WO2019225564A1 - Engine unit - Google Patents

Engine unit Download PDF

Info

Publication number
WO2019225564A1
WO2019225564A1 PCT/JP2019/019994 JP2019019994W WO2019225564A1 WO 2019225564 A1 WO2019225564 A1 WO 2019225564A1 JP 2019019994 W JP2019019994 W JP 2019019994W WO 2019225564 A1 WO2019225564 A1 WO 2019225564A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
injector
plane
intake
region
Prior art date
Application number
PCT/JP2019/019994
Other languages
French (fr)
Japanese (ja)
Inventor
洸 佐々木
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to TW108118023A priority Critical patent/TWI741300B/en
Publication of WO2019225564A1 publication Critical patent/WO2019225564A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/02Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/14Arrangements of injectors with respect to engines; Mounting of injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/04Injectors peculiar thereto
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an engine unit having an injector for injecting fuel into an intake passage portion.
  • an engine unit having an injector that injects fuel into an intake passage is known (see, for example, Patent Document 1).
  • the intake passage portion is connected to the intake port of the combustion chamber.
  • the intake port is opened and closed by an intake valve.
  • Engine units having injectors that inject fuel into the intake passage are required to improve the degree of freedom in designing the fuel concentration distribution in the combustion chamber. For example, it may be required to make the fuel concentration in the combustion chamber uniform, or it may be required to make the fuel concentration around the spark plug higher than other portions.
  • An object of the present invention is to propose an engine unit capable of improving the degree of freedom in designing the fuel concentration distribution in the combustion chamber.
  • the engine unit includes at least one combustion chamber partially formed by an inner surface of a cylinder hole, at least one intake port formed in the at least one combustion chamber, and the at least one A cylinder portion having at least one cylinder intake passage portion connected to one intake port and supplying air flowing into the at least one combustion chamber from the at least one intake port, and the cylinder portion And at least one external intake passage portion that is connected to the at least one cylinder intake passage portion and is supplied to the at least one cylinder intake passage portion, and the at least one intake air. At least one suction port movable between a position to open the mouth and a position to close the at least one inlet.
  • a four-stroke cycle engine unit comprising at least one injector installed in an external intake passage section and a control device for controlling fuel injection of the at least one injector.
  • One intake port, one intake valve, and one injector are provided for each combustion chamber, and constitute a single intake port, a single intake valve, and a single intake port injector, respectively.
  • the at least one cylinder intake passage portion and the at least one external intake passage portion include at least one single intake passage portion.
  • the single intake passage portion is provided for each combustion chamber, and is a region from the place where the single intake port injector is installed to the single intake port, in which the flow of air flows. Configured to pass without separation or merging.
  • the single inlet injector is (a) arranged to inject fuel toward the single inlet, and (b) injects fuel into an atmosphere-only space when not mounted on the engine unit.
  • the fuel on the first plane crossing the injection direction of the plurality of fuel droplets injected from the single inlet injector is one circle or one
  • the oval is present along at least a part of the edge of the one circle or the one oval, and (ii) is included in the region where the fuel on the first plane exists,
  • the second region where the concentration of the fuel in the first region along the edge of the one circle or at least part of the edge of the one oval is in contact with the entire inner peripheral end of the first region on the first plane.
  • the fuel supplied to one combustion chamber is fuel that is injected from one injector for the single intake port and passes through the single intake port.
  • the engine unit of the present invention is a four-stroke cycle engine unit.
  • the engine unit has a cylinder portion having at least one combustion chamber. A portion of each of the at least one combustion chamber is formed by the inner surface of the cylinder bore.
  • the cylinder part has at least one cylinder intake passage part.
  • the at least one cylinder intake passage portion is connected to at least one external intake passage portion disposed outside the cylinder portion. The air that has flowed into the at least one external intake passage portion is supplied to the at least one combustion chamber through the at least one cylinder intake passage portion and the at least one intake port.
  • the engine unit has a single intake passage portion, a single intake port, a single intake valve, and a single intake port injector provided for each combustion chamber.
  • the engine unit has the same number of single intake passage portions, single intake ports, single intake valves, and single intake port injectors as the number of combustion chambers.
  • At least one cylinder intake passage portion and at least one external intake passage portion include at least one single intake passage portion.
  • the single intake port is formed in the combustion chamber and is connected to the single intake passage portion.
  • the single intake valve opens and closes a single intake port.
  • the single intake port injector is installed in the cylinder intake passage portion or the external intake passage portion.
  • the single intake passage portion includes at least a region from a location where the single intake port injector is installed to the single intake port.
  • the single intake passage portion is an area from the location where the single intake port injector is installed to the single intake port.
  • the single intake passage portion is configured such that air flows pass through without separation or merging.
  • the single inlet injector has a plurality of injection holes for injecting fuel in the form of a mist.
  • the single inlet injector is arranged to inject fuel toward the single inlet.
  • the fuel injection of the single inlet injector is controlled by a control device of the engine unit.
  • the single intake port injector is controlled by the control device so as to inject fuel when the single intake valve is in a position to open the single intake port during the intake stroke.
  • the single air inlet injector When the fuel is injected into an air-only space when the single air inlet injector is not attached to the engine unit, the single air inlet injector should satisfy the following two requirements at a certain time immediately after the injection. Consists of.
  • the first requirement is that the fuel on the first plane intersecting the injection direction of the plurality of fuel droplets injected from the single-inlet injector is placed in one circle or one oval. Exist along at least part of the edge of one circle or the one oval.
  • the second requirement is included in the region where the fuel on the first plane is present, and the first region where the outer peripheral end and the inner peripheral end are along at least part of the edge of the one circle or the one oval.
  • the fuel concentration in the second region is higher than the concentration in the second region in contact with the entire inner peripheral edge of the first region on the first plane. That is, the concentration of the outer peripheral portion of the mist-like fuel injected from the single inlet injector is higher than the concentration of the central portion.
  • the region where the fuel on the first plane is present may or may not include the second region.
  • the fuel supplied to one combustion chamber is only the fuel injected from one single intake port injector and passed through one single intake port.
  • the engine unit of the present invention has only one intake port for one combustion chamber. Therefore, the diameter of the single intake port of the present invention is larger than that of an engine unit having the same cylinder hole diameter as that of the present invention and having a plurality of intake ports for one combustion chamber. Therefore, the single intake passage portion of the present invention has the same diameter as the cylinder hole of the present invention and a larger diameter than the intake passage portion of the engine unit having a plurality of intake ports for one combustion chamber. Since the diameter of the single intake passage portion is large, the injection angle of the fuel injected from the single intake port injector can be increased.
  • the injection angle is the largest angle among the injection directions of a plurality of fuel droplets injected from a single intake port injector when viewed in a certain direction. Since the injection angle of the fuel injected from the single inlet injector is large, it is possible to reduce the diameter of the injected droplets while suppressing the plurality of injected droplets from contacting each other. Due to the small diameter of the injected droplets, the fuel droplets that have flowed into the combustion chamber are likely to diffuse along the air flow. Thereby, the dispersion
  • the engine unit has two intake ports and one injector for one combustion chamber, two intake passage portions connected to a plurality of intake ports are connected to each other. And an injector is arrange
  • the engine unit of the present invention has one intake port and one injector for one combustion chamber. Therefore, the single intake port injector of the present invention can be disposed at a position closer to the intake port than an injector of an engine unit having two intake ports and one injector for one combustion chamber. By disposing the single intake port injector at a position close to the intake port, the injection angle of the fuel injected from the single intake port injector can be further increased.
  • the injection angle of the fuel injected from the injector for the single intake port is large, it is possible to reduce the diameter of the injected droplet while suppressing the plurality of injected droplets from contacting each other. can do. Due to the small diameter of the ejected droplets, the fuel droplets that flow into the combustion chamber are likely to diffuse along the air flow. Therefore, in the engine unit of the present invention, variation in the fuel concentration distribution in the combustion chamber is further suppressed as compared with an engine unit having a plurality of intake ports and one injector for one combustion chamber.
  • the engine unit of the present invention has a plurality of intake ports for one combustion chamber, the air flowing into the combustion chamber from the plurality of intake ports collides.
  • the intake port can be disposed at a position closer to the central axis of the cylinder hole than an engine unit having a plurality of intake ports for one combustion chamber. Therefore, the air that has flowed into the combustion chamber from the intake port is likely to diffuse uniformly in the circumferential direction of the inner surface of the cylinder hole. Therefore, in the engine unit of the present invention, variation in the fuel concentration distribution in the combustion chamber is further suppressed as compared with an engine unit having a plurality of intake ports for one combustion chamber.
  • the concentration at a desired position in the combustion chamber can be increased if the injection direction is adjusted. That is, it is easy to adjust the fuel concentration distribution in the combustion chamber. Therefore, the engine unit of the present invention can improve the degree of freedom in designing the fuel concentration distribution in the combustion chamber.
  • the engine unit of the present invention preferably has the following configuration.
  • a straight line passing through the center of the two injection directions forming the largest angle among the injection directions of the plurality of fuel droplets injected from the single inlet injector.
  • the two planes forming the largest angle among the injection directions of the plurality of fuel droplets injected from the single intake port injector when the visible plane is the second plane and viewed in the direction orthogonal to the second plane.
  • the first plane is one point on the injection center line.
  • the length in the direction parallel to is the shortest It is a surface.
  • the first plane has the smallest variation in the distance from the plurality of injection holes of the single inlet injector to the first region among the plurality of planes passing through one point on the injection center line. It can be.
  • the engine unit of the present invention preferably has the following configuration.
  • the single intake port injector is arranged and configured such that the injection center line passes through the single intake port.
  • the single inlet injector of the present invention injects fuel so that the injection center line passes through the single inlet.
  • variation in the fuel which passes through the clearance gap between a single intake valve and a single intake port is suppressed. Therefore, variation in the fuel concentration distribution in the combustion chamber is further suppressed. Therefore, the degree of freedom in designing the fuel concentration distribution in the combustion chamber can be further improved.
  • the engine unit of the present invention preferably has the following configuration.
  • the single inlet injector is arranged and configured such that the injection center line passes through the second region.
  • the engine unit of the present invention preferably has the following configuration.
  • the single intake valve includes an umbrella portion that can block the single intake port, and a stem portion that is connected to the umbrella portion and is partially disposed in the single intake passage portion.
  • the injector for the single intake port allows the injection center line to pass through the stem portion of the single intake valve at a position where the single intake port is opened. Arranged and configured.
  • the injection center line when viewed in the direction of the center axis of the cylinder hole, the injection center line is likely to pass through the center of the single intake port or the vicinity thereof. Therefore, variation in the fuel concentration distribution in the combustion chamber is further suppressed. Therefore, the degree of freedom in designing the fuel concentration distribution in the combustion chamber can be further improved.
  • the engine unit of the present invention preferably has the following configuration.
  • the injector for a single intake port is viewed in a direction orthogonal to the second plane, the stem portion and the umbrella portion of the single intake valve in which the injection center line is in a position to open the single intake port Arranged and configured to pass through.
  • the injection center line passes through the center of the single inlet or the vicinity thereof. Therefore, variation in the fuel concentration distribution in the combustion chamber is further suppressed. Therefore, the degree of freedom in designing the fuel concentration distribution in the combustion chamber can be further improved.
  • the engine unit of the present invention preferably has the following configuration.
  • the single intake port injector is arranged and configured so that the injection center line passes through the stem portion and the umbrella portion of the single intake valve at a position where the single intake port is opened.
  • the injection center line passes through the center of the single air inlet or the vicinity thereof. Therefore, variation in the fuel concentration distribution in the combustion chamber is further suppressed. Therefore, the degree of freedom in designing the fuel concentration distribution in the combustion chamber can be further improved.
  • the engine unit of the present invention preferably has the following configuration.
  • One cylinder intake passage portion and one external intake passage portion are provided for each combustion chamber.
  • the engine unit includes at least one throttle valve disposed in the at least one external intake passage portion and upstream of the single intake port injector in the air flow direction in the single intake passage portion.
  • a volume of one space formed between the throttle valve in the closed position and the intake valve in the closed position is defined as a throttle downstream volume. If the engine unit has a plurality of intake ports and one injector for one combustion chamber, the necessary distance between the injector and the intake port is long as described above. For this reason, the necessary distance between the throttle valve and the intake port is also long.
  • the throttle valve can be disposed at a position closer to the intake port than an engine unit having a plurality of intake ports and one injector for one combustion chamber. Therefore, the throttle downstream volume can be reduced.
  • the engine unit has a plurality of intake ports, a plurality of injectors, and a throttle valve for one combustion chamber
  • the engine unit is positioned downstream of the throttle valve and upstream of the injector. It is necessary to connect a plurality of intake passage portions provided. Therefore, the required distance is long between the throttle valve and the intake port. Therefore, the engine unit of the present invention can arrange the throttle valve closer to the intake port than an engine unit having a plurality of intake ports, a plurality of injectors, and one throttle valve for one combustion chamber. Therefore, the throttle downstream volume of the engine unit of the present invention can be made smaller than the throttle downstream volume of an engine unit having a plurality of intake ports, a plurality of injectors, and a throttle valve for one combustion chamber.
  • the throttle downstream volume of an engine unit having a plurality of intake ports, at least one injector, and one throttle valve for one combustion chamber is a space formed by connecting a plurality of intake passage portions.
  • the throttle downstream volume of the engine unit of the present invention is a space formed in one intake passage portion. Therefore, the throttle downstream volume of the engine unit of the present invention can be further reduced as compared with the throttle downstream volume of an engine unit having a plurality of intake ports, at least one injector, and one throttle valve for one combustion chamber. . If the engine unit has one throttle valve for a plurality of combustion chambers, the throttle downstream volume is a space formed by connecting a plurality of intake passage portions provided for each combustion chamber.
  • the throttle downstream volume of the engine unit of the present invention is a space formed in one intake passage portion. Therefore, the throttle downstream volume of the engine unit of the present invention can be made smaller than the throttle downstream volume of the engine unit having one throttle valve for a plurality of combustion chambers.
  • the pressure in the intake passage when the intake port is open is more susceptible to negative pressure in the combustion chamber (pressure lower than atmospheric pressure). That is, the smaller the throttle downstream volume, the lower the pressure in the intake passage during the intake stroke. Thereby, the evaporation of the fuel injected during the intake stroke is promoted.
  • the air flowing into the combustion chamber from the intake port is likely to diffuse uniformly in the circumferential direction of the inner surface of the cylinder hole. Therefore, variation in the fuel concentration distribution in the combustion chamber is further suppressed. Therefore, the degree of freedom in designing the fuel concentration distribution in the combustion chamber can be further improved.
  • the engine unit of the present invention preferably has the following configuration.
  • the first region on the first plane is an annular shape along the entire circumference of the edge of the one circle or the one oval, or the one circle or 90 on the first plane which is non-annular along a part of the edge of the one oval, and whose circumferential center of the outer circumferential end has both ends passing through both circumferential ends of the non-circular first region. Configured to be radially outside of the arc of °.
  • the first region is annular or non-annular with a long circumferential length. Therefore, it is possible to inject a sufficient amount of fuel from the single inlet injector while reducing the diameter of the ejected droplets so that the plurality of ejected droplets can be prevented from coming into contact with each other.
  • the engine unit of the present invention preferably has the following configuration.
  • the single intake valve includes an umbrella portion that can block the single intake port, and a stem portion that is connected to the umbrella portion and is partially disposed in the single intake passage portion.
  • the single inlet injector is disposed at a position where the shortest distance between the plurality of injection holes and the center of the single inlet is smaller than three times the diameter of the single inlet. Is done.
  • the distance from the plurality of injection holes of the single inlet injector to the single inlet is relatively short. Therefore, the injection angle of the fuel injected from the single inlet injector can be reliably increased.
  • the injection angle of the fuel injected from the injector for the single intake port is large, it is possible to reduce the diameter of the injected droplet while suppressing the plurality of injected droplets from contacting each other. can do. Due to the small diameter of the ejected droplets, it is possible to further suppress variations in the fuel concentration distribution in the combustion chamber. Therefore, the degree of freedom in designing the fuel concentration distribution in the combustion chamber can be further improved.
  • the engine unit of the present invention preferably has the following configuration.
  • the single inlet injector is disposed at a position where the shortest distance between the plurality of injection holes and the center of the single inlet is smaller than twice the diameter of the single inlet. Is done.
  • the injection angle of the fuel injected from the single intake port injector can be further increased. .
  • variation in the concentration distribution of the fuel in a combustion chamber can be suppressed more reliably. Therefore, the degree of freedom in designing the fuel concentration distribution in the combustion chamber can be further improved.
  • the engine unit of the present invention preferably has the following configuration.
  • the cylinder portion has at least one exhaust port formed in the at least one combustion chamber. At least one exhaust port is provided for one combustion chamber. The diameter of the intake port is larger than the diameter of the exhaust port.
  • the diameter of the single intake passage portion is also relatively large.
  • the injection angle of the fuel injected from the single intake port injector can be increased. Since the injection angle of the fuel injected from the single inlet injector is large, it is possible to reduce the diameter of the injected droplets while suppressing the plurality of injected droplets from contacting each other. Due to the small diameter of the ejected droplets, it is possible to further suppress variations in the fuel concentration distribution in the combustion chamber. Therefore, the degree of freedom in designing the fuel concentration distribution in the combustion chamber can be further improved.
  • the “intake passage section” means a structure surrounding a space through which air supplied to the combustion chamber passes.
  • the “single inlet” is not a space but a structure.
  • the “single intake port” in the present invention is in contact with the single intake valve and is blocked by the single intake valve. It is an end closer to the combustion chamber among both ends of the cylindrical region in the cylinder axis direction. That is, in the present invention, the “single intake port” is an annular linear portion that comes into contact with the single intake valve and is blocked by the single intake valve.
  • the “exhaust port” in the present invention has the same definition.
  • a part of each of the at least one combustion chamber of the present invention is formed by the inner surface of the cylinder hole.
  • a cylinder hole is provided for each of the plurality of combustion chambers. That is, the number of cylinder holes and combustion chambers of the engine unit is the same.
  • one intake port, one intake valve, and one injector are provided for each combustion chamber. That is, the engine unit of the present invention does not have a plurality of intake ports for one combustion chamber. The engine unit of the present invention does not have a plurality of intake valves for one combustion chamber. The engine unit of the present invention does not have a plurality of injectors for one combustion chamber.
  • “at least one cylinder intake passage portion and at least one external intake passage portion include at least one single intake passage portion” means at least one cylinder intake passage portion and at least one external intake passage. It means that at least one single intake passage part is included in one element consisting of parts.
  • the single intake passage portion may be included only in at least one cylinder intake passage portion.
  • a portion of the single intake passage portion may be included in at least one cylinder intake passage portion, and another portion of the single intake passage portion may be included in at least one external intake passage portion.
  • the number of cylinder intake passage portions may be the same as or different from that of the single intake passage portion.
  • the number of external intake passage portions may be the same as or different from that of the single intake passage portion.
  • the number of cylinder intake passage portions may be the same as or different from that of the external intake passage portions.
  • the single intake passage portion of the present invention is a region from a place where a single intake port injector is installed to a single intake port.
  • the “region from the place where the single inlet injector is installed to the single inlet” refers to the entire area where the single inlet injector is in contact with the cylinder intake passage portion or the external intake passage portion. May be included.
  • the “region from the place where the single intake port injector is installed to the single intake port” is the area where the single intake port injector is in contact with the cylinder intake passage portion or the external intake passage portion. A position farthest from the single intake port in the flow direction of the exhaust gas may be included.
  • to inject fuel in the form of a mist means to inject a plurality of small droplets of fuel.
  • the “injection direction of a plurality of fuel droplets injected from a single intake port injector” refers to the injection direction of a plurality of droplets injected from a single intake port injector in a single injection. It is. More specifically, it is the ejection direction of the droplets when a plurality of droplets are ejected from the single inlet injector, respectively.
  • the fuel injection direction can be represented by a linear vector starting from the single inlet injector. Even when the movement direction of the droplet changes due to the influence of the air flow, the ejection direction of the droplet does not change.
  • the fuel on the first plane may include vaporized fuel or only liquid fuel.
  • the fact that the fuel on the first plane is present in one circle or one oval means that the fuel on the first plane out of the fuel injected from the single inlet injector by one injection process. It may be that all of the fuel, including the vaporized fuel present in is present in one circle or one oval.
  • the fact that the fuel on the first plane is present in one circle or one oval means that the fuel on the first plane out of the fuel injected from the single inlet injector by one injection process. It may be that all of the liquid fuel present in is present in one circle or one oval.
  • the region where the fuel on the first plane exists is a region surrounding the fuel on the first plane.
  • the region where the fuel exists on the first plane may include a gap between the droplets.
  • the inner peripheral end of the first region when the outer peripheral end of the first region is along a part of the edge of one circle, the inner peripheral end of the first region is along a part of the edge of the one circle. In the present invention, when the outer peripheral end of the first region is along the entire circumference of the edge of one circle, the inner peripheral end of the first region is also along the entire circumference of the edge of the one circle. In the present invention, when the outer peripheral end of the first region is along a part of the edge of one oval, the inner peripheral end of the first region is along a part of the edge of the one oval. In the present invention, when the outer peripheral end of the first region is along the entire circumference of one oval edge, the inner peripheral end of the first region is also along the entire circumference of the one oval edge.
  • the outer peripheral edge of the first region of the present invention may not coincide with at least part of the edge of the circle or oval as long as it is along at least part of the edge of the circle or oval.
  • the outer peripheral edge of the first region of the present invention may not be parallel to at least part of the edge of the circle or oval as long as it is along at least part of the edge of the circle or oval.
  • the inner peripheral edge of the first region of the present invention may not be parallel to at least part of the edge of the circle or oval as long as it is along at least part of the edge of the circle or oval.
  • the first region when the first region is non-annular, the first region is a region surrounded by the outer peripheral end of the first region, the inner peripheral end of the first region, and both ends in the circumferential direction of the first region. is there. Both ends in the circumferential direction of the first region may be linear, for example, or may be curved to bulge out of the first region.
  • the second region when the first region is non-annular, includes at least a region surrounded by the entire inner peripheral end of the first region and a line segment connecting both circumferential ends of the inner peripheral end of the first region. Including.
  • the second area may be constituted only by this area.
  • the oval is an annular shape composed of only a curve or a curve and a line segment and having a smooth convex shape.
  • the oval may be an ellipse formed by a set of points such that the sum of distances from two fixed points is constant.
  • the oval may have a shape similar to an ellipse.
  • the oval may be shaped like a chicken egg.
  • the oval may have a shape formed by two semicircles and two line segments, such as an athletics track.
  • the “concentration of fuel in the first region” in the present invention may be the surface density of the fuel in the first region, that is, the mass of fuel per unit area of the first region.
  • the “concentration of fuel in the first region” may be calculated by extracting a value on the first plane from the distribution of the mass of fuel per unit volume in a space including the first region. Good. That is, the “concentration of fuel in the first region” may be the mass of fuel per unit volume in the first region.
  • the definition of “concentration of fuel in the second region” in the present invention is the same as the definition of “concentration of fuel in the first region” described above.
  • the “concentration of the fuel in the first region” and the “concentration of the fuel in the second region” may be the concentration of the fuel containing the vaporized fuel or the concentration of the fuel not containing the vaporized fuel. May be.
  • the “first plane” is preferably set at a position close to the single inlet injector that allows most of the injected fuel to reach without vaporization. In this case, whether or not the “concentration of the fuel in the first region” and the “concentration of the fuel in the second region” include vaporized fuel depends on whether the “concentration of the fuel in the first region” and “the fuel concentration in the inner peripheral region”. There is almost no effect on the magnitude relationship of “density”.
  • the concentration of fuel in the first region is higher than the concentration of fuel in the second region means that the average value of the mass of fuel per unit volume or unit area of the first region is that of the second region. It means larger than the average value of the mass of fuel per unit volume or unit area.
  • the single intake port injector of the present invention is controlled by the control device so as to inject fuel when the single intake valve is in a position to open the single intake port during the intake stroke.
  • the time of the intake stroke is the time of the intake stroke of the combustion chamber connected to the single intake passage portion provided with the single intake port injector.
  • “when viewed in the direction of the central axis of the cylinder hole” means when the engine unit is viewed in the direction of the central axis of the cylinder hole. More specifically, it means a case where it is assumed that some members of the engine unit are seen through.
  • the definition of “when viewed in a direction perpendicular to the second plane” in the present invention is the same as described above.
  • the injection center line passes through a single intake port means that the injection center line is connected to a single intake passage portion provided with a single intake port injector having the injection center line. Means passing through a single inlet.
  • the injection center line passes through the stem portion of a single intake valve means that the injection center line is connected to a single intake passage portion provided with a single intake port injector having the injection center line. It means passing through a single intake valve that opens and closes a single intake port.
  • the injection center line passes through the stem portion of the single intake valve at the position where the single intake port is opened means any position where the single intake port is opened within the movable range of the single intake valve. This means that the injection center line passes through the stem portion when there is a single intake valve.
  • the single intake valve within the movable range of the single intake valve may not pass through the stem portion at other positions where the intake port is opened.
  • At least one (one) of a plurality of options includes all combinations conceivable from the plurality of options.
  • At least one (one) of the plurality of options may be any one of the plurality of options, or may be all of the plurality of options.
  • at least one of A, B and C may be A alone, B alone, C alone, A and B, A and C It may be B, C, A, B and C.
  • the number of a certain component is not clearly specified, and when it is displayed as a single number when translated into English, the present invention may have a plurality of these components. The present invention may have only one of these components.
  • the terms mounted, connected, coupled, and supported are used in a broad sense. Specifically, it includes not only direct attachment, connection, coupling and support, but also indirect attachment, connection, coupling and support. Further, connected and coupled are not limited to physical or mechanical connections / couplings. They also include direct or indirect electrical connections / couplings.
  • the term “preferred” is non-exclusive. “Preferred” means “preferably but not limited to”. In the present specification, the configuration described as “preferable” has at least the above-described effect obtained by the configuration of claim 1. Further, in this specification, the term “may” is non-exclusive. “May” means “may be, but is not limited to”. In the present specification, a configuration described as “may” at least exhibits the above-described effect obtained by the configuration of claim 1.
  • the degree of freedom in designing the fuel concentration distribution in the combustion chamber can be improved.
  • FIG. 1A is a view of the engine unit of the embodiment as viewed in the direction of the central axis of the cylinder hole.
  • FIG.1 (b) is sectional drawing which cut
  • FIG.1 (c) is a figure which shows the injection state of the fuel of the injector for single intake ports of the engine unit of embodiment.
  • FIG.1 (d) is a figure which shows an example of the fuel on the plane S1 shown in FIG.1 (c).
  • FIG.1 (e) is a figure which shows the other example of the fuel on the plane S1 shown in FIG.1 (c).
  • FIG. 2 is a cross-sectional view of an engine unit as a specific example of the embodiment.
  • FIG. 3A is a view of the combustion chamber of the engine unit of the specific example of the embodiment as viewed in the direction of the central axis of the cylinder hole, and FIG. 3B is a line III-III in FIG. It is sectional drawing.
  • FIG. 4A is a diagram showing the fuel injection state of the single inlet injector of the engine unit of the specific example of the embodiment, and FIG. 4B is a plan view on the plane S1 shown in FIG. It is a figure which shows concentration distribution of the fuel.
  • FIG. 5A is a diagram showing a fuel injection state of a conventional single inlet injector, and FIG. 5B is a fuel concentration distribution on a plane S801 shown in FIG. 5A.
  • FIGS. 7 (a) to 7 (c) are cross-sectional views showing the behavior of a plurality of droplets of injected fuel in the engine unit of the specific example of the embodiment.
  • FIGS. 7 (d) to 7 (f) FIGS. 7A to 7C are views in the direction of the central axis of the cylinder hole.
  • FIGS. 8 (a) to 8 (c) are diagrams showing the behavior of a plurality of droplets of injected fuel in an engine unit when a conventional single intake port injector is used, and FIGS. FIG. 8 (f) is a view of FIGS.
  • FIG. 9A is a view of the combustion chamber of the conventional engine unit as viewed in the direction of the central axis of the cylinder hole
  • FIG. 9B is a cross-sectional view taken along line BB of FIG. 9A
  • FIG. 9C is a cross-sectional view taken along the line CC of FIG. 9A. It is a figure which shows the injection state of the fuel of the injector for single inlets of the example of a change. It is sectional drawing of the engine unit with which the injector for single inlets of the example of a change was mounted
  • the engine unit 1 of the present embodiment is a four-stroke cycle engine unit. As shown in FIGS. 1 (a) and 1 (b), the engine unit 1 includes a cylinder portion 4, at least one external intake passage portion 3, at least one intake valve 22, and at least one injector 23. And a control device 50.
  • the cylinder portion 4 has at least one combustion chamber 11, at least one intake port 12, and at least one cylinder intake passage portion 21. A part of each of the at least one combustion chamber 11 is formed by the inner surface of the cylinder hole 10. At least one intake port 12 is formed in at least one combustion chamber 11.
  • At least one cylinder intake passage portion 21 is connected to at least one intake port 12.
  • the air that has flowed into the at least one cylinder intake passage portion 21 is supplied from at least one intake port 12 to at least one combustion chamber 11.
  • the at least one external intake passage portion 3 is disposed outside the cylinder portion 4 and is connected to at least one cylinder intake passage portion 21.
  • the air that has flowed into the at least one external intake passage portion 3 is supplied to at least one cylinder intake passage portion 21.
  • the at least one intake valve 22 is configured to be movable between a position where the at least one intake port 12 is opened and a position where the at least one intake port is closed.
  • Each of the at least one injector 23 has a plurality of injection holes capable of injecting fuel in the form of a mist.
  • the at least one injector 23 is installed in the cylinder intake passage portion 21 or the external intake passage portion 3 such that the plurality of injection holes are located in the cylinder intake passage portion 21 or the external intake passage portion 3.
  • the control device 50 controls fuel injection of at least one injector 23.
  • One intake port 12, one intake valve 22, and one injector 23 are provided for each combustion chamber 11, and constitute a single intake port 12, a single intake valve 22, and a single intake port injector 23, respectively.
  • At least one cylinder intake passage portion 21 and at least one external intake passage portion 3 include at least one single intake passage portion 20.
  • One single intake passage portion 20 is provided for each combustion chamber 11.
  • the single intake passage portion 20 is a region from the location where the single intake port injector 23 is installed to the single intake port 12.
  • the single intake passage portion 20 is configured to pass through the inside without being separated or joined together.
  • the single intake port injector 23 is arranged to inject fuel toward the single intake port 12.
  • the single intake port injector 23 has the following two requirements at a certain time immediately after injection when fuel is injected into a space only in the atmosphere when the single intake port injector 23 is not attached to the engine unit 1. Configured to meet. As shown in FIG. 1C, one plane that intersects the injection directions of a plurality of fuel droplets injected from the single inlet injector 23 is defined as a first plane S1.
  • the first requirement is that, as shown in FIG. 1 (d) or FIG. 1 (e), the fuel on the first plane S1 is contained in one circle or one oval. Exist along at least part of the edge of the two oval.
  • the second requirement is included in a region where the fuel exists on the first plane S1, and an outer peripheral end and an inner peripheral end of the first plane along at least a part of the edge of the one circle or the one oval.
  • the fuel concentration in the region A1 is higher than the fuel concentration in the second region A2 in contact with the entire inner peripheral end of the first region A1 on the first plane S1. That is, the concentration of the outer peripheral portion of the mist-like fuel F1 injected from the single intake port injector 23 is higher than the concentration of the central portion.
  • the fuel supplied to one combustion chamber 11 is only the fuel injected from one single intake port injector 23 and passed through one single intake port 12.
  • the engine unit 1 of this embodiment has only one intake port 12 for one combustion chamber 11. Therefore, the single intake port 12 of the present embodiment has a larger diameter than the intake port of an engine unit having the same cylinder hole diameter as that of the present embodiment and having a plurality of intake ports for one combustion chamber. Therefore, the diameter of the single intake passage portion 20 of this embodiment is the same as that of the engine passage having the same cylinder hole diameter as that of this embodiment and having a plurality of intake ports for one combustion chamber. large. Since the diameter of the single intake passage portion 20 is large, the injection angle of the fuel injected from the single intake port injector 23 can be increased.
  • the injection angle is the largest angle among the injection directions of a plurality of fuel droplets injected from a single intake port injector when viewed in a certain direction. Since the injection angle of the fuel injected from the single inlet injector 23 is large, it is possible to reduce the diameter of the injected droplets while suppressing the plurality of injected droplets from contacting each other. . Due to the small diameter of the injected droplets, the fuel droplets that have flowed into the combustion chamber 11 are likely to diffuse along the air flow. Thereby, the variation in the fuel concentration distribution in the combustion chamber 11 is suppressed. That is, in the engine unit 1 of the present embodiment, variation in the fuel concentration distribution in the combustion chamber 11 is suppressed as compared with the engine unit 1 having a plurality of intake ports 12 for one combustion chamber 11.
  • the engine unit has two intake ports and one injector for one combustion chamber, two intake passage portions connected to a plurality of intake ports are connected to each other. And an injector is arrange
  • the engine unit 1 of the present embodiment has one intake port 12 and one injector 23 for one combustion chamber 11. Therefore, the single intake port injector 23 of the present embodiment can be disposed at a position closer to the intake port than an injector of an engine unit having two intake ports and one injector for one combustion chamber.
  • the injection angle of the fuel injected from the single intake port injector 23 can be further increased.
  • the diameter of the injected droplets can be reduced while suppressing the plurality of injected droplets from contacting each other. Can be small. Due to the small diameter of the injected droplets, the fuel droplets that flow into the combustion chamber 11 are likely to diffuse along the air flow. Therefore, in the engine unit 1 of the present embodiment, variation in the fuel concentration distribution in the combustion chamber 11 is further suppressed as compared with an engine unit having a plurality of intake ports and one injector for one combustion chamber. .
  • the engine unit 1 of the present embodiment has only one intake port 12 for one combustion chamber 11, there is no such air collision.
  • the intake port can be disposed at a position closer to the central axis of the cylinder hole than an engine unit having a plurality of intake ports for one combustion chamber. Therefore, the air that has flowed into the combustion chamber 11 from the intake port 12 tends to diffuse uniformly in the circumferential direction of the inner surface of the cylinder hole 10. Therefore, in the engine unit 1 of the present embodiment, variation in the fuel concentration distribution in the combustion chamber 11 is further suppressed as compared with an engine unit having a plurality of intake ports for one combustion chamber.
  • the engine unit 1 of the present embodiment can improve the degree of freedom in designing the fuel concentration distribution in the combustion chamber 11.
  • the engine unit 1A of the specific example of the embodiment of the present invention has all the features of the engine unit 1 of the embodiment of the present invention described above. A description of the same parts as those of the engine unit 1 of the embodiment of the present invention described above will be omitted.
  • Engine unit 1A is mounted on, for example, a straddle-type vehicle.
  • a saddle riding type vehicle refers to any vehicle that rides in a state where a rider straddles a saddle.
  • the saddle riding type vehicle includes a motorcycle, a tricycle, a four-wheel buggy (ATV: All Terrain Vehicle), a water bike, a snowmobile, and the like.
  • motorcycles include scooters, motorbikes, and mopeds.
  • the engine unit 1A may be mounted on an automobile.
  • the engine unit 1A may be mounted on a vehicle or a device other than an automobile and a saddle type vehicle.
  • the engine unit 1A includes an engine body 2, one external intake passage portion 3, one external exhaust passage portion (not shown), and a control device 50.
  • the external intake passage portion 3 and the external exhaust passage portion are connected to the engine body 2.
  • the control device 50 controls the operation of the engine unit 1A.
  • the control device 50 is connected to various sensors provided in the saddle riding type vehicle.
  • the specific example engine body 2 is a single cylinder engine.
  • the engine body 2 is a 4-stroke engine.
  • the 4-stroke engine is an engine that repeats an intake stroke, a compression stroke, a combustion stroke (expansion stroke), and an exhaust stroke.
  • the engine body 2 is a gasoline engine.
  • the cooling method of the engine body 2 is not particularly limited.
  • the engine body 2 has a cylinder part 4 having one cylinder hole 10 and a crankcase part (not shown). Although illustration is omitted, a crankshaft is accommodated in the crankcase portion.
  • the center axis of the crankshaft is a direction orthogonal to the paper surface of FIG.
  • the cylinder part 4 and the crankcase part are arranged on the central axis Cy ⁇ b> 1 of the cylinder hole 10.
  • the central axis Cy1 of the cylinder hole 10 is referred to as a cylinder axis Cy1.
  • the cylinder axis Cy1 is not a line segment that exists only in the area where the cylinder hole 10 exists, but is a straight line that extends indefinitely.
  • the cylinder axis Cy1 is parallel to the vertical direction of the paper surface of FIG.
  • the vertical direction of the paper surface may or may not coincide with the vertical direction of the saddle riding type vehicle on which the engine unit 1A is mounted.
  • the cylinder portion 4 constitutes an upper portion or a front portion of the engine body 2.
  • the cylinder axis Cy1 may be parallel to the vertical direction of the saddle riding type vehicle, or may be inclined at an angle of 45 ° or less with respect to the vertical direction of the saddle riding type vehicle.
  • the cylinder axis Cy1 may be parallel to the front-rear direction of the straddle-type vehicle, or may be inclined at an angle of less than 45 ° with respect to the front-rear direction of the straddle-type vehicle.
  • the cylinder part 4 has a cylinder body 5, a cylinder head 6, and a head cover 7.
  • the cylinder body 5, the cylinder head 6 and the head cover 7 are connected in this order on the cylinder axis Cy1.
  • the cylinder body 5 is connected to the crankcase part.
  • the cylinder body 5, the cylinder head 6 and the head cover 7 are members independent of each other. However, at least two of the cylinder body 5, the cylinder head 6, and the head cover 7 may be integrally formed.
  • the cylinder hole 10 is formed inside the cylinder body 5.
  • a piston 8 is slidably accommodated in the cylinder hole 10.
  • the piston 8 is connected to the crankshaft via a connecting rod (not shown).
  • the cylinder part 4 has one combustion chamber 11.
  • the combustion chamber 11 includes a lower surface of the cylinder head 6 in FIG. 2, an inner surface of the cylinder hole 10, and an upper surface of the piston 8 in FIG. 2. That is, a part of the combustion chamber 11 is formed by the inner surface of the cylinder hole 10.
  • the combustion chamber 11 has one intake port 12 and one exhaust port 13 formed therein.
  • the intake port 12 is an example of a single intake port of the present invention.
  • the intake port 12 and the exhaust port 13 are formed on the lower surface of the cylinder head 6 in FIG.
  • the intake port 12 and the exhaust port 13 are circular.
  • the diameter of the intake port 12 is larger than the diameter of the exhaust port 13.
  • the combustion chamber 11 has one spark plug insertion port 14 formed therein.
  • the spark plug insertion port 14 has a circular shape.
  • the diameter of the spark plug insertion port 14 is smaller than the diameters of the intake port 12 and the exhaust port 13.
  • the spark plug insertion port 14 is disposed between the exhaust port 13 and the intake port 12 in the circumferential direction centered on the cylinder axis Cy1.
  • the engine unit 1A has a spark plug (not shown) inserted into the spark plug insertion port 14.
  • the tip of the spark plug is disposed in the combustion chamber 11.
  • the tip of the spark plug generates a spark discharge.
  • the air-fuel mixture in the combustion chamber 11 is ignited.
  • the air-fuel mixture is an air-fuel mixture.
  • the spark plug is connected to an ignition coil (not shown).
  • the ignition coil stores electric power for causing spark discharge of the spark plug.
  • the piston 8 moves and a crankshaft (not shown) rotates.
  • one cylinder intake passage portion 21 is formed in the cylinder head 6.
  • the cylinder intake passage portion 21 is connected to the intake port 12 of the combustion chamber 11.
  • the cylinder intake passage portion 21 is connected to the external intake passage portion 3.
  • the external intake passage portion 3 may be composed of a plurality of independent parts. The air flowing into the external intake passage portion 3 passes through the cylinder intake passage portion 21 and is supplied to the combustion chamber 11.
  • the external intake passage portion 3 may be connected to an air cleaner or may include an air cleaner.
  • a cylinder exhaust passage 31 is formed in the cylinder head 6.
  • the cylinder exhaust passage portion 31 is connected to the exhaust port 13 of the combustion chamber 11. Gas (exhaust gas) generated by the combustion of the air-fuel mixture in the combustion chamber 11 is discharged to the cylinder exhaust passage portion 31.
  • the cylinder exhaust passage portion 31 is connected to an external exhaust passage portion (not shown).
  • the engine unit 1 ⁇ / b> A has one intake valve 22 that opens and closes the intake port 12.
  • the specific intake valve 22 is an example of a single intake valve of the present invention.
  • the intake valve 22 has an umbrella portion 22a and a stem portion 22b.
  • the umbrella portion 22a is formed in a substantially conical shape.
  • the diameter (maximum diameter) of the umbrella portion 22 a is substantially the same as the diameter of the air inlet 12.
  • Umbrella part 22a is constituted so that inlet 12 can be closed.
  • the intake valve 22 closes the intake port 12 at least a part of the umbrella portion 22 a is disposed in the cylinder intake passage portion 21.
  • the end surface of the umbrella portion 22 a facing the combustion chamber 11 is parallel to a plane S ⁇ b> 4 that includes the entire circumference of the intake port 12.
  • the plane S4 is not a physically existing plane but a virtual plane.
  • the stem portion 22b is connected to the umbrella portion 22a. Specifically, the stem portion 22b is connected to the central portion of the umbrella portion 22a. The stem portion 22b is connected to a surface of the umbrella portion 22a facing the cylinder intake passage portion 21. A part of the stem portion 22 b is disposed in the cylinder intake passage portion 21. The stem portion 22b extends linearly. An axis passing through the center of the stem portion 22b is defined as a center axis Cv1. The central axis Cv1 of the stem portion 22b is orthogonal to the plane S4 including the entire circumference of the intake port 12.
  • the central axis Cv1 of the stem portion 22b is not a line segment that exists only in the region where the stem portion 22b exists, but is a straight line extending infinitely.
  • the central axis Cv1 of the stem portion 22b passes through the center P1 of the intake port 12. As shown in FIG. 3A, when viewed in the direction of the cylinder axis Cy1, the central axis Cv1 of the stem portion 22b passes through the cylinder axis Cy1.
  • the intake valve 22 opens and closes the intake port 12 by reciprocating along the central axis Cv1 of the stem portion 22b.
  • the intake valve 22 indicated by a two-dot chain line in FIG. 2 is in a closed position for closing (closing) the intake port 12.
  • the intake valve 22 shown by a solid line in FIGS. 2, 3A and 3B is in an open position where the intake port 12 is opened (opened).
  • the open position of the intake valve 22 is a position where at least a part of the umbrella portion 22 a is disposed in the combustion chamber 11 and a gap is generated between the umbrella portion 22 a and the intake port 12.
  • the open position of the intake valve 22 is not limited to the position indicated by the solid line.
  • the open position of the intake valve 22 includes all positions other than the closed position in the movable range of the intake valve 22.
  • the intake valve 22 is driven by a valve mechanism (not shown) and a spring (not shown) accommodated in the cylinder part 4.
  • the valve mechanism operates as the crankshaft rotates.
  • the intake valve 22 is moved from the closed position to the open position by the valve operating mechanism, and is moved from the open position to the closed position by the spring.
  • the intake valve 22 is in the open position for at least part of the intake stroke.
  • the intake stroke is a period in which the piston 8 descends from the exhaust top dead center to the intake bottom dead center and the volume of the combustion chamber 11 increases.
  • the timing at which the position of the intake valve 22 changes from the closed position to the open position may be slightly before the start of the intake stroke, may be the same as the start of the intake stroke, or slightly from the start of the intake stroke. It may be later.
  • the timing at which the intake valve 22 moves from the open position to the closed position may be slightly after the end of the intake stroke, may be the same as the end of the intake stroke, or slightly before the end of the intake stroke. It may be.
  • the intake valve 22 may be in the open position over the entire period of the intake stroke, or may be in the open position over a portion of the intake stroke.
  • the engine unit 1 ⁇ / b> A has one exhaust valve 32 that opens and closes the exhaust port 13.
  • the exhaust valve 32 also includes an umbrella portion and a stem portion.
  • the basic shape and configuration of the exhaust valve 32 are the same as those of the intake valve 22.
  • the diameter of the umbrella part of the exhaust valve 32 is smaller than the diameter of the umbrella part 22 a of the intake valve 22.
  • the exhaust valve 32 is in the open position over at least a portion of the exhaust stroke.
  • the exhaust valve 32 is also driven by a valve operating mechanism (not shown).
  • the valve mechanism may include a variable valve timing device that changes the opening / closing timing of at least one of the intake valve 22 and the exhaust valve 32.
  • the engine unit 1 ⁇ / b> A has one throttle valve 24.
  • the throttle valve 24 is disposed in the external intake passage portion 3.
  • the throttle valve 24 indicated by a broken line in FIG. 2 is in the closed position.
  • a bypass passage portion that bypasses the throttle valve 24 may be connected to the external intake passage portion 3.
  • a valve may be disposed in the bypass passage portion.
  • the throttle valve 24 may be connected to a throttle operation unit (not shown) without using the control device 50. In this case, the opening degree of the throttle valve 24 is changed by the driver operating the throttle operation unit.
  • the throttle valve 24 is a valve whose electronic opening can be controlled, and may be controlled by the control device 50. In this case, the control device 50 controls the throttle valve 24 based on a signal from a sensor that detects the operation state of the throttle operation unit.
  • FIG. 3B is a cross-sectional view taken along the line III-III in FIG. 3A, the arrow in FIG. 3B also represents the air flow that appears before the cross section.
  • the piston 8 is lowered, so that the pressure in the combustion chamber 11 is lowered.
  • the air in the external intake passage portion 3 and the cylinder intake passage portion 21 is drawn into the combustion chamber 11 by the negative pressure of the combustion chamber 11 (pressure lower than atmospheric pressure).
  • the air flows into the combustion chamber 11 through an annular gap between the umbrella portion 22 a of the intake valve 22 and the intake port 12.
  • the air flowing into the combustion chamber 11 first flows along the inner surface of the combustion chamber 11.
  • the air that diffuses along the inner surface of the combustion chamber 11 is diffused substantially uniformly in the circumferential direction of the inner surface of the cylinder hole 10.
  • the engine unit 1A has one injector 23.
  • the injector 23 is an example of a single intake port injector according to the present invention.
  • the injector 23 is installed in the external intake passage portion 3.
  • the injector 23 is disposed downstream of the throttle valve 24 in the air flow direction.
  • the injector 23 may be installed in the cylinder intake passage portion 21.
  • a portion downstream of the installation position of the injector 23 in the air flow direction constitutes a single intake passage portion 20.
  • the single intake passage portion 20 is configured to pass through the inside thereof without being separated or joined together.
  • the injector 23 is arranged and configured to inject fuel toward the intake port 12.
  • a plurality of injection holes are formed at the tip of the injector 23.
  • the injector 23 injects the mist-like fuel F11 from the plurality of injection holes.
  • the plurality of injection holes are in the cylinder intake passage portion 21.
  • the plurality of injection holes may be in the external intake passage portion 3 or may be at the boundary between the cylinder intake passage portion 21 and the external intake passage portion 3.
  • the injector 23 is arranged so as to inject fuel in the single intake passage portion 20.
  • the injector 23 injects fuel during the intake stroke and when the intake valve 22 is in the open position.
  • the injection of fuel from the injector 23 is controlled by the control device 50.
  • the engine unit 1A includes a fuel tank (not shown) that stores fuel supplied to the injector 23, and a fuel pump disposed in the fuel tank.
  • the fuel pump is connected to the injector 23 via a fuel hose (not shown).
  • the fuel in the fuel tank is supplied to the injector 23 by driving the fuel pump.
  • the drive of the fuel pump is controlled by the control device 50.
  • the injector 23 simultaneously injects fuel from a plurality of injection holes.
  • the diameter of the fuel droplets injected from the injector 23 is, for example, 50 to 60 ⁇ m.
  • the diameter of the fuel droplets injected from the injector 23 is smaller than the diameter of the fuel droplets injected from a general injector.
  • the diameter of fuel droplets injected from a general injector is, for example, 80 to 90 ⁇ m. Since the diameter of the fuel droplet is small, the fuel droplet easily evaporates. Therefore, it is not necessary to inject fuel before the intake stroke in order to ensure the time until evaporation.
  • the diameter of the droplet is affected by the diameter of the injection hole, the pressure of the fuel supplied to the injector 23, the viscosity of the fuel, and the like.
  • the diameters of the plurality of injection holes of the injector 23 may all be the same or different.
  • the number and shape of the plurality of injection holes are not particularly limited.
  • the surface on which the plurality of injection holes are formed may be, for example, one flat surface or a convex curved surface.
  • the arrangement of the plurality of injection holes is not particularly limited.
  • the plurality of injection holes may be arranged on one circle or may be arranged on two or more concentric circles.
  • the injector 23 does not inject fuel using a swirl (swirl flow).
  • the engine unit 1 ⁇ / b> A has no fuel injection device other than one injector 23 for one combustion chamber 11.
  • the fuel injection device here includes not only one that injects fuel in the cylinder intake passage portion 21 or the external intake passage portion 3 but also one that injects fuel in the combustion chamber 11.
  • the fuel injection device includes not only one having a plurality of injection holes but also one having only one injection hole.
  • the injector 23 injects the mist-like fuel F11 in a substantially conical shape. As shown in FIG. 3A, when viewed in the direction of the cylinder axis Cy1, it passes through the center of the two injection directions forming the largest angle among the injection directions of the plurality of fuel droplets injected from the injector 23.
  • a plane that looks like a straight line is a plane S2.
  • the plane S2 looks like a straight line that bisects the injection angle of the injector 23 when viewed in the direction of the cylinder axis Cy1.
  • the plane S2 corresponds to the second plane of the present invention. As shown in FIG.
  • the visible plane be plane S3.
  • the plane S3 looks like a straight line that bisects the injection angle of the injector 23 when viewed in a direction orthogonal to the plane S2.
  • the plane S3 corresponds to the third plane of the present invention.
  • An intersection line between the plane S2 and the plane S3 is referred to as an injection center line Ci1.
  • the injection center line Ci1 is an infinite straight line.
  • the injection center line Ci ⁇ b> 1 of the injector 23 passes through the intake port 12.
  • the injection center line Ci1 coincides with the center axis Cv1 of the stem portion 22b.
  • the injection center line Ci1 passes through the cylinder axis Cy1.
  • the injection center line Ci1 passes through the stem portion 22b and the umbrella portion 22a of the intake valve 22 in the open position.
  • the intake valve 22 moves along the central axis Cv1 of the stem portion 22b.
  • the injection center line Ci1 passes through the stem portion 22b and the umbrella portion 22a of the intake valve 22 in the closed position.
  • the injection center line Ci1 passes through the stem portion 22b and the umbrella portion 22a of the intake valve 22 in the open position.
  • the injection center line Ci1 passes through the umbrella portion 22a of the intake valve 22 in the closed position.
  • the injection center line Ci1 does not pass through the stem portion 22b of the intake valve 22 in the closed position, but may pass through.
  • the injection center line Ci1 passes through the stem portion 22b and the umbrella portion 22a of the intake valve 22 in the open position, when viewed from any direction. That is, the injection center line Ci1 passes through the stem portion 22b and the umbrella portion 22a of the intake valve 22 in the open position. The injection center line Ci1 passes through the umbrella portion 22a of the intake valve 22 in the closed position. The injection center line Ci1 does not pass through the stem portion 22b of the intake valve 22 in the closed position, but may pass through.
  • the shortest distance between the plurality of injection holes and the center P1 of the intake port 12 is a distance D1.
  • the distance D1 is smaller than three times the diameter of the inlet 12.
  • the distance D1 is smaller than three times the diameter of the intake valve 22. Therefore, the injector 23 is disposed at a position relatively close to the intake port 12.
  • the distance D1 may be smaller than twice the diameter of the inlet 12.
  • the distance D1 may be smaller than twice the diameter of the intake valve 22.
  • FIG. 4A, FIG. 4B, and FIG. 6 are graphs of the example of the present invention, which are results obtained by simulating the movement (flow) of fuel injected from the injector 23.
  • FIG. VECTIS registered trademark
  • the simulation assumed a case where the injector 23 was not attached to the engine unit 1A and was injected into a space of only the atmosphere. In other words, it was injected into a space where there was no object at the injection destination.
  • the temperature of the space where only the fuel is injected is normal temperature.
  • the pressure in the space only in the atmosphere where fuel is injected is atmospheric pressure.
  • the space only in the atmosphere where fuel is injected is in a windless state.
  • FIG. 4A shows the distribution of the fuel droplets as viewed in the Y direction that intersects the injection direction of the plurality of fuel droplets at a certain time immediately after the fuel is injected from the injector 23. More specifically, the Y direction is a direction orthogonal to the injection center line Ci1. In FIG. 4A, vaporized fuel is not displayed.
  • the vertical axis in FIG. 4A indicates the distance in the direction of the injection center line Ci1 from the injection hole injector 23.
  • the horizontal axis of Fig.4 (a) shows the distance of the X direction orthogonal to a Y direction.
  • the size of the diameter of the fuel droplet is represented by color shading. A darker color means a larger diameter.
  • FIG. 4A one plane that is orthogonal to the injection center line Ci1 is defined as a plane S1.
  • FIG. 4B shows the fuel concentration distribution on the plane S1.
  • FIG. 4B shows a fuel concentration distribution that is a combination of vaporized fuel and liquid fuel.
  • FIG. 4B shows the values on the plane S1 extracted from the simulation result of the mass distribution of fuel per unit volume.
  • the horizontal axis in FIG. 4B indicates the distance in the X direction
  • the vertical axis in FIG. 4B indicates the distance in the Y direction.
  • FIG. 4B shows a region where the fuel concentration is zero in dark gray, and a region where the fuel concentration is higher than zero in light gray.
  • the concentration distribution of the liquid fuel on the plane S1 is almost the same as that shown in FIG.
  • the contour of the outer edge of the region where the fuel exists on the plane S1 is substantially circular. That is, at a certain time immediately after injection, the fuel on the plane S1 exists in one circle along the entire circumference of the edge of this circle.
  • the region where the fuel exists on the plane S1 is annular.
  • the region where the fuel exists on the plane S1 includes an annular first region A1 whose outer peripheral end and inner peripheral end are along the entire circumference of the edge of the circle.
  • the region where the fuel exists on the plane S1 is configured only by the first region A11.
  • a region in contact with the entire inner peripheral edge of the first region A11 on the plane S1 is defined as a second region A12.
  • the injection center line Ci1 passes through the second region A12.
  • the injector 23 injects the fuel so that the concentration of the outer peripheral portion of the atomized fuel F11 is higher than the concentration of the central portion.
  • the contour of the outer periphery of the region where the fuel exists on the plane S1 is not a circle but an oval.
  • the plane S1 has the shortest length in the X direction of the region where the fuel exists on the plane among a plurality of planes passing through one point on the injection center line Ci1, and the fuel on the plane exists. This is a plane in which the length in the Y direction of the region to be shortened is the shortest.
  • the plane S1 has the shortest length in the direction parallel to the plane S2 of the region where the fuel exists on the plane among the plurality of planes passing through one point on the injection center line Ci1, and the plane S1 This is the plane where the length in the direction parallel to the plane S3 of the region where the fuel exists is the shortest. Accordingly, the plane S1 is a plane having the smallest variation in the distance from the plurality of injection holes of the injector 23 to the first region A11 among the plurality of planes passing through one point on the injection center line Ci1.
  • the fuel concentration distribution in the first region A11 is substantially constant in the circumferential direction of the first region A11.
  • the graph of the example of the present invention in FIG. 6 shows the fuel concentration distribution on a straight line passing through the injection center line Ci1 on the plane S1 in FIG.
  • the graph of FIG. 6 shows the concentration distribution of the fuel in which the vaporized fuel and the liquid fuel are combined.
  • the horizontal axis in FIG. 6 indicates the distance in the X direction, and the vertical axis in FIG. 6 indicates the fuel concentration.
  • the concentration of fuel in the first region A11 is the highest between the inner peripheral end and the outer peripheral end of the first region A11.
  • the concentration distribution of the liquid fuel on the straight line passing through the injection center line Ci1 on the plane S1 is substantially the same as that in FIG.
  • the concentration of fuel in the second region A12 is zero.
  • the injector 23 attached to the engine unit 1A injects fuel during the intake stroke and when the intake valve 22 is in the open position.
  • the intake valve 22 is in the open position during the intake stroke, the air in the external intake passage portion 3 and the cylinder intake passage portion 21 is sucked into the combustion chamber 11 by the negative pressure in the combustion chamber 11.
  • the trajectory of the fuel droplets injected from the injector 23 is changed so as to approach the center of the single intake passage portion 20. Therefore, when fuel is injected from the injector 23 attached to the engine unit 1A, the concentration of the central portion of the mist-like fuel F11 injected from the injector 23 becomes larger than zero. When fuel is injected from the injector 23 attached to the engine unit 1A, a region having a concentration of zero may exist in the central portion of the mist-like fuel F11. Even if the injection angle is large by changing the trajectory of the fuel droplets injected from the injector 23 so as to approach the center of the single intake passage portion 20, the fuel to the inner surface of the single intake passage portion 20 can be obtained. Adhesion is reduced.
  • FIG. 5 (a), FIG. 5 (b), and the graph of the conventional example in FIG. 6 show the simulation results when the conventional injector 823 is used.
  • the simulation conditions other than the injector structure are the same as those of the injector 23 described above.
  • the amount of fuel injected from the conventional injector 823 is the same as in the simulation of the injector 23 described above.
  • the diameter of the fuel droplet at the time of injection from the conventional injector 823 is substantially the same as the simulation of the injector 23 described above.
  • the vertical and horizontal axes in FIGS. 5A and 5B are the same as those in FIGS. 4A and 4B.
  • the conventional injector 823 like the injector 23, injects fuel in a substantially conical shape.
  • the injection angle of the conventional injector 823 is substantially the same as the injection angle of the injector 23.
  • the center of the injection angle seen in the Y direction of the conventional injector 823 is taken as an injection center line Ci80.
  • the injection center line Ci80 is also the center of the injection angle of the injector 823 viewed in the X direction.
  • a plane orthogonal to the injection center line Ci80 is defined as a plane S801.
  • the region where the fuel exists on the plane S801 is not annular.
  • the outline of the region where the fuel exists on the plane S801 is substantially circular.
  • the concentration of the fuel in the region where the fuel exists on the plane S801 is higher as it is closer to the injection center line Ci80.
  • the concentration of the outer peripheral portion in the region where the fuel on the plane S801 exists is lower than the concentration in the central portion of the region where the fuel on the plane S801 exists.
  • this conventional injector 823 injects so that the concentration of the central portion of the mist-like fuel is higher than the concentration of the outer peripheral portion.
  • shaft of FIG. 6 is changed into a flow flux, the relative relationship of two graphs of FIG. 6 is substantially the same.
  • the flow rate flux is a flow rate that passes per unit area.
  • FIGS. 7 (a) to 7 (f) schematically show the behavior of fuel droplets in the engine unit 1A.
  • FIGS. 8A to 8F schematically show the behavior of fuel droplets when the above-described conventional injector 823 is used instead of the injector 23.
  • FIG. 7 (a) to 7 (f) and FIGS. 8 (a) to 8 (f) display fuel droplets as dots (dots). The size of the dots was the same regardless of the diameter of the droplets. Vaporized fuel is not shown. Also, droplets attached to the single intake passage portion 20, the intake valve 22, and the combustion chamber 11 are not shown.
  • FIGS. 8A to 8C are views in which a cross section cut along the plane S2 is viewed in a direction perpendicular to the plane S2.
  • FIG. 7 (a) to FIG. 7 (c) show different points in time in the intake stroke.
  • FIGS. 8A to 8C also show different points in the intake stroke.
  • FIGS. 7 (d) to 7 (f) are views in which FIGS. 7 (a) to 7 (c) are viewed in the direction of the cylinder axis Cy1, respectively.
  • FIGS. 8 (d) to 8 (f) FIGS. 8A to 8C are views in the cylinder axis Cy1 direction, respectively.
  • the injector 23 injects the fuel so that the concentration of the outer peripheral portion of the mist-like fuel is higher than the concentration of the central portion.
  • the conventional injector 823 injects so that the density
  • the stem portion 22b is only on the plane S2 and in the vicinity thereof, when the injector 23 is used, the amount of fuel adhering to the entire stem portion 22b is smaller than when the conventional injector 823 is used.
  • the air in the single intake passage portion 20 is drawn into the combustion chamber 11 through the gap between the umbrella portion 22 a of the intake valve 22 and the intake port 12.
  • the injector 23 injects the fuel so that the concentration of the outer peripheral portion of the atomized fuel is higher than the concentration of the central portion.
  • the injector 23 injects fuel so that the injection center line Ci1 passes through the intake port 12. Therefore, most of the fuel injected from the injector 23 passes through the gap between the umbrella portion 22 a of the intake valve 22 and the intake port 12. Therefore, the amount of fuel adhering to the umbrella portion 22a is smaller than when the conventional injector 823 is used.
  • the diameter of the fuel droplets injected from the injectors 23 and 823 is small. Therefore, the fuel droplets flowing into the combustion chamber 11 move along the air flow in the combustion chamber 11 shown in FIG. A part of the fuel injected from the injectors 23 and 823 evaporates before reaching the combustion chamber 11. Of course, the vaporized fuel also moves along the air flow in the combustion chamber 11.
  • the conventional injector 823 injects so that the density
  • the vaporized fuel also moves along the air flow in a dense state in a relatively narrow range.
  • FIG. 7B, FIG. 7C, FIG. 7E, and FIG. It moves along the air flow in a dispersed state.
  • the vaporized fuel also moves along the air flow in the combustion chamber 11 while being dispersed in a wide range. Therefore, the fuel (liquid and gaseous fuel) injected from the injector 23 is diffused more rapidly in the combustion chamber 11 than the fuel (liquid and gaseous fuel) injected from the conventional injector 823.
  • the engine unit 91 shown in FIGS. 9 (a), 9 (b) and 9 (c) is an example of a conventional engine unit.
  • the engine unit 91 has two intake valves 922 and one injector 923 for one combustion chamber 911.
  • two intake ports 912, two exhaust ports 913, and one spark plug insertion port 914 are formed in the combustion chamber 911.
  • Two intake ports 912 are opened and closed by two intake valves 922.
  • the two exhaust ports 913 are opened and closed by two exhaust valves (not shown).
  • the spark plug insertion port 914 is disposed at a position surrounded by the two intake ports 912 and the two exhaust ports 913.
  • Two intake passage portions 920 are connected to the two intake ports 912, respectively.
  • the two intake passage portions 920 are connected to one upstream intake passage portion 919.
  • the injector 923 is disposed so as to inject fuel in the upstream intake passage portion 919.
  • the injector 923 injects the mist-like fuel F9 toward the two intake ports 912.
  • the injector 923 injects the mist-like fuel F9 toward the two intake ports 912 at the same time.
  • the injector 923 may inject the mist-like fuel F9 toward the two intake ports 912 at different timings.
  • a necessary distance between the intake port 912 and the central axis Cy9 of the cylinder hole 910 is between the intake port 12 and the central axis Cy1 of the cylinder hole 10. Longer than required.
  • a spark plug insertion port 914 is formed at a position surrounded by the two intake ports 912 and the two exhaust ports 913 of the combustion chamber 911. Therefore, the necessary distance between the intake port 912 and the cylinder axis Cy9 is further increased.
  • 9 (a), 9 (b) and 9 (c) schematically show the flow of air in the combustion chamber 911 during the intake stroke with arrows.
  • 9C is a cross-sectional view taken along the line CC of FIG. 9A, the arrow in FIG. 9C also represents the flow of air that appears before the cross section.
  • the air in the two intake passage portions 920 flows into the combustion chamber 911 from the two intake ports 912.
  • air flowing into the combustion chamber 911 from the two intake ports 912 collides between the two intake valves 922 and a region in the vicinity thereof.
  • the air inlet 912 through which air flows is relatively far from the cylinder axis Cy9.
  • the directions of the airflows flowing in the vicinity of the intake ports 912 of the two intake passage portions 920 are substantially parallel and not toward the cylinder axis Cy9. From these, the air flowing in from the two air inlets 912 cannot be uniformly diffused in the circumferential direction of the inner surface of the cylinder hole 10, and the air flow is concentrated on a part of the inner surface of the cylinder hole 910 in the circumferential direction. Arise.
  • the engine unit 1A since the engine unit 1A has only one intake port 12 for one combustion chamber 11, collision between air flowing into the combustion chamber from a plurality of intake ports does not occur. Further, the air inlet 12 through which air flows is close to the cylinder axis Cy1. Further, when viewed in the direction of the cylinder axis Cy1, the direction of the air flow flowing in the vicinity of the intake port 12 of the single intake passage portion 20 is the direction toward the cylinder axis Cy1 as a whole. Therefore, the air flowing into the combustion chamber 11 from the intake port 12 is uniformly diffused in the circumferential direction of the inner surface of the cylinder hole 10 as compared with the conventional engine unit 91. Thereby, as compared with the conventional engine unit 91, variation in the fuel concentration distribution in the combustion chamber 11 is suppressed.
  • the fuel that flows along the air is atomized by the collision of the air.
  • the engine unit 1 ⁇ / b> A has only one intake port 12 for one combustion chamber 11. Therefore, fuel atomization due to air collision as described above does not occur.
  • the mist fuel F9 injected from the injector 923 has the same injection angle, droplet diameter, and concentration distribution as the mist fuel F11 injected from the injector 23.
  • the engine unit 1A has a larger variation in the combustion state than the engine unit 91, and there is more unburned fuel in the exhaust.
  • the air that has flowed into the combustion chamber is more likely to diffuse uniformly in the circumferential direction of the inner surface of the cylinder hole. Therefore, even if the atomization of the fuel in the combustion chamber does not occur, variation in the combustion state is suppressed and an increase in unburned fuel in the exhaust is suppressed.
  • a volume of one space formed between the throttle valve 24 in the closed position and the intake valve 22 in the closed position is defined as a throttle downstream volume. Since the engine unit 91 has a plurality of intake ports 912 and one injector 923 for one combustion chamber 911, as described in the embodiment of the present invention, it is between the injection hole of the injector 923 and the intake port 912. The distance required is long. Therefore, the required distance between the throttle valve and the intake port 912 is also long. Therefore, the engine unit 1A can arrange the throttle valve 24 at a position closer to the intake port 12 than the engine unit 91 having a plurality of intake ports 912 and one injector 923 for one combustion chamber 911. Therefore, the throttle downstream volume of the engine unit 1A can be reduced.
  • the engine unit 1A can arrange the throttle valve 24 at a position closer to the intake port 12 than an engine unit having a plurality of intake ports and a plurality of injectors for one combustion chamber. Therefore, the throttle downstream volume of the engine unit 1A can be reduced.
  • the throttle downstream volume of an engine unit having a plurality of intake ports, at least one injector, and one throttle valve for one combustion chamber is a space formed by connecting a plurality of intake passage portions.
  • the throttle downstream volume of the engine unit 1A is a space formed in one intake passage portion. Therefore, the throttle downstream volume of the engine unit 1A can be further reduced as compared with the throttle downstream volume of the engine unit having a plurality of intake ports, at least one injector, and one throttle valve for one combustion chamber.
  • the air that has flowed into the combustion chamber 11 from the intake port 12 tends to uniformly diffuse in the circumferential direction of the inner surface of the cylinder hole 10. Therefore, variation in the fuel concentration distribution in the combustion chamber 11 is further suppressed. Therefore, the degree of freedom in designing the fuel concentration distribution in the combustion chamber 11 can be further improved. Further, by promoting the evaporation of the fuel, the adhesion of the fuel to the inner surface of the single intake passage portion 20 and the intake valve 22 is reduced.
  • the injector 23 is disposed at a position such that the shortest distance D1 between the center P1 of the air inlet 12 and the plurality of injection holes is smaller than three times the diameter of the air inlet 12.
  • the distance from the plurality of injection holes to the intake port 12 is relatively short. Therefore, the injection angle of the fuel injected from the injector 23 can be reliably increased.
  • the diameter of the injected droplets can be reduced while suppressing the plurality of injected droplets from contacting each other. . Due to the small diameter of the ejected droplets, the variation in the fuel concentration distribution in the combustion chamber 11 can be further suppressed.
  • the degree of freedom in designing the fuel concentration distribution in the combustion chamber 11 can be further improved.
  • the degree of freedom in designing the concentration distribution of the fuel in the combustion chamber 11 is further increased. It can be improved.
  • the injection center line Ci1 of the injector 23 passes through the single air inlet 12. If the fuel is injected so that the injection center line Ci1 does not pass through the intake port 12, even if the fuel is injected so that the first region A11 is annular, the single intake valve 22 and the single intake port 12 The amount of fuel passing through the gap is nonuniform in the circumferential direction of the gap. The concentration of fuel at a specific position in the combustion chamber 11 tends to increase. In this specific example, since the injection center line Ci1 passes through the single intake port 12, variation in fuel passing through the gap between the single intake valve 22 and the single intake port 12 is suppressed. Therefore, variation in the fuel concentration distribution in the combustion chamber 11 is further suppressed. Therefore, the degree of freedom in designing the fuel concentration distribution in the combustion chamber 11 can be further improved.
  • the single inlet injector 23 is disposed so that the injection center line Ci1 passes through the stem portion 22b of the intake valve 22 in the open position when viewed in the direction of the cylinder axis Cy1 (see FIG. 3A). . Therefore, when viewed in the direction of the cylinder axis Cy1, the injection center line Ci1 is likely to pass through the center P1 of the intake port 12 or the vicinity thereof. Therefore, variation in the fuel concentration distribution in the combustion chamber 11 is further suppressed. Therefore, the degree of freedom in designing the fuel concentration distribution in the combustion chamber 11 can be further improved.
  • the injector 23 is arranged so that the injection center line Ci1 passes through the stem portion 22b and the umbrella portion of the intake valve 22 when the intake port 12 is open when viewed in a direction orthogonal to the plane S2 (FIG. 2). reference). That is, when viewed in a direction perpendicular to the plane S2, the injection center line Ci1 passes through the center P1 of the inlet 12 or the vicinity thereof. Therefore, variation in the fuel concentration distribution in the combustion chamber 11 is further suppressed. Therefore, the degree of freedom in designing the fuel concentration distribution in the combustion chamber 11 can be further improved.
  • the injector 23 is arranged so that the injection center line Ci1 passes through the stem portion 22b and the umbrella portion of the intake valve 22 when the intake port 12 is open. That is, the injection center line Ci1 passes through the center P1 of the intake port 12 or the vicinity thereof. Therefore, variation in the fuel concentration distribution in the combustion chamber 11 is further suppressed. Therefore, the degree of freedom in designing the fuel concentration distribution in the combustion chamber 11 can be further improved.
  • the diameter of the intake port 12 is larger than the diameter of the exhaust port 13. Since the diameter of the intake port 12 is relatively large, the diameter of the single intake passage portion 20 is also relatively large. Since the diameter of the single intake passage portion 20 is large, the injection angle of the fuel injected from the injector 23 can be increased. Since the injection angle of the fuel injected from the injector 23 is large, the diameter of the injected droplets can be reduced while suppressing the plurality of injected droplets from contacting each other. Due to the small diameter of the ejected droplets, the variation in the fuel concentration distribution in the combustion chamber 11 can be further suppressed. Therefore, the degree of freedom in designing the fuel concentration distribution in the combustion chamber 11 can be further improved.
  • the total cross-sectional area of the two intake passage portions 920 needs to be substantially the same as the cross-sectional area of one intake passage portion when the two intake ports 912 are changed to one intake port. Therefore, the total circumference of the two intake passage portions 920 is longer than the circumference of one intake passage portion when the two intake ports 912 are changed to one intake port. The longer the circumference of the intake passage portion, the larger the area of the inner surface of the intake passage portion.
  • a conventional engine unit 91 having two intake ports 912 for one combustion chamber 911 has a concentration of the outer peripheral portion from the injector 923 in order to reduce fuel adhesion to the intake valve 922 and / or the intake passage portion 920.
  • the fuel is injected so as to be higher than the concentration in the center. Therefore, those skilled in the art should not consider changing the fuel deposition to increase.
  • the diameter of the droplet of fuel injected from the injector is larger than that of the engine unit 91 having two intake ports 912 for one combustion chamber 911. It was found that can be reduced. As a result, evaporation of the fuel is promoted, so that it is possible to suppress the fuel from adhering to the intake passage and the intake valve as compared with the conventional engine unit 91 having two intake ports 912 for one combustion chamber 911. I understood.
  • the injection of fuel toward one intake port 912 in one injector 923 that injects fuel toward two intake ports 912 formed in one combustion chamber 911 is performed as 1
  • the amount of fuel injected toward one intake port is approximately twice the amount of fuel injected toward one intake port in an injector 923 that injects fuel toward two intake ports 912. Need to increase. As the amount of fuel increases, fuel droplets are more likely to come into contact with each other. This makes it difficult for the fuel droplets to evaporate. Therefore, those skilled in the art should think that the adhesion of fuel to the intake valve increases.
  • a conventional engine unit 91 having two intake ports 912 for one combustion chamber 911 has a concentration of the outer peripheral portion from the injector 923 in order to reduce fuel adhesion to the intake valve 922 and / or the intake passage portion 920.
  • the fuel is injected so as to be higher than the concentration in the center. Therefore, those skilled in the art should not consider changing the fuel deposition to increase.
  • the fuel injected from the injector is larger than the engine unit 91 having two intake ports 912 and one injector 923 for one combustion chamber 911. It was found that the diameter of the liquid droplets can be reduced. As a result, evaporation of the fuel is promoted, so that it is possible to suppress the fuel from adhering to the intake passage and the intake valve as compared with the conventional engine unit 91 having two intake ports 912 for one combustion chamber 911. I understood.
  • the region where the fuel on the first plane intersecting the injection direction of the liquid droplets may have two or more first regions.
  • the region where the fuel exists on the first plane may include a region other than the first region in addition to the one first region.
  • the region where the fuel exists on the first plane does not include a region having a higher fuel concentration than the first region.
  • the region where the fuel exists on the first plane may include a second region in contact with the entire inner peripheral end of the first region.
  • the concentration of fuel in the first region is higher than the concentration of fuel in the second region. That is, the average value of the mass of fuel per unit volume or unit area of the first region is larger than the average value of the mass of fuel per unit volume or unit area of the second region.
  • the region where the fuel on the first plane exists may include a region between both ends in the circumferential direction of the first region. However, the concentration of the fuel in the region between the circumferential ends of the first region is the same as or lower than the concentration of the fuel in the first region.
  • the plurality of first regions may be arranged in the circumferential direction along the edge of one circle or one oval. That the outer peripheral edge of the first region is along at least part of the edge of one circle or one oval means that only a part of the outer edge of the first region is at least one edge of one circle or one oval. It is not included when it is along the section. Thus, for example, if fuel is present along the entire circumference of the circle edge in two circles that fit within one ellipse, the region where the fuel exists along the entire circumference of the circle edge is It does not correspond to the first region of the invention.
  • FIGS. 10, 11, and 12 (a) to 12 (c) are diagrams showing three specific examples of this modification.
  • FIG. 10, FIG. 11 and FIG. 12 (a) are explanatory diagrams of one modified example.
  • FIG. 11 is a view of the engine unit as viewed in a direction orthogonal to the second plane.
  • FIG. 10 and FIG. 12A show the first area A21 and the second area A22 on the first plane S21.
  • region A22 is an area
  • the outer peripheral end of the first region A21 is an arc having an angle of 90 ° or more. Therefore, as shown in FIG.
  • the center in the circumferential direction of the outer peripheral end of the first region A21 is a 90 ° arc CA2 on the first plane S21 having both ends passing through both ends of the first region A21 in the circumferential direction.
  • An arrow Dx shown in FIG. 10 indicates a direction on the first plane S21 parallel to the second plane
  • an arrow Dy indicates a direction on the first plane S21 parallel to the third plane.
  • the injection center line Ci2 passes through the second region A22.
  • the first plane S21 has the shortest length in the Dx direction of the region where the fuel on the plane is present among the plurality of planes passing through one point on the injection center line Ci2, and the fuel on the plane. This is a plane in which the length in the Dy direction of the region where is present is the shortest.
  • FIG. 12B shows the first region A31 and the second region A32 on the first plane S31.
  • the second region A32 is a region surrounded by the entire inner peripheral end of the first region A31 and a line segment connecting both ends in the circumferential direction of the inner peripheral end of the first region A31.
  • the outer peripheral end of the first region A31 is an arc having an angle of 90 ° or more. Therefore, the center in the circumferential direction of the outer peripheral end of the first region A31 is on the radially outer side of the 90 ° arc CA3 on the first plane S31 having both ends passing through both ends of the first region A31 in the circumferential direction.
  • the injection center line Ci3 passes through the second region A32.
  • the first plane S31 has the shortest length in the direction parallel to the second plane of the region where the fuel exists on the plane among the plurality of planes passing through one point on the injection center line Ci3, and This is the plane where the length in the direction parallel to the third plane of the region where the fuel exists on the plane is the shortest.
  • FIG. 12C shows a first area A41 and a second area A42 on the first plane S41.
  • the second region A42 is a region surrounded by the entire inner peripheral end of the first region A41 and a line segment connecting both ends in the circumferential direction of the inner peripheral end of the first region A41.
  • the outer peripheral end of one area A41 is an arc having an angle of less than 90 °. Therefore, the center in the circumferential direction of the outer peripheral end of the first region A41 is located on the radially inner side of the 90 ° arc CA4 on the first plane S41 having both ends passing through both ends of the first region A41 in the circumferential direction.
  • the injection center line Ci4 passes through the first region A41.
  • the first plane S41 has the shortest length in the direction parallel to the second plane of the region where the fuel exists on the plane among the plurality of planes passing through one point on the injection center line Ci4, and This is the plane where the length in the direction parallel to the third plane of the region where the fuel exists on the plane is the shortest.
  • FIG. 13A is a diagram showing one specific example of this modification.
  • the shape of the oval is not limited to the shape shown in FIG.
  • FIG. 13A shows a first area A51 and a second area A52 on the first plane S51.
  • the injection center line Ci5 passes through the second region A52.
  • the first plane S51 has the shortest length in the direction parallel to the second plane of the region where the fuel exists on the plane among the plurality of planes passing through one point on the injection center line Ci5, and This is the plane where the length in the direction parallel to the third plane of the region where the fuel exists on the plane is the shortest.
  • a plurality of fuels injected from the single inlet injector at a certain time immediately after injection may be present in one oval along a part of the edge of the oval.
  • the region where the fuel on the first plane is present includes a non-annular first region along a portion of the edge of the oval.
  • the concentration of the fuel in the annular first region is higher than the concentration of the fuel in the second region in contact with the entire inner peripheral edge of the first region on the first plane.
  • fuel may or may not be present in the second region.
  • FIG. 13B to FIG. 13E are diagrams showing four specific examples of this modification.
  • the shape of the oval is not limited to the shapes shown in FIGS. 13 (b) to 13 (e).
  • FIG. 13B shows a first area A61 and a second area A62 on the first plane S61.
  • the second region A62 is a region surrounded by the entire inner peripheral end of the first region A61 and a line segment connecting both circumferential ends of the inner peripheral end of the first region A61.
  • the center in the circumferential direction of the outer peripheral end of the first region A61 is on the radially outer side of the 90 ° arc CA6 on the first plane S61 having both ends passing through both ends of the first region A61 in the circumferential direction.
  • the injection center line Ci6 passes through the second region A62.
  • the first plane S61 has the shortest length in the direction parallel to the second plane of the region where the fuel exists on the plane among the plurality of planes passing through one point on the injection center line Ci6, and This is the plane where the length in the direction parallel to the third plane of the region where the fuel exists on the plane is the shortest.
  • FIG. 13C shows a first area A71 and a second area A72 on the first plane S71.
  • region A72 is an area
  • the center in the circumferential direction of the outer peripheral end of the first region A71 is radially inward of the 90 ° arc CA7 on the first plane S71 having both ends passing through both ends of the first region A71 in the circumferential direction.
  • the injection center line Ci7 passes through the second region A72.
  • the first plane S71 has the shortest length in the direction parallel to the second plane of the region where the fuel on the plane is present among the plurality of planes passing through one point on the injection center line Ci7, and This is the plane where the length in the direction parallel to the third plane of the region where the fuel exists on the plane is the shortest.
  • FIG. 13D shows the first area A81 and the second area A82 on the first plane S81.
  • the second region A82 is a region surrounded by the entire inner peripheral end of the first region A81 and a line segment connecting both circumferential ends of the inner peripheral end of the first region A81.
  • the center in the circumferential direction of the outer peripheral end of the first region A81 is on the radially outer side of the 90 ° arc CA8 on the first plane S81 having both ends passing through both ends of the first region A81 in the circumferential direction.
  • the injection center line Ci8 passes through the second region A82.
  • the first plane S81 has the shortest length in the direction parallel to the second plane of the region where the fuel on the plane is present among the plurality of planes passing through one point on the injection center line Ci8, and This is the plane where the length in the direction parallel to the third plane of the region where the fuel exists on the plane is the shortest.
  • FIG. 13E shows a first area A91 and a second area A92 on the first plane S91.
  • the second region A92 is a region surrounded by the entire inner peripheral end of the first region A91 and a line segment connecting both ends in the circumferential direction of the inner peripheral end of the first region A91.
  • the center in the circumferential direction of the outer peripheral end of the first region A91 is on the radially outer side of a 90 ° arc CA9 on the first plane S91 having both ends passing through both ends of the first region A91 in the circumferential direction.
  • the injection center line Ci9 passes through the first region A91.
  • the first plane S91 has the shortest length in the direction parallel to the second plane of the region where the fuel on the plane is present among the plurality of planes passing through one point on the injection center line Ci9, and This is the plane where the length in the direction parallel to the third plane of the region where the fuel exists on the plane is the shortest.
  • the circumferential center of the outer periphery of the first region is the first region.
  • the circumferential length of the non-annular first region is long. Therefore, it is possible to inject a sufficient amount of fuel from the single inlet injector while reducing the diameter of the ejected droplets so that the plurality of ejected droplets can be prevented from coming into contact with each other.
  • the direction in which the piston descends during the intake stroke is defined as the piston descending direction.
  • the piston downward direction is a direction parallel to the central axis of the cylinder hole.
  • the center in the circumferential direction of the outer peripheral end of the first region is a piston from both ends in the circumferential direction of the first region. It is preferable that it exists in the position away in the downward direction.
  • FIG. 10, FIG. 11 and FIG. 12 (a) show one specific example of this modification.
  • An arrow PD shown in FIG. 11 indicates the piston downward direction. As shown in FIG.
  • the circumferential center Ac of the outer peripheral end of the non-annular first region A21 is the piston from both ends in the circumferential direction of the first region A21. It is in a position away in the downward direction.
  • the circumferential center Ac of the outer peripheral end of the non-annular first region A21 is located away from the injection center line Ci2 in the piston descending direction. According to this configuration, the adhesion of fuel to the stem portion 22b of the single intake valve 22 can be suppressed.
  • region is the circumferential direction both ends of 1st area
  • the injection center line passes through the first region or the second region.
  • the injection center line passes through the second region.
  • the injection center line may pass through the second region or may pass through the first region.
  • the first plane of the present invention has the shortest length in a direction parallel to the second plane of the region where the fuel exists on the plane among a plurality of planes passing through one point on the injection center line, and It is preferable that the length of the region where the fuel exists on the plane is shortest in the direction parallel to the third plane.
  • the first plane is a plane having the smallest variation in distance from the plurality of injection holes of the single inlet injector to the first region among the plurality of planes passing through one point on the injection center line. can do.
  • the first plane of the present invention satisfies this condition, the first plane may or may not be orthogonal to the injection center line.
  • the first plane of the present invention may not satisfy this condition.
  • the first plane may or may not be orthogonal to the injection center line.
  • the fuel concentration distribution in the first region A1 is substantially constant in the circumferential direction of the first region A1.
  • the concentration distribution of the fuel in the first region in the present invention may not be constant in the circumferential direction of the first region.
  • the fuel concentration distribution in the first region may be asymmetric about the first plane.
  • the fuel concentration distribution in the first region may be asymmetric about the second plane.
  • the fuel concentration distribution in the first region may be asymmetric about the third plane.
  • the plane that includes the center of the single inlet and the center axis of the cylinder hole is the fourth plane.
  • the fourth plane is the same as the plane S2 (second plane).
  • the fuel concentrations on both sides of the plane S2 in the combustion chamber 11 are substantially the same.
  • the concentration of the fuel may be higher in the space on the both sides of the fourth plane in the combustion chamber where the spark plug insertion port is located.
  • the injector 23 of a specific example of the embodiment may be changed as follows. For example, the injection direction may be changed so that the injection center line Ci1 approaches the spark plug insertion port when viewed in the direction of the center axis of the cylinder hole.
  • the injection amount may be changed so that the concentrations of the fuel injected from the injector 23 on both sides of the second plane (plane S2) are different from each other.
  • the injection amount can be adjusted, for example, by changing the size of the injection holes and the density of the arrangement of the injection holes.
  • the injection center line Ci1 of the injector 23A of the specific example of the embodiment passes through the cylinder axis Cy1 when viewed in the direction of the cylinder axis Cy1.
  • the injection center line of the single inlet injector of the present invention does not have to pass through the center axis of the cylinder hole when viewed in the direction of the center axis of the cylinder hole.
  • the injection center line Ci1 of the injector 23A of the specific example of the embodiment coincides with the center axis Cv1 of the stem portion 22b of the intake valve 22 when viewed in the direction of the cylinder axis Cy1.
  • the injection center line of the single inlet injector of the present invention does not have to coincide with the center axis of the stem portion when viewed in the direction of the center axis of the cylinder hole.
  • the injection center line Ci1 of the injector 23A of the specific example of the embodiment passes through the stem portion 22b and the umbrella portion 22a of the intake valve 22 in the open position when viewed in the direction of the cylinder axis Cy1.
  • the injection center line of the single inlet injector of the present invention does not have to pass through the stem portion of the single intake valve in the open position when viewed in the direction of the center axis of the cylinder hole.
  • the injection center line of the single inlet injector of the present invention does not have to pass through the umbrella portion of the single intake valve in the open position when viewed in the direction of the center axis of the cylinder hole.
  • the injection center line Ci1 of the injector 23A of the specific example of the embodiment passes through the stem portion 22b and the umbrella portion 22a of the intake valve 22 in the closed position when viewed in the direction of the cylinder axis Cy1.
  • the injection center line of the single inlet injector of the present invention does not have to pass through the stem portion of the single intake valve in the closed position when viewed in the direction of the center axis of the cylinder hole.
  • the injection center line Ci1 of the injector 23A of the specific example of the embodiment passes through the stem portion 22b and the umbrella portion 22a of the intake valve 22 in the open position when viewed in a direction orthogonal to the plane S2.
  • the injection center line of the single inlet injector of the present invention does not have to pass through the stem portion of the single intake valve in the open position when viewed in the direction orthogonal to the second plane.
  • the injection center line of the single intake port injector of the present invention does not have to pass through the umbrella portion of the single intake valve in the open position when viewed in the direction orthogonal to the second plane.
  • the injection center line of the single inlet injector of the present invention does not have to pass through both the umbrella portion and the stem portion of the single intake valve in the open position when viewed in the direction perpendicular to the second plane. Only the umbrella portion of the umbrella portion and the stem portion of the single intake valve in the open position may pass, or only the stem portion of the umbrella portion and the stem portion of the single intake valve in the open position may pass.
  • the injection center line Ci1 of the injector 23A of the specific example of the embodiment passes through the stem portion 22b and the umbrella portion 22a of the single intake valve 22 in the open position.
  • the injection center line of the single inlet injector of the present invention may not pass through the stem portion of the single intake valve in the open position.
  • the injection center line of the single inlet injector of the present invention may not pass through the umbrella portion of the single intake valve in the open position.
  • the injection center line of the injector for a single intake port of the present invention may not pass through both the umbrella portion and the stem portion of the single intake valve in the open position, and the umbrella portion of the single intake valve in the open position Only the umbrella part of the stem part may be passed, or only the stem part of the umbrella part and the stem part of the single intake valve in the open position may be passed.
  • the injection center line Ci1 of the injector 23A of the specific example of the embodiment passes through the intake port 12.
  • the injection center line of the single inlet injector of the present invention may not pass through the inlet.
  • the shortest distance between the plurality of injection holes and the center of the single intake port may be at least twice as long as the diameter of the single intake port.
  • the shortest distance between the plurality of injection holes and the center of the single air inlet may be at least three times as long as the diameter of the single air inlet.
  • the engine unit 1 ⁇ / b> A of the specific example of the embodiment has only one exhaust port 13 for one combustion chamber 11.
  • the engine unit of the present invention may have a plurality of exhaust ports for one combustion chamber.
  • one single intake port and two exhaust ports may be formed in one combustion chamber.
  • the diameter of the intake port 12 is larger than the diameter of the exhaust port 13.
  • the diameter of the single intake port may be the same as or smaller than the diameter of the exhaust port.
  • the end face of the umbrella portion 22a of the intake valve 22 facing the combustion chamber 11 is parallel to the plane S4 including the entire circumference of the intake port 12 (see FIG. 2).
  • the end face of the umbrella portion of the single intake valve facing the combustion chamber may not be parallel to a plane including the entire circumference of the single intake port.
  • the central axis Cv1 of the stem portion 22b of the intake valve 22 is orthogonal to the plane S4 including the entire circumference of the intake port 12 (see FIG. 2).
  • the central axis of the stem portion of the single intake valve may not be orthogonal to the plane including the entire circumference of the single intake port.
  • the central axis Cv1 of the stem portion 22b of the intake valve 22 passes through the center P1 of the intake port 12 (see FIGS. 2 and 3A).
  • the central axis of the stem portion of the single intake valve may not pass through the center of the single intake port.
  • the central axis Cv1 of the stem portion 22b of the intake valve 22 passes through the cylinder axis Cy1 when viewed in the direction of the cylinder axis Cy1 (see FIG. 3A).
  • the central axis of the stem portion of the single intake valve of the present invention does not have to pass through the central axis of the cylinder hole when viewed in the direction of the central axis of the cylinder hole.
  • a specific example of the engine unit 1A in the embodiment is a single cylinder engine.
  • the engine unit of the present invention may be a multi-cylinder engine. That is, the engine unit of the present invention may have a plurality of combustion chambers. The number of combustion chambers is not particularly limited.
  • the engine unit has a single intake port, a single intake valve, a single intake port injector, and a single intake passage portion, one for each combustion chamber.
  • the engine unit of the present invention has at least one cylinder intake passage portion and at least one external intake passage portion.
  • the engine unit may have a plurality of cylinder intake passage portions.
  • the engine unit may have one cylinder intake passage portion for each combustion chamber.
  • the engine unit may have a plurality of external intake passage portions.
  • the engine unit may have one external intake passage portion for each combustion chamber.
  • the number of cylinder intake passage portions may be the same as or less than the number of single intake passage portions. When the number of cylinder intake passage portions is smaller than the number of single intake passage portions, the cylinder intake passage portion has a branched shape and has a plurality of inflow ports into which air flows.
  • the number of external intake passage portions is the same as the number of cylinder intake passage portions.
  • the number of external intake passage portions may be the same as or less than the number of cylinder intake passage portions. That is, the number of external intake passage portions may be the same as the number of single intake passage portions, or may be smaller than that.
  • the external intake passage portion has a plurality of inflow ports that are branched and into which air flows.
  • the single intake passage portion is configured to pass through the interior of the single intake passage portion without being separated or joined together.
  • the engine unit of the present invention may have a throttle valve for each combustion chamber.
  • one cylinder intake passage portion and one external intake passage portion are provided for each combustion chamber.
  • Each of the plurality of throttle valves is provided in the external intake passage portion.
  • the engine unit may have one throttle valve for the plurality of combustion chambers.
  • the external intake passage portion or the cylinder intake passage portion has a plurality of one inflow ports that are branched and into which air flows.
  • the number of cylinder intake passage portions is smaller than the number of single intake passage portions, or the number of external intake passage portions is smaller than the number of cylinder intake passage portions.
  • a plurality of single intake passage portions are connected at a position downstream of the throttle valve and upstream of the single intake port injector in the air flow direction.
  • the throttle valve is provided in the external intake passage portion.
  • the volume of one space formed between the throttle valve in the closed position and the intake valve in the closed position is defined as the throttle downstream volume.
  • the throttle downstream volume is a space formed in one intake passage portion.
  • the throttle downstream volume is a space formed by connecting a plurality of intake passage portions provided for each combustion chamber. Therefore, the throttle downstream volume of the engine unit having one throttle valve per combustion chamber can be made smaller than the throttle downstream volume of the engine unit having one throttle valve for a plurality of combustion chambers.
  • the timings of the intake strokes of the plurality of combustion chambers may be the same. Moreover, the timing of the intake stroke of any two combustion chambers of the plurality of combustion chambers may be different from each other, and the timing of the intake stroke of any two other combustion chambers of the plurality of combustion chambers may be the same. . Further, the timing of the intake stroke of any one of the plurality of combustion chambers may be different from the timing of any intake stroke of the remaining combustion chambers.
  • the same timing of the intake stroke does not include that the intake strokes overlap only partially.
  • the type of the engine unit may be a multi-cylinder engine in which a plurality of combustion chambers are arranged in a straight line.
  • the central axes of the plurality of cylinder holes of the engine unit are parallel or substantially parallel.
  • the type of the engine unit may be a V-type engine.
  • the V-type engine has two cylinder holes arranged so that the center axis thereof is V-shaped when viewed in the direction of the center axis of the crankshaft.
  • the central axis has a plurality of cylinder holes arranged in parallel or substantially in parallel.
  • the first region of the present invention corresponds to the outer peripheral region of the basic application (Japanese Patent Application No. 2018-10000176) of the present application.
  • the second region of the present invention corresponds to the central peripheral region of the basic application of the present application.
  • the first plane of the present invention is an example of the third plane of the basic application of the present application.
  • the second plane of the present invention corresponds to the first plane of the basic application of the present application.
  • the third plane of the present invention corresponds to the second plane of the basic application of the present application.

Abstract

An engine unit 1 has one air intake 12, one intake valve 22, and one injector 23 with respect to one combustion chamber 11. In a case in which a fuel is injected from the injector 23 into a space where there is only atmosphere, with the injector 23 not mounted on the engine unit, the fuel in a first plane S1 that intersects the directions of injection of a plurality of fuel droplets exists within one circle along the edge of the one circle, at a certain point immediately after the injection. The fuel is injected from a plurality of injection holes, during an intake stroke, such that the concentration of the fuel in a first area A1 that is located along the edge of the circle in the first plane S1 becomes higher than the concentration of the fuel in a second area A2 that is located adjacent to the entire inner edge of the first area A1.

Description

エンジンユニットEngine unit
 本発明は、吸気通路部内に燃料を噴射するインジェクタを有するエンジンユニットに関する。 The present invention relates to an engine unit having an injector for injecting fuel into an intake passage portion.
 従来、吸気通路部内に燃料を噴射するインジェクタを有するエンジンユニットが知られている(例えば特許文献1参照)。吸気通路部は、燃焼室の吸気口に接続されている。吸気口は吸気弁によって開閉される。 Conventionally, an engine unit having an injector that injects fuel into an intake passage is known (see, for example, Patent Document 1). The intake passage portion is connected to the intake port of the combustion chamber. The intake port is opened and closed by an intake valve.
特開2012-154209号公報JP 2012-154209 A
 吸気通路部に燃料を噴射するインジェクタを有するエンジンユニットは、燃焼室内の燃料の濃度分布の設計自由度を向上させることが求められている。例えば、燃焼室内の燃料濃度を均一化することが求められる場合や、点火プラグ周りの燃料濃度を他の部分よりも高くすることが求められる場合がある。 Engine units having injectors that inject fuel into the intake passage are required to improve the degree of freedom in designing the fuel concentration distribution in the combustion chamber. For example, it may be required to make the fuel concentration in the combustion chamber uniform, or it may be required to make the fuel concentration around the spark plug higher than other portions.
 本発明の目的は、燃焼室内の燃料の濃度分布の設計自由度を向上できるエンジンユニットを提案することである。 An object of the present invention is to propose an engine unit capable of improving the degree of freedom in designing the fuel concentration distribution in the combustion chamber.
 (1)本発明のエンジンユニットは、各々の一部がシリンダ孔の内面によって形成された少なくとも1つの燃焼室、前記少なくとも1つの燃焼室に形成された少なくとも1つの吸気口、および、前記少なくとも1つ吸気口に接続され、内部に流入した空気が前記少なくとも1つの吸気口から前記少なくとも1つの燃焼室に供給される少なくとも1つのシリンダ吸気通路部を、その内部に有するシリンダ部と、前記シリンダ部の外部に配置され、前記少なくとも1つのシリンダ吸気通路部に接続され、内部に流入した空気が前記少なくとも1つのシリンダ吸気通路部に供給される少なくとも1つの外部吸気通路部と、前記少なくとも1つの吸気口を開く位置と前記少なくとも1つの吸気口を閉じる位置との間で移動可能な少なくとも1つの吸気弁と、各々が燃料を霧状に噴射可能な複数の噴射孔を有し、前記複数の噴射孔が前記シリンダ吸気通路部内または前記外部吸気通路部内に位置するように前記シリンダ吸気通路部または前記外部吸気通路部に設置される少なくとも1つのインジェクタと、前記少なくとも1つのインジェクタの燃料の噴射を制御する制御装置とを備えた4ストロークサイクルのエンジンユニットである。前記吸気口、前記吸気弁、および前記インジェクタは、前記燃焼室毎に1つずつ設けられ、単一吸気口、単一吸気弁、および単一吸気口用インジェクタをそれぞれ構成する。前記少なくとも1つのシリンダ吸気通路部および前記少なくとも1つの外部吸気通路部が、少なくとも1つの単一吸気通路部を含む。前記単一吸気通路部は、前記燃焼室毎に1つ設けられ、前記単一吸気口用インジェクタが設置された箇所から前記単一吸気口までの領域であって、その内部を空気の流れが分離または合流することなく通過するように構成される。前記単一吸気口用インジェクタは、(a)前記単一吸気口に向かって燃料を噴射するように配置され、(b)前記エンジンユニットに装着されていない状態で大気だけの空間に燃料を噴射した場合、噴射直後のある時点に、(i)前記単一吸気口用インジェクタから噴射された複数の燃料の液滴の噴射方向に交差する第1平面上の燃料が、1つの円または1つのオーバルの中に、前記1つの円または前記1つのオーバルの縁の少なくとも一部に沿うように存在し、(ii)前記第1平面上の燃料が存在する領域に含まれ、その外周端と内周端が前記1つの円または前記1つのオーバルの縁の少なくとも一部に沿った第1領域の燃料の濃度が、前記第1平面上において前記第1領域の内周端全体に接する第2領域の燃料の濃度よりも高くなるように構成され、(c)吸気行程時であって前記単一吸気弁が前記単一吸気口を開く位置にあるときに燃料を噴射するように前記制御装置によって制御される。1つの前記燃焼室に供給される燃料は、1つの前記単一吸気口用インジェクタから噴射されて1つの前記単一吸気口を通過した燃料である。 (1) The engine unit according to the present invention includes at least one combustion chamber partially formed by an inner surface of a cylinder hole, at least one intake port formed in the at least one combustion chamber, and the at least one A cylinder portion having at least one cylinder intake passage portion connected to one intake port and supplying air flowing into the at least one combustion chamber from the at least one intake port, and the cylinder portion And at least one external intake passage portion that is connected to the at least one cylinder intake passage portion and is supplied to the at least one cylinder intake passage portion, and the at least one intake air. At least one suction port movable between a position to open the mouth and a position to close the at least one inlet. A valve and a plurality of injection holes each capable of injecting fuel in the form of a mist, wherein the plurality of injection holes are located in the cylinder intake passage part or in the external intake passage part. A four-stroke cycle engine unit comprising at least one injector installed in an external intake passage section and a control device for controlling fuel injection of the at least one injector. One intake port, one intake valve, and one injector are provided for each combustion chamber, and constitute a single intake port, a single intake valve, and a single intake port injector, respectively. The at least one cylinder intake passage portion and the at least one external intake passage portion include at least one single intake passage portion. The single intake passage portion is provided for each combustion chamber, and is a region from the place where the single intake port injector is installed to the single intake port, in which the flow of air flows. Configured to pass without separation or merging. The single inlet injector is (a) arranged to inject fuel toward the single inlet, and (b) injects fuel into an atmosphere-only space when not mounted on the engine unit. In this case, at a certain time immediately after injection, (i) the fuel on the first plane crossing the injection direction of the plurality of fuel droplets injected from the single inlet injector is one circle or one The oval is present along at least a part of the edge of the one circle or the one oval, and (ii) is included in the region where the fuel on the first plane exists, The second region where the concentration of the fuel in the first region along the edge of the one circle or at least part of the edge of the one oval is in contact with the entire inner peripheral end of the first region on the first plane. To be higher than the fuel concentration of It made which are controlled by the control device so as to inject fuel when in the single intake valve said single intake open mouth position a time (c) an intake stroke. The fuel supplied to one combustion chamber is fuel that is injected from one injector for the single intake port and passes through the single intake port.
 この構成によると、本発明のエンジンユニットは、4ストロークサイクルのエンジンユニットである。エンジンユニットは、少なくとも1つの燃焼室を有するシリンダ部を有する。少なくとも1つの燃焼室の各々の一部は、シリンダ孔の内面によって形成される。シリンダ部は、少なくとも1つのシリンダ吸気通路部を有する。少なくとも1つのシリンダ吸気通路部は、シリンダ部の外部に配置された少なくとも1つの外部吸気通路部に接続される。少なくとも1つの外部吸気通路部に流入した空気は、少なくとも1つのシリンダ吸気通路部と少なくとも1つの吸気口を通って、少なくとも1つの燃焼室に供給される。エンジンユニットは、燃焼室毎に1つずつ設けられた単一吸気通路部、単一吸気口、単一吸気弁、および単一吸気口用インジェクタを有する。つまり、エンジンユニットは、単一吸気通路部、単一吸気口、単一吸気弁、および単一吸気口用インジェクタを、燃焼室と同じ数だけ有する。少なくとも1つのシリンダ吸気通路部および少なくとも1つの外部吸気通路部が、少なくとも1つの単一吸気通路部を含んでいる。単一吸気口は、燃焼室に形成されており、単一吸気通路部に接続されている。単一吸気弁は、単一吸気口を開閉する。単一吸気口用インジェクタは、シリンダ吸気通路部または外部吸気通路部に設置される。単一吸気通路部は、単一吸気口用インジェクタが設置された箇所から単一吸気口までの領域を少なくとも含む。単一吸気通路部は、単一吸気口用インジェクタが設置された箇所から単一吸気口までの領域である。単一吸気通路部は、空気の流れが分離または合流することなく通過するように構成される。単一吸気口用インジェクタは、燃料を霧状に噴射する複数の噴射孔を有する。単一吸気口用インジェクタは、単一吸気口に向かって燃料を噴射するように配置される。単一吸気口用インジェクタの燃料の噴射は、エンジンユニットが有する制御装置によって制御される。単一吸気口用インジェクタは、吸気行程時であって単一吸気弁が単一吸気口を開く位置にあるときに燃料を噴射するように制御装置によって制御される。 According to this configuration, the engine unit of the present invention is a four-stroke cycle engine unit. The engine unit has a cylinder portion having at least one combustion chamber. A portion of each of the at least one combustion chamber is formed by the inner surface of the cylinder bore. The cylinder part has at least one cylinder intake passage part. The at least one cylinder intake passage portion is connected to at least one external intake passage portion disposed outside the cylinder portion. The air that has flowed into the at least one external intake passage portion is supplied to the at least one combustion chamber through the at least one cylinder intake passage portion and the at least one intake port. The engine unit has a single intake passage portion, a single intake port, a single intake valve, and a single intake port injector provided for each combustion chamber. That is, the engine unit has the same number of single intake passage portions, single intake ports, single intake valves, and single intake port injectors as the number of combustion chambers. At least one cylinder intake passage portion and at least one external intake passage portion include at least one single intake passage portion. The single intake port is formed in the combustion chamber and is connected to the single intake passage portion. The single intake valve opens and closes a single intake port. The single intake port injector is installed in the cylinder intake passage portion or the external intake passage portion. The single intake passage portion includes at least a region from a location where the single intake port injector is installed to the single intake port. The single intake passage portion is an area from the location where the single intake port injector is installed to the single intake port. The single intake passage portion is configured such that air flows pass through without separation or merging. The single inlet injector has a plurality of injection holes for injecting fuel in the form of a mist. The single inlet injector is arranged to inject fuel toward the single inlet. The fuel injection of the single inlet injector is controlled by a control device of the engine unit. The single intake port injector is controlled by the control device so as to inject fuel when the single intake valve is in a position to open the single intake port during the intake stroke.
 単一吸気口用インジェクタは、単一吸気口用インジェクタがエンジンユニットに装着されていない状態で大気だけの空間に燃料を噴射した場合、噴射直後のある時点に、以下の2つの要件を満たすように構成される。1つ目の要件は、単一吸気口用インジェクタから噴射された複数の燃料の液滴の噴射方向に交差する第1平面上の燃料が、1つの円または1つのオーバルの中に、当該1つの円または当該1つのオーバルの縁の少なくとも一部に沿うように存在することである。2つ目の要件は、第1平面上の燃料が存在する領域に含まれ、その外周端と内周端が当該1つの円または当該1つのオーバルの縁の少なくとも一部に沿った第1領域の燃料の濃度が、第1平面上において第1領域の内周端全体と接する第2領域の燃料の濃度よりも高いことである。つまり、単一吸気口用インジェクタから噴射された霧状の燃料の外周部の濃度は中央部の濃度よりも高い。第1平面上の燃料が存在する領域は、第2領域を含んでも含まなくてもよい。1つの燃焼室に供給される燃料は、1つの単一吸気口用インジェクタから噴射されて1つの単一吸気口を通過した燃料だけである。 When the fuel is injected into an air-only space when the single air inlet injector is not attached to the engine unit, the single air inlet injector should satisfy the following two requirements at a certain time immediately after the injection. Consists of. The first requirement is that the fuel on the first plane intersecting the injection direction of the plurality of fuel droplets injected from the single-inlet injector is placed in one circle or one oval. Exist along at least part of the edge of one circle or the one oval. The second requirement is included in the region where the fuel on the first plane is present, and the first region where the outer peripheral end and the inner peripheral end are along at least part of the edge of the one circle or the one oval. The fuel concentration in the second region is higher than the concentration in the second region in contact with the entire inner peripheral edge of the first region on the first plane. That is, the concentration of the outer peripheral portion of the mist-like fuel injected from the single inlet injector is higher than the concentration of the central portion. The region where the fuel on the first plane is present may or may not include the second region. The fuel supplied to one combustion chamber is only the fuel injected from one single intake port injector and passed through one single intake port.
 仮に、エンジンユニットが1つの燃焼室に対して複数の吸気口を有する場合、複数の吸気口にそれぞれ接続された複数の吸気通路部が設けられる。本発明のエンジンユニットは、1つの燃焼室に対して吸気口を1つだけ有する。そのため、本発明の単一吸気口は、シリンダ孔の径が本発明と同じで1つの燃焼室に対して複数の吸気口を有するエンジンユニットの吸気口と比べて、径が大きい。そのため、本発明の単一吸気通路部は、シリンダ孔の径が本発明と同じで1つの燃焼室に対して複数の吸気口を有するエンジンユニットの吸気通路部と比べて、径が大きい。単一吸気通路部の径が大きいことにより、単一吸気口用インジェクタから噴射される燃料の噴射角度を大きくすることができる。噴射角度とは、ある方向に見て、単一吸気口用インジェクタから噴射された複数の燃料の液滴の噴射方向のうち最も大きい角度である。単一吸気口用インジェクタから噴射される燃料の噴射角度が大きいことにより、噴射された複数の液滴が互いに接触することを抑制しつつ、噴射される液滴の径を小さくすることができる。噴射された液滴の径が小さいことにより、燃焼室に流入した燃料の液滴が、空気の流れに沿って拡散されやすい。それにより、燃焼室内の燃料の濃度分布のばらつきが抑制される。つまり、本発明のエンジンユニットは、1つの燃焼室に対して複数の吸気口を有するエンジンユニットと比べて、燃焼室内の燃料の濃度分布のばらつきが抑制される。 If the engine unit has a plurality of intake ports for one combustion chamber, a plurality of intake passage portions respectively connected to the plurality of intake ports are provided. The engine unit of the present invention has only one intake port for one combustion chamber. Therefore, the diameter of the single intake port of the present invention is larger than that of an engine unit having the same cylinder hole diameter as that of the present invention and having a plurality of intake ports for one combustion chamber. Therefore, the single intake passage portion of the present invention has the same diameter as the cylinder hole of the present invention and a larger diameter than the intake passage portion of the engine unit having a plurality of intake ports for one combustion chamber. Since the diameter of the single intake passage portion is large, the injection angle of the fuel injected from the single intake port injector can be increased. The injection angle is the largest angle among the injection directions of a plurality of fuel droplets injected from a single intake port injector when viewed in a certain direction. Since the injection angle of the fuel injected from the single inlet injector is large, it is possible to reduce the diameter of the injected droplets while suppressing the plurality of injected droplets from contacting each other. Due to the small diameter of the injected droplets, the fuel droplets that have flowed into the combustion chamber are likely to diffuse along the air flow. Thereby, the dispersion | variation in the fuel concentration distribution in a combustion chamber is suppressed. That is, in the engine unit of the present invention, variation in the fuel concentration distribution in the combustion chamber is suppressed as compared with an engine unit having a plurality of intake ports for one combustion chamber.
 仮に、エンジンユニットが1つの燃焼室に対して2つの吸気口と1つのインジェクタを有する場合、複数の吸気口に接続された2つの吸気通路部同士が接続される。そして、インジェクタは、2つの吸気通路部同士が接続される箇所よりも空気の流れ方向の上流に配置される。このインジェクタは、2つの吸気口に向かって燃料を噴射する。一方、本発明のエンジンユニットは、1つの燃焼室に対して1つの吸気口と1つのインジェクタを有する。そのため、本発明の単一吸気口用インジェクタは、1つの燃焼室に対して2つの吸気口と1つのインジェクタを有するエンジンユニットのインジェクタと比べて、吸気口に近い位置に配置できる。単一吸気口用インジェクタが吸気口に近い位置に配置されることにより、単一吸気口用インジェクタから噴射される燃料の噴射角度をより大きくすることができる。上述したように、単一吸気口用インジェクタから噴射される燃料の噴射角度が大きいことにより、噴射された複数の液滴が互いに接触することを抑制しつつ、噴射される液滴の径を小さくすることができる。噴射される液滴の径が小さいことにより、燃焼室に流入した燃料の液滴が、空気の流れに沿って拡散されやすい。そのため、本発明のエンジンユニットは、1つの燃焼室に対して複数の吸気口と1つのインジェクタを有するエンジンユニットと比べて、燃焼室内の燃料の濃度分布のばらつきがより抑制される。 If the engine unit has two intake ports and one injector for one combustion chamber, two intake passage portions connected to a plurality of intake ports are connected to each other. And an injector is arrange | positioned in the upstream of the flow direction of air rather than the location where two intake passage parts are connected. This injector injects fuel toward two intake ports. On the other hand, the engine unit of the present invention has one intake port and one injector for one combustion chamber. Therefore, the single intake port injector of the present invention can be disposed at a position closer to the intake port than an injector of an engine unit having two intake ports and one injector for one combustion chamber. By disposing the single intake port injector at a position close to the intake port, the injection angle of the fuel injected from the single intake port injector can be further increased. As described above, since the injection angle of the fuel injected from the injector for the single intake port is large, it is possible to reduce the diameter of the injected droplet while suppressing the plurality of injected droplets from contacting each other. can do. Due to the small diameter of the ejected droplets, the fuel droplets that flow into the combustion chamber are likely to diffuse along the air flow. Therefore, in the engine unit of the present invention, variation in the fuel concentration distribution in the combustion chamber is further suppressed as compared with an engine unit having a plurality of intake ports and one injector for one combustion chamber.
 仮に、エンジンユニットが1つの燃焼室に対して複数の吸気口を有する場合、複数の吸気口から燃焼室に流入した空気同士が衝突する。一方、本発明のエンジンユニットは、1つの燃焼室に対して吸気口を1つだけ有するため、このような空気の衝突が無い。その上、1つの燃焼室に対して複数の吸気口を有するエンジンユニットと比べて、シリンダ孔の中心軸線に近い位置に吸気口を配置できる。そのため、吸気口から燃焼室内に流入した空気が、シリンダ孔の内面の周方向に均一に拡散しやすい。したがって、本発明のエンジンユニットは、1つの燃焼室に対して複数の吸気口を有するエンジンユニットと比べて、燃焼室内の燃料の濃度分布のばらつきがより抑制される。 If the engine unit has a plurality of intake ports for one combustion chamber, the air flowing into the combustion chamber from the plurality of intake ports collides. On the other hand, since the engine unit of the present invention has only one intake port for one combustion chamber, there is no such air collision. In addition, the intake port can be disposed at a position closer to the central axis of the cylinder hole than an engine unit having a plurality of intake ports for one combustion chamber. Therefore, the air that has flowed into the combustion chamber from the intake port is likely to diffuse uniformly in the circumferential direction of the inner surface of the cylinder hole. Therefore, in the engine unit of the present invention, variation in the fuel concentration distribution in the combustion chamber is further suppressed as compared with an engine unit having a plurality of intake ports for one combustion chamber.
 燃焼室内の燃料の濃度分布のばらつきが抑制されることにより、仮に噴射方向を調整した場合には、燃焼室内の所望の位置の濃度を高くすることができる。つまり、燃焼室内の燃料の濃度分布を調整しやすい。したがって、本発明のエンジンユニットは、燃焼室内の燃料の濃度分布の設計自由度を向上できる。 By suppressing the variation in the fuel concentration distribution in the combustion chamber, the concentration at a desired position in the combustion chamber can be increased if the injection direction is adjusted. That is, it is easy to adjust the fuel concentration distribution in the combustion chamber. Therefore, the engine unit of the present invention can improve the degree of freedom in designing the fuel concentration distribution in the combustion chamber.
 (2)本発明の1つの観点によると、本発明のエンジンユニットは、以下の構成を有することが好ましい。
 前記シリンダ孔の中心軸線の方向に見たとき、前記単一吸気口用インジェクタから噴射された複数の燃料の液滴の噴射方向のうち最も大きい角度をなす2つの噴射方向の中央を通る直線に見える平面を第2平面とし、前記第2平面に直交する方向に見たとき、前記単一吸気口用インジェクタから噴射された複数の燃料の液滴の噴射方向のうち最も大きい角度をなす2つの噴射方向の中央を通る直線に見える平面を第3平面とし、前記第2平面と前記第3平面との交線を噴射中心線とすると、前記第1平面が、前記噴射中心線上の1つの点を通る複数の平面のうち、当該平面上の燃料が存在する領域の前記第2平面に平行な方向の長さが最も短くなり、且つ、当該平面上の燃料が存在する領域の前記第3平面に平行な方向の長さが最も短くなる平面である。
(2) According to one aspect of the present invention, the engine unit of the present invention preferably has the following configuration.
When viewed in the direction of the central axis of the cylinder hole, a straight line passing through the center of the two injection directions forming the largest angle among the injection directions of the plurality of fuel droplets injected from the single inlet injector. The two planes forming the largest angle among the injection directions of the plurality of fuel droplets injected from the single intake port injector when the visible plane is the second plane and viewed in the direction orthogonal to the second plane. If the plane that appears as a straight line passing through the center of the injection direction is the third plane, and the intersection line between the second plane and the third plane is the injection center line, the first plane is one point on the injection center line. Among the plurality of planes passing through the third plane of the region where the fuel on the plane is shortest in the direction parallel to the second plane and where the fuel is on the plane The length in the direction parallel to is the shortest It is a surface.
 この構成によると、第1平面は、噴射中心線上の1つの点を通る複数の平面のうち、単一吸気口用インジェクタの複数の噴射孔からの第1領域までの距離のばらつきが最も小さい平面とすることができる。 According to this configuration, the first plane has the smallest variation in the distance from the plurality of injection holes of the single inlet injector to the first region among the plurality of planes passing through one point on the injection center line. It can be.
 (3)本発明の1つの観点によると、本発明のエンジンユニットは、以下の構成を有することが好ましい。
 前記単一吸気口用インジェクタは、前記噴射中心線が、前記単一吸気口を通るように配置および構成される。
(3) According to one aspect of the present invention, the engine unit of the present invention preferably has the following configuration.
The single intake port injector is arranged and configured such that the injection center line passes through the single intake port.
 仮に、噴射中心線が単一吸気口を通らないように燃料が噴射された場合、たとえ第1領域が環状となるように燃料が噴射されても、単一吸気弁と単一吸気口との隙間を通過する燃料の量が、隙間の周方向に関して不均一となる。そのため、燃焼室内の特定の位置の燃料の濃度が高くなりやすい。一方、本発明の単一吸気口用インジェクタは、噴射中心線が単一吸気口を通るように燃料を噴射する。それにより、単一吸気弁と単一吸気口との隙間を通過する燃料のばらつきが抑制される。そのため、燃焼室内の燃料の濃度分布のばらつきがより抑制される。したがって、燃焼室内の燃料の濃度分布の設計自由度をより向上できる。 If the fuel is injected so that the injection center line does not pass through the single intake port, even if the fuel is injected so that the first region is annular, the single intake valve and the single intake port The amount of fuel passing through the gap is not uniform in the circumferential direction of the gap. Therefore, the concentration of fuel at a specific position in the combustion chamber tends to increase. On the other hand, the single inlet injector of the present invention injects fuel so that the injection center line passes through the single inlet. Thereby, the dispersion | variation in the fuel which passes through the clearance gap between a single intake valve and a single intake port is suppressed. Therefore, variation in the fuel concentration distribution in the combustion chamber is further suppressed. Therefore, the degree of freedom in designing the fuel concentration distribution in the combustion chamber can be further improved.
 (4)本発明の1つの観点によると、本発明のエンジンユニットは、以下の構成を有することが好ましい。
 前記単一吸気口用インジェクタは、前記噴射中心線が、前記第2領域を通るように配置および構成される。
(4) According to one aspect of the present invention, the engine unit of the present invention preferably has the following configuration.
The single inlet injector is arranged and configured such that the injection center line passes through the second region.
 (5)本発明の1つの観点によると、本発明のエンジンユニットは、以下の構成を有することが好ましい。
 前記単一吸気弁は、前記単一吸気口を塞ぐことが可能な傘部と、前記傘部に接続され、一部が前記単一吸気通路部内に配置されるステム部とを有する。前記単一吸気口用インジェクタは、前記シリンダ孔の中心軸線の方向に見たとき、前記噴射中心線が、前記単一吸気口を開く位置にある前記単一吸気弁の前記ステム部を通るように配置および構成される。
(5) According to one aspect of the present invention, the engine unit of the present invention preferably has the following configuration.
The single intake valve includes an umbrella portion that can block the single intake port, and a stem portion that is connected to the umbrella portion and is partially disposed in the single intake passage portion. When viewed in the direction of the central axis of the cylinder hole, the injector for the single intake port allows the injection center line to pass through the stem portion of the single intake valve at a position where the single intake port is opened. Arranged and configured.
 この構成によると、シリンダ孔の中心軸線の方向に見たとき、噴射中心線は、単一吸気口の中心またはその近傍を通る可能性が高い。そのため、燃焼室内の燃料の濃度分布のばらつきがより抑制される。したがって、燃焼室内の燃料の濃度分布の設計自由度をより向上できる。 According to this configuration, when viewed in the direction of the center axis of the cylinder hole, the injection center line is likely to pass through the center of the single intake port or the vicinity thereof. Therefore, variation in the fuel concentration distribution in the combustion chamber is further suppressed. Therefore, the degree of freedom in designing the fuel concentration distribution in the combustion chamber can be further improved.
 (6)本発明の1つの観点によると、本発明のエンジンユニットは、以下の構成を有することが好ましい。
 前記単一吸気口用インジェクタは、前記第2平面に直交する方向に見たとき、前記噴射中心線が、前記単一吸気口を開く位置にある前記単一吸気弁の前記ステム部と傘部を通るように配置および構成される。
(6) According to one aspect of the present invention, the engine unit of the present invention preferably has the following configuration.
When the injector for a single intake port is viewed in a direction orthogonal to the second plane, the stem portion and the umbrella portion of the single intake valve in which the injection center line is in a position to open the single intake port Arranged and configured to pass through.
 この構成によると、第2平面に直交する方向に見たとき、噴射中心線は、単一吸気口の中心またはその近傍を通る。そのため、燃焼室内の燃料の濃度分布のばらつきがより抑制される。したがって、燃焼室内の燃料の濃度分布の設計自由度をより向上できる。 According to this configuration, when viewed in a direction perpendicular to the second plane, the injection center line passes through the center of the single inlet or the vicinity thereof. Therefore, variation in the fuel concentration distribution in the combustion chamber is further suppressed. Therefore, the degree of freedom in designing the fuel concentration distribution in the combustion chamber can be further improved.
 (7)本発明の1つの観点によると、本発明のエンジンユニットは、以下の構成を有することが好ましい。
 前記単一吸気口用インジェクタは、前記噴射中心線が、前記単一吸気口を開く位置にある前記単一吸気弁の前記ステム部と前記傘部を通るように配置および構成される。
(7) According to one aspect of the present invention, the engine unit of the present invention preferably has the following configuration.
The single intake port injector is arranged and configured so that the injection center line passes through the stem portion and the umbrella portion of the single intake valve at a position where the single intake port is opened.
 この構成によると、噴射中心線は、単一吸気口の中心またはその近傍を通る。そのため、燃焼室内の燃料の濃度分布のばらつきがより抑制される。したがって、燃焼室内の燃料の濃度分布の設計自由度をより向上できる。 ¡According to this configuration, the injection center line passes through the center of the single air inlet or the vicinity thereof. Therefore, variation in the fuel concentration distribution in the combustion chamber is further suppressed. Therefore, the degree of freedom in designing the fuel concentration distribution in the combustion chamber can be further improved.
 (8)本発明の1つの観点によると、本発明のエンジンユニットは、以下の構成を有することが好ましい。
 前記シリンダ吸気通路部および前記外部吸気通路部が、前記燃焼室毎に1つずつ設けられる。前記エンジンユニットは、前記少なくとも1つの外部吸気通路部にそれぞれ配置され、前記単一吸気通路部における空気の流れ方向において前記単一吸気口用インジェクタよりも上流にある少なくとも1つのスロットル弁を備える。
(8) According to one aspect of the present invention, the engine unit of the present invention preferably has the following configuration.
One cylinder intake passage portion and one external intake passage portion are provided for each combustion chamber. The engine unit includes at least one throttle valve disposed in the at least one external intake passage portion and upstream of the single intake port injector in the air flow direction in the single intake passage portion.
 閉位置のスロットル弁と閉位置の吸気弁との間に形成される1つの空間の容積を、スロットル下流容積とする。仮に、エンジンユニットが1つの燃焼室に対して複数の吸気口と1つのインジェクタを有する場合、上述したように、インジェクタと吸気口との間に必要な距離が長い。そのため、スロットル弁と吸気口との間に必要な距離も長い。本発明のエンジンユニットは、1つの燃焼室に対して複数の吸気口と1つのインジェクタを有するエンジンユニットと比べて、スロットル弁を吸気口に近い位置に配置できる。そのため、スロットル下流容積を小さくできる。
 仮に、エンジンユニットが1つの燃焼室に対して複数の吸気口と複数のインジェクタと1つのスロットル弁を有する場合、スロットル弁より下流で且つインジェクタよりも上流の位置で、1つの燃焼室に対して設けられた複数の吸気通路部同士を接続する必要がある。そのため、スロットル弁と吸気口との間に必要な距離が長い。したがって、本発明のエンジンユニットは、1つの燃焼室に対して複数の吸気口と複数のインジェクタと1つのスロットル弁を有するエンジンユニットと比べて、スロットル弁を吸気口に近い位置に配置できる。そのため、本発明のエンジンユニットのスロットル下流容積は、1つの燃焼室に対して複数の吸気口と複数のインジェクタと1つのスロットル弁を有するエンジンユニットのスロットル下流容積よりも小さくできる。
 さらに、1つの燃焼室に対して複数の吸気口と少なくとも1つのインジェクタと1つのスロットル弁を有するエンジンユニットのスロットル下流容積は、複数の吸気通路部が接続されて形成された空間である。一方、本発明のエンジンユニットのスロットル下流容積は、1つの吸気通路部内に形成される空間である。そのため、本発明のエンジンユニットのスロットル下流容積は、1つの燃焼室に対して複数の吸気口と少なくとも1つのインジェクタと1つのスロットル弁を有するエンジンユニットのスロットル下流容積と比べて、より一層小さくできる。
 仮に、エンジンユニットが、複数の燃焼室に対して1つのスロットル弁を有する場合、スロットル下流容積は、燃焼室毎に設けられた複数の吸気通路部が接続されて形成された空間である。一方、本発明のエンジンユニットが複数の燃焼室を有する場合、燃焼室毎に1つのスロットル弁が設けられる。したがって、本発明のエンジンユニットのスロットル下流容積は、1つの吸気通路部内で形成される空間である。そのため、本発明のエンジンユニットのスロットル下流容積は、複数の燃焼室に対して1つのスロットル弁を有するエンジンユニットのスロットル下流容積よりも小さくできる。
 スロットル下流容積が小さいほど、吸気口が開いているときの吸気通路部内の圧力は燃焼室内の負圧(大気圧よりも低い圧力)の影響を受けやすくなる。つまり、スロットル下流容積が小さいほど、吸気行程時の吸気通路部内の圧力が低くなる。それにより、吸気行程時に噴射された燃料の蒸発が促進される。その上、吸気口から燃焼室内に流入した空気が、シリンダ孔の内面の周方向に均一に拡散しやすい。そのため、燃焼室内の燃料の濃度分布のばらつきがより抑制される。したがって、燃焼室内の燃料の濃度分布の設計自由度をより向上できる。
A volume of one space formed between the throttle valve in the closed position and the intake valve in the closed position is defined as a throttle downstream volume. If the engine unit has a plurality of intake ports and one injector for one combustion chamber, the necessary distance between the injector and the intake port is long as described above. For this reason, the necessary distance between the throttle valve and the intake port is also long. In the engine unit of the present invention, the throttle valve can be disposed at a position closer to the intake port than an engine unit having a plurality of intake ports and one injector for one combustion chamber. Therefore, the throttle downstream volume can be reduced.
If the engine unit has a plurality of intake ports, a plurality of injectors, and a throttle valve for one combustion chamber, the engine unit is positioned downstream of the throttle valve and upstream of the injector. It is necessary to connect a plurality of intake passage portions provided. Therefore, the required distance is long between the throttle valve and the intake port. Therefore, the engine unit of the present invention can arrange the throttle valve closer to the intake port than an engine unit having a plurality of intake ports, a plurality of injectors, and one throttle valve for one combustion chamber. Therefore, the throttle downstream volume of the engine unit of the present invention can be made smaller than the throttle downstream volume of an engine unit having a plurality of intake ports, a plurality of injectors, and a throttle valve for one combustion chamber.
Further, the throttle downstream volume of an engine unit having a plurality of intake ports, at least one injector, and one throttle valve for one combustion chamber is a space formed by connecting a plurality of intake passage portions. On the other hand, the throttle downstream volume of the engine unit of the present invention is a space formed in one intake passage portion. Therefore, the throttle downstream volume of the engine unit of the present invention can be further reduced as compared with the throttle downstream volume of an engine unit having a plurality of intake ports, at least one injector, and one throttle valve for one combustion chamber. .
If the engine unit has one throttle valve for a plurality of combustion chambers, the throttle downstream volume is a space formed by connecting a plurality of intake passage portions provided for each combustion chamber. On the other hand, when the engine unit of the present invention has a plurality of combustion chambers, one throttle valve is provided for each combustion chamber. Therefore, the throttle downstream volume of the engine unit of the present invention is a space formed in one intake passage portion. Therefore, the throttle downstream volume of the engine unit of the present invention can be made smaller than the throttle downstream volume of the engine unit having one throttle valve for a plurality of combustion chambers.
As the throttle downstream volume is smaller, the pressure in the intake passage when the intake port is open is more susceptible to negative pressure in the combustion chamber (pressure lower than atmospheric pressure). That is, the smaller the throttle downstream volume, the lower the pressure in the intake passage during the intake stroke. Thereby, the evaporation of the fuel injected during the intake stroke is promoted. In addition, the air flowing into the combustion chamber from the intake port is likely to diffuse uniformly in the circumferential direction of the inner surface of the cylinder hole. Therefore, variation in the fuel concentration distribution in the combustion chamber is further suppressed. Therefore, the degree of freedom in designing the fuel concentration distribution in the combustion chamber can be further improved.
 (9)本発明の1つの観点によると、本発明のエンジンユニットは、以下の構成を有することが好ましい。
前記単一吸気口用インジェクタは、前記第1平面上の前記第1領域が、前記1つの円または前記1つのオーバルの縁の全周に沿った環状であるか、もしくは、前記1つの円または前記1つのオーバルの縁の一部に沿った非環状であって、その外周端の周方向中央が、前記非環状の第1領域の周方向両端を通る両端を有する前記第1平面上の90°の円弧の径方向外側にあるように構成される。
(9) According to one aspect of the present invention, the engine unit of the present invention preferably has the following configuration.
In the single inlet injector, the first region on the first plane is an annular shape along the entire circumference of the edge of the one circle or the one oval, or the one circle or 90 on the first plane which is non-annular along a part of the edge of the one oval, and whose circumferential center of the outer circumferential end has both ends passing through both circumferential ends of the non-circular first region. Configured to be radially outside of the arc of °.
 この構成によると、第1領域は、環状であるか、周方向長さの長い非環状である。そのため、噴射された複数の液滴が互いに接触することを抑制できるように噴射される液滴の径を小さくしつつ、単一吸気口用インジェクタから十分な量の燃料を噴射することができる。 According to this configuration, the first region is annular or non-annular with a long circumferential length. Therefore, it is possible to inject a sufficient amount of fuel from the single inlet injector while reducing the diameter of the ejected droplets so that the plurality of ejected droplets can be prevented from coming into contact with each other.
 (10)本発明の1つの観点によると、本発明のエンジンユニットは、以下の構成を有することが好ましい。
 前記単一吸気弁は、前記単一吸気口を塞ぐことが可能な傘部と、前記傘部に接続され、一部が前記単一吸気通路部内に配置されるステム部とを有する。前記単一吸気口用インジェクタは、前記複数の噴射孔と前記単一吸気口の中心との間の最短距離が、前記単一吸気口の直径の3倍の長さより小さくなるような位置に配置される。
(10) According to one aspect of the present invention, the engine unit of the present invention preferably has the following configuration.
The single intake valve includes an umbrella portion that can block the single intake port, and a stem portion that is connected to the umbrella portion and is partially disposed in the single intake passage portion. The single inlet injector is disposed at a position where the shortest distance between the plurality of injection holes and the center of the single inlet is smaller than three times the diameter of the single inlet. Is done.
 この構成によると、単一吸気口用インジェクタの複数の噴射孔から単一吸気口までの距離が比較的短い。そのため、単一吸気口用インジェクタから噴射される燃料の噴射角度を確実に大きくすることができる。上述したように、単一吸気口用インジェクタから噴射される燃料の噴射角度が大きいことにより、噴射された複数の液滴が互いに接触することを抑制しつつ、噴射される液滴の径を小さくすることができる。噴射される液滴の径が小さいことにより、燃焼室内の燃料の濃度分布のばらつきをより抑制できる。したがって、燃焼室内の燃料の濃度分布の設計自由度をより向上できる。 According to this configuration, the distance from the plurality of injection holes of the single inlet injector to the single inlet is relatively short. Therefore, the injection angle of the fuel injected from the single inlet injector can be reliably increased. As described above, since the injection angle of the fuel injected from the injector for the single intake port is large, it is possible to reduce the diameter of the injected droplet while suppressing the plurality of injected droplets from contacting each other. can do. Due to the small diameter of the ejected droplets, it is possible to further suppress variations in the fuel concentration distribution in the combustion chamber. Therefore, the degree of freedom in designing the fuel concentration distribution in the combustion chamber can be further improved.
 (11)本発明の1つの観点によると、本発明のエンジンユニットは、以下の構成を有することが好ましい。
 前記単一吸気口用インジェクタは、前記複数の噴射孔と前記単一吸気口の中心との間の最短距離が、前記単一吸気口の直径の2倍の長さより小さくなるような位置に配置される。
(11) According to one aspect of the present invention, the engine unit of the present invention preferably has the following configuration.
The single inlet injector is disposed at a position where the shortest distance between the plurality of injection holes and the center of the single inlet is smaller than twice the diameter of the single inlet. Is done.
 この構成によると、単一吸気口用インジェクタの複数の噴射孔から単一吸気口までの距離がさらに短いため、単一吸気口用インジェクタから噴射される燃料の噴射角度をより大きくすることができる。そのため、噴射された複数の液滴が互いに接触することを抑制しつつ、噴射される液滴の径をより小さくすることができる。それにより、燃焼室内の燃料の濃度分布のばらつきをより確実に抑制できる。したがって、燃焼室内の燃料の濃度分布の設計自由度をより一層向上できる。 According to this configuration, since the distance from the plurality of injection holes of the single intake port injector to the single intake port is further shorter, the injection angle of the fuel injected from the single intake port injector can be further increased. . For this reason, it is possible to reduce the diameter of the ejected droplets while suppressing the plurality of ejected droplets from contacting each other. Thereby, the dispersion | variation in the concentration distribution of the fuel in a combustion chamber can be suppressed more reliably. Therefore, the degree of freedom in designing the fuel concentration distribution in the combustion chamber can be further improved.
 (12)本発明の1つの観点によると、本発明のエンジンユニットは、以下の構成を有することが好ましい。
 前記シリンダ部は、前記少なくとも1つの燃焼室に形成された少なくとも1つの排気口を有する。前記排気口は、1つの前記燃焼室に対して少なくとも1つ設けられる。前記吸気口の直径は、前記排気口の直径よりも大きい。
(12) According to one aspect of the present invention, the engine unit of the present invention preferably has the following configuration.
The cylinder portion has at least one exhaust port formed in the at least one combustion chamber. At least one exhaust port is provided for one combustion chamber. The diameter of the intake port is larger than the diameter of the exhaust port.
 この構成によると、単一吸気口の径が比較的大きいため、単一吸気通路部の径も比較的大きい。上述したように、単一吸気通路部の径が大きいことにより、単一吸気口用インジェクタから噴射される燃料の噴射角度を大きくすることができる。単一吸気口用インジェクタから噴射される燃料の噴射角度が大きいことにより、噴射された複数の液滴が互いに接触することを抑制しつつ、噴射される液滴の径を小さくすることができる。噴射される液滴の径が小さいことにより、燃焼室内の燃料の濃度分布のばらつきをより抑制できる。したがって、燃焼室内の燃料の濃度分布の設計自由度をより向上できる。 According to this configuration, since the diameter of the single intake port is relatively large, the diameter of the single intake passage portion is also relatively large. As described above, since the diameter of the single intake passage portion is large, the injection angle of the fuel injected from the single intake port injector can be increased. Since the injection angle of the fuel injected from the single inlet injector is large, it is possible to reduce the diameter of the injected droplets while suppressing the plurality of injected droplets from contacting each other. Due to the small diameter of the ejected droplets, it is possible to further suppress variations in the fuel concentration distribution in the combustion chamber. Therefore, the degree of freedom in designing the fuel concentration distribution in the combustion chamber can be further improved.
 <用語の定義>
 本発明において、「吸気通路部」とは、燃焼室に供給される空気が通過する空間を囲む構造物を意味する。
<Definition of terms>
In the present invention, the “intake passage section” means a structure surrounding a space through which air supplied to the combustion chamber passes.
 本発明における「単一吸気口」は、空間ではなく、構造物である。単一吸気弁と接触して単一吸気弁によって塞がれる箇所が筒状の場合、本発明における「単一吸気口」とは、単一吸気弁と接触して単一吸気弁によって塞がれる筒状の領域の筒軸方向の両端のうち、燃焼室に近い方の端である。つまり、本発明において「単一吸気口」とは、単一吸気弁と接触して単一吸気弁によって塞がれる環状の線状の箇所である。本発明における「排気口」も同様の定義である。 In the present invention, the “single inlet” is not a space but a structure. In the case where the portion that is in contact with the single intake valve and is blocked by the single intake valve is cylindrical, the “single intake port” in the present invention is in contact with the single intake valve and is blocked by the single intake valve. It is an end closer to the combustion chamber among both ends of the cylindrical region in the cylinder axis direction. That is, in the present invention, the “single intake port” is an annular linear portion that comes into contact with the single intake valve and is blocked by the single intake valve. The “exhaust port” in the present invention has the same definition.
 本発明の少なくとも1つの燃焼室の各々の一部は、シリンダ孔の内面によって形成される。本発明のエンジンユニットが複数の燃料室を有する場合、シリンダ孔は、複数の燃焼室の各々に対して設けられる。つまり、エンジンユニットが有するシリンダ孔と燃焼室は同数である。 A part of each of the at least one combustion chamber of the present invention is formed by the inner surface of the cylinder hole. When the engine unit of the present invention has a plurality of fuel chambers, a cylinder hole is provided for each of the plurality of combustion chambers. That is, the number of cylinder holes and combustion chambers of the engine unit is the same.
 本発明において、吸気口、吸気弁、およびインジェクタは、燃焼室毎に1つずつ設けられる。つまり、本発明のエンジンユニットは、1つの燃焼室に対して複数の吸気口を有さない。本発明のエンジンユニットは、1つの燃焼室に対して複数の吸気弁を有さない。本発明のエンジンユニットは、1つの燃焼室に対して複数のインジェクタを有さない。 In the present invention, one intake port, one intake valve, and one injector are provided for each combustion chamber. That is, the engine unit of the present invention does not have a plurality of intake ports for one combustion chamber. The engine unit of the present invention does not have a plurality of intake valves for one combustion chamber. The engine unit of the present invention does not have a plurality of injectors for one combustion chamber.
 本発明において、「少なくとも1つのシリンダ吸気通路部および少なくとも1つの外部吸気通路部が、少なくとも1つの単一吸気通路部を含む」とは、少なくとも1つのシリンダ吸気通路部および少なくとも1つの外部吸気通路部からなる1つの要素に、少なくとも1つの単一吸気通路部が含まれることを意味する。単一吸気通路部は、少なくとも1つのシリンダ吸気通路部のみに含まれてもよい。単一吸気通路部の一部が、少なくとも1つのシリンダ吸気通路部に含まれ、単一吸気通路部の他の部分が、少なくとも1つの外部吸気通路部に含まれてもよい。シリンダ吸気通路部の数は、単一吸気通路部と同じであってもよく、異なってもよい。外部吸気通路部の数は、単一吸気通路部と同じであってもよく、異なってもよい。シリンダ吸気通路部の数は、外部吸気通路部と同じであってもよく、異なってもよい。 In the present invention, “at least one cylinder intake passage portion and at least one external intake passage portion include at least one single intake passage portion” means at least one cylinder intake passage portion and at least one external intake passage. It means that at least one single intake passage part is included in one element consisting of parts. The single intake passage portion may be included only in at least one cylinder intake passage portion. A portion of the single intake passage portion may be included in at least one cylinder intake passage portion, and another portion of the single intake passage portion may be included in at least one external intake passage portion. The number of cylinder intake passage portions may be the same as or different from that of the single intake passage portion. The number of external intake passage portions may be the same as or different from that of the single intake passage portion. The number of cylinder intake passage portions may be the same as or different from that of the external intake passage portions.
 本発明の単一吸気通路部は、単一吸気口用インジェクタが設置された箇所から単一吸気口までの領域である。本発明において、「単一吸気口用インジェクタが設置された箇所から単一吸気口までの領域」は、単一吸気口用インジェクタがシリンダ吸気通路部または外部吸気通路部に接している箇所全体を含んでもよい。言い換えると、「単一吸気口用インジェクタが設置された箇所から単一吸気口までの領域」は、単一吸気口用インジェクタがシリンダ吸気通路部または外部吸気通路部に接している箇所のうち、排ガスの流れ方向において単一吸気口に最も遠い位置を含んでもよい。 The single intake passage portion of the present invention is a region from a place where a single intake port injector is installed to a single intake port. In the present invention, the “region from the place where the single inlet injector is installed to the single inlet” refers to the entire area where the single inlet injector is in contact with the cylinder intake passage portion or the external intake passage portion. May be included. In other words, the “region from the place where the single intake port injector is installed to the single intake port” is the area where the single intake port injector is in contact with the cylinder intake passage portion or the external intake passage portion. A position farthest from the single intake port in the flow direction of the exhaust gas may be included.
 本発明において、燃料を霧状に噴射するとは、複数の微小な燃料の液滴を噴射することを意味する。 In the present invention, to inject fuel in the form of a mist means to inject a plurality of small droplets of fuel.
 本発明において、「単一吸気口用インジェクタから噴射された複数の燃料の液滴の噴射方向」とは、1回の噴射で単一吸気口用インジェクタから噴射された複数の液滴の噴射方向である。より詳細には、複数の液滴がそれぞれ単一吸気口用インジェクタから噴射された時点の液滴の噴射方向である。言い換えると、単一吸気口用インジェクタを起点とした直線状のベクトルで示すことができる燃料の噴射方向である。空気の流れの影響を受けて液滴の移動方向が変化した場合であっても、液滴の噴射方向は変化しない。 In the present invention, the “injection direction of a plurality of fuel droplets injected from a single intake port injector” refers to the injection direction of a plurality of droplets injected from a single intake port injector in a single injection. It is. More specifically, it is the ejection direction of the droplets when a plurality of droplets are ejected from the single inlet injector, respectively. In other words, the fuel injection direction can be represented by a linear vector starting from the single inlet injector. Even when the movement direction of the droplet changes due to the influence of the air flow, the ejection direction of the droplet does not change.
 本発明において、第1平面上の燃料とは、気化された燃料を含んでもよく、液体の燃料だけでもよい。
 本発明において、第1平面上の燃料が、1つの円または1つのオーバルの中に存在するとは、単一吸気口用インジェクタから1度の噴射処理によって噴射された燃料のうち、第1平面上に存在する気化された燃料を含む燃料の全てが、1つの円または1つのオーバルの中に存在することであってもよい。本発明において、第1平面上の燃料が、1つの円または1つのオーバルの中に存在するとは、単一吸気口用インジェクタから1度の噴射処理によって噴射された燃料のうち、第1平面上に存在する液体の燃料の全てが、1つの円または1つのオーバルの中に存在することであってもよい。
In the present invention, the fuel on the first plane may include vaporized fuel or only liquid fuel.
In the present invention, the fact that the fuel on the first plane is present in one circle or one oval means that the fuel on the first plane out of the fuel injected from the single inlet injector by one injection process. It may be that all of the fuel, including the vaporized fuel present in is present in one circle or one oval. In the present invention, the fact that the fuel on the first plane is present in one circle or one oval means that the fuel on the first plane out of the fuel injected from the single inlet injector by one injection process. It may be that all of the liquid fuel present in is present in one circle or one oval.
 本発明において、第1平面上の燃料が存在する領域は、第1平面上の燃料を囲む領域である。第1平面上の燃料が存在する領域は、液滴同士の隙間を含んでいてもよい。 In the present invention, the region where the fuel on the first plane exists is a region surrounding the fuel on the first plane. The region where the fuel exists on the first plane may include a gap between the droplets.
 本発明において、第1領域の外周端が、1つの円の縁の一部に沿っている場合、第1領域の内周端は、当該1つの円の縁の一部に沿っている。本発明において、第1領域の外周端が、1つの円の縁の全周に沿っている場合、第1領域の内周端も当該1つの円の縁の全周に沿っている。
 本発明において、第1領域の外周端が、1つのオーバルの縁の一部に沿っている場合、第1領域の内周端は、当該1つのオーバルの縁の一部に沿っている。本発明において、第1領域の外周端が、1つのオーバルの縁の全周に沿っている場合、第1領域の内周端も当該1つのオーバルの縁の全周に沿っている。
In the present invention, when the outer peripheral end of the first region is along a part of the edge of one circle, the inner peripheral end of the first region is along a part of the edge of the one circle. In the present invention, when the outer peripheral end of the first region is along the entire circumference of the edge of one circle, the inner peripheral end of the first region is also along the entire circumference of the edge of the one circle.
In the present invention, when the outer peripheral end of the first region is along a part of the edge of one oval, the inner peripheral end of the first region is along a part of the edge of the one oval. In the present invention, when the outer peripheral end of the first region is along the entire circumference of one oval edge, the inner peripheral end of the first region is also along the entire circumference of the one oval edge.
 本発明の第1領域の外周端は、円またはオーバルの縁の少なくとも一部に沿っていれば、円またはオーバルの縁の少なくとも一部と一致しなくてもよい。本発明の第1領域の外周端は、円またはオーバルの縁の少なくとも一部に沿っていれば、円またはオーバルの縁の少なくとも一部と平行でなくてもよい。
本発明の第1領域の内周端は、円またはオーバルの縁の少なくとも一部に沿っていれば、円またはオーバルの縁の少なくとも一部と平行でなくてもよい。
The outer peripheral edge of the first region of the present invention may not coincide with at least part of the edge of the circle or oval as long as it is along at least part of the edge of the circle or oval. The outer peripheral edge of the first region of the present invention may not be parallel to at least part of the edge of the circle or oval as long as it is along at least part of the edge of the circle or oval.
The inner peripheral edge of the first region of the present invention may not be parallel to at least part of the edge of the circle or oval as long as it is along at least part of the edge of the circle or oval.
 本発明において、第1領域が非環状の場合、第1領域は、第1領域の外周端と、第1領域の内周端と、第1領域の周方向の両端とによって囲まれた領域である。第1領域の周方向の両端は、例えば、直線状であってもよく、第1領域の外に向かって膨らんだ曲線状であってもよい。 In the present invention, when the first region is non-annular, the first region is a region surrounded by the outer peripheral end of the first region, the inner peripheral end of the first region, and both ends in the circumferential direction of the first region. is there. Both ends in the circumferential direction of the first region may be linear, for example, or may be curved to bulge out of the first region.
 本発明において、第1領域が非環状の場合、第2領域は、第1領域の内周端全体と、第1領域の内周端の周方向両端を結ぶ線分とによって囲まれる領域を少なくとも含む。第2領域はこの領域だけで構成されていてもよい。 In the present invention, when the first region is non-annular, the second region includes at least a region surrounded by the entire inner peripheral end of the first region and a line segment connecting both circumferential ends of the inner peripheral end of the first region. Including. The second area may be constituted only by this area.
 本発明において、オーバルとは、曲線のみまたは曲線と線分で構成され、滑らかな凸状を有する環状である。オーバルは、2定点からの距離の和が一定となるような点の集合で形成される楕円であってもよい。また、オーバルは、楕円に似た形状であってもよい。オーバルは、鶏の卵に似た形状であってもよい。オーバルは、陸上競技のトラックのような、2つの半円と2つの線分で形成された形状であってもよい。第1領域が非環状の場合、第1領域の外周端および内周端がオーバルを形成しうる線に沿った形状であれば、第1領域の外周端および内周端が沿っているオーバルの全体の形状を特定できなくてもよい。 In the present invention, the oval is an annular shape composed of only a curve or a curve and a line segment and having a smooth convex shape. The oval may be an ellipse formed by a set of points such that the sum of distances from two fixed points is constant. The oval may have a shape similar to an ellipse. The oval may be shaped like a chicken egg. The oval may have a shape formed by two semicircles and two line segments, such as an athletics track. When the first region is non-annular, if the outer peripheral end and the inner peripheral end of the first region are shaped along a line that can form an oval, the outer region and the inner peripheral end of the first region It may not be possible to specify the overall shape.
 本発明における「第1領域の燃料の濃度」は、第1領域の燃料の面密度、つまり、第1領域の単位面積当たりの燃料の質量であってもよい。もしくは、「第1領域の燃料の濃度」は、第1領域を含むある空間の単位体積当たりの燃料の質量の分布から、第1平面上の値を抽出して算出されたものであってもよい。つまり、「第1領域の燃料の濃度」は、第1領域の単位体積当たりの燃料の質量であってもよい。
 本発明における「第2領域の燃料の濃度」の定義も、上述した「第1領域の燃料の濃度」の定義と同様である。
The “concentration of fuel in the first region” in the present invention may be the surface density of the fuel in the first region, that is, the mass of fuel per unit area of the first region. Alternatively, the “concentration of fuel in the first region” may be calculated by extracting a value on the first plane from the distribution of the mass of fuel per unit volume in a space including the first region. Good. That is, the “concentration of fuel in the first region” may be the mass of fuel per unit volume in the first region.
The definition of “concentration of fuel in the second region” in the present invention is the same as the definition of “concentration of fuel in the first region” described above.
 本発明において、「第1領域の燃料の濃度」および「第2領域の燃料の濃度」は、気化した燃料を含む燃料の濃度であってもよく、気化した燃料を含まない燃料の濃度であってもよい。本発明において、「第1平面」は、噴射された燃料の大部分が気化することなく到達できるような単一吸気口用インジェクタに近い位置に設定することが好ましい。この場合、「第1領域の燃料の濃度」および「第2領域の燃料の濃度」が気化した燃料を含むか否かは、「第1領域の燃料の濃度」と「内周領域の燃料の濃度」の大小関係にはほぼ影響しない。 In the present invention, the “concentration of the fuel in the first region” and the “concentration of the fuel in the second region” may be the concentration of the fuel containing the vaporized fuel or the concentration of the fuel not containing the vaporized fuel. May be. In the present invention, the “first plane” is preferably set at a position close to the single inlet injector that allows most of the injected fuel to reach without vaporization. In this case, whether or not the “concentration of the fuel in the first region” and the “concentration of the fuel in the second region” include vaporized fuel depends on whether the “concentration of the fuel in the first region” and “the fuel concentration in the inner peripheral region”. There is almost no effect on the magnitude relationship of “density”.
 本発明において「第1領域の燃料の濃度が第2領域の燃料の濃度よりも高い」とは、第1領域の単位体積当たりまたは単位面積当たりの燃料の質量の平均値は、第2領域の単位体積当たりまたは単位面積当たりの燃料の質量の平均値よりも大きいことを意味する。 In the present invention, “the concentration of fuel in the first region is higher than the concentration of fuel in the second region” means that the average value of the mass of fuel per unit volume or unit area of the first region is that of the second region. It means larger than the average value of the mass of fuel per unit volume or unit area.
 本発明の単一吸気口用インジェクタは、吸気行程時であって単一吸気弁が単一吸気口を開く位置にあるときに燃料を噴射するように制御装置によって制御される。ここでの吸気行程時とは、この単一吸気口用インジェクタが設けられた単一吸気通路部に接続された燃焼室の吸気行程時である。 The single intake port injector of the present invention is controlled by the control device so as to inject fuel when the single intake valve is in a position to open the single intake port during the intake stroke. Here, the time of the intake stroke is the time of the intake stroke of the combustion chamber connected to the single intake passage portion provided with the single intake port injector.
 「シリンダ孔の中心軸線の方向に見たとき、単一吸気口用インジェクタから噴射された燃料の噴射方向のうち最も大きい角度をなす2つの噴射方向の中央を通る直線に見える平面」という説明における「シリンダ孔の中心軸線の方向に見たとき」とは、この単一吸気口用インジェクタが設けられた単一吸気通路部に接続された燃焼室のシリンダ孔の中心軸線の方向に見たときを意味する。同様に、「単一吸気口用インジェクタは、シリンダ孔の中心軸線の方向に見たとき、噴射中心線が、単一吸気口を開く位置にある単一吸気弁のステム部を通るように配置および構成される」という説明における「シリンダ孔の中心軸線の方向に見たとき」とは、この単一吸気口用インジェクタが設けられた単一吸気通路部に接続された燃焼室のシリンダ孔の中心軸線の方向に見たときを意味する。 In the description of “a plane that looks like a straight line passing through the center of the two injection directions forming the largest angle among the injection directions of the fuel injected from the injector for the single intake port when viewed in the direction of the central axis of the cylinder hole” “When viewed in the direction of the central axis of the cylinder hole” means when viewed in the direction of the central axis of the cylinder hole of the combustion chamber connected to the single intake passage portion provided with this single intake port injector. Means. Similarly, “The injector for the single intake port is arranged so that the injection center line passes through the stem portion of the single intake valve at the position where the single intake port is opened when viewed in the direction of the central axis of the cylinder hole. "When viewed in the direction of the central axis of the cylinder hole" in the description of "configured" means that the cylinder hole of the combustion chamber connected to the single intake passage portion provided with this single intake port injector It means when viewed in the direction of the central axis.
 本発明において、「シリンダ孔の中心軸線の方向に見たとき」とは、エンジンユニットをシリンダ孔の中心軸線の方向に見た場合を意味する。より詳細には、エンジンユニットの一部の部材を透過して見たと仮定した場合を意味する。
 本発明における「第2平面に直交する方向に見たとき」の定義も、上記と同様である。
In the present invention, “when viewed in the direction of the central axis of the cylinder hole” means when the engine unit is viewed in the direction of the central axis of the cylinder hole. More specifically, it means a case where it is assumed that some members of the engine unit are seen through.
The definition of “when viewed in a direction perpendicular to the second plane” in the present invention is the same as described above.
 本発明において、「噴射中心線が、単一吸気口を通る」とは、噴射中心線が、この噴射中心線を有する単一吸気口用インジェクタが設けられた単一吸気通路部に接続された単一吸気口を通ることを意味する。 In the present invention, “the injection center line passes through a single intake port” means that the injection center line is connected to a single intake passage portion provided with a single intake port injector having the injection center line. Means passing through a single inlet.
 本発明において「噴射中心線が、単一吸気弁のステム部を通る」とは、噴射中心線が、この噴射中心線を有する単一吸気口用インジェクタが設けられた単一吸気通路部に接続された単一吸気口を開閉する単一吸気弁を通ることを意味する。
 本発明において「噴射中心線が、単一吸気口を開く位置にある単一吸気弁のステム部を通る」とは、単一吸気弁の可動範囲内の単一吸気口を開くいずれかの位置に単一吸気弁があるときに、噴射中心線がステム部を通ることを意味する。単一吸気弁の可動範囲内の単一吸気口を開くいずれかの位置に単一吸気弁があるときに、噴射中心線がステム部を通る場合、単一吸気弁の可動範囲内の単一吸気口を開く他の位置のときに、噴射中心線がステム部を通らなくてもよい。
In the present invention, “the injection center line passes through the stem portion of a single intake valve” means that the injection center line is connected to a single intake passage portion provided with a single intake port injector having the injection center line. It means passing through a single intake valve that opens and closes a single intake port.
In the present invention, “the injection center line passes through the stem portion of the single intake valve at the position where the single intake port is opened” means any position where the single intake port is opened within the movable range of the single intake valve. This means that the injection center line passes through the stem portion when there is a single intake valve. If there is a single intake valve at any position that opens a single intake port within the movable range of the single intake valve, and the injection center line passes through the stem, the single intake valve within the movable range of the single intake valve The injection center line may not pass through the stem portion at other positions where the intake port is opened.
 本発明および本明細書において、複数の選択肢のうちの少なくとも1つ(一方)とは、複数の選択肢から考えられる全ての組み合わせを含む。複数の選択肢のうちの少なくとも1つ(一方)とは、複数の選択肢のいずれか1つであってもよく、複数の選択肢の全てであってもよい。例えば、AとBとCの少なくとも1つとは、Aのみであってもよく、Bのみであってもよく、Cのみであってもよく、AとBであってもよく、AとCであってもよく、BとCであってもよく、AとBとCであってもよい。 In the present invention and the present specification, at least one (one) of a plurality of options includes all combinations conceivable from the plurality of options. At least one (one) of the plurality of options may be any one of the plurality of options, or may be all of the plurality of options. For example, at least one of A, B and C may be A alone, B alone, C alone, A and B, A and C It may be B, C, A, B and C.
 特許請求の範囲において、ある構成要素の数を明確に特定しておらず、英語に翻訳された場合に単数で表示される場合、本発明は、この構成要素を、複数有してもよい。また本発明は、この構成要素を1つだけ有してもよい。 In the claims, the number of a certain component is not clearly specified, and when it is displayed as a single number when translated into English, the present invention may have a plurality of these components. The present invention may have only one of these components.
 本発明において、含む(including)、有する(comprising)、備える(having)およびこれらの派生語は、列挙されたアイテム及びその等価物に加えて追加的アイテムをも包含することが意図されて用いられている。
 本発明において、取り付けられた(mounted)、接続された(connected)、結合された(coupled)、支持された(supported)という用語は、広義に用いられている。具体的には、直接的な取付、接続、結合、支持だけでなく、間接的な取付、接続、結合および支持も含む。さらに、接続された(connected)および結合された(coupled)は、物理的又は機械的な接続/結合に限られない。それらは、直接的なまたは間接的な電気的接続/結合も含む。
In the present invention, including, comprising, having and their derivatives are used with the intention of encompassing additional items in addition to the listed items and their equivalents. ing.
In the present invention, the terms mounted, connected, coupled, and supported are used in a broad sense. Specifically, it includes not only direct attachment, connection, coupling and support, but also indirect attachment, connection, coupling and support. Further, connected and coupled are not limited to physical or mechanical connections / couplings. They also include direct or indirect electrical connections / couplings.
 他に定義されない限り、本明細書で使用される全ての用語(技術用語および科学用語を含む)は、本発明が属する当業者によって一般的に理解されるのと同じ意味を有する。一般的に使用される辞書に定義された用語のような用語は、関連する技術および本開示の文脈における意味と一致する意味を有すると解釈されるべきであり、理想化されたまたは過度に形式的な意味で解釈されることはない。 Unless defined otherwise, all terms used herein (including technical and scientific terms) have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Terms such as those defined in commonly used dictionaries should be construed as having a meaning consistent with the meaning in the context of the relevant technology and this disclosure, idealized or overly formal It is not interpreted in a sense.
 本明細書において、「好ましい」という用語は非排他的なものである。「好ましい」は、「好ましいがこれに限定されるものではない」ということを意味する。本明細書において、「好ましい」と記載された構成は、少なくとも、請求項1の構成により得られる上記効果を奏する。また、本明細書において、「してもよい」という用語は非排他的なものである。「してもよい」は、「してもよいがこれに限定されるものではない」という意味である。本明細書において、「してもよい」と記載された構成は、少なくとも、請求項1の構成により得られる上記効果を奏する。 In this specification, the term “preferred” is non-exclusive. “Preferred” means “preferably but not limited to”. In the present specification, the configuration described as “preferable” has at least the above-described effect obtained by the configuration of claim 1. Further, in this specification, the term “may” is non-exclusive. “May” means “may be, but is not limited to”. In the present specification, a configuration described as “may” at least exhibits the above-described effect obtained by the configuration of claim 1.
 本発明では、上述した他の観点による構成を互いに組み合わせることを制限しない。本発明の実施形態を詳細に説明する前に、本発明は、以下の説明に記載されたまたは図面に図示された構成要素の構成および配置の詳細に制限されないことが理解されるべきである。本発明は、後述する実施形態以外の実施形態でも可能である。本発明は、後述する実施形態に様々な変更を加えた実施形態でも可能である。また、本発明は、後述する実施形態および変更例を適宜組み合わせて実施することができる。 In the present invention, it is not limited to combine the configurations according to the other viewpoints described above. Before describing in detail embodiments of the present invention, it is to be understood that the present invention is not limited to the details of the arrangement and arrangement of components set forth in the following description or illustrated in the drawings. The present invention is also possible in embodiments other than those described below. The present invention is also possible in embodiments in which various modifications are made to the embodiments described later. In addition, the present invention can be implemented by appropriately combining the later-described embodiments and modification examples.
 本発明のエンジンユニットによると、燃焼室内の燃料の濃度分布の設計自由度を向上できる。 According to the engine unit of the present invention, the degree of freedom in designing the fuel concentration distribution in the combustion chamber can be improved.
図1(a)は、実施形態のエンジンユニットをシリンダ孔の中心軸線の方向に見た図である。図1(b)は、実施形態のエンジンユニットを図1(a)に示す平面S1で切断した断面図である。図1(c)は、実施形態のエンジンユニットの単一吸気口用インジェクタの燃料の噴射状態を示す図である。図1(d)は、図1(c)に示す平面S1上の燃料の一例を示す図である。図1(e)は、図1(c)に示す平面S1上の燃料の他の例を示す図である。FIG. 1A is a view of the engine unit of the embodiment as viewed in the direction of the central axis of the cylinder hole. FIG.1 (b) is sectional drawing which cut | disconnected the engine unit of embodiment by plane S1 shown to Fig.1 (a). FIG.1 (c) is a figure which shows the injection state of the fuel of the injector for single intake ports of the engine unit of embodiment. FIG.1 (d) is a figure which shows an example of the fuel on the plane S1 shown in FIG.1 (c). FIG.1 (e) is a figure which shows the other example of the fuel on the plane S1 shown in FIG.1 (c). 図2は、実施形態の具体例のエンジンユニットの断面図である。FIG. 2 is a cross-sectional view of an engine unit as a specific example of the embodiment. 図3(a)は、実施形態の具体例のエンジンユニットの燃焼室をシリンダ孔の中心軸線の方向に見た図であり、図3(b)は、図3(a)のIII-III線断面図である。3A is a view of the combustion chamber of the engine unit of the specific example of the embodiment as viewed in the direction of the central axis of the cylinder hole, and FIG. 3B is a line III-III in FIG. It is sectional drawing. 図4(a)は、実施形態の具体例のエンジンユニットの単一吸気口用インジェクタの燃料の噴射状態を示す図であり、図4(b)は、図4(a)に示す平面S1上の燃料の濃度分布を示す図である。FIG. 4A is a diagram showing the fuel injection state of the single inlet injector of the engine unit of the specific example of the embodiment, and FIG. 4B is a plan view on the plane S1 shown in FIG. It is a figure which shows concentration distribution of the fuel. 図5(a)は、従来の単一吸気口用インジェクタの燃料の噴射状態を示す図であり、図5(b)は、図5(a)に示す平面S801上の燃料の濃度分布を示す図である。FIG. 5A is a diagram showing a fuel injection state of a conventional single inlet injector, and FIG. 5B is a fuel concentration distribution on a plane S801 shown in FIG. 5A. FIG. 図6は、図4(a)に示す平面S1上の燃料の濃度分布と、図5(a)に示す平面S801上の燃料の濃度分布を示すグラフである。FIG. 6 is a graph showing the fuel concentration distribution on the plane S1 shown in FIG. 4A and the fuel concentration distribution on the plane S801 shown in FIG. 5A. 図7(a)~図7(c)は、実施形態の具体例のエンジンユニットにおける噴射燃料の複数の液滴の挙動を示す断面図であり、図7(d)~図7(f)は、図7(a)~図7(c)をシリンダ孔の中心軸線の方向に見た図である。7 (a) to 7 (c) are cross-sectional views showing the behavior of a plurality of droplets of injected fuel in the engine unit of the specific example of the embodiment. FIGS. 7 (d) to 7 (f) FIGS. 7A to 7C are views in the direction of the central axis of the cylinder hole. 図8(a)~図8(c)は、従来の単一吸気口用インジェクタを用いた場合のエンジンユニットにおける噴射燃料の複数の液滴の挙動を示す図であり、図8(d)~図8(f)は、図8(a)~図8(c)をシリンダ孔の中心軸線の方向に見た図である。FIGS. 8 (a) to 8 (c) are diagrams showing the behavior of a plurality of droplets of injected fuel in an engine unit when a conventional single intake port injector is used, and FIGS. FIG. 8 (f) is a view of FIGS. 8 (a) to 8 (c) as viewed in the direction of the central axis of the cylinder hole. 図9(a)は、従来のエンジンユニットの燃焼室をシリンダ孔の中心軸線の方向に見た図であり、図9(b)は、図9(a)のB-B線断面図であり、図9(c)は、図9(a)のC-C線断面図である。FIG. 9A is a view of the combustion chamber of the conventional engine unit as viewed in the direction of the central axis of the cylinder hole, and FIG. 9B is a cross-sectional view taken along line BB of FIG. 9A. FIG. 9C is a cross-sectional view taken along the line CC of FIG. 9A. 変更例の単一吸気口用インジェクタの燃料の噴射状態を示す図である。It is a figure which shows the injection state of the fuel of the injector for single inlets of the example of a change. 変更例の単一吸気口用インジェクタが装着されたエンジンユニットの断面図である。It is sectional drawing of the engine unit with which the injector for single inlets of the example of a change was mounted | worn. 変更例の単一吸気口用インジェクタの第1平面上の第1領域および第2領域を示す図である。It is a figure which shows the 1st area | region and 2nd area | region on the 1st plane of the injector for single inlets of the example of a change. 変更例の単一吸気口用インジェクタの第1平面上の第1領域および第2領域を示す図である。It is a figure which shows the 1st area | region and 2nd area | region on the 1st plane of the injector for single inlets of the example of a change.
 ≪本発明の実施形態≫
 以下、本発明の実施形態について図1(a)~図1(e)を参照しつつ説明する。本実施形態のエンジンユニット1は、4ストロークサイクルのエンジンユニットである。図1(a)および図1(b)に示すように、エンジンユニット1は、シリンダ部4と、少なくとも1つの外部吸気通路部3と、少なくとも1つの吸気弁22と、少なくとも1つのインジェクタ23と、制御装置50とを備える。シリンダ部4は、少なくとも1つの燃焼室11、少なくとも1つの吸気口12、および少なくとも1つのシリンダ吸気通路部21を有する。少なくとも1つの燃焼室11の各々の一部はシリンダ孔10の内面によって形成されている。少なくとも1つの吸気口12は、少なくとも1つの燃焼室11に形成されている。少なくとも1つのシリンダ吸気通路部21は、少なくとも1つ吸気口12に接続されている。少なくとも1つのシリンダ吸気通路部21の内部に流入した空気は、少なくとも1つ吸気口12から少なくとも1つの燃焼室11に供給される。少なくとも1つの外部吸気通路部3は、シリンダ部4の外部に配置され、少なくとも1つのシリンダ吸気通路部21に接続される。少なくとも1つの外部吸気通路部3の内部に流入した空気は、少なくとも1つのシリンダ吸気通路部21に供給される。少なくとも1つの吸気弁22は、少なくとも1つの吸気口12を開く位置と少なくとも1つの吸気口を閉じる位置との間で移動可能に構成される。少なくとも1つのインジェクタ23の各々は、燃料を霧状に噴射可能な複数の噴射孔を有する。少なくとも1つのインジェクタ23は、複数の噴射孔がシリンダ吸気通路部21内または外部吸気通路部3内に位置するようにシリンダ吸気通路部21または外部吸気通路部3に設置される。制御装置50は、少なくとも1つのインジェクタ23の燃料の噴射を制御する。
<< Embodiment of the Invention >>
Embodiments of the present invention will be described below with reference to FIGS. 1 (a) to 1 (e). The engine unit 1 of the present embodiment is a four-stroke cycle engine unit. As shown in FIGS. 1 (a) and 1 (b), the engine unit 1 includes a cylinder portion 4, at least one external intake passage portion 3, at least one intake valve 22, and at least one injector 23. And a control device 50. The cylinder portion 4 has at least one combustion chamber 11, at least one intake port 12, and at least one cylinder intake passage portion 21. A part of each of the at least one combustion chamber 11 is formed by the inner surface of the cylinder hole 10. At least one intake port 12 is formed in at least one combustion chamber 11. At least one cylinder intake passage portion 21 is connected to at least one intake port 12. The air that has flowed into the at least one cylinder intake passage portion 21 is supplied from at least one intake port 12 to at least one combustion chamber 11. The at least one external intake passage portion 3 is disposed outside the cylinder portion 4 and is connected to at least one cylinder intake passage portion 21. The air that has flowed into the at least one external intake passage portion 3 is supplied to at least one cylinder intake passage portion 21. The at least one intake valve 22 is configured to be movable between a position where the at least one intake port 12 is opened and a position where the at least one intake port is closed. Each of the at least one injector 23 has a plurality of injection holes capable of injecting fuel in the form of a mist. The at least one injector 23 is installed in the cylinder intake passage portion 21 or the external intake passage portion 3 such that the plurality of injection holes are located in the cylinder intake passage portion 21 or the external intake passage portion 3. The control device 50 controls fuel injection of at least one injector 23.
 吸気口12、吸気弁22、およびインジェクタ23は、燃焼室11毎に1つずつ設けられ、単一吸気口12、単一吸気弁22、および単一吸気口用インジェクタ23をそれぞれ構成する。少なくとも1つのシリンダ吸気通路部21および少なくとも1つの外部吸気通路部3が、少なくとも1つの単一吸気通路部20を含む。単一吸気通路部20は、燃焼室11毎に1つ設けられる。単一吸気通路部20は、単一吸気口用インジェクタ23が設置された箇所から単一吸気口12までの領域である。単一吸気通路部20は、内部を空気の流れが分離または合流することなく通過するように構成される。 One intake port 12, one intake valve 22, and one injector 23 are provided for each combustion chamber 11, and constitute a single intake port 12, a single intake valve 22, and a single intake port injector 23, respectively. At least one cylinder intake passage portion 21 and at least one external intake passage portion 3 include at least one single intake passage portion 20. One single intake passage portion 20 is provided for each combustion chamber 11. The single intake passage portion 20 is a region from the location where the single intake port injector 23 is installed to the single intake port 12. The single intake passage portion 20 is configured to pass through the inside without being separated or joined together.
 単一吸気口用インジェクタ23は、単一吸気口12に向かって燃料を噴射するように配置される。単一吸気口用インジェクタ23は、単一吸気口用インジェクタ23がエンジンユニット1に装着されていない状態で大気だけの空間に燃料を噴射した場合、噴射直後のある時点に、以下の2つの要件を満たすように構成される。図1(c)に示すように、単一吸気口用インジェクタ23から噴射された複数の燃料の液滴の噴射方向に交差する、ある1つの平面を、第1平面S1とする。1つ目の要件は、図1(d)または図1(e)に示すように、第1平面S1上の燃料が、1つの円または1つのオーバルの中に、当該1つの円または当該1つのオーバルの縁の少なくとも一部に沿うように存在することである。2つ目の要件は、第1平面S1上の燃料が存在する領域に含まれ、その外周端と内周端が当該1つの円または当該1つのオーバルの縁の少なくとも一部に沿った第1領域A1の燃料の濃度が、第1平面S1上において第1領域A1の内周端全体と接する第2領域A2の燃料の濃度よりも高いことである。つまり、単一吸気口用インジェクタ23から噴射された霧状の燃料F1の外周部の濃度は中央部の濃度よりも高い。1つの燃焼室11に供給される燃料は、1つの単一吸気口用インジェクタ23から噴射されて1つの単一吸気口12を通過した燃料だけである。 The single intake port injector 23 is arranged to inject fuel toward the single intake port 12. The single intake port injector 23 has the following two requirements at a certain time immediately after injection when fuel is injected into a space only in the atmosphere when the single intake port injector 23 is not attached to the engine unit 1. Configured to meet. As shown in FIG. 1C, one plane that intersects the injection directions of a plurality of fuel droplets injected from the single inlet injector 23 is defined as a first plane S1. The first requirement is that, as shown in FIG. 1 (d) or FIG. 1 (e), the fuel on the first plane S1 is contained in one circle or one oval. Exist along at least part of the edge of the two oval. The second requirement is included in a region where the fuel exists on the first plane S1, and an outer peripheral end and an inner peripheral end of the first plane along at least a part of the edge of the one circle or the one oval. The fuel concentration in the region A1 is higher than the fuel concentration in the second region A2 in contact with the entire inner peripheral end of the first region A1 on the first plane S1. That is, the concentration of the outer peripheral portion of the mist-like fuel F1 injected from the single intake port injector 23 is higher than the concentration of the central portion. The fuel supplied to one combustion chamber 11 is only the fuel injected from one single intake port injector 23 and passed through one single intake port 12.
 仮に、エンジンユニットが1つの燃焼室に対して複数の吸気口を有する場合、複数の吸気口にそれぞれ接続された複数の吸気通路部が設けられる。本実施形態のエンジンユニット1は、1つの燃焼室11に対して吸気口12を1つだけ有する。そのため、本実施形態の単一吸気口12は、シリンダ孔の径が本実施形態と同じで1つの燃焼室に対して複数の吸気口を有するエンジンユニットの吸気口と比べて、径が大きい。そのため、本実施形態の単一吸気通路部20は、シリンダ孔の径が本実施形態と同じで1つの燃焼室に対して複数の吸気口を有するエンジンユニットの吸気通路部と比べて、径が大きい。単一吸気通路部20の径が大きいことにより、単一吸気口用インジェクタ23から噴射される燃料の噴射角度を大きくすることができる。噴射角度とは、ある方向に見て、単一吸気口用インジェクタから噴射された複数の燃料の液滴の噴射方向のうち最も大きい角度である。単一吸気口用インジェクタ23から噴射される燃料の噴射角度が大きいことにより、噴射された複数の液滴が互いに接触することを抑制しつつ、噴射される液滴の径を小さくすることができる。噴射された液滴の径が小さいことにより、燃焼室11に流入した燃料の液滴が、空気の流れに沿って拡散されやすい。それにより、燃焼室11内の燃料の濃度分布のばらつきが抑制される。つまり、本実施形態のエンジンユニット1は、1つの燃焼室11に対して複数の吸気口12を有するエンジンユニット1と比べて、燃焼室11内の燃料の濃度分布のばらつきが抑制される。 If the engine unit has a plurality of intake ports for one combustion chamber, a plurality of intake passage portions respectively connected to the plurality of intake ports are provided. The engine unit 1 of this embodiment has only one intake port 12 for one combustion chamber 11. Therefore, the single intake port 12 of the present embodiment has a larger diameter than the intake port of an engine unit having the same cylinder hole diameter as that of the present embodiment and having a plurality of intake ports for one combustion chamber. Therefore, the diameter of the single intake passage portion 20 of this embodiment is the same as that of the engine passage having the same cylinder hole diameter as that of this embodiment and having a plurality of intake ports for one combustion chamber. large. Since the diameter of the single intake passage portion 20 is large, the injection angle of the fuel injected from the single intake port injector 23 can be increased. The injection angle is the largest angle among the injection directions of a plurality of fuel droplets injected from a single intake port injector when viewed in a certain direction. Since the injection angle of the fuel injected from the single inlet injector 23 is large, it is possible to reduce the diameter of the injected droplets while suppressing the plurality of injected droplets from contacting each other. . Due to the small diameter of the injected droplets, the fuel droplets that have flowed into the combustion chamber 11 are likely to diffuse along the air flow. Thereby, the variation in the fuel concentration distribution in the combustion chamber 11 is suppressed. That is, in the engine unit 1 of the present embodiment, variation in the fuel concentration distribution in the combustion chamber 11 is suppressed as compared with the engine unit 1 having a plurality of intake ports 12 for one combustion chamber 11.
 仮に、エンジンユニットが1つの燃焼室に対して2つの吸気口と1つのインジェクタを有する場合、複数の吸気口に接続された2つの吸気通路部同士が接続される。そして、インジェクタは、2つの吸気通路部同士が接続される箇所よりも空気の流れ方向の上流に配置される。このインジェクタは、2つの吸気口に向かって燃料を噴射する。一方、本実施形態のエンジンユニット1は、1つの燃焼室11に対して1つの吸気口12と1つのインジェクタ23を有する。そのため、本実施形態の単一吸気口用インジェクタ23は、1つの燃焼室に対して2つの吸気口と1つのインジェクタを有するエンジンユニットのインジェクタと比べて、吸気口に近い位置に配置できる。単一吸気口用インジェクタ23が吸気口12に近い位置に配置されることにより、単一吸気口用インジェクタ23から噴射される燃料の噴射角度をより大きくすることができる。上述したように、単一吸気口用インジェクタ23から噴射される燃料の噴射角度が大きいことにより、噴射された複数の液滴が互いに接触することを抑制しつつ、噴射される液滴の径を小さくすることができる。噴射される液滴の径が小さいことにより、燃焼室11に流入した燃料の液滴が、空気の流れに沿って拡散されやすい。そのため、本実施形態のエンジンユニット1は、1つの燃焼室に対して複数の吸気口と1つのインジェクタを有するエンジンユニットと比べて、燃焼室11内の燃料の濃度分布のばらつきがより抑制される。 If the engine unit has two intake ports and one injector for one combustion chamber, two intake passage portions connected to a plurality of intake ports are connected to each other. And an injector is arrange | positioned in the upstream of the flow direction of air rather than the location where two intake passage parts are connected. This injector injects fuel toward two intake ports. On the other hand, the engine unit 1 of the present embodiment has one intake port 12 and one injector 23 for one combustion chamber 11. Therefore, the single intake port injector 23 of the present embodiment can be disposed at a position closer to the intake port than an injector of an engine unit having two intake ports and one injector for one combustion chamber. By disposing the single intake port injector 23 at a position close to the intake port 12, the injection angle of the fuel injected from the single intake port injector 23 can be further increased. As described above, since the injection angle of the fuel injected from the single inlet injector 23 is large, the diameter of the injected droplets can be reduced while suppressing the plurality of injected droplets from contacting each other. Can be small. Due to the small diameter of the injected droplets, the fuel droplets that flow into the combustion chamber 11 are likely to diffuse along the air flow. Therefore, in the engine unit 1 of the present embodiment, variation in the fuel concentration distribution in the combustion chamber 11 is further suppressed as compared with an engine unit having a plurality of intake ports and one injector for one combustion chamber. .
 仮に、エンジンユニットが1つの燃焼室に対して複数の吸気口を有する場合、複数の吸気口から燃焼室に流入した空気同士が衝突する。一方、本実施形態のエンジンユニット1は、1つの燃焼室11に対して吸気口12を1つだけ有するため、このような空気の衝突が無い。その上、1つの燃焼室に対して複数の吸気口を有するエンジンユニットと比べて、シリンダ孔の中心軸線に近い位置に吸気口を配置できる。そのため、吸気口12から燃焼室11内に流入した空気が、シリンダ孔10の内面の周方向に均一に拡散しやすい。したがって、本実施形態のエンジンユニット1は、1つの燃焼室に対して複数の吸気口を有するエンジンユニットと比べて、燃焼室11内の燃料の濃度分布のばらつきがより抑制される。 If the engine unit has a plurality of intake ports for one combustion chamber, the air flowing into the combustion chamber from the plurality of intake ports collides. On the other hand, since the engine unit 1 of the present embodiment has only one intake port 12 for one combustion chamber 11, there is no such air collision. In addition, the intake port can be disposed at a position closer to the central axis of the cylinder hole than an engine unit having a plurality of intake ports for one combustion chamber. Therefore, the air that has flowed into the combustion chamber 11 from the intake port 12 tends to diffuse uniformly in the circumferential direction of the inner surface of the cylinder hole 10. Therefore, in the engine unit 1 of the present embodiment, variation in the fuel concentration distribution in the combustion chamber 11 is further suppressed as compared with an engine unit having a plurality of intake ports for one combustion chamber.
 燃焼室11内の燃料の濃度分布のばらつきが抑制されることにより、仮に噴射方向を調整した場合には、燃焼室11内の所望の位置の濃度を高くすることができる。つまり、燃焼室11内の燃料の濃度分布を調整しやすい。したがって、本実施形態のエンジンユニット1は、燃焼室11内の燃料の濃度分布の設計自由度を向上できる。 By suppressing the variation in the fuel concentration distribution in the combustion chamber 11, if the injection direction is adjusted, the concentration at a desired position in the combustion chamber 11 can be increased. That is, it is easy to adjust the fuel concentration distribution in the combustion chamber 11. Therefore, the engine unit 1 of the present embodiment can improve the degree of freedom in designing the fuel concentration distribution in the combustion chamber 11.
 ≪本発明の実施形態の具体例≫
 次に、本発明の実施形態の具体例のエンジンユニット1Aについて、図2~図9を参照しつつ、説明する。基本的に、本発明の実施形態の具体例のエンジンユニット1Aは、上述した本発明の実施形態のエンジンユニット1の特徴を全て有している。上述した本発明の実施形態のエンジンユニット1と同じ部位についての説明は省略する。
<< Specific Examples of Embodiments of the Present Invention >>
Next, a specific example of the engine unit 1A according to the embodiment of the present invention will be described with reference to FIGS. Basically, the engine unit 1A of the specific example of the embodiment of the present invention has all the features of the engine unit 1 of the embodiment of the present invention described above. A description of the same parts as those of the engine unit 1 of the embodiment of the present invention described above will be omitted.
 エンジンユニット1Aは、例えば、鞍乗型車両に搭載される。鞍乗型車両とは、ライダーが鞍にまたがるような状態で乗車する車両全般を指す。鞍乗型車両は、自動二輪車、自動三輪車、四輪バギー(ATV:All Terrain Vehicle(全地形型車両))、水上バイク、スノーモービル等を含む。自動二輪車は、スクータ、原動機付き自転車、モペットを含む。エンジンユニット1Aは、自動車に搭載されてもよい。エンジンユニット1Aは、自動車および鞍乗型車両以外の乗り物または装置に搭載されてもよい。 Engine unit 1A is mounted on, for example, a straddle-type vehicle. A saddle riding type vehicle refers to any vehicle that rides in a state where a rider straddles a saddle. The saddle riding type vehicle includes a motorcycle, a tricycle, a four-wheel buggy (ATV: All Terrain Vehicle), a water bike, a snowmobile, and the like. Motorcycles include scooters, motorbikes, and mopeds. The engine unit 1A may be mounted on an automobile. The engine unit 1A may be mounted on a vehicle or a device other than an automobile and a saddle type vehicle.
 図2に示すように、エンジンユニット1Aは、エンジン本体2と、1つの外部吸気通路部3と、1つの外部排気通路部(図示せず)と、制御装置50を有する。外部吸気通路部3および外部排気通路部は、エンジン本体2に接続される。制御装置50は、エンジンユニット1Aの動作を制御する。制御装置50は、鞍乗型車両に設けられた各種センサに接続されている。 2, the engine unit 1A includes an engine body 2, one external intake passage portion 3, one external exhaust passage portion (not shown), and a control device 50. The external intake passage portion 3 and the external exhaust passage portion are connected to the engine body 2. The control device 50 controls the operation of the engine unit 1A. The control device 50 is connected to various sensors provided in the saddle riding type vehicle.
 具体例のエンジン本体2は、単気筒エンジンである。エンジン本体2は、4ストローク式のエンジンである。4ストローク式のエンジンとは、吸気行程、圧縮行程、燃焼行程(膨張行程)、及び排気行程を繰り返すエンジンである。エンジン本体2は、ガソリン用エンジンである。エンジン本体2の冷却方式は、特に限定されない。 The specific example engine body 2 is a single cylinder engine. The engine body 2 is a 4-stroke engine. The 4-stroke engine is an engine that repeats an intake stroke, a compression stroke, a combustion stroke (expansion stroke), and an exhaust stroke. The engine body 2 is a gasoline engine. The cooling method of the engine body 2 is not particularly limited.
 エンジン本体2は、1つのシリンダ孔10を有するシリンダ部4と、クランクケース部(図示せず)とを有する。図示は省略するが、クランクケース部内には、クランクシャフトが収容されている。クランクシャフトの中心軸線は、図2の紙面に直交する方向である。シリンダ部4とクランクケース部は、シリンダ孔10の中心軸線Cy1上に並んでいる。以下、シリンダ孔10の中心軸線Cy1を、シリンダ軸線Cy1という。 The engine body 2 has a cylinder part 4 having one cylinder hole 10 and a crankcase part (not shown). Although illustration is omitted, a crankshaft is accommodated in the crankcase portion. The center axis of the crankshaft is a direction orthogonal to the paper surface of FIG. The cylinder part 4 and the crankcase part are arranged on the central axis Cy <b> 1 of the cylinder hole 10. Hereinafter, the central axis Cy1 of the cylinder hole 10 is referred to as a cylinder axis Cy1.
 シリンダ軸線Cy1は、シリンダ孔10が存在する領域だけに存在する線分ではなく、無限に延びる直線である。シリンダ軸線Cy1は、図2の紙面の上下方向と平行である。紙面の上下方向は、エンジンユニット1Aが搭載される鞍乗型車両の上下方向と一致してもよく、一致しなくてもよい。鞍乗型車両において、シリンダ部4は、エンジン本体2の上部または前部を構成する。シリンダ軸線Cy1は、鞍乗型車両の上下方向と平行であってもよく、鞍乗型車両の上下方向に対して45°以下の角度で傾斜していてもよい。シリンダ軸線Cy1は、鞍乗型車両の前後方向と平行であってもよく、鞍乗型車両の前後方向に対して45°未満の角度で傾斜していてもよい。 The cylinder axis Cy1 is not a line segment that exists only in the area where the cylinder hole 10 exists, but is a straight line that extends indefinitely. The cylinder axis Cy1 is parallel to the vertical direction of the paper surface of FIG. The vertical direction of the paper surface may or may not coincide with the vertical direction of the saddle riding type vehicle on which the engine unit 1A is mounted. In the saddle riding type vehicle, the cylinder portion 4 constitutes an upper portion or a front portion of the engine body 2. The cylinder axis Cy1 may be parallel to the vertical direction of the saddle riding type vehicle, or may be inclined at an angle of 45 ° or less with respect to the vertical direction of the saddle riding type vehicle. The cylinder axis Cy1 may be parallel to the front-rear direction of the straddle-type vehicle, or may be inclined at an angle of less than 45 ° with respect to the front-rear direction of the straddle-type vehicle.
 シリンダ部4は、シリンダボディ5と、シリンダヘッド6と、ヘッドカバー7とを有する。シリンダボディ5、シリンダヘッド6およびヘッドカバー7は、シリンダ軸線Cy1上にこの順番で並んで接続されている。シリンダボディ5は、クランクケース部に接続される。図2では、シリンダボディ5、シリンダヘッド6およびヘッドカバー7は、互いに独立した部材である。しかし、シリンダボディ5、シリンダヘッド6およびヘッドカバー7のうちの少なくとも2つが一体成形されていてもよい。 The cylinder part 4 has a cylinder body 5, a cylinder head 6, and a head cover 7. The cylinder body 5, the cylinder head 6 and the head cover 7 are connected in this order on the cylinder axis Cy1. The cylinder body 5 is connected to the crankcase part. In FIG. 2, the cylinder body 5, the cylinder head 6 and the head cover 7 are members independent of each other. However, at least two of the cylinder body 5, the cylinder head 6, and the head cover 7 may be integrally formed.
 シリンダ孔10は、シリンダボディ5の内部に形成されている。シリンダ孔10内には、ピストン8が摺動自在に収容される。ピストン8は、コネクティングロッド(図示せず)を介してクランクシャフトに連結される。 The cylinder hole 10 is formed inside the cylinder body 5. A piston 8 is slidably accommodated in the cylinder hole 10. The piston 8 is connected to the crankshaft via a connecting rod (not shown).
 シリンダ部4は、1つの燃焼室11を有する。燃焼室11は、シリンダヘッド6の図2中の下面と、シリンダ孔10の内面と、ピストン8の図2中の上面からなる。つまり、燃焼室11の一部は、シリンダ孔10の内面によって形成される。 The cylinder part 4 has one combustion chamber 11. The combustion chamber 11 includes a lower surface of the cylinder head 6 in FIG. 2, an inner surface of the cylinder hole 10, and an upper surface of the piston 8 in FIG. 2. That is, a part of the combustion chamber 11 is formed by the inner surface of the cylinder hole 10.
 図3(a)に示すように、燃焼室11には、1つの吸気口12と1つの排気口13が形成されている。吸気口12は、本発明の単一吸気口の一例である。吸気口12および排気口13は、シリンダヘッド6の図2中の下面に形成される。吸気口12および排気口13は、円形状である。吸気口12の直径は、排気口13の直径よりも大きい。シリンダ軸線Cy1の方向に見たとき、吸気口12の中心P1と排気口13の中心P2を結ぶ線分は、シリンダ軸線Cy1またはその近傍を通る。 As shown in FIG. 3A, the combustion chamber 11 has one intake port 12 and one exhaust port 13 formed therein. The intake port 12 is an example of a single intake port of the present invention. The intake port 12 and the exhaust port 13 are formed on the lower surface of the cylinder head 6 in FIG. The intake port 12 and the exhaust port 13 are circular. The diameter of the intake port 12 is larger than the diameter of the exhaust port 13. When viewed in the direction of the cylinder axis Cy1, the line segment connecting the center P1 of the intake port 12 and the center P2 of the exhaust port 13 passes through the cylinder axis Cy1 or the vicinity thereof.
 図3(a)に示すように、燃焼室11には、1つの点火プラグ挿入口14が形成されている。点火プラグ挿入口14は、円形状である。点火プラグ挿入口14の直径は、吸気口12および排気口13の直径よりも小さい。点火プラグ挿入口14は、シリンダ軸線Cy1を中心とした周方向において、排気口13と吸気口12の間に配置される。 As shown in FIG. 3A, the combustion chamber 11 has one spark plug insertion port 14 formed therein. The spark plug insertion port 14 has a circular shape. The diameter of the spark plug insertion port 14 is smaller than the diameters of the intake port 12 and the exhaust port 13. The spark plug insertion port 14 is disposed between the exhaust port 13 and the intake port 12 in the circumferential direction centered on the cylinder axis Cy1.
 エンジンユニット1Aは、点火プラグ挿入口14に挿入される点火プラグ(図示せず)を有する。点火プラグの先端部は、燃焼室11内に配置される。点火プラグの先端部は、火花放電を発生させる。この火花放電によって、燃焼室11内の混合気は点火される。なお、本明細書において、混合気とは、空気と燃料との混合気のことである。点火プラグは、点火コイル(図示せず)に接続される。点火コイルは、点火プラグの火花放電を生じさせるための電力を蓄える。燃焼室11内で混合気が燃焼することによって、ピストン8が移動して、クランクシャフト(図示せず)が回転する。 The engine unit 1A has a spark plug (not shown) inserted into the spark plug insertion port 14. The tip of the spark plug is disposed in the combustion chamber 11. The tip of the spark plug generates a spark discharge. By this spark discharge, the air-fuel mixture in the combustion chamber 11 is ignited. In the present specification, the air-fuel mixture is an air-fuel mixture. The spark plug is connected to an ignition coil (not shown). The ignition coil stores electric power for causing spark discharge of the spark plug. As the air-fuel mixture burns in the combustion chamber 11, the piston 8 moves and a crankshaft (not shown) rotates.
 図2に示すように、シリンダヘッド6内には、1つのシリンダ吸気通路部21が形成されている。シリンダ吸気通路部21は、燃焼室11の吸気口12に接続される。シリンダ吸気通路部21は、外部吸気通路部3に接続される。外部吸気通路部3は、独立した複数の部品で構成されていてもよい。外部吸気通路部3に流入した空気は、シリンダ吸気通路部21を通過して、燃焼室11に供給される。外部吸気通路部3は、エアクリーナーに接続されていてもよく、エアクリーナーを含んでいてもよい。 As shown in FIG. 2, one cylinder intake passage portion 21 is formed in the cylinder head 6. The cylinder intake passage portion 21 is connected to the intake port 12 of the combustion chamber 11. The cylinder intake passage portion 21 is connected to the external intake passage portion 3. The external intake passage portion 3 may be composed of a plurality of independent parts. The air flowing into the external intake passage portion 3 passes through the cylinder intake passage portion 21 and is supplied to the combustion chamber 11. The external intake passage portion 3 may be connected to an air cleaner or may include an air cleaner.
 図2に示すように、シリンダヘッド6内には、シリンダ排気通路部31が形成されている。シリンダ排気通路部31は、燃焼室11の排気口13に接続される。燃焼室11内で混合気が燃焼することで発生したガス(排ガス)は、シリンダ排気通路部31に排出される。シリンダ排気通路部31は、外部排気通路部(図示せず)に接続される。 As shown in FIG. 2, a cylinder exhaust passage 31 is formed in the cylinder head 6. The cylinder exhaust passage portion 31 is connected to the exhaust port 13 of the combustion chamber 11. Gas (exhaust gas) generated by the combustion of the air-fuel mixture in the combustion chamber 11 is discharged to the cylinder exhaust passage portion 31. The cylinder exhaust passage portion 31 is connected to an external exhaust passage portion (not shown).
 図2に示すように、エンジンユニット1Aは、吸気口12を開閉する1つの吸気弁22を有する。具体例の吸気弁22は、本発明の単一吸気弁の一例である。吸気弁22は、傘部22aとステム部22bとを有する。図2、図3(a)および図3(b)に示すように、傘部22aは、略円錐状に形成されている。傘部22aの直径(最大径)は、吸気口12の直径とほぼ同じである。傘部22aは、吸気口12を塞ぐことができるように構成される。吸気弁22が吸気口12を塞いでいるとき、傘部22aの少なくとも一部はシリンダ吸気通路部21内に配置される。図2に示すように、傘部22aの燃焼室11を向いた端面は、吸気口12の全周を含む平面S4と平行である。平面S4は、物理的に存在する面ではなく、仮想平面である。 As shown in FIG. 2, the engine unit 1 </ b> A has one intake valve 22 that opens and closes the intake port 12. The specific intake valve 22 is an example of a single intake valve of the present invention. The intake valve 22 has an umbrella portion 22a and a stem portion 22b. As shown in FIGS. 2, 3A, and 3B, the umbrella portion 22a is formed in a substantially conical shape. The diameter (maximum diameter) of the umbrella portion 22 a is substantially the same as the diameter of the air inlet 12. Umbrella part 22a is constituted so that inlet 12 can be closed. When the intake valve 22 closes the intake port 12, at least a part of the umbrella portion 22 a is disposed in the cylinder intake passage portion 21. As shown in FIG. 2, the end surface of the umbrella portion 22 a facing the combustion chamber 11 is parallel to a plane S <b> 4 that includes the entire circumference of the intake port 12. The plane S4 is not a physically existing plane but a virtual plane.
 ステム部22bは、傘部22aに接続される。詳細には、ステム部22bは、傘部22aの中央部に接続される。ステム部22bは、傘部22aのシリンダ吸気通路部21を向いた面に接続される。ステム部22bの一部は、シリンダ吸気通路部21内に配置される。ステム部22bは直線状に延びている。ステム部22bの中心を通る軸線を、中心軸線Cv1とする。ステム部22bの中心軸線Cv1は、吸気口12の全周を含む平面S4と直交する。ステム部22bの中心軸線Cv1は、ステム部22bが存在する領域だけに存在する線分ではなく、無限に延びる直線である。ステム部22bの中心軸線Cv1は、吸気口12の中心P1を通る。図3(a)に示すように、シリンダ軸線Cy1の方向に見たとき、ステム部22bの中心軸線Cv1は、シリンダ軸線Cy1を通る。 The stem portion 22b is connected to the umbrella portion 22a. Specifically, the stem portion 22b is connected to the central portion of the umbrella portion 22a. The stem portion 22b is connected to a surface of the umbrella portion 22a facing the cylinder intake passage portion 21. A part of the stem portion 22 b is disposed in the cylinder intake passage portion 21. The stem portion 22b extends linearly. An axis passing through the center of the stem portion 22b is defined as a center axis Cv1. The central axis Cv1 of the stem portion 22b is orthogonal to the plane S4 including the entire circumference of the intake port 12. The central axis Cv1 of the stem portion 22b is not a line segment that exists only in the region where the stem portion 22b exists, but is a straight line extending infinitely. The central axis Cv1 of the stem portion 22b passes through the center P1 of the intake port 12. As shown in FIG. 3A, when viewed in the direction of the cylinder axis Cy1, the central axis Cv1 of the stem portion 22b passes through the cylinder axis Cy1.
 吸気弁22は、ステム部22bの中心軸線Cv1に沿って往復移動することで、吸気口12を開閉する。図2に二点鎖線で示した吸気弁22は、吸気口12を閉じる(塞ぐ)閉位置にある。図2、図3(a)および図3(b)に実線で示した吸気弁22は、吸気口12を開く(開放する)開位置にある。吸気弁22の開位置は、傘部22aの少なくとも一部が燃焼室11内に配置されて、傘部22aと吸気口12との間に隙間が生じる位置である。吸気弁22の開位置は、実線で表示した位置に限定されない。吸気弁22の開位置とは、吸気弁22の可動範囲において閉位置以外の全ての位置を含む。吸気弁22は、シリンダ部4に収容された動弁機構(図示せず)とバネ(図示せず)によって駆動される。動弁機構は、クランクシャフトの回転に伴って作動する。吸気弁22は、動弁機構によって、閉位置から開位置に移動し、バネによって、開位置から閉位置に移動する。 The intake valve 22 opens and closes the intake port 12 by reciprocating along the central axis Cv1 of the stem portion 22b. The intake valve 22 indicated by a two-dot chain line in FIG. 2 is in a closed position for closing (closing) the intake port 12. The intake valve 22 shown by a solid line in FIGS. 2, 3A and 3B is in an open position where the intake port 12 is opened (opened). The open position of the intake valve 22 is a position where at least a part of the umbrella portion 22 a is disposed in the combustion chamber 11 and a gap is generated between the umbrella portion 22 a and the intake port 12. The open position of the intake valve 22 is not limited to the position indicated by the solid line. The open position of the intake valve 22 includes all positions other than the closed position in the movable range of the intake valve 22. The intake valve 22 is driven by a valve mechanism (not shown) and a spring (not shown) accommodated in the cylinder part 4. The valve mechanism operates as the crankshaft rotates. The intake valve 22 is moved from the closed position to the open position by the valve operating mechanism, and is moved from the open position to the closed position by the spring.
 吸気弁22は、吸気行程の少なくとも一部の期間にわたって、開位置にある。吸気行程とは、ピストン8が排気上死点から吸気下死点まで下降し、燃焼室11の容積が増大する期間である。吸気弁22の位置が閉位置から開位置に変わるタイミングは、吸気行程の開始時より若干前であってもよく、吸気行程の開始時と同じであってもよく、吸気行程の開始時より若干後であってもよい。吸気弁22が開位置から閉位置に移動するタイミングは、吸気行程の終了時より若干後であってもよく、吸気行程の終了時と同じであってもよく、吸気行程の終了時より若干前であってもよい。吸気弁22は、吸気行程の全期間にわたって開位置にあってもよく、吸気行程の一部の期間にわたって開位置にあってもよい。 The intake valve 22 is in the open position for at least part of the intake stroke. The intake stroke is a period in which the piston 8 descends from the exhaust top dead center to the intake bottom dead center and the volume of the combustion chamber 11 increases. The timing at which the position of the intake valve 22 changes from the closed position to the open position may be slightly before the start of the intake stroke, may be the same as the start of the intake stroke, or slightly from the start of the intake stroke. It may be later. The timing at which the intake valve 22 moves from the open position to the closed position may be slightly after the end of the intake stroke, may be the same as the end of the intake stroke, or slightly before the end of the intake stroke. It may be. The intake valve 22 may be in the open position over the entire period of the intake stroke, or may be in the open position over a portion of the intake stroke.
 図2に示すように、エンジンユニット1Aは、排気口13を開閉する1つの排気弁32を有する。排気弁32も、吸気弁22と同様に、傘部とステム部で構成される。排気弁32の基本的な形状および構成は、吸気弁22と同様である。排気弁32の傘部の直径は、吸気弁22の傘部22aの直径よりも小さい。排気弁32は、排気行程の少なくとも一部の期間にわたって開位置にある。排気弁32も、吸気弁22と同様に、動弁機構(図示せず)によって駆動される。動弁機構は、吸気弁22および排気弁32の少なくとも一方の開閉タイミングを変化させる可変バルブタイミング装置を含んでいてもよい。 As shown in FIG. 2, the engine unit 1 </ b> A has one exhaust valve 32 that opens and closes the exhaust port 13. Similarly to the intake valve 22, the exhaust valve 32 also includes an umbrella portion and a stem portion. The basic shape and configuration of the exhaust valve 32 are the same as those of the intake valve 22. The diameter of the umbrella part of the exhaust valve 32 is smaller than the diameter of the umbrella part 22 a of the intake valve 22. The exhaust valve 32 is in the open position over at least a portion of the exhaust stroke. Similarly to the intake valve 22, the exhaust valve 32 is also driven by a valve operating mechanism (not shown). The valve mechanism may include a variable valve timing device that changes the opening / closing timing of at least one of the intake valve 22 and the exhaust valve 32.
 図2に示すように、エンジンユニット1Aは、1つのスロットル弁24を有する。スロットル弁24は、外部吸気通路部3内に配置されている。スロットル弁24の開度が変更されることで、燃焼室11内に供給される空気の量が変更される。図2に破線で示すスロットル弁24は、閉位置にある。スロットル弁24が閉位置にあるとき、わずかな空気の流れが許容される。外部吸気通路部3には、スロットル弁24を迂回するバイパス通路部が接続されていてもよい。バイパス通路部内には、バルブが配置されていてもよい。スロットル弁24は、図示しないスロットル操作部に制御装置50を介さずに接続されていてもよい。この場合、スロットル弁24の開度は、スロットル操作部を運転者が操作することで変更される。スロットル弁24は、電子的に開度を制御可能な弁であって、制御装置50によって制御されてもよい。この場合、制御装置50は、スロットル操作部の操作状態を検出するセンサの信号に基づいてスロットル弁24を制御する。 As shown in FIG. 2, the engine unit 1 </ b> A has one throttle valve 24. The throttle valve 24 is disposed in the external intake passage portion 3. By changing the opening of the throttle valve 24, the amount of air supplied into the combustion chamber 11 is changed. The throttle valve 24 indicated by a broken line in FIG. 2 is in the closed position. When the throttle valve 24 is in the closed position, a slight air flow is allowed. A bypass passage portion that bypasses the throttle valve 24 may be connected to the external intake passage portion 3. A valve may be disposed in the bypass passage portion. The throttle valve 24 may be connected to a throttle operation unit (not shown) without using the control device 50. In this case, the opening degree of the throttle valve 24 is changed by the driver operating the throttle operation unit. The throttle valve 24 is a valve whose electronic opening can be controlled, and may be controlled by the control device 50. In this case, the control device 50 controls the throttle valve 24 based on a signal from a sensor that detects the operation state of the throttle operation unit.
 図2、図3(a)および図3(b)には、吸気行程時であって吸気弁22が開位置にあるときの燃焼室11内の空気の流れを矢印で模式的に示している。なお、図3(b)は、図3(a)のIII-III線断面図であるが、図3(b)の矢印は、断面の手前に現れる空気の流れも表している。吸気行程時、ピストン8が下降することで、燃焼室11の気圧が低下する。外部吸気通路部3およびシリンダ吸気通路部21内の空気は、燃焼室11の負圧(大気圧よりも低い圧力)によって、燃焼室11に引き込まれる。空気は、吸気弁22の傘部22aと吸気口12との間の環状の隙間を通って、燃焼室11に流入する。燃焼室11に流入した空気は、まず、燃焼室11の内面に沿って流れる。燃焼室11の内面に沿って拡散する空気は、シリンダ孔10の内面の周方向にほぼ均一に拡散される。 2, 3 (a), and 3 (b), the flow of air in the combustion chamber 11 during the intake stroke and when the intake valve 22 is in the open position is schematically shown by arrows. . 3B is a cross-sectional view taken along the line III-III in FIG. 3A, the arrow in FIG. 3B also represents the air flow that appears before the cross section. During the intake stroke, the piston 8 is lowered, so that the pressure in the combustion chamber 11 is lowered. The air in the external intake passage portion 3 and the cylinder intake passage portion 21 is drawn into the combustion chamber 11 by the negative pressure of the combustion chamber 11 (pressure lower than atmospheric pressure). The air flows into the combustion chamber 11 through an annular gap between the umbrella portion 22 a of the intake valve 22 and the intake port 12. The air flowing into the combustion chamber 11 first flows along the inner surface of the combustion chamber 11. The air that diffuses along the inner surface of the combustion chamber 11 is diffused substantially uniformly in the circumferential direction of the inner surface of the cylinder hole 10.
 図2および図3(a)に示すように、エンジンユニット1Aは、1つのインジェクタ23を有する。インジェクタ23は、本発明の単一吸気口用インジェクタの一例である。インジェクタ23は、外部吸気通路部3に設置されている。インジェクタ23は、空気の流れ方向においてスロットル弁24よりも下流に配置される。なお、インジェクタ23は、シリンダ吸気通路部21に設置されてもよい。外部吸気通路部3およびシリンダ吸気通路部21のうち、空気の流れ方向においてインジェクタ23の設置位置よりも下流の部分は、単一吸気通路部20を構成する。単一吸気通路部20は、その内部を空気の流れが分離または合流することなく通過するように構成されている。 2 and 3A, the engine unit 1A has one injector 23. The injector 23 is an example of a single intake port injector according to the present invention. The injector 23 is installed in the external intake passage portion 3. The injector 23 is disposed downstream of the throttle valve 24 in the air flow direction. The injector 23 may be installed in the cylinder intake passage portion 21. Of the external intake passage portion 3 and the cylinder intake passage portion 21, a portion downstream of the installation position of the injector 23 in the air flow direction constitutes a single intake passage portion 20. The single intake passage portion 20 is configured to pass through the inside thereof without being separated or joined together.
 インジェクタ23は、吸気口12に向かって燃料を噴射するように配置および構成されている。インジェクタ23の先端部には、複数の噴射孔が形成されている。インジェクタ23は、複数の噴射孔から霧状の燃料F11を噴射する。複数の噴射孔は、シリンダ吸気通路部21内にある。なお、複数の噴射孔は、外部吸気通路部3内にあってもよく、シリンダ吸気通路部21と外部吸気通路部3の境界にあってもよい。インジェクタ23は、単一吸気通路部20内で燃料を噴射するように配置されている。 The injector 23 is arranged and configured to inject fuel toward the intake port 12. A plurality of injection holes are formed at the tip of the injector 23. The injector 23 injects the mist-like fuel F11 from the plurality of injection holes. The plurality of injection holes are in the cylinder intake passage portion 21. The plurality of injection holes may be in the external intake passage portion 3 or may be at the boundary between the cylinder intake passage portion 21 and the external intake passage portion 3. The injector 23 is arranged so as to inject fuel in the single intake passage portion 20.
 インジェクタ23は、吸気行程時であって吸気弁22が開位置のときに、燃料を噴射する。インジェクタ23の燃料の噴射は、制御装置50によって制御される。エンジンユニット1Aは、インジェクタ23に供給される燃料を貯留する燃料タンク(図示せず)と、燃料タンク内に配置された燃料ポンプを有する。燃料ポンプは、燃料ホース(図示せず)を介してインジェクタ23に接続されている。燃料ポンプの駆動によって、燃料タンク内の燃料がインジェクタ23に供給される。燃料ポンプの駆動は、制御装置50によって制御される。 The injector 23 injects fuel during the intake stroke and when the intake valve 22 is in the open position. The injection of fuel from the injector 23 is controlled by the control device 50. The engine unit 1A includes a fuel tank (not shown) that stores fuel supplied to the injector 23, and a fuel pump disposed in the fuel tank. The fuel pump is connected to the injector 23 via a fuel hose (not shown). The fuel in the fuel tank is supplied to the injector 23 by driving the fuel pump. The drive of the fuel pump is controlled by the control device 50.
 インジェクタ23は、複数の噴射孔から同時に燃料を噴射する。インジェクタ23から噴射された燃料の液滴の径は、例えば、50~60μmである。インジェクタ23から噴射された燃料の液滴の径は、一般的なインジェクタから噴射された燃料の液滴の径よりも小さい。一般的なインジェクタから噴射された燃料の液滴の径は、例えば80~90μmである。燃料の液滴の径が小さいため、燃料の液滴が蒸発しやすい。そのため、蒸発までの時間を確保するために吸気行程の前に燃料を噴射する必要がない。液滴の径は、噴射孔の径、インジェクタ23に供給される燃料の圧力、および、燃料の粘度などの影響を受ける。噴射孔の径が小さいほど、液滴の径は小さい。インジェクタ23が有する複数の噴射孔の径は、全て同じであってもよく、異なっていてもよい。複数の噴射孔の数および形状は特に限定されない。複数の噴射孔が形成される面は、例えば、1つの平面であってもよく、凸状の曲面であってもよい。複数の噴射孔の配列も特に限定されない。例えば、複数の噴射孔は、1つの円上に配列されていてもよく、2つ以上の同心円上に配列されていてもよい。インジェクタ23は、スワール(旋回流)を利用して燃料を噴射するものではない。 The injector 23 simultaneously injects fuel from a plurality of injection holes. The diameter of the fuel droplets injected from the injector 23 is, for example, 50 to 60 μm. The diameter of the fuel droplets injected from the injector 23 is smaller than the diameter of the fuel droplets injected from a general injector. The diameter of fuel droplets injected from a general injector is, for example, 80 to 90 μm. Since the diameter of the fuel droplet is small, the fuel droplet easily evaporates. Therefore, it is not necessary to inject fuel before the intake stroke in order to ensure the time until evaporation. The diameter of the droplet is affected by the diameter of the injection hole, the pressure of the fuel supplied to the injector 23, the viscosity of the fuel, and the like. The smaller the diameter of the injection hole, the smaller the diameter of the droplet. The diameters of the plurality of injection holes of the injector 23 may all be the same or different. The number and shape of the plurality of injection holes are not particularly limited. The surface on which the plurality of injection holes are formed may be, for example, one flat surface or a convex curved surface. The arrangement of the plurality of injection holes is not particularly limited. For example, the plurality of injection holes may be arranged on one circle or may be arranged on two or more concentric circles. The injector 23 does not inject fuel using a swirl (swirl flow).
 なお、エンジンユニット1Aは、1つの燃焼室11に対して1つのインジェクタ23以外の燃料噴射装置を有さない。ここでの燃料噴射装置は、シリンダ吸気通路部21内または外部吸気通路部3内で燃料を噴射するものだけでなく、燃焼室11内で燃料を噴射するものを含む。燃料噴射装置は、複数の噴射孔を有するものだけでなく、1つの噴射孔だけを有する者を含む。 The engine unit 1 </ b> A has no fuel injection device other than one injector 23 for one combustion chamber 11. The fuel injection device here includes not only one that injects fuel in the cylinder intake passage portion 21 or the external intake passage portion 3 but also one that injects fuel in the combustion chamber 11. The fuel injection device includes not only one having a plurality of injection holes but also one having only one injection hole.
 インジェクタ23は、略円錐状に霧状の燃料F11を噴射する。図3(a)に示すように、シリンダ軸線Cy1の方向に見たとき、インジェクタ23から噴射された複数の燃料の液滴の噴射方向のうち最も大きい角度をなす2つの噴射方向の中央を通る直線に見える平面を、平面S2とする。言い換えると、平面S2は、シリンダ軸線Cy1の方向に見たときに、インジェクタ23の噴射角度を2等分する直線に見える。平面S2は、本発明の第2平面に相当する。図2に示すように、平面S2に直交する方向に見たとき、インジェクタ23から噴射された複数の燃料の液滴の噴射方向のうち最も大きい角度をなす2つの噴射方向の中央を通る直線に見える平面を、平面S3とする。言い換えると、平面S3は、平面S2に直交する方向に見たとき、インジェクタ23の噴射角度を2等分する直線に見える。平面S3は、本発明の第3平面に相当する。平面S2と平面S3との交線を噴射中心線Ci1という。噴射中心線Ci1は無限直線である。 The injector 23 injects the mist-like fuel F11 in a substantially conical shape. As shown in FIG. 3A, when viewed in the direction of the cylinder axis Cy1, it passes through the center of the two injection directions forming the largest angle among the injection directions of the plurality of fuel droplets injected from the injector 23. A plane that looks like a straight line is a plane S2. In other words, the plane S2 looks like a straight line that bisects the injection angle of the injector 23 when viewed in the direction of the cylinder axis Cy1. The plane S2 corresponds to the second plane of the present invention. As shown in FIG. 2, when viewed in a direction perpendicular to the plane S <b> 2, a straight line passing through the center of the two injection directions forming the largest angle among the injection directions of the plurality of fuel droplets injected from the injector 23. Let the visible plane be plane S3. In other words, the plane S3 looks like a straight line that bisects the injection angle of the injector 23 when viewed in a direction orthogonal to the plane S2. The plane S3 corresponds to the third plane of the present invention. An intersection line between the plane S2 and the plane S3 is referred to as an injection center line Ci1. The injection center line Ci1 is an infinite straight line.
 図2に示すように、インジェクタ23の噴射中心線Ci1は、吸気口12を通る。図3(a)に示すように、シリンダ軸線Cy1の方向に見たとき、噴射中心線Ci1は、ステム部22bの中心軸線Cv1と一致する。シリンダ軸線Cy1の方向に見たとき、噴射中心線Ci1は、シリンダ軸線Cy1を通る。例えば図3(a)に示すように、シリンダ軸線Cy1の方向に見たとき、噴射中心線Ci1は、開位置にある吸気弁22のステム部22bと傘部22aを通る。上述したように、吸気弁22はステム部22bの中心軸線Cv1に沿って移動する。そのため、シリンダ軸線Cy1の方向に見たとき、噴射中心線Ci1は、閉位置にある吸気弁22のステム部22bと傘部22aを通る。また、例えば図2に示すように、平面S2に直交する方向に見たとき、噴射中心線Ci1は、開位置にある吸気弁22のステム部22bと傘部22aを通る。平面S2に直交する方向に見たとき、噴射中心線Ci1は、閉位置にある吸気弁22の傘部22aを通る。平面S2に直交する方向に見たとき、噴射中心線Ci1は、閉位置にある吸気弁22のステム部22bを通らないが、通ってもよい。以上より、噴射中心線Ci1は、どの方向から見ても、開位置にある吸気弁22のステム部22bと傘部22aを通る。つまり、噴射中心線Ci1は、開位置にある吸気弁22のステム部22bと傘部22aを通る。噴射中心線Ci1は、閉位置にある吸気弁22の傘部22aを通る。噴射中心線Ci1は、閉位置にある吸気弁22のステム部22bを通らないが、通ってもよい。 As shown in FIG. 2, the injection center line Ci <b> 1 of the injector 23 passes through the intake port 12. As shown in FIG. 3A, when viewed in the direction of the cylinder axis Cy1, the injection center line Ci1 coincides with the center axis Cv1 of the stem portion 22b. When viewed in the direction of the cylinder axis Cy1, the injection center line Ci1 passes through the cylinder axis Cy1. For example, as shown in FIG. 3A, when viewed in the direction of the cylinder axis Cy1, the injection center line Ci1 passes through the stem portion 22b and the umbrella portion 22a of the intake valve 22 in the open position. As described above, the intake valve 22 moves along the central axis Cv1 of the stem portion 22b. Therefore, when viewed in the direction of the cylinder axis Cy1, the injection center line Ci1 passes through the stem portion 22b and the umbrella portion 22a of the intake valve 22 in the closed position. For example, as shown in FIG. 2, when viewed in a direction orthogonal to the plane S2, the injection center line Ci1 passes through the stem portion 22b and the umbrella portion 22a of the intake valve 22 in the open position. When viewed in a direction orthogonal to the plane S2, the injection center line Ci1 passes through the umbrella portion 22a of the intake valve 22 in the closed position. When viewed in a direction perpendicular to the plane S2, the injection center line Ci1 does not pass through the stem portion 22b of the intake valve 22 in the closed position, but may pass through. From the above, the injection center line Ci1 passes through the stem portion 22b and the umbrella portion 22a of the intake valve 22 in the open position, when viewed from any direction. That is, the injection center line Ci1 passes through the stem portion 22b and the umbrella portion 22a of the intake valve 22 in the open position. The injection center line Ci1 passes through the umbrella portion 22a of the intake valve 22 in the closed position. The injection center line Ci1 does not pass through the stem portion 22b of the intake valve 22 in the closed position, but may pass through.
 図2に示すように、複数の噴射孔と吸気口12の中心P1との間の最短距離を、距離D1とする。距離D1は、吸気口12の直径の3倍の長さより小さい。距離D1は、吸気弁22の直径の3倍の長さより小さい。したがって、インジェクタ23は、吸気口12に比較的近い位置に配置される。距離D1は、吸気口12の直径の2倍の長さより小さくてもよい。距離D1は、吸気弁22の直径の2倍の長さより小さくてもよい。 As shown in FIG. 2, the shortest distance between the plurality of injection holes and the center P1 of the intake port 12 is a distance D1. The distance D1 is smaller than three times the diameter of the inlet 12. The distance D1 is smaller than three times the diameter of the intake valve 22. Therefore, the injector 23 is disposed at a position relatively close to the intake port 12. The distance D1 may be smaller than twice the diameter of the inlet 12. The distance D1 may be smaller than twice the diameter of the intake valve 22.
 図4(a)、図4(b)および図6の本発明例のグラフは、インジェクタ23から噴射された燃料の移動(流れ)をシミュレーションして得られた結果である。シミュレーションには、Ricardo社のVECTIS(登録商標)を用いた。シミュレーションは、インジェクタ23がエンジンユニット1Aに装着されておらず、大気だけの空間に噴射した場合を想定した。つまり、噴射先に物が無い空間に噴射した。燃料が噴射される大気だけの空間の温度は、常温である。燃料が噴射される大気だけの空間の圧力は、大気圧である。燃料が噴射される大気だけの空間は、無風状態である。また、燃料の揮発性は、ガソリンの揮発性よりも低いと仮定して、燃料の蒸発も考慮してシミュレーションを行った。図4(a)は、インジェクタ23から燃料が噴射された直後のある時点に、複数の燃料の液滴の噴射方向に交差するY方向に見た燃料の液滴の分布を示す。より詳細には、Y方向は、噴射中心線Ci1に直交する方向である。図4(a)には、気化した燃料は表示されていない。図4(a)の縦軸は、噴射孔インジェクタ23からの噴射中心線Ci1の方向の距離を示す。図4(a)の横軸は、Y方向に直交するX方向の距離を示す。図4(a)では、燃料の液滴の径の大きさを、色の濃淡で表している。色が濃いほど、径が大きいことを意味する。 4A, FIG. 4B, and FIG. 6 are graphs of the example of the present invention, which are results obtained by simulating the movement (flow) of fuel injected from the injector 23. FIG. VECTIS (registered trademark) manufactured by Richard was used for the simulation. The simulation assumed a case where the injector 23 was not attached to the engine unit 1A and was injected into a space of only the atmosphere. In other words, it was injected into a space where there was no object at the injection destination. The temperature of the space where only the fuel is injected is normal temperature. The pressure in the space only in the atmosphere where fuel is injected is atmospheric pressure. The space only in the atmosphere where fuel is injected is in a windless state. In addition, the simulation was performed in consideration of the evaporation of the fuel, assuming that the volatility of the fuel is lower than the volatility of the gasoline. FIG. 4A shows the distribution of the fuel droplets as viewed in the Y direction that intersects the injection direction of the plurality of fuel droplets at a certain time immediately after the fuel is injected from the injector 23. More specifically, the Y direction is a direction orthogonal to the injection center line Ci1. In FIG. 4A, vaporized fuel is not displayed. The vertical axis in FIG. 4A indicates the distance in the direction of the injection center line Ci1 from the injection hole injector 23. The horizontal axis of Fig.4 (a) shows the distance of the X direction orthogonal to a Y direction. In FIG. 4 (a), the size of the diameter of the fuel droplet is represented by color shading. A darker color means a larger diameter.
 図4(a)に示すように、噴射中心線Ci1に直交する、ある1つの平面を、平面S1とする。図4(b)は、平面S1上の燃料の濃度分布を示す。図4(b)は、気化した燃料と液体の燃料とを合わせた燃料の濃度分布を示す。図4(b)は、単位体積あたりの燃料の質量の分布のシミュレーション結果から、平面S1上の値を抽出したものである。図4(b)の横軸はX方向の距離を示し、図4(b)の縦軸はY方向の距離を示す。図4(b)は、燃料の濃度がゼロの領域を濃い灰色で示し、燃料の濃度がゼロより高い領域を薄い灰色で示している。なお、シミュレーションにおいて、平面S1上において気化した燃料の量は、液体の燃料の量に比べてごく僅かである。よって、図示は省略するが、平面S1上の液体の燃料の濃度分布も、図4(b)とほぼ同じになる。 As shown in FIG. 4A, one plane that is orthogonal to the injection center line Ci1 is defined as a plane S1. FIG. 4B shows the fuel concentration distribution on the plane S1. FIG. 4B shows a fuel concentration distribution that is a combination of vaporized fuel and liquid fuel. FIG. 4B shows the values on the plane S1 extracted from the simulation result of the mass distribution of fuel per unit volume. The horizontal axis in FIG. 4B indicates the distance in the X direction, and the vertical axis in FIG. 4B indicates the distance in the Y direction. FIG. 4B shows a region where the fuel concentration is zero in dark gray, and a region where the fuel concentration is higher than zero in light gray. In the simulation, the amount of fuel vaporized on the plane S1 is very small compared to the amount of liquid fuel. Therefore, although not shown, the concentration distribution of the liquid fuel on the plane S1 is almost the same as that shown in FIG.
 図4(b)に示すように、平面S1上の燃料が存在する領域の外縁の輪郭は、略円形である。つまり、噴射直後のある時点において、平面S1上の燃料は、1つの円の中に、この円の縁の全周に沿うように存在する。本実施形態において、平面S1上の燃料が存在する領域は、環状である。平面S1上の燃料が存在する領域は、外周端および内周端がこの円の縁の全周に沿った環状の第1領域A1を含む。平面S1上の燃料が存在する領域は、第1領域A11のみで構成される。平面S1上において、第1領域A11の内周端全体に接する領域を第2領域A12とする。噴射中心線Ci1は、第2領域A12を通る。第2領域A12には燃料が存在しない。よって、第1領域A11の燃料の濃度は、第2領域A12の濃度よりも高い。インジェクタ23は、霧状の燃料F11の外周部の濃度が中央部の濃度よりも高くなるように燃料を噴射する。 As shown in FIG. 4B, the contour of the outer edge of the region where the fuel exists on the plane S1 is substantially circular. That is, at a certain time immediately after injection, the fuel on the plane S1 exists in one circle along the entire circumference of the edge of this circle. In the present embodiment, the region where the fuel exists on the plane S1 is annular. The region where the fuel exists on the plane S1 includes an annular first region A1 whose outer peripheral end and inner peripheral end are along the entire circumference of the edge of the circle. The region where the fuel exists on the plane S1 is configured only by the first region A11. A region in contact with the entire inner peripheral edge of the first region A11 on the plane S1 is defined as a second region A12. The injection center line Ci1 passes through the second region A12. There is no fuel in the second region A12. Therefore, the fuel concentration in the first region A11 is higher than the concentration in the second region A12. The injector 23 injects the fuel so that the concentration of the outer peripheral portion of the atomized fuel F11 is higher than the concentration of the central portion.
 仮に、平面S1が噴射中心線Ci1に直交していない場合、平面S1上の燃料が存在する領域の外周の輪郭は、円形ではなくオーバルとなる。平面S1は、噴射中心線Ci1上の1つの点を通る複数の平面のうち、当該平面上の燃料が存在する領域のX方向の長さが最も短くなり、且つ、当該平面上の燃料が存在する領域のY方向の長さが最も短くなる平面である。平面S1は、噴射中心線Ci1上の1つの点を通る複数の平面のうち、当該平面上の燃料が存在する領域の平面S2に平行な方向の長さが最も短くなり、且つ、当該平面上の燃料が存在する領域の平面S3に平行な方向の長さが最も短くなる平面である。したがって、平面S1は、噴射中心線Ci1上の1つの点を通る複数の平面のうち、インジェクタ23の複数の噴射孔からの第1領域A11までの距離のばらつきが最も小さい平面である。 Temporarily, when the plane S1 is not orthogonal to the injection center line Ci1, the contour of the outer periphery of the region where the fuel exists on the plane S1 is not a circle but an oval. The plane S1 has the shortest length in the X direction of the region where the fuel exists on the plane among a plurality of planes passing through one point on the injection center line Ci1, and the fuel on the plane exists. This is a plane in which the length in the Y direction of the region to be shortened is the shortest. The plane S1 has the shortest length in the direction parallel to the plane S2 of the region where the fuel exists on the plane among the plurality of planes passing through one point on the injection center line Ci1, and the plane S1 This is the plane where the length in the direction parallel to the plane S3 of the region where the fuel exists is the shortest. Accordingly, the plane S1 is a plane having the smallest variation in the distance from the plurality of injection holes of the injector 23 to the first region A11 among the plurality of planes passing through one point on the injection center line Ci1.
 第1領域A11の燃料の濃度分布は、第1領域A11の周方向においてほぼ一定である。図6の本発明例のグラフは、図4(a)の平面S1上の噴射中心線Ci1を通る直線上の燃料の濃度分布を示す。図6のグラフは、気化した燃料と液体の燃料とを合わせた燃料の濃度分布を示す。図6の横軸はX方向の距離を示し、図6の縦軸は燃料の濃度を示す。図6に示すように、第1領域A11の内周端と外周端との中間において、第1領域A11の燃料の濃度は最も高い。なお、図示は省略するが、平面S1上の噴射中心線Ci1を通る直線上の液体の燃料の濃度分布も、図6とほぼ同じになる。 The fuel concentration distribution in the first region A11 is substantially constant in the circumferential direction of the first region A11. The graph of the example of the present invention in FIG. 6 shows the fuel concentration distribution on a straight line passing through the injection center line Ci1 on the plane S1 in FIG. The graph of FIG. 6 shows the concentration distribution of the fuel in which the vaporized fuel and the liquid fuel are combined. The horizontal axis in FIG. 6 indicates the distance in the X direction, and the vertical axis in FIG. 6 indicates the fuel concentration. As shown in FIG. 6, the concentration of fuel in the first region A11 is the highest between the inner peripheral end and the outer peripheral end of the first region A11. Although illustration is omitted, the concentration distribution of the liquid fuel on the straight line passing through the injection center line Ci1 on the plane S1 is substantially the same as that in FIG.
 仮に、燃料の揮発性がガソリンと同じであると仮定してシミュレーションを行った場合も、平面S1上において気化した燃料の量は、液体の燃料の量に比べてごく僅かである。よって、図示は省略するが、燃料の揮発性がガソリンと同じであると仮定してシミュレーションを行った場合も、平面S1上の燃料の濃度分布は、図4(b)および図6とほぼ同じである。つまり、燃料の揮発性がガソリンと同じであると仮定してシミュレーションを行った場合も、平面S1上の燃料が存在する領域は、略円形の環状である。 Even if the simulation is performed assuming that the volatility of the fuel is the same as that of gasoline, the amount of fuel vaporized on the plane S1 is very small compared to the amount of liquid fuel. Therefore, although illustration is omitted, even when the simulation is performed assuming that the volatility of the fuel is the same as that of gasoline, the fuel concentration distribution on the plane S1 is almost the same as in FIG. 4B and FIG. It is. That is, even when the simulation is performed assuming that the volatility of the fuel is the same as that of gasoline, the region where the fuel exists on the plane S1 is a substantially circular ring.
 エンジンユニット1Aに装着されていない状態のインジェクタ23から大気だけの空間に燃料が噴射されることを想定したシミュレーションによると、第2領域A12の燃料の濃度はゼロである。しかし、エンジンユニット1Aに装着されたインジェクタ23から燃料が実際に噴射された場合、以下の理由により、第2領域A12に燃料が存在する。エンジンユニット1Aに装着されたインジェクタ23は、吸気行程時であって吸気弁22が開位置のときに燃料を噴射する。吸気行程時であって吸気弁22が開位置のとき、外部吸気通路部3およびシリンダ吸気通路部21内の空気が燃焼室11内の負圧によって燃焼室11に吸入される。この空気の流れによって、インジェクタ23から噴射された燃料の液滴の軌道が、単一吸気通路部20の中心に近づくように変更される。そのため、エンジンユニット1Aに装着されたインジェクタ23から燃料が噴射された場合、インジェクタ23から噴射された霧状の燃料F11の中央部の濃度はゼロより大きくなる。なお、エンジンユニット1Aに装着されたインジェクタ23から燃料が噴射された場合に、霧状の燃料F11の中央部に、濃度がゼロの領域が存在してもよい。インジェクタ23から噴射された燃料の液滴の軌道が、単一吸気通路部20の中心に近づくように変更されることにより、噴射角度が大きくても、単一吸気通路部20の内面への燃料の付着が低減される。 According to a simulation assuming that fuel is injected from the injector 23 not attached to the engine unit 1A into a space of only the atmosphere, the concentration of fuel in the second region A12 is zero. However, when the fuel is actually injected from the injector 23 attached to the engine unit 1A, the fuel exists in the second region A12 for the following reason. The injector 23 attached to the engine unit 1A injects fuel during the intake stroke and when the intake valve 22 is in the open position. When the intake valve 22 is in the open position during the intake stroke, the air in the external intake passage portion 3 and the cylinder intake passage portion 21 is sucked into the combustion chamber 11 by the negative pressure in the combustion chamber 11. Due to this air flow, the trajectory of the fuel droplets injected from the injector 23 is changed so as to approach the center of the single intake passage portion 20. Therefore, when fuel is injected from the injector 23 attached to the engine unit 1A, the concentration of the central portion of the mist-like fuel F11 injected from the injector 23 becomes larger than zero. When fuel is injected from the injector 23 attached to the engine unit 1A, a region having a concentration of zero may exist in the central portion of the mist-like fuel F11. Even if the injection angle is large by changing the trajectory of the fuel droplets injected from the injector 23 so as to approach the center of the single intake passage portion 20, the fuel to the inner surface of the single intake passage portion 20 can be obtained. Adhesion is reduced.
 シミュレーションは、大気圧で無風状態の空間に燃料が噴射される。しかし、エンジンユニット1Aに装着されたインジェクタ23から吸気行程時であって吸気弁22が開位置のときに燃料が噴射される場合、単一吸気通路部20内は一時的に負圧になる。単一吸気通路部20内の負圧によって、噴射された燃料の蒸発が促進される。よって、インジェクタ23から噴射された燃料の少なくとも一部は吸気口12に到達する前に蒸発してもよい。 In the simulation, fuel is injected into a space that is at atmospheric pressure and is free from wind. However, when fuel is injected from the injector 23 attached to the engine unit 1A during the intake stroke and when the intake valve 22 is in the open position, the inside of the single intake passage portion 20 temporarily becomes negative pressure. Due to the negative pressure in the single intake passage portion 20, evaporation of the injected fuel is promoted. Therefore, at least a part of the fuel injected from the injector 23 may evaporate before reaching the intake port 12.
 図5(a)、図5(b)、および図6の従来例のグラフは、従来のインジェクタ823を用いた場合のシミュレーション結果を示す。インジェクタの構造以外のシミュレーションの条件は、上述のインジェクタ23のシミュレーションと同じである。従来のインジェクタ823から噴射される燃料の量は、上述のインジェクタ23のシミュレーションと同じである。従来のインジェクタ823から噴射された時点の燃料の液滴の径は、上述のインジェクタ23のシミュレーションとほぼ同じである。図5(a)および図5(b)の縦軸および横軸は、図4(a)および図4(b)と同じである。図5(a)に示すように、従来のインジェクタ823は、インジェクタ23と同様に、略円錐状に燃料を噴射する。Y方向に見たとき、従来のインジェクタ823の噴射角度は、インジェクタ23の噴射角度とほぼ同じである。従来のインジェクタ823のY方向に見た噴射角の中心を、噴射中心線Ci80とする。噴射中心線Ci80は、インジェクタ823のX方向に見た噴射角の中心でもある。図5(a)に示すように、噴射中心線Ci80に直交する平面を、平面S801とする。図5(b)に示すように、平面S801上の燃料が存在する領域は、環状ではない。平面S801上の燃料が存在する領域の輪郭は、略円形である。図6の従来例のグラフに示すように、平面S801上の燃料が存在する領域の燃料の濃度は、噴射中心線Ci80に近いほど高くなっている。言い換えると、平面S801上の燃料が存在する領域における外周部分の濃度は、平面S801上の燃料が存在する領域の中央部の濃度よりも低い。つまり、この従来のインジェクタ823は、霧状の燃料の中央部の濃度が外周部の濃度より高くなるように噴射する。なお、図6の縦軸を流量フラックスに変えても、図6の2つのグラフの相対関係はほぼ同じである。流量フラックスとは、単位面積あたりに通過する流量である。 5 (a), FIG. 5 (b), and the graph of the conventional example in FIG. 6 show the simulation results when the conventional injector 823 is used. The simulation conditions other than the injector structure are the same as those of the injector 23 described above. The amount of fuel injected from the conventional injector 823 is the same as in the simulation of the injector 23 described above. The diameter of the fuel droplet at the time of injection from the conventional injector 823 is substantially the same as the simulation of the injector 23 described above. The vertical and horizontal axes in FIGS. 5A and 5B are the same as those in FIGS. 4A and 4B. As shown in FIG. 5A, the conventional injector 823, like the injector 23, injects fuel in a substantially conical shape. When viewed in the Y direction, the injection angle of the conventional injector 823 is substantially the same as the injection angle of the injector 23. The center of the injection angle seen in the Y direction of the conventional injector 823 is taken as an injection center line Ci80. The injection center line Ci80 is also the center of the injection angle of the injector 823 viewed in the X direction. As shown in FIG. 5A, a plane orthogonal to the injection center line Ci80 is defined as a plane S801. As shown in FIG. 5B, the region where the fuel exists on the plane S801 is not annular. The outline of the region where the fuel exists on the plane S801 is substantially circular. As shown in the graph of the conventional example in FIG. 6, the concentration of the fuel in the region where the fuel exists on the plane S801 is higher as it is closer to the injection center line Ci80. In other words, the concentration of the outer peripheral portion in the region where the fuel on the plane S801 exists is lower than the concentration in the central portion of the region where the fuel on the plane S801 exists. In other words, this conventional injector 823 injects so that the concentration of the central portion of the mist-like fuel is higher than the concentration of the outer peripheral portion. In addition, even if the vertical axis | shaft of FIG. 6 is changed into a flow flux, the relative relationship of two graphs of FIG. 6 is substantially the same. The flow rate flux is a flow rate that passes per unit area.
 図7(a)~図7(f)は、エンジンユニット1Aにおける燃料の液滴の挙動を模式的に示している。図8(a)~図8(f)は、インジェクタ23の代わりに、上述した従来のインジェクタ823を用いた場合の燃料の液滴の挙動を模式的に示している。図7(a)~図7(f)および図8(a)~図8(f)は、燃料の液滴を点(ドット)で表示している。点の大きさは、液滴の径に関わらず同じ大きさとした。気化した燃料は図示していない。また、単一吸気通路部20、吸気弁22、および燃焼室11に付着した液滴も図示していない。図7(a)~図7(c)および図8(a)~図8(c)は、平面S2で切断した断面を、平面S2に直交する方向に見た図である。図7(a)~図7(c)は、吸気行程内の異なる時点を示している。図8(a)~図8(c)も、吸気行程内の異なる時点を示している。図7(d)~図7(f)は、図7(a)~図7(c)をそれぞれシリンダ軸線Cy1方向に見た図であり、図8(d)~図8(f)は、図8(a)~図8(c)をそれぞれシリンダ軸線Cy1方向に見た図である。 7 (a) to 7 (f) schematically show the behavior of fuel droplets in the engine unit 1A. FIGS. 8A to 8F schematically show the behavior of fuel droplets when the above-described conventional injector 823 is used instead of the injector 23. FIG. 7 (a) to 7 (f) and FIGS. 8 (a) to 8 (f) display fuel droplets as dots (dots). The size of the dots was the same regardless of the diameter of the droplets. Vaporized fuel is not shown. Also, droplets attached to the single intake passage portion 20, the intake valve 22, and the combustion chamber 11 are not shown. FIGS. 7A to 7C and FIGS. 8A to 8C are views in which a cross section cut along the plane S2 is viewed in a direction perpendicular to the plane S2. FIG. 7 (a) to FIG. 7 (c) show different points in time in the intake stroke. FIGS. 8A to 8C also show different points in the intake stroke. FIGS. 7 (d) to 7 (f) are views in which FIGS. 7 (a) to 7 (c) are viewed in the direction of the cylinder axis Cy1, respectively. FIGS. 8 (d) to 8 (f) FIGS. 8A to 8C are views in the cylinder axis Cy1 direction, respectively.
 インジェクタ23は、霧状の燃料の外周部の濃度が中央部の濃度よりも高くなるように燃料を噴射する。一方、従来のインジェクタ823は、霧状の燃料の中央部の濃度が外周部の濃度より高くなるように噴射する。そのため、図7(a)および図7(b)と図8(a)および図8(b)との比較からわかるように、インジェクタ23を用いた場合は、従来のインジェクタ823を用いた場合よりも、平面S2上のステム部22bへの燃料の付着量が少ない。ステム部22bは、平面S2上とその近傍にしかないため、インジェクタ23を用いる場合、従来のインジェクタ823を用いた場合よりも、ステム部22b全体への燃料の付着量が少ない。また、単一吸気通路部20内の空気は、吸気弁22の傘部22aと吸気口12との隙間から燃焼室11に引き込まれている。インジェクタ23は、霧状の燃料の外周部の濃度が中央部の濃度よりも高くなるように燃料を噴射する。しかも、インジェクタ23は、噴射中心線Ci1が吸気口12を通るように燃料を噴射する。そのため、インジェクタ23から噴射された燃料の大部分は、吸気弁22の傘部22aと吸気口12との隙間を通過する。よって、従来のインジェクタ823を用いた場合よりも、傘部22aへの燃料の付着量が少ない。 The injector 23 injects the fuel so that the concentration of the outer peripheral portion of the mist-like fuel is higher than the concentration of the central portion. On the other hand, the conventional injector 823 injects so that the density | concentration of the center part of a mist-like fuel may become higher than the density | concentration of an outer peripheral part. Therefore, as can be seen from a comparison between FIG. 7A and FIG. 7B and FIG. 8A and FIG. 8B, the case where the injector 23 is used is more than the case where the conventional injector 823 is used. However, the amount of fuel adhering to the stem portion 22b on the plane S2 is small. Since the stem portion 22b is only on the plane S2 and in the vicinity thereof, when the injector 23 is used, the amount of fuel adhering to the entire stem portion 22b is smaller than when the conventional injector 823 is used. Further, the air in the single intake passage portion 20 is drawn into the combustion chamber 11 through the gap between the umbrella portion 22 a of the intake valve 22 and the intake port 12. The injector 23 injects the fuel so that the concentration of the outer peripheral portion of the atomized fuel is higher than the concentration of the central portion. Moreover, the injector 23 injects fuel so that the injection center line Ci1 passes through the intake port 12. Therefore, most of the fuel injected from the injector 23 passes through the gap between the umbrella portion 22 a of the intake valve 22 and the intake port 12. Therefore, the amount of fuel adhering to the umbrella portion 22a is smaller than when the conventional injector 823 is used.
 インジェクタ23、823から噴射された燃料の液滴の径は小さい。そのため、燃焼室11内に流入した燃料の液滴は、図2に示す燃焼室11内の空気の流れに沿って移動する。インジェクタ23、823から噴射された燃料の一部は、燃焼室11に到達する前に蒸発する。当然ながら、気化した燃料も、燃焼室11内において、空気の流れに沿って移動する。従来のインジェクタ823は、霧状の燃料の中央部の濃度が外周部の濃度より高くなるように噴射する。そのため、図8(b)、図8(c)、図8(e)および図8(f)に示すように、従来のインジェクタ823から噴射されて燃焼室11に流入した燃料の液滴は、狭い範囲に密集した状態で、空気の流れに沿って移動する。図示は省略するが、気化した燃料も、比較的狭い範囲に密集した状態で、空気の流れに沿って移動する。一方、図7(b)、図7(c)、図7(e)および図7(f)に示すように、インジェクタ23から噴射されて燃焼室11に流入した燃料の液滴は、広い範囲に分散した状態で、空気の流れに沿って移動する。図示は省略するが、気化した燃料も、燃焼室11内において、広い範囲に分散した状態で空気の流れに沿って移動する。そのため、インジェクタ23から噴射された燃料(液体および気体の燃料)は、従来のインジェクタ823から噴射された燃料(液体および気体の燃料)よりも、燃焼室11内において広範囲に迅速に拡散される。 The diameter of the fuel droplets injected from the injectors 23 and 823 is small. Therefore, the fuel droplets flowing into the combustion chamber 11 move along the air flow in the combustion chamber 11 shown in FIG. A part of the fuel injected from the injectors 23 and 823 evaporates before reaching the combustion chamber 11. Of course, the vaporized fuel also moves along the air flow in the combustion chamber 11. The conventional injector 823 injects so that the density | concentration of the center part of a mist-like fuel may become higher than the density | concentration of an outer peripheral part. Therefore, as shown in FIGS. 8B, 8C, 8E, and 8F, the fuel droplets injected from the conventional injector 823 and flowed into the combustion chamber 11 are It moves along the air flow in a tightly packed state. Although illustration is omitted, the vaporized fuel also moves along the air flow in a dense state in a relatively narrow range. On the other hand, as shown in FIG. 7B, FIG. 7C, FIG. 7E, and FIG. It moves along the air flow in a dispersed state. Although illustration is omitted, the vaporized fuel also moves along the air flow in the combustion chamber 11 while being dispersed in a wide range. Therefore, the fuel (liquid and gaseous fuel) injected from the injector 23 is diffused more rapidly in the combustion chamber 11 than the fuel (liquid and gaseous fuel) injected from the conventional injector 823.
 図9(a)、図9(b)および図9(c)に示すエンジンユニット91は、従来のエンジンユニットの一例である。図9(a)に示すように、エンジンユニット91は、1つの燃焼室911に対して2つの吸気弁922と1つのインジェクタ923を有する。燃焼室911には、2つの吸気口912と2つの排気口913と1つの点火プラグ挿入口914が形成されている。2つの吸気口912は、2つの吸気弁922によって開閉される。2つの排気口913は、2つの排気弁(図示せず)によって開閉される。点火プラグ挿入口914は、2つの吸気口912と2つの排気口913に囲まれる位置に配置される。2つの吸気口912には、2つの吸気通路部920がそれぞれ接続されている。2つの吸気通路部920は、1つの上流吸気通路部919に接続されている。インジェクタ923は、上流吸気通路部919内で燃料を噴射するように配置されている。インジェクタ923は、2つの吸気口912に向かって霧状の燃料F9を噴射する。インジェクタ923は、2つの吸気口912に向かって同時に霧状の燃料F9を噴射する。インジェクタ923は、2つの吸気口912に向かって異なるタイミングで霧状の燃料F9を噴射してもよい。 The engine unit 91 shown in FIGS. 9 (a), 9 (b) and 9 (c) is an example of a conventional engine unit. As shown in FIG. 9A, the engine unit 91 has two intake valves 922 and one injector 923 for one combustion chamber 911. In the combustion chamber 911, two intake ports 912, two exhaust ports 913, and one spark plug insertion port 914 are formed. Two intake ports 912 are opened and closed by two intake valves 922. The two exhaust ports 913 are opened and closed by two exhaust valves (not shown). The spark plug insertion port 914 is disposed at a position surrounded by the two intake ports 912 and the two exhaust ports 913. Two intake passage portions 920 are connected to the two intake ports 912, respectively. The two intake passage portions 920 are connected to one upstream intake passage portion 919. The injector 923 is disposed so as to inject fuel in the upstream intake passage portion 919. The injector 923 injects the mist-like fuel F9 toward the two intake ports 912. The injector 923 injects the mist-like fuel F9 toward the two intake ports 912 at the same time. The injector 923 may inject the mist-like fuel F9 toward the two intake ports 912 at different timings.
 燃焼室911には、2つの吸気口912が形成されるため、吸気口912とシリンダ孔910の中心軸線Cy9との間に必要な距離は、吸気口12とシリンダ孔10の中心軸線Cy1と間に必要な距離よりも長い。その上、燃焼室911の2つの吸気口912と2つの排気口913に囲まれる位置には、点火プラグ挿入口914が形成される。そのため、吸気口912とシリンダ軸線Cy9との間に必要な距離はさらに長くなる。 Since two intake ports 912 are formed in the combustion chamber 911, a necessary distance between the intake port 912 and the central axis Cy9 of the cylinder hole 910 is between the intake port 12 and the central axis Cy1 of the cylinder hole 10. Longer than required. In addition, a spark plug insertion port 914 is formed at a position surrounded by the two intake ports 912 and the two exhaust ports 913 of the combustion chamber 911. Therefore, the necessary distance between the intake port 912 and the cylinder axis Cy9 is further increased.
 図9(a)、図9(b)および図9(c)には、吸気行程時の燃焼室911内の空気の流れを矢印で模式的に示している。なお、図9(c)は、図9(a)のC-C線断面図であるが、図9(c)の矢印は、断面の手前に現れる空気の流れも表している。吸気行程時、2つの吸気通路部920内の空気は、2つの吸気口912から燃焼室911に流入する。シリンダ軸線Cy9の方向に見たとき、2つの吸気弁922の間とその近傍の領域において、2つの吸気口912から燃焼室911に流入した空気同士が衝突する。その上、空気が流入する吸気口912は、シリンダ軸線Cy9から比較的離れている。さらに、シリンダ軸線Cy9の方向に見たとき、2つの吸気通路部920の吸気口912の近傍を流れる空気流の方向は、ほぼ平行であり、シリンダ軸線Cy9に向かう方向ではない。これらから、2つの吸気口912から流入した空気は、シリンダ孔10の内面の周方向に均一に拡散することはできず、シリンダ孔910の内面の周方向の一部分に集中して空気の流れが生じる。 9 (a), 9 (b) and 9 (c) schematically show the flow of air in the combustion chamber 911 during the intake stroke with arrows. 9C is a cross-sectional view taken along the line CC of FIG. 9A, the arrow in FIG. 9C also represents the flow of air that appears before the cross section. During the intake stroke, the air in the two intake passage portions 920 flows into the combustion chamber 911 from the two intake ports 912. When viewed in the direction of the cylinder axis Cy9, air flowing into the combustion chamber 911 from the two intake ports 912 collides between the two intake valves 922 and a region in the vicinity thereof. In addition, the air inlet 912 through which air flows is relatively far from the cylinder axis Cy9. Further, when viewed in the direction of the cylinder axis Cy9, the directions of the airflows flowing in the vicinity of the intake ports 912 of the two intake passage portions 920 are substantially parallel and not toward the cylinder axis Cy9. From these, the air flowing in from the two air inlets 912 cannot be uniformly diffused in the circumferential direction of the inner surface of the cylinder hole 10, and the air flow is concentrated on a part of the inner surface of the cylinder hole 910 in the circumferential direction. Arise.
 一方、エンジンユニット1Aは、1つの燃焼室11に対して吸気口12を1つだけ有するため、複数の吸気口から燃焼室に流入した空気同士の衝突が生じない。また、空気が流入する吸気口12は、シリンダ軸線Cy1に近い。さらに、シリンダ軸線Cy1の方向に見たとき、単一吸気通路部20の吸気口12の近傍を流れる空気流の方向は、全体としてシリンダ軸線Cy1に向かう方向である。そのため、吸気口12から燃焼室11内に流入した空気は、従来のエンジンユニット91と比べて、シリンダ孔10の内面の周方向に均一に拡散される。それにより、従来のエンジンユニット91と比べて、燃焼室11内の燃料の濃度分布のばらつきが抑制される。 On the other hand, since the engine unit 1A has only one intake port 12 for one combustion chamber 11, collision between air flowing into the combustion chamber from a plurality of intake ports does not occur. Further, the air inlet 12 through which air flows is close to the cylinder axis Cy1. Further, when viewed in the direction of the cylinder axis Cy1, the direction of the air flow flowing in the vicinity of the intake port 12 of the single intake passage portion 20 is the direction toward the cylinder axis Cy1 as a whole. Therefore, the air flowing into the combustion chamber 11 from the intake port 12 is uniformly diffused in the circumferential direction of the inner surface of the cylinder hole 10 as compared with the conventional engine unit 91. Thereby, as compared with the conventional engine unit 91, variation in the fuel concentration distribution in the combustion chamber 11 is suppressed.
 従来のエンジンユニット91において、2つの吸気口912から燃焼室911に流入した空気同士は衝突する。この空気の衝突によって、この空気に沿って流れる燃料が微粒化される。燃焼室内において燃料が微粒化されることで、燃焼状態のばらつきが抑制されると共に、排気中の未燃燃料が低減されると考えられる。
 一方、エンジンユニット1Aは、1つの燃焼室11に対して吸気口12を1つだけ有する。そのため、上述したような空気の衝突による燃料の微粒化は生じない。ここで、インジェクタ923から噴射される霧状の燃料F9が、インジェクタ23から噴射される霧状の燃料F11と、噴射角度、液滴の径、および濃度分布が同程度であると仮定する。この場合、エンジンユニット1Aはエンジンユニット91よりも、燃焼状態のばらつきが大きかったり、排気中の未燃燃料が多いように思える。しかし、エンジンユニット1Aは、エンジンユニット91と比べて、燃焼室内に流入した空気がシリンダ孔の内面の周方向に均一に拡散しやすい。そのため、たとえ燃焼室内の燃料の微粒化が生じなくても、燃焼状態のばらつきが抑制されると共に、排気中の未燃燃料の増加が抑制される。
In the conventional engine unit 91, the air flowing into the combustion chamber 911 from the two intake ports 912 collides. The fuel that flows along the air is atomized by the collision of the air. By atomizing the fuel in the combustion chamber, it is considered that variation in the combustion state is suppressed and unburned fuel in the exhaust gas is reduced.
On the other hand, the engine unit 1 </ b> A has only one intake port 12 for one combustion chamber 11. Therefore, fuel atomization due to air collision as described above does not occur. Here, it is assumed that the mist fuel F9 injected from the injector 923 has the same injection angle, droplet diameter, and concentration distribution as the mist fuel F11 injected from the injector 23. In this case, it seems that the engine unit 1A has a larger variation in the combustion state than the engine unit 91, and there is more unburned fuel in the exhaust. However, in the engine unit 1A, compared with the engine unit 91, the air that has flowed into the combustion chamber is more likely to diffuse uniformly in the circumferential direction of the inner surface of the cylinder hole. Therefore, even if the atomization of the fuel in the combustion chamber does not occur, variation in the combustion state is suppressed and an increase in unburned fuel in the exhaust is suppressed.
 閉位置のスロットル弁24と閉位置の吸気弁22との間に形成される1つの空間の容積を、スロットル下流容積とする。エンジンユニット91は、1つの燃焼室911に対して複数の吸気口912と1つのインジェクタ923を有するため、本発明の実施形態で述べたように、インジェクタ923の噴射孔と吸気口912との間に必要な距離が長い。よって、スロットル弁と吸気口912との間に必要な距離も長い。したがって、エンジンユニット1Aは、1つの燃焼室911に対して複数の吸気口912と1つのインジェクタ923を有するエンジンユニット91と比べて、スロットル弁24を吸気口12に近い位置に配置できる。そのため、エンジンユニット1Aのスロットル下流容積を小さくできる。
 仮に、エンジンユニットが、1つの燃焼室に対して複数の吸気口と複数のインジェクタを有する場合、スロットル弁より下流で且つインジェクタより上流の位置で、1つの燃焼室に対して設けられた複数の吸気通路部を接続する必要がある。そのため、スロットル弁と吸気口との間に必要な距離が長い。したがって、エンジンユニット1Aは、1つの燃焼室に対して複数の吸気口と複数のインジェクタを有するエンジンユニットと比べて、スロットル弁24を吸気口12に近い位置に配置できる。そのため、エンジンユニット1Aのスロットル下流容積を小さくできる。
 さらに、1つの燃焼室に対して複数の吸気口と少なくとも1つのインジェクタと1つのスロットル弁とを有するエンジンユニットのスロットル下流容積は、複数の吸気通路部が接続されて形成された空間である。一方、エンジンユニット1Aのスロットル下流容積は、1つの吸気通路部内に形成される空間である。したがって、エンジンユニット1Aのスロットル下流容積は、1つの燃焼室に対して複数の吸気口と少なくとも1つのインジェクタと1つのスロットル弁とを有するエンジンユニットのスロットル下流容積と比べて、より一層小さくできる。
A volume of one space formed between the throttle valve 24 in the closed position and the intake valve 22 in the closed position is defined as a throttle downstream volume. Since the engine unit 91 has a plurality of intake ports 912 and one injector 923 for one combustion chamber 911, as described in the embodiment of the present invention, it is between the injection hole of the injector 923 and the intake port 912. The distance required is long. Therefore, the required distance between the throttle valve and the intake port 912 is also long. Therefore, the engine unit 1A can arrange the throttle valve 24 at a position closer to the intake port 12 than the engine unit 91 having a plurality of intake ports 912 and one injector 923 for one combustion chamber 911. Therefore, the throttle downstream volume of the engine unit 1A can be reduced.
If the engine unit has a plurality of intake ports and a plurality of injectors for one combustion chamber, a plurality of engine units provided for one combustion chamber at a position downstream from the throttle valve and upstream from the injector. It is necessary to connect the intake passage. Therefore, the required distance is long between the throttle valve and the intake port. Therefore, the engine unit 1A can arrange the throttle valve 24 at a position closer to the intake port 12 than an engine unit having a plurality of intake ports and a plurality of injectors for one combustion chamber. Therefore, the throttle downstream volume of the engine unit 1A can be reduced.
Furthermore, the throttle downstream volume of an engine unit having a plurality of intake ports, at least one injector, and one throttle valve for one combustion chamber is a space formed by connecting a plurality of intake passage portions. On the other hand, the throttle downstream volume of the engine unit 1A is a space formed in one intake passage portion. Therefore, the throttle downstream volume of the engine unit 1A can be further reduced as compared with the throttle downstream volume of the engine unit having a plurality of intake ports, at least one injector, and one throttle valve for one combustion chamber.
 スロットル下流容積が小さいほど、吸気口12が開いているときの単一吸気通路部20内の圧力は燃焼室11内の負圧の影響を受けやすくなる。つまり、スロットル下流容積が小さいほど、吸気行程時の単一吸気通路部20内の圧力が低くなる。それにより、吸気行程時に噴射された燃料の蒸発が促進される。その上、吸気口12から燃焼室11内に流入した空気が、シリンダ孔10の内面の周方向に均一に拡散しやすい。そのため、燃焼室11内の燃料の濃度分布のばらつきがより抑制される。したがって、燃焼室11内の燃料の濃度分布の設計自由度をより向上できる。また、燃料の蒸発が促進されることにより、単一吸気通路部20の内面および吸気弁22への燃料の付着が低減される。 The smaller the throttle downstream volume, the more easily the pressure in the single intake passage portion 20 when the intake port 12 is open is affected by the negative pressure in the combustion chamber 11. That is, the smaller the throttle downstream volume, the lower the pressure in the single intake passage portion 20 during the intake stroke. Thereby, the evaporation of the fuel injected during the intake stroke is promoted. In addition, the air that has flowed into the combustion chamber 11 from the intake port 12 tends to uniformly diffuse in the circumferential direction of the inner surface of the cylinder hole 10. Therefore, variation in the fuel concentration distribution in the combustion chamber 11 is further suppressed. Therefore, the degree of freedom in designing the fuel concentration distribution in the combustion chamber 11 can be further improved. Further, by promoting the evaporation of the fuel, the adhesion of the fuel to the inner surface of the single intake passage portion 20 and the intake valve 22 is reduced.
 インジェクタ23は、吸気口12の中心P1と複数の噴射孔との間の最短距離D1が、吸気口12の直径の3倍の長さより小さくなるような位置に配置される。このように、複数の噴射孔から吸気口12までの距離が比較的短い。そのため、インジェクタ23から噴射される燃料の噴射角度を確実に大きくすることができる。上述したように、インジェクタ23から噴射される燃料の噴射角度が大きいことにより、噴射された複数の液滴が互いに接触することを抑制しつつ、噴射される液滴の径を小さくすることができる。噴射される液滴の径が小さいことにより、燃焼室11内の燃料の濃度分布のばらつきをより抑制できる。したがって、燃焼室11内の燃料の濃度分布の設計自由度をより向上できる。複数の噴射孔と吸気口12の中心P1との間の最短距離D1が、吸気口12の直径の2倍の長さより小さい場合、燃焼室11内の燃料の濃度分布の設計自由度をより一層向上できる。 The injector 23 is disposed at a position such that the shortest distance D1 between the center P1 of the air inlet 12 and the plurality of injection holes is smaller than three times the diameter of the air inlet 12. Thus, the distance from the plurality of injection holes to the intake port 12 is relatively short. Therefore, the injection angle of the fuel injected from the injector 23 can be reliably increased. As described above, since the injection angle of the fuel injected from the injector 23 is large, the diameter of the injected droplets can be reduced while suppressing the plurality of injected droplets from contacting each other. . Due to the small diameter of the ejected droplets, the variation in the fuel concentration distribution in the combustion chamber 11 can be further suppressed. Therefore, the degree of freedom in designing the fuel concentration distribution in the combustion chamber 11 can be further improved. When the shortest distance D1 between the plurality of injection holes and the center P1 of the intake port 12 is smaller than twice the diameter of the intake port 12, the degree of freedom in designing the concentration distribution of the fuel in the combustion chamber 11 is further increased. It can be improved.
 インジェクタ23の噴射中心線Ci1は、単一吸気口12を通る。仮に、噴射中心線Ci1が吸気口12を通らないように燃料が噴射された場合、第1領域A11が環状となるように燃料が噴射されても、単一吸気弁22と単一吸気口12との隙間を通過する燃料の量が、隙間の周方向に関して不均一となる。燃焼室11内の特定の位置の燃料の濃度が高くなりやすい。本具体例では、噴射中心線Ci1が単一吸気口12を通ることで、単一吸気弁22と単一吸気口12との隙間を通過する燃料のばらつきが抑制される。そのため、燃焼室11内の燃料の濃度分布のばらつきがより抑制される。したがって、燃焼室11内の燃料の濃度分布の設計自由度をより向上できる。 The injection center line Ci1 of the injector 23 passes through the single air inlet 12. If the fuel is injected so that the injection center line Ci1 does not pass through the intake port 12, even if the fuel is injected so that the first region A11 is annular, the single intake valve 22 and the single intake port 12 The amount of fuel passing through the gap is nonuniform in the circumferential direction of the gap. The concentration of fuel at a specific position in the combustion chamber 11 tends to increase. In this specific example, since the injection center line Ci1 passes through the single intake port 12, variation in fuel passing through the gap between the single intake valve 22 and the single intake port 12 is suppressed. Therefore, variation in the fuel concentration distribution in the combustion chamber 11 is further suppressed. Therefore, the degree of freedom in designing the fuel concentration distribution in the combustion chamber 11 can be further improved.
 単一吸気口用インジェクタ23は、シリンダ軸線Cy1の方向に見たとき、噴射中心線Ci1は、開位置の吸気弁22のステム部22bを通るように配置される(図3(a)参照)。そのため、シリンダ軸線Cy1の方向に見たとき、噴射中心線Ci1は、吸気口12の中心P1またはその近傍を通る可能性が高い。そのため、燃焼室11内の燃料の濃度分布のばらつきがより抑制される。したがって、燃焼室11内の燃料の濃度分布の設計自由度をより向上できる。 The single inlet injector 23 is disposed so that the injection center line Ci1 passes through the stem portion 22b of the intake valve 22 in the open position when viewed in the direction of the cylinder axis Cy1 (see FIG. 3A). . Therefore, when viewed in the direction of the cylinder axis Cy1, the injection center line Ci1 is likely to pass through the center P1 of the intake port 12 or the vicinity thereof. Therefore, variation in the fuel concentration distribution in the combustion chamber 11 is further suppressed. Therefore, the degree of freedom in designing the fuel concentration distribution in the combustion chamber 11 can be further improved.
 インジェクタ23は、平面S2に直交する方向に見たとき、噴射中心線Ci1が、吸気口12が開いているときの吸気弁22のステム部22bと傘部を通るように配置される(図2参照)。つまり、平面S2に直交する方向に見たとき、噴射中心線Ci1は、吸気口12の中心P1またはその近傍を通る。そのため、燃焼室11内の燃料の濃度分布のばらつきがより抑制される。したがって、燃焼室11内の燃料の濃度分布の設計自由度をより向上できる。 The injector 23 is arranged so that the injection center line Ci1 passes through the stem portion 22b and the umbrella portion of the intake valve 22 when the intake port 12 is open when viewed in a direction orthogonal to the plane S2 (FIG. 2). reference). That is, when viewed in a direction perpendicular to the plane S2, the injection center line Ci1 passes through the center P1 of the inlet 12 or the vicinity thereof. Therefore, variation in the fuel concentration distribution in the combustion chamber 11 is further suppressed. Therefore, the degree of freedom in designing the fuel concentration distribution in the combustion chamber 11 can be further improved.
 インジェクタ23は、噴射中心線Ci1が、吸気口12が開いているときの吸気弁22のステム部22bと傘部を通るように配置される。つまり、噴射中心線Ci1は、吸気口12の中心P1またはその近傍を通る。そのため、燃焼室11内の燃料の濃度分布のばらつきがより抑制される。したがって、燃焼室11内の燃料の濃度分布の設計自由度をより向上できる。 The injector 23 is arranged so that the injection center line Ci1 passes through the stem portion 22b and the umbrella portion of the intake valve 22 when the intake port 12 is open. That is, the injection center line Ci1 passes through the center P1 of the intake port 12 or the vicinity thereof. Therefore, variation in the fuel concentration distribution in the combustion chamber 11 is further suppressed. Therefore, the degree of freedom in designing the fuel concentration distribution in the combustion chamber 11 can be further improved.
 吸気口12の直径は、排気口13の直径よりも大きい。吸気口12の直径が比較的大きいため、単一吸気通路部20の径も比較的大きい。単一吸気通路部20の径が大きいことにより、インジェクタ23から噴射される燃料の噴射角度を大きくすることができる。インジェクタ23から噴射される燃料の噴射角度が大きいことにより、噴射された複数の液滴が互いに接触することを抑制しつつ、噴射される液滴の径を小さくすることができる。噴射される液滴の径が小さいことにより、燃焼室11内の燃料の濃度分布のばらつきをより抑制できる。したがって、燃焼室11内の燃料の濃度分布の設計自由度をより向上できる。 The diameter of the intake port 12 is larger than the diameter of the exhaust port 13. Since the diameter of the intake port 12 is relatively large, the diameter of the single intake passage portion 20 is also relatively large. Since the diameter of the single intake passage portion 20 is large, the injection angle of the fuel injected from the injector 23 can be increased. Since the injection angle of the fuel injected from the injector 23 is large, the diameter of the injected droplets can be reduced while suppressing the plurality of injected droplets from contacting each other. Due to the small diameter of the ejected droplets, the variation in the fuel concentration distribution in the combustion chamber 11 can be further suppressed. Therefore, the degree of freedom in designing the fuel concentration distribution in the combustion chamber 11 can be further improved.
 仮に、図9のように、1つの燃焼室911に対して2つの吸気口912を有するエンジンユニット91における2つの吸気口912を1つの吸気口に変更することを考えた場合、吸気行程時に1つの燃焼室911に供給される空気の量は維持する必要がある。つまり、2つの吸気通路部920の断面積の合計は、2つの吸気口912を1つの吸気口に変更した場合の1つの吸気通路部の断面積とほぼ同じにする必要がある。そのため、2つの吸気通路部920の周長の合計は、2つの吸気口912を1つの吸気口に変更した場合の1つの吸気通路部の周長よりも長くなる。吸気通路部の周長が長いほど、吸気通路部の内面の面積が大きくなる。当業者は、仮に、エンジンユニット91の2つの吸気口912を1つの吸気口に変更した場合、吸気通路部の内面の面積が増えることで、吸気通路部の内面への燃料の付着が増えると考えるはずである。1つの燃焼室911に対して2つの吸気口912を有する従来のエンジンユニット91は、吸気弁922および/または吸気通路部920への燃料の付着の低減のために、インジェクタ923から外周部の濃度が中央部の濃度よりも高くなるように燃料を噴射している。そのため、当業者であれば、燃料の付着が増加するような変更をしようとは考えないはずである。実際には、本願の発明者による研究によって、上述したように、1つの燃焼室911に対して2つの吸気口912を有するエンジンユニット91に比べて、インジェクタから噴射される燃料の液滴の径を小さくできることがわかった。それにより、燃料の蒸発が促進されるため、1つの燃焼室911に対して2つの吸気口912を有する従来のエンジンユニット91と比べて、吸気通路部および吸気弁への燃料の付着を抑制できることがわかった。 Assuming that the two intake ports 912 in the engine unit 91 having two intake ports 912 for one combustion chamber 911 are changed to one intake port as shown in FIG. The amount of air supplied to the two combustion chambers 911 needs to be maintained. That is, the total cross-sectional area of the two intake passage portions 920 needs to be substantially the same as the cross-sectional area of one intake passage portion when the two intake ports 912 are changed to one intake port. Therefore, the total circumference of the two intake passage portions 920 is longer than the circumference of one intake passage portion when the two intake ports 912 are changed to one intake port. The longer the circumference of the intake passage portion, the larger the area of the inner surface of the intake passage portion. If a person skilled in the art changes the two intake ports 912 of the engine unit 91 to one intake port, the increase in the area of the inner surface of the intake passage portion will increase the adhesion of fuel to the inner surface of the intake passage portion. I should think about it. A conventional engine unit 91 having two intake ports 912 for one combustion chamber 911 has a concentration of the outer peripheral portion from the injector 923 in order to reduce fuel adhesion to the intake valve 922 and / or the intake passage portion 920. The fuel is injected so as to be higher than the concentration in the center. Therefore, those skilled in the art should not consider changing the fuel deposition to increase. Actually, as a result of research by the inventors of the present application, as described above, the diameter of the droplet of fuel injected from the injector is larger than that of the engine unit 91 having two intake ports 912 for one combustion chamber 911. It was found that can be reduced. As a result, evaporation of the fuel is promoted, so that it is possible to suppress the fuel from adhering to the intake passage and the intake valve as compared with the conventional engine unit 91 having two intake ports 912 for one combustion chamber 911. I understood.
 また、仮に、図9のように、1つの燃焼室911に形成された2つの吸気口912に向けて燃料を噴射する1つのインジェクタ923における1つの吸気口912に向けた燃料の噴射を、1つの燃焼室に対して1つの吸気口と1つのインジェクタを有するエンジンユニットにおけるインジェクタに採用することを考えた場合、吸気行程時に1つの燃焼室に供給される燃料の量は維持する必要がある。つまり、1つの吸気口に向けて噴射される燃料の量は、2つの吸気口912に向けて燃料を噴射するインジェクタ923において1つの吸気口に向けて噴射される燃料の量の約2倍に増やす必要がある。燃料の量が増えると、燃料の液滴同士が接触しやすくなる。それにより、燃料の液滴が蒸発しにくくなる。そのため、当業者であれば、吸気弁への燃料の付着が増えると考えるはずである。1つの燃焼室911に対して2つの吸気口912を有する従来のエンジンユニット91は、吸気弁922および/または吸気通路部920への燃料の付着の低減のために、インジェクタ923から外周部の濃度が中央部の濃度よりも高くなるように燃料を噴射している。そのため、当業者であれば、燃料の付着が増加するような変更をしようとは考えないはずである。実際には、本願の発明者による研究によって、上述したように、1つの燃焼室911に対して2つの吸気口912と1つのインジェクタ923を有するエンジンユニット91に比べて、インジェクタから噴射される燃料の液滴の径を小さくできることがわかった。それにより、燃料の蒸発が促進されるため、1つの燃焼室911に対して2つの吸気口912を有する従来のエンジンユニット91と比べて、吸気通路部および吸気弁への燃料の付着を抑制できることがわかった。 In addition, as shown in FIG. 9, the injection of fuel toward one intake port 912 in one injector 923 that injects fuel toward two intake ports 912 formed in one combustion chamber 911 is performed as 1 In consideration of adopting an injector in an engine unit having one intake port and one injector for one combustion chamber, it is necessary to maintain the amount of fuel supplied to one combustion chamber during the intake stroke. That is, the amount of fuel injected toward one intake port is approximately twice the amount of fuel injected toward one intake port in an injector 923 that injects fuel toward two intake ports 912. Need to increase. As the amount of fuel increases, fuel droplets are more likely to come into contact with each other. This makes it difficult for the fuel droplets to evaporate. Therefore, those skilled in the art should think that the adhesion of fuel to the intake valve increases. A conventional engine unit 91 having two intake ports 912 for one combustion chamber 911 has a concentration of the outer peripheral portion from the injector 923 in order to reduce fuel adhesion to the intake valve 922 and / or the intake passage portion 920. The fuel is injected so as to be higher than the concentration in the center. Therefore, those skilled in the art should not consider changing the fuel deposition to increase. Actually, as a result of research by the inventors of the present application, as described above, the fuel injected from the injector is larger than the engine unit 91 having two intake ports 912 and one injector 923 for one combustion chamber 911. It was found that the diameter of the liquid droplets can be reduced. As a result, evaporation of the fuel is promoted, so that it is possible to suppress the fuel from adhering to the intake passage and the intake valve as compared with the conventional engine unit 91 having two intake ports 912 for one combustion chamber 911. I understood.
 ≪変更例≫
 本発明は、上述した実施形態およびその具体例に限られるものではなく、特許請求の範囲に記載した限りにおいて様々な変更が可能である。以下、本発明の実施形態の変更例について説明する。なお、上述した構成と同じ構成を有するものについては、同じ符号を用いて適宜その説明を省略する。上述の実施形態、実施形態の具体例、および後述する変更例は、適宜組み合わせて実施可能である。
≪Change example≫
The present invention is not limited to the above-described embodiments and specific examples thereof, and various modifications are possible as long as they are described in the claims. Hereinafter, a modified example of the embodiment of the present invention will be described. In addition, about what has the same structure as the structure mentioned above, the description is abbreviate | omitted suitably using the same code | symbol. The above-described embodiments, specific examples of the embodiments, and modifications described below can be implemented in appropriate combination.
 <単一吸気口用インジェクタの変更例>
 本発明の単一吸気口用インジェクタがエンジンユニットに装着されていない状態で大気だけの空間に燃料を噴射した場合、噴射直後のある時点において、単一吸気口用インジェクタから噴射された複数の燃料の液滴の噴射方向に交差する第1平面上の燃料が存在する領域は、2つ以上の第1領域を有していてもよい。もしくは、第1平面上の燃料が存在する領域は、1つの第1領域に加えて、第1領域以外の領域を含んでいてもよい。但し、第1平面上の燃料が存在する領域は、第1領域よりも燃料の濃度の高い領域は含まない。
 例えば、第1平面上の燃料が存在する領域は、第1領域の内周端全体に接する第2領域を含んでいてもよい。但し、第1領域の燃料の濃度は、第2領域の燃料の濃度よりも高い。つまり、第1領域の単位体積当たりまたは単位面積当たりの燃料の質量の平均値が、第2領域の単位体積当たりまたは単位面積当たりの燃料の質量の平均値よりも大きい。
 第1領域が後述するように非環状の場合、第1平面上の燃料が存在する領域は、第1領域の周方向両端の間にある領域を含んでいてもよい。但し、第1領域の周方向両端の間にある領域の燃料の濃度は、第1領域の燃料の濃度と同じか、それよりも低い。
<Modification example of injector for single inlet>
When fuel is injected into a space only in the atmosphere without the single inlet injector of the present invention attached to the engine unit, a plurality of fuels injected from the single inlet injector at a certain time immediately after injection The region where the fuel on the first plane intersecting the injection direction of the liquid droplets may have two or more first regions. Alternatively, the region where the fuel exists on the first plane may include a region other than the first region in addition to the one first region. However, the region where the fuel exists on the first plane does not include a region having a higher fuel concentration than the first region.
For example, the region where the fuel exists on the first plane may include a second region in contact with the entire inner peripheral end of the first region. However, the concentration of fuel in the first region is higher than the concentration of fuel in the second region. That is, the average value of the mass of fuel per unit volume or unit area of the first region is larger than the average value of the mass of fuel per unit volume or unit area of the second region.
When the first region is non-annular as will be described later, the region where the fuel on the first plane exists may include a region between both ends in the circumferential direction of the first region. However, the concentration of the fuel in the region between the circumferential ends of the first region is the same as or lower than the concentration of the fuel in the first region.
 第1平面上の燃料が存在する領域内に複数の第1領域がある場合、複数の第1領域は、1つの円または1つのオーバルの縁に沿って周方向に並んでいてもよい。
 第1領域の外周端が1つの円または1つのオーバルの縁の少なくとも一部に沿っているとは、第1領域の外周端の一部だけが1つの円または1つのオーバルの縁の少なくとも一部に沿っている場合は含まない。したがって、例えば、1つの楕円の中に納まる2つの円の中に、円の縁の全周に沿って燃料が存在する場合、円の縁の全周に沿って燃料が存在する領域は、本発明の第1領域には相当しない。
When there are a plurality of first regions in a region where fuel exists on the first plane, the plurality of first regions may be arranged in the circumferential direction along the edge of one circle or one oval.
That the outer peripheral edge of the first region is along at least part of the edge of one circle or one oval means that only a part of the outer edge of the first region is at least one edge of one circle or one oval. It is not included when it is along the section. Thus, for example, if fuel is present along the entire circumference of the circle edge in two circles that fit within one ellipse, the region where the fuel exists along the entire circumference of the circle edge is It does not correspond to the first region of the invention.
 本発明の単一吸気口用インジェクタがエンジンユニットに装着されていない状態で大気だけの空間に燃料を噴射した場合、噴射直後のある時点において、単一吸気口用インジェクタから噴射された複数の燃料の液滴の噴射方向に交差する第1平面上の燃料が、1つの円の中に、この円の縁の一部に沿うように存在してもよい。この場合、第1平面上の燃料が存在する領域は、内周端および外周端がこの円の縁の一部に沿った非環状の第1領域を含む。この非環状の第1領域の燃料の濃度は、第1平面上において第1領域の内周端全体に接する第2領域の燃料の濃度よりも高い。この変更例において、第2領域には燃料が存在してもしなくてもよい。図10、図11、および図12(a)~図12(c)は、この変更例の3つの具体例を示す図である。 When fuel is injected into a space only in the atmosphere with the single inlet injector of the present invention not attached to the engine unit, a plurality of fuels injected from the single inlet injector at a certain time immediately after injection The fuel on the first plane that intersects the injection direction of the droplets may be present in one circle along a part of the edge of the circle. In this case, the region where the fuel exists on the first plane includes a non-circular first region having an inner peripheral end and an outer peripheral end along a part of the edge of the circle. The concentration of the fuel in the non-annular first region is higher than the concentration of the fuel in the second region in contact with the entire inner peripheral end of the first region on the first plane. In this modification, fuel may or may not be present in the second region. FIGS. 10, 11, and 12 (a) to 12 (c) are diagrams showing three specific examples of this modification.
 図10、図11、図12(a)は1つの変更例の説明図である。図11は、エンジンユニットを、第2平面に直交する方向に見た図である。図10および図12(a)は、第1平面S21上の第1領域A21と第2領域A22を示している。第2領域A22は、非環状の第1領域A21の内周端全体と、第1領域A21の内周端の周方向両端を結ぶ線分とによって囲まれる領域である。第1領域A21の外周端は、90°以上の角度の円弧である。そのため、図12(a)に示すように、第1領域A21の外周端の周方向中央は、第1領域A21の周方向両端を通る両端を有する第1平面S21上の90°の円弧CA2の径方向外側にある。図10に示す矢印Dxは、第2平面に平行な第1平面S21上の方向を示し、矢印Dyは、第3平面に平行な第1平面S21上の方向を示している。噴射中心線Ci2は、第2領域A22を通る。第1平面S21は、噴射中心線Ci2上の1つの点を通る複数の平面のうち、当該平面上の燃料が存在する領域のDx方向長のさが最も短くなり、且つ、当該平面上の燃料が存在する領域のDy方向の長さが最も短くなる平面である。 FIG. 10, FIG. 11 and FIG. 12 (a) are explanatory diagrams of one modified example. FIG. 11 is a view of the engine unit as viewed in a direction orthogonal to the second plane. FIG. 10 and FIG. 12A show the first area A21 and the second area A22 on the first plane S21. 2nd area | region A22 is an area | region enclosed by the whole inner peripheral end of non-annular 1st area | region A21, and the line segment which connects the circumferential direction both ends of the inner peripheral end of 1st area | region A21. The outer peripheral end of the first region A21 is an arc having an angle of 90 ° or more. Therefore, as shown in FIG. 12A, the center in the circumferential direction of the outer peripheral end of the first region A21 is a 90 ° arc CA2 on the first plane S21 having both ends passing through both ends of the first region A21 in the circumferential direction. Located radially outside. An arrow Dx shown in FIG. 10 indicates a direction on the first plane S21 parallel to the second plane, and an arrow Dy indicates a direction on the first plane S21 parallel to the third plane. The injection center line Ci2 passes through the second region A22. The first plane S21 has the shortest length in the Dx direction of the region where the fuel on the plane is present among the plurality of planes passing through one point on the injection center line Ci2, and the fuel on the plane. This is a plane in which the length in the Dy direction of the region where is present is the shortest.
 図12(b)は、第1平面S31上の第1領域A31と第2領域A32を示している。第2領域A32は、第1領域A31の内周端全体と、第1領域A31の内周端の周方向両端を結ぶ線分とによって囲まれる領域である。第1領域A31の外周端は、90°以上の角度の円弧である。そのため、第1領域A31の外周端の周方向中央は、第1領域A31の周方向両端を通る両端を有する第1平面S31上の90°の円弧CA3の径方向外側にある。噴射中心線Ci3は、第2領域A32を通る。第1平面S31は、噴射中心線Ci3上の1つの点を通る複数の平面のうち、当該平面上の燃料が存在する領域の第2平面に平行な方向の長さが最も短くなり、且つ、当該平面上の燃料が存在する領域の第3平面に平行な方向の長さが最も短くなる平面である。 FIG. 12B shows the first region A31 and the second region A32 on the first plane S31. The second region A32 is a region surrounded by the entire inner peripheral end of the first region A31 and a line segment connecting both ends in the circumferential direction of the inner peripheral end of the first region A31. The outer peripheral end of the first region A31 is an arc having an angle of 90 ° or more. Therefore, the center in the circumferential direction of the outer peripheral end of the first region A31 is on the radially outer side of the 90 ° arc CA3 on the first plane S31 having both ends passing through both ends of the first region A31 in the circumferential direction. The injection center line Ci3 passes through the second region A32. The first plane S31 has the shortest length in the direction parallel to the second plane of the region where the fuel exists on the plane among the plurality of planes passing through one point on the injection center line Ci3, and This is the plane where the length in the direction parallel to the third plane of the region where the fuel exists on the plane is the shortest.
 図12(c)は、第1平面S41上の第1領域A41と第2領域A42を示している。第2領域A42は、第1領域A41の内周端全体と、第1領域A41の内周端の周方向両端を結ぶ線分とによって囲まれる領域である。1領域A41の外周端は、90°未満の角度の円弧である。そのため、第1領域A41の外周端の周方向中央は、第1領域A41の周方向両端を通る両端を有する第1平面S41上の90°の円弧CA4の径方向内側にある。噴射中心線Ci4は、第1領域A41を通る。第1平面S41は、噴射中心線Ci4上の1つの点を通る複数の平面のうち、当該平面上の燃料が存在する領域の第2平面に平行な方向の長さが最も短くなり、且つ、当該平面上の燃料が存在する領域の第3平面に平行な方向の長さが最も短くなる平面である。 FIG. 12C shows a first area A41 and a second area A42 on the first plane S41. The second region A42 is a region surrounded by the entire inner peripheral end of the first region A41 and a line segment connecting both ends in the circumferential direction of the inner peripheral end of the first region A41. The outer peripheral end of one area A41 is an arc having an angle of less than 90 °. Therefore, the center in the circumferential direction of the outer peripheral end of the first region A41 is located on the radially inner side of the 90 ° arc CA4 on the first plane S41 having both ends passing through both ends of the first region A41 in the circumferential direction. The injection center line Ci4 passes through the first region A41. The first plane S41 has the shortest length in the direction parallel to the second plane of the region where the fuel exists on the plane among the plurality of planes passing through one point on the injection center line Ci4, and This is the plane where the length in the direction parallel to the third plane of the region where the fuel exists on the plane is the shortest.
 本発明の単一吸気口用インジェクタがエンジンユニットに装着されていない状態で大気だけの空間に燃料を噴射した場合、噴射直後のある時点において、単一吸気口用インジェクタから噴射された複数の燃料の液滴の噴射方向に交差する第1平面上の燃料が、1つのオーバルの中に、このオーバルの縁の全周に沿うように存在してもよい。この場合、第1平面上の燃料が存在する領域は、このオーバルの縁の全周に沿った環状の第1領域を含む。この環状の第1領域の燃料の濃度は、第1平面上において第1領域の内周端全体に接する第2領域の燃料の濃度よりも高い。この変更例において、第2領域には燃料が存在してもしなくてもよい。図13(a)は、この変更例の1つの具体例を示す図である。オーバルの形状は、図13(a)に示す形状に限定されない。 When fuel is injected into a space only in the atmosphere without the single inlet injector of the present invention attached to the engine unit, a plurality of fuels injected from the single inlet injector at a certain time immediately after injection The fuel on the first plane that intersects the injection direction of the liquid droplets may be present in one oval along the entire circumference of the edge of the oval. In this case, the region where the fuel exists on the first plane includes an annular first region along the entire circumference of the edge of the oval. The concentration of the fuel in the annular first region is higher than the concentration of the fuel in the second region in contact with the entire inner peripheral edge of the first region on the first plane. In this modification, fuel may or may not be present in the second region. FIG. 13A is a diagram showing one specific example of this modification. The shape of the oval is not limited to the shape shown in FIG.
 図13(a)は、第1平面S51上の第1領域A51と第2領域A52を示している。噴射中心線Ci5は、第2領域A52を通る。第1平面S51は、噴射中心線Ci5上の1つの点を通る複数の平面のうち、当該平面上の燃料が存在する領域の第2平面に平行な方向の長さが最も短くなり、且つ、当該平面上の燃料が存在する領域の第3平面に平行な方向の長さが最も短くなる平面である。 FIG. 13A shows a first area A51 and a second area A52 on the first plane S51. The injection center line Ci5 passes through the second region A52. The first plane S51 has the shortest length in the direction parallel to the second plane of the region where the fuel exists on the plane among the plurality of planes passing through one point on the injection center line Ci5, and This is the plane where the length in the direction parallel to the third plane of the region where the fuel exists on the plane is the shortest.
 本発明の単一吸気口用インジェクタがエンジンユニットに装着されていない状態で大気だけの空間に燃料を噴射した場合、噴射直後のある時点において、単一吸気口用インジェクタから噴射された複数の燃料の液滴の噴射方向に交差する第1平面上の燃料が、1つのオーバルの中に、このオーバルの縁の一部に沿うように存在してもよい。この場合、第1平面上の燃料が存在する領域は、このオーバルの縁の一部に沿った非環状の第1領域を含む。この環状の第1領域の燃料の濃度は、第1平面上において第1領域の内周端全体に接する第2領域の燃料の濃度よりも高い。この変更例において、第2領域には燃料が存在してもしなくてもよい。図13(b)~図13(e)は、この変更例の4つの具体例を示す図である。オーバルの形状は、図13(b)~図13(e)に示す形状に限定されない。 When fuel is injected into a space only in the atmosphere with the single inlet injector of the present invention not attached to the engine unit, a plurality of fuels injected from the single inlet injector at a certain time immediately after injection The fuel on the first plane that intersects the injection direction of the liquid droplets may be present in one oval along a part of the edge of the oval. In this case, the region where the fuel on the first plane is present includes a non-annular first region along a portion of the edge of the oval. The concentration of the fuel in the annular first region is higher than the concentration of the fuel in the second region in contact with the entire inner peripheral edge of the first region on the first plane. In this modification, fuel may or may not be present in the second region. FIG. 13B to FIG. 13E are diagrams showing four specific examples of this modification. The shape of the oval is not limited to the shapes shown in FIGS. 13 (b) to 13 (e).
 図13(b)は、第1平面S61上の第1領域A61と第2領域A62を示している。第2領域A62は、第1領域A61の内周端全体と、第1領域A61の内周端の周方向両端を結ぶ線分とによって囲まれる領域である。第1領域A61の外周端の周方向中央は、第1領域A61の周方向両端を通る両端を有する第1平面S61上の90°の円弧CA6の径方向外側にある。噴射中心線Ci6は、第2領域A62を通る。第1平面S61は、噴射中心線Ci6上の1つの点を通る複数の平面のうち、当該平面上の燃料が存在する領域の第2平面に平行な方向の長さが最も短くなり、且つ、当該平面上の燃料が存在する領域の第3平面に平行な方向の長さが最も短くなる平面である。 FIG. 13B shows a first area A61 and a second area A62 on the first plane S61. The second region A62 is a region surrounded by the entire inner peripheral end of the first region A61 and a line segment connecting both circumferential ends of the inner peripheral end of the first region A61. The center in the circumferential direction of the outer peripheral end of the first region A61 is on the radially outer side of the 90 ° arc CA6 on the first plane S61 having both ends passing through both ends of the first region A61 in the circumferential direction. The injection center line Ci6 passes through the second region A62. The first plane S61 has the shortest length in the direction parallel to the second plane of the region where the fuel exists on the plane among the plurality of planes passing through one point on the injection center line Ci6, and This is the plane where the length in the direction parallel to the third plane of the region where the fuel exists on the plane is the shortest.
 図13(c)は、第1平面S71上の第1領域A71と第2領域A72を示している。第2領域A72は、第1領域A71の内周端全体と、第1領域A71の内周端の周方向両端を結ぶ線分とによって囲まれる領域である。第1領域A71の外周端の周方向中央は、第1領域A71の周方向両端を通る両端を有する第1平面S71上の90°の円弧CA7の径方向内側にある。噴射中心線Ci7は、第2領域A72を通る。第1平面S71は、噴射中心線Ci7上の1つの点を通る複数の平面のうち、当該平面上の燃料が存在する領域の第2平面に平行な方向の長さが最も短くなり、且つ、当該平面上の燃料が存在する領域の第3平面に平行な方向の長さが最も短くなる平面である。 FIG. 13C shows a first area A71 and a second area A72 on the first plane S71. 2nd area | region A72 is an area | region enclosed by the whole inner peripheral end of 1st area | region A71, and the line segment which connects the circumferential direction both ends of the inner peripheral end of 1st area | region A71. The center in the circumferential direction of the outer peripheral end of the first region A71 is radially inward of the 90 ° arc CA7 on the first plane S71 having both ends passing through both ends of the first region A71 in the circumferential direction. The injection center line Ci7 passes through the second region A72. The first plane S71 has the shortest length in the direction parallel to the second plane of the region where the fuel on the plane is present among the plurality of planes passing through one point on the injection center line Ci7, and This is the plane where the length in the direction parallel to the third plane of the region where the fuel exists on the plane is the shortest.
 図13(d)は、第1平面S81上の第1領域A81と第2領域A82を示している。第2領域A82は、第1領域A81の内周端全体と、第1領域A81の内周端の周方向両端を結ぶ線分とによって囲まれる領域である。第1領域A81の外周端の周方向中央は、第1領域A81の周方向両端を通る両端を有する第1平面S81上の90°の円弧CA8の径方向外側にある。噴射中心線Ci8は、第2領域A82を通る。第1平面S81は、噴射中心線Ci8上の1つの点を通る複数の平面のうち、当該平面上の燃料が存在する領域の第2平面に平行な方向の長さが最も短くなり、且つ、当該平面上の燃料が存在する領域の第3平面に平行な方向の長さが最も短くなる平面である。 FIG. 13D shows the first area A81 and the second area A82 on the first plane S81. The second region A82 is a region surrounded by the entire inner peripheral end of the first region A81 and a line segment connecting both circumferential ends of the inner peripheral end of the first region A81. The center in the circumferential direction of the outer peripheral end of the first region A81 is on the radially outer side of the 90 ° arc CA8 on the first plane S81 having both ends passing through both ends of the first region A81 in the circumferential direction. The injection center line Ci8 passes through the second region A82. The first plane S81 has the shortest length in the direction parallel to the second plane of the region where the fuel on the plane is present among the plurality of planes passing through one point on the injection center line Ci8, and This is the plane where the length in the direction parallel to the third plane of the region where the fuel exists on the plane is the shortest.
 図13(e)は、第1平面S91上の第1領域A91と第2領域A92を示している。第2領域A92は、第1領域A91の内周端全体と、第1領域A91の内周端の周方向両端を結ぶ線分とによって囲まれる領域である。第1領域A91の外周端の周方向中央は、第1領域A91の周方向両端を通る両端を有する第1平面S91上の90°の円弧CA9の径方向外側にある。噴射中心線Ci9は、第1領域A91を通る。第1平面S91は、噴射中心線Ci9上の1つの点を通る複数の平面のうち、当該平面上の燃料が存在する領域の第2平面に平行な方向の長さが最も短くなり、且つ、当該平面上の燃料が存在する領域の第3平面に平行な方向の長さが最も短くなる平面である。 FIG. 13E shows a first area A91 and a second area A92 on the first plane S91. The second region A92 is a region surrounded by the entire inner peripheral end of the first region A91 and a line segment connecting both ends in the circumferential direction of the inner peripheral end of the first region A91. The center in the circumferential direction of the outer peripheral end of the first region A91 is on the radially outer side of a 90 ° arc CA9 on the first plane S91 having both ends passing through both ends of the first region A91 in the circumferential direction. The injection center line Ci9 passes through the first region A91. The first plane S91 has the shortest length in the direction parallel to the second plane of the region where the fuel on the plane is present among the plurality of planes passing through one point on the injection center line Ci9, and This is the plane where the length in the direction parallel to the third plane of the region where the fuel exists on the plane is the shortest.
 図12(a)、図12(b)、図13(b)、図13(d)、および図13(e)のように、第1領域の外周端の周方向中央が、第1領域の周方向両端を通る両端を有する第1平面上の90°の円弧の径方向外側にある場合、非環状の第1領域の周方向長さが長い。そのため、噴射された複数の液滴が互いに接触することを抑制できるように噴射される液滴の径を小さくしつつ、単一吸気口用インジェクタから十分な量の燃料を噴射することができる。 As shown in FIG. 12A, FIG. 12B, FIG. 13B, FIG. 13D, and FIG. 13E, the circumferential center of the outer periphery of the first region is the first region. When it is on the radially outer side of a 90 ° arc on the first plane having both ends passing through both ends in the circumferential direction, the circumferential length of the non-annular first region is long. Therefore, it is possible to inject a sufficient amount of fuel from the single inlet injector while reducing the diameter of the ejected droplets so that the plurality of ejected droplets can be prevented from coming into contact with each other.
 吸気行程時にピストンが下降する方向を、ピストン下降方向とする。ピストン下降方向は、シリンダ孔の中心軸線に平行な方向である。本発明の第1領域が、1つの円または1つのオーバルの縁の一部に沿った非環状である場合、第1領域の外周端の周方向中央は、第1領域の周方向両端からピストン下降方向に離れた位置にあることが好ましい。図10、図11および図12(a)は、この変更例の1つの具体例を示している。図11に示す矢印PDは、ピストン下降方向を示す。図11に示すように、第2平面に直交する方向(Dy方向)に見たとき、非環状の第1領域A21の外周端の周方向中央Acは、第1領域A21の周方向両端からピストン下降方向に離れた位置にある。この場合、第2平面に直交する方向(Dy方向)に見たとき、非環状の第1領域A21の外周端の周方向中央Acは、噴射中心線Ci2からピストン下降方向に離れた位置にある。この構成によると、単一吸気弁22のステム部22bへの燃料の付着を抑制できる。
 なお、本発明の第1領域が、1つの円または1つのオーバルの縁の一部に沿った非環状である場合、第1領域の外周端の周方向中央が、第1領域の周方向両端からピストン下降方向に離れた位置になくてもよい。
The direction in which the piston descends during the intake stroke is defined as the piston descending direction. The piston downward direction is a direction parallel to the central axis of the cylinder hole. When the first region of the present invention is non-annular along a part of the edge of one circle or one oval, the center in the circumferential direction of the outer peripheral end of the first region is a piston from both ends in the circumferential direction of the first region. It is preferable that it exists in the position away in the downward direction. FIG. 10, FIG. 11 and FIG. 12 (a) show one specific example of this modification. An arrow PD shown in FIG. 11 indicates the piston downward direction. As shown in FIG. 11, when viewed in the direction (Dy direction) orthogonal to the second plane, the circumferential center Ac of the outer peripheral end of the non-annular first region A21 is the piston from both ends in the circumferential direction of the first region A21. It is in a position away in the downward direction. In this case, when viewed in the direction orthogonal to the second plane (Dy direction), the circumferential center Ac of the outer peripheral end of the non-annular first region A21 is located away from the injection center line Ci2 in the piston descending direction. . According to this configuration, the adhesion of fuel to the stem portion 22b of the single intake valve 22 can be suppressed.
In addition, when the 1st area | region of this invention is a non-circular shape along a part of edge of one circle or one oval, the circumferential direction center of the outer periphery end of 1st area | region is the circumferential direction both ends of 1st area | region It does not have to be at a position away from the piston downward direction.
 本発明において、噴射中心線は、第1領域または第2領域を通る。第1領域が環状の場合、噴射中心線は、第2領域を通る。第1領域が非環状の場合、噴射中心線は、第2領域を通ってもよく、第1領域を通ってもよい。 In the present invention, the injection center line passes through the first region or the second region. When the first region is annular, the injection center line passes through the second region. When the first region is non-annular, the injection center line may pass through the second region or may pass through the first region.
 本発明の第1平面は、噴射中心線上の1つの点を通る複数の平面のうち、当該平面上の燃料が存在する領域の第2平面に平行な方向の長さが最も短くなり、且つ、当該平面上の燃料が存在する領域の前記第3平面に平行な方向の長さが最も短くなる平面であることが好ましい。第1平面は、噴射中心線上の1つの点を通る複数の平面のうち、単一吸気口用インジェクタの複数の噴射孔からの第1領域までの距離のばらつきが最も小さい平面を第1平面とすることができる。本発明の第1平面がこの条件を満たす場合、第1平面は、噴射中心線と直交してもよく、直交しなくてもよい。本発明の第1平面は、この条件を満たさなくてもよい。本発明の第1平面がこの条件を満たさない場合、第1平面は、噴射中心線と直交してもよく、直交しなくてもよい。 The first plane of the present invention has the shortest length in a direction parallel to the second plane of the region where the fuel exists on the plane among a plurality of planes passing through one point on the injection center line, and It is preferable that the length of the region where the fuel exists on the plane is shortest in the direction parallel to the third plane. The first plane is a plane having the smallest variation in distance from the plurality of injection holes of the single inlet injector to the first region among the plurality of planes passing through one point on the injection center line. can do. When the first plane of the present invention satisfies this condition, the first plane may or may not be orthogonal to the injection center line. The first plane of the present invention may not satisfy this condition. When the first plane of the present invention does not satisfy this condition, the first plane may or may not be orthogonal to the injection center line.
 実施形態の具体例において、第1領域A1の燃料の濃度分布は、第1領域A1の周方向においてほぼ一定である。しかし、本発明における第1領域の燃料の濃度分布は、第1領域の周方向において一定でなくてよい。例えば、第1領域の燃料の濃度分布は、第1平面を中心として非対称であってもよい。また、例えば、第1領域の燃料の濃度分布は、第2平面を中心として非対称であってもよい。また、例えば、第1領域の燃料の濃度分布は、第3平面を中心として非対称であってもよい。 In a specific example of the embodiment, the fuel concentration distribution in the first region A1 is substantially constant in the circumferential direction of the first region A1. However, the concentration distribution of the fuel in the first region in the present invention may not be constant in the circumferential direction of the first region. For example, the fuel concentration distribution in the first region may be asymmetric about the first plane. Further, for example, the fuel concentration distribution in the first region may be asymmetric about the second plane. Further, for example, the fuel concentration distribution in the first region may be asymmetric about the third plane.
 単一吸気口の中心とシリンダ孔の中心軸線を含む平面を、第4平面とする。実施形態の具体例において、第4平面は、平面S2(第2平面)と同じである。実施形態の具体例において、燃焼室11内の平面S2の両側の燃料の濃度はほぼ同じである。しかし、本発明において、燃焼室内の第4平面の両側の空間のうち点火プラグ挿入口がある空間の方が燃料の濃度が高くてもよい。この濃度分布を実現するために、実施形態の具体例のインジェクタ23を以下のように変更してもよい。例えば、シリンダ孔の中心軸線方向に見たとき、噴射中心線Ci1が点火プラグ挿入口に近づくように、噴射方向を変更してもよい。また、例えば、インジェクタ23から噴射される燃料の第2平面(平面S2)の両側の濃度が互いに異なるように、噴射量を変更してもよい。噴射量は、例えば、噴射孔の大きさや、噴射孔の配置の密度を変えることで調整可能である。 The plane that includes the center of the single inlet and the center axis of the cylinder hole is the fourth plane. In the specific example of the embodiment, the fourth plane is the same as the plane S2 (second plane). In the specific example of the embodiment, the fuel concentrations on both sides of the plane S2 in the combustion chamber 11 are substantially the same. However, in the present invention, the concentration of the fuel may be higher in the space on the both sides of the fourth plane in the combustion chamber where the spark plug insertion port is located. In order to realize this concentration distribution, the injector 23 of a specific example of the embodiment may be changed as follows. For example, the injection direction may be changed so that the injection center line Ci1 approaches the spark plug insertion port when viewed in the direction of the center axis of the cylinder hole. Further, for example, the injection amount may be changed so that the concentrations of the fuel injected from the injector 23 on both sides of the second plane (plane S2) are different from each other. The injection amount can be adjusted, for example, by changing the size of the injection holes and the density of the arrangement of the injection holes.
 実施形態の具体例のインジェクタ23Aの噴射中心線Ci1は、シリンダ軸線Cy1の方向に見たとき、シリンダ軸線Cy1を通る。しかし、本発明の単一吸気口用インジェクタの噴射中心線は、シリンダ孔の中心軸線の方向に見たとき、シリンダ孔の中心軸線を通らなくてもよい。 The injection center line Ci1 of the injector 23A of the specific example of the embodiment passes through the cylinder axis Cy1 when viewed in the direction of the cylinder axis Cy1. However, the injection center line of the single inlet injector of the present invention does not have to pass through the center axis of the cylinder hole when viewed in the direction of the center axis of the cylinder hole.
 実施形態の具体例のインジェクタ23Aの噴射中心線Ci1は、シリンダ軸線Cy1の方向に見たとき、吸気弁22のステム部22bの中心軸線Cv1と一致する。しかし、本発明の単一吸気口用インジェクタの噴射中心線は、シリンダ孔の中心軸線の方向に見たとき、ステム部の中心軸線と一致しなくてもよい。 The injection center line Ci1 of the injector 23A of the specific example of the embodiment coincides with the center axis Cv1 of the stem portion 22b of the intake valve 22 when viewed in the direction of the cylinder axis Cy1. However, the injection center line of the single inlet injector of the present invention does not have to coincide with the center axis of the stem portion when viewed in the direction of the center axis of the cylinder hole.
 実施形態の具体例のインジェクタ23Aの噴射中心線Ci1は、シリンダ軸線Cy1の方向に見たとき、開位置にある吸気弁22のステム部22bと傘部22aを通る。しかし、本発明の単一吸気口用インジェクタの噴射中心線は、シリンダ孔の中心軸線の方向に見たとき、開位置にある単一吸気弁のステム部を通らなくてもよい。また、本発明の単一吸気口用インジェクタの噴射中心線は、シリンダ孔の中心軸線の方向に見たとき、開位置にある単一吸気弁の傘部を通らなくてもよい。 The injection center line Ci1 of the injector 23A of the specific example of the embodiment passes through the stem portion 22b and the umbrella portion 22a of the intake valve 22 in the open position when viewed in the direction of the cylinder axis Cy1. However, the injection center line of the single inlet injector of the present invention does not have to pass through the stem portion of the single intake valve in the open position when viewed in the direction of the center axis of the cylinder hole. Further, the injection center line of the single inlet injector of the present invention does not have to pass through the umbrella portion of the single intake valve in the open position when viewed in the direction of the center axis of the cylinder hole.
 実施形態の具体例のインジェクタ23Aの噴射中心線Ci1は、シリンダ軸線Cy1の方向に見たとき、閉位置にある吸気弁22のステム部22bと傘部22aを通る。しかし、本発明の単一吸気口用インジェクタの噴射中心線は、シリンダ孔の中心軸線の方向に見たとき、閉位置にある単一吸気弁のステム部を通らなくてもよい。 The injection center line Ci1 of the injector 23A of the specific example of the embodiment passes through the stem portion 22b and the umbrella portion 22a of the intake valve 22 in the closed position when viewed in the direction of the cylinder axis Cy1. However, the injection center line of the single inlet injector of the present invention does not have to pass through the stem portion of the single intake valve in the closed position when viewed in the direction of the center axis of the cylinder hole.
 実施形態の具体例のインジェクタ23Aの噴射中心線Ci1は、平面S2に直交する方向に見たとき、開位置にある吸気弁22のステム部22bと傘部22aを通る。しかし、本発明の単一吸気口用インジェクタの噴射中心線は、第2平面に直交する方向に見たとき、開位置にある単一吸気弁のステム部を通らなくてもよい。また、本発明の単一吸気口用インジェクタの噴射中心線は、第2平面に直交する方向に見たとき、開位置にある単一吸気弁の傘部を通らなくてもよい。本発明の単一吸気口用インジェクタの噴射中心線は、第2平面に直交する方向に見たとき、開位置にある単一吸気弁の傘部とステム部の両方を通らなくてもよく、開位置にある単一吸気弁の傘部とステム部のうち傘部だけを通ってもよく、開位置にある単一吸気弁の傘部とステム部のうちステム部だけを通ってもよい。 The injection center line Ci1 of the injector 23A of the specific example of the embodiment passes through the stem portion 22b and the umbrella portion 22a of the intake valve 22 in the open position when viewed in a direction orthogonal to the plane S2. However, the injection center line of the single inlet injector of the present invention does not have to pass through the stem portion of the single intake valve in the open position when viewed in the direction orthogonal to the second plane. Further, the injection center line of the single intake port injector of the present invention does not have to pass through the umbrella portion of the single intake valve in the open position when viewed in the direction orthogonal to the second plane. The injection center line of the single inlet injector of the present invention does not have to pass through both the umbrella portion and the stem portion of the single intake valve in the open position when viewed in the direction perpendicular to the second plane. Only the umbrella portion of the umbrella portion and the stem portion of the single intake valve in the open position may pass, or only the stem portion of the umbrella portion and the stem portion of the single intake valve in the open position may pass.
 実施形態の具体例のインジェクタ23Aの噴射中心線Ci1は、開位置にある単一吸気弁22のステム部22bと傘部22aを通る。しかし、本発明の単一吸気口用インジェクタの噴射中心線は、開位置にある単一吸気弁のステム部を通らなくてもよい。本発明の単一吸気口用インジェクタの噴射中心線は、開位置にある単一吸気弁の傘部を通らなくてもよい。本発明の単一吸気口用インジェクタの噴射中心線は、開位置にある単一吸気弁の傘部とステム部の両方を通らなくてもよく、開位置にある単一吸気弁の傘部とステム部のうち傘部だけを通ってもよく、開位置にある単一吸気弁の傘部とステム部のうちステム部だけを通ってもよい。 The injection center line Ci1 of the injector 23A of the specific example of the embodiment passes through the stem portion 22b and the umbrella portion 22a of the single intake valve 22 in the open position. However, the injection center line of the single inlet injector of the present invention may not pass through the stem portion of the single intake valve in the open position. The injection center line of the single inlet injector of the present invention may not pass through the umbrella portion of the single intake valve in the open position. The injection center line of the injector for a single intake port of the present invention may not pass through both the umbrella portion and the stem portion of the single intake valve in the open position, and the umbrella portion of the single intake valve in the open position Only the umbrella part of the stem part may be passed, or only the stem part of the umbrella part and the stem part of the single intake valve in the open position may be passed.
 実施形態の具体例のインジェクタ23Aの噴射中心線Ci1は、吸気口12を通る。しかし、本発明の単一吸気口用インジェクタの噴射中心線は、吸気口を通らなくてもよい。 The injection center line Ci1 of the injector 23A of the specific example of the embodiment passes through the intake port 12. However, the injection center line of the single inlet injector of the present invention may not pass through the inlet.
 本発明のエンジンユニットにおいて、複数の噴射孔と単一吸気口の中心との間の最短距離は、単一吸気口の直径の2倍の長さ以上であってもよい。複数の噴射孔と単一吸気口の中心との間の最短距離は、単一吸気口の直径の3倍の長さ以上であってもよい。 In the engine unit of the present invention, the shortest distance between the plurality of injection holes and the center of the single intake port may be at least twice as long as the diameter of the single intake port. The shortest distance between the plurality of injection holes and the center of the single air inlet may be at least three times as long as the diameter of the single air inlet.
 <排気口の変更例>
 実施形態の具体例のエンジンユニット1Aは、1つの燃焼室11に対して排気口13を1つだけ有する。しかし、本発明のエンジンユニットは、1つの燃焼室に対して複数の排気口を有していてもよい。例えば、1つの燃焼室に1つの単一吸気口と2つの排気口が形成されていてもよい。
<Exhaust port change example>
The engine unit 1 </ b> A of the specific example of the embodiment has only one exhaust port 13 for one combustion chamber 11. However, the engine unit of the present invention may have a plurality of exhaust ports for one combustion chamber. For example, one single intake port and two exhaust ports may be formed in one combustion chamber.
 <単一吸気口と排気口の変更例>
 実施形態の具体例において、吸気口12の直径は、排気口13の直径よりも大きい。しかし、本発明において、単一吸気口の直径は、排気口の直径と同じであってもよく、それより小さくてもよい。
<Examples of changing the single inlet and outlet>
In the specific example of the embodiment, the diameter of the intake port 12 is larger than the diameter of the exhaust port 13. However, in the present invention, the diameter of the single intake port may be the same as or smaller than the diameter of the exhaust port.
 <単一吸気弁の変更例>
 実施形態の具体例において、吸気弁22の傘部22aの燃焼室11を向いた端面は、吸気口12の全周を含む平面S4と平行である(図2参照)。しかし、本発明において、単一吸気弁の傘部の燃焼室を向いた端面は、単一吸気口の全周を含む平面と平行でなくてもよい。
<Modification example of single intake valve>
In the specific example of the embodiment, the end face of the umbrella portion 22a of the intake valve 22 facing the combustion chamber 11 is parallel to the plane S4 including the entire circumference of the intake port 12 (see FIG. 2). However, in the present invention, the end face of the umbrella portion of the single intake valve facing the combustion chamber may not be parallel to a plane including the entire circumference of the single intake port.
 実施形態の具体例において、吸気弁22のステム部22bの中心軸線Cv1は、吸気口12の全周を含む平面S4と直交する(図2参照)。しかし、本発明において、単一吸気弁のステム部の中心軸線は、単一吸気口の全周を含む平面と直交しなくてもよい。 In the specific example of the embodiment, the central axis Cv1 of the stem portion 22b of the intake valve 22 is orthogonal to the plane S4 including the entire circumference of the intake port 12 (see FIG. 2). However, in the present invention, the central axis of the stem portion of the single intake valve may not be orthogonal to the plane including the entire circumference of the single intake port.
 実施形態の具体例において、吸気弁22のステム部22bの中心軸線Cv1は、吸気口12の中心P1を通る(図2および図3(a)参照)。しかし、本発明において、単一吸気弁のステム部の中心軸線は、単一吸気口の中心を通らなくてもよい。 In a specific example of the embodiment, the central axis Cv1 of the stem portion 22b of the intake valve 22 passes through the center P1 of the intake port 12 (see FIGS. 2 and 3A). However, in the present invention, the central axis of the stem portion of the single intake valve may not pass through the center of the single intake port.
 実施形態の具体例において、吸気弁22のステム部22bの中心軸線Cv1は、シリンダ軸線Cy1の方向に見たとき、シリンダ軸線Cy1を通る(図3(a)参照)。しかし、本発明の単一吸気弁のステム部の中心軸線は、シリンダ孔の中心軸線の方向に見たとき、シリンダ孔の中心軸線を通らなくてもよい。 In a specific example of the embodiment, the central axis Cv1 of the stem portion 22b of the intake valve 22 passes through the cylinder axis Cy1 when viewed in the direction of the cylinder axis Cy1 (see FIG. 3A). However, the central axis of the stem portion of the single intake valve of the present invention does not have to pass through the central axis of the cylinder hole when viewed in the direction of the central axis of the cylinder hole.
 <多気筒エンジン>
 実施形態の具体例のエンジンユニット1Aの形式は、単気筒エンジンである。しかし、本発明のエンジンユニットの形式は、多気筒エンジンであってもよい。つまり、本発明のエンジンユニットは、複数の燃焼室を有してもよい。燃焼室の数は特に限定されない。この場合、エンジンユニットは、単一吸気口、単一吸気弁、単一吸気口用インジェクタ、および単一吸気通路部を、燃焼室毎に1つずつ有する。
<Multi-cylinder engine>
A specific example of the engine unit 1A in the embodiment is a single cylinder engine. However, the engine unit of the present invention may be a multi-cylinder engine. That is, the engine unit of the present invention may have a plurality of combustion chambers. The number of combustion chambers is not particularly limited. In this case, the engine unit has a single intake port, a single intake valve, a single intake port injector, and a single intake passage portion, one for each combustion chamber.
 本発明のエンジンユニットが複数の燃焼室を有する場合、エンジンユニットは、少なくとも1つのシリンダ吸気通路部と、少なくとも1つの外部吸気通路部を有する。エンジンユニットは、複数のシリンダ吸気通路部を有していてもよい。例えば、エンジンユニットは、燃焼室ごとに1つのシリンダ吸気通路部を有していてもよい。また、エンジンユニットは、複数の外部吸気通路部を有していてもよい。例えば、エンジンユニットは、燃焼室ごとに1つの外部吸気通路部を有していてもよい。
 シリンダ吸気通路部の数は、単一吸気通路部の数と同じであってもよく、それより少なくてもよい。シリンダ吸気通路部の数が単一吸気通路部の数よりも少ない場合、シリンダ吸気通路部は、分岐した形状であって、空気が流入する流入口を複数有する。シリンダ吸気通路部の数が単一吸気通路部の数よりも少ない場合、外部吸気通路部の数はシリンダ吸気通路部の数と同じである。シリンダ吸気通路部の数が単一吸気通路部の数と同じ場合、外部吸気通路部の数はシリンダ吸気通路部の数と同じであってもよく、それより少なくてもよい。つまり、外部吸気通路部は、単一吸気通路部の数と同じであってもよく、それより少なくてもよい。外部吸気通路部の数はシリンダ吸気通路部の数よりも少ない場合、外部吸気通路部は、分岐した形状であって空気が流入する流入口を複数有する。いずれの場合においても、単一吸気通路部は、その内部を空気の流れが分離または合流することなく通過するように構成されている。
When the engine unit of the present invention has a plurality of combustion chambers, the engine unit has at least one cylinder intake passage portion and at least one external intake passage portion. The engine unit may have a plurality of cylinder intake passage portions. For example, the engine unit may have one cylinder intake passage portion for each combustion chamber. The engine unit may have a plurality of external intake passage portions. For example, the engine unit may have one external intake passage portion for each combustion chamber.
The number of cylinder intake passage portions may be the same as or less than the number of single intake passage portions. When the number of cylinder intake passage portions is smaller than the number of single intake passage portions, the cylinder intake passage portion has a branched shape and has a plurality of inflow ports into which air flows. When the number of cylinder intake passage portions is smaller than the number of single intake passage portions, the number of external intake passage portions is the same as the number of cylinder intake passage portions. When the number of cylinder intake passage portions is the same as the number of single intake passage portions, the number of external intake passage portions may be the same as or less than the number of cylinder intake passage portions. That is, the number of external intake passage portions may be the same as the number of single intake passage portions, or may be smaller than that. When the number of external intake passage portions is smaller than the number of cylinder intake passage portions, the external intake passage portion has a plurality of inflow ports that are branched and into which air flows. In any case, the single intake passage portion is configured to pass through the interior of the single intake passage portion without being separated or joined together.
 本発明のエンジンユニットが複数の燃焼室を有する場合、エンジンユニットは燃焼室毎にスロットル弁を有していてもよい。この場合、燃焼室毎に、シリンダ吸気通路部と外部吸気通路部が1つずつ設けられる。複数のスロットル弁の各々は、外部吸気通路部に設けられる。
 本発明のエンジンユニットが複数の燃焼室を有する場合、エンジンユニットは複数の燃焼室に対して1つのスロットル弁を有していてもよい。この場合、外部吸気通路部またはシリンダ吸気通路部は、分岐した形状であって空気が流入する1つの流入口を複数有する。シリンダ吸気通路部の数が単一吸気通路部の数よりも少ないか、または、外部吸気通路部の数はシリンダ吸気通路部の数よりも少ない。空気の流れ方向において、スロットル弁より下流で且つ単一吸気口用インジェクタより上流の位置において、複数の単一吸気通路部は接続される。スロットル弁は、外部吸気通路部に設けられる。
When the engine unit of the present invention has a plurality of combustion chambers, the engine unit may have a throttle valve for each combustion chamber. In this case, one cylinder intake passage portion and one external intake passage portion are provided for each combustion chamber. Each of the plurality of throttle valves is provided in the external intake passage portion.
When the engine unit of the present invention has a plurality of combustion chambers, the engine unit may have one throttle valve for the plurality of combustion chambers. In this case, the external intake passage portion or the cylinder intake passage portion has a plurality of one inflow ports that are branched and into which air flows. The number of cylinder intake passage portions is smaller than the number of single intake passage portions, or the number of external intake passage portions is smaller than the number of cylinder intake passage portions. A plurality of single intake passage portions are connected at a position downstream of the throttle valve and upstream of the single intake port injector in the air flow direction. The throttle valve is provided in the external intake passage portion.
 閉位置のスロットル弁と閉位置の吸気弁との間に形成される1つの空間の容積を、スロットル下流容積とする。エンジンユニットが燃焼室毎に1つのスロットル弁を有する場合、スロットル下流容積は1つの吸気通路部内に形成される空間である。一方、エンジンユニットが複数の燃焼室に対して1つのスロットル弁を有する場合、スロットル下流容積は、燃焼室毎に設けられた複数の吸気通路部が接続されて形成された空間である。したがって、燃焼室毎に1つのスロットル弁を有するエンジンユニットのスロットル下流容積は、複数の燃焼室に対して1つのスロットル弁を有するエンジンユニットのスロットル下流容積よりも小さくできる。 The volume of one space formed between the throttle valve in the closed position and the intake valve in the closed position is defined as the throttle downstream volume. When the engine unit has one throttle valve for each combustion chamber, the throttle downstream volume is a space formed in one intake passage portion. On the other hand, when the engine unit has one throttle valve for a plurality of combustion chambers, the throttle downstream volume is a space formed by connecting a plurality of intake passage portions provided for each combustion chamber. Therefore, the throttle downstream volume of the engine unit having one throttle valve per combustion chamber can be made smaller than the throttle downstream volume of the engine unit having one throttle valve for a plurality of combustion chambers.
 本発明のエンジンユニットが複数の燃焼室を有する場合、複数の燃焼室の吸気行程のタイミングが互いに同じであってもよい。また、複数の燃焼室のうちいずれか2つの燃焼室の吸気行程のタイミングが互いに異なり、複数の燃焼室のうち他のいずれか2つの燃焼室の吸気行程のタイミングが互いに同じであってもよい。また、複数の燃焼室のうちいずれか1つの燃焼室の吸気行程のタイミングが、残りの燃焼室のいずれの吸気行程のタイミングとも異なっていてもよい。なお、ここでの吸気行程のタイミングが同じとは、吸気行程が部分的にのみ重なることは含まない。 When the engine unit of the present invention has a plurality of combustion chambers, the timings of the intake strokes of the plurality of combustion chambers may be the same. Moreover, the timing of the intake stroke of any two combustion chambers of the plurality of combustion chambers may be different from each other, and the timing of the intake stroke of any two other combustion chambers of the plurality of combustion chambers may be the same. . Further, the timing of the intake stroke of any one of the plurality of combustion chambers may be different from the timing of any intake stroke of the remaining combustion chambers. Here, the same timing of the intake stroke does not include that the intake strokes overlap only partially.
 本発明のエンジンユニットが複数の燃焼室を有する場合、エンジンユニットの形式は、一直線上に複数の燃焼室が並んだ多気筒エンジンであってもよい。この場合、エンジンユニットが有する複数のシリンダ孔の中心軸線は、平行またはほぼ平行である。また、エンジンユニットの形式は、V型エンジンであってもよい。V型エンジンは、クランクシャフトの中心軸方向に見たときに、その中心軸線がV字状となるように配置された2つのシリンダ孔を有する。また、4気筒以上のV型エンジンの場合、その中心軸線が、平行またはほぼ平行に配置された複数のシリンダ孔を有する。 When the engine unit of the present invention has a plurality of combustion chambers, the type of the engine unit may be a multi-cylinder engine in which a plurality of combustion chambers are arranged in a straight line. In this case, the central axes of the plurality of cylinder holes of the engine unit are parallel or substantially parallel. Further, the type of the engine unit may be a V-type engine. The V-type engine has two cylinder holes arranged so that the center axis thereof is V-shaped when viewed in the direction of the center axis of the crankshaft. In the case of a V-type engine having four or more cylinders, the central axis has a plurality of cylinder holes arranged in parallel or substantially in parallel.
 本発明の第1領域は、本願の基礎出願(特願2018-100176)の外周領域に相当する。本発明の第2領域は、本願の基礎出願の中央周領域に相当する。本発明の第1平面は、本願の基礎出願の第3平面の一例である。本発明の第2平面は、本願の基礎出願の第1平面に相当する。本発明の第3平面は、本願の基礎出願の第2平面に相当する。 The first region of the present invention corresponds to the outer peripheral region of the basic application (Japanese Patent Application No. 2018-10000176) of the present application. The second region of the present invention corresponds to the central peripheral region of the basic application of the present application. The first plane of the present invention is an example of the third plane of the basic application of the present application. The second plane of the present invention corresponds to the first plane of the basic application of the present application. The third plane of the present invention corresponds to the second plane of the basic application of the present application.
 1、1A エンジンユニット
 3 外部吸気通路部
 4 シリンダ部
 10 シリンダ孔
 11 燃焼室
 12 単一吸気口
 13 排気口
 20 単一吸気通路部
 21 シリンダ吸気通路部
 22 単一吸気弁
 22a 傘部
 22b ステム部
 23、123 単一吸気口用インジェクタ
 24 スロットル弁
 50 制御装置
 A1、A11、A21、A31、A41、A51、A61、A71、A81、A91 第1領域
 A2、A12、A22、A32、A42、A52、A62、A72、A82、A92 第2領域
 Ci1、Ci2、Ci3、Ci4、Ci5、Ci6、Ci7、Ci8、Ci9 噴射中心線
 Cy1 シリンダ孔の中心軸線
 Cv1 ステム部の中心軸線
 P1 吸気口の中心
 S1、S21、S31、S41、S51、S61、S71、S81、S91 第1平面
 S2 第2平面
 S3 第3平面
DESCRIPTION OF SYMBOLS 1, 1A Engine unit 3 External intake passage part 4 Cylinder part 10 Cylinder hole 11 Combustion chamber 12 Single intake port 13 Exhaust port 20 Single intake passage part 21 Cylinder intake passage part 22 Single intake valve 22a Umbrella part 22b Stem part 23 , 123 Single inlet injector 24 Throttle valve 50 Control device A1, A11, A21, A31, A41, A51, A61, A71, A81, A91 First region A2, A12, A22, A32, A42, A52, A62, A72, A82, A92 Second region Ci1, Ci2, Ci3, Ci4, Ci5, Ci6, Ci7, Ci8, Ci9 Injection center line Cy1 Center axis of cylinder hole Cv1 Center axis of stem portion P1 Center of inlet S1, S21, S31 , S41, S51, S61, S71, S81, S91 First plane S2 2 plane S3 third plane

Claims (12)

  1.  各々の一部がシリンダ孔の内面によって形成された少なくとも1つの燃焼室、前記少なくとも1つの燃焼室に形成された少なくとも1つの吸気口、および、前記少なくとも1つ吸気口に接続され、内部に流入した空気が前記少なくとも1つの吸気口から前記少なくとも1つの燃焼室に供給される少なくとも1つのシリンダ吸気通路部を、その内部に有するシリンダ部と、
     前記シリンダ部の外部に配置され、前記少なくとも1つのシリンダ吸気通路部に接続され、内部に流入した空気が前記少なくとも1つのシリンダ吸気通路部に供給される少なくとも1つの外部吸気通路部と、
     前記少なくとも1つの吸気口を開く位置と前記少なくとも1つの吸気口を閉じる位置との間で移動可能な少なくとも1つの吸気弁と、
     各々が燃料を霧状に噴射可能な複数の噴射孔を有し、前記複数の噴射孔が前記シリンダ吸気通路部内または前記外部吸気通路部内に位置するように前記シリンダ吸気通路部または前記外部吸気通路部に設置される少なくとも1つのインジェクタと、
     前記少なくとも1つのインジェクタの燃料の噴射を制御する制御装置と
    を備えた4ストロークサイクルのエンジンユニットであって、
     前記吸気口、前記吸気弁、および前記インジェクタは、前記燃焼室毎に1つずつ設けられ、単一吸気口、単一吸気弁、および単一吸気口用インジェクタをそれぞれ構成し、
     前記少なくとも1つのシリンダ吸気通路部および前記少なくとも1つの外部吸気通路部が、少なくとも1つの単一吸気通路部を含み、
     前記単一吸気通路部は、前記燃焼室毎に1つ設けられ、前記単一吸気口用インジェクタが設置された箇所から前記単一吸気口までの領域であって、その内部を空気の流れが分離または合流することなく通過するように構成され、
     前記単一吸気口用インジェクタは、
     (a)前記単一吸気口に向かって燃料を噴射するように配置され、
     (b)前記エンジンユニットに装着されていない状態で大気だけの空間に燃料を噴射した場合、噴射直後のある時点に、(i)前記噴射単一吸気口用インジェクタから噴射された複数の燃料の液滴の噴射方向に交差する第1平面上の燃料が、1つの円または1つのオーバルの中に、前記1つの円または前記1つのオーバルの縁の少なくとも一部に沿うように存在し、(ii)前記第1平面上の燃料が存在する領域に含まれ、その外周端と内周端が前記1つの円または前記1つのオーバルの縁の少なくとも一部に沿った第1領域の燃料の濃度が、前記第1平面上において前記第1領域の内周端全体に接する第2領域の燃料の濃度よりも高くなるように構成され、
     (c)吸気行程時であって前記単一吸気弁が前記単一吸気口を開く位置にあるときに燃料を噴射するように前記制御装置によって制御され、
     1つの前記燃焼室に供給される燃料は、1つの前記単一吸気口用インジェクタから噴射されて1つの前記単一吸気口を通過した燃料であることを特徴とするエンジンユニット。
    At least one combustion chamber, each part of which is formed by the inner surface of the cylinder hole, at least one intake port formed in the at least one combustion chamber, and the at least one intake port, and flows into the interior A cylinder portion having at least one cylinder intake passage portion through which the air is supplied from the at least one intake port to the at least one combustion chamber;
    At least one external intake passage portion disposed outside the cylinder portion, connected to the at least one cylinder intake passage portion, and air flowing into the interior is supplied to the at least one cylinder intake passage portion;
    At least one intake valve movable between a position for opening the at least one intake opening and a position for closing the at least one intake opening;
    Each of the cylinder intake passage portion or the external intake passage has a plurality of injection holes capable of injecting fuel in the form of a mist, and the plurality of injection holes are located in the cylinder intake passage portion or in the external intake passage portion. At least one injector installed in the section;
    A four-stroke cycle engine unit comprising a control device for controlling fuel injection of the at least one injector,
    The intake port, the intake valve, and the injector are provided one for each combustion chamber, and constitute a single intake port, a single intake valve, and a single intake port injector,
    The at least one cylinder intake passage portion and the at least one external intake passage portion include at least one single intake passage portion;
    The single intake passage portion is provided for each combustion chamber, and is a region from the place where the single intake port injector is installed to the single intake port, in which the flow of air flows. Configured to pass without separation or merging,
    The single inlet injector is
    (A) arranged to inject fuel towards the single inlet;
    (B) When fuel is injected into an atmosphere-only space without being mounted on the engine unit, at a certain time immediately after injection, (i) a plurality of fuels injected from the injector for single injection port Fuel on a first plane that intersects the injection direction of the droplets is present in one circle or one oval along at least a portion of the edge of the one circle or the one oval; ii) Concentration of the fuel in the first region that is included in the region where the fuel exists on the first plane, and whose outer and inner peripheral edges are along at least part of the edge of the one circle or the one oval. Is configured to be higher than the concentration of fuel in the second region in contact with the entire inner peripheral edge of the first region on the first plane,
    (C) controlled by the control device to inject fuel when the intake stroke is in a position where the single intake valve is in a position to open the single intake port;
    The engine unit is characterized in that fuel supplied to one combustion chamber is fuel injected from one injector for the single intake port and passed through the single intake port.
  2.  前記シリンダ孔の中心軸線の方向に見たとき、前記単一吸気口用インジェクタから噴射された複数の燃料の液滴の噴射方向のうち最も大きい角度をなす2つの噴射方向の中央を通る直線に見える平面を第2平面とし、
     前記第2平面に直交する方向に見たとき、前記単一吸気口用インジェクタから噴射された複数の燃料の液滴の噴射方向のうち最も大きい角度をなす2つの噴射方向の中央を通る直線に見える平面を第3平面とし、
     前記第2平面と前記第3平面との交線を噴射中心線とすると、
     前記第1平面が、前記噴射中心線上の1つの点を通る複数の平面のうち、当該平面上の燃料が存在する領域の前記第2平面に平行な方向の長さが最も短くなり、且つ、当該平面上の燃料が存在する領域の前記第3平面に平行な方向の長さが最も短くなる平面であることを特徴とする請求項1に記載のエンジンユニット。
    When viewed in the direction of the central axis of the cylinder hole, a straight line passing through the center of the two injection directions forming the largest angle among the injection directions of the plurality of fuel droplets injected from the single inlet injector. Let the visible plane be the second plane,
    When viewed in a direction perpendicular to the second plane, the straight line passes through the center of the two injection directions forming the largest angle among the injection directions of the plurality of fuel droplets injected from the single inlet injector. Let the visible plane be the third plane,
    When an intersection line between the second plane and the third plane is an injection center line,
    Of the plurality of planes through which the first plane passes through one point on the injection center line, the length in the direction parallel to the second plane of the region where the fuel exists on the plane is the shortest, and 2. The engine unit according to claim 1, wherein a length in a direction parallel to the third plane of a region where the fuel exists on the plane is the shortest.
  3.  前記単一吸気口用インジェクタは、
     前記噴射中心線が、前記単一吸気口を通るように配置および構成されることを特徴とする請求項2に記載のエンジンユニット。
    The single inlet injector is
    The engine unit according to claim 2, wherein the injection center line is arranged and configured to pass through the single intake port.
  4.  前記単一吸気口用インジェクタは、
     前記噴射中心線が、前記第2領域を通るように配置および構成されることを特徴とする請求項2または3に記載のエンジンユニット。
    The single inlet injector is
    The engine unit according to claim 2 or 3, wherein the injection center line is arranged and configured so as to pass through the second region.
  5.  前記単一吸気弁は、前記単一吸気口を塞ぐことが可能な傘部と、前記傘部に接続され、一部が前記単一吸気通路部内に配置されるステム部とを有し、
     前記単一吸気口用インジェクタは、
     前記シリンダ孔の中心軸線の方向に見たとき、前記噴射中心線が、前記単一吸気口を開く位置にある前記単一吸気弁の前記ステム部を通るように配置および構成されることを特徴とする請求項2~4のいずれかに記載のエンジンユニット。
    The single intake valve has an umbrella portion that can block the single intake port, and a stem portion that is connected to the umbrella portion and is partially disposed in the single intake passage portion.
    The single inlet injector is
    When viewed in the direction of the center axis of the cylinder hole, the injection center line is arranged and configured to pass through the stem portion of the single intake valve at a position where the single intake port is opened. The engine unit according to any one of claims 2 to 4.
  6.  前記単一吸気口用インジェクタは、
     前記第2平面に直交する方向に見たとき、前記噴射中心線が、前記単一吸気口を開く位置にある前記単一吸気弁の前記ステム部と傘部を通るように配置および構成されることを特徴とする請求項2~5のいずれかに記載のエンジンユニット。
    The single inlet injector is
    When viewed in a direction perpendicular to the second plane, the injection center line is arranged and configured to pass through the stem portion and the umbrella portion of the single intake valve at a position where the single intake port is opened. The engine unit according to any one of claims 2 to 5, wherein:
  7.  前記単一吸気口用インジェクタは、
     前記噴射中心線が、前記単一吸気口を開く位置にある前記単一吸気弁の前記ステム部と前記傘部を通るように配置および構成されることを特徴とする請求項5または6に記載のエンジンユニット。
    The single inlet injector is
    The said injection center line is arrange | positioned and comprised so that it may pass through the said stem part and the said umbrella part of the said single intake valve in the position which opens the said single intake port. Engine unit.
  8.  前記シリンダ吸気通路部および前記外部吸気通路部が、前記燃焼室毎に1つずつ設けられ、
     前記少なくとも1つの外部吸気通路部にそれぞれ配置され、前記単一吸気通路部における空気の流れ方向において前記単一吸気口用インジェクタよりも上流にある少なくとも1つのスロットル弁を備えることを特徴とする請求項1~7のいずれかに記載のエンジンユニット。
    The cylinder intake passage portion and the external intake passage portion are provided one for each combustion chamber,
    The at least one external intake passage portion is provided with at least one throttle valve disposed upstream of the single intake port injector in an air flow direction in the single intake passage portion. Item 8. The engine unit according to any one of Items 1 to 7.
  9.  前記単一吸気口用インジェクタは、
     前記第1平面上の前記第1領域が、
     前記1つの円または前記1つのオーバルの縁の全周に沿った環状であるか、もしくは、
     前記1つの円または前記1つのオーバルの縁の一部に沿った非環状であって、その外周端の周方向中央が、前記非環状の第1領域の周方向両端を通る両端を有する前記第1平面上の90°の円弧の径方向外側にあるように構成されることを特徴とする請求項1~8のいずれかに記載のエンジンユニット。
    The single inlet injector is
    The first region on the first plane is
    An annulus along the entire circumference of the edge of the one circle or the one oval, or
    A non-annular shape along a part of an edge of the one circle or the one oval, the circumferential center of the outer circumferential end thereof having both ends passing through both circumferential circumferential ends of the non-circular first region. The engine unit according to any one of claims 1 to 8, wherein the engine unit is configured to lie radially outside a 90 ° arc on one plane.
  10.  前記単一吸気弁は、
     前記単一吸気口を塞ぐことが可能な傘部と、
     前記傘部に接続され、一部が前記単一吸気通路部内に配置されるステム部とを有し、
     前記単一吸気口用インジェクタは、
     前記複数の噴射孔と前記単一吸気口の中心との間の最短距離が、前記単一吸気口の直径の3倍の長さより小さくなるような位置に配置されることを特徴とする請求項1~9のいずれかに記載のエンジンユニット。
    The single intake valve is
    An umbrella capable of closing the single air inlet;
    A stem portion connected to the umbrella portion and a part of which is disposed in the single intake passage portion;
    The single inlet injector is
    The shortest distance between the plurality of injection holes and the center of the single intake port is disposed at a position where the shortest distance is smaller than three times the diameter of the single intake port. The engine unit according to any one of 1 to 9.
  11.  前記単一吸気口用インジェクタは、
     前記複数の噴射孔と前記単一吸気口の中心との間の最短距離が、前記単一吸気口の直径の2倍の長さより小さくなるような位置に配置されることを特徴とする請求項10に記載のエンジンユニット。
    The single inlet injector is
    The shortest distance between the plurality of injection holes and the center of the single air inlet is disposed at a position where the shortest distance is smaller than twice the diameter of the single air inlet. The engine unit according to 10.
  12.  前記シリンダ部は、前記少なくとも1つの燃焼室に形成された少なくとも1つの排気口を有し、
     前記排気口は、1つの前記燃焼室に対して少なくとも1つ設けられ、
     前記吸気口の直径は、前記排気口の直径よりも大きいことを特徴とする請求項1~11のいずれかに記載のエンジンユニット。
    The cylinder portion has at least one exhaust port formed in the at least one combustion chamber,
    At least one exhaust port is provided for one combustion chamber,
    The engine unit according to any one of claims 1 to 11, wherein a diameter of the intake port is larger than a diameter of the exhaust port.
PCT/JP2019/019994 2018-05-25 2019-05-21 Engine unit WO2019225564A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108118023A TWI741300B (en) 2018-05-25 2019-05-24 Engine unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018100176 2018-05-25
JP2018-100176 2018-05-25

Publications (1)

Publication Number Publication Date
WO2019225564A1 true WO2019225564A1 (en) 2019-11-28

Family

ID=68616788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019994 WO2019225564A1 (en) 2018-05-25 2019-05-21 Engine unit

Country Status (2)

Country Link
TW (1) TWI741300B (en)
WO (1) WO2019225564A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5484129A (en) * 1977-12-19 1979-07-04 Nissan Motor Co Ltd Internal combustion engine with two intake passages
JPH07259700A (en) * 1994-03-25 1995-10-09 Keihin Seiki Mfg Co Ltd Electromagnetic type fuel injection valve
JP2007231924A (en) * 2005-05-24 2007-09-13 Denso Corp Fuel injection valve for internal combustion engine
JP2012154209A (en) * 2011-01-24 2012-08-16 Hitachi Automotive Systems Ltd Internal combustion engine control device, and internal combustion engine
JP2018003810A (en) * 2016-07-08 2018-01-11 スズキ株式会社 Internal combustion engine fuel injection system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5484129A (en) * 1977-12-19 1979-07-04 Nissan Motor Co Ltd Internal combustion engine with two intake passages
JPH07259700A (en) * 1994-03-25 1995-10-09 Keihin Seiki Mfg Co Ltd Electromagnetic type fuel injection valve
JP2007231924A (en) * 2005-05-24 2007-09-13 Denso Corp Fuel injection valve for internal combustion engine
JP2012154209A (en) * 2011-01-24 2012-08-16 Hitachi Automotive Systems Ltd Internal combustion engine control device, and internal combustion engine
JP2018003810A (en) * 2016-07-08 2018-01-11 スズキ株式会社 Internal combustion engine fuel injection system

Also Published As

Publication number Publication date
TW202004005A (en) 2020-01-16
TWI741300B (en) 2021-10-01

Similar Documents

Publication Publication Date Title
JP2009013941A (en) Breather device of engine
JP2007262995A (en) Injector installing structure and fuel injector
JP4853481B2 (en) Intake device for internal combustion engine
US20130081595A1 (en) Internal combustion engine
CN100439660C (en) Fuel injection type internal combustion engine and vehicle provided with the same
WO2019225564A1 (en) Engine unit
CA2784466C (en) Internal combustion engine
US9458807B2 (en) Four-stroke engine
JP2020079597A (en) Internal combustion engine
JP2018509552A (en) Injection system for 2-stroke engines
CN101225779B (en) Four-stroke internal combustion engine
JP2006257992A (en) Fuel injection device
CN104074600A (en) Air inlet unit for internal combustion engine
CN103670773A (en) Four-valve gas engine
US7571708B2 (en) Spark ignited direct injection targeting for improved combustion
KR102011888B1 (en) Fluid flow control apparatus for internal-combustion engine and check valve including the same
EP3808952A1 (en) Spark-ignition engine unit and vehicle
EP3808958B1 (en) Spark ignition type engine and vehicle
JP2019210893A (en) engine
JP2007138862A (en) Internal combustion engine
US7565893B2 (en) Spark ignited direct injection flow geometry for improved combustion
CN110199106A (en) The inlet structure of internal combustion engine
WO2020013289A1 (en) Spark ignition type two-valve engine, engine unit, and vehicle
JP2024004933A (en) internal combustion engine
JP5585295B2 (en) Internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19808003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19808003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP