227348A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/089051 WO2019227348A1 (zh) 2018-05-30 2018-05-30 一种透镜天线及无线设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/089051 WO2019227348A1 (zh) 2018-05-30 2018-05-30 一种透镜天线及无线设备

Publications (1)

Publication Number Publication Date
WO2019227348A1 true WO2019227348A1 (zh) 2019-12-05

Family

ID=68697764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/089051 WO2019227348A1 (zh) 2018-05-30 2018-05-30 一种透镜天线及无线设备

Country Status (1)

Country Link
WO (1) WO2019227348A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102122762A (zh) * 2011-01-25 2011-07-13 浙江大学 毫米波360o全向扫描介质柱透镜天线
CN104617383A (zh) * 2015-01-23 2015-05-13 西北工业大学 多波束扫描透镜天线
CN105470659A (zh) * 2015-12-31 2016-04-06 电子科技大学 一种轻量化介质填充式多波束柱面龙伯透镜天线
CN105470660A (zh) * 2016-01-12 2016-04-06 电子科技大学 基于新型介质填充方式的极低剖面柱面龙伯透镜天线
US20170279202A1 (en) * 2016-03-25 2017-09-28 Commscope Technologies Llc Antennas having lenses formed of lightweight dielectric materials and related dielectric materials

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102122762A (zh) * 2011-01-25 2011-07-13 浙江大学 毫米波360o全向扫描介质柱透镜天线
CN104617383A (zh) * 2015-01-23 2015-05-13 西北工业大学 多波束扫描透镜天线
CN105470659A (zh) * 2015-12-31 2016-04-06 电子科技大学 一种轻量化介质填充式多波束柱面龙伯透镜天线
CN105470660A (zh) * 2016-01-12 2016-04-06 电子科技大学 基于新型介质填充方式的极低剖面柱面龙伯透镜天线
US20170279202A1 (en) * 2016-03-25 2017-09-28 Commscope Technologies Llc Antennas having lenses formed of lightweight dielectric materials and related dielectric materials

Similar Documents

Publication Publication Date Title
WO2021012715A1 (zh) 一种基于三维阻抗匹配透镜的超宽带高增益透镜天线及其设计方法
CN108110435B (zh) 单介质平面透镜加载的毫米波高增益圆极化喇叭天线
US11757202B2 (en) Pillar-shaped luneberg lens antenna and pillar-shaped luneberg lens antenna array
CN110890629B (zh) 一种低剖面宽角扫描的全金属多波束透镜天线
CN109004372B (zh) 一种扁平化的龙伯透镜天线
US10686254B2 (en) Wideband antenna system
WO2020000364A1 (zh) 一种天线及无线设备
JP2010063051A (ja) レンズアンテナ
WO2020052636A1 (zh) 天线装置及终端设备
CN111566875B (zh) 一种装置
KR20200018945A (ko) 평면 렌즈를 포함하는 안테나 장치
CN108631056B (zh) 一种双焦点可重构传输阵列天线及其制备方法
CN113839185A (zh) 超宽带共形全向天线
US20110227809A1 (en) Patch antenna in wireless communication system and method for manufacturing the same
WO2019227348A1 (zh) 一种透镜天线及无线设备
CN110233359B (zh) 一种基于3d打印技术的反射面天线
CN108767424B (zh) 基于多孔蜂窝板结构的宽带双向辐射天线
CN115173068B (zh) 宽带圆极化的基片集成波导喇叭天线阵列及无线通信设备
CN208272144U (zh) 介质加载实现宽带基站天线波束收敛的装置
CN107196050B (zh) 一种加载电磁超材料的小型化双频带圆极化天线
CN114583464A (zh) 一种三层多波束龙伯透镜天线
CN103682665A (zh) 一种超材料微波天线
WO2023273600A1 (zh) 透镜单元、透镜阵列以及阵列天线
KR20200106671A (ko) 방향 탐지용 이중 대역 모노폴 배열 안테나 장치 및 그 방법
US10581179B2 (en) Symmetric leaky wave antenna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18920919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18920919

Country of ref document: EP

Kind code of ref document: A1