WO2019225482A1 - Resin varnish, prepreg, laminate, printed wiring board, and semiconductor package - Google Patents

Resin varnish, prepreg, laminate, printed wiring board, and semiconductor package Download PDF

Info

Publication number
WO2019225482A1
WO2019225482A1 PCT/JP2019/019565 JP2019019565W WO2019225482A1 WO 2019225482 A1 WO2019225482 A1 WO 2019225482A1 JP 2019019565 W JP2019019565 W JP 2019019565W WO 2019225482 A1 WO2019225482 A1 WO 2019225482A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
component
compound
resin
maleimide
Prior art date
Application number
PCT/JP2019/019565
Other languages
French (fr)
Japanese (ja)
Inventor
芳克 白男川
周治 合津
圭祐 串田
辰徳 金子
清水 浩
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2020521195A priority Critical patent/JP7452417B2/en
Publication of WO2019225482A1 publication Critical patent/WO2019225482A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to a resin varnish, a prepreg, a laminated board, a printed wiring board, and a semiconductor package.
  • the wiring width (L) and spacing (S) of the printed wiring board (hereinafter referred to as wiring) along with higher speed communication, higher wiring density, and extremely thin printed wiring board.
  • the width and the interval are combined to be expressed as [L / S]).
  • the provision of the skip layer causes a problem that the thickness of the motherboard further increases. .
  • it is effective to lower the dielectric constant of an insulating material used for a printed wiring board.
  • L / S can be easily controlled by reducing the relative dielectric constant of the insulating material. Therefore, L / S can be stably produced in a shape close to the current design, and the number of layers can be reduced by reducing skip layers. . Therefore, the insulating material used for the printed wiring board is required to have a material characteristic with a small relative dielectric constant.
  • multifunctional mobile phone terminals for example, communication devices represented by servers, routers, mobile base stations, and the like have come to be used in a higher frequency band region.
  • the material of the substrate used for these is low dielectric constant and high glass transition temperature (high Tg).
  • high Tg high glass transition temperature
  • a mother board used for a multifunctional mobile phone terminal or the like is required to be connected by a small-diameter laser via when connecting between layers as the wiring density increases and the pattern width narrows. From the viewpoint of connection reliability, filled plating is often used, and the connectivity at the interface between inner layer copper and plated copper is very important, so there is a tendency to improve the laser workability of the base material. .
  • a step of removing resin residual components is performed after laser processing of the substrate. Since the desmear treatment is performed on the bottom surface and the wall surface of the laser via, when the resin component of the base material is dissolved in a large amount by the desmear treatment, the shape of the laser via may be remarkably deformed due to the dissolution of the resin. Various problems such as non-uniformity around the plating may occur. For this reason, it is required that the amount of the resin component of the base material dissolved by the desmear treatment, that is, the so-called desmear dissolution amount is an appropriate value.
  • one of the important characteristics is that the variation in the dimensional change amount of the base material is small.
  • a multi-layer stacking method is required as a base material stacking method, and a plurality of heat amounts and stress during stacking are applied to the base material. Therefore, when the variation in the dimensional change amount of the substrate itself (meaning the variation in the heat shrinkage amount of the substrate) is large, a misalignment of vias connecting the layers may occur each time the layers are stacked. For this reason, it is required to stabilize the variation in the amount of heat shrinkage of the substrate.
  • a resin composition containing an epoxy resin see Patent Document 1
  • a resin composition containing polyphenylene ether and bismaleimide see Patent Document 2
  • a resin composition containing polyphenylene ether and a cyanate resin (patent Reference 3)
  • a resin composition containing at least one of styrene-based thermoplastic elastomer and the like and / or triallyl cyanurate see Patent Document 4
  • a resin composition containing polybutadiene see Patent Document 5
  • polyphenylene A resin composition obtained by pre-reacting an ether resin, a polyfunctional maleimide and / or polyfunctional cyanate resin, and liquid polybutadiene see Patent Document 6
  • a compound having an unsaturated double bond group are provided.
  • insulating materials used for printed wiring boards tend to be required to have various characteristics such as reducing the dielectric constant, and contain the resin composition described in Patent Documents 1 to 8.
  • the prepreg has a relatively good dielectric constant, but there are many cases where the severe demands of the market in recent years cannot be satisfied.
  • any of high heat resistance, high metal foil adhesion, high glass transition temperature, low thermal expansion, moldability, plating rotability (laser processability), and small variation in dimensional variation is insufficient.
  • there is room for further improvement it has been found that the prepreg containing the conventional resin composition does not sufficiently suppress the variation in the amount of dimensional change. .
  • the object of the present invention is to have high heat resistance, low relative dielectric constant, high metal foil adhesiveness, high glass transition temperature, low thermal expansion, excellent formability and plating rotation, and dimensional change
  • An object of the present invention is to provide a resin varnish having a small amount of variation, and to provide a prepreg, a laminate, a printed wiring board, and a semiconductor package obtained by using the resin varnish.
  • the present invention relates to the following [1] to [15].
  • [1] (A) Maleimide compound, (B) an epoxy resin, and (C) a copolymer resin having a structural unit derived from an aromatic vinyl compound and a structural unit derived from maleic anhydride, Containing
  • the (A) maleimide compound is obtained by reacting (a1) a maleimide compound having at least two N-substituted maleimide groups, (a2) a monoamine compound and (a3) a diamine compound.
  • a maleimide compound having a group The (A) maleimide compound is reacted with the use ratio of the component (a2) to the component (a3) [component (a2) / component (a3)] (molar ratio) being 0.9 to 5.0. Resin varnish that can be obtained.
  • R A4 represents an acidic substituent selected from a hydroxyl group, a carboxy group, and a sulfonic acid group
  • R A5 represents an alkyl group having 1 to 5 carbon atoms or a halogen atom.
  • t is an integer of 1 to 5
  • u is an integer of 0 to 4
  • 1 ⁇ t + u ⁇ 5 provided that when t is an integer of 2 to 5, a plurality of R A4 may be the same
  • X A2 represents an aliphatic hydrocarbon group having 1 to 3 carbon atoms or —O—.
  • R A6 and R A7 each independently represents an alkyl having 1 to 5 carbon atoms.
  • the component (B) is a bisphenol F type epoxy resin, a phenol novolak type epoxy resin, a cresol novolak type epoxy resin, a naphthalene type epoxy resin, an anthracene type epoxy resin, a biphenyl type epoxy resin, a biphenyl aralkyl novolak type epoxy resin, and The resin varnish according to any one of the above [1] to [3], which is at least one selected from the group consisting of dicyclopentadiene type epoxy resins.
  • R C1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • R C2 is an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkyl group having 6 to 20 carbon atoms
  • the content ratio of the structural unit derived from the aromatic vinyl compound and the structural unit derived from maleic anhydride [the structural unit derived from the aromatic vinyl compound / the structural unit derived from maleic anhydride] ] (Molar ratio) is 1 to 9, the resin varnish according to any one of the above [1] to [4].
  • the content of the components (A) to (C) is 15 to 65 parts by weight of the component (A) with respect to 100 parts by weight of the sum of the components (A) to (C).
  • Standard deviation ⁇ calculation method A copper foil having a thickness of 18 ⁇ m is stacked on both surfaces of one prepreg, and heat-press molding is performed at 190 ° C. and 2.45 MPa for 90 minutes, thereby producing a double-sided copper-clad laminate having a thickness of 0.1 mm. With respect to the double-sided copper clad laminate thus obtained, a hole having a diameter of 1.0 mm is formed in the plane at the locations 1 to 8 shown in FIG. Use an image measuring machine to determine the distance between each of the three points in the warp direction (1-7, 2-6, 3-5) and weft direction (1-3, 8-4, 7-5) shown in FIG. And measure each distance as the initial value.
  • a laminate comprising the prepreg according to [11] or [12] and a metal foil.
  • a printed wiring board comprising the prepreg according to [11] or [12] or the laminate according to [13].
  • the present invention has high heat resistance, low relative dielectric constant, high metal foil adhesion, high glass transition temperature, low thermal expansion, excellent formability and plating rotation, and variation in dimensional change.
  • a small resin varnish can be provided.
  • the prepreg, laminated board, printed wiring board, and semiconductor package which are obtained using this resin varnish can be provided.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
  • the lower limit value and the upper limit value of the numerical range can be arbitrarily combined with the lower limit value and the upper limit value of other numerical ranges, respectively.
  • each component and material illustrated in this specification may be used individually by 1 type, and may use 2 or more types together.
  • the content of each component in the composition is the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition. Means. Embodiments in which the items described in this specification are arbitrarily combined are also included in the present invention.
  • the resin varnish of the present invention is as follows.
  • the (A) maleimide compound is obtained by reacting (a1) a maleimide compound having at least two N-substituted maleimide groups, (a2) a monoamine compound and (a3) a diamine compound.
  • a maleimide compound having a group The (A) maleimide compound is reacted with the use ratio of the component (a2) to the component (a3) [component (a2) / component (a3)] (molar ratio) being 0.9 to 5.0. Is obtained.
  • Component (A) is a maleimide compound having the following N-substituted maleimide group (hereinafter sometimes referred to as maleimide compound (A)). Specifically, (a1) a maleimide compound having at least two N-substituted maleimide groups [hereinafter abbreviated as maleimide compound (a1)] and (a2) a monoamine compound [hereinafter abbreviated as monoamine compound (a2)]. And a (a3) diamine compound (hereinafter abbreviated as diamine compound (a3)), and a maleimide compound having an N-substituted maleimide group.
  • the maleimide compound (A) is obtained by reacting the component (a2) and the component (a3) at a specific use ratio described later.
  • the weight average molecular weight (Mw) of the maleimide compound (A) is preferably 400 to 3,500, more preferably 400 to 2,000, and still more preferably 800 from the viewpoints of solubility in organic solvents and mechanical strength. ⁇ 1,500.
  • the weight average molecular weight in this specification is a value measured by gel permeation chromatography (GPC) method (standard polystyrene conversion) using tetrahydrofuran as an eluent, and more specifically described in Examples. It is a value measured by the method.
  • the maleimide compound (a1) is a maleimide compound having at least two N-substituted maleimide groups.
  • a maleimide compound having an aliphatic hydrocarbon group (but no aromatic hydrocarbon group is present) between any two maleimide groups among a plurality of maleimide groups hereinafter referred to as fat
  • a maleimide compound containing an aromatic hydrocarbon group between any two maleimide groups of the plurality of maleimide groups hereinafter referred to as aromatic hydrocarbon group Referred to as a containing maleimide.
  • an aromatic hydrocarbon group-containing maleimide is preferable from the viewpoints of high heat resistance, low relative dielectric constant, high metal foil adhesion, high glass transition temperature, low thermal expansion, moldability, and plating revolving property.
  • the aromatic hydrocarbon group-containing maleimide only needs to contain an aromatic hydrocarbon group between any combination of two maleimide groups selected arbitrarily, and is also an aliphatic hydrocarbon together with the aromatic hydrocarbon group. It may have a group.
  • maleimide compound (a1) from the viewpoint of high heat resistance, low relative dielectric constant, high metal foil adhesiveness, high glass transition temperature, low thermal expansion, moldability, and plating rotation, two or more per molecule Maleimide compounds having 5 N-substituted maleimide groups are preferred, and maleimide compounds having 2 N-substituted maleimide groups in one molecule are more preferred.
  • a maleimide compound (a1) following general formula (a1) from a viewpoint of high heat resistance, a low dielectric constant, high metal foil adhesiveness, high glass transition temperature, low thermal expansion property, moldability, and plating revolving property.
  • aromatic hydrocarbon group-containing maleimide represented by any of the following general formulas (a1-1), (a1-2) or (a1-4) is more preferred, and the aromatic hydrocarbon group-containing maleimide represented by the following general formula (a1-2) is particularly preferred.
  • R A1 to R A3 each independently represents an aliphatic hydrocarbon group having 1 to 5 carbon atoms.
  • X A1 represents an alkylene group having 1 to 5 carbon atoms, an alkylidene group having 2 to 5 carbon atoms, —O—, —C ( ⁇ O) —, —S—, —SS— or a sulfonyl group.
  • p, q, and r are each independently an integer of 0-4.
  • s is an integer of 0 to 10.
  • Examples of the aliphatic hydrocarbon group having 1 to 5 carbon atoms represented by R A1 to R A3 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, and n-pentyl group.
  • the aliphatic hydrocarbon group is preferably 1 to 1 carbon atoms from the viewpoints of high heat resistance, low relative dielectric constant, high metal foil adhesion, high glass transition temperature, low thermal expansion, moldability, and plating swirlability.
  • 3 is an aliphatic hydrocarbon group, more preferably a methyl group or an ethyl group.
  • Examples of the alkylene group having 1 to 5 carbon atoms represented by X A1 include a methylene group, a 1,2-dimethylene group, a 1,3-trimethylene group, a 1,4-tetramethylene group, and a 1,5-pentamethylene group. Is mentioned.
  • the alkylene group is preferably an alkylene group having 1 to 3 carbon atoms from the viewpoints of high heat resistance, low relative dielectric constant, high metal foil adhesion, high glass transition temperature, low thermal expansion, moldability, and plating rotation. Group, more preferably a methylene group.
  • Examples of the alkylidene group having 2 to 5 carbon atoms represented by X A1 include an ethylidene group, a propylidene group, an isopropylidene group, a butylidene group, an isobutylidene group, a pentylidene group, and an isopentylidene group.
  • an isopropylidene group is preferable from the viewpoints of high heat resistance, low relative dielectric constant, high metal foil adhesiveness, high glass transition temperature, low thermal expansion, moldability, and plating rotation.
  • X A1 is preferably an alkylene group having 1 to 5 carbon atoms or an alkylidene group having 2 to 5 carbon atoms among the above options.
  • p, q, and r are each independently an integer of 0 to 4, and have high heat resistance, low relative dielectric constant, high metal foil adhesion, high glass transition temperature, low thermal expansion, formability, and roundness with plating.
  • each is preferably an integer of 0 to 2, more preferably 0 or 1, and still more preferably 0.
  • s is an integer of 0 to 10, and is preferably 0 to 5, more preferably 0 to 3, from the viewpoint of availability.
  • the aromatic hydrocarbon group-containing maleimide represented by the general formula (a1-3) is preferably a mixture in which s is 0 to 3.
  • maleimide compound (a1) examples include N, N′-ethylene bismaleimide, N, N′-hexamethylene bismaleimide, bis (4-maleimidocyclohexyl) methane, and 1,4-bis (maleimide).
  • Methyl) cyclohexane or other aliphatic hydrocarbon group-containing maleimide N, N ′-(1,3-phenylene) bismaleimide, N, N ′-[1,3- (2-methylphenylene)] bismaleimide, N, N ′-[1,3- (4-methylphenylene)] bismaleimide, N, N ′-(1,4-phenylene) bismaleimide, bis (4-maleimidophenyl) methane, bis (3-methyl-4- Maleimidophenyl) methane, 3,3′-dimethyl-5,5′-diethyl-4,4′-diphenylmethane bismaleimide, bis (4-maleimide) Phenyl) ether, bis (4-maleimidophenyl) sulfone, bis (4-maleimidophenyl) sulfide, bis (4-maleimidophenyl) ketone, 1,4-bis (4-maleimidophenyl)
  • bis (4-maleimidophenyl) methane bis (4-maleimidophenyl) sulfone, bis (4-maleimidophenyl) sulfide, bis (4 -Maleimidophenyl) disulfide, N, N ′-(1,3-phenylene) bismaleimide, 2,2-bis [4- (4-maleimidophenoxy) phenyl] propane are preferred, and bis (4-Maleimidophenyl) methane and N, N ′-(1,3-phenylene) bismaleimide are preferred, and bis (4-maleimidophenyl) methane is particularly preferred from the viewpoint of solubility in organic solvents.
  • the maleimide compound (a1) one type may be used alone, or two or more types may be used in combination.
  • the monoamine compound (a2) is not particularly limited as long as it is a compound having one amino group, but has high heat resistance, low relative dielectric constant, high metal foil adhesion, high glass transition temperature, low thermal expansion, moldability, From the viewpoints of plating circulation and dimensional variation, monoamine compounds having an acidic substituent are preferred, and monoamine compounds represented by the following general formula (a2-1) are preferred.
  • R A4 represents an acidic substituent selected from a hydroxyl group, a carboxy group, and a sulfonic acid group.
  • R A5 represents an alkyl group having 1 to 5 carbon atoms or a halogen atom.
  • t is an integer of 1 to 5
  • u is an integer of 0 to 4
  • 1 ⁇ t + u ⁇ 5 is satisfied.
  • t is an integer of 2 to 5
  • a plurality of R A4 may be the same or different.
  • u is an integer of 2 to 4
  • a plurality of R A5 may be the same or different.
  • the acidic substituent represented by R A4 is preferably a hydroxyl group or a carboxy group from the viewpoint of solubility and reactivity, and more preferably a hydroxyl group in consideration of heat resistance.
  • t is an integer of 1 to 5, from the viewpoint of high heat resistance, low relative dielectric constant, high metal foil adhesion, high glass transition temperature, low thermal expansion, formability, roundness with plating, and dimensional variation.
  • Examples of the alkyl group having 1 to 5 carbon atoms represented by R A5 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, and an n-pentyl group. Can be mentioned.
  • the alkyl group is preferably an alkyl group having 1 to 3 carbon atoms.
  • Examples of the halogen atom represented by R A5 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • u is an integer of 0 to 4, from the viewpoint of high heat resistance, low relative dielectric constant, high metal foil adhesion, high glass transition temperature, low thermal expansion, formability, roundness with plating, and dimensional variation. , Preferably an integer of 0 to 3, more preferably an integer of 0 to 2, even more preferably 0 or 1, and particularly preferably 0.
  • the monoamine compound (a2) from the viewpoint of high heat resistance, low relative dielectric constant, high metal foil adhesiveness, high glass transition temperature, low thermal expansion, moldability, plating rotation and dimensional variation.
  • a monoamine compound represented by the following general formula (a2-2) or (a2-3) is more preferable, and a monoamine compound represented by the following general formula (a2-2) is more preferable.
  • R A4 , R A5 and u in the general formulas (a2-2) and (a2-3) are the same as those in the general formula (a2-1), and preferred ones are also the same.
  • Examples of the monoamine compound (a2) include o-aminophenol, m-aminophenol, p-aminophenol, o-aminobenzoic acid, m-aminobenzoic acid, p-aminobenzoic acid, o-aminobenzenesulfonic acid, Examples thereof include monoamine compounds having an acidic substituent, such as m-aminobenzenesulfonic acid, p-aminobenzenesulfonic acid, 3,5-dihydroxyaniline, and 3,5-dicarboxyaniline.
  • a monoamine compound (a2) may be used individually by 1 type, and may use 2 or more types together.
  • the diamine compound (a3) is not particularly limited as long as it is a compound having two amino groups, but has high heat resistance, low relative dielectric constant, high metal foil adhesion, high glass transition temperature, low thermal expansion, moldability, From the viewpoint of variation in plating rotability and dimensional change, a diamine compound represented by the following general formula (a3-1) is preferable.
  • X A2 represents an aliphatic hydrocarbon group having 1 to 3 carbon atoms or —O—.
  • R A6 and R A7 each independently represents an alkyl group having 1 to 5 carbon atoms, a halogen atom, or a hydroxyl group. Represents a carboxy group or a sulfonic acid group, and v and w are each independently an integer of 0 to 4.
  • X A2 is preferably an aliphatic hydrocarbon group having 1 to 3 carbon atoms, and more preferably a methylene group.
  • Examples of the alkyl group having 1 to 5 carbon atoms represented by R A6 and R A7 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, and an n-pentyl group. Groups and the like.
  • the alkyl group is preferably an alkyl group having 1 to 3 carbon atoms.
  • v and w are preferably integers of 0 to 2, more preferably 0 or 1, and still more preferably 0.
  • the diamine compound (a3) is preferably a diamine compound represented by the following general formula (a3-1 ′).
  • a3-1 ′ a diamine compound represented by the following general formula (a3-1 ′).
  • X A2 , R A6 , R A7 , v and w are the same as those in the general formula (a3-1), and preferred embodiments are also the same.
  • diamine compound (a3) examples include 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylethane, 4,4′-diaminodiphenylpropane, 2,2′-bis (4, 4'-diaminodiphenyl) propane, 3,3'-dimethyl-4,4'-diaminodiphenylmethane, 3,3'-diethyl-4,4'-diaminodiphenylmethane, 3,3'-dimethyl-4,4'- Diaminodiphenylethane, 3,3'-diethyl-4,4'-diaminodiphenylethane, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylthioether, 3,3'-dihydroxy-4,4'-diamino Diphenylmethane, 2,2 ', 6,6'-tetramethyl-4,4
  • 4,4′-diaminodiphenylmethane and 3,3′-diethyl-4,4′-diaminodiphenylmethane are preferable from the viewpoint of inexpensiveness, and 4,4′- from the viewpoint of solubility in a solvent.
  • Diaminodiphenylmethane is more preferred.
  • the reaction of the maleimide compound (a1), monoamine compound (a2) and diamine compound (a3) is preferably carried out by reacting at a reaction temperature of 70 to 200 ° C. for 0.1 to 10 hours in the presence of an organic solvent.
  • the reaction temperature is more preferably 70 to 160 ° C., further preferably 70 to 130 ° C., and particularly preferably 80 to 120 ° C.
  • the reaction time is more preferably 1 to 6 hours, still more preferably 1 to 4 hours.
  • maleimide compound (a1) (Use amount of maleimide compound (a1), monoamine compound (a2) and diamine compound (a3)) Further, in the reaction of the maleimide compound (a1), the monoamine compound (a2) and the diamine compound (a3), the three amounts used are equivalent to the —NH 2 group equivalent (first order) of the monoamine compound (a2) and the diamine compound (a3).
  • the relationship between the sum of the primary amino group equivalents) and the maleimide group equivalents of the maleimide compound (a1) preferably satisfies the following formula.
  • the (A) maleimide compound has a use ratio [(a2) component / (a3) component] (molar ratio) of the monoamine compound (a2) to the diamine compound (a3) of 0.9 to 5.0.
  • the use ratio is preferably 1.0 to 4.5, more preferably 1.0 to 4.0, and may be 1.5 to 3.5. It may be 3.0 or 1.5 to 2.5.
  • the ratio (molar ratio) between the structural unit derived from the monoamine compound (a2) and the structural unit derived from the diamine compound (a3) in the component (A) is 0.9 to 5.0, preferably 1.0 to 4.5, more preferably 1.0 to 4.0, and can be 1.5 to 3.5, or 1.5 to 3.0. You can also.
  • the reaction of the maleimide compound (a1), monoamine compound (a2) and diamine compound (a3) is preferably performed in an organic solvent.
  • the organic solvent is not particularly limited as long as it does not adversely affect the reaction.
  • alcohol solvents such as ethanol, propanol, butanol, methyl cellosolve, butyl cellosolve, propylene glycol monomethyl ether
  • ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone
  • ether solvents such as tetrahydrofuran
  • toluene, xylene mesitylene
  • Aromatic solvents such as dimethylformamide, dimethylacetamide, nitrogen atom-containing solvents including amide solvents such as N-methylpyrrolidone; sulfur atom-containing solvents including sulfoxide solvents such as dimethylsulfoxide; ethyl acetate, ⁇ - Examples thereof include
  • alcohol solvents, ketone solvents, and ester solvents are preferable from the viewpoint of solubility, and cyclohexanone, propylene glycol monomethyl ether, methyl cellosolve, and ⁇ -butyrolactone are more preferable from the viewpoint of low toxicity.
  • cyclohexanone, propylene glycol monomethyl ether, and dimethylacetamide are more preferable, and dimethylacetamide is particularly preferable.
  • An organic solvent may be used individually by 1 type, and may use 2 or more types together.
  • an organic solvent Preferably it is 25 with respect to a total of 100 mass parts of a maleimide compound (a1), a monoamine compound (a2), and a diamine compound (a3) from a viewpoint of solubility and reaction efficiency.
  • the amount may be ⁇ 1,000 parts by mass, more preferably 40 to 700 parts by mass, and still more preferably 60 to 250 parts by mass.
  • the organic solvent may be contained in the resin varnish of the present invention.
  • reaction catalyst You may implement reaction of a maleimide compound (a1), a monoamine compound (a2), and a diamine compound (a3) in presence of a reaction catalyst as needed.
  • the reaction catalyst include amine-based catalysts such as triethylamine, pyridine, and tributylamine; imidazole-based catalysts such as methylimidazole and phenylimidazole; and phosphorus-based catalysts such as triphenylphosphine.
  • a reaction catalyst may be used individually by 1 type, and may use 2 or more types together.
  • the amount of the reaction catalyst used is not particularly limited, but is preferably 0.001 to 5 parts by mass with respect to 100 parts by mass of the total mass of the maleimide compound (a1) and the monoamine compound (a2).
  • the component (B) is an epoxy resin (hereinafter sometimes referred to as an epoxy resin (B)), preferably an epoxy resin having at least two epoxy groups in one molecule.
  • the epoxy resin having at least two epoxy groups in one molecule include glycidyl ether type epoxy resins, glycidyl amine type epoxy resins, and glycidyl ester type epoxy resins. Among these, a glycidyl ether type epoxy resin is preferable.
  • the epoxy resin (B) is classified into various epoxy resins depending on the main skeleton, and in each of the above-mentioned types of epoxy resins, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, etc.
  • Bisphenol type epoxy resin bisphenyl aralkyl novolak type epoxy resin, phenol novolak type epoxy resin, alkylphenol novolak type epoxy resin, cresol novolac type epoxy resin, naphthol alkylphenol copolymer novolak type epoxy resin, naphthol aralkyl cresol copolymer novolak type epoxy resin, Bisphenol A novolac epoxy resin, bisphenol F novolac epoxy resin and other novolac epoxy resins; stilbene epoxy Resin; Triazine skeleton-containing epoxy resin; Fluorene skeleton-containing epoxy resin; Naphthalene-type epoxy resin; Anthracene-type epoxy resin; Triphenylmethane-type epoxy resin; Biphenyl-type epoxy resin; Xylylene-type epoxy resin; Dicyclopentadiene-type epoxy resin It is classified into alicyclic epoxy resin.
  • bisphenol F type epoxy resin phenol novolac type epoxy resin
  • phenol novolac type epoxy resin at least one selected from the group consisting of cresol novolac type epoxy resin, naphthalene type epoxy resin, anthracene type epoxy resin, biphenyl type epoxy resin, biphenylaralkyl novolak type epoxy resin and dicyclopentadiene type epoxy resin, and low thermal expansion Cresol novolac type epoxy resin, naphthalene type epoxy resin, anthracene type epoxy resin, biphenyl type epoxy resin, biphenyl aralkyl novolak type epoxy resin and phenol novolac type More preferably at least one selected from the group consisting of epoxy resin, more preferably a cresol novolak type epoxy resin.
  • An epoxy resin (B) may be used individually by 1 type, and may use 2 or more types together.
  • the epoxy equivalent of the epoxy resin (B) is preferably 100 to 500 g / eq, more preferably 120 to 400 g / eq, still more preferably 140 to 300 g / eq, and particularly preferably 170 to 240 g / eq.
  • the epoxy equivalent is the mass of the resin per epoxy group (g / eq), and can be measured according to the method defined in JIS K 7236 (2001).
  • epoxy resin (B) As a commercially available product of the epoxy resin (B), a cresol novolac type epoxy resin “EPICLON (registered trademark) N-673” (manufactured by DIC Corporation, epoxy equivalent: 205 to 215 g / eq), a naphthalene type epoxy resin “HP-4032” (Mitsubishi Chemical Corporation, epoxy equivalent: 152 g / eq), biphenyl type epoxy resin “YX-4000” (Mitsubishi Chemical Corporation, epoxy equivalent: 186 g / eq), dicyclopentadiene type epoxy resin “HP-7200H” (DIC Corporation, epoxy equivalent; 280 g / eq) and the like.
  • the epoxy equivalent is a value described in the catalog of the product manufacturer.
  • Component (C) is a copolymer resin having a structural unit derived from a substituted vinyl compound and a structural unit derived from maleic anhydride (hereinafter sometimes referred to as copolymer resin (C)).
  • the substituted vinyl compound include aromatic vinyl compounds, aliphatic vinyl compounds, and functional group-substituted vinyl compounds.
  • the aromatic vinyl compound include styrene, 1-methylstyrene, vinyltoluene, dimethylstyrene and the like.
  • Examples of the aliphatic vinyl compound include propylene, butadiene, isobutylene and the like.
  • Examples of the functional group-substituted vinyl compound include acrylonitrile; a compound having a (meth) acryloyl group such as methyl acrylate and methyl methacrylate.
  • a compound having a (meth) acryloyl group such as methyl acrylate and methyl methacrylate.
  • an aromatic vinyl compound is preferable, and styrene is more preferable.
  • a copolymer resin having a structural unit represented by the following general formula (Ci) and a structural unit represented by the following formula (C-ii) is preferable.
  • R C1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • R C2 is an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkyl group having 6 to 20 carbon atoms
  • Examples of the alkyl group having 1 to 5 carbon atoms represented by R C1 and R C2 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, and an n-pentyl group. Groups and the like.
  • the alkyl group is preferably an alkyl group having 1 to 3 carbon atoms.
  • Examples of the alkenyl group having 2 to 5 carbon atoms represented by R C2 include an allyl group and a crotyl group.
  • the alkenyl group is preferably an alkenyl group having 3 to 5 carbon atoms, more preferably an alkenyl group having 3 or 4 carbon atoms.
  • Examples of the aryl group having 6 to 20 carbon atoms represented by R C2 include a phenyl group, a naphthyl group, an anthryl group, and a biphenylyl group.
  • the aryl group is preferably an aryl group having 6 to 12 carbon atoms, more preferably an aryl group having 6 to 10 carbon atoms.
  • x is preferably 0 or 1, more preferably 0.
  • R C1 is a hydrogen atom and x is 0, derived from the structural unit represented by the following general formula (Ci-1), that is, styrene The structural unit is preferred.
  • the ratio is preferably from 1 to 9, more preferably from 2 to 9, even more preferably from 3 to 8, particularly preferably from 3 to 7.
  • the content ratio of the structural unit represented by the general formula (Ci) to the structural unit represented by the formula (C-ii) [(Ci) / (Cii)] (molar ratio) Similarly, it is preferably 1 to 9, more preferably 2 to 9, further preferably 3 to 8, and particularly preferably 3 to 7.
  • the total content of the structural unit derived from the substituted vinyl compound and the structural unit derived from maleic anhydride in the copolymer resin (C), and the structural unit represented by the general formula (Ci) and the formula ( The total content of the structural unit represented by C-ii) is preferably 50% by mass or more, more preferably 70% by mass or more, still more preferably 90% by mass or more, and particularly preferably substantially 100% by mass. %.
  • the weight average molecular weight (Mw) of the copolymer resin (C) is preferably 4,500 to 18,000, more preferably 5,000 to 18,000, more preferably 6,000 to 17,000, still more preferably. It is 8,000 to 16,000, particularly preferably 8,000 to 15,000, most preferably 9,000 to 13,000.
  • the technique for lowering the dielectric constant of an epoxy resin by using a copolymer resin of styrene and maleic anhydride when applied to a printed wiring board material, results in insufficient impregnation into the substrate and copper foil peel strength. Therefore, it generally tends to be avoided.
  • the use of the copolymer resin (C) generally tends to be avoided, but in the present invention, the component (A) and the component (B) are used while using the copolymer resin (C).
  • the component and the component (D) By containing the component and the component (D), it has high heat resistance, low relative dielectric constant, high metal foil adhesiveness, high glass transition temperature and low thermal expansion, and has formability, plating-around property and dimensions. It became an excellent resin varnish with little variation in variation.
  • the copolymer resin (C) can be produced by copolymerizing a substituted vinyl compound and maleic anhydride.
  • the substituted vinyl compound is as described above.
  • a substituted vinyl compound may be used individually by 1 type, and may use 2 or more types together.
  • various polymerizable components may be copolymerized.
  • substituents such as allyl groups, methacryloyl groups, acryloyl groups, and hydroxy groups are introduced into the substituted vinyl compounds, particularly aromatic vinyl compounds, through Friedel-Crafts reactions or reactions using metal catalysts such as lithium. May be.
  • copolymer resin Commercial products can also be used as the copolymer resin (C).
  • the resin varnish of the present invention preferably contains an inorganic filler as the component (D) from the viewpoint of low thermal expansion.
  • the inorganic filler include silica, alumina, barium sulfate, talc, clay, mica powder, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, magnesium oxide, boron nitride, aluminum borate, and barium titanate.
  • Strontium titanate, calcium titanate, bismuth titanate, titanium oxide, barium zirconate, calcium zirconate and the like may be used individually by 1 type and may use 2 or more types together.
  • silica is preferable from the viewpoint of lowering the thermal expansion coefficient.
  • silica examples include precipitated silica produced by a wet method and having a high water content, and dry method silica produced by a dry method and containing almost no bound water or the like.
  • dry process silica examples include crushed silica, fumed silica, and fused silica (fused spherical silica) depending on the production method.
  • Silica is preferably fused silica from the viewpoint of low thermal expansibility and high fluidity when filled in a resin.
  • the average particle diameter of the inorganic filler, particularly silica is not particularly limited, but is preferably 0.1 to 10 ⁇ m, more preferably 0.1 to 6 ⁇ m, further preferably 0.1 to 3 ⁇ m, and 1 to 3 ⁇ m is particularly preferable.
  • the average particle diameter of the inorganic filler, especially silica, 0.1 ⁇ m or more the fluidity when highly filled can be kept good, and by making it 10 ⁇ m or less, the mixing probability of coarse particles can be increased. It is possible to reduce the occurrence of defects due to coarse particles.
  • the average particle diameter is a particle diameter at a point corresponding to a volume of 50% when the cumulative frequency distribution curve by the particle diameter is obtained with the total volume of the particles being 100%, and a laser diffraction scattering method is used. It can be measured with a particle size distribution measuring device.
  • the specific surface area of the inorganic filler, particularly silica is preferably 4 cm 2 / g or more, more preferably 4 to 9 cm 2 / g, and still more preferably 5 to 7 cm 2 / g.
  • the inorganic fillers in particular, in the case of a surface-treated inorganic filler, in addition to the effect of improving the low thermal expansion, the adhesion with the components (A) to (C) is improved. Since the dropout of the inorganic filler itself is suppressed, an effect of suppressing the deformation of the laser via shape due to excessive desmear tends to be obtained. In addition, it is more preferable that the inorganic filler is a surface-treated inorganic filler because the tendency to improve the plating and the variation in the dimensional change amount tends to be small.
  • the inorganic filler By making the inorganic filler a surface-treated inorganic filler, the plating reversibility is improved because the amount of desmear dissolution increases, and the laser hole wall surface unevenness and the glass cloth pop out tend to be a hole shape. I guess it is because there is.
  • Examples of the surface treatment agent that can be used to surface-treat the inorganic filler include, for example, an aminosilane coupling agent, an epoxysilane coupling agent, a phenylsilane coupling agent, an alkylsilane coupling agent, and an alkenylsilane.
  • Coupling agent alkynylsilane coupling agent, haloalkylsilane coupling agent, siloxane coupling agent, hydrosilane coupling agent, silazane coupling agent, alkoxysilane coupling agent, chlorosilane coupling agent, ( (Meth) acryl silane coupling agents, isocyanurate silane coupling agents, ureido silane coupling agents, mercapto silane coupling agents, sulfide silane coupling agents or isocyanate silane coupling agents. It is below.
  • a surface treating agent may be used individually by 1 type, and may use 2 or more types together.
  • an aminosilane coupling agent is used as the surface treatment agent.
  • the component (D) an inorganic filler treated with an aminosilane coupling agent is preferable.
  • the aminosilane coupling agent a silane coupling agent having a silicon-containing group represented by the following general formula (D-1) and an amino group is preferable. (Wherein R D1 is an alkyl group having 1 to 3 carbon atoms or an acyl group having 2 to 4 carbon atoms. Y is an integer of 0 to 3)
  • Examples of the alkyl group having 1 to 3 carbon atoms represented by R D1 include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group. Among these, a methyl group is preferable.
  • Examples of the acyl group having 2 to 4 carbon atoms represented by RD1 include an acetyl group, a propionyl group, and an acrylic group. Among these, an acetyl group is preferable.
  • the aminosilane coupling agent may have one amino group, two amino groups, or three or more, but usually one amino group or Have two.
  • aminosilane coupling agents having one amino group include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, 3-triethoxysilyl- Examples thereof include N- (1,3-dimethyl-butylidene) propylamine and 2-propynyl [3- (trimethoxysilyl) propyl] carbamate, but are not particularly limited thereto.
  • aminosilane coupling agents having two amino groups include N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, Examples include 1- [3- (trimethoxysilyl) propyl] urea and 1- [3- (triethoxysilyl) propyl] urea, but are not particularly limited thereto.
  • a surface-treated inorganic filler and a surface-treated inorganic filler may be used in combination.
  • the content of the inorganic filler not surface-treated is preferably 50 parts by mass or less, more preferably 30 parts relative to 100 parts by mass of the surface-treated inorganic filler. It is not more than part by mass, more preferably not more than 15 parts by mass, particularly preferably not more than 10 parts by mass, most preferably not more than 5 parts by mass.
  • the resin varnish may further contain a curing agent (hereinafter sometimes referred to as a curing agent (E)) as the component (E).
  • a curing agent hereinafter sometimes referred to as a curing agent (E)
  • the curing agent (E) include dicyandiamide; chain aliphatic amines other than dicyandiamide, such as ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, hexamethylenediamine, diethylaminopropylamine, tetramethylguanidine, triethanolamine; Isophoronediamine, diaminodicyclohexylmethane, bis (aminomethyl) cyclohexane, bis (4-amino-3-methyldicyclohexyl) methane, N-aminoethylpiperazine, 3,9-bis (3-aminopropyl) -2,4,8 , 10-tetraoxas
  • dicyandiamide is preferable from the viewpoints of metal foil adhesion and low thermal expansion.
  • the dicyandiamide is represented by H 2 N—C ( ⁇ NH) —NH—CN, and the melting point is usually 205 to 215 ° C., and higher purity is 207 to 212 ° C.
  • Dicyandiamide is a crystalline substance and may be orthorhombic or plate-like. Dicyandiamide preferably has a purity of 98% or more, more preferably has a purity of 99% or more, and still more preferably has a purity of 99.4% or more.
  • commercially available products can be used. For example, commercially available products such as those manufactured by Nippon Carbide Industries Co., Ltd., Tokyo Chemical Industry Co., Ltd., Kishida Chemical Co., Ltd., and Nacalai Tesque Co., Ltd. can be used. .
  • the resin varnish may further contain a flame retardant (hereinafter sometimes referred to as a flame retardant (F)) as the component (F).
  • a flame retardant hereinafter sometimes referred to as a flame retardant (F)
  • dicyandiamide and the like also have an effect as a flame retardant, but in the present invention, those that can function as a curing agent are classified as curing agents and are not included in the component (F). .
  • the flame retardant examples include halogen-containing flame retardants containing bromine, chlorine, etc .; phosphorus flame retardants; nitrogen flame retardants such as guanidine sulfamate, melamine sulfate, melamine polyphosphate, melamine cyanurate; cyclophosphazene, poly Examples thereof include phosphazene flame retardants such as phosphazene; inorganic flame retardants such as antimony trioxide. Among these, a phosphorus flame retardant is preferable.
  • the phosphorus flame retardant include an inorganic phosphorus flame retardant and an organic phosphorus flame retardant.
  • inorganic phosphorus flame retardants include red phosphorus; ammonium phosphates such as monoammonium phosphate, diammonium phosphate, triammonium phosphate and ammonium polyphosphate; inorganic nitrogen-containing phosphorus compounds such as phosphate amides Phosphoric acid; phosphine oxide and the like.
  • organic phosphorus flame retardants include aromatic phosphate esters, monosubstituted phosphonic acid diesters, disubstituted phosphinic acid esters, disubstituted phosphinic acid metal salts, organic nitrogen-containing phosphorus compounds, cyclic organophosphorus compounds, Examples thereof include phosphorus-containing phenol resins.
  • aromatic phosphate esters and metal salts of disubstituted phosphinic acids are preferred.
  • the metal salt is preferably any one of a lithium salt, a sodium salt, a potassium salt, a calcium salt, a magnesium salt, an aluminum salt, a titanium salt, and a zinc salt, and preferably an aluminum salt.
  • aromatic phosphates are more preferable.
  • aromatic phosphate ester examples include triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, cresyl di-2,6-xylenyl phosphate, resorcinol bis (diphenyl phosphate), 1,3 -Phenylenebis (di-2,6-xylenyl phosphate), bisphenol A-bis (diphenyl phosphate), 1,3-phenylenebis (diphenyl phosphate) and the like.
  • Examples of monosubstituted phosphonic acid diesters include divinyl phenylphosphonate, diallyl phenylphosphonate, and bis (1-butenyl) phenylphosphonate.
  • Examples of the disubstituted phosphinic acid ester include phenyl diphenylphosphinate and methyl diphenylphosphinate.
  • Examples of the metal salt of disubstituted phosphinic acid include a metal salt of dialkylphosphinic acid, a metal salt of diallylphosphinic acid, a metal salt of divinylphosphinic acid, a metal salt of diarylphosphinic acid, and the like.
  • these metal salts are preferably any of lithium salt, sodium salt, potassium salt, calcium salt, magnesium salt, aluminum salt, titanium salt, and zinc salt.
  • organic nitrogen-containing phosphorus compound include phosphazene compounds such as bis (2-allylphenoxy) phosphazene and dicresyl phosphazene; melamine phosphate, melamine pyrophosphate, melamine polyphosphate, melam polyphosphate, and the like.
  • cyclic organophosphorus compound examples include 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 10- (2,5-dihydroxyphenyl) -9,10-dihydro-9-oxa- And 10-phosphaphenanthrene-10-oxide.
  • at least one selected from an aromatic phosphate ester, a metal salt of a disubstituted phosphinic acid and a cyclic organic phosphorus compound is preferable, and an aromatic phosphate ester is more preferable.
  • the aromatic phosphate ester is preferably an aromatic phosphate ester represented by the following general formula (F-1) or (F-2), and is represented by the following general formula (F-1). More preferably, it is an aromatic phosphate ester.
  • the metal salt of the disubstituted phosphinic acid is preferably a metal salt of a disubstituted phosphinic acid represented by the following general formula (F-3).
  • R F1 to R F5 are each independently an alkyl group having 1 to 5 carbon atoms or a halogen atom.
  • E and f are each independently an integer of 0 to 5, and g, h and i are each It is an integer of 0 to 4 independently.
  • R F6 and R F7 are each independently an alkyl group having 1 to 5 carbon atoms or an aryl group having 6 to 14 carbon atoms.
  • M is a lithium atom, a sodium atom, a potassium atom, a calcium atom, a magnesium atom, an aluminum atom, a titanium atom, or a zinc atom.
  • j is an integer of 1 to 4.
  • Examples of the alkyl group having 1 to 5 carbon atoms represented by R F1 to R F5 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, and an n-pentyl group. Groups and the like.
  • the alkyl group is preferably an alkyl group having 1 to 3 carbon atoms.
  • Examples of the halogen atom represented by R F1 to R F5 include a fluorine atom.
  • e and f are preferably integers of 0 to 2, and more preferably 2.
  • g, h and i are preferably integers of 0 to 2, more preferably 0 or 1, and still more preferably 0.
  • Examples of the alkyl group having 1 to 5 carbon atoms represented by R F6 and R F7 include the same groups as in R F1 to R F5 .
  • Examples of the aryl group having 6 to 14 carbon atoms represented by R F6 and R F7 include a phenyl group, a naphthyl group, a biphenylyl group, and an anthryl group.
  • the aromatic hydrocarbon group is preferably an aryl group having 6 to 10 carbon atoms.
  • j is equal to the valence of the metal ion, that is, varies within the range of 1 to 4 corresponding to the type of M.
  • M is preferably an aluminum atom.
  • j is 3 when M is an aluminum atom.
  • the content of the components (A) to (C) in the resin varnish is not particularly limited, but the amount of the component (A) is 15 to 100 parts by mass with respect to 100 parts by mass of the total of the components (A) to (C). 65 parts by mass, (B) component is preferably 15-50 parts by mass, and (C) component is preferably 10-45 parts by mass.
  • the total content of the components (A) to (C) is preferably 80% by mass or more, more preferably 90% by mass or more, and 95% by mass in the resin varnish (however, excluding the component (D) here). % Or more is more preferable.
  • the component (A) When the component (A) is 15 parts by mass or more with respect to 100 parts by mass of the sum of the components (A) to (C), it is excellent in high heat resistance, low relative dielectric constant, high glass transition temperature, and low thermal expansion. Further, the variation in the dimensional change amount tends to be small. On the other hand, when it is 65 parts by mass or less, the fluidity and moldability of the resin varnish tend to be good. From the same viewpoint, the content of the component (A) may be 25 to 65 parts by mass with respect to 100 parts by mass of the sum of the components (A) to (C).
  • the component (B) When the component (B) is 15 parts by mass or more with respect to 100 parts by mass of the total of the components (A) to (C), high heat resistance, high glass transition temperature and low thermal expansion tend to be obtained. On the other hand, when it is 50 parts by mass or less, it tends to be high heat resistance, low relative dielectric constant, high glass transition temperature, and low thermal expansion. From the same viewpoint, the content of the component (B) may be 20 to 45 parts by mass with respect to 100 parts by mass of the sum of the components (A) to (C). When the component (C) is 10 parts by mass or more with respect to 100 parts by mass of the sum of the components (A) to (C), high heat resistance and a low relative dielectric constant tend to be obtained.
  • the content of the component (C) may be 10 to 30 parts by mass or 20 to 45 parts by mass with respect to 100 parts by mass of the sum of the components (A) to (C). Further, although not particularly limited, when the resin varnish of the present invention contains the component (D), the content thereof is 30 to 70 with respect to 100 parts by mass of the total of the components (A) to (C). It is preferable that it is a mass part. (D) It exists in the tendency for the outstanding low thermal expansibility to be acquired because a component is 30 mass parts or more.
  • the content of the component (D) may be 40 to 60 parts by mass with respect to 100 parts by mass of the sum of the components (A) to (C).
  • the content is preferably 0.5 to 6 parts by mass with respect to 100 parts by mass as the total of the components (A) to (C).
  • the component (E) is 0.5 parts by mass or more with respect to 100 parts by mass of the total of the components (A) to (C)
  • high metal foil adhesion and excellent low thermal expansion tend to be obtained.
  • it is 6 parts by mass or less, high heat resistance tends to be obtained.
  • the content thereof is preferably 0.1 to 20 with respect to 100 parts by mass of the total of the components (A) to (C) from the viewpoint of flame retardancy. Part by mass, more preferably 0.5 to 10 parts by mass.
  • the phosphorus atom content is 0.1 to 3 masses per 100 mass parts of the total of the components (A) to (C). Is preferably 0.2 to 3 parts by mass, more preferably 0.5 to 3 parts by mass.
  • the resin varnish can contain other components such as additives as long as the effects of the present invention are not impaired. These may contain 1 type independently, and may contain 2 or more types.
  • additive examples include a curing accelerator, a colorant, an antioxidant, a reducing agent, an ultraviolet absorber, a fluorescent whitening agent, an adhesion improver, and an organic filler. These may be used individually by 1 type and may use 2 or more types together.
  • the resin varnish contains an organic solvent from the viewpoint of facilitating handling and from the viewpoint of facilitating manufacture of a prepreg described later.
  • the organic solvent is not particularly limited.
  • alcohol solvents, ketone solvents, and nitrogen atom-containing solvents are preferable, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methyl cellosolve, and propylene glycol monomethyl ether are more preferable, and methyl ethyl ketone and methyl isobutyl ketone are preferable. More preferred is methyl ethyl ketone.
  • An organic solvent may be used individually by 1 type, and may use 2 or more types together.
  • the content of the organic solvent in the resin varnish may be appropriately adjusted to such an extent that the resin varnish can be easily handled, and is not particularly limited as long as the coating property of the resin varnish is good.
  • the concentration (concentration of components other than the organic solvent) is preferably 30 to 90% by mass, more preferably 40 to 80% by mass, and even more preferably 50 to 80% by mass.
  • the prepreg of the present invention contains the resin varnish of the present invention, and the production method is not particularly limited.
  • the resin varnish is impregnated or coated on a sheet-like reinforcing substrate, and heated.
  • Semi-cured (B-stage) can be produced.
  • the prepreg sheet-like reinforcing substrate known materials used for various types of laminates for electrical insulating materials can be used.
  • the material of the sheet-like reinforcing base material natural fibers such as paper and cotton linter; inorganic fibers such as glass fiber and asbestos; organic fibers such as aramid, polyimide, polyvinyl alcohol, polyester, tetrafluoroethylene, and acrylic; A mixture etc. are mentioned.
  • glass fiber is preferable from the viewpoint of flame retardancy.
  • the glass fiber substrate include a woven fabric using E glass, C glass, D glass, S glass, or the like, a glass woven fabric obtained by bonding short fibers with an organic binder; a mixture of glass fibers and cellulose fibers, and the like. It is done. More preferably, it is a glass woven fabric using E glass.
  • These sheet-like reinforcement base materials have shapes, such as a woven fabric, a nonwoven fabric, a robink, a chopped strand mat, or a surfacing mat, for example.
  • a material and a shape are selected by the use and performance of the target molding, and 1 type may be used independently and 2 or more types of materials and shapes can also be combined as needed.
  • the thickness of the prepreg of the present invention is preferably 0.01 to 0.5 mm, more preferably 0.02 to 0.3 mm, and more preferably 0.05 to 0.2 mm from the viewpoint of enabling moldability and high-density wiring. Is more preferable.
  • the prepreg of the present invention thus obtained can have a standard deviation ⁇ determined according to the following method of 0.012% or less. This means that the variation in the dimensional change amount is small.
  • (Calculation method of standard deviation ⁇ ) A copper foil having a thickness of 18 ⁇ m is stacked on both surfaces of one prepreg, and heat-press molding is performed at 190 ° C. and 2.45 MPa for 90 minutes, thereby producing a double-sided copper-clad laminate having a thickness of 0.1 mm. With respect to the double-sided copper clad laminate thus obtained, a hole having a diameter of 1.0 mm is formed in the plane at the locations 1 to 8 shown in FIG.
  • an image measuring machine to determine the distance between each of the three points in the warp direction (1-7, 2-6, 3-5) and weft direction (1-3, 8-4, 7-5) shown in FIG. And measure each distance as the initial value. Thereafter, the outer layer copper foil is removed and heated at 185 ° C. for 60 minutes in a dryer. After cooling, in the same manner as the initial value measurement method, three points each in the warp direction (1-7, 2-6, 3-5) and the weft direction (1-3, 8-4, 7-5) Measure distance. An average value of the change rates is obtained from the change rate with respect to the initial value of each measurement distance, and a standard deviation ⁇ with respect to the average value is calculated.
  • the image measuring machine is not particularly limited, but for example, “QV-A808P1L-D” (manufactured by Mitutoyo) can be used.
  • the standard deviation ⁇ is preferably 0.011% or less, more preferably 0.010% or less, and further preferably 0.009% or less.
  • the lower limit value of the standard deviation ⁇ is not particularly limited, but is usually 0.003% or more, 0.005% or more, 0.006% or more, 0.007 % Or more.
  • the laminated board of this invention contains the said prepreg and metal foil.
  • it can be manufactured by using one sheet of the prepreg or stacking 2 to 20 sheets as necessary, and arranging metal foil on one side or both sides thereof, preferably by heating and laminate molding.
  • positioned metal foil may be called a metal-clad laminated board.
  • the metal of the metal foil is not particularly limited as long as it is used for electrical insulating materials, but from the viewpoint of conductivity, preferably copper, gold, silver, nickel, platinum, molybdenum, ruthenium, aluminum, tungsten, Iron, titanium, chromium, or an alloy containing at least one of these metal elements is preferable, copper and amylnium are more preferable, and copper is more preferable.
  • a known molding method of a laminated plate for an electrical insulating material and a multilayer plate can be applied, for example, using a multistage press, a multistage vacuum press, continuous molding, an autoclave molding machine, etc.
  • Molding can be performed at 100 to 250 ° C., a pressure of 0.2 to 10 MPa, and a heating time of 0.1 to 5 hours.
  • the prepreg of the present invention and the printed wiring board for inner layer can be combined and laminated to produce a multilayer board.
  • the thickness of the metal foil is preferably 0.5 to 150 ⁇ m, more preferably 1 to 100 ⁇ m, still more preferably 5 to 50 ⁇ m, and particularly preferably 5 to 30 ⁇ m.
  • a plating layer by plating metal foil.
  • the metal of the plating layer is not particularly limited as long as it can be used for plating.
  • the metal of the plating layer is preferably made of copper, gold, silver, nickel, platinum, molybdenum, ruthenium, aluminum, tungsten, iron, titanium, chromium, and an alloy containing at least one of these metal elements. Preferably it is selected.
  • a plating method For example, a well-known method, for example, the electroplating method and the electroless-plating method, can be utilized.
  • the present invention also provides a printed wiring board comprising the prepreg or the laminated board.
  • the printed wiring board of the present invention can be produced by subjecting a metal foil of a metal-clad laminate to circuit processing. For example, after forming a resist pattern on the surface of the metal foil, the unnecessary portion of the metal foil is removed by etching, the resist pattern is peeled off, a necessary through hole is formed by a drill, and a resist pattern is formed again. It can be performed by plating for conducting through holes and finally peeling off the resist pattern.
  • the above-described metal-clad laminate is further laminated on the surface of the printed wiring board thus obtained under the same conditions as described above, and further, the circuit is processed in the same manner as described above to obtain a multilayer printed wiring board. Can do. In this case, it is not always necessary to form a through hole, a via hole may be formed, and both can be formed. Such multi-layering is performed as many times as necessary.
  • the semiconductor package of the present invention is obtained by mounting a semiconductor on the printed wiring board of the present invention.
  • the semiconductor package of the present invention can be manufactured by mounting a semiconductor chip, a memory or the like at a predetermined position of the printed wiring board of the present invention.
  • thermosetting resin composition according to the present invention Using the thermosetting resin composition according to the present invention, a resin varnish, a prepreg produced using the resin varnish, and a copper-clad laminate were produced, and each evaluation was performed according to the following methods.
  • Relative permittivity (Dk)> Using a network analyzer “8722C” (manufactured by Hewlett-Packard Company), the relative dielectric constant of the double-sided copper-clad laminate at 1 GHz was measured by a triplate structure linear line resonator method.
  • the test piece size is 200 mm x 50 mm x thickness 0.8 mm.
  • a straight line (line length 200 mm) with a width of 1.0 mm is formed by etching at the center of one side of one double-sided copper-clad laminate, and the back side is A ground layer was formed by leaving copper on the entire surface.
  • For the other double-sided copper-clad laminate one side was etched entirely and the back side was a ground layer.
  • These two double-sided copper-clad laminates were stacked with the ground layer on the outside to form a strip line. The measurement was performed at 25 ° C. The smaller the relative dielectric constant, the better.
  • Metal foil adhesion (copper foil peel strength)> Metal foil adhesion was evaluated by copper foil peel strength.
  • the double-sided copper-clad laminate produced in each example was immersed in a copper etching solution “ammonium persulfate (APS)” (manufactured by ADEKA) to form a copper foil having a width of 3 mm to produce an evaluation board.
  • the peel strength of the copper foil was measured using “AG-100C” (manufactured by Shimadzu Corporation). It shows that it is excellent in metal foil adhesiveness, so that a value is large.
  • Glass transition temperature (Tg)> The double-sided copper-clad laminate produced in each example was immersed in a copper etching solution “Ammonium Persulfate (APS)” (manufactured by ADEKA Corporation) to produce a 5 mm square evaluation substrate from which the copper foil was removed.
  • APS Ammonium Persulfate
  • Q400EM (manufactured by TA Instruments) was used to observe the thermal expansion characteristics at 30 to 260 ° C. in the plane direction (Z direction) of the evaluation substrate, and the inflection point of the expansion amount was defined as the glass transition temperature.
  • Tg thermal expansion coefficient below Tg (denoted as “ ⁇ Tg”) and the thermal expansion coefficient above Tg (denoted as “> Tg”) are shown separately.
  • the copper-clad laminate is desired to be further reduced in thickness, and in conjunction with this, the prepreg constituting the copper-clad laminate is also being considered to be thinner. Since the thinned prepreg is likely to warp, it is desired that the prepreg warp during heat treatment be small. In order to reduce the warpage, it is effective that the coefficient of thermal expansion in the surface direction of the substrate is small.
  • the roughening liquid “Dosing Securigant P500J” (manufactured by Atotech Japan Co., Ltd.) is used.
  • the desmear treatment was carried out at 70 ° C. for 9 minutes using the neutralizing solution “Reduction Conditioner Securigant P500” (manufactured by Atotech Japan Co., Ltd.) at 40 ° C. for 5 minutes. Thereafter, the electroless plating solution “Prigant MSK-DK” (manufactured by Atotech Japan Co., Ltd.) at 30 ° C.
  • the difference between the plating thickness at the top of the laser hole and the plating thickness at the bottom of the laser hole is preferably within 10% of the plating thickness at the top of the laser hole. The existence ratio (%) of holes included in this range in the hole was determined.
  • Component (A) Solutions of maleimide compounds (A-1) to (A-5) produced in the following Production Examples A-1 to A-5 were used.
  • the weight average molecular weight (Mw) of the maleimide compound obtained by the said manufacture example was converted from the calibration curve using a standard polystyrene by gel permeation chromatography (GPC).
  • the calibration curve is standard polystyrene: TSK standard POLYSTYRENE (Type; A-2500, A-5000, F-1, F-2, F-4, F-10, F-20, F-40) [manufactured by Tosoh Corporation] was approximated by a cubic equation.
  • the GPC conditions are shown below.
  • Component (D) fused silica surface-treated with an aminosilane coupling agent (average particle size: 1.9 ⁇ m, specific surface area 5.8 m 2 / g)
  • Examples 1 to 15, Comparative Examples 1 and 2 Each component shown above was blended as shown in the following Tables 1 to 4 (however, in the case of a solution, the amount in terms of solid content is indicated), and methyl ethyl ketone was further added so that the nonvolatile content of the solution was 67% by mass.
  • a resin varnish was prepared. Each of the obtained resin varnishes was impregnated with IPC standard # 3313 glass cloth (0.1 mm) and dried at 160 ° C. for 4 minutes to obtain a prepreg.
  • Copper foil “3EC-VLP-18” manufactured by Mitsui Kinzoku Co., Ltd.
  • the temperature is 190 ° C. and pressure is 25 kgf / cm 2 (2.45 MPa).
  • a 18 ⁇ m thick copper foil “3EC-VLP-18” (manufactured by Mitsui Kinzoku Co., Ltd.) is stacked on both sides of one prepreg, and heated for 90 minutes at a temperature of 190 ° C. and a pressure of 25 kgf / cm 2 (2.45 MPa)
  • a double-sided copper-clad laminate having a thickness of 0.1 mm (for one prepreg) was prepared, and the dimensional variation was measured and evaluated using the double-sided copper-clad laminate according to the above-described method.
  • the resin varnish obtained by the present invention, the prepreg comprising the resin varnish, and the laminate comprising the prepreg have high heat resistance, low relative dielectric constant, high metal foil adhesion, high glass transition temperature, low heat Since it has expansibility, is excellent in formability and plating-around properties, and has little variation in dimensional change, it is useful as a printed wiring board and a semiconductor package for electronic equipment.

Abstract

Provided is a resin varnish having high heat resistance, low relative permittivity, high metal foil adhesion, high glass transition temperature, and low thermal expansion properties, excellent moldability and plating uniformity, and also minimal fluctuation in the amount of dimensional variation. Also provided are a prepreg, a laminate, a printed wiring board, and a semiconductor package obtained using the resin varnish. The resin varnish comprises (A) a maleimide compound, (B) an epoxy resin, and (C) a copolymer resin having structural units derived from an aromatic vinyl compound and structural units derived from maleic anhydride, the maleimide compound (A) being a maleimide compound having an N-substituted maleimide group, obtained by reacting (a1) a maleimide compound having at least two N-substituted maleimide groups, (a2) a monoamine compound, and (a3) a diamine compound, and being obtained by reaction in which the usage ratio [(a2) component/(a3) component] (mole ratio) of the (a2) component to the (a3) component is 0.9-5.0.

Description

樹脂ワニス、プリプレグ、積層板、プリント配線板及び半導体パッケージResin varnish, prepreg, laminate, printed wiring board and semiconductor package
 本発明は、樹脂ワニス、プリプレグ、積層板、プリント配線板及び半導体パッケージに関する。 The present invention relates to a resin varnish, a prepreg, a laminated board, a printed wiring board, and a semiconductor package.
 近年、多機能型携帯電話端末等のマザーボードにおいて、高速通信化、配線の高密度化、プリント配線板の極薄化と共に、プリント配線板の配線幅(L)と間隔(S)(以下、配線幅と間隔とを合わせて[L/S]と表記することがある)も狭小化する傾向にある。このようなL/Sの狭小化に伴い、プリント配線板を歩留り良く安定して生産することが困難となりつつある。また、従来のプリント配線板の設計では、通信障害等を考慮して、一部の層に「スキップ層」と呼ばれる配線パターンの無い層を設けている。電子機器が高機能になって配線設計量が増加してプリント配線板の層数が増加していくが、前記スキップ層を設けることにより、マザーボードの厚みがより一層増加するという問題が生じている。
 これらの問題を改善する方法として、プリント配線板に使用される絶縁材料の比誘電率を低下させることが有効である。絶縁材料の比誘電率の低下により、L/Sの制御をし易くなることから、L/Sを現状設計に近い形状で安定生産でき、スキップ層を減らすことで層数の減少が可能となる。そのため、プリント配線板に使用される絶縁材料には、比誘電率の小さい材料特性が求められる。
In recent years, in a mother board such as a multi-function mobile phone terminal, the wiring width (L) and spacing (S) of the printed wiring board (hereinafter referred to as wiring) along with higher speed communication, higher wiring density, and extremely thin printed wiring board. In some cases, the width and the interval are combined to be expressed as [L / S]). With such narrowing of L / S, it is becoming difficult to stably produce printed wiring boards with a high yield. Further, in the design of a conventional printed wiring board, a layer without a wiring pattern called a “skip layer” is provided in a part of layers in consideration of a communication failure or the like. As electronic devices become more sophisticated, the amount of wiring design increases and the number of printed wiring boards increases. However, the provision of the skip layer causes a problem that the thickness of the motherboard further increases. .
As a method for improving these problems, it is effective to lower the dielectric constant of an insulating material used for a printed wiring board. L / S can be easily controlled by reducing the relative dielectric constant of the insulating material. Therefore, L / S can be stably produced in a shape close to the current design, and the number of layers can be reduced by reducing skip layers. . Therefore, the insulating material used for the printed wiring board is required to have a material characteristic with a small relative dielectric constant.
 多機能型携帯電話端末以外でも、例えば、サーバー、ルータ、携帯基地局等に代表される通信系の機器においても、より高周波帯領域で使用されるようになってきている。また、電子部品のはんだ付けに高融点の鉛フリーはんだが利用されるようになってきたことから、これらに使用される基板の材料としては、低誘電率、高ガラス転移温度(高Tg)であり、且つ、リフロー耐熱性に優れた材料が求められる傾向にある。
 また、多機能型携帯電話端末等に使用されるマザーボードは、配線密度の増加及びパターン幅の狭小化に伴い、層間を接続する際には、小径なレーザビアによる接続が要求されている。接続信頼性の観点から、フィルドめっきが使用される事例が多く、内層銅とめっき銅の界面における接続性が非常に重要であることから、基材のレーザ加工性の向上も求められる傾向にある。
In addition to multifunctional mobile phone terminals, for example, communication devices represented by servers, routers, mobile base stations, and the like have come to be used in a higher frequency band region. In addition, since high melting point lead-free solder has come to be used for soldering electronic components, the material of the substrate used for these is low dielectric constant and high glass transition temperature (high Tg). There is a tendency to demand a material having excellent reflow heat resistance.
In addition, a mother board used for a multifunctional mobile phone terminal or the like is required to be connected by a small-diameter laser via when connecting between layers as the wiring density increases and the pattern width narrows. From the viewpoint of connection reliability, filled plating is often used, and the connectivity at the interface between inner layer copper and plated copper is very important, so there is a tendency to improve the laser workability of the base material. .
 基材のレーザ加工後に、樹脂の残渣成分を除去する工程(デスミア処理工程)が行われることが一般的である。レーザビア底面及び壁面においてデスミア処理が行われることから、デスミア処理によって基材の樹脂成分が大量に溶解した場合、樹脂の溶解によりレーザビア形状が著しく変形するおそれがあり、また、壁面の凹凸のバラつきによるめっき付き回りの不均一性が生じる等の種々の問題が起こり得る。このことから、デスミア処理によって基材の樹脂成分が溶解する量、いわゆるデスミア溶解量が適正な値となることが求められる。 It is common that a step of removing resin residual components (desmear treatment step) is performed after laser processing of the substrate. Since the desmear treatment is performed on the bottom surface and the wall surface of the laser via, when the resin component of the base material is dissolved in a large amount by the desmear treatment, the shape of the laser via may be remarkably deformed due to the dissolution of the resin. Various problems such as non-uniformity around the plating may occur. For this reason, it is required that the amount of the resin component of the base material dissolved by the desmear treatment, that is, the so-called desmear dissolution amount is an appropriate value.
 また、小径なレーザビアによる層間接続に関して、基材の寸法変化量のバラつきが小さいことも重要な特性の一つとして挙げられる。マザーボードの薄型化に伴い、基材の積層方法としては多段階積層方法を必要とし、基材には複数回の熱量及び積層時の応力が加えられることになる。そのため、基材自体の寸法変化量のバラつき(基材の熱収縮量のバラつきを意味する)が大きい場合、積層する毎に層間を接続するビアの位置ずれ不良の発生が起こり得る。このことから、基材の熱収縮量のバラつきを安定化することが求められる。 In addition, regarding the interlayer connection by the small diameter laser via, one of the important characteristics is that the variation in the dimensional change amount of the base material is small. Along with the thinning of the motherboard, a multi-layer stacking method is required as a base material stacking method, and a plurality of heat amounts and stress during stacking are applied to the base material. Therefore, when the variation in the dimensional change amount of the substrate itself (meaning the variation in the heat shrinkage amount of the substrate) is large, a misalignment of vias connecting the layers may occur each time the layers are stacked. For this reason, it is required to stabilize the variation in the amount of heat shrinkage of the substrate.
 これまで、プリント配線板に使用される絶縁材料に求められる種々の特性の中でも、比誘電率を小さくすることを目的として、比誘電率の小さいエポキシ樹脂を含有させる方法、シアネート基を導入する方法、ポリフェニレンエーテルを含有させる方法等が用いられてきた。例えば、エポキシ樹脂を含有した樹脂組成物(特許文献1参照)、ポリフェニレンエーテルとビスマレイミドとを含有した樹脂組成物(特許文献2参照)、ポリフェニレンエーテルとシアネート樹脂とを含有した樹脂組成物(特許文献3参照)、スチレン系熱可塑性エラストマー等及び/又はトリアリルシアヌレート等の少なくとも一方を含有した樹脂組成物(特許文献4参照)、ポリブタジエンを含有した樹脂組成物(特許文献5参照)、ポリフェニレンエーテル系樹脂と、多官能性マレイミド及び/又は多官能性シアネート樹脂と、液状ポリブタジエンと、を予備反応させてなる樹脂組成物(特許文献6参照)、不飽和二重結合基を有する化合物を付与又はグラフトさせたポリフェニレンエーテルと、トリアリルシアヌレート及び/又はトリアリルイソシアヌレート等とを含有した樹脂組成物(特許文献7参照)、ポリフェニレンエーテルと不飽和カルボン酸又は不飽和酸無水物との反応生成物と、多官能性マレイミド等とを含有した樹脂組成物(特許文献8参照)等が提案されている。 Up to now, among various properties required for insulating materials used for printed wiring boards, for the purpose of reducing the dielectric constant, a method of containing an epoxy resin having a low relative dielectric constant, a method of introducing a cyanate group The method of containing polyphenylene ether has been used. For example, a resin composition containing an epoxy resin (see Patent Document 1), a resin composition containing polyphenylene ether and bismaleimide (see Patent Document 2), and a resin composition containing polyphenylene ether and a cyanate resin (patent Reference 3), a resin composition containing at least one of styrene-based thermoplastic elastomer and the like and / or triallyl cyanurate (see Patent Document 4), a resin composition containing polybutadiene (see Patent Document 5), polyphenylene A resin composition obtained by pre-reacting an ether resin, a polyfunctional maleimide and / or polyfunctional cyanate resin, and liquid polybutadiene (see Patent Document 6), and a compound having an unsaturated double bond group are provided. Or grafted polyphenylene ether and triallyl cyanurate and / or Resin composition containing allyl isocyanurate and the like (see Patent Document 7), reaction product of polyphenylene ether and unsaturated carboxylic acid or unsaturated acid anhydride, and polyfunctional maleimide and the like A thing (refer patent document 8) etc. are proposed.
特開昭58-69046号公報JP 58-69046 A 特開昭56-133355号公報JP-A-56-133355 特公昭61-18937号公報Japanese Patent Publication No. 61-18937 特開昭61-286130号公報JP-A-61-286130 特開昭62-148512号公報JP-A-62-148512 特開昭58-164638号公報JP 58-164638 A 特開平2-208355号公報Japanese Patent Laid-Open No. 2-208355 特開平6-179734号公報JP-A-6-179734
 前述のように、プリント配線板に使用される絶縁材料には比誘電率を小さくすること等の種々の特性が求められる傾向にあり、特許文献1~8に記載の樹脂組成物を含有してなるプリプレグは比較的良好な比誘電率を示すが、近年の市場の厳しい要求を満たすことが出来ない事例が多くなってきた。また、高耐熱性、高金属箔接着性、高ガラス転移温度、低熱膨張性、成形性及びめっき付き回り性(レーザ加工性)及び寸法変化量のバラつきの小ささのいずれかが不十分となることも多く、さらなる改善の余地がある。特に、本発明者らの検討によると、従来の樹脂組成物を含有してなるプリプレグでは、この寸法変化量のバラつきが十分に抑制されないため、この点においてさらなる改善の余地があることが判明した。 As described above, insulating materials used for printed wiring boards tend to be required to have various characteristics such as reducing the dielectric constant, and contain the resin composition described in Patent Documents 1 to 8. However, the prepreg has a relatively good dielectric constant, but there are many cases where the severe demands of the market in recent years cannot be satisfied. In addition, any of high heat resistance, high metal foil adhesion, high glass transition temperature, low thermal expansion, moldability, plating rotability (laser processability), and small variation in dimensional variation is insufficient. In many cases, there is room for further improvement. In particular, according to the study by the present inventors, it has been found that the prepreg containing the conventional resin composition does not sufficiently suppress the variation in the amount of dimensional change. .
 そこで、本発明の課題は、高耐熱性、低比誘電率、高金属箔接着性、高ガラス転移温度、低熱膨張性を有し、且つ、成形性及びめっき付き回り性に優れ、さらに寸法変化量のバラつきが小さい樹脂ワニスを提供すること、及び、該樹脂ワニスを用いて得られる、プリプレグ、積層板、プリント配線板及び半導体パッケージを提供することにある。 Therefore, the object of the present invention is to have high heat resistance, low relative dielectric constant, high metal foil adhesiveness, high glass transition temperature, low thermal expansion, excellent formability and plating rotation, and dimensional change An object of the present invention is to provide a resin varnish having a small amount of variation, and to provide a prepreg, a laminate, a printed wiring board, and a semiconductor package obtained by using the resin varnish.
 本発明者らは、上記の課題を解決すべく鋭意研究した結果、「(A)マレイミド化合物」と、「(B)エポキシ樹脂」と、「(C)特定の構造単位を有する共重合樹脂」と、を含有してなる樹脂ワニスであって、前記(A)マレイミド化合物を後述する特定のマレイミド化合物とすることによって、上記の課題を解決し得ることを見出し、本発明を完成するに至った。本発明は、係る知見に基づいて完成したものである。 As a result of diligent research to solve the above-mentioned problems, the present inventors have found that “(A) a maleimide compound”, “(B) an epoxy resin”, and “(C) a copolymer resin having a specific structural unit”. And (A) the maleimide compound (A) is a specific maleimide compound to be described later, and found that the above-mentioned problems can be solved, and the present invention has been completed. . The present invention has been completed based on such knowledge.
 本発明は、下記[1]~[15]に関する。
[1](A)マレイミド化合物、
 (B)エポキシ樹脂、及び
 (C)芳香族ビニル化合物に由来する構造単位と無水マレイン酸に由来する構造単位とを有する共重合樹脂、
を含有してなり、
 前記(A)マレイミド化合物が、(a1)少なくとも2個のN-置換マレイミド基を有するマレイミド化合物と、(a2)モノアミン化合物と、(a3)ジアミン化合物とを反応させて得られる、N-置換マレイミド基を有するマレイミド化合物であり、
 且つ、前記(A)マレイミド化合物が、前記(a3)成分に対する前記(a2)成分の使用比率[(a2)成分/(a3)成分](モル比)を0.9~5.0として反応させて得られるものである、樹脂ワニス。
[2]前記(a2)モノアミン化合物が下記一般式(a2-1)で示され、前記(a3)ジアミン化合物が下記一般式(a3-1)で示される、上記[1]に記載の樹脂ワニス。
Figure JPOXMLDOC01-appb-C000004

(一般式(a2-1)中、RA4は、水酸基、カルボキシ基及びスルホン酸基から選択される酸性置換基を示す。RA5は、炭素数1~5のアルキル基又はハロゲン原子を示す。tは1~5の整数、uは0~4の整数であり、且つ、1≦t+u≦5を満たす。但し、tが2~5の整数の場合、複数のRA4は同一であってもよいし、異なっていてもよい。また、uが2~4の整数の場合、複数のRA5は同一であってもよいし、異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000005

(一般式(a3-1)中、XA2は、炭素数1~3の脂肪族炭化水素基又は-O-を示す。RA6及びRA7は、各々独立に、炭素数1~5のアルキル基、ハロゲン原子、水酸基、カルボキシ基又はスルホン酸基を示す。v及びwは、各々独立に、0~4の整数である。)
[3]前記(a2)成分及び前記(a3)成分が有する-NH基当量の総和と、前記(a1)成分のマレイミド基当量との関係が、下記式を満たす、上記[1]又は[2]に記載の樹脂ワニス。
   0.1≦〔マレイミド基当量〕/〔-NH基当量の総和〕≦10
[4]前記(B)成分が、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキルノボラック型エポキシ樹脂及びジシクロペンタジエン型エポキシ樹脂からなる群から選択される少なくとも1種である、上記[1]~[3]のいずれかに記載の樹脂ワニス。
[5]前記(C)成分が、下記一般式(C-i)で表される構造単位と下記式(C-ii)で表される構造単位とを有する共重合樹脂である、上記[1]~[4]のいずれかに記載の樹脂ワニス。
Figure JPOXMLDOC01-appb-C000006

(式中、RC1は、水素原子又は炭素数1~5のアルキル基であり、RC2は、炭素数1~5のアルキル基、炭素数2~5のアルケニル基、炭素数6~20のアリール基、水酸基又は(メタ)アクリロイル基である。xは、0~3の整数である。但し、xが2又は3である場合、複数のRC2は同一であってもよいし、異なっていてもよい。)
[6]前記(C)成分において、芳香族ビニル化合物に由来する構造単位と無水マレイン酸に由来する構造単位の含有比率[芳香族ビニル化合物に由来する構造単位/無水マレイン酸に由来する構造単位](モル比)が1~9である、上記[1]~[4]のいずれかに記載の樹脂ワニス。
[7]前記(A)~(C)成分の含有量が、前記(A)~(C)成分の総和100質量部に対して、(A)成分が15~65質量部、(B)成分が15~50質量部、(C)成分が10~45質量部である、上記[1]~[6]のいずれかに記載の樹脂ワニス。
[8]さらに(D)無機充填材を含有してなる、上記[1]~[7]のいずれかに記載の樹脂ワニス。
[9]さらに(E)硬化剤を含有してなる、上記[1]~[8]のいずれかに記載の樹脂ワニス。
[10]さらに(F)難燃剤を含有してなる、上記[1]~[9]のいずれかに記載の樹脂ワニス。
[11]上記[1]~[10]のいずれかに記載の樹脂ワニスを含有してなるプリプレグ。
[12]下記方法に従って求める標準偏差σが0.012%以下である、上記[11]に記載のプリプレグ。
標準偏差σの算出方法:
 プリプレグ1枚の両面に厚さ18μmの銅箔を重ね、190℃、2.45MPaにて90分間加熱加圧成形し、厚さ0.1mmの両面銅張積層板を作製する。こうして得られた両面銅張積層板について、面内に直径1.0mmの穴開けを図1に記載の1~8の場所に実施する。図1に記載のたて糸方向(1-7、2-6、3-5)及びよこ糸方向(1-3、8-4、7-5)の各3点ずつの距離を画像測定機を使用して測定し、各測定距離を初期値とする。その後、外層銅箔を除去し、乾燥機にて185℃で60分間加熱する。冷却後、初期値の測定方法と同様にして、たて糸方向(1-7、2-6、3-5)及びよこ糸方向(1-3、8-4、7-5)の各3点ずつの距離を測定する。各測定距離の初期値に対する変化率からそれらの変化率の平均値を求め、該平均値に対する標準偏差σを算出する。
[13]上記[11]又は[12]に記載のプリプレグと金属箔とを含有してなる積層板。
[14]上記[11]又は[12]に記載のプリプレグ又は上記[13]に記載の積層板を含有してなるプリント配線板。
[15]上記[14]に記載のプリント配線板に半導体素子を搭載してなる半導体パッケージ。
The present invention relates to the following [1] to [15].
[1] (A) Maleimide compound,
(B) an epoxy resin, and (C) a copolymer resin having a structural unit derived from an aromatic vinyl compound and a structural unit derived from maleic anhydride,
Containing
The (A) maleimide compound is obtained by reacting (a1) a maleimide compound having at least two N-substituted maleimide groups, (a2) a monoamine compound and (a3) a diamine compound. A maleimide compound having a group,
The (A) maleimide compound is reacted with the use ratio of the component (a2) to the component (a3) [component (a2) / component (a3)] (molar ratio) being 0.9 to 5.0. Resin varnish that can be obtained.
[2] The resin varnish according to [1], wherein the (a2) monoamine compound is represented by the following general formula (a2-1), and the (a3) diamine compound is represented by the following general formula (a3-1): .
Figure JPOXMLDOC01-appb-C000004

(In General Formula (a2-1), R A4 represents an acidic substituent selected from a hydroxyl group, a carboxy group, and a sulfonic acid group, and R A5 represents an alkyl group having 1 to 5 carbon atoms or a halogen atom. t is an integer of 1 to 5, u is an integer of 0 to 4, and 1 ≦ t + u ≦ 5, provided that when t is an integer of 2 to 5, a plurality of R A4 may be the same And when u is an integer of 2 to 4, a plurality of R A5 may be the same or different.)
Figure JPOXMLDOC01-appb-C000005

(In the general formula (a3-1), X A2 represents an aliphatic hydrocarbon group having 1 to 3 carbon atoms or —O—. R A6 and R A7 each independently represents an alkyl having 1 to 5 carbon atoms. A group, a halogen atom, a hydroxyl group, a carboxy group, or a sulfonic acid group, and v and w are each independently an integer of 0 to 4.)
[3] The above [1] or [3] wherein the relationship between the sum of —NH 2 group equivalents of the component (a2) and the component (a3) and the maleimide group equivalent of the component (a1) satisfies the following formula: 2].
0.1 ≦ [maleimide group equivalent] / [-NH 2 group equivalent] ≦ 10
[4] The component (B) is a bisphenol F type epoxy resin, a phenol novolak type epoxy resin, a cresol novolak type epoxy resin, a naphthalene type epoxy resin, an anthracene type epoxy resin, a biphenyl type epoxy resin, a biphenyl aralkyl novolak type epoxy resin, and The resin varnish according to any one of the above [1] to [3], which is at least one selected from the group consisting of dicyclopentadiene type epoxy resins.
[5] The above-mentioned [1], wherein the component (C) is a copolymer resin having a structural unit represented by the following general formula (Ci) and a structural unit represented by the following formula (C-ii) ] The resin varnish according to any one of [4] to [4].
Figure JPOXMLDOC01-appb-C000006

(Wherein R C1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and R C2 is an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkyl group having 6 to 20 carbon atoms) An aryl group, a hydroxyl group, or a (meth) acryloyl group, where x is an integer of 0 to 3, provided that when x is 2 or 3, a plurality of R C2 may be the same or different. May be.)
[6] In the component (C), the content ratio of the structural unit derived from the aromatic vinyl compound and the structural unit derived from maleic anhydride [the structural unit derived from the aromatic vinyl compound / the structural unit derived from maleic anhydride] ] (Molar ratio) is 1 to 9, the resin varnish according to any one of the above [1] to [4].
[7] The content of the components (A) to (C) is 15 to 65 parts by weight of the component (A) with respect to 100 parts by weight of the sum of the components (A) to (C). The resin varnish according to any one of the above [1] to [6], wherein is 15 to 50 parts by mass and component (C) is 10 to 45 parts by mass.
[8] The resin varnish according to any one of [1] to [7], further comprising (D) an inorganic filler.
[9] The resin varnish according to any one of [1] to [8], further comprising (E) a curing agent.
[10] The resin varnish according to any one of the above [1] to [9], further comprising (F) a flame retardant.
[11] A prepreg comprising the resin varnish according to any one of [1] to [10] above.
[12] The prepreg according to the above [11], wherein a standard deviation σ obtained according to the following method is 0.012% or less.
Standard deviation σ calculation method:
A copper foil having a thickness of 18 μm is stacked on both surfaces of one prepreg, and heat-press molding is performed at 190 ° C. and 2.45 MPa for 90 minutes, thereby producing a double-sided copper-clad laminate having a thickness of 0.1 mm. With respect to the double-sided copper clad laminate thus obtained, a hole having a diameter of 1.0 mm is formed in the plane at the locations 1 to 8 shown in FIG. Use an image measuring machine to determine the distance between each of the three points in the warp direction (1-7, 2-6, 3-5) and weft direction (1-3, 8-4, 7-5) shown in FIG. And measure each distance as the initial value. Thereafter, the outer layer copper foil is removed and heated at 185 ° C. for 60 minutes in a dryer. After cooling, in the same manner as the initial value measurement method, three points each in the warp direction (1-7, 2-6, 3-5) and the weft direction (1-3, 8-4, 7-5) Measure distance. An average value of the change rates is obtained from the change rate with respect to the initial value of each measurement distance, and a standard deviation σ with respect to the average value is calculated.
[13] A laminate comprising the prepreg according to [11] or [12] and a metal foil.
[14] A printed wiring board comprising the prepreg according to [11] or [12] or the laminate according to [13].
[15] A semiconductor package in which a semiconductor element is mounted on the printed wiring board according to [14].
 本発明により、高耐熱性、低比誘電率、高金属箔接着性、高ガラス転移温度、低熱膨張性を有し、且つ、成形性及びめっき付き回り性に優れ、さらに寸法変化量のバラつきが小さい樹脂ワニスを提供することができる。また、該樹脂ワニスを用いて得られる、プリプレグ、積層板、プリント配線板及び半導体パッケージを提供することができる。 According to the present invention, it has high heat resistance, low relative dielectric constant, high metal foil adhesion, high glass transition temperature, low thermal expansion, excellent formability and plating rotation, and variation in dimensional change. A small resin varnish can be provided. Moreover, the prepreg, laminated board, printed wiring board, and semiconductor package which are obtained using this resin varnish can be provided.
実施例における寸法変化量のバラつきの測定に用いる評価基板の模式図である。It is a schematic diagram of the evaluation board | substrate used for the measurement of the variation in the dimensional change amount in an Example.
 本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。また、数値範囲の下限値及び上限値は、それぞれ他の数値範囲の下限値及び上限値と任意に組み合わせられる。
 また、本明細書に例示する各成分及び材料は、特に断らない限り、1種を単独で使用してもよいし、2種以上を併用してもよい。本明細書において、組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
 本明細書における記載事項を任意に組み合わせた態様も本発明に含まれる。
In the numerical range described in this specification, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples. Further, the lower limit value and the upper limit value of the numerical range can be arbitrarily combined with the lower limit value and the upper limit value of other numerical ranges, respectively.
Moreover, unless otherwise indicated, each component and material illustrated in this specification may be used individually by 1 type, and may use 2 or more types together. In the present specification, the content of each component in the composition is the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition. Means.
Embodiments in which the items described in this specification are arbitrarily combined are also included in the present invention.
〔樹脂ワニス〕
 本発明の樹脂ワニスは、以下の通りである。
 (A)マレイミド化合物、
 (B)エポキシ樹脂、及び
 (C)芳香族ビニル化合物に由来する構造単位と無水マレイン酸に由来する構造単位とを有する共重合樹脂、
を含有してなり、
 前記(A)マレイミド化合物が、(a1)少なくとも2個のN-置換マレイミド基を有するマレイミド化合物と、(a2)モノアミン化合物と、(a3)ジアミン化合物とを反応させて得られる、N-置換マレイミド基を有するマレイミド化合物であり、
 且つ、前記(A)マレイミド化合物が、前記(a3)成分に対する前記(a2)成分の使用比率[(a2)成分/(a3)成分](モル比)を0.9~5.0として反応させて得られるものである。
[Resin varnish]
The resin varnish of the present invention is as follows.
(A) a maleimide compound,
(B) an epoxy resin, and (C) a copolymer resin having a structural unit derived from an aromatic vinyl compound and a structural unit derived from maleic anhydride,
Containing
The (A) maleimide compound is obtained by reacting (a1) a maleimide compound having at least two N-substituted maleimide groups, (a2) a monoamine compound and (a3) a diamine compound. A maleimide compound having a group,
The (A) maleimide compound is reacted with the use ratio of the component (a2) to the component (a3) [component (a2) / component (a3)] (molar ratio) being 0.9 to 5.0. Is obtained.
 まず、樹脂ワニスが含有する各成分について詳述する。
<(A)マレイミド化合物>
 (A)成分は以下のN-置換マレイミド基を有するマレイミド化合物(以下、マレイミド化合物(A)と称することがある)である。具体的には、(a1)少なくとも2個のN-置換マレイミド基を有するマレイミド化合物[以下、マレイミド化合物(a1)と略称する]と、(a2)モノアミン化合物[以下、モノアミン化合物(a2)と略称する]と、(a3)ジアミン化合物[以下、ジアミン化合物(a3)と略称する]とを反応させて得られる、N-置換マレイミド基を有するマレイミド化合物である。特に、該マレイミド化合物(A)は、前記(a2)成分と前記(a3)成分とを、後述する特定の使用比率で反応させたものである。
First, each component which a resin varnish contains is explained in full detail.
<(A) Maleimide compound>
Component (A) is a maleimide compound having the following N-substituted maleimide group (hereinafter sometimes referred to as maleimide compound (A)). Specifically, (a1) a maleimide compound having at least two N-substituted maleimide groups [hereinafter abbreviated as maleimide compound (a1)] and (a2) a monoamine compound [hereinafter abbreviated as monoamine compound (a2)]. And a (a3) diamine compound (hereinafter abbreviated as diamine compound (a3)), and a maleimide compound having an N-substituted maleimide group. In particular, the maleimide compound (A) is obtained by reacting the component (a2) and the component (a3) at a specific use ratio described later.
 マレイミド化合物(A)の重量平均分子量(Mw)は、有機溶剤への溶解性の観点及び機械強度の観点から、好ましくは400~3,500、より好ましくは400~2,000、さらに好ましくは800~1,500である。なお、本明細書における重量平均分子量は、溶離液としてテトラヒドロフランを用いたゲルパーミエーションクロマトグラフィー(GPC)法(標準ポリスチレン換算)で測定された値であり、より具体的には実施例に記載の方法により測定された値である。 The weight average molecular weight (Mw) of the maleimide compound (A) is preferably 400 to 3,500, more preferably 400 to 2,000, and still more preferably 800 from the viewpoints of solubility in organic solvents and mechanical strength. ~ 1,500. In addition, the weight average molecular weight in this specification is a value measured by gel permeation chromatography (GPC) method (standard polystyrene conversion) using tetrahydrofuran as an eluent, and more specifically described in Examples. It is a value measured by the method.
(マレイミド化合物(a1))
 マレイミド化合物(a1)は、少なくとも2個のN-置換マレイミド基を有するマレイミド化合物である。
 マレイミド化合物(a1)としては、複数のマレイミド基のうちの任意の2個のマレイミド基の間に脂肪族炭化水素基を有する(但し、芳香族炭化水素基は存在しない)マレイミド化合物[以下、脂肪族炭化水素基含有マレイミドと称する]であるか、又は、複数のマレイミド基のうちの任意の2個のマレイミド基の間に芳香族炭化水素基を含有するマレイミド化合物[以下、芳香族炭化水素基含有マレイミドと称する]が挙げられる。これらの中でも、高耐熱性、低比誘電率、高金属箔接着性、高ガラス転移温度、低熱膨張性、成形性及びめっき付き回り性の観点から、芳香族炭化水素基含有マレイミドが好ましい。芳香族炭化水素基含有マレイミドは、任意に選択した2つのマレイミド基の組み合わせのいずれかの間に芳香族炭化水素基を含有していればよく、また、芳香族炭化水素基と共に脂肪族炭化水素基を有していてもよい。
 マレイミド化合物(a1)としては、高耐熱性、低比誘電率、高金属箔接着性、高ガラス転移温度、低熱膨張性、成形性及びめっき付き回り性の観点から、1分子中に2個~5個のN-置換マレイミド基を有するマレイミド化合物が好ましく、1分子中に2個のN-置換マレイミド基を有するマレイミド化合物がより好ましい。また、マレイミド化合物(a1)としては、高耐熱性、低比誘電率、高金属箔接着性、高ガラス転移温度、低熱膨張性、成形性及びめっき付き回り性の観点から、下記一般式(a1-1)~(a1-4)のいずれかで表される芳香族炭化水素基含有マレイミドであることがより好ましく、下記一般式(a1-1)、(a1-2)又は(a1-4)で表される芳香族炭化水素基含有マレイミドであることがさらに好ましく、下記一般式(a1-2)で表される芳香族炭化水素基含有マレイミドであることが特に好ましい。
(Maleimide compound (a1))
The maleimide compound (a1) is a maleimide compound having at least two N-substituted maleimide groups.
As the maleimide compound (a1), a maleimide compound having an aliphatic hydrocarbon group (but no aromatic hydrocarbon group is present) between any two maleimide groups among a plurality of maleimide groups [hereinafter referred to as fat Or a maleimide compound containing an aromatic hydrocarbon group between any two maleimide groups of the plurality of maleimide groups [hereinafter referred to as aromatic hydrocarbon group] Referred to as a containing maleimide]. Among these, an aromatic hydrocarbon group-containing maleimide is preferable from the viewpoints of high heat resistance, low relative dielectric constant, high metal foil adhesion, high glass transition temperature, low thermal expansion, moldability, and plating revolving property. The aromatic hydrocarbon group-containing maleimide only needs to contain an aromatic hydrocarbon group between any combination of two maleimide groups selected arbitrarily, and is also an aliphatic hydrocarbon together with the aromatic hydrocarbon group. It may have a group.
As maleimide compound (a1), from the viewpoint of high heat resistance, low relative dielectric constant, high metal foil adhesiveness, high glass transition temperature, low thermal expansion, moldability, and plating rotation, two or more per molecule Maleimide compounds having 5 N-substituted maleimide groups are preferred, and maleimide compounds having 2 N-substituted maleimide groups in one molecule are more preferred. Moreover, as a maleimide compound (a1), following general formula (a1) from a viewpoint of high heat resistance, a low dielectric constant, high metal foil adhesiveness, high glass transition temperature, low thermal expansion property, moldability, and plating revolving property. -1) to (a1-4), and more preferably an aromatic hydrocarbon group-containing maleimide represented by any of the following general formulas (a1-1), (a1-2) or (a1-4) The aromatic hydrocarbon group-containing maleimide represented by general formula (a1-2) is more preferred, and the aromatic hydrocarbon group-containing maleimide represented by the following general formula (a1-2) is particularly preferred.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 上記式中、RA1~RA3は、各々独立に、炭素数1~5の脂肪族炭化水素基を示す。XA1は、炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基、-O-、-C(=O)-、-S-、-S-S-又はスルホニル基を示す。p、q及びrは、各々独立に、0~4の整数である。sは、0~10の整数である。
 RA1~RA3が示す炭素数1~5の脂肪族炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基等が挙げられる。該脂肪族炭化水素基としては、高耐熱性、低比誘電率、高金属箔接着性、高ガラス転移温度、低熱膨張性、成形性及びめっき付き回り性の観点から、好ましくは炭素数1~3の脂肪族炭化水素基であり、より好ましくはメチル基、エチル基である。
In the above formula, R A1 to R A3 each independently represents an aliphatic hydrocarbon group having 1 to 5 carbon atoms. X A1 represents an alkylene group having 1 to 5 carbon atoms, an alkylidene group having 2 to 5 carbon atoms, —O—, —C (═O) —, —S—, —SS— or a sulfonyl group. p, q, and r are each independently an integer of 0-4. s is an integer of 0 to 10.
Examples of the aliphatic hydrocarbon group having 1 to 5 carbon atoms represented by R A1 to R A3 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, and n-pentyl group. The aliphatic hydrocarbon group is preferably 1 to 1 carbon atoms from the viewpoints of high heat resistance, low relative dielectric constant, high metal foil adhesion, high glass transition temperature, low thermal expansion, moldability, and plating swirlability. 3 is an aliphatic hydrocarbon group, more preferably a methyl group or an ethyl group.
 XA1が示す炭素数1~5のアルキレン基としては、例えば、メチレン基、1,2-ジメチレン基、1,3-トリメチレン基、1,4-テトラメチレン基、1,5-ペンタメチレン基等が挙げられる。該アルキレン基としては、高耐熱性、低比誘電率、高金属箔接着性、高ガラス転移温度、低熱膨張性、成形性及びめっき付き回り性の観点から、好ましくは炭素数1~3のアルキレン基であり、より好ましくはメチレン基である。
 XA1が示す炭素数2~5のアルキリデン基としては、例えば、エチリデン基、プロピリデン基、イソプロピリデン基、ブチリデン基、イソブチリデン基、ペンチリデン基、イソペンチリデン基等が挙げられる。これらの中でも、高耐熱性、低比誘電率、高金属箔接着性、高ガラス転移温度、低熱膨張性、成形性及びめっき付き回り性の観点から、イソプロピリデン基が好ましい。
 XA1としては、上記選択肢の中でも、炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基が好ましい。より好ましいものは前述の通りである。
 p、q及びrは、各々独立に、0~4の整数であり、高耐熱性、低比誘電率、高金属箔接着性、高ガラス転移温度、低熱膨張性、成形性及びめっき付き回り性の観点から、いずれも、好ましくは0~2の整数、より好ましくは0又は1、さらに好ましくは0である。
 sは、0~10の整数であり、入手容易性の観点から、好ましくは0~5、より好ましくは0~3である。特に、一般式(a1-3)で表される芳香族炭化水素基含有マレイミドは、sが0~3の混合物であることが好ましい。
Examples of the alkylene group having 1 to 5 carbon atoms represented by X A1 include a methylene group, a 1,2-dimethylene group, a 1,3-trimethylene group, a 1,4-tetramethylene group, and a 1,5-pentamethylene group. Is mentioned. The alkylene group is preferably an alkylene group having 1 to 3 carbon atoms from the viewpoints of high heat resistance, low relative dielectric constant, high metal foil adhesion, high glass transition temperature, low thermal expansion, moldability, and plating rotation. Group, more preferably a methylene group.
Examples of the alkylidene group having 2 to 5 carbon atoms represented by X A1 include an ethylidene group, a propylidene group, an isopropylidene group, a butylidene group, an isobutylidene group, a pentylidene group, and an isopentylidene group. Among these, an isopropylidene group is preferable from the viewpoints of high heat resistance, low relative dielectric constant, high metal foil adhesiveness, high glass transition temperature, low thermal expansion, moldability, and plating rotation.
X A1 is preferably an alkylene group having 1 to 5 carbon atoms or an alkylidene group having 2 to 5 carbon atoms among the above options. More preferred are as described above.
p, q, and r are each independently an integer of 0 to 4, and have high heat resistance, low relative dielectric constant, high metal foil adhesion, high glass transition temperature, low thermal expansion, formability, and roundness with plating. In view of the above, each is preferably an integer of 0 to 2, more preferably 0 or 1, and still more preferably 0.
s is an integer of 0 to 10, and is preferably 0 to 5, more preferably 0 to 3, from the viewpoint of availability. In particular, the aromatic hydrocarbon group-containing maleimide represented by the general formula (a1-3) is preferably a mixture in which s is 0 to 3.
 マレイミド化合物(a1)としては、具体的には、例えば、N,N’-エチレンビスマレイミド、N,N’-ヘキサメチレンビスマレイミド、ビス(4-マレイミドシクロヘキシル)メタン、1,4-ビス(マレイミドメチル)シクロヘキサン等の脂肪族炭化水素基含有マレイミド;N,N’-(1,3-フェニレン)ビスマレイミド、N,N’-[1,3-(2-メチルフェニレン)]ビスマレイミド、N,N’-[1,3-(4-メチルフェニレン)]ビスマレイミド、N,N’-(1,4-フェニレン)ビスマレイミド、ビス(4-マレイミドフェニル)メタン、ビス(3-メチル-4-マレイミドフェニル)メタン、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド、ビス(4-マレイミドフェニル)エーテル、ビス(4-マレイミドフェニル)スルホン、ビス(4-マレイミドフェニル)スルフィド、ビス(4-マレイミドフェニル)ケトン、1,4-ビス(4-マレイミドフェニル)シクロヘキサン、1,4-ビス(マレイミドメチル)シクロヘキサン、1,3-ビス(4-マレイミドフェノキシ)ベンゼン、1,3-ビス(3-マレイミドフェノキシ)ベンゼン、ビス[4-(3-マレイミドフェノキシ)フェニル]メタン、ビス[4-(4-マレイミドフェノキシ)フェニル]メタン、1,1-ビス[4-(3-マレイミドフェノキシ)フェニル]エタン、1,1-ビス[4-(4-マレイミドフェノキシ)フェニル]エタン、1,2-ビス[4-(3-マレイミドフェノキシ)フェニル]エタン、1,2-ビス[4-(4-マレイミドフェノキシ)フェニル]エタン、2,2-ビス[4-(3-マレイミドフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-マレイミドフェノキシ)フェニル]ブタン、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]ブタン、2,2-ビス[4-(3-マレイミドフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、4,4’-ビス(3-マレイミドフェノキシ)ビフェニル、4,4’-ビス(4-マレイミドフェノキシ)ビフェニル、ビス[4-(3-マレイミドフェノキシ)フェニル]ケトン、ビス[4-(4-マレイミドフェノキシ)フェニル]ケトン、ビス(4-マレイミドフェニル)ジスルフィド、ビス[4-(3-マレイミドフェノキシ)フェニル]スルフィド、ビス[4-(4-マレイミドフェノキシ)フェニル]スルフィド、ビス[4-(3-マレイミドフェノキシ)フェニル]スルホキシド、ビス[4-(4-マレイミドフェノキシ)フェニル]スルホキシド、ビス[4-(3-マレイミドフェノキシ)フェニル]スルホン、ビス[4-(4-マレイミドフェノキシ)フェニル]スルホン、ビス[4-(3-マレイミドフェノキシ)フェニル]エーテル、ビス[4-(4-マレイミドフェノキシ)フェニル]エーテル、1,4-ビス[4-(4-マレイミドフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-マレイミドフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,4-ビス[4-(3-マレイミドフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(3-マレイミドフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,4-ビス[4-(4-マレイミドフェノキシ)-3,5-ジメチル-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-マレイミドフェノキシ)-3,5-ジメチル-α,α-ジメチルベンジル]ベンゼン、1,4-ビス[4-(3-マレイミドフェノキシ)-3,5-ジメチル-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(3-マレイミドフェノキシ)-3,5-ジメチル-α,α-ジメチルベンジル]ベンゼン、ポリフェニルメタンマレイミド等の芳香族炭化水素基含有マレイミドが挙げられる。 Specific examples of the maleimide compound (a1) include N, N′-ethylene bismaleimide, N, N′-hexamethylene bismaleimide, bis (4-maleimidocyclohexyl) methane, and 1,4-bis (maleimide). Methyl) cyclohexane or other aliphatic hydrocarbon group-containing maleimide; N, N ′-(1,3-phenylene) bismaleimide, N, N ′-[1,3- (2-methylphenylene)] bismaleimide, N, N ′-[1,3- (4-methylphenylene)] bismaleimide, N, N ′-(1,4-phenylene) bismaleimide, bis (4-maleimidophenyl) methane, bis (3-methyl-4- Maleimidophenyl) methane, 3,3′-dimethyl-5,5′-diethyl-4,4′-diphenylmethane bismaleimide, bis (4-maleimide) Phenyl) ether, bis (4-maleimidophenyl) sulfone, bis (4-maleimidophenyl) sulfide, bis (4-maleimidophenyl) ketone, 1,4-bis (4-maleimidophenyl) cyclohexane, 1,4-bis ( Maleimidomethyl) cyclohexane, 1,3-bis (4-maleimidophenoxy) benzene, 1,3-bis (3-maleimidophenoxy) benzene, bis [4- (3-maleimidophenoxy) phenyl] methane, bis [4- ( 4-maleimidophenoxy) phenyl] methane, 1,1-bis [4- (3-maleimidophenoxy) phenyl] ethane, 1,1-bis [4- (4-maleimidophenoxy) phenyl] ethane, 1,2-bis [4- (3-Maleimidophenoxy) phenyl] ethane, 1,2-bis [4- ( -Maleimidophenoxy) phenyl] ethane, 2,2-bis [4- (3-maleimidophenoxy) phenyl] propane, 2,2-bis [4- (4-maleimidophenoxy) phenyl] propane, 2,2-bis [ 4- (3-maleimidophenoxy) phenyl] butane, 2,2-bis [4- (4-maleimidophenoxy) phenyl] butane, 2,2-bis [4- (3-maleimidophenoxy) phenyl] -1,1 , 1,3,3,3-hexafluoropropane, 2,2-bis [4- (4-maleimidophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane, 4,4 ′ -Bis (3-maleimidophenoxy) biphenyl, 4,4'-bis (4-maleimidophenoxy) biphenyl, bis [4- (3-maleimidophenoxy) pheny Ru] ketone, bis [4- (4-maleimidophenoxy) phenyl] ketone, bis (4-maleimidophenyl) disulfide, bis [4- (3-maleimidophenoxy) phenyl] sulfide, bis [4- (4-maleimidophenoxy) ) Phenyl] sulfide, bis [4- (3-maleimidophenoxy) phenyl] sulfoxide, bis [4- (4-maleimidophenoxy) phenyl] sulfoxide, bis [4- (3-maleimidophenoxy) phenyl] sulfone, bis [4 -(4-maleimidophenoxy) phenyl] sulfone, bis [4- (3-maleimidophenoxy) phenyl] ether, bis [4- (4-maleimidophenoxy) phenyl] ether, 1,4-bis [4- (4- Maleimidophenoxy) -α, α-dimethylbenzyl] benze 1,3-bis [4- (4-maleimidophenoxy) -α, α-dimethylbenzyl] benzene, 1,4-bis [4- (3-maleimidophenoxy) -α, α-dimethylbenzyl] benzene, 1,3-bis [4- (3-maleimidophenoxy) -α, α-dimethylbenzyl] benzene, 1,4-bis [4- (4-maleimidophenoxy) -3,5-dimethyl-α, α-dimethyl Benzyl] benzene, 1,3-bis [4- (4-maleimidophenoxy) -3,5-dimethyl-α, α-dimethylbenzyl] benzene, 1,4-bis [4- (3-maleimidophenoxy) -3 , 5-dimethyl-α, α-dimethylbenzyl] benzene, 1,3-bis [4- (3-maleimidophenoxy) -3,5-dimethyl-α, α-dimethylbenzyl] benzene, polyphenyl An aromatic hydrocarbon group-containing maleimide such as methanemaleimide may be mentioned.
 これらの中でも、反応率が高く、より高耐熱性化できるという観点からは、ビス(4-マレイミドフェニル)メタン、ビス(4-マレイミドフェニル)スルホン、ビス(4-マレイミドフェニル)スルフィド、ビス(4-マレイミドフェニル)ジスルフィド、N,N’-(1,3-フェニレン)ビスマレイミド、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパンが好ましく、安価であるという観点からは、ビス(4-マレイミドフェニル)メタン、N,N’-(1,3-フェニレン)ビスマレイミドが好ましく、有機溶媒への溶解性の観点からは、ビス(4-マレイミドフェニル)メタンが特に好ましい。
 マレイミド化合物(a1)は1種を単独で使用してもよいし、2種以上を併用してもよい。
Among these, from the viewpoint of high reaction rate and higher heat resistance, bis (4-maleimidophenyl) methane, bis (4-maleimidophenyl) sulfone, bis (4-maleimidophenyl) sulfide, bis (4 -Maleimidophenyl) disulfide, N, N ′-(1,3-phenylene) bismaleimide, 2,2-bis [4- (4-maleimidophenoxy) phenyl] propane are preferred, and bis (4-Maleimidophenyl) methane and N, N ′-(1,3-phenylene) bismaleimide are preferred, and bis (4-maleimidophenyl) methane is particularly preferred from the viewpoint of solubility in organic solvents.
As the maleimide compound (a1), one type may be used alone, or two or more types may be used in combination.
(モノアミン化合物(a2))
 モノアミン化合物(a2)は、アミノ基を1つ有する化合物であれば特に制限はないが、高耐熱性、低比誘電率、高金属箔接着性、高ガラス転移温度、低熱膨張性、成形性、めっき付き回り性及び寸法変化量のバラつきの観点から、酸性置換基を有するモノアミン化合物が好ましく、下記一般式(a2-1)で示されるモノアミン化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000008
(Monoamine compound (a2))
The monoamine compound (a2) is not particularly limited as long as it is a compound having one amino group, but has high heat resistance, low relative dielectric constant, high metal foil adhesion, high glass transition temperature, low thermal expansion, moldability, From the viewpoints of plating circulation and dimensional variation, monoamine compounds having an acidic substituent are preferred, and monoamine compounds represented by the following general formula (a2-1) are preferred.
Figure JPOXMLDOC01-appb-C000008
 上記一般式(a2-1)中、RA4は、水酸基、カルボキシ基及びスルホン酸基から選択される酸性置換基を示す。RA5は、炭素数1~5のアルキル基又はハロゲン原子を示す。tは1~5の整数、uは0~4の整数であり、且つ、1≦t+u≦5を満たす。但し、tが2~5の整数の場合、複数のRA4は同一であってもよいし、異なっていてもよい。また、uが2~4の整数の場合、複数のRA5は同一であってもよいし、異なっていてもよい。
 RA4が示す酸性置換基としては、溶解性及び反応性の観点から、好ましくは水酸基、カルボキシ基であり、耐熱性も考慮すると、より好ましくは水酸基である。
 tは1~5の整数であり、高耐熱性、低比誘電率、高金属箔接着性、高ガラス転移温度、低熱膨張性、成形性、めっき付き回り性及び寸法変化量のバラつきの観点から、好ましくは1~3の整数、より好ましくは1又は2、さらに好ましくは1である。
 RA5が示す炭素数1~5のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基等が挙げられる。該アルキル基としては、好ましくは炭素数1~3のアルキル基である。
 RA5が示すハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 uは0~4の整数であり、高耐熱性、低比誘電率、高金属箔接着性、高ガラス転移温度、低熱膨張性、成形性、めっき付き回り性及び寸法変化量のバラつきの観点から、好ましくは0~3の整数、より好ましくは0~2の整数、さらに好ましくは0又は1、特に好ましくは0である。
 モノアミン化合物(a2)としては、高耐熱性、低比誘電率、高金属箔接着性、高ガラス転移温度、低熱膨張性、成形性及、めっき付き回り性及び寸法変化量のバラつきの観点から、より好ましくは下記一般式(a2-2)又は(a2-3)で表されるモノアミン化合物であり、さらに好ましくは下記一般式(a2-2)で表されるモノアミン化合物である。但し、一般式(a2-2)及び(a2-3)中のRA4、RA5及びuは、一般式(a2-1)中のものと同じであり、好ましいものも同じである。
In the general formula (a2-1), R A4 represents an acidic substituent selected from a hydroxyl group, a carboxy group, and a sulfonic acid group. R A5 represents an alkyl group having 1 to 5 carbon atoms or a halogen atom. t is an integer of 1 to 5, u is an integer of 0 to 4, and 1 ≦ t + u ≦ 5 is satisfied. However, when t is an integer of 2 to 5, a plurality of R A4 may be the same or different. When u is an integer of 2 to 4, a plurality of R A5 may be the same or different.
The acidic substituent represented by R A4 is preferably a hydroxyl group or a carboxy group from the viewpoint of solubility and reactivity, and more preferably a hydroxyl group in consideration of heat resistance.
t is an integer of 1 to 5, from the viewpoint of high heat resistance, low relative dielectric constant, high metal foil adhesion, high glass transition temperature, low thermal expansion, formability, roundness with plating, and dimensional variation. , Preferably an integer of 1 to 3, more preferably 1 or 2, and still more preferably 1.
Examples of the alkyl group having 1 to 5 carbon atoms represented by R A5 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, and an n-pentyl group. Can be mentioned. The alkyl group is preferably an alkyl group having 1 to 3 carbon atoms.
Examples of the halogen atom represented by R A5 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
u is an integer of 0 to 4, from the viewpoint of high heat resistance, low relative dielectric constant, high metal foil adhesion, high glass transition temperature, low thermal expansion, formability, roundness with plating, and dimensional variation. , Preferably an integer of 0 to 3, more preferably an integer of 0 to 2, even more preferably 0 or 1, and particularly preferably 0.
As the monoamine compound (a2), from the viewpoint of high heat resistance, low relative dielectric constant, high metal foil adhesiveness, high glass transition temperature, low thermal expansion, moldability, plating rotation and dimensional variation. A monoamine compound represented by the following general formula (a2-2) or (a2-3) is more preferable, and a monoamine compound represented by the following general formula (a2-2) is more preferable. However, R A4 , R A5 and u in the general formulas (a2-2) and (a2-3) are the same as those in the general formula (a2-1), and preferred ones are also the same.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 モノアミン化合物(a2)としては、例えば、o-アミノフェノール、m-アミノフェノール、p-アミノフェノール、o-アミノ安息香酸、m-アミノ安息香酸、p-アミノ安息香酸、o-アミノベンゼンスルホン酸、m-アミノベンゼンスルホン酸、p-アミノベンゼンスルホン酸、3,5-ジヒドロキシアニリン、3,5-ジカルボキシアニリン等の、酸性置換基を有するモノアミン化合物が挙げられる。
 これらの中でも、溶解性及び反応性の観点からは、m-アミノフェノール、p-アミノフェノール、p-アミノ安息香酸、3,5-ジヒドロキシアニリンが好ましく、耐熱性の観点からは、o-アミノフェノール、m-アミノフェノール、p-アミノフェノールが好ましく、誘電特性、低熱膨張性及び製造コストも考慮すると、p-アミノフェノールがより好ましい。
 モノアミン化合物(a2)は1種を単独で使用してもよいし、2種以上を併用してもよい。
Examples of the monoamine compound (a2) include o-aminophenol, m-aminophenol, p-aminophenol, o-aminobenzoic acid, m-aminobenzoic acid, p-aminobenzoic acid, o-aminobenzenesulfonic acid, Examples thereof include monoamine compounds having an acidic substituent, such as m-aminobenzenesulfonic acid, p-aminobenzenesulfonic acid, 3,5-dihydroxyaniline, and 3,5-dicarboxyaniline.
Among these, m-aminophenol, p-aminophenol, p-aminobenzoic acid and 3,5-dihydroxyaniline are preferable from the viewpoint of solubility and reactivity, and o-aminophenol from the viewpoint of heat resistance. M-aminophenol and p-aminophenol are preferable, and p-aminophenol is more preferable in consideration of dielectric properties, low thermal expansibility and production cost.
A monoamine compound (a2) may be used individually by 1 type, and may use 2 or more types together.
(ジアミン化合物(a3))
 ジアミン化合物(a3)は、アミノ基を2つ有する化合物であれば特に制限はないが、高耐熱性、低比誘電率、高金属箔接着性、高ガラス転移温度、低熱膨張性、成形性、めっき付き回り性及び寸法変化量のバラつきの観点から、下記一般式(a3-1)で示されるジアミン化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000010

(式中、XA2は、炭素数1~3の脂肪族炭化水素基又は-O-を示す。RA6及びRA7は、各々独立に、炭素数1~5のアルキル基、ハロゲン原子、水酸基、カルボキシ基又はスルホン酸基を示す。v及びwは、各々独立に、0~4の整数である。)
(Diamine compound (a3))
The diamine compound (a3) is not particularly limited as long as it is a compound having two amino groups, but has high heat resistance, low relative dielectric constant, high metal foil adhesion, high glass transition temperature, low thermal expansion, moldability, From the viewpoint of variation in plating rotability and dimensional change, a diamine compound represented by the following general formula (a3-1) is preferable.
Figure JPOXMLDOC01-appb-C000010

(Wherein X A2 represents an aliphatic hydrocarbon group having 1 to 3 carbon atoms or —O—. R A6 and R A7 each independently represents an alkyl group having 1 to 5 carbon atoms, a halogen atom, or a hydroxyl group. Represents a carboxy group or a sulfonic acid group, and v and w are each independently an integer of 0 to 4.)
 XA2が示す炭素数1~3の脂肪族炭化水素基としては、例えば、メチレン基、エチレン基、プロピレン基、プロピリデン基等が挙げられる。
 XA2としては、炭素数1~3の脂肪族炭化水素基が好ましく、メチレン基がより好ましい。
 RA6及びRA7が示す炭素数1~5のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基等が挙げられる。該アルキル基としては、好ましくは炭素数1~3のアルキル基である。
 v及びwは、好ましくは0~2の整数、より好ましくは0又は1、さらに好ましくは0である。
Examples of the aliphatic hydrocarbon group of X A2 carbon number of 1 to 3 shown, for example, methylene group, ethylene group, propylene group, propylidene group, and the like.
X A2 is preferably an aliphatic hydrocarbon group having 1 to 3 carbon atoms, and more preferably a methylene group.
Examples of the alkyl group having 1 to 5 carbon atoms represented by R A6 and R A7 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, and an n-pentyl group. Groups and the like. The alkyl group is preferably an alkyl group having 1 to 3 carbon atoms.
v and w are preferably integers of 0 to 2, more preferably 0 or 1, and still more preferably 0.
 ジアミン化合物(a3)としては、下記一般式(a3-1’)で示されるジアミン化合物が好ましい。
Figure JPOXMLDOC01-appb-C000011

(式中、XA2、RA6、RA7、v及びwは、前記一般式(a3-1)中のものと同じであり、好ましい態様も同じである。)
The diamine compound (a3) is preferably a diamine compound represented by the following general formula (a3-1 ′).
Figure JPOXMLDOC01-appb-C000011

(In the formula, X A2 , R A6 , R A7 , v and w are the same as those in the general formula (a3-1), and preferred embodiments are also the same.)
 ジアミン化合物(a3)としては、具体的には、例えば、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエタン、4,4’-ジアミノジフェニルプロパン、2,2’-ビス(4,4’-ジアミノジフェニル)プロパン、3,3’-ジメチル-4,4’-ジアミノジフェニルメタン、3,3’-ジエチル-4,4’-ジアミノジフェニルメタン、3,3’-ジメチル-4,4’-ジアミノジフェニルエタン、3,3’-ジエチル-4,4’-ジアミノジフェニルエタン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルチオエーテル、3,3’-ジヒドロキシ-4,4’-ジアミノジフェニルメタン、2,2’,6,6’-テトラメチル-4,4’-ジアミノジフェニルメタン、3,3’-ジクロロ-4,4’-ジアミノジフェニルメタン、3,3’-ジブロモ-4,4’-ジアミノジフェニルメタン、2,2’,6,6’-テトラクロロ-4,4’-ジアミノジフェニルメタン、2,2’,6,6’-テトラブロモ-4,4’-ジアミノジフェニルメタン等が挙げられる。これらの中でも、安価であるという観点から、4,4’-ジアミノジフェニルメタン、3,3’-ジエチル-4,4’-ジアミノジフェニルメタンが好ましく、溶剤への溶解性の観点から、4,4’-ジアミノジフェニルメタンがより好ましい。 Specific examples of the diamine compound (a3) include 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylethane, 4,4′-diaminodiphenylpropane, 2,2′-bis (4, 4'-diaminodiphenyl) propane, 3,3'-dimethyl-4,4'-diaminodiphenylmethane, 3,3'-diethyl-4,4'-diaminodiphenylmethane, 3,3'-dimethyl-4,4'- Diaminodiphenylethane, 3,3'-diethyl-4,4'-diaminodiphenylethane, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylthioether, 3,3'-dihydroxy-4,4'-diamino Diphenylmethane, 2,2 ', 6,6'-tetramethyl-4,4'-diaminodiphenylmethane, 3,3'-di Loro-4,4′-diaminodiphenylmethane, 3,3′-dibromo-4,4′-diaminodiphenylmethane, 2,2 ′, 6,6′-tetrachloro-4,4′-diaminodiphenylmethane, 2,2 ′ , 6,6′-tetrabromo-4,4′-diaminodiphenylmethane and the like. Among these, 4,4′-diaminodiphenylmethane and 3,3′-diethyl-4,4′-diaminodiphenylmethane are preferable from the viewpoint of inexpensiveness, and 4,4′- from the viewpoint of solubility in a solvent. Diaminodiphenylmethane is more preferred.
 マレイミド化合物(a1)、モノアミン化合物(a2)及びジアミン化合物(a3)の反応は、好ましくは有機溶媒の存在下、反応温度70~200℃で0.1~10時間反応させることにより実施することが好ましい。
 反応温度は、より好ましくは70~160℃、さらに好ましくは70~130℃、特に好ましくは80~120℃である。
 反応時間は、より好ましくは1~6時間、さらに好ましくは1~4時間である。
The reaction of the maleimide compound (a1), monoamine compound (a2) and diamine compound (a3) is preferably carried out by reacting at a reaction temperature of 70 to 200 ° C. for 0.1 to 10 hours in the presence of an organic solvent. preferable.
The reaction temperature is more preferably 70 to 160 ° C., further preferably 70 to 130 ° C., and particularly preferably 80 to 120 ° C.
The reaction time is more preferably 1 to 6 hours, still more preferably 1 to 4 hours.
(マレイミド化合物(a1)、モノアミン化合物(a2)及びジアミン化合物(a3)の使用量)
 また、マレイミド化合物(a1)、モノアミン化合物(a2)及びジアミン化合物(a3)の反応において、三者の使用量は、モノアミン化合物(a2)及びジアミン化合物(a3)が有する-NH基当量(第1級アミノ基当量)の総和と、マレイミド化合物(a1)のマレイミド基当量との関係が、下記式を満たすことが好ましい。
  0.1≦〔マレイミド基当量〕/〔-NH基当量の総和〕≦10
 このように、〔マレイミド基当量〕/〔-NH基当量の総和〕を0.1以上とすることにより、ゲル化及び耐熱性が低下することがなく、また、10以下とすることにより、有機溶剤への溶解性、金属箔接着性及び耐熱性が低下することがないため、好ましい。
 同様の観点から、より好ましくは、
  1≦〔マレイミド基当量〕/〔-NH基当量の総和〕≦9 を満たし、より好ましくは、
  2≦〔マレイミド基当量〕/〔-NH基当量の総和〕≦8 を満たす。
(Use amount of maleimide compound (a1), monoamine compound (a2) and diamine compound (a3))
Further, in the reaction of the maleimide compound (a1), the monoamine compound (a2) and the diamine compound (a3), the three amounts used are equivalent to the —NH 2 group equivalent (first order) of the monoamine compound (a2) and the diamine compound (a3). The relationship between the sum of the primary amino group equivalents) and the maleimide group equivalents of the maleimide compound (a1) preferably satisfies the following formula.
0.1 ≦ [maleimide group equivalent] / [-NH 2 group equivalent] ≦ 10
Thus, by setting [maleimide group equivalent] / [-NH 2 group equivalent] to 0.1 or more, gelation and heat resistance do not decrease, and by setting it to 10 or less, This is preferable because the solubility in an organic solvent, metal foil adhesion, and heat resistance do not decrease.
From the same viewpoint, more preferably,
1 ≦ [maleimide group equivalent] / [total sum of —NH 2 group equivalents] ≦ 9, more preferably
2 ≦ [maleimide group equivalent] / [total of —NH 2 group equivalent] ≦ 8.
(モノアミン化合物(a2)とジアミン化合物(a3)の使用比率)
 本発明では、前記(A)マレイミド化合物が、ジアミン化合物(a3)に対するモノアミン化合物(a2)の使用比率[(a2)成分/(a3)成分](モル比)を0.9~5.0として反応させて得られるものであることよって、寸法変化量のバラつきが顕著に低減される。当該効果が発現するメカニズムは明確にはなっていない。該使用比率が0.9未満であっても、5.0超であっても、寸法変化量のバラつきが大きくなる。同様の観点から、該使用比率は好ましくは1.0~4.5、より好ましくは1.0~4.0であり、1.5~3.5であってもよいし、1.5~3.0であってもよいし、1.5~2.5であってもよい。
 上記のような使用比率で反応させることで、(A)成分におけるモノアミン化合物(a2)に由来する構造単位とジアミン化合物(a3)に由来する構造単位との比率(モル比)が0.9~5.0となり、好ましくは1.0~4.5、より好ましくは1.0~4.0となり、1.5~3.5にすることもできるし、1.5~3.0にすることもできる。
(Use ratio of monoamine compound (a2) and diamine compound (a3))
In the present invention, the (A) maleimide compound has a use ratio [(a2) component / (a3) component] (molar ratio) of the monoamine compound (a2) to the diamine compound (a3) of 0.9 to 5.0. By being obtained by the reaction, the variation in the dimensional change is remarkably reduced. The mechanism by which this effect appears is not clear. Even if the use ratio is less than 0.9 or more than 5.0, the dimensional variation varies greatly. From the same viewpoint, the use ratio is preferably 1.0 to 4.5, more preferably 1.0 to 4.0, and may be 1.5 to 3.5. It may be 3.0 or 1.5 to 2.5.
By reacting at the use ratio as described above, the ratio (molar ratio) between the structural unit derived from the monoamine compound (a2) and the structural unit derived from the diamine compound (a3) in the component (A) is 0.9 to 5.0, preferably 1.0 to 4.5, more preferably 1.0 to 4.0, and can be 1.5 to 3.5, or 1.5 to 3.0. You can also.
(有機溶媒)
 マレイミド化合物(a1)、モノアミン化合物(a2)及びジアミン化合物(a3)の反応は、有機溶媒中で行うことが好ましい。
 有機溶媒としては、当該反応に悪影響を及ぼさない限り特に制限はない。例えば、エタノール、プロパノール、ブタノール、メチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル等のアルコール系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;テトラヒドロフラン等のエーテル系溶媒;トルエン、キシレン、メシチレン等の芳香族系溶媒;ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミド系溶媒を包含する窒素原子含有溶媒;ジメチルスルホキシド等のスルホキシド系溶媒を包含する硫黄原子含有溶媒;酢酸エチル、γ-ブチロラクトン等のエステル系溶媒などが挙げられる。これらの中でも、溶解性の観点から、アルコール系溶媒、ケトン系溶媒、エステル系溶媒が好ましく、低毒性であるという観点から、シクロヘキサノン、プロピレングリコールモノメチルエーテル、メチルセロソルブ、γ-ブチロラクトンがより好ましく、揮発性が高く、プリプレグの製造時に残溶剤として残り難いことも考慮すると、シクロヘキサノン、プロピレングリコールモノメチルエーテル、ジメチルアセトアミドがさらに好ましく、ジメチルアセトアミドが特に好ましい。
 有機溶媒は、1種を単独で使用してもよいし、2種以上を併用してもよい。
 有機溶媒の使用量に特に制限はないが、溶解性及び反応効率の観点から、マレイミド化合物(a1)、モノアミン化合物(a2)及びジアミン化合物(a3)の合計100質量部に対して、好ましくは25~1,000質量部、より好ましくは40~700質量部、さらに好ましくは60~250質量部となるようにすればよい。マレイミド化合物(a1)、モノアミン化合物(a2)及びジアミン化合物(a3)の合計100質量部に対して25質量部以上とすることによって溶解性を確保し易くなる傾向にあり、1,000質量部以下とすることによって、反応効率の大幅な低下を抑制し易くなる傾向にある。
 該有機溶媒は、本発明の樹脂ワニス中に含まれていてもよい。
(Organic solvent)
The reaction of the maleimide compound (a1), monoamine compound (a2) and diamine compound (a3) is preferably performed in an organic solvent.
The organic solvent is not particularly limited as long as it does not adversely affect the reaction. For example, alcohol solvents such as ethanol, propanol, butanol, methyl cellosolve, butyl cellosolve, propylene glycol monomethyl ether; ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone; ether solvents such as tetrahydrofuran; toluene, xylene, mesitylene Aromatic solvents such as dimethylformamide, dimethylacetamide, nitrogen atom-containing solvents including amide solvents such as N-methylpyrrolidone; sulfur atom-containing solvents including sulfoxide solvents such as dimethylsulfoxide; ethyl acetate, γ- Examples thereof include ester solvents such as butyrolactone. Among these, alcohol solvents, ketone solvents, and ester solvents are preferable from the viewpoint of solubility, and cyclohexanone, propylene glycol monomethyl ether, methyl cellosolve, and γ-butyrolactone are more preferable from the viewpoint of low toxicity. In view of the fact that it is highly soluble and hardly remains as a residual solvent during the production of prepreg, cyclohexanone, propylene glycol monomethyl ether, and dimethylacetamide are more preferable, and dimethylacetamide is particularly preferable.
An organic solvent may be used individually by 1 type, and may use 2 or more types together.
Although there is no restriction | limiting in particular in the usage-amount of an organic solvent, Preferably it is 25 with respect to a total of 100 mass parts of a maleimide compound (a1), a monoamine compound (a2), and a diamine compound (a3) from a viewpoint of solubility and reaction efficiency. The amount may be ˜1,000 parts by mass, more preferably 40 to 700 parts by mass, and still more preferably 60 to 250 parts by mass. By making it 25 parts by mass or more with respect to a total of 100 parts by mass of the maleimide compound (a1), monoamine compound (a2), and diamine compound (a3), it tends to ensure the solubility, and 1,000 parts by mass or less. By doing, it tends to be easy to suppress a significant decrease in reaction efficiency.
The organic solvent may be contained in the resin varnish of the present invention.
(反応触媒)
 マレイミド化合物(a1)、モノアミン化合物(a2)及びジアミン化合物(a3)の反応は、必要に応じて、反応触媒の存在下に実施してもよい。反応触媒としては、例えば、トリエチルアミン、ピリジン、トリブチルアミン等のアミン系触媒;メチルイミダゾール、フェニルイミダゾール等のイミダゾール系触媒;トリフェニルホスフィン等のリン系触媒などが挙げられる。
 反応触媒は1種を単独で使用してもよいし、2種以上を併用してもよい。
 反応触媒の使用量に特に制限はないが、マレイミド化合物(a1)とモノアミン化合物(a2)の質量の総和100質量部に対して、好ましくは0.001~5質量部である。
(Reaction catalyst)
You may implement reaction of a maleimide compound (a1), a monoamine compound (a2), and a diamine compound (a3) in presence of a reaction catalyst as needed. Examples of the reaction catalyst include amine-based catalysts such as triethylamine, pyridine, and tributylamine; imidazole-based catalysts such as methylimidazole and phenylimidazole; and phosphorus-based catalysts such as triphenylphosphine.
A reaction catalyst may be used individually by 1 type, and may use 2 or more types together.
The amount of the reaction catalyst used is not particularly limited, but is preferably 0.001 to 5 parts by mass with respect to 100 parts by mass of the total mass of the maleimide compound (a1) and the monoamine compound (a2).
<(B)エポキシ樹脂>
 (B)成分はエポキシ樹脂(以下、エポキシ樹脂(B)と称することがある)であり、好ましくは1分子中に少なくとも2個のエポキシ基を有するエポキシ樹脂である。
 1分子中に少なくとも2個のエポキシ基を有するエポキシ樹脂としては、グリシジルエーテルタイプのエポキシ樹脂、グリシジルアミンタイプのエポキシ樹脂、グリシジルエステルタイプのエポキシ樹脂等が挙げられる。これらの中でも、グリシジルエーテルタイプのエポキシ樹脂が好ましい。
 エポキシ樹脂(B)は、主骨格の違いによっても種々のエポキシ樹脂に分類され、上記それぞれのタイプのエポキシ樹脂において、さらに、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂等のビスフェノール型エポキシ樹脂;ビフェニルアラルキルノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、アルキルフェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフトールアルキルフェノール共重合ノボラック型エポキシ樹脂、ナフトールアラルキルクレゾール共重合ノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;スチルベン型エポキシ樹脂;トリアジン骨格含有エポキシ樹脂;フルオレン骨格含有エポキシ樹脂;ナフタレン型エポキシ樹脂;アントラセン型エポキシ樹脂;トリフェニルメタン型エポキシ樹脂;ビフェニル型エポキシ樹脂;キシリレン型エポキシ樹脂;ジシクロペンタジエン型エポキシ樹脂等の脂環式エポキシ樹脂などに分類される。
<(B) Epoxy resin>
The component (B) is an epoxy resin (hereinafter sometimes referred to as an epoxy resin (B)), preferably an epoxy resin having at least two epoxy groups in one molecule.
Examples of the epoxy resin having at least two epoxy groups in one molecule include glycidyl ether type epoxy resins, glycidyl amine type epoxy resins, and glycidyl ester type epoxy resins. Among these, a glycidyl ether type epoxy resin is preferable.
The epoxy resin (B) is classified into various epoxy resins depending on the main skeleton, and in each of the above-mentioned types of epoxy resins, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, etc. Bisphenol type epoxy resin; biphenyl aralkyl novolak type epoxy resin, phenol novolak type epoxy resin, alkylphenol novolak type epoxy resin, cresol novolac type epoxy resin, naphthol alkylphenol copolymer novolak type epoxy resin, naphthol aralkyl cresol copolymer novolak type epoxy resin, Bisphenol A novolac epoxy resin, bisphenol F novolac epoxy resin and other novolac epoxy resins; stilbene epoxy Resin; Triazine skeleton-containing epoxy resin; Fluorene skeleton-containing epoxy resin; Naphthalene-type epoxy resin; Anthracene-type epoxy resin; Triphenylmethane-type epoxy resin; Biphenyl-type epoxy resin; Xylylene-type epoxy resin; Dicyclopentadiene-type epoxy resin It is classified into alicyclic epoxy resin.
 これらの中でも、高耐熱性、低比誘電率、高金属箔接着性、高ガラス転移温度、低熱膨張性、成形性及びめっき付き回り性の観点から、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキルノボラック型エポキシ樹脂及びジシクロペンタジエン型エポキシ樹脂からなる群から選択される少なくとも1種が好ましく、低熱膨張性及び高ガラス転移温度の観点から、クレゾールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキルノボラック型エポキシ樹脂及びフェノールノボラック型エポキシ樹脂からなる群から選択される少なくとも1種がより好ましく、クレゾールノボラック型エポキシ樹脂がさらに好ましい。
 エポキシ樹脂(B)は、1種を単独で使用してもよいし、2種以上を併用してもよい。
Among these, from the viewpoint of high heat resistance, low relative dielectric constant, high metal foil adhesiveness, high glass transition temperature, low thermal expansion, moldability and plating rotation, bisphenol F type epoxy resin, phenol novolac type epoxy resin Preferably, at least one selected from the group consisting of cresol novolac type epoxy resin, naphthalene type epoxy resin, anthracene type epoxy resin, biphenyl type epoxy resin, biphenylaralkyl novolak type epoxy resin and dicyclopentadiene type epoxy resin, and low thermal expansion Cresol novolac type epoxy resin, naphthalene type epoxy resin, anthracene type epoxy resin, biphenyl type epoxy resin, biphenyl aralkyl novolak type epoxy resin and phenol novolac type More preferably at least one selected from the group consisting of epoxy resin, more preferably a cresol novolak type epoxy resin.
An epoxy resin (B) may be used individually by 1 type, and may use 2 or more types together.
 エポキシ樹脂(B)のエポキシ当量は、好ましくは100~500g/eq、より好ましくは120~400g/eq、さらに好ましくは140~300g/eq、特に好ましくは170~240g/eqである。
 ここで、エポキシ当量は、エポキシ基あたりの樹脂の質量(g/eq)であり、JIS K 7236(2001年)に規定された方法に従って測定することができる。具体的には、株式会社三菱ケミカルアナリテック製の自動滴定装置「GT-200型」を用いて、200mlビーカーにエポキシ樹脂2gを秤量し、メチルエチルケトン90mlを滴下し、超音波洗浄器溶解後、氷酢酸10ml及び臭化セチルトリメチルアンモニウム1.5gを添加し、0.1mol/Lの過塩素酸/酢酸溶液で滴定することにより求められる。
 エポキシ樹脂(B)の市販品としては、クレゾールノボラック型エポキシ樹脂「EPICLON(登録商標)N-673」(DIC株式会社製、エポキシ当量;205~215g/eq)、ナフタレン型エポキシ樹脂「HP-4032」(三菱ケミカル株式会社製、エポキシ当量;152g/eq)、ビフェニル型エポキシ樹脂「YX-4000」(三菱ケミカル株式会社製、エポキシ当量;186g/eq)、ジシクロペンタジエン型エポキシ樹脂「HP-7200H」(DIC株式会社製、エポキシ当量;280g/eq)等が挙げられる。なお、エポキシ当量は、その商品の製造会社のカタログに記載された値である。
The epoxy equivalent of the epoxy resin (B) is preferably 100 to 500 g / eq, more preferably 120 to 400 g / eq, still more preferably 140 to 300 g / eq, and particularly preferably 170 to 240 g / eq.
Here, the epoxy equivalent is the mass of the resin per epoxy group (g / eq), and can be measured according to the method defined in JIS K 7236 (2001). Specifically, using an automatic titrator “GT-200 type” manufactured by Mitsubishi Chemical Analytech Co., Ltd., weigh 2 g of epoxy resin into a 200 ml beaker, drop 90 ml of methyl ethyl ketone, dissolve in an ultrasonic cleaner, It is obtained by adding 10 ml of acetic acid and 1.5 g of cetyltrimethylammonium bromide and titrating with a 0.1 mol / L perchloric acid / acetic acid solution.
As a commercially available product of the epoxy resin (B), a cresol novolac type epoxy resin “EPICLON (registered trademark) N-673” (manufactured by DIC Corporation, epoxy equivalent: 205 to 215 g / eq), a naphthalene type epoxy resin “HP-4032” (Mitsubishi Chemical Corporation, epoxy equivalent: 152 g / eq), biphenyl type epoxy resin “YX-4000” (Mitsubishi Chemical Corporation, epoxy equivalent: 186 g / eq), dicyclopentadiene type epoxy resin “HP-7200H” (DIC Corporation, epoxy equivalent; 280 g / eq) and the like. The epoxy equivalent is a value described in the catalog of the product manufacturer.
<(C)特定の共重合樹脂>
 (C)成分は、置換ビニル化合物に由来する構造単位と無水マレイン酸に由来する構造単位とを有する共重合樹脂(以下、共重合樹脂(C)と称することがある)である。置換ビニル化合物としては、例えば、芳香族ビニル化合物、脂肪族ビニル化合物、官能基置換ビニル化合物等が挙げられる。芳香族ビニル化合物としては、例えば、スチレン、1-メチルスチレン、ビニルトルエン、ジメチルスチレン等が挙げられる。脂肪族ビニル化合物としては、例えば、プロピレン、ブタジエン、イソブチレン等が挙げられる。官能基置換ビニル化合物としては、例えば、アクリロニトリル;メチルアクリレート、メチルメタクリレート等の(メタ)アクリロイル基を有する化合物などが挙げられる。
 これらの中でも、置換ビニル化合物としては、芳香族ビニル化合物が好ましく、スチレンがより好ましい。
 (C)成分としては、下記一般式(C-i)で表される構造単位と下記式(C-ii)で表される構造単位とを有する共重合樹脂が好ましい。
<(C) Specific copolymer resin>
Component (C) is a copolymer resin having a structural unit derived from a substituted vinyl compound and a structural unit derived from maleic anhydride (hereinafter sometimes referred to as copolymer resin (C)). Examples of the substituted vinyl compound include aromatic vinyl compounds, aliphatic vinyl compounds, and functional group-substituted vinyl compounds. Examples of the aromatic vinyl compound include styrene, 1-methylstyrene, vinyltoluene, dimethylstyrene and the like. Examples of the aliphatic vinyl compound include propylene, butadiene, isobutylene and the like. Examples of the functional group-substituted vinyl compound include acrylonitrile; a compound having a (meth) acryloyl group such as methyl acrylate and methyl methacrylate.
Among these, as the substituted vinyl compound, an aromatic vinyl compound is preferable, and styrene is more preferable.
As the component (C), a copolymer resin having a structural unit represented by the following general formula (Ci) and a structural unit represented by the following formula (C-ii) is preferable.
Figure JPOXMLDOC01-appb-C000012

(式中、RC1は、水素原子又は炭素数1~5のアルキル基であり、RC2は、炭素数1~5のアルキル基、炭素数2~5のアルケニル基、炭素数6~20のアリール基、水酸基又は(メタ)アクリロイル基である。xは、0~3の整数である。但し、xが2又は3である場合、複数のRC2は同一であってもよいし、異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000012

(Wherein R C1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and R C2 is an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkyl group having 6 to 20 carbon atoms) An aryl group, a hydroxyl group, or a (meth) acryloyl group, where x is an integer of 0 to 3, provided that when x is 2 or 3, a plurality of R C2 may be the same or different. May be.)
 RC1及びRC2が表す炭素数1~5のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基等が挙げられる。該アルキル基としては、好ましくは炭素数1~3のアルキル基である。
 RC2が表す炭素数2~5のアルケニル基としては、例えば、アリル基、クロチル基等が挙げられる。該アルケニル基としては、好ましくは炭素数3~5のアルケニル基、より好ましくは炭素数3又は4のアルケニル基である。
 RC2が表す炭素数6~20のアリール基としては、例えば、フェニル基、ナフチル基、アントリル基、ビフェニリル基等が挙げられる。該アリール基としては、好ましくは炭素数6~12のアリール基、より好ましくは6~10のアリール基である。
 xは、好ましくは0又は1、より好ましくは0である。
 一般式(C-i)で表される構造単位においては、RC1が水素原子であり、xが0である下記一般式(C-i-1)で表される構造単位、つまりスチレンに由来する構造単位が好ましい。
Figure JPOXMLDOC01-appb-C000013
Examples of the alkyl group having 1 to 5 carbon atoms represented by R C1 and R C2 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, and an n-pentyl group. Groups and the like. The alkyl group is preferably an alkyl group having 1 to 3 carbon atoms.
Examples of the alkenyl group having 2 to 5 carbon atoms represented by R C2 include an allyl group and a crotyl group. The alkenyl group is preferably an alkenyl group having 3 to 5 carbon atoms, more preferably an alkenyl group having 3 or 4 carbon atoms.
Examples of the aryl group having 6 to 20 carbon atoms represented by R C2 include a phenyl group, a naphthyl group, an anthryl group, and a biphenylyl group. The aryl group is preferably an aryl group having 6 to 12 carbon atoms, more preferably an aryl group having 6 to 10 carbon atoms.
x is preferably 0 or 1, more preferably 0.
In the structural unit represented by the general formula (Ci), R C1 is a hydrogen atom and x is 0, derived from the structural unit represented by the following general formula (Ci-1), that is, styrene The structural unit is preferred.
Figure JPOXMLDOC01-appb-C000013
 共重合樹脂(C)中における、置換ビニル化合物に由来する構造単位と無水マレイン酸に由来する構造単位の含有比率[置換ビニル化合物に由来する構造単位/無水マレイン酸に由来する構造単位](モル比)は、好ましくは1~9、より好ましくは2~9、さらに好ましくは3~8、特に好ましくは3~7である。また、前記式(C-ii)で表される構造単位に対する前記一般式(C-i)で表される構造単位の含有比率[(C-i)/(C-ii)](モル比)も同様に、好ましくは1~9、より好ましくは2~9、さらに好ましくは3~8、特に好ましくは3~7である。これらのモル比が1以上、好ましくは2以上であれば、誘電特性の改善効果が十分となる傾向にあり、9以下であれば、相容性が良好となる傾向にある。
 共重合樹脂(C)中における、置換ビニル化合物に由来する構造単位と無水マレイン酸に由来する構造単位との合計含有量、及び、一般式(C-i)で表される構造単位と式(C-ii)で表される構造単位との合計含有量は、それぞれ、好ましくは50質量%以上、より好ましくは70質量%以上、さらに好ましくは90質量%以上、特に好ましくは実質的に100質量%である。
 共重合樹脂(C)の重量平均分子量(Mw)は、好ましくは4,500~18,000、より好ましくは5,000~18,000、より好ましくは6,000~17,000、さらに好ましくは8,000~16,000、特に好ましくは8,000~15,000、最も好ましくは9,000~13,000である。
Content ratio of the structural unit derived from the substituted vinyl compound and the structural unit derived from maleic anhydride in the copolymer resin (C) [structural unit derived from the substituted vinyl compound / structural unit derived from maleic anhydride] (mol) The ratio is preferably from 1 to 9, more preferably from 2 to 9, even more preferably from 3 to 8, particularly preferably from 3 to 7. The content ratio of the structural unit represented by the general formula (Ci) to the structural unit represented by the formula (C-ii) [(Ci) / (Cii)] (molar ratio) Similarly, it is preferably 1 to 9, more preferably 2 to 9, further preferably 3 to 8, and particularly preferably 3 to 7. If the molar ratio is 1 or more, preferably 2 or more, the effect of improving the dielectric properties tends to be sufficient, and if it is 9 or less, the compatibility tends to be good.
The total content of the structural unit derived from the substituted vinyl compound and the structural unit derived from maleic anhydride in the copolymer resin (C), and the structural unit represented by the general formula (Ci) and the formula ( The total content of the structural unit represented by C-ii) is preferably 50% by mass or more, more preferably 70% by mass or more, still more preferably 90% by mass or more, and particularly preferably substantially 100% by mass. %.
The weight average molecular weight (Mw) of the copolymer resin (C) is preferably 4,500 to 18,000, more preferably 5,000 to 18,000, more preferably 6,000 to 17,000, still more preferably. It is 8,000 to 16,000, particularly preferably 8,000 to 15,000, most preferably 9,000 to 13,000.
 なお、スチレンと無水マレイン酸の共重合樹脂を用いることによりエポキシ樹脂を低誘電率化する手法は、プリント配線板用材料に適用すると基材への含浸性及び銅箔ピール強度が不十分となるため、一般的には避けられる傾向にある。そのため、前記共重合樹脂(C)を用いることも一般的には避けられる傾向にあるが、本発明では、前記共重合樹脂(C)を用いながらも、前記(A)成分、前記(B)成分及び前記(D)成分を含有させることにより、高耐熱性、低比誘電率、高金属箔接着性、高ガラス転移温度及び低熱膨張性を有し、且つ成形性、めっき付き回り性及び寸法変化量のバラつきが小さい優れる樹脂ワニスとなった。 In addition, the technique for lowering the dielectric constant of an epoxy resin by using a copolymer resin of styrene and maleic anhydride, when applied to a printed wiring board material, results in insufficient impregnation into the substrate and copper foil peel strength. Therefore, it generally tends to be avoided. For this reason, the use of the copolymer resin (C) generally tends to be avoided, but in the present invention, the component (A) and the component (B) are used while using the copolymer resin (C). By containing the component and the component (D), it has high heat resistance, low relative dielectric constant, high metal foil adhesiveness, high glass transition temperature and low thermal expansion, and has formability, plating-around property and dimensions. It became an excellent resin varnish with little variation in variation.
(共重合樹脂(C)の製造方法)
 共重合樹脂(C)は、置換ビニル化合物と無水マレイン酸とを共重合することにより製造することができる。
 置換ビニル化合物は、前述の通りである。置換ビニル化合物は1種を単独で使用してもよいし、2種以上を併用してもよい。さらに、前記置換ビニル化合物及び無水マレイン酸以外にも、各種の重合可能な成分を共重合させてもよい。
 また、該置換ビニル化合物、特に芳香族ビニル化合物に、フリーデル・クラフツ反応、又はリチウム等の金属系触媒を用いた反応を通じて、アリル基、メタクリロイル基、アクリロイル基、ヒドロキシ基等の置換基を導入してもよい。
(Method for producing copolymer resin (C))
The copolymer resin (C) can be produced by copolymerizing a substituted vinyl compound and maleic anhydride.
The substituted vinyl compound is as described above. A substituted vinyl compound may be used individually by 1 type, and may use 2 or more types together. In addition to the substituted vinyl compound and maleic anhydride, various polymerizable components may be copolymerized.
In addition, substituents such as allyl groups, methacryloyl groups, acryloyl groups, and hydroxy groups are introduced into the substituted vinyl compounds, particularly aromatic vinyl compounds, through Friedel-Crafts reactions or reactions using metal catalysts such as lithium. May be.
 共重合樹脂(C)としては、市販品を用いることもできる。市販品としては、例えば、「SMA(登録商標)1000」(スチレン/無水マレイン酸=1、Mw=5,000)、「SMA(登録商標)EF30」(スチレン/無水マレイン酸=3、Mw=9,500)、「SMA(登録商標)EF40」(スチレン/無水マレイン酸=4、Mw=11,000)、「SMA(登録商標)EF60」(スチレン/無水マレイン酸=6、Mw=11,500)、「SMA(登録商標)EF80」(スチレン/無水マレイン酸=8、Mw=14,400)[以上、CRAY VALLEY社製]等が挙げられる。 Commercial products can also be used as the copolymer resin (C). Examples of commercially available products include “SMA (registered trademark) 1000” (styrene / maleic anhydride = 1, Mw = 5,000), “SMA (registered trademark) EF30” (styrene / maleic anhydride = 3, Mw = 9,500), "SMA (registered trademark) EF40" (styrene / maleic anhydride = 4, Mw = 11,000), "SMA (registered trademark) EF60" (styrene / maleic anhydride = 6, Mw = 11, 500), “SMA (registered trademark) EF80” (styrene / maleic anhydride = 8, Mw = 14,400) [above, manufactured by CRAY VALLEY Co., Ltd.].
<(D)無機充填材>
 本発明の樹脂ワニスは、低熱膨張性の観点から、(D)成分として、無機充填材を含有することが好ましい。
 前記無機充填材としては、例えば、シリカ、アルミナ、硫酸バリウム、タルク、クレー、雲母粉、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、酸化マグネシウム、窒化ホウ素、ホウ酸アルミニウム、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸ビスマス、酸化チタン、ジルコン酸バリウム、ジルコン酸カルシウム等が挙げられる。これらは1種を単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、熱膨張係数を下げる観点から、シリカが好ましい。
 前記シリカとしては、例えば、湿式法で製造され含水率の高い沈降シリカと、乾式法で製造され結合水等をほとんど含まない乾式法シリカが挙げられる。乾式法シリカとしては、さらに、製造法の違いにより、破砕シリカ、フュームドシリカ、溶融シリカ(溶融球状シリカ)が挙げられる。シリカは、低熱膨張性及び樹脂に充填した際の高流動性の観点から、溶融シリカが好ましい。
<(D) Inorganic filler>
The resin varnish of the present invention preferably contains an inorganic filler as the component (D) from the viewpoint of low thermal expansion.
Examples of the inorganic filler include silica, alumina, barium sulfate, talc, clay, mica powder, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, magnesium oxide, boron nitride, aluminum borate, and barium titanate. Strontium titanate, calcium titanate, bismuth titanate, titanium oxide, barium zirconate, calcium zirconate and the like. These may be used individually by 1 type and may use 2 or more types together. Among these, silica is preferable from the viewpoint of lowering the thermal expansion coefficient.
Examples of the silica include precipitated silica produced by a wet method and having a high water content, and dry method silica produced by a dry method and containing almost no bound water or the like. Examples of the dry process silica include crushed silica, fumed silica, and fused silica (fused spherical silica) depending on the production method. Silica is preferably fused silica from the viewpoint of low thermal expansibility and high fluidity when filled in a resin.
 無機充填材、特にシリカの平均粒子径としては、特に制限されるものではないが、0.1~10μmが好ましく、0.1~6μmがより好ましく、0.1~3μmがさらに好ましく、1~3μmが特に好ましい。無機充填材、特にシリカの平均粒子径を0.1μm以上にすることで、高充填した際の流動性を良好に保つことができ、また、10μm以下にすることで、粗大粒子の混入確率を減らして粗大粒子に起因する不良の発生を抑えることができる。ここで、平均粒子径とは、粒子の全体積を100%として粒子径による累積度数分布曲線を求めた時、体積50%に相当する点の粒子径のことであり、レーザー回折散乱法を用いた粒度分布測定装置等で測定することができる。
 また、無機充填材、特にシリカの比表面積は、好ましくは4cm/g以上、より好ましくは4~9cm/g、さらに好ましくは5~7cm/gである。
The average particle diameter of the inorganic filler, particularly silica, is not particularly limited, but is preferably 0.1 to 10 μm, more preferably 0.1 to 6 μm, further preferably 0.1 to 3 μm, and 1 to 3 μm is particularly preferable. By making the average particle diameter of the inorganic filler, especially silica, 0.1 μm or more, the fluidity when highly filled can be kept good, and by making it 10 μm or less, the mixing probability of coarse particles can be increased. It is possible to reduce the occurrence of defects due to coarse particles. Here, the average particle diameter is a particle diameter at a point corresponding to a volume of 50% when the cumulative frequency distribution curve by the particle diameter is obtained with the total volume of the particles being 100%, and a laser diffraction scattering method is used. It can be measured with a particle size distribution measuring device.
The specific surface area of the inorganic filler, particularly silica, is preferably 4 cm 2 / g or more, more preferably 4 to 9 cm 2 / g, and still more preferably 5 to 7 cm 2 / g.
 なお、無機充填材の中でも、特に、表面処理された無機充填材であれば、低熱膨張性が向上するという効果以外に、前記(A)~(C)成分との密着性が向上することにより無機充填材自体の脱落が抑制されるため、過剰なデスミアによるレーザビア形状の変形等を抑制する効果が得られる傾向にある。加えて、めっき付き回り性が向上し、且つ寸法変化量のバラつきが小さくなる傾向にあるため、無機充填材は表面処理された無機充填材であることがより好ましい。無機充填材を表面処理された無機充填材とすることによってめっき付き回り性が向上するのは、デスミア溶解量が大きくなり、レーザ穴壁面の凹凸及びガラスクロスの飛び出しが大きい穴形状となる傾向にあるためと推察する。 Among the inorganic fillers, in particular, in the case of a surface-treated inorganic filler, in addition to the effect of improving the low thermal expansion, the adhesion with the components (A) to (C) is improved. Since the dropout of the inorganic filler itself is suppressed, an effect of suppressing the deformation of the laser via shape due to excessive desmear tends to be obtained. In addition, it is more preferable that the inorganic filler is a surface-treated inorganic filler because the tendency to improve the plating and the variation in the dimensional change amount tends to be small. By making the inorganic filler a surface-treated inorganic filler, the plating reversibility is improved because the amount of desmear dissolution increases, and the laser hole wall surface unevenness and the glass cloth pop out tend to be a hole shape. I guess it is because there is.
 無機充填材を表面処理するのに使用し得る表面処理剤としては、例えば、アミノシラン系カップリング剤、エポキシシラン系カップリング剤、フェニルシラン系カップリング剤、アルキルシラン系カップリング剤、アルケニルシラン系カップリング剤、アルキニルシラン系カップリング剤、ハロアルキルシラン系カップリング剤、シロキサン系カップリング剤、ヒドロシラン系カップリング剤、シラザン系カップリング剤、アルコキシシラン系カップリング剤、クロロシラン系カップリング剤、(メタ)アクリルシラン系カップリング剤、イソシアヌレートシラン系カップリング剤、ウレイドシラン系カップリング剤、メルカプトシラン系カップリング剤、スルフィドシラン系カップリング剤又はイソシアネートシラン系カップリング剤等が挙げられる。表面処理剤は、1種を単独で使用してもよいし、2種以上を併用してもよい。
 前記(A)~(C)成分との密着性が向上効果の観点、並びにめっき付き回り性の向上及び寸法変化量のバラつきが小さくなるという観点から、表面処理剤としてはアミノシラン系カップリング剤が好ましい。つまり、(D)成分としては、アミノシラン系カップリング剤で処理された無機充填材が好ましい。
 該アミノシラン系カップリング剤としては、下記一般式(D-1)で表されるケイ素含有基と、アミノ基とを有するシランカップリング剤が好ましい。
Figure JPOXMLDOC01-appb-C000014

(式中、RD1は、炭素数1~3のアルキル基又は炭素数2~4のアシル基である。yは、0~3の整数である。)
Examples of the surface treatment agent that can be used to surface-treat the inorganic filler include, for example, an aminosilane coupling agent, an epoxysilane coupling agent, a phenylsilane coupling agent, an alkylsilane coupling agent, and an alkenylsilane. Coupling agent, alkynylsilane coupling agent, haloalkylsilane coupling agent, siloxane coupling agent, hydrosilane coupling agent, silazane coupling agent, alkoxysilane coupling agent, chlorosilane coupling agent, ( (Meth) acryl silane coupling agents, isocyanurate silane coupling agents, ureido silane coupling agents, mercapto silane coupling agents, sulfide silane coupling agents or isocyanate silane coupling agents. It is below. A surface treating agent may be used individually by 1 type, and may use 2 or more types together.
From the viewpoint of improving the adhesiveness with the components (A) to (C), and improving the rotability with plating and reducing the variation in dimensional change, an aminosilane coupling agent is used as the surface treatment agent. preferable. That is, as the component (D), an inorganic filler treated with an aminosilane coupling agent is preferable.
As the aminosilane coupling agent, a silane coupling agent having a silicon-containing group represented by the following general formula (D-1) and an amino group is preferable.
Figure JPOXMLDOC01-appb-C000014

(Wherein R D1 is an alkyl group having 1 to 3 carbon atoms or an acyl group having 2 to 4 carbon atoms. Y is an integer of 0 to 3)
 RD1が表す炭素数1~3のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基が挙げられる。これらの中でも、メチル基が好ましい。
 RD1が表す炭素数2~4のアシル基としては、アセチル基、プロピオニル基、アクリル基が挙げられる。これらの中でも、アセチル基が好ましい。
Examples of the alkyl group having 1 to 3 carbon atoms represented by R D1 include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group. Among these, a methyl group is preferable.
Examples of the acyl group having 2 to 4 carbon atoms represented by RD1 include an acetyl group, a propionyl group, and an acrylic group. Among these, an acetyl group is preferable.
 アミノシラン系カップリング剤は、アミノ基を1つ有していてもよいし、2つ有していてもよいし、3つ以上有していてもよいが、通常は、アミノ基を1つ又は2つ有する。
 アミノ基を1つ有するアミノシラン系カップリング剤としては、例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、2-プロピニル[3-(トリメトキシシリル)プロピル]カルバメート等が挙げられるが、特にこれらに制限されるものではない。
 アミノ基を2つ有するアミノシラン系カップリング剤としては、例えば、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、1-[3-(トリメトキシシリル)プロピル]ウレア、1-[3-(トリエトキシシリル)プロピル]ウレア等が挙げられるが、特にこれらに制限されるものではない。
The aminosilane coupling agent may have one amino group, two amino groups, or three or more, but usually one amino group or Have two.
Examples of aminosilane coupling agents having one amino group include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, 3-triethoxysilyl- Examples thereof include N- (1,3-dimethyl-butylidene) propylamine and 2-propynyl [3- (trimethoxysilyl) propyl] carbamate, but are not particularly limited thereto.
Examples of aminosilane coupling agents having two amino groups include N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, Examples include 1- [3- (trimethoxysilyl) propyl] urea and 1- [3- (triethoxysilyl) propyl] urea, but are not particularly limited thereto.
 また、表面処理された無機充填材と、表面処理されていない無機充填材とを併用してもよい。この場合、特に制限されるものではないが、表面処理されていない無機充填材の含有量は、表面処理された無機充填材100質量部に対して、好ましくは50質量部以下、より好ましくは30質量部以下、さらに好ましくは15質量部以下、特に好ましくは10質量部以下、最も好ましくは5質量部以下である。 Further, a surface-treated inorganic filler and a surface-treated inorganic filler may be used in combination. In this case, although not particularly limited, the content of the inorganic filler not surface-treated is preferably 50 parts by mass or less, more preferably 30 parts relative to 100 parts by mass of the surface-treated inorganic filler. It is not more than part by mass, more preferably not more than 15 parts by mass, particularly preferably not more than 10 parts by mass, most preferably not more than 5 parts by mass.
<(E)硬化剤>
 樹脂ワニスは、さらに、(E)成分として硬化剤(以下、硬化剤(E)と称することがある)を含有してもよい。硬化剤(E)としては、ジシアンジアミド;エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ヘキサメチレンジアミン、ジエチルアミノプロピルアミン、テトラメチルグアニジン、トリエタノールアミン等の、ジシアンジアミドを除く鎖状脂肪族アミン;イソホロンジアミン、ジアミノジシクロヘキシルメタン、ビス(アミノメチル)シクロヘキサン、ビス(4-アミノ-3-メチルジシクロヘキシル)メタン、N-アミノエチルピペラジン、3,9-ビス(3-アミノプロピル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン等の環状脂肪族アミン;キシレンジアミン、フェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン等の芳香族アミンなどが挙げられる。これらの中でも、金属箔接着性及び低熱膨張性の観点から、ジシアンジアミドが好ましい。
 該ジシアンジアミドは、HN-C(=NH)-NH-CNで表され、融点は通常、205~215℃、より純度の高いものでは207~212℃である。ジシアンジアミドは、結晶性物質であり、斜方状晶であってもよいし、板状晶であってもよい。ジシアンジアミドは、純度98%以上のものが好ましく、純度99%以上のものがより好ましく、純度99.4%以上のものがさらに好ましい。ジシアンジアミドとしては、市販品を使用することができ、例えば、日本カーバイド工業株式会社製、東京化成工業株式会社製、キシダ化学株式会社製、ナカライテスク株式会社製等の市販品を使用することができる。
<(E) Curing agent>
The resin varnish may further contain a curing agent (hereinafter sometimes referred to as a curing agent (E)) as the component (E). Examples of the curing agent (E) include dicyandiamide; chain aliphatic amines other than dicyandiamide, such as ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, hexamethylenediamine, diethylaminopropylamine, tetramethylguanidine, triethanolamine; Isophoronediamine, diaminodicyclohexylmethane, bis (aminomethyl) cyclohexane, bis (4-amino-3-methyldicyclohexyl) methane, N-aminoethylpiperazine, 3,9-bis (3-aminopropyl) -2,4,8 , 10-tetraoxaspiro [5.5] undecane and other cyclic aliphatic amines; xylenediamine, phenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone and other aromatic amines And the like. Among these, dicyandiamide is preferable from the viewpoints of metal foil adhesion and low thermal expansion.
The dicyandiamide is represented by H 2 N—C (═NH) —NH—CN, and the melting point is usually 205 to 215 ° C., and higher purity is 207 to 212 ° C. Dicyandiamide is a crystalline substance and may be orthorhombic or plate-like. Dicyandiamide preferably has a purity of 98% or more, more preferably has a purity of 99% or more, and still more preferably has a purity of 99.4% or more. As dicyandiamide, commercially available products can be used. For example, commercially available products such as those manufactured by Nippon Carbide Industries Co., Ltd., Tokyo Chemical Industry Co., Ltd., Kishida Chemical Co., Ltd., and Nacalai Tesque Co., Ltd. can be used. .
<(F)難燃剤>
 樹脂ワニスは、さらに、(F)成分として難燃剤(以下、難燃剤(F)と称することがある)を含有してもよい。ここで、前記硬化剤の中でもジシアンジアミド等は難燃剤としての効果も有するが、本発明においては、硬化剤として機能し得るものは硬化剤に分類し、(F)成分には包含されないこととする。
 難燃剤としては、例えば、臭素、塩素等を含有する含ハロゲン系難燃剤;リン系難燃剤;スルファミン酸グアニジン、硫酸メラミン、ポリリン酸メラミン、メラミンシアヌレート等の窒素系難燃剤;シクロホスファゼン、ポリホスファゼン等のホスファゼン系難燃剤;三酸化アンチモン等の無機系難燃剤などが挙げられる。これらの中でも、リン系難燃剤が好ましい。
 リン系難燃剤としては、無機系のリン系難燃剤と、有機系のリン系難燃剤がある。
 無機系のリン系難燃剤としては、例えば、赤リン;リン酸一アンモニウム、リン酸二アンモニウム、リン酸三アンモニウム、ポリリン酸アンモニウム等のリン酸アンモニウム;リン酸アミド等の無機系含窒素リン化合物;リン酸;ホスフィンオキシドなどが挙げられる。
 有機系のリン系難燃剤としては、例えば、芳香族リン酸エステル、1置換ホスホン酸ジエステル、2置換ホスフィン酸エステル、2置換ホスフィン酸の金属塩、有機系含窒素リン化合物、環状有機リン化合物、リン含有フェノール樹脂等が挙げられる。これらの中でも、芳香族リン酸エステル、2置換ホスフィン酸の金属塩が好ましい。ここで、金属塩としては、リチウム塩、ナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩、アルミニウム塩、チタン塩、亜鉛塩のいずれかであることが好ましく、アルミニウム塩であることが好ましい。また、有機系のリン系難燃剤の中では、芳香族リン酸エステルがより好ましい。
<(F) Flame retardant>
The resin varnish may further contain a flame retardant (hereinafter sometimes referred to as a flame retardant (F)) as the component (F). Here, among the curing agents, dicyandiamide and the like also have an effect as a flame retardant, but in the present invention, those that can function as a curing agent are classified as curing agents and are not included in the component (F). .
Examples of the flame retardant include halogen-containing flame retardants containing bromine, chlorine, etc .; phosphorus flame retardants; nitrogen flame retardants such as guanidine sulfamate, melamine sulfate, melamine polyphosphate, melamine cyanurate; cyclophosphazene, poly Examples thereof include phosphazene flame retardants such as phosphazene; inorganic flame retardants such as antimony trioxide. Among these, a phosphorus flame retardant is preferable.
Examples of the phosphorus flame retardant include an inorganic phosphorus flame retardant and an organic phosphorus flame retardant.
Examples of inorganic phosphorus flame retardants include red phosphorus; ammonium phosphates such as monoammonium phosphate, diammonium phosphate, triammonium phosphate and ammonium polyphosphate; inorganic nitrogen-containing phosphorus compounds such as phosphate amides Phosphoric acid; phosphine oxide and the like.
Examples of organic phosphorus flame retardants include aromatic phosphate esters, monosubstituted phosphonic acid diesters, disubstituted phosphinic acid esters, disubstituted phosphinic acid metal salts, organic nitrogen-containing phosphorus compounds, cyclic organophosphorus compounds, Examples thereof include phosphorus-containing phenol resins. Among these, aromatic phosphate esters and metal salts of disubstituted phosphinic acids are preferred. Here, the metal salt is preferably any one of a lithium salt, a sodium salt, a potassium salt, a calcium salt, a magnesium salt, an aluminum salt, a titanium salt, and a zinc salt, and preferably an aluminum salt. Among organic phosphorus flame retardants, aromatic phosphates are more preferable.
 芳香族リン酸エステルとしては、例えば、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、クレジルジ-2,6-キシレニルホスフェート、レゾルシノールビス(ジフェニルホスフェート)、1,3-フェニレンビス(ジ-2,6-キシレニルホスフェート)、ビスフェノールA-ビス(ジフェニルホスフェート)、1,3-フェニレンビス(ジフェニルホスフェート)等が挙げられる。
 1置換ホスホン酸ジエステルとしては、例えば、フェニルホスホン酸ジビニル、フェニルホスホン酸ジアリル、フェニルホスホン酸ビス(1-ブテニル)等が挙げられる。
 2置換ホスフィン酸エステルとしては、例えば、ジフェニルホスフィン酸フェニル、ジフェニルホスフィン酸メチル等が挙げられる。
 2置換ホスフィン酸の金属塩としては、例えば、ジアルキルホスフィン酸の金属塩、ジアリルホスフィン酸の金属塩、ジビニルホスフィン酸の金属塩、ジアリールホスフィン酸の金属塩等が挙げられる。これら金属塩は、前述の通り、リチウム塩、ナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩、アルミニウム塩、チタン塩、亜鉛塩のいずれかであることが好ましい。
 有機系含窒素リン化合物としては、例えば、ビス(2-アリルフェノキシ)ホスファゼン、ジクレジルホスファゼン等のホスファゼン化合物;リン酸メラミン、ピロリン酸メラミン、ポリリン酸メラミン、ポリリン酸メラム等が挙げられる。
 環状有機リン化合物としては、例えば、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド、10-(2,5-ジヒドロキシフェニル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド等が挙げられる。
 これらの中でも、芳香族リン酸エステル、2置換ホスフィン酸の金属塩及び環状有機リン化合物から選択される少なくとも1種類が好ましく、芳香族リン酸エステルがより好ましい。
Examples of the aromatic phosphate ester include triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, cresyl di-2,6-xylenyl phosphate, resorcinol bis (diphenyl phosphate), 1,3 -Phenylenebis (di-2,6-xylenyl phosphate), bisphenol A-bis (diphenyl phosphate), 1,3-phenylenebis (diphenyl phosphate) and the like.
Examples of monosubstituted phosphonic acid diesters include divinyl phenylphosphonate, diallyl phenylphosphonate, and bis (1-butenyl) phenylphosphonate.
Examples of the disubstituted phosphinic acid ester include phenyl diphenylphosphinate and methyl diphenylphosphinate.
Examples of the metal salt of disubstituted phosphinic acid include a metal salt of dialkylphosphinic acid, a metal salt of diallylphosphinic acid, a metal salt of divinylphosphinic acid, a metal salt of diarylphosphinic acid, and the like. As described above, these metal salts are preferably any of lithium salt, sodium salt, potassium salt, calcium salt, magnesium salt, aluminum salt, titanium salt, and zinc salt.
Examples of the organic nitrogen-containing phosphorus compound include phosphazene compounds such as bis (2-allylphenoxy) phosphazene and dicresyl phosphazene; melamine phosphate, melamine pyrophosphate, melamine polyphosphate, melam polyphosphate, and the like.
Examples of the cyclic organophosphorus compound include 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 10- (2,5-dihydroxyphenyl) -9,10-dihydro-9-oxa- And 10-phosphaphenanthrene-10-oxide.
Among these, at least one selected from an aromatic phosphate ester, a metal salt of a disubstituted phosphinic acid and a cyclic organic phosphorus compound is preferable, and an aromatic phosphate ester is more preferable.
 また、前記芳香族リン酸エステルは、下記一般式(F-1)もしくは(F-2)で表される芳香族リン酸エステルであることが好ましく、下記一般式(F-1)で表される芳香族リン酸エステルであることがより好ましい。前記2置換ホスフィン酸の金属塩は、下記一般式(F-3)で表される2置換ホスフィン酸の金属塩であることが好ましい。
Figure JPOXMLDOC01-appb-C000015
The aromatic phosphate ester is preferably an aromatic phosphate ester represented by the following general formula (F-1) or (F-2), and is represented by the following general formula (F-1). More preferably, it is an aromatic phosphate ester. The metal salt of the disubstituted phosphinic acid is preferably a metal salt of a disubstituted phosphinic acid represented by the following general formula (F-3).
Figure JPOXMLDOC01-appb-C000015
(式中、RF1~RF5は各々独立に、炭素数1~5のアルキル基又はハロゲン原子である。e及びfは各々独立に0~5の整数であり、g、h及びiは各々独立に0~4の整数である。
 RF6及びRF7は各々独立に、炭素数1~5のアルキル基又は炭素数6~14のアリール基である。Mは、リチウム原子、ナトリウム原子、カリウム原子、カルシウム原子、マグネシウム原子、アルミニウム原子、チタン原子、亜鉛原子である。jは、1~4の整数である。)
(Wherein R F1 to R F5 are each independently an alkyl group having 1 to 5 carbon atoms or a halogen atom. E and f are each independently an integer of 0 to 5, and g, h and i are each It is an integer of 0 to 4 independently.
R F6 and R F7 are each independently an alkyl group having 1 to 5 carbon atoms or an aryl group having 6 to 14 carbon atoms. M is a lithium atom, a sodium atom, a potassium atom, a calcium atom, a magnesium atom, an aluminum atom, a titanium atom, or a zinc atom. j is an integer of 1 to 4. )
 RF1~RF5が表す炭素数1~5のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基等が挙げられる。該アルキル基としては、好ましくは炭素数1~3のアルキル基である。RF1~RF5が表すハロゲン原子としては、フッ素原子等が挙げられる。
 e及びfは、0~2の整数が好ましく、2がより好ましい。g、h及びiは、0~2の整数が好ましく、0又は1がより好ましく、0がさらに好ましい。
 RF6及びRF7が表す炭素数1~5のアルキル基としては、RF1~RF5の場合と同じものが挙げられる。
 RF6及びRF7が表す炭素数6~14のアリール基としては、例えば、フェニル基、ナフチル基、ビフェニリル基、アントリル基等が挙げられる。該芳香族炭化水素基としては、炭素数6~10のアリール基が好ましい。
 jは金属イオンの価数と等しく、つまり、Mの種類に対応して1~4の範囲内で変化する。
 Mとしては、アルミニウム原子が好ましい。なお、Mがアルミニウム原子である場合、jは3である。
Examples of the alkyl group having 1 to 5 carbon atoms represented by R F1 to R F5 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, and an n-pentyl group. Groups and the like. The alkyl group is preferably an alkyl group having 1 to 3 carbon atoms. Examples of the halogen atom represented by R F1 to R F5 include a fluorine atom.
e and f are preferably integers of 0 to 2, and more preferably 2. g, h and i are preferably integers of 0 to 2, more preferably 0 or 1, and still more preferably 0.
Examples of the alkyl group having 1 to 5 carbon atoms represented by R F6 and R F7 include the same groups as in R F1 to R F5 .
Examples of the aryl group having 6 to 14 carbon atoms represented by R F6 and R F7 include a phenyl group, a naphthyl group, a biphenylyl group, and an anthryl group. The aromatic hydrocarbon group is preferably an aryl group having 6 to 10 carbon atoms.
j is equal to the valence of the metal ion, that is, varies within the range of 1 to 4 corresponding to the type of M.
M is preferably an aluminum atom. In addition, j is 3 when M is an aluminum atom.
(樹脂ワニスの各成分の含有量)
 樹脂ワニス中、(A)~(C)成分の含有量は、特に制限されるわけではないが、(A)~(C)成分の総和100質量部に対して、(A)成分が15~65質量部、(B)成分が15~50質量部、(C)成分が10~45質量部であることが好ましい。また、(A)~(C)成分の合計含有量は、樹脂ワニス(但し、ここでは(D)成分を除く。)中、80質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上がさらに好ましい。
 (A)~(C)成分の総和100質量部に対して(A)成分が15質量部以上であることにより、高耐熱性、低比誘電率、高ガラス転移温度及び低熱膨張性に優れ、さらに寸法変化量のバラつきが小さくなる傾向にある。一方、65質量部以下であることにより、樹脂ワニスの流動性及び成形性が良好となる傾向にある。同様の観点から、(A)成分の含有量は、(A)~(C)成分の総和100質量部に対して25~65質量部としてもよい。
 (A)~(C)成分の総和100質量部に対して(B)成分が15質量部以上であることにより、高耐熱性、高ガラス転移温度及び低熱膨張性が得られる傾向にある。一方、50質量部以下であることにより、高耐熱性、低比誘電率、高ガラス転移温度及び低熱膨張性となる傾向にある。同様の観点から、(B)成分の含有量は、(A)~(C)成分の総和100質量部に対して20~45質量部としてもよい。
 (A)~(C)成分の総和100質量部に対して(C)成分が10質量部以上であることにより、高耐熱性及び低比誘電率が得られる傾向にある。一方、45質量部以下であることにより、高耐熱性、高金属箔接着性及び低熱膨張性が得られる傾向にある。(C)成分の含有量は、(A)~(C)成分の総和100質量部に対して10~30質量部であってもよく、また、20~45質量部であってもよい。
 さらに、特に制限されるものではないが、本発明の樹脂ワニスが(D)成分を含有する場合、その含有量は、(A)~(C)成分の総和100質量部に対して30~70質量部であることが好ましい。(D)成分が30質量部以上であることにより、優れた低熱膨張性が得られる傾向にある。一方、70質量部以下であることにより、耐熱性が得られ、且つ樹脂ワニスの流動性及び成形性が良好となる傾向にある。同様の観点から、(D)成分の含有量は、(A)~(C)成分の総和100質量部に対して40~60質量部としてもよい。
(Content of each component of resin varnish)
The content of the components (A) to (C) in the resin varnish is not particularly limited, but the amount of the component (A) is 15 to 100 parts by mass with respect to 100 parts by mass of the total of the components (A) to (C). 65 parts by mass, (B) component is preferably 15-50 parts by mass, and (C) component is preferably 10-45 parts by mass. The total content of the components (A) to (C) is preferably 80% by mass or more, more preferably 90% by mass or more, and 95% by mass in the resin varnish (however, excluding the component (D) here). % Or more is more preferable.
When the component (A) is 15 parts by mass or more with respect to 100 parts by mass of the sum of the components (A) to (C), it is excellent in high heat resistance, low relative dielectric constant, high glass transition temperature, and low thermal expansion. Further, the variation in the dimensional change amount tends to be small. On the other hand, when it is 65 parts by mass or less, the fluidity and moldability of the resin varnish tend to be good. From the same viewpoint, the content of the component (A) may be 25 to 65 parts by mass with respect to 100 parts by mass of the sum of the components (A) to (C).
When the component (B) is 15 parts by mass or more with respect to 100 parts by mass of the total of the components (A) to (C), high heat resistance, high glass transition temperature and low thermal expansion tend to be obtained. On the other hand, when it is 50 parts by mass or less, it tends to be high heat resistance, low relative dielectric constant, high glass transition temperature, and low thermal expansion. From the same viewpoint, the content of the component (B) may be 20 to 45 parts by mass with respect to 100 parts by mass of the sum of the components (A) to (C).
When the component (C) is 10 parts by mass or more with respect to 100 parts by mass of the sum of the components (A) to (C), high heat resistance and a low relative dielectric constant tend to be obtained. On the other hand, when the amount is 45 parts by mass or less, high heat resistance, high metal foil adhesion, and low thermal expansion tend to be obtained. The content of the component (C) may be 10 to 30 parts by mass or 20 to 45 parts by mass with respect to 100 parts by mass of the sum of the components (A) to (C).
Further, although not particularly limited, when the resin varnish of the present invention contains the component (D), the content thereof is 30 to 70 with respect to 100 parts by mass of the total of the components (A) to (C). It is preferable that it is a mass part. (D) It exists in the tendency for the outstanding low thermal expansibility to be acquired because a component is 30 mass parts or more. On the other hand, when it is 70 parts by mass or less, heat resistance is obtained and the fluidity and moldability of the resin varnish tend to be good. From the same viewpoint, the content of the component (D) may be 40 to 60 parts by mass with respect to 100 parts by mass of the sum of the components (A) to (C).
 また、樹脂ワニスに(E)成分を含有させる場合、その含有量は、(A)~(C)成分の総和100質量部に対して、0.5~6質量部であることが好ましい。
 (A)~(C)成分の総和100質量部に対して(E)成分が0.5質量部以上であることにより、高金属箔接着性及び優れた低熱膨張性が得られる傾向にある。一方、6質量部以下であることにより、高耐熱性が得られる傾向にある。
When the component (E) is contained in the resin varnish, the content is preferably 0.5 to 6 parts by mass with respect to 100 parts by mass as the total of the components (A) to (C).
When the component (E) is 0.5 parts by mass or more with respect to 100 parts by mass of the total of the components (A) to (C), high metal foil adhesion and excellent low thermal expansion tend to be obtained. On the other hand, when it is 6 parts by mass or less, high heat resistance tends to be obtained.
 また、樹脂ワニスに(F)成分を含有させる場合、その含有量は、難燃性の観点から、(A)~(C)成分の総和100質量部に対して、好ましくは0.1~20質量部、より好ましくは0.5~10質量部である。特に、(F)成分としてリン系難燃剤を用いる場合、難燃性の観点から、(A)~(C)成分の総和100質量部に対して、リン原子含有率が0.1~3質量部となる量が好ましく、0.2~3質量部となる量がより好ましく、0.5~3質量部となる量がさらに好ましい。 When the component (F) is contained in the resin varnish, the content thereof is preferably 0.1 to 20 with respect to 100 parts by mass of the total of the components (A) to (C) from the viewpoint of flame retardancy. Part by mass, more preferably 0.5 to 10 parts by mass. In particular, when a phosphorus-based flame retardant is used as the component (F), from the viewpoint of flame retardancy, the phosphorus atom content is 0.1 to 3 masses per 100 mass parts of the total of the components (A) to (C). Is preferably 0.2 to 3 parts by mass, more preferably 0.5 to 3 parts by mass.
(その他の成分)
 樹脂ワニスには、本発明の効果を損なわない範囲で必要に応じて、添加剤等のその他の成分を含有させることができる。これらは1種を単独で含有させてもよいし、2種以上を含有させてもよい。
(Other ingredients)
If necessary, the resin varnish can contain other components such as additives as long as the effects of the present invention are not impaired. These may contain 1 type independently, and may contain 2 or more types.
(添加剤)
 添加剤としては、例えば、硬化促進剤、着色剤、酸化防止剤、還元剤、紫外線吸収剤、蛍光増白剤、密着性向上剤、有機充填材等が挙げられる。これらは1種を単独で使用してもよいし、2種以上を併用してもよい。
(Additive)
Examples of the additive include a curing accelerator, a colorant, an antioxidant, a reducing agent, an ultraviolet absorber, a fluorescent whitening agent, an adhesion improver, and an organic filler. These may be used individually by 1 type and may use 2 or more types together.
(有機溶剤)
 樹脂ワニスは、取り扱いを容易にするという観点及び後述するプリプレグを製造し易くする観点から、有機溶剤を含有している。
 該有機溶剤としては、特に制限されないが、例えば、メタノール、エタノール、エチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、トリエチレングリコール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノプロピルエーテル等のアルコール系溶剤;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤;テトラヒドロフラン等のエーテル系溶剤;トルエン、キシレン、メシチレン等の芳香族系溶剤;ホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド及びN-メチルピロリドン等のアミド系溶剤を含む、窒素原子含有溶剤;ジメチルスルホキシド等のスルホキシド系溶剤を含む硫黄原子含有溶剤;メトキシエチルアセテート、エトキシエチルアセテート、ブトキシエチルアセテート、プロピレングリコールモノメチルエーテルアセテート、酢酸エチル等のエステル系溶剤などが挙げられる。
 これらの中でも、溶解性の観点から、アルコール系溶剤、ケトン系溶剤、窒素原子含有溶剤が好ましく、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、メチルセロソルブ、プロピレングリコールモノメチルエーテルがより好ましく、メチルエチルケトン、メチルイソブチルケトンがさらに好ましく、メチルエチルケトンが特に好ましい。
 有機溶剤は、1種を単独で使用してもよいし、2種以上を併用してもよい。
(Organic solvent)
The resin varnish contains an organic solvent from the viewpoint of facilitating handling and from the viewpoint of facilitating manufacture of a prepreg described later.
The organic solvent is not particularly limited. For example, methanol, ethanol, ethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, triethylene glycol, Alcohol solvents such as propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, propylene glycol monopropyl ether, dipropylene glycol monopropyl ether; ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone; ether solvents such as tetrahydrofuran ; Aromatic solvents such as toluene, xylene, mesitylene; Form Nitrogen-containing solvents including amide solvents such as amide, N-methylformamide, N, N-dimethylformamide, N, N-dimethylacetamide and N-methylpyrrolidone; sulfur atoms including sulfoxide solvents such as dimethyl sulfoxide Solvent; ester solvents such as methoxyethyl acetate, ethoxyethyl acetate, butoxyethyl acetate, propylene glycol monomethyl ether acetate, ethyl acetate and the like.
Among these, from the viewpoint of solubility, alcohol solvents, ketone solvents, and nitrogen atom-containing solvents are preferable, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methyl cellosolve, and propylene glycol monomethyl ether are more preferable, and methyl ethyl ketone and methyl isobutyl ketone are preferable. More preferred is methyl ethyl ketone.
An organic solvent may be used individually by 1 type, and may use 2 or more types together.
 樹脂ワニスにおける有機溶剤の含有量は、樹脂ワニスの取り扱いが容易になる程度に適宜調整すればよく、また、樹脂ワニスの塗工性が良好となる範囲であれば特に制限はないが、不揮発分濃度(有機溶剤以外の成分の濃度)が好ましくは30~90質量%、より好ましくは40~80質量%、さらに好ましくは50~80質量%となるように調整すればよい。 The content of the organic solvent in the resin varnish may be appropriately adjusted to such an extent that the resin varnish can be easily handled, and is not particularly limited as long as the coating property of the resin varnish is good. The concentration (concentration of components other than the organic solvent) is preferably 30 to 90% by mass, more preferably 40 to 80% by mass, and even more preferably 50 to 80% by mass.
[プリプレグ]
 本発明のプリプレグは、本発明の樹脂ワニスを含有してなるものであり、その製造方法に特に制限はないが、例えば、樹脂ワニスをシート状補強基材に含浸又は塗工し、加熱等により半硬化(Bステージ化)させて製造することができる。
 プリプレグのシート状補強基材としては、各種の電気絶縁材料用積層板に用いられている周知のものが使用できる。シート状補強基材の材質としては、紙、コットンリンターのような天然繊維;ガラス繊維及びアスベスト等の無機繊維;アラミド、ポリイミド、ポリビニルアルコール、ポリエステル、テトラフルオロエチレン及びアクリル等の有機繊維;これらの混合物などが挙げられる。これらの中でも、難燃性の観点から、ガラス繊維が好ましい。ガラス繊維基材としては、Eガラス、Cガラス、Dガラス、Sガラス等を用いた織布又は短繊維を有機バインダーで接着したガラス織布;ガラス繊維とセルロース繊維とを混抄したもの等が挙げられる。より好ましくは、Eガラスを使用したガラス織布である。
 これらのシート状補強基材は、例えば、織布、不織布、ロービンク、チョップドストランドマット又はサーフェシングマット等の形状を有する。なお、材質及び形状は、目的とする成形物の用途及び性能により選択され、1種を単独で使用してもよいし、必要に応じて、2種以上の材質及び形状を組み合わせることもできる。
 本発明のプリプレグの厚さは、成形性及び高密度配線を可能にする観点から、0.01~0.5mmが好ましく、0.02~0.3mmがより好ましく、0.05~0.2mmがさらに好ましい。
[Prepreg]
The prepreg of the present invention contains the resin varnish of the present invention, and the production method is not particularly limited. For example, the resin varnish is impregnated or coated on a sheet-like reinforcing substrate, and heated. Semi-cured (B-stage) can be produced.
As the prepreg sheet-like reinforcing substrate, known materials used for various types of laminates for electrical insulating materials can be used. As the material of the sheet-like reinforcing base material, natural fibers such as paper and cotton linter; inorganic fibers such as glass fiber and asbestos; organic fibers such as aramid, polyimide, polyvinyl alcohol, polyester, tetrafluoroethylene, and acrylic; A mixture etc. are mentioned. Among these, glass fiber is preferable from the viewpoint of flame retardancy. Examples of the glass fiber substrate include a woven fabric using E glass, C glass, D glass, S glass, or the like, a glass woven fabric obtained by bonding short fibers with an organic binder; a mixture of glass fibers and cellulose fibers, and the like. It is done. More preferably, it is a glass woven fabric using E glass.
These sheet-like reinforcement base materials have shapes, such as a woven fabric, a nonwoven fabric, a robink, a chopped strand mat, or a surfacing mat, for example. In addition, a material and a shape are selected by the use and performance of the target molding, and 1 type may be used independently and 2 or more types of materials and shapes can also be combined as needed.
The thickness of the prepreg of the present invention is preferably 0.01 to 0.5 mm, more preferably 0.02 to 0.3 mm, and more preferably 0.05 to 0.2 mm from the viewpoint of enabling moldability and high-density wiring. Is more preferable.
 こうして得られる本発明のプリプレグは、下記方法に従って求める標準偏差σが0.012%以下となり得る。これは、寸法変化量のバラつきが小さいことを意味する。
(標準偏差σの算出方法)
 プリプレグ1枚の両面に厚さ18μmの銅箔を重ね、190℃、2.45MPaにて90分間加熱加圧成形し、厚さ0.1mmの両面銅張積層板を作製する。こうして得られた両面銅張積層板について、面内に直径1.0mmの穴開けを図1に記載の1~8の場所に実施する。図1に記載のたて糸方向(1-7、2-6、3-5)及びよこ糸方向(1-3、8-4、7-5)の各3点ずつの距離を画像測定機を使用して測定し、各測定距離を初期値とする。その後、外層銅箔を除去し、乾燥機にて185℃で60分間加熱する。冷却後、初期値の測定方法と同様にして、たて糸方向(1-7、2-6、3-5)及びよこ糸方向(1-3、8-4、7-5)の各3点ずつの距離を測定する。各測定距離の初期値に対する変化率からそれらの変化率の平均値を求め、該平均値に対する標準偏差σを算出する。
 前記画像測定機に特に制限は無いが、例えば、「QV-A808P1L-D」(Mitutoyo社製)を使用することができる。
The prepreg of the present invention thus obtained can have a standard deviation σ determined according to the following method of 0.012% or less. This means that the variation in the dimensional change amount is small.
(Calculation method of standard deviation σ)
A copper foil having a thickness of 18 μm is stacked on both surfaces of one prepreg, and heat-press molding is performed at 190 ° C. and 2.45 MPa for 90 minutes, thereby producing a double-sided copper-clad laminate having a thickness of 0.1 mm. With respect to the double-sided copper clad laminate thus obtained, a hole having a diameter of 1.0 mm is formed in the plane at the locations 1 to 8 shown in FIG. Use an image measuring machine to determine the distance between each of the three points in the warp direction (1-7, 2-6, 3-5) and weft direction (1-3, 8-4, 7-5) shown in FIG. And measure each distance as the initial value. Thereafter, the outer layer copper foil is removed and heated at 185 ° C. for 60 minutes in a dryer. After cooling, in the same manner as the initial value measurement method, three points each in the warp direction (1-7, 2-6, 3-5) and the weft direction (1-3, 8-4, 7-5) Measure distance. An average value of the change rates is obtained from the change rate with respect to the initial value of each measurement distance, and a standard deviation σ with respect to the average value is calculated.
The image measuring machine is not particularly limited, but for example, “QV-A808P1L-D” (manufactured by Mitutoyo) can be used.
 前記標準偏差σは、好ましくは0.011%以下、より好ましくは0.010%以下、さらに好ましくは0.009%以下である。標準偏差σの下限値に特に制限はないが、通常、0.003%以上であり、0.005%以上であってもよいし、0.006%以上であってもよいし、0.007%以上であってもよい。 The standard deviation σ is preferably 0.011% or less, more preferably 0.010% or less, and further preferably 0.009% or less. The lower limit value of the standard deviation σ is not particularly limited, but is usually 0.003% or more, 0.005% or more, 0.006% or more, 0.007 % Or more.
[積層板]
 本発明の積層板は、前記プリプレグと金属箔とを含有してなるものである。例えば、前記プリプレグを1枚用いるか又は必要に応じて2~20枚重ね、その片面又は両面に金属箔を配置した構成で、好ましくは加熱して積層成形することにより製造することができる。なお、金属箔を配置した積層板を、金属張積層板と称することがある。
 金属箔の金属としては、電気絶縁材料用途で用いられるものであれば特に制限されないが、導電性の観点から、好ましくは、銅、金、銀、ニッケル、白金、モリブデン、ルテニウム、アルミニウム、タングステン、鉄、チタン、クロム、又はこれらの金属元素のうちの少なくとも1種を含む合金であることが好ましく、銅、アミルニウムがより好ましく、銅がさらに好ましい。
 積層板の成形条件としては、電気絶縁材料用積層板及び多層板の公知の成形手法を適用することができ、例えば、多段プレス、多段真空プレス、連続成形、オートクレーブ成形機等を使用し、温度100~250℃、圧力0.2~10MPa、加熱時間0.1~5時間で成形することができる。
 また、本発明のプリプレグと内層用プリント配線板とを組合せ、積層成形して、多層板を製造することもできる。
 金属箔の厚みに特に制限はなく、プリント配線板の用途等により適宜選択できる。金属箔の厚みは、好ましくは0.5~150μm、より好ましくは1~100μm、さらに好ましくは5~50μm、特に好ましくは5~30μmである。
[Laminated board]
The laminated board of this invention contains the said prepreg and metal foil. For example, it can be manufactured by using one sheet of the prepreg or stacking 2 to 20 sheets as necessary, and arranging metal foil on one side or both sides thereof, preferably by heating and laminate molding. In addition, the laminated board which has arrange | positioned metal foil may be called a metal-clad laminated board.
The metal of the metal foil is not particularly limited as long as it is used for electrical insulating materials, but from the viewpoint of conductivity, preferably copper, gold, silver, nickel, platinum, molybdenum, ruthenium, aluminum, tungsten, Iron, titanium, chromium, or an alloy containing at least one of these metal elements is preferable, copper and amylnium are more preferable, and copper is more preferable.
As the molding conditions of the laminated plate, a known molding method of a laminated plate for an electrical insulating material and a multilayer plate can be applied, for example, using a multistage press, a multistage vacuum press, continuous molding, an autoclave molding machine, etc. Molding can be performed at 100 to 250 ° C., a pressure of 0.2 to 10 MPa, and a heating time of 0.1 to 5 hours.
Moreover, the prepreg of the present invention and the printed wiring board for inner layer can be combined and laminated to produce a multilayer board.
There is no restriction | limiting in particular in the thickness of metal foil, According to the use etc. of a printed wiring board, it can select suitably. The thickness of the metal foil is preferably 0.5 to 150 μm, more preferably 1 to 100 μm, still more preferably 5 to 50 μm, and particularly preferably 5 to 30 μm.
 なお、金属箔にめっきをすることによりめっき層を形成することも好ましい。
 めっき層の金属は、めっきに使用し得る金属であれば特に制限されない。めっき層の金属は、好ましくは、銅、金、銀、ニッケル、白金、モリブデン、ルテニウム、アルミニウム、タングステン、鉄、チタン、クロム、及びこれらの金属元素のうちの少なくとも1種を含む合金の中から選択されることが好ましい。
 めっき方法としては特に制限はなく、公知の方法、例えば電解めっき法、無電解めっき法が利用できる。
In addition, it is also preferable to form a plating layer by plating metal foil.
The metal of the plating layer is not particularly limited as long as it can be used for plating. The metal of the plating layer is preferably made of copper, gold, silver, nickel, platinum, molybdenum, ruthenium, aluminum, tungsten, iron, titanium, chromium, and an alloy containing at least one of these metal elements. Preferably it is selected.
There is no restriction | limiting in particular as a plating method, For example, a well-known method, for example, the electroplating method and the electroless-plating method, can be utilized.
[プリント配線板]
 本発明は、前記プリプレグ又は前記積層板を含有してなるプリント配線板をも提供する。
 本発明のプリント配線板は、金属張積層板の金属箔に対して回路加工を施すことにより製造することができる。回路加工は、例えば、金属箔表面にレジストパターンを形成後、エッチングにより不要部分の金属箔を除去し、レジストパターンを剥離後、ドリルにより必要なスルーホールを形成し、再度レジストパターンを形成後、スルーホールに導通させるためのメッキを施し、最後にレジストパターンを剥離することにより行うことができる。このようにして得られたプリント配線板の表面にさらに上記の金属張積層板を前記したのと同様の条件で積層し、さらに、上記と同様にして回路加工して多層プリント配線板とすることができる。この場合、必ずしもスルーホールを形成する必要はなく、ビアホールを形成してもよく、両方を形成することができる。このような多層化は必要枚数行われる。
[Printed wiring board]
The present invention also provides a printed wiring board comprising the prepreg or the laminated board.
The printed wiring board of the present invention can be produced by subjecting a metal foil of a metal-clad laminate to circuit processing. For example, after forming a resist pattern on the surface of the metal foil, the unnecessary portion of the metal foil is removed by etching, the resist pattern is peeled off, a necessary through hole is formed by a drill, and a resist pattern is formed again. It can be performed by plating for conducting through holes and finally peeling off the resist pattern. The above-described metal-clad laminate is further laminated on the surface of the printed wiring board thus obtained under the same conditions as described above, and further, the circuit is processed in the same manner as described above to obtain a multilayer printed wiring board. Can do. In this case, it is not always necessary to form a through hole, a via hole may be formed, and both can be formed. Such multi-layering is performed as many times as necessary.
[半導体パッケージ]
 本発明の半導体パッケージは、本発明のプリント配線板に半導体を搭載してなるものである。本発明の半導体パッケージは、本発明のプリント配線板の所定の位置に、半導体チップ、メモリ等を搭載して製造することができる。
[Semiconductor package]
The semiconductor package of the present invention is obtained by mounting a semiconductor on the printed wiring board of the present invention. The semiconductor package of the present invention can be manufactured by mounting a semiconductor chip, a memory or the like at a predetermined position of the printed wiring board of the present invention.
 次に、下記の実施例により本発明をさらに詳しく説明するが、これらの実施例は本発明をいかなる意味においても制限するものではない。本発明に係る熱硬化性樹脂組成物を用いて、樹脂ワニス、該樹脂ワニスを用いて作製したプリプレグ、さらに銅張積層板を作製し、下記方法に従って各評価を行った。 Next, the present invention will be described in more detail with reference to the following examples, but these examples do not limit the present invention in any way. Using the thermosetting resin composition according to the present invention, a resin varnish, a prepreg produced using the resin varnish, and a copper-clad laminate were produced, and each evaluation was performed according to the following methods.
[評価方法]
<1.耐熱性(リフローはんだ耐熱性)>
 各例で作製した4層銅張積層板を用いて、最高到達温度を266℃とし、260℃以上の恒温槽環境下で30秒間4層銅張積層板を流すことを1サイクルとし、目視にて基板が膨れたと確認できるまでのサイクル数を求めた。サイクル数が多いほど、耐熱性に優れ、10サイクル以上であれば十分な耐熱性を有すると言える。
[Evaluation methods]
<1. Heat resistance (Reflow soldering heat resistance)>
Using the four-layer copper-clad laminate produced in each example, the maximum temperature reached 266 ° C., and flowing the four-layer copper-clad laminate for 30 seconds in a thermostatic bath environment of 260 ° C. or higher was regarded as one cycle. Thus, the number of cycles until it was confirmed that the substrate was swollen was obtained. It can be said that the greater the number of cycles, the better the heat resistance, and the sufficient heat resistance is 10 cycles or more.
<2.比誘電率(Dk)>
 ネットワークアナライザ「8722C」(ヒューレットパッカード社製)を用い、トリプレート構造直線線路共振器法により、1GHzにおける両面銅張積層板の比誘電率の測定を実施した。試験片サイズは、200mm×50mm×厚さ0.8mmで、1枚の両面銅張積層板の片面の中心にエッチングにより幅1.0mmの直線線路(ライン長さ200mm)を形成し、裏面は全面に銅を残してグランド層とした。もう1枚の両面銅張積層板について、片面を全面エッチングし、裏面はグランド層とした。これら2枚の両面銅張積層板を、グランド層を外側にして重ね合わせ、ストリップ線路とした。測定は25℃で行った。
 比誘電率が小さいほど好ましい。
<2. Relative permittivity (Dk)>
Using a network analyzer “8722C” (manufactured by Hewlett-Packard Company), the relative dielectric constant of the double-sided copper-clad laminate at 1 GHz was measured by a triplate structure linear line resonator method. The test piece size is 200 mm x 50 mm x thickness 0.8 mm. A straight line (line length 200 mm) with a width of 1.0 mm is formed by etching at the center of one side of one double-sided copper-clad laminate, and the back side is A ground layer was formed by leaving copper on the entire surface. For the other double-sided copper-clad laminate, one side was etched entirely and the back side was a ground layer. These two double-sided copper-clad laminates were stacked with the ground layer on the outside to form a strip line. The measurement was performed at 25 ° C.
The smaller the relative dielectric constant, the better.
<3.金属箔接着性(銅箔ピール強度)>
 金属箔接着性は、銅箔ピール強度によって評価した。各例で作製した両面銅張積層板を銅エッチング液「過硫酸アンモニウム(APS)」(株式会社ADEKA製)に浸漬することにより3mm幅の銅箔を形成して評価基板を作製し、オートグラフ「AG-100C」(株式会社島津製作所製)を用いて銅箔のピール強度を測定した。値が大きいほど、金属箔接着性に優れることを示す。
<3. Metal foil adhesion (copper foil peel strength)>
Metal foil adhesion was evaluated by copper foil peel strength. The double-sided copper-clad laminate produced in each example was immersed in a copper etching solution “ammonium persulfate (APS)” (manufactured by ADEKA) to form a copper foil having a width of 3 mm to produce an evaluation board. The peel strength of the copper foil was measured using “AG-100C” (manufactured by Shimadzu Corporation). It shows that it is excellent in metal foil adhesiveness, so that a value is large.
<4.ガラス転移温度(Tg)>
 各例で作製した両面銅張積層板を銅エッチング液「過硫酸アンモニウム(APS)」(株式会社ADEKA製)に浸漬することにより銅箔を取り除いた5mm角の評価基板を作製し、TMA試験装置「Q400EM」(TAインスツルメンツ社製)を用い、評価基板の面方向(Z方向)の30~260℃における熱膨張特性を観察し、膨張量の変曲点をガラス転移温度とした。
<4. Glass transition temperature (Tg)>
The double-sided copper-clad laminate produced in each example was immersed in a copper etching solution “Ammonium Persulfate (APS)” (manufactured by ADEKA Corporation) to produce a 5 mm square evaluation substrate from which the copper foil was removed. Q400EM "(manufactured by TA Instruments) was used to observe the thermal expansion characteristics at 30 to 260 ° C. in the plane direction (Z direction) of the evaluation substrate, and the inflection point of the expansion amount was defined as the glass transition temperature.
<5.低熱膨張性>
 各例で作製した両面銅張積層板を銅エッチング液「過硫酸アンモニウム(APS)」(株式会社ADEKA製)に浸漬することにより銅箔を取り除いた5mm角の評価基板を作製し、TMA試験装置「Q400EM」(TAインスツルメンツ社製)を用いて、評価基板の面方向の熱膨張率(線膨張率)を測定した。なお、試料が有する熱歪みの影響を除去するため、昇温-冷却サイクルを2回繰り返し、2回目の温度変位チャートの、30℃~260℃の熱膨張率[ppm/℃]を測定し、低熱膨張性の指標とした。値が小さいほど、低熱膨張性に優れている。なお、表中には、Tg未満(「<Tg」と表記する。)における熱膨張率とTg超(「>Tg」と表記する。)における熱膨張率とに分けて記載した。
 測定条件 1st Run:室温→210℃(昇温速度10℃/min)
      2nd Run:0℃→270℃(昇温速度10℃/min)
 銅張積層板は、さらなる薄型化が望まれており、これに併せて銅張積層板を構成するプリプレグの薄型化も検討されている。薄型化されたプリプレグは、反りやすくなるため、熱処理時におけるプリプレグの反りが小さいことが望まれる。反りを小さくするためには、基材の面方向の熱膨張率が小さいことが有効である。
<5. Low thermal expansion>
The double-sided copper-clad laminate produced in each example was immersed in a copper etching solution “Ammonium Persulfate (APS)” (manufactured by ADEKA Corporation) to produce a 5 mm square evaluation substrate from which the copper foil was removed. The thermal expansion coefficient (linear expansion coefficient) in the surface direction of the evaluation substrate was measured using “Q400EM” (manufactured by TA Instruments). In order to remove the influence of the thermal strain of the sample, the temperature rising / cooling cycle was repeated twice, and the coefficient of thermal expansion [ppm / ° C.] of 30 ° C. to 260 ° C. in the second temperature displacement chart was measured. An index of low thermal expansion was used. The smaller the value, the better the low thermal expansion. In the table, the thermal expansion coefficient below Tg (denoted as “<Tg”) and the thermal expansion coefficient above Tg (denoted as “> Tg”) are shown separately.
Measurement conditions 1 st Run: room temperature → 210 ° C. (temperature increase rate 10 ° C./min)
2 nd Run: 0 ° C. → 270 ° C. (temperature increase rate 10 ° C./min)
The copper-clad laminate is desired to be further reduced in thickness, and in conjunction with this, the prepreg constituting the copper-clad laminate is also being considered to be thinner. Since the thinned prepreg is likely to warp, it is desired that the prepreg warp during heat treatment be small. In order to reduce the warpage, it is effective that the coefficient of thermal expansion in the surface direction of the substrate is small.
<6.めっき付き回り性(レーザ加工性)>
 各例で作製した4層銅張積層板に対して、レーザマシン「LC-2F21B/2C」(日立ビアメカニクス株式会社製)を用いて、目標穴径80μm、ガウシアン、サイクルモードにより、銅ダイレクト法、パルス幅15μs×1回、7μs×4回を行い、レーザ穴開けを実施した。
 得られたレーザ穴開け基板に関して、膨潤液「スウェリングディップセキュリガントP」(アトテックジャパン株式会社製)を70℃、5分、粗化液「ドージングセキュリガントP500J」(アトテックジャパン株式会社製)を70℃、9分、中和液「リダクションコンディショナーセキュリガントP500」(アトテックジャパン株式会社製)を40℃、5分の条件で使用し、デスミア処理を実施した。この後、無電解めっき液「プリガントMSK-DK」(アトテックジャパン株式会社製)を30℃、20分、電気めっき液「カパラシドHL」(アトテックジャパン株式会社製)を24℃、2A/dm、2時間を実施し、レーザ加工基板にめっきを施した。
 得られたレーザ穴開け基板の断面観察を実施し、めっきの付き回り性を確認した。めっきの付き回り性の評価方法として、レーザ穴上部のめっき厚みとレーザ穴底部のめっき厚みの差が、レーザ穴上部のめっき厚みの10%以内であることが付き回り性として好ましいことから、100穴中における、この範囲に含まれる穴の存在割合(%)を求めた。
<6. Plating rotation (Laser workability)>
Using the laser machine “LC-2F21B / 2C” (manufactured by Hitachi Via Mechanics Co., Ltd.) with the target hole diameter of 80 μm, Gaussian, and cycle mode for the 4-layer copper-clad laminate produced in each example, the copper direct method The laser was drilled with a pulse width of 15 μs × 1 and 7 μs × 4.
Regarding the obtained laser drilled substrate, the swelling liquid “Swelling Dip Securigant P” (manufactured by Atotech Japan Co., Ltd.) is 70 ° C. for 5 minutes, and the roughening liquid “Dosing Securigant P500J” (manufactured by Atotech Japan Co., Ltd.) is used. The desmear treatment was carried out at 70 ° C. for 9 minutes using the neutralizing solution “Reduction Conditioner Securigant P500” (manufactured by Atotech Japan Co., Ltd.) at 40 ° C. for 5 minutes. Thereafter, the electroless plating solution “Prigant MSK-DK” (manufactured by Atotech Japan Co., Ltd.) at 30 ° C. for 20 minutes, and the electroplating solution “Kaparaside HL” (manufactured by Atotech Japan Co., Ltd.) at 24 ° C., 2 A / dm 2 , After 2 hours, the laser-processed substrate was plated.
The cross section of the obtained laser drilled substrate was observed, and the plating coverage was confirmed. As a method for evaluating the throwing power of plating, the difference between the plating thickness at the top of the laser hole and the plating thickness at the bottom of the laser hole is preferably within 10% of the plating thickness at the top of the laser hole. The existence ratio (%) of holes included in this range in the hole was determined.
<7.成形性>
 各例で作製した4層銅張積層板について、外層銅を除去した後、樹脂の埋め込み性として、340mm×500mmの面内中における、ボイド及びかすれの有無を目視によって確認し、成形性の指標とした。ボイド及びかすれが無い場合、「良好」と示し、ボイド又はかすれが有る場合には、その旨を示す。ボイド及びかすれが無い場合、成形性が良好であると言える。
<7. Formability>
For the four-layer copper-clad laminate produced in each example, after removing the outer layer copper, the presence or absence of voids and blurring in the in-plane of 340 mm × 500 mm was visually confirmed as resin embedding ability, and an index of formability It was. When there is no void or blur, it is indicated as “good”, and when there is a void or blur, this is indicated. When there is no void and blur, it can be said that the moldability is good.
<8.寸法変化量のバラつきの評価>
 各例で作製した両面銅張積層板について、面内に直径1.0mmの穴開けを図1の通りに実施した。図1に記載の通り、ガラスクロスのたて糸方向(1-7、2-6、3-5)及びよこ糸方向(1-3、8-4、7-5)の各3点ずつの距離を画像測定機「QV-A808P1L-D」(Mitutoyo社製)を使用して測定し、各測定距離を初期値とした。その後、外層銅箔を除去し、乾燥機にて185℃で60分間加熱した。冷却後、初期値の測定方法と同様にして、たて糸方向(1-7、2-6、3-5)及びよこ糸方向(1-3、8-4、7-5)の各3点ずつの距離を測定した。各測定距離の初期値に対する変化率[(測定値-初期値)×100/初期値]からそれらの変化率の平均値を求め、該平均値に対する標準偏差σを算出し、該標準偏差σを寸法変化量のバラつきの指標とした。標準偏差σの値が小さいことが、寸法変化量のバラつきが小さく、好ましいことを示す。
<8. Evaluation of variation in dimensional change>
About the double-sided copper clad laminated board produced in each example, the hole with a diameter of 1.0 mm was implemented in the surface as FIG. As shown in FIG. 1, the distance between three points in the warp direction (1-7, 2-6, 3-5) and the weft direction (1-3, 8-4, 7-5) of the glass cloth is shown in the image. Measurement was performed using a measuring instrument “QV-A808P1L-D” (manufactured by Mitutoyo), and each measurement distance was set as an initial value. Thereafter, the outer layer copper foil was removed and heated at 185 ° C. for 60 minutes in a dryer. After cooling, in the same manner as the initial value measurement method, three points each in the warp direction (1-7, 2-6, 3-5) and the weft direction (1-3, 8-4, 7-5) The distance was measured. The average value of the rate of change is calculated from the rate of change of each measurement distance relative to the initial value [(measured value−initial value) × 100 / initial value], and the standard deviation σ is calculated for the average value. It was used as an index of variation in dimensional change. A small value of the standard deviation σ indicates that the variation in dimensional change is small and preferable.
 以下、実施例及び比較例で使用した各成分について説明する。 Hereinafter, each component used in Examples and Comparative Examples will be described.
(A)成分:下記製造例A-1~A-5で製造したマレイミド化合物(A-1)~(A-5)の溶液を用いた。
[製造例A-1]
 温度計、攪拌装置及び還流冷却管付き水分定量器を備えた容積1Lの反応容器に、4,4’-ジアミノジフェニルメタン12.1g、ビス(4-マレイミドフェニル)メタン174.4g、p-アミノフェノール13.3g及びジメチルアセトアミド330.0gを入れ、100℃で2時間反応させて、酸性置換基とN-置換マレイミド基とを有するマレイミド化合物(A-1)(Mw=965)のジメチルアセトアミド溶液を得、これを(A-1)成分として用いた。
Component (A): Solutions of maleimide compounds (A-1) to (A-5) produced in the following Production Examples A-1 to A-5 were used.
[Production Example A-1]
In a 1 L capacity reaction vessel equipped with a thermometer, a stirrer and a moisture meter with a reflux condenser, 12.1 g of 4,4′-diaminodiphenylmethane, 174.4 g of bis (4-maleimidophenyl) methane, p-aminophenol 13.3 g and dimethylacetamide 330.0 g were added and reacted at 100 ° C. for 2 hours to obtain a dimethylacetamide solution of maleimide compound (A-1) (Mw = 965) having an acidic substituent and an N-substituted maleimide group. This was used as component (A-1).
[製造例A-2]
 温度計、攪拌装置及び還流冷却管付き水分定量器を備えた容積1Lの反応容器に、4,4’-ジアミノジフェニルメタン22.8g、ビス(4-マレイミドフェニル)メタン164.5g、p-アミノフェノール12.5g及びジメチルアセトアミド330.0gを入れ、100℃で2時間反応させて、酸性置換基とN-置換マレイミド基とを有するマレイミド化合物(A-2)(Mw=1,021)のジメチルアセトアミド溶液を得、これを(A-2)成分として用いた。
[Production Example A-2]
In a 1 L reaction vessel equipped with a thermometer, a stirrer, and a moisture meter with a reflux condenser, 22.8 g of 4,4′-diaminodiphenylmethane, 164.5 g of bis (4-maleimidophenyl) methane, p-aminophenol 12.5 g and dimethylacetamide 330.0 g were added and reacted at 100 ° C. for 2 hours to give a dimethylacetamide of maleimide compound (A-2) (Mw = 1,021) having an acidic substituent and an N-substituted maleimide group A solution was obtained and used as component (A-2).
[製造例A-3]
 温度計、攪拌装置及び還流冷却管付き水分定量器を備えた容積1Lの反応容器に、4,4’-ジアミノジフェニルメタン6.2g、ビス(4-マレイミドフェニル)メタン179.8g、p-アミノフェノール13.7g及びジメチルアセトアミド330.0gを入れ、100℃で2時間反応させて、酸性置換基とN-置換マレイミド基とを有するマレイミド化合物(A-3)(Mw=908)のジメチルアセトアミド溶液を得、これを(A-3)成分として用いた。
[Production Example A-3]
In a reaction vessel having a volume of 1 L equipped with a thermometer, a stirrer, and a moisture meter with a reflux condenser, 6.2 g of 4,4′-diaminodiphenylmethane, 179.8 g of bis (4-maleimidophenyl) methane, p-aminophenol 13.7 g and 330.0 g of dimethylacetamide were added and reacted at 100 ° C. for 2 hours to obtain a dimethylacetamide solution of maleimide compound (A-3) (Mw = 908) having an acidic substituent and an N-substituted maleimide group. This was used as component (A-3).
[製造例A-4]
 温度計、攪拌装置及び還流冷却管付き水分定量器を備えた容積1Lの反応容器に、4,4’-ジアミノジフェニルメタン18.2g、ビス(4-マレイミドフェニル)メタン174.9g、p-アミノフェノール6.7g及びジメチルアセトアミド330.0gを入れ、100℃で2時間反応させて、酸性置換基とN-置換マレイミド基とを有するマレイミド化合物(A-4)(Mw=1,034)のジメチルアセトアミド溶液を得、これを(A-4)成分として用いた。
[Production Example A-4]
In a reaction vessel having a volume of 1 L equipped with a thermometer, a stirrer, and a moisture meter with a reflux condenser, 18.2 g of 4,4′-diaminodiphenylmethane, 174.9 g of bis (4-maleimidophenyl) methane, p-aminophenol 6.7 g and dimethylacetamide 330.0 g were added and reacted at 100 ° C. for 2 hours to give a dimethylacetamide of maleimide compound (A-4) (Mw = 1,034) having an acidic substituent and an N-substituted maleimide group. A solution was obtained and used as component (A-4).
[製造例A-5]
 温度計、攪拌装置及び還流冷却管付き水分定量器を備えた容積1Lの反応容器に、4,4’-ジアミノジフェニルメタン4.9g、ビス(4-マレイミドフェニル)メタン178.5g、p-アミノフェノール16.3g及びジメチルアセトアミド330.0gを入れ、100℃で2時間反応させて、酸性置換基とN-置換マレイミド基とを有するマレイミド化合物(A-5)(Mw=911)のジメチルアセトアミド溶液を得、これを(A-5)成分として用いた。
[Production Example A-5]
In a reaction vessel having a volume of 1 L equipped with a thermometer, a stirrer, and a moisture meter with a reflux condenser, 4.9 g of 4,4′-diaminodiphenylmethane, 178.5 g of bis (4-maleimidophenyl) methane, p-aminophenol 16.3 g and dimethylacetamide 330.0 g were added and reacted at 100 ° C. for 2 hours to obtain a dimethylacetamide solution of maleimide compound (A-5) (Mw = 911) having an acidic substituent and an N-substituted maleimide group. This was used as component (A-5).
 なお、上記製造例で得たマレイミド化合物の重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)により、標準ポリスチレンを用いた検量線から換算した。検量線は、標準ポリスチレン:TSKstandard POLYSTYRENE(Type;A-2500、A-5000、F-1、F-2、F-4、F-10、F-20、F-40)[東ソー株式会社製]を用いて3次式で近似した。GPCの条件は、以下に示す。
 装置:(ポンプ:L-6200型[株式会社日立ハイテクノロジーズ製])、
   (検出器:L-3300型RI[株式会社日立ハイテクノロジーズ製])、
   (カラムオーブン:L-655A-52[株式会社日立ハイテクノロジーズ製])
 カラム;TSKgel SuperHZ2000+TSKgel SuperHZ2300(全て東ソー株式会社製)
 カラムサイズ:6.0mm×40mm(ガードカラム)、7.8mm×300mm(カラム)
 溶離液:テトラヒドロフラン
 試料濃度:20mg/5mL
 注入量:10μL
 流量:0.5mL/分
 測定温度:40℃
In addition, the weight average molecular weight (Mw) of the maleimide compound obtained by the said manufacture example was converted from the calibration curve using a standard polystyrene by gel permeation chromatography (GPC). The calibration curve is standard polystyrene: TSK standard POLYSTYRENE (Type; A-2500, A-5000, F-1, F-2, F-4, F-10, F-20, F-40) [manufactured by Tosoh Corporation] Was approximated by a cubic equation. The GPC conditions are shown below.
Apparatus: (Pump: L-6200 type [manufactured by Hitachi High-Technologies Corporation]),
(Detector: L-3300 type RI [manufactured by Hitachi High-Technologies Corporation]),
(Column oven: L-655A-52 [manufactured by Hitachi High-Technologies Corporation])
Column: TSKgel SuperHZ2000 + TSKgel SuperHZ2300 (all manufactured by Tosoh Corporation)
Column size: 6.0 mm × 40 mm (guard column), 7.8 mm × 300 mm (column)
Eluent: Tetrahydrofuran Sample concentration: 20mg / 5mL
Injection volume: 10 μL
Flow rate: 0.5 mL / min Measurement temperature: 40 ° C
(B)成分:クレゾールノボラック型エポキシ樹脂「EPICLON(登録商標)N-673」(DIC株式会社製)
(C-1)成分:「SMA(登録商標)EF40」(スチレン/無水マレイン酸=4、Mw=11,000、CRAY VALLEY社製)
(C-2)成分:「SMA(登録商標)3000」(スチレン/無水マレイン酸=2、Mw=7,500、CRAY VALLEY社製)
(C-3)成分:「SMA(登録商標)EF80」(スチレン/無水マレイン酸=8、Mw=14,400、CRAY VALLEY社製)
(C-4)成分:「SMA(登録商標)1000」(スチレン/無水マレイン酸=1、Mw=5,000、CRAY VALLEY社製)
Component (B): Cresol novolac type epoxy resin “EPICLON (registered trademark) N-673” (manufactured by DIC Corporation)
Component (C-1): “SMA (registered trademark) EF40” (styrene / maleic anhydride = 4, Mw = 11,000, manufactured by CRAY VALLEY)
Component (C-2): “SMA (registered trademark) 3000” (styrene / maleic anhydride = 2, Mw = 7,500, manufactured by CRAY VALLEY)
Component (C-3): “SMA (registered trademark) EF80” (styrene / maleic anhydride = 8, Mw = 14,400, manufactured by CRAY VALLEY)
Component (C-4): “SMA (registered trademark) 1000” (styrene / maleic anhydride = 1, Mw = 5,000, manufactured by CRAY VALLEY)
(D)成分:アミノシラン系カップリング剤により表面処理された溶融シリカ(平均粒子径:1.9μm、比表面積5.8m/g) Component (D): fused silica surface-treated with an aminosilane coupling agent (average particle size: 1.9 μm, specific surface area 5.8 m 2 / g)
(E)成分:ジシアンジアミド
(F)成分:芳香族リン酸エステル(下記構造式参照)
Figure JPOXMLDOC01-appb-C000016
(E) Component: Dicyandiamide (F) Component: Aromatic phosphoric acid ester (see the structural formula below)
Figure JPOXMLDOC01-appb-C000016
[実施例1~15、比較例1~2]
 上記に示した各成分を下記表1~4の通りに配合(但し、溶液の場合は固形分換算量を示す。)し、さらに溶液の不揮発分が67質量%になるようにメチルエチルケトンを追加し、樹脂ワニスを調製した。
 得られた各樹脂ワニスをIPC規格#3313のガラスクロス(0.1mm)に含浸させ、160℃で4分間乾燥してプリプレグを得た。
[Examples 1 to 15, Comparative Examples 1 and 2]
Each component shown above was blended as shown in the following Tables 1 to 4 (however, in the case of a solution, the amount in terms of solid content is indicated), and methyl ethyl ketone was further added so that the nonvolatile content of the solution was 67% by mass. A resin varnish was prepared.
Each of the obtained resin varnishes was impregnated with IPC standard # 3313 glass cloth (0.1 mm) and dried at 160 ° C. for 4 minutes to obtain a prepreg.
(両面銅張積層板の作製及び性能評価)
 前記プリプレグ8枚を重ねたものの両面に厚さ18μmの銅箔「3EC-VLP-18」(三井金属株式会社製)を重ね、温度190℃、圧力25kgf/cm(2.45MPa)にて90分間加熱加圧成形し、厚さ0.8mm(プリプレグ8枚分)の両面銅張積層板を作製し、該銅張積層板を用いて、前記方法に従って、比誘電率、金属箔接着性、ガラス転移温度(Tg)及び低熱膨張性について測定及び評価した。
 またプリプレグ1枚の両面に厚さ18μmの銅箔「3EC-VLP-18」(三井金属株式会社製)を重ね、温度190℃、圧力25kgf/cm(2.45MPa)にて90分間加熱加圧成形し、厚さ0.1mm(プリプレグ1枚分)の両面銅張積層板を作製し、該両面銅張積層板を用いて、前記方法に従って、寸法変化量のバラつきについて測定及び評価した。
(Production and performance evaluation of double-sided copper-clad laminates)
Copper foil “3EC-VLP-18” (manufactured by Mitsui Kinzoku Co., Ltd.) having a thickness of 18 μm is layered on both sides of the above-described eight prepregs, and the temperature is 190 ° C. and pressure is 25 kgf / cm 2 (2.45 MPa). Heat-press molding for a minute to prepare a double-sided copper-clad laminate with a thickness of 0.8 mm (equivalent to 8 prepregs), and using the copper-clad laminate, according to the above methods, relative dielectric constant, metal foil adhesion, Glass transition temperature (Tg) and low thermal expansion were measured and evaluated.
Also, a 18 μm thick copper foil “3EC-VLP-18” (manufactured by Mitsui Kinzoku Co., Ltd.) is stacked on both sides of one prepreg, and heated for 90 minutes at a temperature of 190 ° C. and a pressure of 25 kgf / cm 2 (2.45 MPa) A double-sided copper-clad laminate having a thickness of 0.1 mm (for one prepreg) was prepared, and the dimensional variation was measured and evaluated using the double-sided copper-clad laminate according to the above-described method.
(4層銅張積層板の作製及び性能評価)
 一方で、前記プリプレグ1枚を使用し、両面に厚さ18μmの銅箔「YGP-18」(日本電解株式会社製)を重ね、温度190℃、圧力25kgf/cm(2.45MPa)にて90分間加熱加圧成形し、厚さ0.1mm(プリプレグ1枚分)の両面銅張積層板を作製した後、両銅箔面に内層密着処理(「BF処理液」(日立化成株式会社製)を使用。)を施し、厚さ0.05mmのプリプレグを1枚ずつ重ね両面に厚さ18μmの銅箔「YGP-18」(日本電解株式会社製)を重ね、温度190℃、圧力25kgf/cm(2.45MPa)にて90分間加熱加圧成形して4層銅張積層板を作製した。該4層銅張積層板を用いて、前記方法に従って、耐熱性、めっき付き回り性及び成形性の評価を実施した。
 結果を表1~4に示す。
(Production and performance evaluation of 4-layer copper-clad laminate)
On the other hand, one prepreg was used, and a copper foil “YGP-18” (manufactured by Nippon Electrolytic Co., Ltd.) having a thickness of 18 μm was stacked on both sides at a temperature of 190 ° C. and a pressure of 25 kgf / cm 2 (2.45 MPa). After heat-press molding for 90 minutes to produce a double-sided copper-clad laminate with a thickness of 0.1 mm (one prepreg), inner layer adhesion treatment (“BF treatment solution” (manufactured by Hitachi Chemical Co., Ltd.) on both copper foil surfaces ), And prepregs with a thickness of 0.05 mm are stacked one by one, and a copper foil “YGP-18” (manufactured by Nippon Electrolytic Co., Ltd.) with a thickness of 18 μm is stacked on both sides, and the temperature is 190 ° C. and the pressure is 25 kgf / A four-layer copper-clad laminate was produced by heating and pressing at cm 2 (2.45 MPa) for 90 minutes. Using the four-layer copper-clad laminate, heat resistance, plating-around property and formability were evaluated according to the above methods.
The results are shown in Tables 1 to 4.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 以上の結果より、以下のことがわかった。
 実施例1~15では、リフローはんだ耐熱性が耐熱要求レベル以上の10サイクル以上を達成し、低比誘電率、高金属箔接着性及び高ガラス転移温度が得られ、且つ低熱膨張性を示した。また、壁面からの適度なガラスクロスの飛び出し、及び適度な粗化形状を有すこと等から、良好なめっき付き回り性を有していることを確認した。成形性においても、樹脂の埋め込み性は良好であり、かすれ及びボイド等の異常は確認されなかった。
 さらに、実施例1~15では標準偏差σが小さくなり、寸法変化量のバラつきが十分に抑制された。一方、比較例1~2では標準偏差σが0.012%を超えており、寸法変化量のバラつきが大きくなった。
From the above results, the following was found.
In Examples 1 to 15, the heat resistance of the reflow solder achieved 10 cycles or more, which is higher than the required heat resistance level, low dielectric constant, high metal foil adhesion and high glass transition temperature were obtained, and low thermal expansion was exhibited. . Moreover, it confirmed that it had the favorable revolving property with plating from having jumped out of the moderate glass cloth from a wall surface, and having an appropriate roughening shape. Also in the moldability, the embedding property of the resin was good, and abnormalities such as blurring and voids were not confirmed.
Further, in Examples 1 to 15, the standard deviation σ was small, and the variation in the dimensional change amount was sufficiently suppressed. On the other hand, in Comparative Examples 1 and 2, the standard deviation σ exceeded 0.012%, and the variation in the dimensional change amount became large.
 本発明により得られる樹脂ワニス、該樹脂ワニスを含有してなるプリプレグ及び該プリプレグを含有してなる積層板は、高耐熱性、低比誘電率、高金属箔接着性、高ガラス転移温度、低熱膨張性を有し、且つ、成形性及びめっき付き回り性に優れ、さらに寸法変化量のバラつきが小さいため、電子機器用のプリント配線板及び半導体パッケージとして有用である。 The resin varnish obtained by the present invention, the prepreg comprising the resin varnish, and the laminate comprising the prepreg have high heat resistance, low relative dielectric constant, high metal foil adhesion, high glass transition temperature, low heat Since it has expansibility, is excellent in formability and plating-around properties, and has little variation in dimensional change, it is useful as a printed wiring board and a semiconductor package for electronic equipment.

Claims (15)

  1.  (A)マレイミド化合物、
     (B)エポキシ樹脂、及び
     (C)芳香族ビニル化合物に由来する構造単位と無水マレイン酸に由来する構造単位とを有する共重合樹脂、
    を含有してなり、
     前記(A)マレイミド化合物が、(a1)少なくとも2個のN-置換マレイミド基を有するマレイミド化合物と、(a2)モノアミン化合物と、(a3)ジアミン化合物とを反応させて得られる、N-置換マレイミド基を有するマレイミド化合物であり、
     且つ、前記(A)マレイミド化合物が、前記(a3)成分に対する前記(a2)成分の使用比率[(a2)成分/(a3)成分](モル比)を0.9~5.0として反応させて得られるものである、樹脂ワニス。
    (A) a maleimide compound,
    (B) an epoxy resin, and (C) a copolymer resin having a structural unit derived from an aromatic vinyl compound and a structural unit derived from maleic anhydride,
    Containing
    The (A) maleimide compound is obtained by reacting (a1) a maleimide compound having at least two N-substituted maleimide groups, (a2) a monoamine compound and (a3) a diamine compound. A maleimide compound having a group,
    The (A) maleimide compound is reacted with the use ratio of the component (a2) to the component (a3) [component (a2) / component (a3)] (molar ratio) being 0.9 to 5.0. Resin varnish that can be obtained.
  2.  前記(a2)モノアミン化合物が下記一般式(a2-1)で示され、前記(a3)ジアミン化合物が下記一般式(a3-1)で示される、請求項1に記載の樹脂ワニス。
    Figure JPOXMLDOC01-appb-C000001

    (一般式(a2-1)中、RA4は、水酸基、カルボキシ基及びスルホン酸基から選択される酸性置換基を示す。RA5は、炭素数1~5のアルキル基又はハロゲン原子を示す。tは1~5の整数、uは0~4の整数であり、且つ、1≦t+u≦5を満たす。但し、tが2~5の整数の場合、複数のRA4は同一であってもよいし、異なっていてもよい。また、uが2~4の整数の場合、複数のRA5は同一であってもよいし、異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000002

    (一般式(a3-1)中、XA2は、炭素数1~3の脂肪族炭化水素基又は-O-を示す。RA6及びRA7は、各々独立に、炭素数1~5のアルキル基、ハロゲン原子、水酸基、カルボキシ基又はスルホン酸基を示す。v及びwは、各々独立に、0~4の整数である。)
    The resin varnish according to claim 1, wherein the (a2) monoamine compound is represented by the following general formula (a2-1), and the (a3) diamine compound is represented by the following general formula (a3-1).
    Figure JPOXMLDOC01-appb-C000001

    (In General Formula (a2-1), R A4 represents an acidic substituent selected from a hydroxyl group, a carboxy group, and a sulfonic acid group, and R A5 represents an alkyl group having 1 to 5 carbon atoms or a halogen atom. t is an integer of 1 to 5, u is an integer of 0 to 4, and 1 ≦ t + u ≦ 5, provided that when t is an integer of 2 to 5, a plurality of R A4 may be the same And when u is an integer of 2 to 4, a plurality of R A5 may be the same or different.)
    Figure JPOXMLDOC01-appb-C000002

    (In the general formula (a3-1), X A2 represents an aliphatic hydrocarbon group having 1 to 3 carbon atoms or —O—. R A6 and R A7 each independently represents an alkyl having 1 to 5 carbon atoms. A group, a halogen atom, a hydroxyl group, a carboxy group, or a sulfonic acid group, and v and w are each independently an integer of 0 to 4.)
  3.  前記(a2)成分及び前記(a3)成分が有する-NH基当量の総和と、前記(a1)成分のマレイミド基当量との関係が、下記式を満たす、請求項1又は2に記載の樹脂ワニス。
     0.1≦〔マレイミド基当量〕/〔-NH基当量の総和〕≦10
    The resin according to claim 1 or 2, wherein the relationship between the sum of -NH 2 group equivalents of the component (a2) and the component (a3) and the maleimide group equivalent of the component (a1) satisfies the following formula: varnish.
    0.1 ≦ [maleimide group equivalent] / [-NH 2 group equivalent] ≦ 10
  4.  前記(B)成分が、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキルノボラック型エポキシ樹脂及びジシクロペンタジエン型エポキシ樹脂からなる群から選択される少なくとも1種である、請求項1~3のいずれか1項に記載の樹脂ワニス。 The component (B) is bisphenol F type epoxy resin, phenol novolak type epoxy resin, cresol novolak type epoxy resin, naphthalene type epoxy resin, anthracene type epoxy resin, biphenyl type epoxy resin, biphenyl aralkyl novolak type epoxy resin and dicyclopentadiene. The resin varnish according to any one of claims 1 to 3, which is at least one selected from the group consisting of type epoxy resins.
  5.  前記(C)成分が、下記一般式(C-i)で表される構造単位と下記式(C-ii)で表される構造単位とを有する共重合樹脂である、請求項1~4のいずれか1項に記載の樹脂ワニス。
    Figure JPOXMLDOC01-appb-C000003

    (式中、RC1は、水素原子又は炭素数1~5のアルキル基であり、RC2は、炭素数1~5のアルキル基、炭素数2~5のアルケニル基、炭素数6~20のアリール基、水酸基又は(メタ)アクリロイル基である。xは、0~3の整数である。但し、xが2又は3である場合、複数のRC2は同一であってもよいし、異なっていてもよい。)
    The component (C) is a copolymer resin having a structural unit represented by the following general formula (Ci) and a structural unit represented by the following formula (C-ii): The resin varnish according to any one of the above items.
    Figure JPOXMLDOC01-appb-C000003

    (Wherein R C1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and R C2 is an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkyl group having 6 to 20 carbon atoms) An aryl group, a hydroxyl group, or a (meth) acryloyl group, where x is an integer of 0 to 3, provided that when x is 2 or 3, a plurality of R C2 may be the same or different. May be.)
  6.  前記(C)成分において、芳香族ビニル化合物に由来する構造単位と無水マレイン酸に由来する構造単位の含有比率[芳香族ビニル化合物に由来する構造単位/無水マレイン酸に由来する構造単位](モル比)が1~9である、請求項1~4のいずれか1項に記載の樹脂ワニス。 In the component (C), the content ratio of the structural unit derived from the aromatic vinyl compound and the structural unit derived from maleic anhydride [the structural unit derived from the aromatic vinyl compound / the structural unit derived from maleic anhydride] (mole The resin varnish according to any one of claims 1 to 4, wherein the ratio) is 1 to 9.
  7.  前記(A)~(C)成分の含有量が、前記(A)~(C)成分の総和100質量部に対して、(A)成分が15~65質量部、(B)成分が15~50質量部、(C)成分が10~45質量部である、請求項1~6のいずれか1項に記載の樹脂ワニス。 The content of the components (A) to (C) is 15 to 65 parts by weight of component (A) and 15 to 65 parts of component (B) with respect to 100 parts by weight of the sum of the components (A) to (C). The resin varnish according to any one of claims 1 to 6, wherein the resin varnish is 50 parts by mass and the component (C) is 10 to 45 parts by mass.
  8.  さらに(D)無機充填材を含有してなる、請求項1~7のいずれか1項に記載の樹脂ワニス。 The resin varnish according to any one of claims 1 to 7, further comprising (D) an inorganic filler.
  9.  さらに(E)硬化剤を含有してなる、請求項1~8のいずれか1項に記載の樹脂ワニス。 The resin varnish according to any one of claims 1 to 8, further comprising (E) a curing agent.
  10.  さらに(F)難燃剤を含有してなる、請求項1~9のいずれか1項に記載の樹脂ワニス。 The resin varnish according to any one of claims 1 to 9, further comprising (F) a flame retardant.
  11.  請求項1~10のいずれか1項に記載の樹脂ワニスを含有してなるプリプレグ。 A prepreg comprising the resin varnish according to any one of claims 1 to 10.
  12.  下記方法に従って求める標準偏差σが0.012%以下である、請求項11に記載のプリプレグ。
    標準偏差σの算出方法:
     プリプレグ1枚の両面に厚さ18μmの銅箔を重ね、190℃、2.45MPaにて90分間加熱加圧成形し、厚さ0.1mmの両面銅張積層板を作製する。こうして得られた両面銅張積層板について、面内に直径1.0mmの穴開けを図1に記載の1~8の場所に実施する。図1に記載のたて糸方向(1-7、2-6、3-5)及びよこ糸方向(1-3、8-4、7-5)の各3点ずつの距離を画像測定機を使用して測定し、各測定距離を初期値とする。その後、外層銅箔を除去し、乾燥機にて185℃で60分間加熱する。冷却後、初期値の測定方法と同様にして、たて糸方向(1-7、2-6、3-5)及びよこ糸方向(1-3、8-4、7-5)の各3点ずつの距離を測定する。各測定距離の初期値に対する変化率からそれらの変化率の平均値を求め、該平均値に対する標準偏差σを算出する。
    The prepreg according to claim 11, wherein the standard deviation σ obtained according to the following method is 0.012% or less.
    Standard deviation σ calculation method:
    A copper foil having a thickness of 18 μm is stacked on both surfaces of one prepreg, and heat-press molding is performed at 190 ° C. and 2.45 MPa for 90 minutes, thereby producing a double-sided copper-clad laminate having a thickness of 0.1 mm. With respect to the double-sided copper clad laminate thus obtained, a hole having a diameter of 1.0 mm is formed in the plane at the locations 1 to 8 shown in FIG. Use an image measuring machine to determine the distance between each of the three points in the warp direction (1-7, 2-6, 3-5) and weft direction (1-3, 8-4, 7-5) shown in FIG. And measure each distance as the initial value. Thereafter, the outer layer copper foil is removed and heated at 185 ° C. for 60 minutes in a dryer. After cooling, in the same manner as the initial value measurement method, three points each in the warp direction (1-7, 2-6, 3-5) and the weft direction (1-3, 8-4, 7-5) Measure distance. An average value of the change rates is obtained from the change rate with respect to the initial value of each measurement distance, and a standard deviation σ with respect to the average value is calculated.
  13.  請求項11又は12に記載のプリプレグと金属箔とを含有してなる積層板。 A laminate comprising the prepreg according to claim 11 or 12 and a metal foil.
  14.  請求項11又は12に記載のプリプレグ又は請求項13に記載の積層板を含有してなるプリント配線板。 A printed wiring board comprising the prepreg according to claim 11 or 12 or the laminate according to claim 13.
  15.  請求項14に記載のプリント配線板に半導体素子を搭載してなる半導体パッケージ。 A semiconductor package comprising a semiconductor element mounted on the printed wiring board according to claim 14.
PCT/JP2019/019565 2018-05-21 2019-05-16 Resin varnish, prepreg, laminate, printed wiring board, and semiconductor package WO2019225482A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020521195A JP7452417B2 (en) 2018-05-21 2019-05-16 Resin varnish, prepreg, laminate, printed wiring board and semiconductor package

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018097280 2018-05-21
JP2018-097280 2018-05-21

Publications (1)

Publication Number Publication Date
WO2019225482A1 true WO2019225482A1 (en) 2019-11-28

Family

ID=68615741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019565 WO2019225482A1 (en) 2018-05-21 2019-05-16 Resin varnish, prepreg, laminate, printed wiring board, and semiconductor package

Country Status (3)

Country Link
JP (1) JP7452417B2 (en)
TW (1) TW202003723A (en)
WO (1) WO2019225482A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010235690A (en) * 2009-03-30 2010-10-21 Hitachi Chem Co Ltd Thermosetting insulating resin composition, and insulating film with support, prepreg, laminated board and multilayer printed wiring board using the same
JP2016210915A (en) * 2015-05-11 2016-12-15 日立化成株式会社 Thermosetting insulation resin composition, and insulation film with support, prepreg, laminated sheet and multilayer printed circuit board using the thermosetting insulation resin composition
JP2017019906A (en) * 2015-07-08 2017-01-26 日立化成株式会社 Thermosetting resin composition, and prepreg, laminate and printed wiring board using the same
JP2017115020A (en) * 2015-12-24 2017-06-29 日立化成株式会社 Thermosetting resin composition, prepreg, copper-clad laminate and printed wiring board
JP2017210545A (en) * 2016-05-25 2017-11-30 日立化成株式会社 Thermosetting resin composition, and prepreg, copper-clad laminate and printed wiring board using the same
JP2018165340A (en) * 2017-03-28 2018-10-25 日立化成株式会社 Thermosetting resin composition, prepreg, copper-clad laminate, printed wiring board and semiconductor package

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010235690A (en) * 2009-03-30 2010-10-21 Hitachi Chem Co Ltd Thermosetting insulating resin composition, and insulating film with support, prepreg, laminated board and multilayer printed wiring board using the same
JP2016210915A (en) * 2015-05-11 2016-12-15 日立化成株式会社 Thermosetting insulation resin composition, and insulation film with support, prepreg, laminated sheet and multilayer printed circuit board using the thermosetting insulation resin composition
JP2017019906A (en) * 2015-07-08 2017-01-26 日立化成株式会社 Thermosetting resin composition, and prepreg, laminate and printed wiring board using the same
JP2017115020A (en) * 2015-12-24 2017-06-29 日立化成株式会社 Thermosetting resin composition, prepreg, copper-clad laminate and printed wiring board
JP2017210545A (en) * 2016-05-25 2017-11-30 日立化成株式会社 Thermosetting resin composition, and prepreg, copper-clad laminate and printed wiring board using the same
JP2018165340A (en) * 2017-03-28 2018-10-25 日立化成株式会社 Thermosetting resin composition, prepreg, copper-clad laminate, printed wiring board and semiconductor package

Also Published As

Publication number Publication date
JPWO2019225482A1 (en) 2021-06-24
TW202003723A (en) 2020-01-16
JP7452417B2 (en) 2024-03-19

Similar Documents

Publication Publication Date Title
JP7459900B2 (en) Method for producing prepreg, prepreg, laminate, printed wiring board, and semiconductor package
JP6801652B2 (en) Thermosetting resin composition, prepreg, laminated board and printed wiring board
JP6701630B2 (en) Thermosetting resin composition, prepreg, laminated board and printed wiring board
JP6454416B2 (en) Resin varnish, prepreg, laminate and printed wiring board
CN110511566B (en) Thermosetting resin composition, method for producing same, prepreg, laminate, and printed wiring board
JP2016222838A (en) Thermosetting resin composition, prepreg, laminate and printed wiring board
TWI814156B (en) Prepregs, laminates and printed circuit boards
JP2018012791A (en) Thermosetting resin composition, prepreg, laminate and printed wiring board
JP2018095889A (en) Resin varnish, prepreg, laminate and printed wiring board
WO2019225482A1 (en) Resin varnish, prepreg, laminate, printed wiring board, and semiconductor package

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19807597

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020521195

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19807597

Country of ref document: EP

Kind code of ref document: A1