WO2019225304A1 - Skin material - Google Patents

Skin material Download PDF

Info

Publication number
WO2019225304A1
WO2019225304A1 PCT/JP2019/018242 JP2019018242W WO2019225304A1 WO 2019225304 A1 WO2019225304 A1 WO 2019225304A1 JP 2019018242 W JP2019018242 W JP 2019018242W WO 2019225304 A1 WO2019225304 A1 WO 2019225304A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
skin material
fibers
skin
nonwoven fabric
Prior art date
Application number
PCT/JP2019/018242
Other languages
French (fr)
Japanese (ja)
Inventor
泰弘 上田
宮崎 健司
Original Assignee
トヨタ紡織株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018098996A external-priority patent/JP6996419B2/en
Priority claimed from JP2018098994A external-priority patent/JP7028059B2/en
Application filed by トヨタ紡織株式会社 filed Critical トヨタ紡織株式会社
Priority to CN201980033617.4A priority Critical patent/CN112135728B/en
Priority to DE112019002594.5T priority patent/DE112019002594T5/en
Publication of WO2019225304A1 publication Critical patent/WO2019225304A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/58Seat coverings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/026Knitted fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R13/00Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
    • B60R13/08Insulating elements, e.g. for sound insulation
    • B60R13/0815Acoustic or thermal insulation of passenger compartments
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4374Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece using different kinds of webs, e.g. by layering webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/20All layers being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0246Acrylic resin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • B32B2262/0284Polyethylene terephthalate [PET] or polybutylene terephthalate [PBT]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/04Cellulosic plastic fibres, e.g. rayon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/06Vegetal fibres
    • B32B2262/062Cellulose fibres, e.g. cotton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/06Vegetal fibres
    • B32B2262/062Cellulose fibres, e.g. cotton
    • B32B2262/065Lignocellulosic fibres, e.g. jute, sisal, hemp, flax, bamboo
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/08Animal fibres, e.g. hair, wool, silk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/14Mixture of at least two fibres made of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/416Reflective
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles

Definitions

  • the present invention relates to a skin material.
  • Genuine leather, synthetic leather, knitted fabrics, woven fabrics, non-woven fabrics, and the like are sometimes used as interior skins for interior articles such as automobiles.
  • these skins do not have particularly excellent reflection performance for near-infrared reflection.
  • the temperature of the interior article rises, and the temperature may become so high that it is difficult to touch with the hand.
  • an air conditioner is used to cool interior articles whose temperature has risen, which reduces the efficiency of the air conditioner, and consequently the energy consumption efficiency of the automobile. Therefore, various studies have been made on the skin material in order to suppress the temperature rise of various articles such as interior articles (see Patent Document 1).
  • a surface layer composed of a first fiber assembly in which fibers not containing carbon black are the main constituent fibers; A back layer laminated on the back side of the surface layer, with or without an adhesive layer, and A skin material with The skin material according to claim 1, wherein the back layer is a second fiber aggregate that does not contain carbon black and contains fibers having a single fiber diameter of greater than 1 ⁇ m and not greater than 5 ⁇ m.
  • the surface layer has near infrared transparency
  • the skin material according to [1] wherein the back layer has near-infrared reflectivity
  • the second fiber aggregate is at least one selected from the group consisting of a knitted fabric, a woven fabric, a spunbonded nonwoven fabric, a melt blown nonwoven fabric, and a needle punched nonwoven fabric [1] or [2] The skin material described in 1.
  • the fiber having a single fiber diameter of greater than 1 ⁇ m and less than or equal to 5 ⁇ m is at least one selected from the group consisting of synthetic fibers, regenerated fibers, and natural fibers [1] to [4] The skin material of any one of these.
  • a skin material Comprising a fiber assembly that does not contain carbon black and contains fibers with a single fiber diameter of greater than 1 ⁇ m and less than or equal to 5 ⁇ m;
  • the total volume of the cube is 100%.
  • the volume ratio that is the ratio of the volume occupied by the fibers having a single fiber diameter of greater than 1 ⁇ m and less than or equal to 5 ⁇ m is 3% or more and 20% or less, and the orientation tensor in the Z-axis direction is 0.42 or less.
  • the fiber aggregate is at least one selected from the group consisting of a knitted fabric, a woven fabric, a spunbonded nonwoven fabric, a melt blown nonwoven fabric, a needle punched nonwoven fabric, and a flocked sheet [6] or [7 ]
  • the description using “ ⁇ ” in the numerical range includes the lower limit value and the upper limit value unless otherwise specified.
  • the description “10 to 20” includes both the lower limit “10” and the upper limit “20”. That is, “10 to 20” has the same meaning as “10 to 20”.
  • the skin material 1 of the first embodiment has a surface layer 3 and a back layer 5 laminated on the back side of the surface layer 3 with or without an adhesive layer. Is provided.
  • the skin material 1 may further include another layer on the back surface side of the back surface layer 5.
  • the surface layer is a first fiber aggregate whose main constituent fiber is a fiber not containing carbon black (fiber with a carbon black content of 0 wt%). Consists of.
  • the material of the constituent fiber is not particularly limited.
  • the “main constituent fiber” refers to the constituent fiber having the largest weight among the constituent fibers contained in the first fiber assembly.
  • the content of the main constituent fiber is preferably 60 parts by weight or more, more preferably 80 parts by weight or more, with respect to 100 parts by weight of all the constituent fibers contained in the first fiber aggregate, and 90 weights. More preferably, it is part or more.
  • the content of the main constituent fiber may be 100 parts by weight.
  • the single fiber diameter of the main constituent fiber is not particularly limited.
  • the diameter of the circumscribed circle is the single fiber diameter.
  • the single fiber diameter can be measured by photographing the cross section of the fiber with a scanning electron microscope.
  • the single yarn cross-sectional shape of the main constituent fiber is not particularly limited.
  • Examples of the single yarn cross-sectional shape include a round cross section and an irregular cross section other than the round cross section.
  • the shape of the irregular cross section is triangular cross section, square cross section, pentagon cross section, flat cross section, wedge cross section, cross section similar to each letter of the alphabet (Y cross section, C cross section, H cross section, I cross section, W cross section) Etc.) and the like are preferably exemplified.
  • the method for obtaining a fiber having an irregular cross section is not particularly limited.
  • the main constituent fiber may be any of synthetic fiber, regenerated fiber, semi-synthetic fiber, and natural fiber.
  • the synthetic fiber is not particularly limited.
  • polyester fibers such as polyethylene terephthalate (PET) fiber, polybutylene terephthalate fiber, polytrimethylene terephthalate fiber and polylactic acid fiber; polyamide fibers such as polyamide 6 fiber and polyamide 66 fiber; polyacrylic fiber and polypropylene fiber
  • PET polyethylene terephthalate
  • polybutylene terephthalate fiber polytrimethylene terephthalate fiber and polylactic acid fiber
  • polyamide fibers such as polyamide 6 fiber and polyamide 66 fiber
  • Various synthetic fibers such as polyolefin-based fibers can be used.
  • polyester-based fibers, particularly PET fibers are preferable from the viewpoint of high versatility and cost.
  • the synthetic fiber may be an undrawn yarn, a semi-drawn yarn, or a mixed yarn in which these are mixed.
  • the recycled fiber is not particularly limited.
  • cellulose-based rayon, purified cellulose fiber-based lyocell, or the like can be used.
  • rayon such as polynosic, viscose and cupra rayon.
  • the semi-synthetic fiber is not particularly limited.
  • cellulose acetate, protein promix, etc. can be used.
  • the natural fiber is not particularly limited.
  • plant fibers such as cotton and hemp, and animal fibers such as silk and animal hair (for example, wool) can be used.
  • constituent fibers other than main constituent fibers are not particularly limited. That is, the single fiber diameter, single yarn cross-sectional shape, and material of other constituent fibers can be arbitrarily selected. Moreover, 2 or more types may be sufficient as another structural fiber.
  • the form of the first fiber aggregate is not particularly limited.
  • the first fiber aggregate is preferably at least one selected from the group consisting of needle punched nonwoven fabrics, knitted fabrics, woven fabrics, melt blown nonwoven fabrics, and spunbonded nonwoven fabrics from the viewpoint of easy manufacture.
  • the fiber assembly is particularly preferably a needle punched nonwoven fabric.
  • the needle punched nonwoven fabric is manufactured by interlacing fibers by reciprocating movement of a needle made of metal or the like, for example.
  • the knitted fabric may be either a warp knitting or a weft knitting. Examples of the weft knitting include a basic structure (flat knitting, rubber knitting, pearl knitting) and its changing structure.
  • warp knitting examples include basic structures (Denby knitting, code knitting, atlas knitting, chain knitting) and their changed structures.
  • the structure of the woven fabric is not particularly limited, and for example, various woven fabrics such as a plain woven fabric, a twill woven fabric, a satin woven fabric, and combinations thereof can be used.
  • the melt blown nonwoven fabric is manufactured, for example, by thinning fibers with a high-temperature air melted from a resin and sprayed from around a spinning nozzle.
  • a spunbonded nonwoven fabric is manufactured, for example, by melting a resin to form fibers (yarns), opening and depositing them on a net to form a web, and then bonding them into a sheet.
  • the thickness of the first fiber aggregate is not particularly limited.
  • the thickness of the first fiber aggregate is preferably 0.1 mm or more and 10 mm or less, more preferably 0.3 mm or more and 5 mm or less, and more preferably 0.5 mm or more and 3 mm or less from the viewpoint of suppressing the manufacturing cost and increasing the transmittance. Further preferred.
  • the basis weight of the fiber assembly is not particularly limited.
  • Basis weight of the first fiber aggregate is preferably from 10 g / m 2 or more 1500 g / m 2 or less, from the viewpoint of reducing the fear impairing decorative show through the back surface layer, 15 g / m 2 or more 1000 g / m 2 more preferably not more than, 20 g / m 2 or more 500 g / m 2 or less is more preferable.
  • Back surface layer (1) Configuration of back surface layer
  • the back surface layer is laminated on the back surface side of the surface layer with or without an adhesive layer.
  • the adhesive layer is not particularly limited, and can be formed by applying a known adhesive by a known method.
  • one of the surface layer and the back layer is formed in advance, and either the surface layer or the back layer is formed thereon.
  • the case where it forms directly can be mentioned suitably.
  • a melt blow method can be suitably employed as a method of directly forming the other.
  • at least the other of the front surface layer and the back surface layer is composed of a melt blown nonwoven fabric.
  • the other of the first fiber assembly and the second fiber assembly is made of a melt blown nonwoven fabric.
  • a surface punch and a back surface layer are needle-punched can be mentioned suitably as another example in case the back surface layer is laminated
  • the constituent fibers of the first fiber aggregate and the constituent fibers of the second fiber aggregate are entangled.
  • a case where the front surface layer and the back surface layer are integrated with a suture may be preferably mentioned. it can.
  • the back surface layer does not contain carbon black (carbon black content is 0 wt%), and contains fibers with a single fiber diameter of more than 1 ⁇ m and not more than 5 ⁇ m.
  • the second fiber assembly Carbon black is not contained in the fiber having a single fiber diameter larger than 1 ⁇ m and not larger than 5 ⁇ m (the carbon black content is 0 wt%). This is because when the carbon black is included, the reflection performance of the second fiber aggregate is lowered.
  • the single fiber diameter of the fiber contained in the second fiber assembly is greater than 1 ⁇ m and not greater than 5 ⁇ m, and preferably not less than 2 ⁇ m and not greater than 5 ⁇ m. .
  • the reflection performance of the skin material for near infrared rays is excellent. Therefore, the temperature rise of various articles covered with the skin material can be suppressed.
  • the reason why the reflection performance is excellent when the single fiber diameter is within this range is not clear, but when the single fiber diameter is within this range, the single fiber diameter is within the range of several times the near infrared wavelength, and Mie scattering and This is presumed to be due to the phenomenon of light scattering.
  • the cross-sectional shape of the single fiber is an irregular cross-section other than the round cross-section, the diameter of the circumscribed circle is the single fiber diameter.
  • the single fiber diameter can be measured by photographing the cross section of the fiber with a scanning electron microscope.
  • the cross-sectional shape of the fiber contained in the second fiber assembly The single-fiber cross-sectional shape of the fiber having a single fiber diameter of more than 1 ⁇ m and not more than 5 ⁇ m is not particularly limited.
  • Examples of the single yarn cross-sectional shape include a round cross section and an irregular cross section other than the round cross section.
  • the shape of the irregular cross section is triangular cross section, square cross section, pentagon cross section, flat cross section, wedge cross section, cross section similar to each letter of the alphabet (Y cross section, C cross section, H cross section, I cross section, W cross section) Etc.) and the like are preferably exemplified.
  • the method for obtaining a fiber having an irregular cross section is not particularly limited.
  • the single yarn cross-sectional shape is preferably a triangular cross section or a flat cross section.
  • split fiber you may form a 2nd fiber assembly from the split fiber previously divided
  • the precursor is chemically treated to divide and open the composite yarn to obtain a split fiber. Good.
  • the second fiber aggregate may contain fibers having a single fiber diameter greater than 1 ⁇ m and not less than 5 ⁇ m (hereinafter also referred to as “other fibers”). .
  • other fibers fibers having a single fiber diameter greater than 1 ⁇ m and not less than 5 ⁇ m.
  • the total amount of fibers contained in the second fiber assembly is 100 parts by weight, it is preferable that 5 parts by weight or more of fibers having a single fiber diameter of more than 1 ⁇ m and not more than 5 ⁇ m are included, and 10 parts by weight or more. More preferably, it is more preferably 15 parts by weight or more.
  • the reflection performance of the second fiber aggregate is particularly excellent when the amount of fibers having a single fiber diameter of greater than 1 ⁇ m and less than 5 ⁇ m is within this range.
  • the fibers contained in the second fiber assembly are preferably composed of fibers having a single fiber diameter of more than 1 ⁇ m and not more than 5 ⁇ m. That is, when the total amount of fibers contained in the second fiber assembly is 100 parts by weight, it is preferable that 100 parts by weight of fibers having a single fiber diameter of greater than 1 ⁇ m and not more than 5 ⁇ m is included.
  • the fiber having a single fiber diameter of greater than 1 ⁇ m and 5 ⁇ m or less may be any of synthetic fiber, regenerated fiber, semi-synthetic fiber, and natural fiber.
  • the synthetic fiber is not particularly limited.
  • polyester fibers such as polyethylene terephthalate (PET) fiber, polybutylene terephthalate fiber, polytrimethylene terephthalate fiber and polylactic acid fiber; polyamide fibers such as polyamide 6 fiber and polyamide 66 fiber; polyacrylic fiber and polypropylene fiber
  • Various synthetic fibers such as polyolefin-based fibers can be used.
  • polyolefin fibers particularly polypropylene fibers
  • polyester fibers and polyamide fibers are preferable from the viewpoint of high versatility and cost.
  • the synthetic fiber may be an undrawn yarn, a semi-drawn yarn, or a mixed yarn in which these are mixed.
  • the recycled fiber is not particularly limited.
  • cellulose-based rayon, purified cellulose fiber-based lyocell, or the like can be used.
  • rayon such as polynosic, viscose and cupra rayon.
  • the semi-synthetic fiber is not particularly limited.
  • cellulose acetate, protein promix, etc. can be used.
  • the natural fiber is not particularly limited.
  • plant fibers such as cotton and hemp, and animal fibers such as silk and animal hair (for example, wool) can be used.
  • the form of the second fiber assembly is not particularly limited.
  • the fiber aggregate is preferably at least one selected from the group consisting of a knitted fabric, a woven fabric, a spunbonded nonwoven fabric, a meltblown nonwoven fabric (meltblown nonwoven fabric), and a needle punched nonwoven fabric from the viewpoint of easy manufacture.
  • the fiber aggregate is particularly preferably a melt blown nonwoven fabric from the viewpoint of easy production.
  • the knitted fabric may be either a warp knitting or a weft knitting. Examples of the weft knitting include a basic structure (flat knitting, rubber knitting, pearl knitting) and its changing structure. In addition, examples of warp knitting include basic structures (Denby knitting, code knitting, atlas knitting, chain knitting) and their changed structures.
  • the structure of the woven fabric is not particularly limited, and for example, various woven fabrics such as a plain woven fabric, a twill woven fabric, a satin woven fabric, and combinations thereof can be used.
  • a spunbonded nonwoven fabric is manufactured, for example, by melting a resin to form fibers (yarns), opening and depositing them on a net to form a web, and then bonding them into a sheet.
  • the melt blown nonwoven fabric is manufactured, for example, by thinning fibers with a high-temperature air melted from a resin and sprayed from around a spinning nozzle.
  • the needle punched nonwoven fabric is manufactured by interlacing fibers by reciprocating movement of a needle made of metal or the like, for example.
  • the thickness of the second fiber aggregate is not particularly limited.
  • the thickness of the second fiber aggregate is preferably 0.1 mm or more and 10 mm or less, more preferably 0.3 mm or more and 5 mm or less, and more preferably 0.5 mm or more and 3 mm or less from the viewpoint of suppressing the manufacturing cost and increasing the reflectance. Further preferred.
  • the basis weight of the second fiber aggregate is not particularly limited.
  • the basis weight of the second fiber aggregate is preferably 10 g / m 2 or more and 1500 g / m 2 or less, more preferably 15 g / m 2 or more and 1000 g / m 2 or less, from the viewpoint of suppressing the manufacturing cost and increasing the reflectance. 20 g / m 2 or more and 500 g / m 2 or less is more preferable.
  • volume ratio which is the ratio of the volume occupied by the fibers in the second fiber assembly, and orientation tensor From an image obtained by observing the second fiber assembly with X-ray CT, one side is 0.1
  • the volume ratio which is the ratio of the volume occupied by fibers having a single fiber diameter greater than 1 ⁇ m and less than 5 ⁇ m, is 3 % To 20%, preferably 4% to 18%, more preferably 5% to 15%.
  • the orientation tensor in the Z-axis direction is preferably 0.42 or less, and more preferably 0.37 or less.
  • the volume ratio (hereinafter, also simply referred to as “volume ratio”), which is the ratio of the volume occupied by the fiber, and the fiber orientation state (orientation tensor) can be obtained as follows.
  • the second fiber aggregate is imaged with X-rays from various directions, and is calculated from data (for example, see FIG. 3) measured using X-ray CT (Computed Tomography) in which reconstruction processing is performed by a computer. be able to.
  • X-ray CT Computer Tomography
  • the 2nd fiber assembly used as object can be evaluated nondestructively.
  • the X-ray inspection apparatus for example, nano3DX manufactured by Rigaku Corporation can be used.
  • the analysis software for example, GeoDict manufactured by Math2Market GmbH can be used.
  • the volume ratio which is the ratio of the volume occupied by fibers having a single fiber diameter greater than 1 ⁇ m and not more than 5 ⁇ m, contained in the cube is determined.
  • the volume ratio is preferably 3% to 20%, more preferably 4% to 8%, and still more preferably 5% to 15%. When the volume ratio is within this range, the temperature increase of the article having the skin material of the present embodiment as the skin is effectively suppressed.
  • the orientation tensor in the Z-axis direction is obtained when the plane direction of the second fiber assembly determined by the X-axis, Y-axis, and Z-axis orthogonal to each other is the XY plane, and the axis orthogonal to the XY plane is the Z-axis.
  • This is an index in which the fibers constituting the two-fiber assembly are oriented in the Z axis.
  • the sum of numerical values in the X direction, the Y direction, and the Z direction is 1.
  • the orientation tensor is calculated as follows. A three-dimensional model is reconstructed from data measured using X-ray CT. From this three-dimensional model, an orientation tensor (Txx, Tyy, Tzz) can be calculated.
  • Txx, Tyy, and Tzz indicate alignment tensors in the X-axis, Y-axis, and Z-axis directions, respectively.
  • Txx + Tyy + Tzz 1.
  • the orientation tensor in the Z-axis direction is preferably 0.42 or less, and more preferably 0.37 or less (the orientation tensor in the Z-axis direction is usually larger than 0).
  • the orientation tensor in the Z-axis direction is within this range, the temperature increase of the article having the skin material of the present embodiment as the skin is effectively suppressed.
  • the volume ratio and the value of the orientation tensor in the Z-axis direction can be adjusted by, for example, density adjustment or press working after manufacturing in a melt blown nonwoven fabric.
  • the manufacturing method of a skin material is not specifically limited.
  • a production method in which a second fiber aggregate (back surface layer) is formed by blowing resin from a spinning nozzle on the first fiber aggregate (surface layer) produced by an arbitrary manufacturing method such as a needle punch is suitable.
  • This manufacturing method is a method of forming the second fiber aggregate on the first fiber aggregate by melt blowing.
  • the first fiber assembly and the second fiber assembly are bonded without providing a separate adhesive layer between the first fiber assembly and the second fiber assembly.
  • this manufacturing method is simpler than other methods, the manufacturing cost can be reduced.
  • a 2nd fiber assembly can also be formed using a composite yarn (composite fiber).
  • a knitted fabric or a woven fabric is formed using a composite yarn (composite fiber) containing a plurality of resins.
  • the second fiber assembly can be produced by subjecting the knitted fabric or woven fabric to an alkali treatment to decompose or dissolve at least some of the plurality of resins and leave a resin portion that does not decompose and dissolve.
  • a composite fiber having a diameter that is easy to handle can be used. After that, the diameter of the fiber can be made smaller than that of the composite fiber by alkali treatment, so that the production is simple.
  • the composite yarn 10 includes a plurality of wedge-shaped (triangular cross-section) portions 13 made of polyester and a radial portion 11 made of polyamide.
  • the adjacent wedge-shaped (triangular cross-section) portions 13 have a structure divided by the radial portions 11.
  • the composite yarn 10 is assembled to form a precursor (knitted fabric, woven fabric, etc.) in advance, and this precursor is chemically treated to decompose the polyamide portion 11 and leave a plurality of wedge-shaped polyester portions 13.
  • a desired second fiber aggregate can be formed by dividing and opening.
  • FIG. 2 shows a cross-sectional view when the skin material 1 is fixed to the surface of the substrate 15 of the article.
  • the fixing method to the base material 15 of the skin material 1 is not limited to adhesion
  • the technical field in which the skin material of the present embodiment is used is not particularly limited. For example, in various industries such as vehicles such as automobiles and railroad vehicles, aircraft, ships, architecture, and apparel, it is suitably used in the technical field related to skin materials.
  • articles using the skin material include interior materials for vehicles such as door trims, roof trims, package trays, seat sheets, furniture such as sofas, and household goods such as shoes, wallets, and clothes.
  • the skin material of this embodiment can be suitably used for articles that can be heated to high temperatures by sunlight, such as door trims (particularly the upper part), package trays, and sheets.
  • goods is not specifically limited.
  • a polyolefin resin is preferably used as the material.
  • polyolefin resins include polypropylene, polyethylene, polybutene, polystyrene, ethylene-propylene copolymer, ethylene-methacrylic acid copolymer, ethylene-ethyl acrylate copolymer, ethylene / propylene / diene ternary copolymer.
  • polystyrene ethylene-propylene copolymer
  • ethylene-methacrylic acid copolymer ethylene-ethyl acrylate copolymer
  • propylene / diene ternary copolymer examples include a polymer and an ethylene / vinyl acetate copolymer.
  • the skin material of this embodiment Since the skin material of this embodiment has near-infrared reflectivity, it can suppress the temperature rise of various articles
  • a skin material according to a second embodiment includes a fiber assembly that does not include carbon black (the content of carbon black is 0 wt%) and includes fibers having a single fiber diameter of greater than 1 ⁇ m and less than or equal to 5 ⁇ m. .
  • the skin material 101 may be made of a fiber assembly 103 as shown in FIG.
  • the skin material 101 may include a surface layer on the surface in addition to the fiber assembly 103.
  • the skin material 101 may include a back surface layer on the back surface in addition to the fiber assembly 103.
  • the back layer for example, a backing layer or a urethane foam layer is preferably exemplified.
  • the backing layer is a coating layer for reinforcing the skin material 101 and / or preventing impregnation of the adhesive.
  • the carbon contained in the fiber assembly does not contain carbon black (the carbon black content is 0 wt%). This is because when carbon black is included, the reflection performance of the fiber assembly is lowered.
  • the single fiber diameter of the fiber contained in a fiber assembly is larger than 1 micrometer and 5 micrometers or less, Preferably they are 2 micrometers or more and 5 micrometers or less.
  • the reflection performance of the skin material for near infrared rays is excellent. Therefore, the temperature rise of various articles covered with the skin material can be suppressed.
  • the reason why the reflection performance is excellent when the single fiber diameter is within this range is not clear, but when the single fiber diameter is within this range, the single fiber diameter is within the range of several times the near infrared wavelength, and Mie scattering and This is presumed to be due to the phenomenon of light scattering.
  • the cross-sectional shape of the single fiber is an irregular cross-section other than the round cross-section, the diameter of the circumscribed circle is the single fiber diameter.
  • the single fiber diameter can be measured by photographing the cross section of the fiber with a scanning electron microscope.
  • the single-fiber cross-sectional shape of a fiber having a single fiber diameter greater than 1 ⁇ m and 5 ⁇ m or less is not particularly limited.
  • the single yarn cross-sectional shape include a round cross section and an irregular cross section other than the round cross section.
  • the shape of the irregular cross section is triangular cross section, square cross section, pentagon cross section, flat cross section, wedge cross section, cross section similar to each letter of the alphabet (Y cross section, C cross section, H cross section, I cross section, W cross section) Etc.) and the like are preferably exemplified.
  • the method for obtaining a fiber having an irregular cross section is not particularly limited.
  • the single yarn cross-sectional shape is preferably a triangular cross section or a flat cross section.
  • split fiber you may form a fiber assembly from the split fiber previously divided
  • the precursor is chemically treated to divide and open the composite yarn to obtain a split fiber. Also good.
  • a fiber having a single fiber diameter greater than 1 ⁇ m and not less than 5 ⁇ m (hereinafter also referred to as “other fibers”)
  • the fiber assembly may contain fibers having a single fiber diameter of greater than 1 ⁇ m and not less than 5 ⁇ m.
  • the total amount of fibers contained in the fiber assembly is 100 parts by weight, it is preferable that 5 parts by weight or more of fibers having a single fiber diameter larger than 1 ⁇ m and 5 ⁇ m or less are contained, and 10 parts by weight or more are contained. More preferably, it is more preferably 15 parts by weight or more.
  • the reflection performance of the fiber assembly is particularly excellent when the amount of fibers having a single fiber diameter of more than 1 ⁇ m and not more than 5 ⁇ m is within this range.
  • the fibers contained in the fiber assembly are preferably composed of fibers having a single fiber diameter of more than 1 ⁇ m and not more than 5 ⁇ m. That is, when the total amount of fibers contained in the fiber assembly is 100 parts by weight, it is preferable that 100 parts by weight of fibers having a single fiber diameter of more than 1 ⁇ m and not more than 5 ⁇ m are included.
  • the fiber having a single fiber diameter of more than 1 ⁇ m and not more than 5 ⁇ m may be any of synthetic fiber, regenerated fiber, semi-synthetic fiber, and natural fiber.
  • the synthetic fiber is not particularly limited.
  • polyester fibers such as polyethylene terephthalate (PET) fiber, polybutylene terephthalate fiber, polytrimethylene terephthalate fiber and polylactic acid fiber; polyamide fibers such as polyamide 6 fiber and polyamide 66 fiber; polyacrylic fiber and polypropylene fiber
  • polyester fibers (particularly PET fibers), polypropylene fibers, and polyamide 6 fibers are preferred because of their high versatility.
  • the synthetic fiber may be an undrawn yarn, a semi-drawn yarn, or a mixed yarn in which these are mixed.
  • the recycled fiber is not particularly limited.
  • cellulose-based rayon, purified cellulose fiber-based lyocell, or the like can be used.
  • rayon such as polynosic, viscose and cupra rayon.
  • the semi-synthetic fiber is not particularly limited.
  • cellulose acetate, protein promix, etc. can be used.
  • the natural fiber is not particularly limited. For example, plant fibers such as cotton and hemp, and animal fibers such as silk and animal hair (for example, wool) can be used.
  • Fiber assembly The form of the fiber assembly is not particularly limited.
  • the fiber aggregate is preferably at least one selected from the group consisting of a knitted fabric, a woven fabric, a spunbonded nonwoven fabric, a meltblown nonwoven fabric (meltblown nonwoven fabric), a needle punched nonwoven fabric, and a flocked sheet from the viewpoint of easy production.
  • the knitted fabric may be either a warp knitting or a weft knitting. Examples of the weft knitting include a basic structure (flat knitting, rubber knitting, pearl knitting) and its changing structure. In addition, examples of warp knitting include basic structures (Denby knitting, code knitting, atlas knitting, chain knitting) and their changed structures.
  • the structure of the woven fabric is not particularly limited, and for example, various woven fabrics such as a plain woven fabric, a twill woven fabric, a satin woven fabric, and combinations thereof can be used.
  • a spunbonded nonwoven fabric is manufactured, for example, by melting a resin to form fibers (yarns), opening and depositing them on a net to form a web, and then bonding them into a sheet.
  • the melt blown nonwoven fabric is manufactured, for example, by thinning fibers with a high-temperature air melted from a resin and sprayed from around a spinning nozzle.
  • the needle punched nonwoven fabric is manufactured by interlacing fibers by reciprocating movement of a needle made of metal or the like, for example.
  • the flocked sheet is produced, for example, by flocking fibers on a sheet-like substrate (base part). From the viewpoint of easy production, electrostatic flocking (flocing) is preferably used.
  • the thickness of the fiber assembly is not particularly limited.
  • the thickness of the fiber assembly is preferably 0.1 mm or more and 10 mm or less, more preferably 0.3 mm or more and 5 mm or less, and further preferably 0.5 mm or more and 3 mm or less from the viewpoint of suppressing the manufacturing cost and increasing the reflectance. .
  • the basis weight of the fiber assembly is not particularly limited.
  • the weight per unit area of the fiber aggregate is preferably 10 g / m 2 or more and 1500 g / m 2 or less, more preferably 15 g / m 2 or more and 1000 g / m 2 or less, from the viewpoint of suppressing the manufacturing cost and increasing the reflectance.
  • / M 2 or more and 500 g / m 2 or less is more preferable.
  • Skin material The skin material of this embodiment is provided with the above-mentioned fiber assembly.
  • the skin material also has near infrared reflectivity due to the near infrared reflectivity of the fiber assembly.
  • volume ratio the volume ratio that is the ratio of the volume that the fiber occupies
  • orientation state of the fiber The (orientation tensor) can be determined as follows. It can be calculated from data (for example, see FIG. 3) measured using X-ray CT (Computed Tomography) in which a skin material is imaged with X-rays from various directions and reconstructed by a computer. . Thereby, the target skin material can be evaluated nondestructively.
  • X-ray inspection apparatus for example, nano3DX manufactured by Rigaku Corporation can be used.
  • analysis software for example, GeoDict made by Math2Market GmbH can be used.
  • the volume ratio which is the ratio of the volume occupied by the fibers having a single fiber diameter of greater than 1 ⁇ m and less than or equal to 5 ⁇ m, is determined. This volume ratio is 3% or more and 20% or less, preferably 4% or more and 18% or less, and more preferably 5% or more and 15% or less from the viewpoint of the temperature rise suppressing effect. When the volume ratio is within this range, the temperature increase of the article having the skin material of the present embodiment as the skin is effectively suppressed.
  • the orientation tensor in the Z-axis direction is the fabric when the plane direction of the fabric (skin material) determined by the X-axis, Y-axis, and Z-axis orthogonal to each other is the XY plane, and the axis orthogonal to the XY plane is the Z-axis. Is an index in which the fibers constituting the are oriented in the Z-axis. The sum of numerical values in the X direction, the Y direction, and the Z direction is 1. Specifically, the orientation tensor is calculated as follows. A three-dimensional model is reconstructed from data measured using X-ray CT. From this three-dimensional model, an orientation tensor (Txx, Tyy, Tzz) can be calculated.
  • Txx, Tyy, and Tzz indicate alignment tensors in the X-axis, Y-axis, and Z-axis directions, respectively.
  • Txx + Tyy + Tzz 1.
  • the orientation tensor in the Z-axis direction is 0.42 or less and more preferably 0.37 or less (the orientation tensor in the Z-axis direction is usually larger than 0).
  • the orientation tensor in the Z-axis direction is within this range, the temperature rise of the coated article is effectively suppressed.
  • the volume ratio and the value of the orientation tensor in the Z-axis direction can be adjusted as follows. For example, in a woven fabric or a knitted fabric, it can be adjusted by adjusting the yarn density. In the case of flocking, it can be adjusted by adjusting the fiber amount and fiber length at the time of flocking, or by pressing with an iron after flocking.
  • the thickness of the skin material is not particularly limited.
  • the thickness of the skin material is preferably 0.1 mm or more and 10 mm or less, more preferably 0.2 mm or more and 5 mm or less, and further preferably 0.3 mm or more and 3 mm or less from the viewpoint of suppressing the manufacturing cost and increasing the reflectance.
  • Manufacturing method of skin material The manufacturing method of a skin material is not specifically limited. In the case of producing a skin material using a composite yarn containing a plurality of resins, the following method can be suitably employed. First, a knitted fabric, a woven fabric, or a flocked sheet is formed using a composite yarn (composite fiber) containing a plurality of resins. Thereafter, the knitted fabric, woven fabric, or flocked sheet is subjected to treatment with alkali or hot water to decompose or dissolve at least some of the plurality of resins, leaving a resin portion that does not decompose and dissolve, A skin material can be manufactured.
  • the composite yarn 10 shown in FIG. 4 can be used (Berryma (trade name) manufactured by KB Seiren Co., Ltd.).
  • the composite yarn 10 includes a plurality of wedge-shaped (triangular cross-section) portions 13 made of polyester and a radial portion 11 made of polyamide.
  • the adjacent wedge-shaped (triangular cross-section) portions 13 have a structure divided by the radial portions 11.
  • the composite yarn 10 is assembled to form a precursor (knitted fabric, woven fabric, or flocked sheet) in advance, and the precursor is chemically treated to decompose the polyamide portion 11 to form a plurality of wedge-shaped polyester portions. By leaving 13, the fiber can be divided and opened to form a desired fiber assembly.
  • FIG. 10 shows a cross-sectional view when the skin material 101 is fixed to the surface of the base material 105 of the article.
  • Reference numeral 107 denotes an adhesive layer.
  • the fixing method of the skin material 101 to the base material 105 is not limited to adhesion, and a known method can be appropriately selected.
  • the technical field in which the skin material of the present embodiment is used is not particularly limited. For example, in various industries such as vehicles such as automobiles and railroad vehicles, aircraft, ships, architecture, and apparel, it is suitably used in the technical field related to skin materials.
  • articles using the skin material include interior materials for vehicles such as door trims, roof trims, package trays, seat sheets, furniture such as sofas, and household goods such as shoes, wallets, and clothes.
  • the skin material of this embodiment can be suitably used for articles that can be heated to high temperatures by sunlight, such as door trims (particularly the upper part), package trays, and sheets.
  • goods is not specifically limited.
  • a polyolefin resin is preferably used as the material.
  • polyolefin resins include polypropylene, polyethylene, polybutene, polystyrene, ethylene-propylene copolymer, ethylene-methacrylic acid copolymer, ethylene-ethyl acrylate copolymer, ethylene / propylene / diene ternary copolymer.
  • polymers include a polymer, an ethylene / vinyl acetate copolymer, polyamide 6, ABS, and polycarbonate.
  • the composite material include glass fiber / PP, glass fiber / polyamide 6, natural fiber / PP, and the like.
  • Experimental example 1A is an example.
  • Experimental examples 2A to 4A are comparative examples.
  • Sample Preparation (1-1) Experimental Example 1A The skin material 1 having the configuration shown in FIG. 1 was used.
  • the basis weight of the surface layer 3 was 180 g / m 2 .
  • the PET fiber does not contain carbon black.
  • the back surface layer 5 was formed by blowing polypropylene from a spinning nozzle.
  • the back layer 5 was a melt blown nonwoven fabric and was composed of polypropylene fibers having a single fiber diameter of 2 ⁇ m.
  • the polypropylene fiber does not contain carbon black.
  • the basis weight of the back surface layer 5 was 90 g / m 2 .
  • This skin material 1 was fixed to the surface of a polypropylene base material to prepare a sample.
  • the skin material 2 having the configuration shown in FIG. 6 was used. That is, the skin material 2 includes a needle punched nonwoven fabric surface layer 4 made of PET fibers having a single fiber diameter of 10 ⁇ m and a needle punched nonwoven fabric back layer 6 made of polypropylene fibers having a single fiber diameter of 10 ⁇ m.
  • the basis weight of the surface layer 4 was 180 g / m 2 .
  • the PET fiber of the surface layer 4 does not contain carbon black.
  • the basis weight of the back layer 6 was 90 g / m 2 .
  • This polypropylene fiber does not contain carbon black.
  • This skin material 1 was fixed to the surface of a polypropylene base material to prepare a sample.
  • the skin material 9 includes a surface layer 7 of a needle punch nonwoven fabric made of PET fibers having a single fiber diameter of 10 ⁇ m and a back layer 8 of a needle punch nonwoven fabric made of polypropylene fibers having a single fiber diameter of 10 ⁇ m.
  • the basis weight of the surface layer 7 was 180 g / m 2 .
  • the PET fiber of the surface layer 7 contains carbon black.
  • the basis weight of the back surface layer 8 was 90 g / m 2 . This polypropylene fiber does not contain carbon black.
  • the skin material 9 was fixed to the surface of a polypropylene base material to prepare a sample.
  • volume ratio which is the ratio of the volume occupied by fibers in the back layer, and orientation tensor
  • the volume ratio in the back layer of the skin material of Experimental Example 1 and the orientation tensor are manufactured by Rigaku Corporation nano3DX as an X-ray CT apparatus. It measured using. As analysis software, GeoDict manufactured by Math2Market GmbH was used.
  • Lamp irradiation test performance evaluation of skin material
  • a thermocouple 21 was disposed on the back surface of the sample 20.
  • the light of the reflex lamp 23 1000 W / m ⁇ 2 > was irradiated from the surface of the sample 20.
  • FIG. This test was performed at room temperature. After irradiating with light, the highest temperature reached (temperature reached) was evaluated. The lower the maximum temperature reached, the better the performance of the skin material.
  • Experimental examples 1B, 2B, 3B, 4B, 7B, 8B, 9B, 10B, and 11B are examples.
  • Experimental examples 5B, 6B, and 12B are comparative examples.
  • volume ratio which is a proportion of volume occupied by fiber, and orientation tensor
  • the volume ratio and orientation tensor in skin material are manufactured by Rigaku Corporation as an X-ray CT apparatus. It measured using nano3DX. As analysis software, GeoDict manufactured by Math2Market GmbH was used.
  • Experimental Example 3B A sample was prepared in the same manner as in Experimental Example 1B, except that a PET fiber having a round cross section and a single fiber diameter of 4 ⁇ m was used as the fiber.
  • Experimental Example 5B A sample was prepared in the same manner as in Experimental Example 1B, except that a PET fiber having a round cross section and a single fiber diameter of 6 ⁇ m was used as the fiber.
  • Lamp irradiation test performance evaluation of skin material
  • a thermocouple 21 was disposed on the back surface of the sample 20.
  • the light of the reflex lamp 23 1000 W / m ⁇ 2 > was irradiated from the surface of the sample 20.
  • FIG. This test was performed at room temperature. After irradiating with light, the highest temperature reached (temperature reached) was evaluated. The lower the maximum temperature reached, the better the performance of the skin material.
  • volume ratio which is ratio of volume occupied by fiber (1)
  • volume ratio which is ratio of volume occupied by fiber and orientation tensor It carried out like (1).
  • Example 6B to 12B A flocking layer was deposited on the base using an electrostatic flocking method. Specifically, an adhesive is applied to the base part, a high voltage of 30,000 to 80,000 volts is applied, and the fibers are planted on the base part by using electrostatic force, and then the excess fibers are removed. A skin material was prepared. As the fiber, a PET fiber having a round cross section and a single fiber diameter of 4 ⁇ m was used. The PET fiber does not contain carbon black. At this time, by adjusting the fiber amount at the time of flocking and pressing with an iron after flocking, the volume ratio is 1% (Experimental Example 6B) and 3% (Experimental Example 7B) as shown in Table 3 below.
  • Example 8B 5% (Experimental Example 8B), 10% (Experimental Example 9B), 15% (Experimental Example 10B), 20% (Experimental Example 11B), and 25% (Experimental Example 12B).
  • Each skin material was fixed to the surface of a polypropylene base material to prepare a sample.
  • the skin material was a flocked sheet.
  • the inventors also experimented when the skin material was a woven fabric. Even in the case of a woven fabric, a skin having a single fiber diameter of greater than 1 ⁇ m and not greater than 5 ⁇ m, a volume ratio of not less than 3% and not more than 20%, and an orientation tensor in the Z-axis direction of not more than 0.42 It was confirmed that the temperature of the material was effectively suppressed.
  • the article covered with the skin material of the present invention is effectively prevented from rising in temperature.
  • the skin material of the present invention can be suitably applied as a skin material for vehicle interior materials such as door trims, roof trims, package trays, seats and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Transportation (AREA)
  • Nonwoven Fabrics (AREA)
  • Knitting Of Fabric (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is a skin material that suppresses an increase in temperature of various articles. A skin material (1) includes a front layer (3) and a back layer (5) stacked on the back of the front layer (3) with or without an adhesive layer therebetween. The back layer (5) is a second fiber assembly not containing carbon black but containing fibers having a single fiber diameter of greater than 1 μm and less than or equal to 5 μm. In this skin material (1), near-infrared rays pass through the front layer (3) and are reflected by the back layer (5). Hence, an increase in temperature of various articles using the skin material (1) as a skin is effectively suppressed.

Description

表皮材Skin material
 本発明は、表皮材に関する。 The present invention relates to a skin material.
 自動車等の内装物品には、本革、合皮、編物、織物、不織布等が表皮として用いられている場合ある。
 ところが、これらの表皮は、近赤外線の反射に対して、とりわけ優れた反射性能を有するものではない。
 このため、例えば、自動車の窓ガラスから太陽光線が入射すると、太陽光の近赤外線は内装物品に多くが吸収されて、熱エネルギーとして蓄積される。よって、内装物品の温度が上昇してしまい、手で触ることが困難な程に高温となる場合もある。
 また、温度が上昇した内装物品を冷却するためにエアコンが使われ、これによりエアコンの効率の低下、ひいては自動車のエネルギー消費効率が低下してしまう。
 そこで、内装物品等の各種物品の温度上昇を抑制するために、表皮材について種々の検討が行われている(特許文献1参照)。
Genuine leather, synthetic leather, knitted fabrics, woven fabrics, non-woven fabrics, and the like are sometimes used as interior skins for interior articles such as automobiles.
However, these skins do not have particularly excellent reflection performance for near-infrared reflection.
For this reason, for example, when sunlight enters from the window glass of an automobile, most of the near infrared rays of sunlight are absorbed by the interior article and accumulated as thermal energy. Therefore, the temperature of the interior article rises, and the temperature may become so high that it is difficult to touch with the hand.
In addition, an air conditioner is used to cool interior articles whose temperature has risen, which reduces the efficiency of the air conditioner, and consequently the energy consumption efficiency of the automobile.
Therefore, various studies have been made on the skin material in order to suppress the temperature rise of various articles such as interior articles (see Patent Document 1).
特開2004-358664号公報JP 2004-358664 A
 しかし、従来の技術では、各種物品の温度上昇を抑制する効果は、必ずしも十分でなく、更なる性能の向上が求められていた。
 また、従来技術として、近赤外線の反射率の向上のために、酸化チタン等の添加物を繊維に練り込む技術、又は酸化チタン等の添加物を繊維に担持させる技術が知られている。ところが、分割糸等の細糸を用いる場合には、添加物の練り込みが困難であるという課題や、添加物を担持させても添加物が脱落するという課題があった。
 本発明は、上記実情に鑑みてなされたものであり、各種物品の温度上昇を抑制することを目的とする。本発明は、以下の形態として実現することが可能である。
However, in the prior art, the effect of suppressing the temperature rise of various articles is not always sufficient, and further improvement in performance has been demanded.
Further, as a conventional technique, a technique for kneading an additive such as titanium oxide into a fiber or a technique for supporting an additive such as titanium oxide on a fiber is known for improving the reflectance of near infrared rays. However, when fine yarns such as split yarns are used, there are problems that it is difficult to knead the additive, and that the additive falls off even if the additive is supported.
This invention is made | formed in view of the said situation, and it aims at suppressing the temperature rise of various articles | goods. The present invention can be realized as the following forms.
 〔1〕カーボンブラックを含まない繊維を主たる構成繊維とした第1繊維集合体からなる表面層と、
 接着層を介して又は介さずに、前記表面層の裏面側に積層された裏面層と、
を備えた表皮材であって、
 前記裏面層は、カーボンブラックを含まず、かつ単繊維径が1μmより大きく5μm以下の繊維が含まれた第2繊維集合体であることを特徴とする表皮材。
[1] a surface layer composed of a first fiber assembly in which fibers not containing carbon black are the main constituent fibers;
A back layer laminated on the back side of the surface layer, with or without an adhesive layer, and
A skin material with
The skin material according to claim 1, wherein the back layer is a second fiber aggregate that does not contain carbon black and contains fibers having a single fiber diameter of greater than 1 μm and not greater than 5 μm.
 〔2〕前記表面層は、近赤外線透過性を有し、
 前記裏面層は、近赤外線反射性を有することを特徴とする〔1〕に記載の表皮材。
[2] The surface layer has near infrared transparency,
The skin material according to [1], wherein the back layer has near-infrared reflectivity.
 〔3〕前記第2繊維集合体は、編物、織物、スパンボンド不織布、メルトブロー不織布、及びニードルパンチ不織布からなる群より選択される少なくとも1種であることを特徴とする〔1〕又は〔2〕に記載の表皮材。 [3] The second fiber aggregate is at least one selected from the group consisting of a knitted fabric, a woven fabric, a spunbonded nonwoven fabric, a melt blown nonwoven fabric, and a needle punched nonwoven fabric [1] or [2] The skin material described in 1.
 〔4〕前記第2繊維集合体は、メルトブロー不織布であることを特徴とする〔3〕に記載の表皮材。 [4] The skin material according to [3], wherein the second fiber aggregate is a melt blown nonwoven fabric.
 〔5〕前記単繊維径が1μmより大きく5μm以下の繊維は、合成繊維、再生繊維、及び天然繊維からなる群より選択される少なくとも1種であることを特徴とする〔1〕~〔4〕のいずれか1項に記載の表皮材。 [5] The fiber having a single fiber diameter of greater than 1 μm and less than or equal to 5 μm is at least one selected from the group consisting of synthetic fibers, regenerated fibers, and natural fibers [1] to [4] The skin material of any one of these.
 〔6〕表皮材であって、
 カーボンブラックを含まず、かつ単繊維径が1μmより大きく5μm以下の繊維が含まれた繊維集合体を備えており、
 前記表皮材をX線CTで観察して得られた画像から、1辺が0.1~0.5mmの立方体を切り出して、前記立方体の全体の体積を100%とした場合に、前記立方体に含まれる前記単繊維径が1μmより大きく5μm以下の繊維が占有する体積の割合である体積率は3%以上20%以下であり、かつ
 Z軸方向の配向テンソルが0.42以下であることを特徴とする表皮材。
[6] A skin material,
Comprising a fiber assembly that does not contain carbon black and contains fibers with a single fiber diameter of greater than 1 μm and less than or equal to 5 μm;
When a cube having a side of 0.1 to 0.5 mm is cut out from an image obtained by observing the skin material with X-ray CT, the total volume of the cube is 100%. The volume ratio that is the ratio of the volume occupied by the fibers having a single fiber diameter of greater than 1 μm and less than or equal to 5 μm is 3% or more and 20% or less, and the orientation tensor in the Z-axis direction is 0.42 or less. Characteristic skin material.
 〔7〕近赤外線反射性を有することを特徴とする〔6〕に記載の表皮材。 [7] The skin material according to [6], which has near-infrared reflectivity.
 〔8〕前記繊維集合体は、編物、織物、スパンボンド不織布、メルトブロー不織布、ニードルパンチ不織布、及び植毛シートからなる群より選択される少なくとも1種であることを特徴とする〔6〕又は〔7〕のいずれか1項に記載の表皮材。 [8] The fiber aggregate is at least one selected from the group consisting of a knitted fabric, a woven fabric, a spunbonded nonwoven fabric, a melt blown nonwoven fabric, a needle punched nonwoven fabric, and a flocked sheet [6] or [7 ] The skin material of any one of.
 〔9〕前記単繊維径が1μmより大きく5μm以下の繊維は、合成繊維であることを特徴とする〔6〕~〔8〕のいずれか1項に記載の表皮材。 [9] The skin material according to any one of [6] to [8], wherein the fiber having a single fiber diameter of greater than 1 μm and less than or equal to 5 μm is a synthetic fiber.
 〔10〕自動車のドアトリムの表皮として用いられることを特徴とする〔1〕~〔9〕のいずれか1項に記載の表皮材。 [10] The skin material according to any one of [1] to [9], which is used as a skin of an automobile door trim.
 〔11〕自動車のパッケージトレイの表皮として用いられることを特徴とする〔1〕~〔9〕のいずれか1項に記載の表皮材。 [11] The skin material according to any one of [1] to [9], which is used as a skin of an automobile package tray.
 〔12〕自動車のシート基材の表皮として用いられることを特徴とする〔1〕~〔9〕のいずれか1項に記載の表皮材。 [12] The skin material according to any one of [1] to [9], wherein the skin material is used as a skin of an automobile sheet base material.
 〔1〕の発明の表皮材を用いると、近赤外線は、表面層を透過して裏面層により反射される。これにより、本発明の表皮材によって、被覆された各種物品の温度上昇を抑制できる。
 〔6〕の発明によれば、各種物品の温度上昇を抑制する表皮材を提供することができる。
When the skin material of the invention of [1] is used, near infrared light is transmitted through the surface layer and reflected by the back surface layer. Thereby, the temperature rise of the various articles | goods coat | covered with the skin material of this invention can be suppressed.
According to the invention of [6], it is possible to provide a skin material that suppresses the temperature rise of various articles.
 本発明について、本発明による典型的な実施形態の非限定的な例を挙げ、言及された複数の図面を参照しつつ以下の詳細な記述にて更に説明する。
表皮材の一例を示す断面図である。図中、矢印は近赤外線を示す(以下の図において同じ)。 表皮材を基材に固定した状態を示す断面図である。 裏面層をX線CTにて測定したデータ例である。 複合糸の一例の断面図である。 ランプ照射試験の方法を説明する図である。 実験例2A(比較例1A)の表皮材を示す断面図である。 実験例3A(比較例2A)の表皮材を示す断面図である。 ランプ照射試験の試験結果を示すグラフである。 表皮材の一例を示す断面図である。図中、矢印は近赤外線を示す。 表皮材を基材に固定した状態を示す断面図である。 ランプ照射試験の試験結果を示すグラフである。繊維径と到達温度との関係を示す。 ランプ照射試験の試験結果を示すグラフである。体積率と到達温度との関係を示す。
The invention will be further described in the following detailed description, given by way of non-limiting example of exemplary embodiments according to the invention, with reference to the mentioned drawings.
It is sectional drawing which shows an example of a skin material. In the figure, arrows indicate near infrared rays (the same applies to the following figures). It is sectional drawing which shows the state which fixed the skin material to the base material. It is an example of data which measured the back layer by X-ray CT. It is sectional drawing of an example of a composite yarn. It is a figure explaining the method of a lamp irradiation test. It is sectional drawing which shows the skin material of Experimental example 2A (comparative example 1A). It is sectional drawing which shows the skin material of Experimental example 3A (comparative example 2A). It is a graph which shows the test result of a lamp irradiation test. It is sectional drawing which shows an example of a skin material. In the figure, arrows indicate near infrared rays. It is sectional drawing which shows the state which fixed the skin material to the base material. It is a graph which shows the test result of a lamp irradiation test. The relationship between fiber diameter and ultimate temperature is shown. It is a graph which shows the test result of a lamp irradiation test. The relationship between volume ratio and ultimate temperature is shown.
 ここで示される事項は例示的なものおよび本発明の実施形態を例示的に説明するためのものであり、本発明の原理と概念的な特徴とを最も有効に且つ難なく理解できる説明であると思われるものを提供する目的で述べたものである。この点で、本発明の根本的な理解のために必要である程度以上に本発明の構造的な詳細を示すことを意図してはおらず、図面と合わせた説明によって本発明の幾つかの形態が実際にどのように具現化されるかを当業者に明らかにするものである。 The items shown here are exemplary and illustrative of the embodiments of the present invention, and are the most effective and easy-to-understand explanations of the principles and conceptual features of the present invention. It is stated for the purpose of providing what seems to be. In this respect, it is not intended to illustrate the structural details of the present invention beyond what is necessary for a fundamental understanding of the present invention. It will be clear to those skilled in the art how it is actually implemented.
 以下、本発明の実施形態を詳しく説明する。なお、本明細書において、数値範囲について「~」を用いた記載では、特に断りがない限り、下限値及び上限値を含むものとする。例えば、「10~20」という記載では、下限値である「10」、上限値である「20」のいずれも含むものとする。すなわち、「10~20」は、「10以上20以下」と同じ意味である。 Hereinafter, embodiments of the present invention will be described in detail. In the present specification, the description using “˜” in the numerical range includes the lower limit value and the upper limit value unless otherwise specified. For example, the description “10 to 20” includes both the lower limit “10” and the upper limit “20”. That is, “10 to 20” has the same meaning as “10 to 20”.
A.第1実施形態
 第1実施形態の表皮材1は、図1に示すように、表面層3と、接着層を介して又は介さずに表面層3の裏面側に積層された裏面層5と、を備える。なお、表皮材1は、裏面層5の裏面側に、更に他の層を備えていてもよい。
A. 1st Embodiment As shown in FIG. 1, the skin material 1 of the first embodiment has a surface layer 3 and a back layer 5 laminated on the back side of the surface layer 3 with or without an adhesive layer. Is provided. The skin material 1 may further include another layer on the back surface side of the back surface layer 5.
1.表面層
(1)表面層(第1繊維集合体)の構成繊維
 表面層は、カーボンブラックを含まない繊維(カーボンブラックの含有率が0wt%の繊維)を主たる構成繊維とした第1繊維集合体からなる。構成繊維の材質は、特に限定されない。
 ここで「主たる構成繊維」とは、第1繊維集合体に含有される構成繊維の中で重量の最も多い構成繊維のことをいう。主たる構成繊維の含有量は、第1繊維集合体に含有される全構成繊維100重量部に対して、60重量部以上であることが好ましく、80重量部以上であることがより好ましく、90重量部以上であることが更に好ましい。主たる構成繊維の含有量は、100重量部であってもよい。
1. Surface layer (1) Constituent fiber of surface layer (first fiber aggregate) The surface layer is a first fiber aggregate whose main constituent fiber is a fiber not containing carbon black (fiber with a carbon black content of 0 wt%). Consists of. The material of the constituent fiber is not particularly limited.
Here, the “main constituent fiber” refers to the constituent fiber having the largest weight among the constituent fibers contained in the first fiber assembly. The content of the main constituent fiber is preferably 60 parts by weight or more, more preferably 80 parts by weight or more, with respect to 100 parts by weight of all the constituent fibers contained in the first fiber aggregate, and 90 weights. More preferably, it is part or more. The content of the main constituent fiber may be 100 parts by weight.
(2)主たる構成繊維の単繊維径
 主たる構成繊維の単繊維径は、特に限定されない。
 単繊維の断面形状が丸断面以外の異形断面である場合には、外接円の直径を単繊維径とする。なお、単繊維径は、走査型電子顕微鏡で繊維の横断面を撮影することにより測定が可能である。
(2) Single fiber diameter of main constituent fiber The single fiber diameter of the main constituent fiber is not particularly limited.
When the cross-sectional shape of the single fiber is an irregular cross-section other than the round cross-section, the diameter of the circumscribed circle is the single fiber diameter. The single fiber diameter can be measured by photographing the cross section of the fiber with a scanning electron microscope.
(3)主たる構成繊維の断面形状
 主たる構成繊維の単糸断面形状は、特に限定されない。単糸断面形状として、丸断面、丸断面以外の異形断面が例示される。異形断面の形状としては、三角断面、四角断面、五角断面、扁平断面、楔形断面、アルファベットの各文字に類似した断面(Y型断面、C型断面、H型断面、I型断面、W型断面等)等が好適に例示される。異形断面の繊維を得る方法は、特に限定されない。
(3) Cross-sectional shape of main constituent fiber The single yarn cross-sectional shape of the main constituent fiber is not particularly limited. Examples of the single yarn cross-sectional shape include a round cross section and an irregular cross section other than the round cross section. The shape of the irregular cross section is triangular cross section, square cross section, pentagon cross section, flat cross section, wedge cross section, cross section similar to each letter of the alphabet (Y cross section, C cross section, H cross section, I cross section, W cross section) Etc.) and the like are preferably exemplified. The method for obtaining a fiber having an irregular cross section is not particularly limited.
(4)主たる構成繊維の材質
 主たる構成繊維は、合成繊維、再生繊維、半合成繊維、天然繊維のいずれであってもよい。
 合成繊維としては、特に限定されない。例えば、ポリエチレンテレフタレート(PET)繊維、ポリブチレンテレフタレート繊維、ポリトリメチレンテレフタレート繊維、ポリ乳酸繊維等のポリエステル系繊維;ポリアミド6繊維、ポリアミド66繊維等のポリアミド系繊維;ポリアクリル系繊維、ポリプロピレン繊維等のポリオレフィン系繊維等の各種の合成繊維を用いることができる。
 これらの繊維のうちでは、汎用性が高いことと、コストの観点から、ポリエステル系繊維、特にPET繊維が好ましい。
 なお、合成繊維は、未延伸糸でもよく、半延伸糸でもよく、これらが混合されている混合糸でもよい。
 再生繊維としては、特に限定されない。例えば、セルロース系のレーヨン、精製セルロース繊維系のリヨセル等を用いることができる。レーヨンには、ポリノジック、ビスコース、キュプラレーヨン等の種類がある。
 半合成繊維としては、特に限定されない。例えば、セルロース系のアセテート、たんぱく質系のプロミックス等を用いることができる。
 天然繊維としては、特に限定されない。例えば、綿、麻等の植物繊維や、絹、獣毛(例えば羊毛)等の動物繊維を用いることができる。
(4) Material of main constituent fiber The main constituent fiber may be any of synthetic fiber, regenerated fiber, semi-synthetic fiber, and natural fiber.
The synthetic fiber is not particularly limited. For example, polyester fibers such as polyethylene terephthalate (PET) fiber, polybutylene terephthalate fiber, polytrimethylene terephthalate fiber and polylactic acid fiber; polyamide fibers such as polyamide 6 fiber and polyamide 66 fiber; polyacrylic fiber and polypropylene fiber Various synthetic fibers such as polyolefin-based fibers can be used.
Among these fibers, polyester-based fibers, particularly PET fibers, are preferable from the viewpoint of high versatility and cost.
The synthetic fiber may be an undrawn yarn, a semi-drawn yarn, or a mixed yarn in which these are mixed.
The recycled fiber is not particularly limited. For example, cellulose-based rayon, purified cellulose fiber-based lyocell, or the like can be used. There are various types of rayon such as polynosic, viscose and cupra rayon.
The semi-synthetic fiber is not particularly limited. For example, cellulose acetate, protein promix, etc. can be used.
The natural fiber is not particularly limited. For example, plant fibers such as cotton and hemp, and animal fibers such as silk and animal hair (for example, wool) can be used.
(5)主たる構成繊維以外の他の構成繊維
 主たる構成繊維以外の他の構成繊維は、特に限定されない。すなわち、他の構成繊維の単繊維径、単糸断面形状、材質は、任意に選択することができる。また、他の構成繊維は、1種のみならず、2種以上であってもよい。
(5) Other constituent fibers other than main constituent fibers Other constituent fibers other than the main constituent fibers are not particularly limited. That is, the single fiber diameter, single yarn cross-sectional shape, and material of other constituent fibers can be arbitrarily selected. Moreover, 2 or more types may be sufficient as another structural fiber.
(6)第1繊維集合体の形態
 第1繊維集合体の形態は、特に限定されない。第1繊維集合体は、製造容易であるという観点から、ニードルパンチ不織布、編物、織物、メルトブロー不織布、及びスパンボンド不織布からなる群より選択される少なくとも1種であることが望ましい。繊維集合体は、製造容易であるという観点から、特にニードルパンチ不織布が好ましい。
 ニードルパンチ不織布は、例えば、金属製等のニードルの往復運動により、繊維相互間を交絡して製造される。
 編物は、経編又は緯編のいずれであってもよい。緯編として、基本組織(平編、ゴム編、パール編)やその変化組織を例示できる。また、経編として、基本組織(デンビー編、コード編、アトラス編、鎖編)やその変化組織を例示できる。
 織物の組織は特に限定されず、例えば、平織物、綾織物、朱子織物及びそれらの組み合わせ等の各種の織物とすることができる。
 メルトブロー不織布は、例えば、樹脂を溶融して紡糸ノズルの周囲から噴射する高温エアにより、繊維を細くしてシート状にして製造される。
 スパンボンド不織布は、例えば、樹脂を溶融して繊維(糸)を作り、ネット上に開繊・堆積させてウェッブを形成した後、シート状に結合させて製造される。
(6) Form of first fiber aggregate The form of the first fiber aggregate is not particularly limited. The first fiber aggregate is preferably at least one selected from the group consisting of needle punched nonwoven fabrics, knitted fabrics, woven fabrics, melt blown nonwoven fabrics, and spunbonded nonwoven fabrics from the viewpoint of easy manufacture. From the viewpoint of easy manufacture, the fiber assembly is particularly preferably a needle punched nonwoven fabric.
The needle punched nonwoven fabric is manufactured by interlacing fibers by reciprocating movement of a needle made of metal or the like, for example.
The knitted fabric may be either a warp knitting or a weft knitting. Examples of the weft knitting include a basic structure (flat knitting, rubber knitting, pearl knitting) and its changing structure. In addition, examples of warp knitting include basic structures (Denby knitting, code knitting, atlas knitting, chain knitting) and their changed structures.
The structure of the woven fabric is not particularly limited, and for example, various woven fabrics such as a plain woven fabric, a twill woven fabric, a satin woven fabric, and combinations thereof can be used.
The melt blown nonwoven fabric is manufactured, for example, by thinning fibers with a high-temperature air melted from a resin and sprayed from around a spinning nozzle.
A spunbonded nonwoven fabric is manufactured, for example, by melting a resin to form fibers (yarns), opening and depositing them on a net to form a web, and then bonding them into a sheet.
(7)第1繊維集合体の厚み
 第1繊維集合体の厚みは、特に限定されない。第1繊維集合体の厚みは、製造コストを抑え、かつ透過率を高めるとの観点から、0.1mm以上10mm以下が好ましく、0.3mm以上5mm以下がより好ましく、0.5mm以上3mm以下が更に好ましい。
(7) Thickness of the first fiber aggregate The thickness of the first fiber aggregate is not particularly limited. The thickness of the first fiber aggregate is preferably 0.1 mm or more and 10 mm or less, more preferably 0.3 mm or more and 5 mm or less, and more preferably 0.5 mm or more and 3 mm or less from the viewpoint of suppressing the manufacturing cost and increasing the transmittance. Further preferred.
(8)繊維集合体の目付量
 第1繊維集合体の目付量は、特に限定されない。第1繊維集合体の目付量は、10g/m以上1500g/m以下が好ましく、裏面層が透けて見え装飾性を損なう畏れを軽減するという観点から、15g/m以上1000g/m以下がより好ましく、20g/m以上500g/m以下が更に好ましい。
(8) The basis weight of the fiber assembly The basis weight of the first fiber assembly is not particularly limited. Basis weight of the first fiber aggregate is preferably from 10 g / m 2 or more 1500 g / m 2 or less, from the viewpoint of reducing the fear impairing decorative show through the back surface layer, 15 g / m 2 or more 1000 g / m 2 more preferably not more than, 20 g / m 2 or more 500 g / m 2 or less is more preferable.
2.裏面層
(1)裏面層の構成
 裏面層は、表面層の裏面側に接着層を介して又は介さずに積層されている。
 接着層としては、特に制限はなく、公知の接着剤を、公知の方法により塗布して形成することが可能である。
 裏面層が表面層に接着層を介さずに積層されている場合の一例として、例えば、表面層及び裏面層のいずれか一方を予め形成し、その上に表面層及び裏面層のいずれか他方を直接形成した場合を好適に挙げることができる。例えば、他方を直接形成する方法としては、メルトブロー法を好適に採用することができる。この場合、表面層及び裏面層の少なくとも他方は、メルトブロー不織布により構成される。言い換えれば、第1繊維集合体及び第2繊維集合体の少なくとも他方は、メルトブロー不織布により構成される。
 また、裏面層が表面層に接着層を介さずに積層されている場合の他の例として、表面層と裏面層とを、ニードルパンチを行う場合を好適に挙げることができる。この場合には、第1繊維集合体の構成繊維と、第2繊維集合体の構成繊維が絡まっている。
 また、裏面層が表面層に接着層を介さずに積層されている場合の他の例として、例えば、表面層と裏面層とが、縫合糸により一体化されている場合を好適に挙げることができる。
2. Back surface layer (1) Configuration of back surface layer The back surface layer is laminated on the back surface side of the surface layer with or without an adhesive layer.
The adhesive layer is not particularly limited, and can be formed by applying a known adhesive by a known method.
As an example of the case where the back layer is laminated on the surface layer without an adhesive layer, for example, one of the surface layer and the back layer is formed in advance, and either the surface layer or the back layer is formed thereon. The case where it forms directly can be mentioned suitably. For example, as a method of directly forming the other, a melt blow method can be suitably employed. In this case, at least the other of the front surface layer and the back surface layer is composed of a melt blown nonwoven fabric. In other words, at least the other of the first fiber assembly and the second fiber assembly is made of a melt blown nonwoven fabric.
Moreover, the case where a surface punch and a back surface layer are needle-punched can be mentioned suitably as another example in case the back surface layer is laminated | stacked on the surface layer without the adhesive layer. In this case, the constituent fibers of the first fiber aggregate and the constituent fibers of the second fiber aggregate are entangled.
In addition, as another example of the case where the back surface layer is laminated on the front surface layer without an adhesive layer, for example, a case where the front surface layer and the back surface layer are integrated with a suture may be preferably mentioned. it can.
(2)裏面層(第2繊維集合体)の構成繊維
 裏面層は、カーボンブラックを含まず(カーボンブラックの含有率が0wt%)、かつ単繊維径が1μmより大きく5μm以下の繊維が含まれた第2繊維集合体とされている。
 単繊維径が1μmより大きく5μm以下の繊維にはカーボンブラックが含まれていない(カーボンブラックの含有率が0wt%である)。カーボンブラックが含まれると、第2繊維集合体の反射性能が低下するからである。
(2) Constituent fibers of the back surface layer (second fiber aggregate) The back surface layer does not contain carbon black (carbon black content is 0 wt%), and contains fibers with a single fiber diameter of more than 1 μm and not more than 5 μm. The second fiber assembly.
Carbon black is not contained in the fiber having a single fiber diameter larger than 1 μm and not larger than 5 μm (the carbon black content is 0 wt%). This is because when the carbon black is included, the reflection performance of the second fiber aggregate is lowered.
(3)第2繊維集合体に含まれる繊維の単繊維径
 本発明では、第2繊維集合体に含まれる繊維の単繊維径は1μmより大きく5μm以下であり、好ましくは2μm以上5μm以下である。単繊維径がこの範囲内であると、表皮材の近赤外線に対する反射性能が優れる。よって、表皮材により覆われた各種物品の温度上昇を抑制できる。
 単繊維径がこの範囲内となると反射性能が優れる理由は定かではないが、単繊維径がこの範囲内となると、単繊維径が近赤外線波長と同等から数倍の領域内となり、ミー散乱と呼ばれる光の散乱現象が起きるためと推測される。
 単繊維の断面形状が丸断面以外の異形断面である場合には、外接円の直径を単繊維径とする。なお、単繊維径は、走査型電子顕微鏡で繊維の横断面を撮影することにより測定が可能である。
(3) Single fiber diameter of the fiber contained in the second fiber assembly In the present invention, the single fiber diameter of the fiber contained in the second fiber assembly is greater than 1 μm and not greater than 5 μm, and preferably not less than 2 μm and not greater than 5 μm. . When the single fiber diameter is within this range, the reflection performance of the skin material for near infrared rays is excellent. Therefore, the temperature rise of various articles covered with the skin material can be suppressed.
The reason why the reflection performance is excellent when the single fiber diameter is within this range is not clear, but when the single fiber diameter is within this range, the single fiber diameter is within the range of several times the near infrared wavelength, and Mie scattering and This is presumed to be due to the phenomenon of light scattering.
When the cross-sectional shape of the single fiber is an irregular cross-section other than the round cross-section, the diameter of the circumscribed circle is the single fiber diameter. The single fiber diameter can be measured by photographing the cross section of the fiber with a scanning electron microscope.
(4)第2繊維集合体に含まれる繊維の断面形状
 単繊維径が1μmより大きく5μm以下の繊維の単糸断面形状は、特に限定されない。単糸断面形状として、丸断面、丸断面以外の異形断面が例示される。異形断面の形状としては、三角断面、四角断面、五角断面、扁平断面、楔形断面、アルファベットの各文字に類似した断面(Y型断面、C型断面、H型断面、I型断面、W型断面等)等が好適に例示される。異形断面の繊維を得る方法は、特に限定されない。例えば、〔1〕溶融紡糸時に用いる口金の形状を異形にする方法、〔2〕2種類以上のポリマーを複合紡糸して、分割することにより断面を異形にする方法がある。後者の方法により製造された繊維は、割繊糸とも呼ばれている。
 第1実施形態では、反射率向上の観点から、単糸断面形状としては、三角断面、扁平断面が好ましい。
 なお、割繊糸を用いる場合には、予め分割した割繊糸から第2繊維集合体を形成してもよい。また、複数の樹脂を含む複合糸から第2繊維集合体の前駆体(編物、織物等)を形成した後に、前駆体を化学処理して、複合糸を分割・開繊し割繊糸としてもよい。
(4) The cross-sectional shape of the fiber contained in the second fiber assembly The single-fiber cross-sectional shape of the fiber having a single fiber diameter of more than 1 μm and not more than 5 μm is not particularly limited. Examples of the single yarn cross-sectional shape include a round cross section and an irregular cross section other than the round cross section. The shape of the irregular cross section is triangular cross section, square cross section, pentagon cross section, flat cross section, wedge cross section, cross section similar to each letter of the alphabet (Y cross section, C cross section, H cross section, I cross section, W cross section) Etc.) and the like are preferably exemplified. The method for obtaining a fiber having an irregular cross section is not particularly limited. For example, there are [1] a method of making the shape of the die used at the time of melt spinning irregular, and [2] a method of making the cross section of the composite by spinning two or more types of polymers and dividing them. The fiber produced by the latter method is also called split yarn.
In the first embodiment, from the viewpoint of improving the reflectance, the single yarn cross-sectional shape is preferably a triangular cross section or a flat cross section.
In addition, when using split fiber, you may form a 2nd fiber assembly from the split fiber previously divided | segmented. Also, after forming a precursor (knitted fabric, woven fabric, etc.) of the second fiber assembly from a composite yarn containing a plurality of resins, the precursor is chemically treated to divide and open the composite yarn to obtain a split fiber. Good.
(5)単繊維径が1μmより大きく5μm以下でない繊維
 第2繊維集合体には、単繊維径が1μmより大きく5μm以下でない繊維(以下、「その他の繊維」ともいう)を含んでいてもよい。但し、第2繊維集合体に含まれる繊維の全量を100重量部とした場合に、単繊維径が1μmより大きく5μm以下の繊維が5重量部以上含まれていることが好ましく、10重量部以上含まれていることがより好ましく、15重量部以上含まれていることが更に好ましい。単繊維径が1μmより大きく5μm以下の繊維の量がこの範囲内であると、第2繊維集合体の反射性能が特に優れるからである。反射性能が優れるという観点からは、第2繊維集合体に含まれる繊維は、単繊維径が1μmより大きく5μm以下の繊維からなることが好ましい。すなわち、第2繊維集合体に含まれる繊維の全量を100重量部とした場合に、単繊維径が1μmより大きく5μm以下の繊維が100重量部含まれていることが好ましい。
(5) Fibers having a single fiber diameter greater than 1 μm and not less than 5 μm The second fiber aggregate may contain fibers having a single fiber diameter greater than 1 μm and not less than 5 μm (hereinafter also referred to as “other fibers”). . However, when the total amount of fibers contained in the second fiber assembly is 100 parts by weight, it is preferable that 5 parts by weight or more of fibers having a single fiber diameter of more than 1 μm and not more than 5 μm are included, and 10 parts by weight or more. More preferably, it is more preferably 15 parts by weight or more. This is because the reflection performance of the second fiber aggregate is particularly excellent when the amount of fibers having a single fiber diameter of greater than 1 μm and less than 5 μm is within this range. From the viewpoint of excellent reflection performance, the fibers contained in the second fiber assembly are preferably composed of fibers having a single fiber diameter of more than 1 μm and not more than 5 μm. That is, when the total amount of fibers contained in the second fiber assembly is 100 parts by weight, it is preferable that 100 parts by weight of fibers having a single fiber diameter of greater than 1 μm and not more than 5 μm is included.
(6)繊維の材質
 単繊維径が1μmより大きく5μm以下の繊維は、合成繊維、再生繊維、半合成繊維、天然繊維のいずれであってもよい。
 合成繊維としては、特に限定されない。例えば、ポリエチレンテレフタレート(PET)繊維、ポリブチレンテレフタレート繊維、ポリトリメチレンテレフタレート繊維、ポリ乳酸繊維等のポリエステル系繊維;ポリアミド6繊維、ポリアミド66繊維等のポリアミド系繊維;ポリアクリル系繊維、ポリプロピレン繊維等のポリオレフィン系繊維等の各種の合成繊維を用いることができる。
 これらの繊維のうちでは、汎用性が高いことと、コストの観点から、ポリオレフィン系繊維(特にポリプロピレン繊維)、ポリエステル系繊維、ポリアミド系繊維が好ましい。
 単繊維径が1μmより大きく5μm以下の繊維として、単一種の繊維のみならず、2種類以上の繊維を混合して用いることもできる。
 なお、合成繊維は、未延伸糸でもよく、半延伸糸でもよく、これらが混合されている混合糸でもよい。
 再生繊維としては、特に限定されない。例えば、セルロース系のレーヨン、精製セルロース繊維系のリヨセル等を用いることができる。レーヨンには、ポリノジック、ビスコース、キュプラレーヨン等の種類がある。
 半合成繊維としては、特に限定されない。例えば、セルロース系のアセテート、たんぱく質系のプロミックス等を用いることができる。
 天然繊維としては、特に限定されない。例えば、綿、麻等の植物繊維や、絹、獣毛(例えば羊毛)等の動物繊維を用いることができる。
(6) Fiber Material The fiber having a single fiber diameter of greater than 1 μm and 5 μm or less may be any of synthetic fiber, regenerated fiber, semi-synthetic fiber, and natural fiber.
The synthetic fiber is not particularly limited. For example, polyester fibers such as polyethylene terephthalate (PET) fiber, polybutylene terephthalate fiber, polytrimethylene terephthalate fiber and polylactic acid fiber; polyamide fibers such as polyamide 6 fiber and polyamide 66 fiber; polyacrylic fiber and polypropylene fiber Various synthetic fibers such as polyolefin-based fibers can be used.
Among these fibers, polyolefin fibers (particularly polypropylene fibers), polyester fibers, and polyamide fibers are preferable from the viewpoint of high versatility and cost.
As a fiber having a single fiber diameter larger than 1 μm and not larger than 5 μm, not only a single type of fiber but also two or more types of fibers can be mixed and used.
The synthetic fiber may be an undrawn yarn, a semi-drawn yarn, or a mixed yarn in which these are mixed.
The recycled fiber is not particularly limited. For example, cellulose-based rayon, purified cellulose fiber-based lyocell, or the like can be used. There are various types of rayon such as polynosic, viscose and cupra rayon.
The semi-synthetic fiber is not particularly limited. For example, cellulose acetate, protein promix, etc. can be used.
The natural fiber is not particularly limited. For example, plant fibers such as cotton and hemp, and animal fibers such as silk and animal hair (for example, wool) can be used.
(7)第2繊維集合体の形態
 第2繊維集合体の形態は、特に限定されない。繊維集合体は、製造容易であるという観点から、編物、織物、スパンボンド不織布、メルトブロー不織布(メルトブローン不織布)、及びニードルパンチ不織布からなる群より選択される少なくとも1種であることが望ましい。繊維集合体は、製造容易であるという観点から、特にメルトブロー不織布が好ましい。
 編物は、経編又は緯編のいずれであってもよい。緯編として、基本組織(平編、ゴム編、パール編)やその変化組織を例示できる。また、経編として、基本組織(デンビー編、コード編、アトラス編、鎖編)やその変化組織を例示できる。
 織物の組織は特に限定されず、例えば、平織物、綾織物、朱子織物及びそれらの組み合わせ等の各種の織物とすることができる。
 スパンボンド不織布は、例えば、樹脂を溶融して繊維(糸)を作り、ネット上に開繊・堆積させてウェッブを形成した後、シート状に結合させて製造される。
 メルトブロー不織布は、例えば、樹脂を溶融して紡糸ノズルの周囲から噴射する高温エアにより、繊維を細くしてシート状にして製造される。
 ニードルパンチ不織布は、例えば、金属製等のニードルの往復運動により、繊維相互間を交絡して製造される。
(7) Form of second fiber assembly The form of the second fiber assembly is not particularly limited. The fiber aggregate is preferably at least one selected from the group consisting of a knitted fabric, a woven fabric, a spunbonded nonwoven fabric, a meltblown nonwoven fabric (meltblown nonwoven fabric), and a needle punched nonwoven fabric from the viewpoint of easy manufacture. The fiber aggregate is particularly preferably a melt blown nonwoven fabric from the viewpoint of easy production.
The knitted fabric may be either a warp knitting or a weft knitting. Examples of the weft knitting include a basic structure (flat knitting, rubber knitting, pearl knitting) and its changing structure. In addition, examples of warp knitting include basic structures (Denby knitting, code knitting, atlas knitting, chain knitting) and their changed structures.
The structure of the woven fabric is not particularly limited, and for example, various woven fabrics such as a plain woven fabric, a twill woven fabric, a satin woven fabric, and combinations thereof can be used.
A spunbonded nonwoven fabric is manufactured, for example, by melting a resin to form fibers (yarns), opening and depositing them on a net to form a web, and then bonding them into a sheet.
The melt blown nonwoven fabric is manufactured, for example, by thinning fibers with a high-temperature air melted from a resin and sprayed from around a spinning nozzle.
The needle punched nonwoven fabric is manufactured by interlacing fibers by reciprocating movement of a needle made of metal or the like, for example.
(8)第2繊維集合体の厚み
 第2繊維集合体の厚みは、特に限定されない。第2繊維集合体の厚みは、製造コストを抑え、かつ反射率を高めるとの観点から、0.1mm以上10mm以下が好ましく、0.3mm以上5mm以下がより好ましく、0.5mm以上3mm以下が更に好ましい。
(8) Thickness of the second fiber aggregate The thickness of the second fiber aggregate is not particularly limited. The thickness of the second fiber aggregate is preferably 0.1 mm or more and 10 mm or less, more preferably 0.3 mm or more and 5 mm or less, and more preferably 0.5 mm or more and 3 mm or less from the viewpoint of suppressing the manufacturing cost and increasing the reflectance. Further preferred.
(9)第2繊維集合体の目付量
 第2繊維集合体の目付量は、特に限定されない。第2繊維集合体の目付量は、製造コストを抑え、かつ反射率を高めるという観点から、10g/m以上1500g/m以下が好ましく、15g/m以上1000g/m以下がより好ましく、20g/m以上500g/m以下が更に好ましい。
(9) The basis weight of the second fiber aggregate The basis weight of the second fiber aggregate is not particularly limited. The basis weight of the second fiber aggregate is preferably 10 g / m 2 or more and 1500 g / m 2 or less, more preferably 15 g / m 2 or more and 1000 g / m 2 or less, from the viewpoint of suppressing the manufacturing cost and increasing the reflectance. 20 g / m 2 or more and 500 g / m 2 or less is more preferable.
(10)第2繊維集合体における、繊維が占有する体積の割合である体積率、及び配向テンソル
 第2繊維集合体をX線CTで観察して得られた画像から、1辺が0.1~0.5mmの立方体を切り出して、立方体の全体の体積を100%とした場合に、立方体に含まれる単繊維径が1μmより大きく5μm以下の繊維が占有する体積の割合である体積率は3%以上20%以下であることが好ましく、4%以上18%以下がより好ましく、5%以上15%以下が更に好ましい。
 また、Z軸方向の配向テンソルが0.42以下であることが好ましく、0.37以下であることがより好ましい。
(10) Volume ratio, which is the ratio of the volume occupied by the fibers in the second fiber assembly, and orientation tensor From an image obtained by observing the second fiber assembly with X-ray CT, one side is 0.1 When a cube of 0.5 mm is cut out and the total volume of the cube is taken as 100%, the volume ratio, which is the ratio of the volume occupied by fibers having a single fiber diameter greater than 1 μm and less than 5 μm, is 3 % To 20%, preferably 4% to 18%, more preferably 5% to 15%.
Further, the orientation tensor in the Z-axis direction is preferably 0.42 or less, and more preferably 0.37 or less.
 第2繊維集合体において、繊維が占有する体積の割合である体積率(以下、単に「体積率」ともいう)、及び繊維の配向状態(配向テンソル)は、次のようにして求めることができる。第2繊維集合体をさまざまな方向からX線で撮影し、コンピュータによって再構成処理を行うX線CT(Computed Tomography;コンピュータ断層撮影法)を用いて測定したデータ(例えば図3参照)から算出することができる。これにより、対象となる第2繊維集合体を非破壊で評価することができる。X線検査装置としては、例えば、(株)リガク製 nano3DXを用いることができる。解析ソフトとしては、例えば、Math2Market GmbH製 GeoDictを用いることができる。 In the second fiber assembly, the volume ratio (hereinafter, also simply referred to as “volume ratio”), which is the ratio of the volume occupied by the fiber, and the fiber orientation state (orientation tensor) can be obtained as follows. . The second fiber aggregate is imaged with X-rays from various directions, and is calculated from data (for example, see FIG. 3) measured using X-ray CT (Computed Tomography) in which reconstruction processing is performed by a computer. be able to. Thereby, the 2nd fiber assembly used as object can be evaluated nondestructively. As the X-ray inspection apparatus, for example, nano3DX manufactured by Rigaku Corporation can be used. As the analysis software, for example, GeoDict manufactured by Math2Market GmbH can be used.
 そして、第2繊維集合体をX線CTで観察して得られた画像から、1辺が0.1~0.5mmの立方体を切り出して、この立方体の全体の体積を100%とした場合に、立方体に含まれる単繊維径が1μmより大きく5μm以下の繊維が占有する体積の割合である体積率を求める。
 この体積率は、上述のように3%以上20%以下であることが好ましく、4%以上8%以下がより好ましく、5%以上15%以下が更に好ましい。
 体積率が、この範囲内であると、本実施形態の表皮材を表皮として有する物品の温度上昇が効果的に抑制される。
Then, when a cube having one side of 0.1 to 0.5 mm is cut out from an image obtained by observing the second fiber aggregate by X-ray CT, and the total volume of the cube is 100% The volume ratio, which is the ratio of the volume occupied by fibers having a single fiber diameter greater than 1 μm and not more than 5 μm, contained in the cube is determined.
As described above, the volume ratio is preferably 3% to 20%, more preferably 4% to 8%, and still more preferably 5% to 15%.
When the volume ratio is within this range, the temperature increase of the article having the skin material of the present embodiment as the skin is effectively suppressed.
 Z軸方向の配向テンソルは、互いに直交するX軸、Y軸、Z軸で決定される第2繊維集合体の平面方向をXY平面、XY平面に直交する軸をZ軸としたときに、第2繊維集合体を構成する繊維がZ軸に配向した指標である。X方向、Y方向、Z方向それぞれの数値の和が1となる。
 配向テンソルは、詳細には次のように計算される。X線CTを用いて測定したデータから、三次元モデルを再構成する。この三次元モデルから、配向テンソル(Txx,Tyy,Tzz)を算出できる。なお、Txx,Tyy,Tzzは、それぞれ、X軸、Y軸、Z軸方向の配向テンソルを示す。既述のように、Txx+Tyy+Tzz=1である。また、例えば、各々の配向テンソル値が0.33のとき、ランダム配向していると評価することができる。
 本実施形態においては、Z軸方向の配向テンソルが0.42以下であることが好ましく、0.37以下であることがより好ましい(Z軸方向の配向テンソルは、通常、0よりも大きい)。Z軸方向の配向テンソルが、この範囲内であると、本実施形態の表皮材を表皮として有する物品の温度上昇が効果的に抑制される。
The orientation tensor in the Z-axis direction is obtained when the plane direction of the second fiber assembly determined by the X-axis, Y-axis, and Z-axis orthogonal to each other is the XY plane, and the axis orthogonal to the XY plane is the Z-axis. This is an index in which the fibers constituting the two-fiber assembly are oriented in the Z axis. The sum of numerical values in the X direction, the Y direction, and the Z direction is 1.
Specifically, the orientation tensor is calculated as follows. A three-dimensional model is reconstructed from data measured using X-ray CT. From this three-dimensional model, an orientation tensor (Txx, Tyy, Tzz) can be calculated. Txx, Tyy, and Tzz indicate alignment tensors in the X-axis, Y-axis, and Z-axis directions, respectively. As described above, Txx + Tyy + Tzz = 1. For example, when each orientation tensor value is 0.33, it can be evaluated that the orientation is random.
In the present embodiment, the orientation tensor in the Z-axis direction is preferably 0.42 or less, and more preferably 0.37 or less (the orientation tensor in the Z-axis direction is usually larger than 0). When the orientation tensor in the Z-axis direction is within this range, the temperature increase of the article having the skin material of the present embodiment as the skin is effectively suppressed.
 上記体積率、及びZ軸方向の配向テンソルの値は、例えば、メルトブロー不織布では、密度調整や製造後にプレス加工することによって調整することができる。 The volume ratio and the value of the orientation tensor in the Z-axis direction can be adjusted by, for example, density adjustment or press working after manufacturing in a melt blown nonwoven fabric.
3.表皮材の製造方法
 表皮材の製造方法は、特に限定されない。
 例えば、ニードルパンチ等の任意の製造方法で作製された第1繊維集合体(表面層)の上に、紡糸ノズルから樹脂を吹き出して第2繊維集合体(裏面層)を形成する製造方法が好適に採用される。この製造方法は、第1繊維集合体の上にメルトブローによって、第2繊維集合体を形成する方法である。この製造方法を用いると、第1繊維集合体と第2繊維集合体との間に別途接着層を設けなくても、第1繊維集合体と第2繊維集合体とは接着される。また、この製造方法は、他の方法に比べて簡易であるので、製造コストが抑えられる。
 なお、複合糸(複合繊維)を用いて、第2繊維集合体を形成することもできる。この場合には、まず、複数の樹脂を含む複合糸(複合繊維)を用いて、編物、又は織物を形成する。その後、編物、又は織物に、アルカリ処理を施して、複数の樹脂の少なくとも一部の樹脂を分解又は溶解して、分解及び溶解をしない樹脂部分を残すことにより、第2繊維集合体を製造できる。この製造方法では、編物、又は織物を製造する際には、扱いやすい径の複合繊維を用いることができる。その後、アルカリ処理により、繊維の径を、複合繊維よりも小さくできるから、製造が簡便である。
 例えば、図4で示す、複合糸10を用いることができる(KBセーレン株式会社製 ベリーマ(商品名)等)。複合糸10は、ポリエステルからなる複数のクサビ状(三角断面)の部分13と、ポリアミドからなる放射線状の部分11とを備えている。隣り合うクサビ状(三角断面)の部分13は、放射線状の部分11により分割された構造を有する。この複合糸10を集合させて前駆体(編物、織物等)を予め形成し、この前駆体を化学処理して、ポリアミドの部分11を分解して、複数のクサビ状のポリエステルの部分13を残すことによって、分割・開繊して所望の第2繊維集合体が形成できる。
3. Manufacturing method of skin material The manufacturing method of a skin material is not specifically limited.
For example, a production method in which a second fiber aggregate (back surface layer) is formed by blowing resin from a spinning nozzle on the first fiber aggregate (surface layer) produced by an arbitrary manufacturing method such as a needle punch is suitable. Adopted. This manufacturing method is a method of forming the second fiber aggregate on the first fiber aggregate by melt blowing. When this manufacturing method is used, the first fiber assembly and the second fiber assembly are bonded without providing a separate adhesive layer between the first fiber assembly and the second fiber assembly. Moreover, since this manufacturing method is simpler than other methods, the manufacturing cost can be reduced.
In addition, a 2nd fiber assembly can also be formed using a composite yarn (composite fiber). In this case, first, a knitted fabric or a woven fabric is formed using a composite yarn (composite fiber) containing a plurality of resins. Thereafter, the second fiber assembly can be produced by subjecting the knitted fabric or woven fabric to an alkali treatment to decompose or dissolve at least some of the plurality of resins and leave a resin portion that does not decompose and dissolve. . In this manufacturing method, when manufacturing a knitted fabric or a woven fabric, a composite fiber having a diameter that is easy to handle can be used. After that, the diameter of the fiber can be made smaller than that of the composite fiber by alkali treatment, so that the production is simple.
For example, the composite yarn 10 shown in FIG. 4 can be used (Berryma (trade name) manufactured by KB Seiren Co., Ltd.). The composite yarn 10 includes a plurality of wedge-shaped (triangular cross-section) portions 13 made of polyester and a radial portion 11 made of polyamide. The adjacent wedge-shaped (triangular cross-section) portions 13 have a structure divided by the radial portions 11. The composite yarn 10 is assembled to form a precursor (knitted fabric, woven fabric, etc.) in advance, and this precursor is chemically treated to decompose the polyamide portion 11 and leave a plurality of wedge-shaped polyester portions 13. Thus, a desired second fiber aggregate can be formed by dividing and opening.
4.表皮材の用途
 本実施形態の表皮材は、各種技術分野の物品(部品を含む)の表皮材として幅広く用いられる。図2に、物品の基材15の表面に表皮材1が固定された場合の断面図を示す。表皮材1の基材15への固定方法は、接着に限定されず、公知の方法を適宜選択することができる。
 本実施形態の表皮材が利用される技術分野は特に限定されない。例えば、自動車、鉄道車両等の車両、航空機、船舶、建築、アパレル等の各種産業において、表皮材が拘わる技術分野に関して好適に利用される。表皮材を用いた物品の具体例としては、ドアトリム、ルーフトリム、パッケージトレイ、座席シート等の車両用内装材、ソファ等の家具、靴、財布、衣服等の生活用品等が挙げられる。
 特に、本実施形態の表皮材は、太陽光により高温になり得る物品、例えば、ドアトリム(特にアッパー部分)、パッケージトレイ、シートに好適に用いることができる。
 なお、各種物品の基材の材質は、特に限定されない。材質としては、例えばポリオレフィン系樹脂が好適に用いられる。ポリオレフィン系樹脂としては、具体的には、ポリプロピレン、ポリエチレン、ポリブテン、ポリスチレン、エチレン-プロピレン共重合体、エチレン-メタクリル酸共重合体、エチレン-エチルアクリレート共重合体、エチレン・プロピレン・ジエン三元共重合体、エチレン・酢酸ビニル共重合体等が挙げられる。
4). Use of skin material The skin material of this embodiment is widely used as a skin material of articles (including parts) in various technical fields. FIG. 2 shows a cross-sectional view when the skin material 1 is fixed to the surface of the substrate 15 of the article. The fixing method to the base material 15 of the skin material 1 is not limited to adhesion | attachment, A well-known method can be selected suitably.
The technical field in which the skin material of the present embodiment is used is not particularly limited. For example, in various industries such as vehicles such as automobiles and railroad vehicles, aircraft, ships, architecture, and apparel, it is suitably used in the technical field related to skin materials. Specific examples of articles using the skin material include interior materials for vehicles such as door trims, roof trims, package trays, seat sheets, furniture such as sofas, and household goods such as shoes, wallets, and clothes.
In particular, the skin material of this embodiment can be suitably used for articles that can be heated to high temperatures by sunlight, such as door trims (particularly the upper part), package trays, and sheets.
In addition, the material of the base material of various articles | goods is not specifically limited. As the material, for example, a polyolefin resin is preferably used. Specific examples of polyolefin resins include polypropylene, polyethylene, polybutene, polystyrene, ethylene-propylene copolymer, ethylene-methacrylic acid copolymer, ethylene-ethyl acrylate copolymer, ethylene / propylene / diene ternary copolymer. Examples thereof include a polymer and an ethylene / vinyl acetate copolymer.
5.本実施形態の表皮材の作用効果
 本実施形態の表皮材は、近赤外線反射性を有するから、この表皮材を表皮として用いた各種物品の温度上昇を抑制できる。
5. The effect of the skin material of this embodiment Since the skin material of this embodiment has near-infrared reflectivity, it can suppress the temperature rise of various articles | goods which used this skin material as a skin.
B.第2実施形態
 第2実施形態の表皮材は、カーボンブラックを含まず(カーボンブラックの含有率が0wt%)、かつ単繊維径が1μmより大きく5μm以下の繊維が含まれた繊維集合体を備える。
 表皮材101は、図9に示すように、繊維集合体103からなるものであってもよい。
 なお、表皮材101は、繊維集合体103の他に、表面に表面層を備えていてもよい。また、表皮材101は、繊維集合体103の他に、裏面に裏面層を備えていてもよい。裏面層は、例えば、バッキング層やウレタンフォーム層が好適に例示される。ここで、バッキング層は、表皮材101を補強するため、及び/又は接着剤の含侵を防ぐためのコーティング層である。
B. Second Embodiment A skin material according to a second embodiment includes a fiber assembly that does not include carbon black (the content of carbon black is 0 wt%) and includes fibers having a single fiber diameter of greater than 1 μm and less than or equal to 5 μm. .
The skin material 101 may be made of a fiber assembly 103 as shown in FIG.
The skin material 101 may include a surface layer on the surface in addition to the fiber assembly 103. Further, the skin material 101 may include a back surface layer on the back surface in addition to the fiber assembly 103. As the back layer, for example, a backing layer or a urethane foam layer is preferably exemplified. Here, the backing layer is a coating layer for reinforcing the skin material 101 and / or preventing impregnation of the adhesive.
1.繊維
(1)カーボンブラック
 本実施形態では、繊維集合体に含まれる繊維には、カーボンブラックが含まれていない(カーボンブラックの含有率が0wt%である)。カーボンブラックが含まれると、繊維集合体の反射性能が低下するからである。
1. Fiber (1) Carbon Black In this embodiment, the carbon contained in the fiber assembly does not contain carbon black (the carbon black content is 0 wt%). This is because when carbon black is included, the reflection performance of the fiber assembly is lowered.
(2)繊維の単繊維径
 本実施形態では、繊維集合体に含まれる繊維の単繊維径は、1μmより大きく5μm以下であり、好ましくは2μm以上5μm以下である。単繊維径がこの範囲内であると、表皮材の近赤外線に対する反射性能が優れる。よって、表皮材により覆われた各種物品の温度上昇を抑制できる。
 単繊維径がこの範囲内となると反射性能が優れる理由は定かではないが、単繊維径がこの範囲内となると、単繊維径が近赤外線波長と同等から数倍の領域内となり、ミー散乱と呼ばれる光の散乱現象が起きるためであると推測される。
 単繊維の断面形状が丸断面以外の異形断面である場合には、外接円の直径を単繊維径とする。なお、単繊維径は、走査型電子顕微鏡で繊維の横断面を撮影することにより測定が可能である。
(2) Single fiber diameter of fiber In this embodiment, the single fiber diameter of the fiber contained in a fiber assembly is larger than 1 micrometer and 5 micrometers or less, Preferably they are 2 micrometers or more and 5 micrometers or less. When the single fiber diameter is within this range, the reflection performance of the skin material for near infrared rays is excellent. Therefore, the temperature rise of various articles covered with the skin material can be suppressed.
The reason why the reflection performance is excellent when the single fiber diameter is within this range is not clear, but when the single fiber diameter is within this range, the single fiber diameter is within the range of several times the near infrared wavelength, and Mie scattering and This is presumed to be due to the phenomenon of light scattering.
When the cross-sectional shape of the single fiber is an irregular cross-section other than the round cross-section, the diameter of the circumscribed circle is the single fiber diameter. The single fiber diameter can be measured by photographing the cross section of the fiber with a scanning electron microscope.
(3)繊維の断面形状
 単繊維径が1μmより大きく5μm以下の繊維の単糸断面形状は、特に限定されない。単糸断面形状として、丸断面、丸断面以外の異形断面が例示される。異形断面の形状としては、三角断面、四角断面、五角断面、扁平断面、楔形断面、アルファベットの各文字に類似した断面(Y型断面、C型断面、H型断面、I型断面、W型断面等)等が好適に例示される。異形断面の繊維を得る方法は、特に限定されない。例えば、〔1〕溶融紡糸時に用いる口金の形状を異形にする方法、〔2〕2種類以上のポリマーを複合紡糸して、分割することにより断面を異形にする方法がある。後者の方法により製造された繊維は、割繊糸とも呼ばれている。
 本実施形態では、反射率向上の観点から、単糸断面形状としては、三角断面、扁平断面が好ましい。
 なお、割繊糸を用いる場合には、予め分割した割繊糸から繊維集合体を形成してもよい。また、複数の樹脂を含む複合糸から繊維集合体の前駆体(編物、織物、又は植毛シート)を形成した後に、前駆体を化学処理して、複合糸を分割・開繊し割繊糸としてもよい。
(3) Cross-sectional shape of fiber The single-fiber cross-sectional shape of a fiber having a single fiber diameter greater than 1 μm and 5 μm or less is not particularly limited. Examples of the single yarn cross-sectional shape include a round cross section and an irregular cross section other than the round cross section. The shape of the irregular cross section is triangular cross section, square cross section, pentagon cross section, flat cross section, wedge cross section, cross section similar to each letter of the alphabet (Y cross section, C cross section, H cross section, I cross section, W cross section) Etc.) and the like are preferably exemplified. The method for obtaining a fiber having an irregular cross section is not particularly limited. For example, there are [1] a method of making the shape of the die used at the time of melt spinning irregular, and [2] a method of making the cross section of the composite by spinning two or more types of polymers and dividing them. The fiber produced by the latter method is also called split yarn.
In the present embodiment, from the viewpoint of improving the reflectance, the single yarn cross-sectional shape is preferably a triangular cross section or a flat cross section.
In addition, when using split fiber, you may form a fiber assembly from the split fiber previously divided | segmented. Also, after forming a fiber assembly precursor (knitted fabric, woven fabric, or flocked sheet) from a composite yarn containing a plurality of resins, the precursor is chemically treated to divide and open the composite yarn to obtain a split fiber. Also good.
(4)単繊維径が1μmより大きく5μm以下でない繊維(以下、「その他の繊維」ともいう)
 繊維集合体には、単繊維径が1μmより大きく5μm以下でない繊維を含んでいてもよい。但し、繊維集合体に含まれる繊維の全量を100重量部とした場合に、単繊維径が1μmより大きく5μm以下の繊維が5重量部以上含まれていることが好ましく、10重量部以上含まれていることがより好ましく、15重量部以上含まれていることが更に好ましい。単繊維径が1μmより大きく5μm以下の繊維の量がこの範囲内であると、繊維集合体の反射性能が特に優れるからである。反射性能が優れるという観点からは、繊維集合体に含まれる繊維は、単繊維径が1μmより大きく5μm以下の繊維からなることが好ましい。すなわち、繊維集合体に含まれる繊維の全量を100重量部とした場合に、単繊維径が1μmより大きく5μm以下の繊維が100重量部含まれていることが好ましい。
(4) A fiber having a single fiber diameter greater than 1 μm and not less than 5 μm (hereinafter also referred to as “other fibers”)
The fiber assembly may contain fibers having a single fiber diameter of greater than 1 μm and not less than 5 μm. However, when the total amount of fibers contained in the fiber assembly is 100 parts by weight, it is preferable that 5 parts by weight or more of fibers having a single fiber diameter larger than 1 μm and 5 μm or less are contained, and 10 parts by weight or more are contained. More preferably, it is more preferably 15 parts by weight or more. This is because the reflection performance of the fiber assembly is particularly excellent when the amount of fibers having a single fiber diameter of more than 1 μm and not more than 5 μm is within this range. From the viewpoint of excellent reflection performance, the fibers contained in the fiber assembly are preferably composed of fibers having a single fiber diameter of more than 1 μm and not more than 5 μm. That is, when the total amount of fibers contained in the fiber assembly is 100 parts by weight, it is preferable that 100 parts by weight of fibers having a single fiber diameter of more than 1 μm and not more than 5 μm are included.
(5)繊維の材質
 単繊維径が1μmより大きく5μm以下の繊維は、合成繊維、再生繊維、半合成繊維、天然繊維のいずれであってもよい。
 合成繊維としては、特に限定されない。例えば、ポリエチレンテレフタレート(PET)繊維、ポリブチレンテレフタレート繊維、ポリトリメチレンテレフタレート繊維、ポリ乳酸繊維等のポリエステル系繊維;ポリアミド6繊維、ポリアミド66繊維等のポリアミド系繊維;ポリアクリル系繊維、ポリプロピレン繊維等のポリオレフィン系繊維等の各種の合成繊維を用いることができる。
 これらの繊維のうちでは、汎用性が高いことから、ポリエステル系繊維(特にPET繊維)、ポリプロピレン繊維、ポリアミド6繊維が好ましい。
 単繊維径が1μmより大きく5μm以下の繊維として、単一種の繊維のみならず、2種類以上の繊維を混合して用いることもできる。
 なお、合成繊維は、未延伸糸でもよく、半延伸糸でもよく、これらが混合されている混合糸でもよい。
 再生繊維としては、特に限定されない。例えば、セルロース系のレーヨン、精製セルロース繊維系のリヨセル等を用いることができる。レーヨンには、ポリノジック、ビスコース、キュプラレーヨン等の種類がある。
 半合成繊維としては、特に限定されない。例えば、セルロース系のアセテート、たんぱく質系のプロミックス等を用いることができる。
 天然繊維としては、特に限定されない。例えば、綿、麻等の植物繊維や、絹、獣毛(例えば羊毛)等の動物繊維を用いることができる。
(5) Fiber Material The fiber having a single fiber diameter of more than 1 μm and not more than 5 μm may be any of synthetic fiber, regenerated fiber, semi-synthetic fiber, and natural fiber.
The synthetic fiber is not particularly limited. For example, polyester fibers such as polyethylene terephthalate (PET) fiber, polybutylene terephthalate fiber, polytrimethylene terephthalate fiber and polylactic acid fiber; polyamide fibers such as polyamide 6 fiber and polyamide 66 fiber; polyacrylic fiber and polypropylene fiber Various synthetic fibers such as polyolefin-based fibers can be used.
Among these fibers, polyester fibers (particularly PET fibers), polypropylene fibers, and polyamide 6 fibers are preferred because of their high versatility.
As a fiber having a single fiber diameter larger than 1 μm and not larger than 5 μm, not only a single type of fiber but also two or more types of fibers can be mixed and used.
The synthetic fiber may be an undrawn yarn, a semi-drawn yarn, or a mixed yarn in which these are mixed.
The recycled fiber is not particularly limited. For example, cellulose-based rayon, purified cellulose fiber-based lyocell, or the like can be used. There are various types of rayon such as polynosic, viscose and cupra rayon.
The semi-synthetic fiber is not particularly limited. For example, cellulose acetate, protein promix, etc. can be used.
The natural fiber is not particularly limited. For example, plant fibers such as cotton and hemp, and animal fibers such as silk and animal hair (for example, wool) can be used.
2.繊維集合体
(1)繊維集合体の形態
 繊維集合体の形態は、特に限定されない。繊維集合体は、製造容易であるという観点から、編物、織物、スパンボンド不織布、メルトブロー不織布(メルトブローン不織布)、ニードルパンチ不織布、及び植毛シートからなる群より選択される少なくとも1種であることが望ましい。
 編物は、経編又は緯編のいずれであってもよい。緯編として、基本組織(平編、ゴム編、パール編)やその変化組織を例示できる。また、経編として、基本組織(デンビー編、コード編、アトラス編、鎖編)やその変化組織を例示できる。
 織物の組織は特に限定されず、例えば、平織物、綾織物、朱子織物及びそれらの組み合わせ等の各種の織物とすることができる。
 スパンボンド不織布は、例えば、樹脂を溶融して繊維(糸)を作り、ネット上に開繊・堆積させてウェッブを形成した後、シート状に結合させて製造される。
 メルトブロー不織布は、例えば、樹脂を溶融して紡糸ノズルの周囲から噴射する高温エアにより、繊維を細くしてシート状にして製造される。
 ニードルパンチ不織布は、例えば、金属製等のニードルの往復運動により、繊維相互間を交絡して製造される。
 植毛シートは、例えば、シート状の基体(ベース部)に繊維を植毛して製造される。製造容易という観点から、静電植毛(フロック加工)が好適に用いられる。
2. Fiber assembly (1) Form of fiber assembly The form of the fiber assembly is not particularly limited. The fiber aggregate is preferably at least one selected from the group consisting of a knitted fabric, a woven fabric, a spunbonded nonwoven fabric, a meltblown nonwoven fabric (meltblown nonwoven fabric), a needle punched nonwoven fabric, and a flocked sheet from the viewpoint of easy production. .
The knitted fabric may be either a warp knitting or a weft knitting. Examples of the weft knitting include a basic structure (flat knitting, rubber knitting, pearl knitting) and its changing structure. In addition, examples of warp knitting include basic structures (Denby knitting, code knitting, atlas knitting, chain knitting) and their changed structures.
The structure of the woven fabric is not particularly limited, and for example, various woven fabrics such as a plain woven fabric, a twill woven fabric, a satin woven fabric, and combinations thereof can be used.
A spunbonded nonwoven fabric is manufactured, for example, by melting a resin to form fibers (yarns), opening and depositing them on a net to form a web, and then bonding them into a sheet.
The melt blown nonwoven fabric is manufactured, for example, by thinning fibers with a high-temperature air melted from a resin and sprayed from around a spinning nozzle.
The needle punched nonwoven fabric is manufactured by interlacing fibers by reciprocating movement of a needle made of metal or the like, for example.
The flocked sheet is produced, for example, by flocking fibers on a sheet-like substrate (base part). From the viewpoint of easy production, electrostatic flocking (flocing) is preferably used.
(2)繊維集合体の厚み
 繊維集合体の厚みは、特に限定されない。繊維集合体の厚みは、製造コストを抑え、かつ反射率を高めるとの観点から、0.1mm以上10mm以下が好ましく、0.3mm以上5mm以下がより好ましく、0.5mm以上3mm以下が更に好ましい。
(2) Thickness of fiber assembly The thickness of the fiber assembly is not particularly limited. The thickness of the fiber assembly is preferably 0.1 mm or more and 10 mm or less, more preferably 0.3 mm or more and 5 mm or less, and further preferably 0.5 mm or more and 3 mm or less from the viewpoint of suppressing the manufacturing cost and increasing the reflectance. .
(3)繊維集合体の目付量
 繊維集合体の目付量は、特に限定されない。繊維集合体の目付量は、製造コストを抑え、かつ反射率を高めるという観点から、10g/m以上1500g/m以下が好ましく、15g/m以上1000g/m以下がより好ましく、20g/m以上500g/m以下が更に好ましい。
(3) The basis weight of the fiber assembly The basis weight of the fiber assembly is not particularly limited. The weight per unit area of the fiber aggregate is preferably 10 g / m 2 or more and 1500 g / m 2 or less, more preferably 15 g / m 2 or more and 1000 g / m 2 or less, from the viewpoint of suppressing the manufacturing cost and increasing the reflectance. / M 2 or more and 500 g / m 2 or less is more preferable.
3.表皮材
 本実施形態の表皮材は、上述の繊維集合体を備えている。本実施形態では、繊維集合体の近赤外線反射性により、表皮材も近赤外線反射性を有している。
3. Skin material The skin material of this embodiment is provided with the above-mentioned fiber assembly. In the present embodiment, the skin material also has near infrared reflectivity due to the near infrared reflectivity of the fiber assembly.
(1)繊維が占有する体積の割合である体積率、及び配向テンソル
 表皮材において、繊維が占有する体積の割合である体積率(以下、単に「体積率」ともいう)、及び繊維の配向状態(配向テンソル)は、次のようにして求めることができる。表皮材をさまざまな方向からX線で撮影し、コンピュータによって再構成処理を行うX線CT(Computed Tomography;コンピュータ断層撮影法)を用いて測定したデータ(例えば図3参照)から算出することができる。これにより、対象となる表皮材を非破壊で評価することができる。X線検査装置としては、例えば、(株)リガク製 nano3DXを用いることができる。解析ソフトとしては、例えば、Math2Market GmbH製 GeoDictを用いることができる。
(1) Volume ratio that is the ratio of the volume occupied by the fiber, and orientation tensor In the skin material, the volume ratio that is the ratio of the volume that the fiber occupies (hereinafter also simply referred to as “volume ratio”), and the orientation state of the fiber The (orientation tensor) can be determined as follows. It can be calculated from data (for example, see FIG. 3) measured using X-ray CT (Computed Tomography) in which a skin material is imaged with X-rays from various directions and reconstructed by a computer. . Thereby, the target skin material can be evaluated nondestructively. As the X-ray inspection apparatus, for example, nano3DX manufactured by Rigaku Corporation can be used. As the analysis software, for example, GeoDict made by Math2Market GmbH can be used.
 そして、表皮材をX線CTで観察して得られた画像から、1辺が0.1~0.5mmの立方体を切り出して、この立方体の全体の体積を100%とした場合に、立方体に含まれる単繊維径が1μmより大きく5μm以下の繊維が占有する体積の割合である体積率を求める。
 この体積率は、温度上昇抑制効果の観点から、3%以上20%以下であり、4%以上18%以下が好ましく、5%以上15%以下がより好ましい。
 体積率が、この範囲内であると、本実施形態の表皮材を表皮として有する物品の温度上昇が効果的に抑制される。
Then, when a cube having a side of 0.1 to 0.5 mm is cut out from an image obtained by observing the skin material with X-ray CT, and the total volume of the cube is 100%, a cube is formed. The volume ratio, which is the ratio of the volume occupied by the fibers having a single fiber diameter of greater than 1 μm and less than or equal to 5 μm, is determined.
This volume ratio is 3% or more and 20% or less, preferably 4% or more and 18% or less, and more preferably 5% or more and 15% or less from the viewpoint of the temperature rise suppressing effect.
When the volume ratio is within this range, the temperature increase of the article having the skin material of the present embodiment as the skin is effectively suppressed.
 Z軸方向の配向テンソルは、互いに直交するX軸、Y軸、Z軸で決定されるファブリック(表皮材)の平面方向をXY平面、XY平面に直交する軸をZ軸としたときに、ファブリックを構成する繊維がZ軸に配向した指標である。X方向、Y方向、Z方向それぞれの数値の和が1となる。
 配向テンソルは、詳細には次のように計算される。X線CTを用いて測定したデータから、三次元モデルを再構成する。この三次元モデルから、配向テンソル(Txx,Tyy,Tzz)を算出できる。なお、Txx,Tyy,Tzzは、それぞれ、X軸、Y軸、Z軸方向の配向テンソルを示す。既述のように、Txx+Tyy+Tzz=1である。また、例えば、各々の配向テンソル値が0.33のとき、ランダム配向していると評価することができる。
 本実施形態おいては、Z軸方向の配向テンソルが0.42以下であり、0.37以下であることがより好ましい(Z軸方向の配向テンソルは、通常、0よりも大きい)。Z軸方向の配向テンソルが、この範囲内であると、被覆された物品の温度上昇が効果的に抑制される。
The orientation tensor in the Z-axis direction is the fabric when the plane direction of the fabric (skin material) determined by the X-axis, Y-axis, and Z-axis orthogonal to each other is the XY plane, and the axis orthogonal to the XY plane is the Z-axis. Is an index in which the fibers constituting the are oriented in the Z-axis. The sum of numerical values in the X direction, the Y direction, and the Z direction is 1.
Specifically, the orientation tensor is calculated as follows. A three-dimensional model is reconstructed from data measured using X-ray CT. From this three-dimensional model, an orientation tensor (Txx, Tyy, Tzz) can be calculated. Txx, Tyy, and Tzz indicate alignment tensors in the X-axis, Y-axis, and Z-axis directions, respectively. As described above, Txx + Tyy + Tzz = 1. For example, when each orientation tensor value is 0.33, it can be evaluated that the orientation is random.
In the present embodiment, the orientation tensor in the Z-axis direction is 0.42 or less and more preferably 0.37 or less (the orientation tensor in the Z-axis direction is usually larger than 0). When the orientation tensor in the Z-axis direction is within this range, the temperature rise of the coated article is effectively suppressed.
 上記体積率、及びZ軸方向の配向テンソルの値は、次のように調整できる。例えば、織物や編物では、糸の密度の調整により調整できる。また、植毛の場合は、植毛時の繊維量や繊維長の調整、又は植毛後のアイロンによるプレス加工によって調整できる。 The volume ratio and the value of the orientation tensor in the Z-axis direction can be adjusted as follows. For example, in a woven fabric or a knitted fabric, it can be adjusted by adjusting the yarn density. In the case of flocking, it can be adjusted by adjusting the fiber amount and fiber length at the time of flocking, or by pressing with an iron after flocking.
(2)表皮材の厚み
 表皮材の厚みは、特に限定されない。表皮材の厚みは、製造コストを抑え、かつ反射率を高めるとの観点から、0.1mm以上10mm以下が好ましく、0.2mm以上5mm以下がより好ましく、0.3mm以上3mm以下が更に好ましい。
(2) Thickness of skin material The thickness of the skin material is not particularly limited. The thickness of the skin material is preferably 0.1 mm or more and 10 mm or less, more preferably 0.2 mm or more and 5 mm or less, and further preferably 0.3 mm or more and 3 mm or less from the viewpoint of suppressing the manufacturing cost and increasing the reflectance.
4.表皮材の製造方法
 表皮材の製造方法は、特に限定されない。
 複数の樹脂を含む複合糸を用いて表皮材を製造する場合には、下記の方法を好適に採用することができる。
 まず、複数の樹脂を含む複合糸(複合繊維)を用いて、編物、織物、又は植毛シートを形成する。その後、編物、織物、又は植毛シートに、アルカリ処理又は熱水による処理を施して、複数の樹脂の少なくとも一部の樹脂を分解又は溶解して、分解及び溶解をしない樹脂部分を残すことにより、表皮材を製造できる。この製造方法では、編物、織物、又は植毛シートを製造する際には、扱いやすい径の複合繊維を用いることができる。その後、アルカリ処理により、製造された表皮材に含まれる繊維の径を、複合繊維よりも小さくできるから、製造が簡便である。
 例えば、図4で示す、複合糸10を用いることができる(KBセーレン株式会社製 ベリーマ(商品名)等)。複合糸10は、ポリエステルからなる複数のクサビ状(三角断面)の部分13と、ポリアミドからなる放射線状の部分11とを備えている。隣り合うクサビ状(三角断面)の部分13は、放射線状の部分11により分割された構造を有する。この複合糸10を集合させて前駆体(編物、織物、又は植毛シート)を予め形成し、この前駆体を化学処理して、ポリアミドの部分11を分解して、複数のクサビ状のポリエステルの部分13を残すことによって、分割・開繊して所望の繊維集合体が形成できる。
4). Manufacturing method of skin material The manufacturing method of a skin material is not specifically limited.
In the case of producing a skin material using a composite yarn containing a plurality of resins, the following method can be suitably employed.
First, a knitted fabric, a woven fabric, or a flocked sheet is formed using a composite yarn (composite fiber) containing a plurality of resins. Thereafter, the knitted fabric, woven fabric, or flocked sheet is subjected to treatment with alkali or hot water to decompose or dissolve at least some of the plurality of resins, leaving a resin portion that does not decompose and dissolve, A skin material can be manufactured. In this manufacturing method, when manufacturing a knitted fabric, a woven fabric, or a flocked sheet, a composite fiber having a diameter easy to handle can be used. Then, since the diameter of the fiber contained in the manufactured skin material can be made smaller than that of the composite fiber by alkali treatment, the production is simple.
For example, the composite yarn 10 shown in FIG. 4 can be used (Berryma (trade name) manufactured by KB Seiren Co., Ltd.). The composite yarn 10 includes a plurality of wedge-shaped (triangular cross-section) portions 13 made of polyester and a radial portion 11 made of polyamide. The adjacent wedge-shaped (triangular cross-section) portions 13 have a structure divided by the radial portions 11. The composite yarn 10 is assembled to form a precursor (knitted fabric, woven fabric, or flocked sheet) in advance, and the precursor is chemically treated to decompose the polyamide portion 11 to form a plurality of wedge-shaped polyester portions. By leaving 13, the fiber can be divided and opened to form a desired fiber assembly.
5.表皮材の用途
 本実施形態の表皮材は、各種技術分野の物品(部品を含む)の表皮材として幅広く用いられる。図10に、物品の基材105の表面に表皮材101が固定された場合の断面図を示す。符号107は接着層を示す。表皮材101の基材105への固定方法は、接着に限定されず、公知の方法を適宜選択することができる。
 本実施形態の表皮材が利用される技術分野は特に限定されない。例えば、自動車、鉄道車両等の車両、航空機、船舶、建築、アパレル等の各種産業において、表皮材が拘わる技術分野に関して好適に利用される。表皮材を用いた物品の具体例としては、ドアトリム、ルーフトリム、パッケージトレイ、座席シート等の車両用内装材、ソファ等の家具、靴、財布、衣服等の生活用品等が挙げられる。
 特に、本実施形態の表皮材は、太陽光により高温になり得る物品、例えば、ドアトリム(特にアッパー部分)、パッケージトレイ、シートに好適に用いることができる。
 なお、各種物品の基材の材質は、特に限定されない。材質としては、例えばポリオレフィン系樹脂が好適に用いられる。ポリオレフィン系樹脂としては、具体的には、ポリプロピレン、ポリエチレン、ポリブテン、ポリスチレン、エチレン-プロピレン共重合体、エチレン-メタクリル酸共重合体、エチレン-エチルアクリレート共重合体、エチレン・プロピレン・ジエン三元共重合体、エチレン・酢酸ビニル共重合体、ポリアミド6、ABS、ポリカーボネート等が挙げられる。また、複合材として、ガラス繊維/PP、ガラス繊維/ポリアミド6、天然繊維/PP等が挙げられる。
5. Use of skin material The skin material of this embodiment is widely used as a skin material of articles (including parts) in various technical fields. FIG. 10 shows a cross-sectional view when the skin material 101 is fixed to the surface of the base material 105 of the article. Reference numeral 107 denotes an adhesive layer. The fixing method of the skin material 101 to the base material 105 is not limited to adhesion, and a known method can be appropriately selected.
The technical field in which the skin material of the present embodiment is used is not particularly limited. For example, in various industries such as vehicles such as automobiles and railroad vehicles, aircraft, ships, architecture, and apparel, it is suitably used in the technical field related to skin materials. Specific examples of articles using the skin material include interior materials for vehicles such as door trims, roof trims, package trays, seat sheets, furniture such as sofas, and household goods such as shoes, wallets, and clothes.
In particular, the skin material of this embodiment can be suitably used for articles that can be heated to high temperatures by sunlight, such as door trims (particularly the upper part), package trays, and sheets.
In addition, the material of the base material of various articles | goods is not specifically limited. As the material, for example, a polyolefin resin is preferably used. Specific examples of polyolefin resins include polypropylene, polyethylene, polybutene, polystyrene, ethylene-propylene copolymer, ethylene-methacrylic acid copolymer, ethylene-ethyl acrylate copolymer, ethylene / propylene / diene ternary copolymer. Examples thereof include a polymer, an ethylene / vinyl acetate copolymer, polyamide 6, ABS, and polycarbonate. Examples of the composite material include glass fiber / PP, glass fiber / polyamide 6, natural fiber / PP, and the like.
6.本実施形態の表皮材の作用効果
 本実施形態の表皮材は、近赤外線反射性を有するから、表皮材によって被覆された各種物品の温度上昇を抑制できる。
6). The effect of the skin material of this embodiment Since the skin material of this embodiment has near-infrared reflectivity, it can suppress the temperature rise of various articles covered with the skin material.
<第1実施形態の実施例>
 以下、実施例により第1実施形態を更に具体的に説明する。なお、実験例1Aは実施例である。実験例2A~4Aは比較例である。
<Example of the first embodiment>
Hereinafter, the first embodiment will be described more specifically by way of examples. Experimental example 1A is an example. Experimental examples 2A to 4A are comparative examples.
1.サンプルの作製
(1-1)実験例1A
 図1に示す構成の表皮材1を使用した。表面層3には、単繊維径が10μmのPET繊維からなるニードルパンチ不織布を用いた。表面層3の目付量は180g/mであった。なお、PET繊維は、カーボンブラックを含んでいない。
 表面層3の上に、紡糸ノズルからポリプロピレンを吹き出して裏面層5を形成した。裏面層5は、メルトブロー不織布であり、単繊維径が2μmのポリプロピレン繊維から構成されていた。なお、ポリプロピレン繊維は、カーボンブラックを含んでいない。また、裏面層5の目付量は、90g/mであった。
 この表皮材1をポリプロピレンの基材の表面に固定してサンプルとした。
1. Sample Preparation (1-1) Experimental Example 1A
The skin material 1 having the configuration shown in FIG. 1 was used. As the surface layer 3, a needle punched nonwoven fabric made of PET fibers having a single fiber diameter of 10 μm was used. The basis weight of the surface layer 3 was 180 g / m 2 . The PET fiber does not contain carbon black.
On the surface layer 3, the back surface layer 5 was formed by blowing polypropylene from a spinning nozzle. The back layer 5 was a melt blown nonwoven fabric and was composed of polypropylene fibers having a single fiber diameter of 2 μm. The polypropylene fiber does not contain carbon black. Moreover, the basis weight of the back surface layer 5 was 90 g / m 2 .
This skin material 1 was fixed to the surface of a polypropylene base material to prepare a sample.
(1-2)実験例2A(比較例1A)
 図6に示す構成の表皮材2を使用した。すなわち、表皮材2は、単繊維径が10μmのPET繊維からなるニードルパンチ不織布の表面層4と、単繊維径が10μmのポリプロピレン繊維からなるニードルパンチ不織布の裏面層6と、を備える。
 表面層4の目付量は、180g/mであった。なお、表面層4のPET繊維は、カーボンブラックを含んでいない。
 裏面層6の目付量は、90g/mであった。このポリプロピレン繊維は、カーボンブラックを含んでいない。
 この表皮材1をポリプロピレンの基材の表面に固定してサンプルとした。
(1-2) Experimental Example 2A (Comparative Example 1A)
The skin material 2 having the configuration shown in FIG. 6 was used. That is, the skin material 2 includes a needle punched nonwoven fabric surface layer 4 made of PET fibers having a single fiber diameter of 10 μm and a needle punched nonwoven fabric back layer 6 made of polypropylene fibers having a single fiber diameter of 10 μm.
The basis weight of the surface layer 4 was 180 g / m 2 . The PET fiber of the surface layer 4 does not contain carbon black.
The basis weight of the back layer 6 was 90 g / m 2 . This polypropylene fiber does not contain carbon black.
This skin material 1 was fixed to the surface of a polypropylene base material to prepare a sample.
(1-3)実験例3A(比較例2A)
 図7に示す構成の表皮材9を使用した。すなわち、表皮材9は、単繊維径が10μmのPET繊維からなるニードルパンチ不織布の表面層7と、単繊維径が10μmのポリプロピレン繊維からなるニードルパンチ不織布の裏面層8と、を備える。
 表面層7の目付量は、180g/mであった。なお、表面層7のPET繊維は、カーボンブラックを含む。
 裏面層8の目付量は、90g/mであった。このポリプロピレン繊維は、カーボンブラックを含んでいない。
 この表皮材9をポリプロピレンの基材の表面に固定してサンプルとした。
(1-3) Experimental Example 3A (Comparative Example 2A)
A skin material 9 having the structure shown in FIG. 7 was used. That is, the skin material 9 includes a surface layer 7 of a needle punch nonwoven fabric made of PET fibers having a single fiber diameter of 10 μm and a back layer 8 of a needle punch nonwoven fabric made of polypropylene fibers having a single fiber diameter of 10 μm.
The basis weight of the surface layer 7 was 180 g / m 2 . The PET fiber of the surface layer 7 contains carbon black.
The basis weight of the back surface layer 8 was 90 g / m 2 . This polypropylene fiber does not contain carbon black.
The skin material 9 was fixed to the surface of a polypropylene base material to prepare a sample.
(1-4)実験例4A(比較例3A)
 表皮材を使用しなかった。すなわち、表面材を有しないポリプロピレンの基材をそのままサンプルとした。
(1-4) Experimental Example 4A (Comparative Example 3A)
No skin material was used. That is, a polypropylene base material having no surface material was used as a sample.
2.裏面層における繊維が占有する体積の割合である体積率、及び配向テンソルの測定
 実験例1の表皮材の裏面層における体積率、及び配向テンソルを、X線CT装置としての(株)リガク製 nano3DXを用いて測定した。なお、解析ソフトとしては、Math2Market GmbH製 GeoDictを用いた。
2. Measurement of volume ratio, which is the ratio of the volume occupied by fibers in the back layer, and orientation tensor The volume ratio in the back layer of the skin material of Experimental Example 1 and the orientation tensor are manufactured by Rigaku Corporation nano3DX as an X-ray CT apparatus. It measured using. As analysis software, GeoDict manufactured by Math2Market GmbH was used.
3.ランプ照射試験(表皮材の性能評価)
 図5に示すようにサンプル20の裏面に熱電対21を配置した。そして、サンプル20の表面からレフランプ23(1000W/m)の光を照射した。なお、この試験は、室温下で行った。
 光を照射してから、観察された最高到達温度(到達温度)を評価した。最高到達温度が低い程、表皮材の性能は良好であると評価される。
3. Lamp irradiation test (performance evaluation of skin material)
As shown in FIG. 5, a thermocouple 21 was disposed on the back surface of the sample 20. And the light of the reflex lamp 23 (1000 W / m < 2 >) was irradiated from the surface of the sample 20. FIG. This test was performed at room temperature.
After irradiating with light, the highest temperature reached (temperature reached) was evaluated. The lower the maximum temperature reached, the better the performance of the skin material.
4.実験結果
 実験例1Aの裏面層の体積率、及びZ軸方向の配向テンソルを測定したところ、体積率は3%であり、かつZ軸方向の配向テンソルが0.05であることが確認された。
 ランプ照射試験の結果を表1及び図8に示す。表1及び図8の結果から、単繊維径が2μmのポリプロピレン繊維から構成された裏面層を有する実験例1Aのサンプルでは、表皮によってサンプルの温度上昇が効果的に抑制されていることが確認された。
4). Experimental Results When the volume ratio of the back surface layer of Experimental Example 1A and the orientation tensor in the Z-axis direction were measured, it was confirmed that the volume ratio was 3% and the orientation tensor in the Z-axis direction was 0.05. .
The results of the lamp irradiation test are shown in Table 1 and FIG. From the results of Table 1 and FIG. 8, it was confirmed that in the sample of Experimental Example 1A having the back layer composed of polypropylene fibers having a single fiber diameter of 2 μm, the temperature increase of the sample was effectively suppressed by the skin. It was.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<第2実施形態の実施例>
 以下、実施例により第2実施形態を更に具体的に説明する。なお、実験例1B,2B,3B,4B,7B,8B,9B,10B,11Bは実施例である。実験例5B,6B,12Bは比較例である。
<Example of the second embodiment>
Hereinafter, the second embodiment will be described more specifically by way of examples. Experimental examples 1B, 2B, 3B, 4B, 7B, 8B, 9B, 10B, and 11B are examples. Experimental examples 5B, 6B, and 12B are comparative examples.
1.表皮材における単繊維径の検討
(1)繊維が占有する体積の割合である体積率、及び配向テンソルの測定
 表皮材における体積率、及び配向テンソルは、X線CT装置としての(株)リガク製 nano3DXを用いて測定した。なお、解析ソフトとしては、Math2Market GmbH製 GeoDictを用いた。
1. Examination of single fiber diameter in skin material (1) Measurement of volume ratio, which is a proportion of volume occupied by fiber, and orientation tensor The volume ratio and orientation tensor in skin material are manufactured by Rigaku Corporation as an X-ray CT apparatus. It measured using nano3DX. As analysis software, GeoDict manufactured by Math2Market GmbH was used.
(2)サンプルの作製
(2-1)実験例1B
 静電植毛法を用いてベース部に植毛層を被着した。具体的には、ベース部に接着剤を塗布し、3万ボルト~8万ボルトの高い電圧をかけて静電気の力を利用して繊維をベース部に植え付けた後、余分な繊維を除去して表皮材を作製した。繊維には、丸断面で、単繊維径が1μmのPET繊維を用いた。なお、PET繊維は、カーボンブラックを含んでいない。
 この表皮材をポリプロピレンの基材の表面に固定してサンプルとした。
(2) Sample preparation (2-1) Experimental example 1B
A flocking layer was applied to the base using an electrostatic flocking method. Specifically, an adhesive is applied to the base part, a high voltage of 30,000 to 80,000 volts is applied, and the fibers are planted on the base part by using electrostatic force, and then the excess fibers are removed. A skin material was prepared. As the fiber, a PET fiber having a round cross section and a single fiber diameter of 1 μm was used. The PET fiber does not contain carbon black.
This skin material was fixed to the surface of a polypropylene base material to prepare a sample.
(2-2)実験例2B
 繊維として、丸断面で、単繊維径が2μmのPET繊維を用いたこと以外は、実験例1Bと同様にしてサンプルを作製した。
(2-2) Experimental example 2B
A sample was prepared in the same manner as in Experimental Example 1B, except that a PET fiber having a round cross section and a single fiber diameter of 2 μm was used as the fiber.
(2-3)実験例3B
 繊維として、丸断面で、単繊維径が4μmのPET繊維を用いたこと以外は、実験例1Bと同様にしてサンプルを作製した。
(2-3) Experimental Example 3B
A sample was prepared in the same manner as in Experimental Example 1B, except that a PET fiber having a round cross section and a single fiber diameter of 4 μm was used as the fiber.
(2-4)実験例4B
 繊維として、丸断面で、単繊維径が5μmのPET繊維を用いたこと以外は、実験例1Bと同様にしてサンプルを作製した。
(2-4) Experimental Example 4B
A sample was prepared in the same manner as in Experimental Example 1B, except that a PET fiber having a round cross section and a single fiber diameter of 5 μm was used as the fiber.
(2-5)実験例5B
 繊維として、丸断面で、単繊維径が6μmのPET繊維を用いたこと以外は、実験例1Bと同様にしてサンプルを作製した。
(2-5) Experimental Example 5B
A sample was prepared in the same manner as in Experimental Example 1B, except that a PET fiber having a round cross section and a single fiber diameter of 6 μm was used as the fiber.
(3)ランプ照射試験(表皮材の性能評価)
 図5に示すようにサンプル20の裏面に熱電対21を配置した。そして、サンプル20の表面からレフランプ23(1000W/m)の光を照射した。なお、この試験は、室温下で行った。
 光を照射してから、観察された最高到達温度(到達温度)を評価した。最高到達温度が低い程、表皮材の性能は良好であると評価される。
(3) Lamp irradiation test (performance evaluation of skin material)
As shown in FIG. 5, a thermocouple 21 was disposed on the back surface of the sample 20. And the light of the reflex lamp 23 (1000 W / m < 2 >) was irradiated from the surface of the sample 20. FIG. This test was performed at room temperature.
After irradiating with light, the highest temperature reached (temperature reached) was evaluated. The lower the maximum temperature reached, the better the performance of the skin material.
(4)実験結果
 実験例1B~5Bのサンプルの体積率、及びZ軸方向の配向テンソルを測定したところ、いずれのサンプルも体積率が3%以上20%以下であり、かつZ軸方向の配向テンソルが0.42以下であることが確認された。
 ランプ照射試験の結果を表2及び図11に示す。表2及び図11の結果から、単繊維径が1μmより大きく5μm以下の場合に、到達温度が低かった。よって、この範囲内の繊維を用いることで、サンプルの温度上昇が効果的に抑制されることが確認された。
(4) Experimental results When the volume fractions of the samples of Experimental Examples 1B to 5B and the orientation tensor in the Z-axis direction were measured, all the samples had a volume fraction of 3% to 20% and the orientation in the Z-axis direction. It was confirmed that the tensor was 0.42 or less.
The results of the lamp irradiation test are shown in Table 2 and FIG. From the results shown in Table 2 and FIG. 11, when the single fiber diameter was larger than 1 μm and not larger than 5 μm, the ultimate temperature was low. Therefore, it was confirmed that the temperature rise of the sample was effectively suppressed by using the fibers in this range.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
2.繊維が占有する体積の割合である体積率の検討
(1)繊維が占有する体積の割合である体積率、及び配向テンソルの測定
 上述の1.(1)と同様に行った。
2. Examination of volume ratio which is ratio of volume occupied by fiber (1) Measurement of volume ratio which is ratio of volume occupied by fiber and orientation tensor It carried out like (1).
(2)表皮材の作製(実験例6B~12B)
 静電植毛法を用いてベース部に植毛層を被着させた。具体的には、ベース部に接着剤を塗布し、3万ボルト~8万ボルトの高い電圧をかけて静電気の力を利用して繊維をベース部に植え付けた後、余分な繊維を除去して表皮材を作製した。繊維には、丸断面で、単繊維径が4μmのPET繊維を用いた。なお、PET繊維は、カーボンブラックを含んでいない。
 この際、植毛時の繊維量を調整し、かつ植毛後にアイロンによるプレス加工をすることで、体積率を下記表3に記載のように、1%(実験例6B)、3%(実験例7B)、5%(実験例8B)、10%(実験例9B)、15%(実験例10B)、20%(実験例11B)、25%(実験例12B)に調整した。
 そして、各表皮材をポリプロピレンの基材の表面に固定してサンプルとした。
(2) Production of skin material (Experimental examples 6B to 12B)
A flocking layer was deposited on the base using an electrostatic flocking method. Specifically, an adhesive is applied to the base part, a high voltage of 30,000 to 80,000 volts is applied, and the fibers are planted on the base part by using electrostatic force, and then the excess fibers are removed. A skin material was prepared. As the fiber, a PET fiber having a round cross section and a single fiber diameter of 4 μm was used. The PET fiber does not contain carbon black.
At this time, by adjusting the fiber amount at the time of flocking and pressing with an iron after flocking, the volume ratio is 1% (Experimental Example 6B) and 3% (Experimental Example 7B) as shown in Table 3 below. ) 5% (Experimental Example 8B), 10% (Experimental Example 9B), 15% (Experimental Example 10B), 20% (Experimental Example 11B), and 25% (Experimental Example 12B).
Each skin material was fixed to the surface of a polypropylene base material to prepare a sample.
(3)ランプ照射試験(表皮材の性能評価)
 上述の1.(3)と同様に行った。
(3) Lamp irradiation test (performance evaluation of skin material)
1 above. It carried out like (3).
(4)実験結果
 実験例6B~12BのサンプルのZ軸方向の配向テンソルを測定した。いずれのサンプルもZ軸方向の配向テンソルが0.42以下であることが確認された。
 ランプ照射試験の結果を表3及び図12に示す。表3及び図12の結果から、体積率が3%以上20%以下の場合に、到達温度が低かった。よって、この範囲内の体積率とすることで、サンプルの温度上昇が効果的に抑制されることが確認された。
(4) Experimental results The orientation tensor in the Z-axis direction of the samples of Experimental Examples 6B to 12B was measured. All samples were confirmed to have an orientation tensor in the Z-axis direction of 0.42 or less.
The results of the lamp irradiation test are shown in Table 3 and FIG. From the results of Table 3 and FIG. 12, when the volume ratio was 3% or more and 20% or less, the ultimate temperature was low. Therefore, it was confirmed that the temperature rise of the sample is effectively suppressed by setting the volume ratio within this range.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
3.実験結果のまとめ
 以上の実験結果から次のことが分かる。すなわち、単繊維径が1μmより大きく5μm以下の繊維が含まれ、体積率が3%以上20%以下であり、かつZ軸方向の配向テンソルが0.11以上0.42以下である表皮材は、サンプルの温度上昇が効果的に抑制されることが確認された。
3. Summary of experimental results From the above experimental results, the following can be understood. That is, a skin material in which a fiber having a single fiber diameter of greater than 1 μm and 5 μm or less is included, a volume ratio is 3% or more and 20% or less, and an orientation tensor in the Z-axis direction is 0.11 or more and 0.42 or less. It was confirmed that the temperature rise of the sample was effectively suppressed.
4.織物の場合
 上述の実験では、表皮材は植毛シートとした。本発明者らは、表皮材が織物の場合についても実験した。織物の場合であっても、単繊維径が1μmより大きく5μm以下の繊維が含まれ、体積率が3%以上20%以下であり、かつZ軸方向の配向テンソルが0.42以下である表皮材は、サンプルの温度上昇が効果的に抑制されることが確認した。
4). In the case of a woven fabric In the above experiment, the skin material was a flocked sheet. The inventors also experimented when the skin material was a woven fabric. Even in the case of a woven fabric, a skin having a single fiber diameter of greater than 1 μm and not greater than 5 μm, a volume ratio of not less than 3% and not more than 20%, and an orientation tensor in the Z-axis direction of not more than 0.42 It was confirmed that the temperature of the material was effectively suppressed.
 前述の例は単に説明を目的とするものでしかなく、本発明を限定するものと解釈されるものではない。本発明を典型的な実施形態の例を挙げて説明したが、本発明の記述および図示において使用された文言は、限定的な文言ではなく説明的および例示的なものであると理解される。ここで詳述したように、その形態において本発明の範囲または本質から逸脱することなく、添付の特許請求の範囲内で変更が可能である。ここでは、本発明の詳述に特定の構造、材料および実施例を参照したが、本発明をここにおける開示事項に限定することを意図するものではなく、むしろ、本発明は添付の特許請求の範囲内における、機能的に同等の構造、方法、使用の全てに及ぶものとする。 The above examples are for illustrative purposes only and are not to be construed as limiting the invention. Although the invention has been described with reference to exemplary embodiments, it is to be understood that the language used in the description and illustration of the invention is illustrative and exemplary rather than limiting. As detailed herein, modifications may be made in the form within the scope of the appended claims without departing from the scope or nature of the invention. Although specific structures, materials and examples have been referred to in the detailed description of the invention herein, it is not intended to limit the invention to the disclosure herein, but rather, the invention is claimed. It covers all functionally equivalent structures, methods and uses within the scope.
 本発明の表皮材で被覆されている物品は、温度上昇が効果的に抑制される。特に、本発明の表皮材は、ドアトリム、ルーフトリム、パッケージトレイ、座席シート等の車両用内装材用の表皮として好適に適用できる。 The article covered with the skin material of the present invention is effectively prevented from rising in temperature. In particular, the skin material of the present invention can be suitably applied as a skin material for vehicle interior materials such as door trims, roof trims, package trays, seats and the like.
1  …表皮材
2  …表皮材
9  …表皮材
3  …表面層
4  …表面層
7  …表面層
5  …裏面層
6  …裏面層
8  …裏面層
10 …複合糸
15 …基材
20 …サンプル
21 …熱電対
23 …レフランプ
101…表皮材
103…繊維集合体
105…基材
107…接着層
DESCRIPTION OF SYMBOLS 1 ... Skin material 2 ... Skin material 9 ... Skin material 3 ... Surface layer 4 ... Surface layer 7 ... Surface layer 5 ... Back surface layer 6 ... Back surface layer 8 ... Back surface layer 10 ... Composite yarn 15 ... Base material 20 ... Sample 21 ... Thermoelectric Pair 23 ... Ref lamp 101 ... Skin material 103 ... Fiber assembly 105 ... Base material 107 ... Adhesive layer

Claims (12)

  1.  カーボンブラックを含まない繊維を主たる構成繊維とした第1繊維集合体からなる表面層と、
     接着層を介して又は介さずに、前記表面層の裏面側に積層された裏面層と、
    を備えた表皮材であって、
     前記裏面層は、カーボンブラックを含まず、かつ単繊維径が1μmより大きく5μm以下の繊維が含まれた第2繊維集合体であることを特徴とする表皮材。
    A surface layer composed of a first fiber assembly in which fibers not containing carbon black are the main constituent fibers;
    A back layer laminated on the back side of the surface layer, with or without an adhesive layer, and
    A skin material with
    The skin material according to claim 1, wherein the back layer is a second fiber aggregate that does not contain carbon black and contains fibers having a single fiber diameter of greater than 1 μm and not greater than 5 μm.
  2.  前記表面層は、近赤外線透過性を有し、
     前記裏面層は、近赤外線反射性を有することを特徴とする請求項1に記載の表皮材。
    The surface layer has near infrared transparency,
    The skin material according to claim 1, wherein the back surface layer has near infrared reflectivity.
  3.  前記第2繊維集合体は、編物、織物、スパンボンド不織布、メルトブロー不織布、及びニードルパンチ不織布からなる群より選択される少なくとも1種であることを特徴とする請求項1又は2に記載の表皮材。 The skin material according to claim 1 or 2, wherein the second fiber aggregate is at least one selected from the group consisting of a knitted fabric, a woven fabric, a spunbonded nonwoven fabric, a melt blown nonwoven fabric, and a needle punched nonwoven fabric. .
  4.  前記第2繊維集合体は、メルトブロー不織布であることを特徴とする請求項3に記載の表皮材。 The skin material according to claim 3, wherein the second fiber aggregate is a melt blown nonwoven fabric.
  5.  前記単繊維径が1μmより大きく5μm以下の繊維は、合成繊維、再生繊維、及び天然繊維からなる群より選択される少なくとも1種であることを特徴とする請求項1~4のいずれか1項に記載の表皮材。 The fiber according to any one of claims 1 to 4, wherein the fiber having a single fiber diameter of more than 1 µm and not more than 5 µm is at least one selected from the group consisting of synthetic fibers, regenerated fibers, and natural fibers. The skin material described in 1.
  6.  表皮材であって、
     カーボンブラックを含まず、かつ単繊維径が1μmより大きく5μm以下の繊維が含まれた繊維集合体を備えており、
     前記表皮材をX線CTで観察して得られた画像から、1辺が0.1~0.5mmの立方体を切り出して、前記立方体の全体の体積を100%とした場合に、前記立方体に含まれる前記単繊維径が1μmより大きく5μm以下の繊維が占有する体積の割合である体積率は3%以上20%以下であり、かつ
     Z軸方向の配向テンソルが0.42以下であることを特徴とする表皮材。
    A skin material,
    Comprising a fiber assembly that does not contain carbon black and contains fibers with a single fiber diameter of greater than 1 μm and less than or equal to 5 μm;
    When a cube having a side of 0.1 to 0.5 mm is cut out from an image obtained by observing the skin material with X-ray CT, the total volume of the cube is 100%. The volume ratio that is the ratio of the volume occupied by the fibers having a single fiber diameter of greater than 1 μm and less than or equal to 5 μm is 3% or more and 20% or less, and the orientation tensor in the Z-axis direction is 0.42 or less. Characteristic skin material.
  7.  近赤外線反射性を有することを特徴とする請求項6に記載の表皮材。 The skin material according to claim 6, which has near-infrared reflectivity.
  8.  前記繊維集合体は、編物、織物、スパンボンド不織布、メルトブロー不織布、ニードルパンチ不織布、及び植毛シートからなる群より選択される少なくとも1種であることを特徴とする請求項6又は7に記載の表皮材。 The skin according to claim 6 or 7, wherein the fiber assembly is at least one selected from the group consisting of a knitted fabric, a woven fabric, a spunbonded nonwoven fabric, a melt blown nonwoven fabric, a needle punched nonwoven fabric, and a flocked sheet. Wood.
  9.  前記単繊維径が1μmより大きく5μm以下の繊維は、合成繊維であることを特徴とする請求項6~8のいずれか1項に記載の表皮材。 The skin material according to any one of claims 6 to 8, wherein the fiber having a single fiber diameter of more than 1 µm and not more than 5 µm is a synthetic fiber.
  10.  自動車のドアトリムの表皮として用いられることを特徴とする請求項1~9のいずれか1項に記載の表皮材。 The skin material according to any one of claims 1 to 9, wherein the skin material is used as a skin of an automobile door trim.
  11.  自動車のパッケージトレイの表皮として用いられることを特徴とする請求項1~9のいずれか1項に記載の表皮材。 The skin material according to any one of claims 1 to 9, wherein the skin material is used as a skin of a package tray of an automobile.
  12.  自動車のシート基材の表皮として用いられることを特徴とする請求項1~9のいずれか1項に記載の表皮材。 The skin material according to any one of claims 1 to 9, wherein the skin material is used as a skin of an automobile sheet base material.
PCT/JP2019/018242 2018-05-23 2019-05-07 Skin material WO2019225304A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980033617.4A CN112135728B (en) 2018-05-23 2019-05-07 Skin material
DE112019002594.5T DE112019002594T5 (en) 2018-05-23 2019-05-07 Skin material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018098996A JP6996419B2 (en) 2018-05-23 2018-05-23 Epidermis material
JP2018-098994 2018-05-23
JP2018098994A JP7028059B2 (en) 2018-05-23 2018-05-23 Epidermis material
JP2018-098996 2018-05-23

Publications (1)

Publication Number Publication Date
WO2019225304A1 true WO2019225304A1 (en) 2019-11-28

Family

ID=68615955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018242 WO2019225304A1 (en) 2018-05-23 2019-05-07 Skin material

Country Status (3)

Country Link
CN (1) CN112135728B (en)
DE (1) DE112019002594T5 (en)
WO (1) WO2019225304A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022014515A (en) * 2020-07-07 2022-01-20 トヨタ紡織株式会社 Skin material and interior material
JP2022014514A (en) * 2020-07-07 2022-01-20 トヨタ紡織株式会社 Skin material and interior material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003127259A (en) * 2001-10-26 2003-05-08 Nissan Motor Co Ltd Low radiation skin material
JP2004358664A (en) * 2003-05-30 2004-12-24 Nissan Motor Co Ltd Interior skin for motorcar, seat for vehicle using it and interior material for motorcar
JP2013256720A (en) * 2012-03-12 2013-12-26 Daiwabo Holdings Co Ltd Light ray-shielding regenerated cellulose fiber, method of manufacturing the same, and fiber structure
JP2016172945A (en) * 2015-03-17 2016-09-29 東レ株式会社 Ultrafine polyester fiber having convexoconcave surface, and sea-island type conjugate fiber
JP2017140770A (en) * 2016-02-10 2017-08-17 帝人株式会社 Heat-shielding fabric and fiber product

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3786250B2 (en) * 2000-03-31 2006-06-14 東洋紡績株式会社 Ceiling material for vehicle and method for manufacturing the same
DE60239896D1 (en) * 2002-08-07 2011-06-09 Toray Industries VELOURSKUNSTLEDER AND ITS MANUFACTURE
JP6733673B2 (en) * 2015-07-31 2020-08-05 東レ株式会社 Leather cloth

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003127259A (en) * 2001-10-26 2003-05-08 Nissan Motor Co Ltd Low radiation skin material
JP2004358664A (en) * 2003-05-30 2004-12-24 Nissan Motor Co Ltd Interior skin for motorcar, seat for vehicle using it and interior material for motorcar
JP2013256720A (en) * 2012-03-12 2013-12-26 Daiwabo Holdings Co Ltd Light ray-shielding regenerated cellulose fiber, method of manufacturing the same, and fiber structure
JP2016172945A (en) * 2015-03-17 2016-09-29 東レ株式会社 Ultrafine polyester fiber having convexoconcave surface, and sea-island type conjugate fiber
JP2017140770A (en) * 2016-02-10 2017-08-17 帝人株式会社 Heat-shielding fabric and fiber product

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022014515A (en) * 2020-07-07 2022-01-20 トヨタ紡織株式会社 Skin material and interior material
JP2022014514A (en) * 2020-07-07 2022-01-20 トヨタ紡織株式会社 Skin material and interior material
JP7428091B2 (en) 2020-07-07 2024-02-06 トヨタ紡織株式会社 Outer skin material and interior material

Also Published As

Publication number Publication date
CN112135728A (en) 2020-12-25
DE112019002594T5 (en) 2021-03-25
CN112135728B (en) 2022-12-09

Similar Documents

Publication Publication Date Title
WO2019225304A1 (en) Skin material
JP2022508205A (en) Bulky non-woven fabric with improved compressibility and resilience
TW201512477A (en) Heat-bondable conjugate fiber, and producing method thereof, and nonwoven fabric using the same
JP2008266812A (en) Functional modified cross-section type regenerated polyethylene terephthalate fiber, and method for producing the same
JP6996419B2 (en) Epidermis material
JP2010037681A (en) Woven or knitted fabric for clothing
CN112513357B (en) Nonwoven fabric, use of a nonwoven fabric and wipes, dryer papers and masks comprising said nonwoven fabric
JP7028059B2 (en) Epidermis material
JP7428091B2 (en) Outer skin material and interior material
CN205775045U (en) A kind of anti-ultraviolet nano-fibre yams
TW200427893A (en) Deodorant fiber structure and method for producing the same
JP2022082755A (en) Nonwoven fabric and production method thereof
JP2021091982A (en) Fiber and fiber aggregate
JP2006200082A (en) Functional fibrous structural material
CN116437886A (en) Structure comprising particles and method for manufacturing the same
EP4110608A1 (en) Layered nonwoven textile
JP2022014514A (en) Skin material and interior material
EP4343054A1 (en) Artificial leather and manufacturing method therefor
JP2021091983A (en) Hollow fiber and fiber aggregate
JP2021091984A (en) Fiber and fiber aggregate
JP2024500449A (en) Spunbond nonwoven fabric and its manufacturing method
JP2022179204A (en) Artificial leather, and production method of the same
CN113235210A (en) Three-dimensional spaced fabric, artificial leather and automotive interior with high light transmittance
TW201940773A (en) Nonwoven fabric and manufacturing method of nonwoven fabric
JP2020002496A (en) Decorative fiber sheet and manufacturing method of decorative fiber sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19808113

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19808113

Country of ref document: EP

Kind code of ref document: A1