WO2019225282A1 - Polypropylene-based composite film and packaging material using same - Google Patents

Polypropylene-based composite film and packaging material using same Download PDF

Info

Publication number
WO2019225282A1
WO2019225282A1 PCT/JP2019/017550 JP2019017550W WO2019225282A1 WO 2019225282 A1 WO2019225282 A1 WO 2019225282A1 JP 2019017550 W JP2019017550 W JP 2019017550W WO 2019225282 A1 WO2019225282 A1 WO 2019225282A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
polypropylene
composite film
propylene
film
Prior art date
Application number
PCT/JP2019/017550
Other languages
French (fr)
Japanese (ja)
Inventor
安岡涼
村田太一
松浦洋一
土本達郎
深貝佳孝
Original Assignee
東レフィルム加工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レフィルム加工株式会社 filed Critical 東レフィルム加工株式会社
Priority to KR1020207020151A priority Critical patent/KR20210012996A/en
Priority to JP2019523119A priority patent/JP7237827B2/en
Priority to CN201980015145.XA priority patent/CN111757809A/en
Publication of WO2019225282A1 publication Critical patent/WO2019225282A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2323/00Polyalkenes
    • B32B2323/04Polyethylene
    • B32B2323/046LDPE, i.e. low density polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2323/00Polyalkenes
    • B32B2323/10Polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2325/00Polymers of vinyl-aromatic compounds, e.g. polystyrene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/40Closed containers
    • B32B2439/46Bags
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a polypropylene-based composite film having high heat seal strength from a low temperature, easy slipping, low temperature impact resistance, and bending whitening resistance, and a packaging material using the same.
  • a polypropylene film is used as a packaging film.
  • a polypropylene film and a polyethylene terephthalate (PET) film or a nylon (Ny) film, particularly a stretched PET film or a stretched nylon film (ONy) A packaging material in which aluminum foil is laminated is widely known.
  • an organic lubricant is added to a polypropylene film used for a packaging film, and the lubricant oozes out to the surface of the film after film formation, thereby exhibiting good slipperiness.
  • a conventional polypropylene film it sticks to a film such as a stretched PET film, ONy, or aluminum foil via an adhesive, and bleeds onto the film surface when aged at a certain temperature to cure the adhesive. Since the organic lubricant (particularly fatty acid amide-based lubricant) that came out re-transferred into the film, there was a tendency for slipping to become worse.
  • the film surface has good slipperiness, particularly a static friction coefficient of a certain level or less, for example, a static friction coefficient of 0.3 or less.
  • Patent Document 1 discloses that an unsaturated fatty acid amide having a melting point of 70 to 90 ° C. is 0.02 to 0.2% by weight, and an unsaturated fatty acid bisamide having a melting point of 115 to 135 ° C. is 0.01 to 0.12% by weight.
  • unsaturated fatty acid amide and unsaturated fatty acid bisamide are Although the amount needs to be increased and the coefficient of friction can be kept low, the amount of lubricant on the film surface becomes too large after the aging treatment, causing deposits on the rolls and the like, resulting in problems in the working environment.
  • a lubricant having an optimum aging temperature of less than 40 ° C such as erucamide is added to both outer layers, and a lubricant having an optimum aging temperature of 40 ° C or more such as behenamide or ethylenebisamide is added to the intermediate layer.
  • a polypropylene multilayer film and a composite film having a three-layer structure using a propylene / ethylene random copolymer for an intermediate layer and a propylene / ethylene random copolymer for at least one outer layer are provided. It is disclosed.
  • the polypropylene film when used as a packaging film, has excellent properties such as bending whitening resistance, low temperature impact resistance, and slipperiness in a well-balanced manner in addition to the heat sealability described above.
  • conventional films have not always been able to satisfy high demands in recent years.
  • bag breaking strength under severe conditions that can not be torn even when repeatedly dropped from a relatively high position in a bag containing contents may be required ( Especially in retort applications, there is a need for bag breaking strength under such severe conditions), but a polypropylene film designed for low temperature impact resistance based on the criteria for bag breaking strength under such severe conditions. Is not found.
  • JP-A-9-77881 Japanese Patent Laid-Open No. 11-334004 JP-A-10-87744
  • the problem of the present invention is that the heat sealing force is high from low temperature to high temperature, excellent in low temperature impact resistance and bending whitening resistance, and even if the film is aged at 60 ° C., the amount of lubricant on the film surface is within an appropriate range. It is to provide a polypropylene-based composite film that can be maintained and achieve a desirable value as a coefficient of static friction on the film surface, and a packaging material using the same.
  • the polypropylene composite film of the present invention has the following configuration.
  • the A layer is mainly composed of a propylene random copolymer having a melt flow rate at 230 ° C. of 2 to 10 g / 10 minutes and a melting point of 130 to 150 ° C.
  • the layer has a ratio ([ ⁇ ] Cxs / [ ⁇ ] Cxis) of the intrinsic viscosity [ ⁇ ] Cxs of the soluble part of 20 ° C. xylene to the intrinsic viscosity [ ⁇ ] Cxis of the insoluble part of 1.6 or more.
  • the main component is a resin composition in which 10 to 90 parts by weight of a low density polyethylene polymer (b) is blended with 100 parts by weight of the ethylene block copolymer (a), and the A layer contains 200 to 200 fatty acid amide lubricants.
  • the polypropylene layer is a polypropylene composite film containing 2000 ppm, and the B layer contains 500 to 5000 ppm of a fatty acid amide lubricant.
  • the amount of lubricant on the film surface at normal temperature (23 ° C.) can be maintained within an appropriate range, and the amount of lubricant on the film surface can be maintained within an appropriate range even after aging at 60 ° C.
  • the static friction coefficient of the surface can be suppressed to 0.3 or less, and a polypropylene composite film suitable for battery packaging materials requiring slipperiness and a packaging material including the same can be realized.
  • a polypropylene composite film suitable for a packaging material for packaging, and a packaging material including the same can be realized.
  • the polypropylene composite film of the present invention comprises at least two layers of A layer / B layer, and the A layer contains a propylene random copolymer as a main component.
  • a block copolymer having an olefin block more preferably, a B layer containing a propylene random copolymer (d) is provided.
  • the layer A of the polypropylene composite film of the present invention is mainly composed of a propylene random copolymer having a melt flow rate at 230 ° C. (hereinafter abbreviated as MFR) of 2 to 10 g / 10 min and a melting point of 130 to 150 ° C.
  • MFR melt flow rate at 230 ° C.
  • the main component in the A layer means a component exceeding 50% by weight in the A layer.
  • the heat seal strength at 130 ° C. and 160 ° C. decreases.
  • the MFR at 230 ° C. of the propylene random copolymer of the A layer is less than 2 g / 10 minutes, the uniform lamination property with the B layer may be deteriorated, and the low temperature heat seal strength at 130 ° C. may be deteriorated. If it exceeds 10 g / 10 minutes, the bleed-out property of the lubricant may deteriorate and the slip property may decrease.
  • the propylene random copolymer of layer A is a copolymer of propylene and at least one ⁇ -olefin, and examples of the ⁇ -olefin include ethylene, butene, and octene. From the viewpoint of heat sealability, a propylene / ethylene random copolymer of ethylene is preferable.
  • the layer A of the polypropylene composite film of the present invention preferably contains the propylene random copolymer as a main component and 200 to 2000 ppm of a fatty acid amide lubricant. If the content of the fatty acid amide-based lubricant is less than 200 ppm, the slipperiness may be deteriorated. If it exceeds 2000 ppm, heat scattering may increase during melt extrusion, and the film-forming property may deteriorate due to contamination of the process. The low-temperature heat seal strength may also be reduced.
  • fatty acid amide-based lubricant examples include oleic acid amide, erucic acid amide, stearic acid amide, palmitic acid amide, behenic acid amide and the like, and particularly, resin composition in which erucic acid amide is used in the polypropylene-based composite film of the present invention. It is preferable from the viewpoint of dispersibility in water and expression of slipperiness.
  • the slipping property is improved even if the content of the fatty acid amide-based lubricant is reduced.
  • the polypropylene composite film is wound up in a long length, defects due to defects such as wrinkles and air loss are reduced. If the content is 300 ppm or less, the effect of imparting slipperiness is not observed, and if it exceeds 5000 ppm, the heat sealability may be lowered.
  • Preferred examples of the inorganic particles include silica, zeolite, and calcium carbonate, and preferred examples of the organic particles include crosslinked PS and crosslinked PMMA.
  • Their average particle size is preferably in the range of 1 to 5 ⁇ m. If the average particle size is less than 1 ⁇ m, the effect of addition is not observed, and if it exceeds 5 ⁇ m, the heat sealing force may be reduced.
  • the B layer of the polypropylene composite film of the present invention is the ratio of the intrinsic viscosity [ ⁇ ] Cxs of the soluble part of xylene at 20 ° C. to the intrinsic viscosity [ ⁇ ] Cxis of the insoluble part ([ ⁇ ] Cxs / [ ⁇ ] Cxis).
  • the main component is a resin composition comprising a propylene / ethylene block copolymer (a) having a molecular weight of 1.6 or more and a low density polyethylene polymer (b).
  • the main component in the B layer means a component exceeding 50% by weight in the B layer.
  • the propylene / ethylene block copolymer (a) of the B layer of the polypropylene-based composite film of the present invention is a ratio of the intrinsic viscosity [ ⁇ ] Cxs of the soluble part of xylene and the intrinsic viscosity [ ⁇ ] Cxis of the insoluble part at 20 ° C. ([ ⁇ ] Cxs / [ ⁇ ] Cxis) is 1.6 or more, preferably in the range of 1.6 to 2.0. If [ ⁇ ] Cxs / [ ⁇ ] Cxis is less than 1.6, the resin is reduced due to a decrease in heat seal strength due to film crushing when heat-sealed at 160 ° C. or higher, and pressure is applied during heat sealing or drawing.
  • the propylene / ethylene block copolymer (a) of the B layer has a proportion of a polypropylene portion of 20 ° C. xylene insoluble part of 70 to 85% by weight, and the intrinsic viscosity [ ⁇ ] Cxis of the xylene insoluble part is 1.5 to 2.0 dl / g, and the intrinsic viscosity [ ⁇ ] Cxs of the 20 ° C. xylene-soluble part indicating the ratio of the ethylene / propylene copolymer rubber component is 2.4 to 4.0 dl / g.
  • the film may be thinned due to crushing of the film during heat sealing or drawing, and if it exceeds 2.0 dl / g, the film becomes too hard. As a result, the drawability may deteriorate.
  • the intrinsic viscosity [ ⁇ ] Cxs of the xylene soluble part is less than 2.4 dl / g, the seal strength may be lowered.
  • the intrinsic viscosity exceeds 4.0 dl / g the particle size of the rubber component is very large. Cracks may occur at the sea-island structure interface, resulting in low-temperature impact resistance and reduced heat sealability.
  • the 20 ° C. xylene insoluble part and the soluble part are the above-mentioned propylene / ethylene block copolymer pellets completely dissolved in boiling xylene, then cooled to 20 ° C. and allowed to stand for 4 hours or more. When this was separated into a precipitate and a solution, the precipitate was called a 20 ° C. xylene insoluble part, and the part obtained by drying the solution part (filtrate) at 70 ° C. under reduced pressure was the xylene soluble part. Called.
  • the propylene / ethylene block copolymer has an intrinsic viscosity of xylene-insoluble and soluble components, and a method for adjusting the melt flow rate includes hydrogen gas in each step during the polymerization of the propylene / ethylene block copolymer.
  • a method of adding a molecular weight adjusting agent such as a metal compound, a method of adding an additive when melt-kneading and pelletizing a polymer obtained in powder form, a melt-kneading of a polymer obtained in powder form, and pelletizing A method for adjusting the kneading conditions during the process can be mentioned.
  • a method of polymerizing propylene, ethylene or the like as a raw material using a catalyst can be mentioned.
  • a Ziegler-Natta type or metallocene catalyst can be used as the catalyst, and for example, those described in JP-A-07-216017 can be preferably used.
  • a trivalent titanium compound-containing solid catalyst obtained by treating with a mixture of an ether compound and titanium tetrachloride or a mixture of an ether compound, titanium tetrachloride and an ester compound, (2) an organoaluminum compound, (3 And a catalyst system comprising an electron donating compound (dialkyldimethoxysilane or the like is preferably used).
  • a polymer part mainly composed of propylene is polymerized in the first step substantially in the absence of an inert agent, It is preferable to use a method in which the ethylene / propylene copolymer portion is polymerized in the gas phase in the second step.
  • the polymer part mainly composed of propylene is preferably a propylene homopolymer having a melting point of 160 ° C. or higher from the viewpoint of heat resistance, rigidity, etc. It may be a copolymer with a small amount of ⁇ -olefin such as ethylene and 1-butene.
  • a low density polyethylene polymer (b) is blended with the propylene / ethylene block copolymer (a).
  • the polypropylene composite film of the present invention is cracked (whitened) at the interface of the sea-island structure of the film, for example, during deformation of drawing for battery exterior use, There is a concern that some electrolyte will leak. Therefore, it is necessary to design the dispersion of the rubber component at the island portion in the propylene / ethylene block copolymer to be extremely small, and the dispersion can be extremely small by containing the low density polyethylene polymer.
  • the low temperature impact resistance and the bending whitening resistance are improved by increasing the glass transition point component lower than that of the propylene / ethylene block copolymer.
  • the rubber component in the B layer when used for packaging materials for retort, the occurrence of unevenness (swelling skin) due to swelling of the film by the oily food of the contents is suppressed (anti-resistance) Yuzu skin properties can be improved).
  • the low-density polyethylene resin (b) is preferably a low-density polyethylene, a linear low-density polyethylene, or the like, but the linear low-density polyethylene is a rubber component in the propylene / ethylene block copolymer. This is preferable because the dispersion effect is high, and the resistance to bending whitening and the skin resistance is improved.
  • the density of the linear low-density polyethylene is in the range of 0.900 to 0.935 g / cm 3 and the MFR is in the range of 0.5 to 20 g / 10 min. It is preferable because the dispersibility is good and the effect of dispersing the rubber component of the propylene / ethylene block copolymer is high.
  • the method for producing the linear low density polyethylene is not particularly limited, and those produced using a conventional Ziegler-Natta catalyst or a metallocene catalyst can be used.
  • the above propylene / ethylene block copolymer does not impair the required physical properties of high-performance ethylene-based or styrene-based elastomers that are produced by combining a catalyst technology that achieves a high rubber content and a polymerization process technology. To the extent, that is, 5 to 30% by weight can be contained. Thereby, the dispersion of the sea-island structure can be reduced as in the case of the low-density polyethylene-based polymer.
  • the layer B in the polypropylene composite film of the present invention is a resin composition in which 15 to 90 parts by weight of the low density polyethylene polymer (b) is blended with 100 parts by weight of the propylene / ethylene block copolymer (a). It has a main component.
  • the low density polyethylene polymer (b) is less than 15 parts by weight with respect to 100 parts by weight of the propylene / ethylene block copolymer (a)
  • whitening due to cracks at the time of drawing using, for example, a battery packaging material May occur, and there is a concern that the electrolyte as the content may leak.
  • a yuzu skin may become large and an external appearance defect may arise.
  • the low-density polyethylene polymer (b) exceeds 90 parts by weight with respect to 100 parts by weight of the propylene / ethylene block copolymer (a), the shift of the lubricant to the film surface layer is reduced and the slipperiness is poor.
  • the low temperature impact resistance may be deteriorated.
  • the dispersibility may be deteriorated, and a streak-like defect may be generated at the time of melt extrusion to deteriorate the film forming property.
  • the polypropylene composite film of the present invention is aged at 60 ° C. or higher for curing the adhesive after lamination with other materials.
  • the fatty acid amide-based lubricant in the B layer moves to the B layer surface side, and further from there to the A layer.
  • the lubricant contained in the A layer tends to be transferred in the A layer, whereas it is transferred from the B layer to the A layer.
  • the range of the amount of lubricant can be maintained in the range of 3 to 20 mg / m 2 , preferably 5 to 15 mg / m 2 , and a static friction coefficient of 0.3 or less between the surfaces of the A layers is achieved.
  • B layer is a block copolymer having a styrene block with respect to 100 parts by weight of the propylene / ethylene block copolymer (a) and 10 to 90 parts by weight of the low density polyethylene polymer (b), or
  • a resin composition in which 5 to 20 parts by weight of the polymer (c), which is a block copolymer having a crystalline olefin block, is blended, the rubber component in the portion to be islands in the propylene / ethylene block copolymer is further dispersed. Can be small.
  • the block copolymer having a styrene block or the block copolymer having a crystalline olefin block as the polymer (c) has a block copolymer (c1) having a styrene block or a crystalline olefin block. It is a block copolymer (c2).
  • Examples of the block copolymer (c1) having a styrene block used in the present invention include those provided in JP-A-3-128957.
  • the polymer block is composed of a styrene monomer (c3) and a conjugated diene monomer (c4).
  • the styrene monomer (c3) is not particularly limited, and specific examples include styrene, ⁇ -methyl styrene, paramethyl styrene, etc. Among these, styrene and ⁇ -methyl styrene are preferable, and the polymerization point is high. In particular, styrene is preferable.
  • Examples of the conjugated diene monomer (c4) include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-pentadiene, 2-methyl-1,3-pentadiene, 1,3-hexadiene, Examples include 4,5-diethyl-1,3-octadiene, 3-butyl-1,3-octadiene, chloroprene and the like.
  • a polybutadiene block is preferable because it is excellent in rubber elasticity expressed by the polymer block and can impart excellent impact resistance to the finally obtained polypropylene-based composite film of the present invention.
  • a commercially available product that can be particularly preferably used as such a block copolymer (c1) having a styrene block includes a styrene / ethylene butylene / styrene triblock copolymer (hereinafter abbreviated as SEBS). .
  • SEBS styrene / ethylene butylene / styrene triblock copolymer
  • the ethylene butylene block portion is easily compatible with the polypropylene-based resin, and the effect of increasing the compatibility with the propylene / ethylene block copolymer (a) is high.
  • the content of polystyrene block in SEBS is preferably 12 to 67% by weight.
  • the blocking resistance is good, and when it is 67% by weight or less, the low-temperature impact resistance is good.
  • an MFR at 230 ° C. of 0.5 to 10 g / 10 min is preferable.
  • the MFR is 0.5 g / 10 min or more, the dispersibility of the mixed resin is good, and when the MFR is 10 g / 10 min or less, the low temperature impact resistance is good.
  • the block copolymer (c2) having a crystalline olefin block used in the present invention is a copolymer having a block (c5) made of crystalline polyolefin and another block (c6) not having crystallinity, Preferably, the other block (c6) has a block made of a role diene polymer.
  • Examples of the block copolymer (c2) having such a crystalline olefin block include those provided in JP-A-3-128957. Specifically, a polybutadiene polymer block having a low 1,2-vinyl bond content (for example, 25% or less) and a polymer mainly composed of a conjugated diene compound, which contains 1,2- and 3,4-bonds. A copolymer composed of a polymer block having a high rate (for example, 50% or more) is synthesized, and the polybutadiene portion is made to have a structure similar to polyethylene by hydrogenating the copolymer to form a crystalline polymer block. And the like.
  • conjugated diene compound examples include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-pentadiene, 2-methyl-1,3-pentadiene, 1,3-hexadiene, 4,5-diethyl. 1,3-octadiene, 3-butyl-1,3-octadiene, chloroprene, and the like. From the viewpoint of industrial availability, 1,3-butadiene and isoprene are preferably used.
  • a block copolymer having a configuration of polyethylene, ethylene butylene, and polyethylene (hereinafter abbreviated as CEBC) can be mentioned. Since the ethylene butylene block portion is easily compatible with the polypropylene resin and the polyethylene block portion is easily compatible with the polyethylene resin, the propylene / ethylene block copolymer (a) and the low density polyethylene polymer (b ) Is highly effective in increasing compatibility.
  • the polyethylene block content in CEBC is preferably 15 to 40% by weight.
  • the blocking resistance is good, and when it is 40% by weight or less, the low-temperature impact resistance is good.
  • an MFR at 230 ° C. of 0.5 to 10 g / 10 min is preferable.
  • the MFR is 0.5 g / 10 min or more, the dispersibility of the mixed resin is good, and when the MFR is 10 g / 10 min or less, the low temperature impact resistance is good.
  • the B layer has a melt flow rate of 2 to 10 g at 230 ° C. with respect to 100 parts by weight of the propylene / ethylene block copolymer (a) and 10 to 90 parts by weight of the low density polyethylene polymer (b). / 10 minutes, by forming a resin composition containing 10 to 50 parts by weight of the propylene random copolymer (d) having a melting point of 130 to 150 ° C., the interfacial adhesive force with the A layer is increased. As a result, the heat seal strength is increased, which is preferable.
  • the addition amount of the propylene random copolymer (d) is less than 10 parts by weight, the effect of improving the heat seal strength is not observed, and when it exceeds 50 parts by weight, the low temperature impact resistance may be lowered.
  • the propylene random copolymer (d) is preferably a random copolymer with an ⁇ -olefin such as ethylene, butene, octene, etc., and a propylene / ethylene random copolymer of a copolymer with ethylene is a heat. This is preferable because the range in which both the sealing force and the sliding property can be compatible is wide.
  • the layer thickness may be reduced depending on the temperature and pressure at the time of heat sealing, and if the melting point exceeds 150 ° C., the low temperature impact resistance is lowered. Sometimes.
  • the polypropylene-based composite film of the present invention comprises at least a two-layer structure of A layer / B layer, but the MFR at 230 ° C. is 2 to 10 g / m on the other surface of the B layer in the present invention.
  • a three-layer laminate of layer A / layer B / layer C comprising a main component of a propylene random copolymer having a melting point of 130 to 150 ° C. for 10 minutes and a layer C containing 200 to 2000 ppm of a fatty acid amide lubricant. This is preferable because the laminate strength with other base materials is increased.
  • the static friction coefficient after aging at 23 ° C. for 3 days between the A layer surfaces is preferably 0.3 or less, and more preferably in the range of 0.1 to 0.3.
  • the coefficient of static friction after aging at 60 ° C. for 3 days between the A layer surfaces is preferably 0.3 or less, and more preferably in the range of 0.1 to 0.3. If the static friction coefficient between the A layer surfaces exceeds 0.3, battery packaging materials that require slipperiness by drawing, film breakage occurs during molding, resulting in poor product yield, and packaging materials for retort foods.
  • the opening of the bag may be poor and the content filling property may be deteriorated. If the static friction coefficient between the A layer surfaces is less than 0.1, a shift may occur when stacking bag-fabricated products.
  • the static friction coefficient when the A layer surface and the B layer surface or the C layer surface are overlapped is 0.3 or less, so that the polypropylene composite film of the present invention is wound up in a long length. Occasionally, traps and air pockets are reduced and productivity is improved.
  • the content of the fatty acid amide-based lubricant in the B layer is less than 500 ppm, the amount of the fatty acid amide-based lubricant on the surface of the A layer is small, the coefficient of static friction between the A layer surfaces exceeds 0.3, and slipperiness may be deteriorated. It may not be satisfactorily used in battery packaging applications where slipperiness is required by drawing. In addition, if it exceeds 5000 ppm, the friction coefficient can be kept low, but the amount of lubricant on the film surface becomes too large, and the lubricant may adhere to the roll or the like in the film forming or laminating process, which may cause problems in the working environment. . Moreover, when heat-sealing, a lubricant may accumulate at the film interface, and the heat-sealing strength may be reduced.
  • the thickness of the A layer or C layer of the polypropylene composite film of the present invention is preferably 1 ⁇ m or more, and the total thickness is preferably in the range of 20 to 200 ⁇ m.
  • the thickness of the A layer or the C layer is less than 1 ⁇ m, sufficient heat seal strength at 130 ° C. and 160 ° C. may not be obtained, and the range of 2 to 30 ⁇ m is preferable. Further, if the total thickness is less than 20 ⁇ m, the low temperature impact resistance may not be sufficiently obtained, and there is a concern that the electrolyte solution of the battery, which is the contents, or the retort food may leak. On the other hand, when the total thickness exceeds 200 ⁇ m, the laminate processability is lowered and the production cost is increased, which is not preferable.
  • the volume resistivity of the polypropylene composite film of the present invention is preferably in the range of 1 ⁇ 10 11 to 1 ⁇ 10 14 ⁇ ⁇ m.
  • the battery packaging material required electrical insulation, the volume resistivity is less than 1 ⁇ 10 11 ⁇ ⁇ m poor insulating properties, there is the battery performance decreases, and when it exceeds 1 ⁇ 10 14 ⁇ ⁇ m electrostatic May cause problems in laminating properties and battery performance.
  • the A layer and the C layer contain 200 to 2000 ppm of fatty acid amide lubricant, and the B layer contains a fatty acid amide lubricant. This can be achieved by adding 500 to 5000 ppm.
  • the polypropylene composite film of the present invention has a heat seal strength at 130 ° C. of the A layer surfaces of 30 N / 15 mm or more, and a heat seal strength at 160 ° C. or more of 55 N / 15 mm or more.
  • a heat seal strength at 130 ° C. of the A layer surfaces of 30 N / 15 mm or more
  • a heat seal strength at 160 ° C. or more of 55 N / 15 mm or more When used as a packaging material, it is preferable in protecting contents.
  • the packaging material for retort foods requires low-temperature sealing properties, and if the heat seal strength at 130 ° C. between the A layer surfaces is less than 30 N / 15 mm, the contents of the food may leak after retort processing.
  • the heat seal strength at 160 ° C. or higher is less than 55 N / 15 mm, when used as a battery packaging material, leakage of electrolyte due to an increase in internal pressure due to heat during charging and discharging, or when used as a retort food packaging material, Liquid leakage may occur from the heat seal part in the bag drop test.
  • the present invention also provides a battery outer packaging bag and a retort packaging bag made of the laminate as described above.
  • the laminate is formed by laminating at least one selected from a biaxially stretched polyethylene terephthalate film, a biaxially stretched polypropylene film, a biaxially stretched nylon film, and an aluminum foil on the opposite side of the A layer.
  • a biaxially stretched polyethylene terephthalate film a biaxially stretched polypropylene film
  • a biaxially stretched nylon film a biaxially stretched nylon film
  • aluminum foil on the opposite side of the A layer.
  • a normal dry laminating method in which an adhesive is attached to the constituent film of the laminate can be suitably employed.
  • the polypropylene composite film of the present invention and the base material layer can be attached.
  • a method of extruding and laminating a directly-adhesive polyolefin resin can also be adopted.
  • the dry laminating adhesive is not particularly limited.
  • a polyol selected from the group consisting of polyurethane polyols, polyester polyols and polyether polyols.
  • a two-component reactive adhesive composed of a first liquid composed of one or more of the above and a second liquid (curing agent) composed of isocyanate.
  • an adhesive layer formed of a polyurethane adhesive, an acrylic adhesive, an epoxy adhesive, a polyolefin adhesive, an elastomer adhesive, a fluorine adhesive, etc. can be mentioned.
  • it is preferable to use an acrylic adhesive or a polyolefin-based adhesive when used as a battery packaging material, the electrolytic solution resistance and the water vapor barrier property can be improved.
  • These laminates are used after being processed into packaging materials such as molded sheets, flat bags, standing pouches, etc., using the polypropylene composite film of the present invention as a sealing layer.
  • the laminated structure of these laminates is required for packaging materials, for example, sealing performance to satisfy the quality retention period of the food to be packaged, size that can handle the weight of the contents, low-temperature impact resistance, electrolyte resistance, etc. It is appropriately selected depending on.
  • Heat seal strength For battery packaging materials, a biaxially stretched PET film (PET-BO) with a thickness of 12 ⁇ m, a nylon 6 stretched film (ONy) with a thickness of 15 ⁇ m, and aluminum with a thickness of 40 ⁇ m formed on both sides.
  • PET-BO biaxially stretched PET film
  • ONy nylon 6 stretched film
  • the foil and the B layer or C layer of the polypropylene composite film of the present invention are bonded together by an ordinary dry laminating method using a urethane adhesive, and aged at 60 ° C. for 3 days, and then PET-BO / adhesive / ONy.
  • Adhesive / Aluminum foil / Adhesive / A laminate (A) of the polypropylene composite film of the present invention (outermost layer A layer surface) was obtained.
  • a stretched PET film having a thickness of 12 ⁇ m, an ONy film having a thickness of 15 ⁇ m, and the polypropylene composite film of the present invention are bonded together by a normal dry laminating method using a urethane-based adhesive, and 40 ° C. Was aged for 3 days to obtain a laminate (B) of PET-BO / adhesive / ONy / adhesive / polypropylene composite film of the present invention (outermost layer A layer surface).
  • a flat plate heat sealer was used, and the A layer surfaces were overlapped with each other under the conditions of a seal temperature of 160 ° C., a seal pressure of 0.2 MPa, and a soot seal time of 2 seconds. After heat sealing, it was cut into strips with a width of 15 mm, and the heat seal strength was measured by a T-type peeling method at a tensile speed of 300 mm / min using Tensilon manufactured by Orientec. When the heat seal strength was 55 N / 15 mm or more, ( ⁇ ), and less than 55 N / 15 mm were ( ⁇ ).
  • a flat plate heat sealer is used, A layer surface is piled up, seal temperature 130 degreeC and 160 degreeC, seal pressure 0.2 MPa, seal time After heat-sealing under conditions of 1 second, after cutting into a strip of 15 mm width and performing a retort treatment at 130 ° C. for 30 minutes, using a Tensilon manufactured by Orientec Corporation at a tensile speed of 300 mm / min, The heat seal strength was measured by a mold peeling method. If the heat seal strength at 130 ° C.
  • the heat seal strength at 160 ° C. was evaluated as ( ⁇ ) when the heat seal strength was 55 N / 15 mm or more, and (x) when less than 55 N / 15 mm.
  • the laminate (B) for retort packaging material prepared by the above heat seal strength measurement two of the laminates are made of the polypropylene composite film (layer A surface) of the present invention on the inner surface of the bag.
  • a standing pouch having a bag size of 150 mm ⁇ 285 mm was prepared using a CA-450-10 type heat sealer manufactured by Fuji Impulse Co., Ltd., with a heating time of 1.4 seconds and a cooling time of 3.0 seconds.
  • This bag is filled with 1 L of 0.1% by weight saline and then retorted at 135 ° C. for 30 minutes. After the retort-treated bag is stored in a refrigerator at 0 ° C.
  • the average number of n times of 20 times until the bag breaks is 30 times or more as good low temperature impact resistance ( ⁇ ), and less than 30 times as low temperature impact resistance failure ( ⁇ ). evaluated.
  • Rank 1 was rated as excellent scratch skin resistance ( ⁇ )
  • Rank 2 as excellent scratch skin resistance ( ⁇ )
  • Ranks 4 and 5 as poor scratch skin resistance ( ⁇ ).
  • each layer in the case of a laminated film is determined by embedding the laminated film in an epoxy resin, cutting out the film cross section with a microtome, observing the cross section with a scanning electron microscope at a magnification of 3,000 times, The thickness was calculated.
  • Propylene random copolymer-1 Propylene / ethylene random copolymer (denoted as “EPC-1”) having an MFR of 3.3 g / 10 min and a melting point of 142 ° C.
  • Propylene random copolymer-2 Propylene-ethylene random copolymer (denoted as “EPC-2”) having a melting point of 138 ° C. with an MFR of 6.0 g / 10 min.
  • Propylene random copolymer-3 Propylene-ethylene random copolymer (denoted as “EPC-3”) having a melting point of 127 ° C.
  • Propylene random copolymer-4 A propylene / ethylene random copolymer (denoted as “EPC-4”) having an MFR of 1.5 g / 10 min and a melting point of 132 ° C.
  • Propylene random copolymer-5 Propylene / ethylene random copolymer having a melting point of 156 ° C. (denoted as “EPC-5”), MFR 5.0 g / 10 min.
  • Propylene / ethylene block copolymer-1 20 ° C. xylene soluble part 10% by weight, intrinsic viscosity [ ⁇ ] Cxs 3.2 dl / g of the soluble part, 20 ° C.
  • BPP-2 propylene / ethylene block copolymer
  • Propylene / ethylene block copolymer-3 20 ° C.
  • xylene soluble part 20% by weight, intrinsic viscosity [ ⁇ ] Cxs 2.5 dl / g of the soluble part, 20 ° C.
  • BPP-4 propylene / ethylene block copolymer
  • LLDPE Linear low density polyethylene
  • Fatty acid amide lubricant As the fatty acid amide lubricant, erucic acid amide was used.
  • erucic acid amide was mixed with the propylene random copolymers EPC-1 to EPC-5 as the A layer composition.
  • the composition of the B layer is a propylene / ethylene block copolymer (BPP-) having a ratio of xylene soluble part [ ⁇ ] Cxs and insoluble part [ ⁇ ] Cxis at 20 ° C. of [ ⁇ ] Cxs / [ ⁇ ] Cxis of 1.68. 1), linear low density polyethylene (LLDPE) as a low density polyethylene polymer, and erucic acid amide were mixed.
  • BPP- propylene / ethylene block copolymer
  • LLDPE linear low density polyethylene
  • Each of the A layer and the B layer was supplied to separate extruders to prepare a non-stretched polypropylene composite film composed of a two-layer coextrusion of A layer / B layer.
  • the thickness of each layer was set to 40 ⁇ m in total of 5 ⁇ m / 35 ⁇ m.
  • erucic acid amide was mixed with propylene random copolymer EPC-1 as the composition of layer A and layer C.
  • B layer composition erucic acid amide was mixed with a resin composition in which BPP-1 or BPP-2 of propylene / ethylene block copolymer, LLDPE, and EPC-1 of propylene random copolymer were mixed.
  • BPP-1 or BPP-2 of propylene / ethylene block copolymer, LLDPE, and EPC-1 of propylene random copolymer were mixed.
  • Each of the A layer, the B layer, and the C layer was supplied to separate extruders to prepare a non-stretched polypropylene-based composite film composed of a three-layer coextrusion of A layer / B layer / C layer.
  • the thickness of each layer was set to 40 ⁇ m in total of 5 ⁇ m / 30 ⁇ m / 5 ⁇ m.
  • Example 10 A layer / B layer / C layer were made to have the same raw material composition as Example 6, and the thickness of each layer was 80 ⁇ m in total of 10 ⁇ m / 60 ⁇ m / 10 ⁇ m.
  • Example 11 the same formulation as in Example 6 was used except that a propylene / ethylene block copolymer (BPP-2) having [ ⁇ ] Cxs / [ ⁇ ] Cxis of 1.98 was used as the B layer composition.
  • BPP-2 propylene / ethylene block copolymer
  • Examples 1 to 5 are excellent in process passability, low-temperature impact resistance, resistance to bending whitening, and scratch resistance, and have sufficient seal strength at 130 ° C and 160 ° C.
  • the static friction coefficient was 0.3 or less and good slipping property, and the volume resistivity was in the range of 1 ⁇ 10 11 to 1 ⁇ 10 14 ⁇ ⁇ m.
  • an unstretched polypropylene-based composite film composed of a three-layer coextrusion of A layer / B layer / C layer was used, but the process passability, drawability, low temperature impact resistance, and bending whitening resistance It has excellent scratch resistance, has sufficient seal strength at 130 ° C. and 160 ° C., has a static friction coefficient of 0.3 or less, has good slipperiness, and has a volume resistivity of 1 ⁇ 10 11 to 1 It was in the range of ⁇ 10 14 ⁇ ⁇ m.
  • Example 10 the total thickness was 80 ⁇ m, but it was excellent in process passability, drawability, low temperature impact resistance, bending whitening resistance, and scratch skin resistance, and seal strengths of 130 ° C. and 160 ° C. In addition, the coefficient of static friction was 0.3 or less and good slipping property, and the volume resistivity was 3.2 ⁇ 10 12 ⁇ ⁇ m.
  • Example 11 a propylene / ethylene block copolymer (BPP-2) having [ ⁇ ] Cxs / [ ⁇ ] Cxis of 1.98 was used as the B layer composition. It has excellent low-temperature impact resistance, anti-bending whitening resistance, and scratch-proof skin resistance, sufficient seal strength at 130 ° C and 160 ° C, a static friction coefficient of 0.3 or less, and good slipperiness.
  • the resistivity was 7.0 ⁇ 10 12 ⁇ ⁇ m.
  • Comparative Example 6 was inferior in low-temperature impact resistance due to a large amount of LLDPE, inferior in slipperiness due to a small amount of lubricant bleed on the surface layer A, and inferior in process passability.
  • Comparative Example 10 was the same as Example 6 except that the propylene / ethylene block copolymer (BPP-3) having [ ⁇ ] Cxs / [ ⁇ ] Cxis of 1.39 was used as the main component for the B layer.
  • BPP-3 propylene / ethylene block copolymer having [ ⁇ ] Cxs / [ ⁇ ] Cxis of 1.39
  • BPP-3 propylene / ethylene block copolymer having [ ⁇ ] Cxs / [ ⁇ ] Cxis of 1.39
  • BPP-3 propylene / ethylene block copolymer having [ ⁇ ] Cxs / [ ⁇ ] Cxis of 1.39
  • Comparative Example 11 was the same as Example 6 except that the propylene / ethylene block copolymer (BPP-4) having [ ⁇ ] Cxs / [ ⁇ ] Cxis of 1.52 was used as the main component for the B layer.
  • BPP-4 propylene / ethylene block copolymer
  • [ ⁇ ] Cxs / [ ⁇ ] Cxis was close to 1.6, the resin was protruded by pressurization during drawing, and the heat seal strength was low due to thinning during heat sealing.
  • erucic acid amide was mixed with the propylene random copolymers EPC-1 to EPC-5 as the A layer composition.
  • the composition of the B layer is a propylene / ethylene block copolymer (BPP-) having a ratio of xylene soluble part [ ⁇ ] Cxs and insoluble part [ ⁇ ] Cxis at 20 ° C. of [ ⁇ ] Cxs / [ ⁇ ] Cxis of 1.68.
  • LLDPE linear low density polyethylene
  • SEBS styrene / ethylene butylene / styrene triblock copolymer
  • SEBS polyethylene / ethylene butylene / polyethylene triblock copolymer
  • CEBC polyethylene / ethylene butylene / polyethylene triblock copolymer
  • erucic acid amide was mixed with propylene random copolymer EPC-1 as the composition of the A layer and the C layer.
  • B layer composition is BPP-1 or BPP-2 of propylene / ethylene block copolymer and LLDPE and SEBS or CEBC, and EPC-1 of propylene random copolymer is mixed with erucic acid amide.
  • EPC-1 propylene random copolymer is mixed with erucic acid amide.
  • Each of the A layer, the B layer, and the C layer was supplied to separate extruders to prepare a non-stretched polypropylene-based composite film composed of a three-layer coextrusion of A layer / B layer / C layer. The thickness of each layer was set to 40 ⁇ m in total of 5 ⁇ m / 30 ⁇ m / 5 ⁇ m.
  • Example 30 A layer / B layer / C layer were made to have the same raw material composition as Example 22, and the thickness of each layer was 80 ⁇ m in total of 10 ⁇ m / 60 ⁇ m / 10 ⁇ m.
  • the slip resistance was 0.3 or less and the volume resistivity was in the range of 1 ⁇ 10 11 to 1 ⁇ 10 14 ⁇ ⁇ m.
  • Example 22 to 29 a non-stretched polypropylene-based composite film composed of a three-layer coextrusion of A layer / B layer / C layer was used, but the process passability, drawability, low temperature impact resistance, and bending whitening resistance With excellent seal strength at 130 ° C and 160 ° C, a coefficient of static friction of 0.3 or less and good slipperiness, and a volume resistivity of 1 ⁇ 10 11 to 1 ⁇ 10 14 ⁇ ⁇ m.
  • Example 30 the total thickness was 80 ⁇ m, but it was excellent in process passability, drawability, low temperature impact resistance, and bending whitening resistance, and had sufficient seal strength at 130 ° C. and 160 ° C. Yes, the coefficient of static friction was 0.3 or less and good slipping property, and the volume resistivity was 3.2 ⁇ 10 12 ⁇ ⁇ m.
  • Comparative Example 18 was inferior in low-temperature impact resistance due to the large amount of LDPE blended in layer B, inferior in slipperiness due to a small amount of lubricant bleed in the surface layer A and inferior in process passability.
  • the polypropylene-based composite film of the present invention and a packaging material using the polypropylene-based composite film have high heat-sealing power, excellent slipperiness, and can be suitably used for battery exterior applications.
  • the polypropylene composite film of the present invention and a packaging material using the same are packaging materials for retort foods that are excellent in slipperiness, low-temperature impact resistance, and skin-resistant properties, and that require heat seal strength at low temperatures. Can be suitably used.

Abstract

Provided are: a polypropylene-based composite film which can exhibit a high heat sealing ability in a temperature range from a lower temperature to a higher temperature, has excellent low-temperature impact resistance and excellent resistance to whitening on bending, and makes it possible to keep the amount of a lubricant in the surface of the film at a value falling within a proper range to achieve a desired value for the static friction coefficient of the surface of the film even when the film is laminated and is then aged at 60°C; and a packaging material using the polypropylene-based composite film. A polypropylene-based composite film characterized by comprising at least two layers composed of a layer A and a layer B, wherein the main component of the layer A is a propylene-based random copolymer having a melt flow rate of 2 to 10 g/10 min. at 230°C and a melting point of 130 to 150°C, the main component of the layer B is a resin composition which contains 100 parts by weight of a propylene-ethylene block copolymer (a) having a ratio of a limiting viscosity [η] Cxs of a 20°C xylene soluble fraction to a limiting viscosity [η] Cxis of a 20°C xylene insoluble fraction (i.e., [η]Cxs/[η]Cxis) of 1.6 or more and 10 to 90 parts by weight of a low-density polyethylene-based polymer (b), the layer A contains a fatty acid amide-type lubricant in an amount of 200 to 2000 ppm, and the layer B contains a fatty acid amide-type lubricant in an amount of 500 to 5000 ppm.

Description

ポリプロピレン系複合フィルムおよびそれを用いた包装材Polypropylene composite film and packaging material using the same
 本発明は、低温からのヒートシール強度が高く、易滑性、耐低温衝撃性、耐折曲げ白化性を備えたポリプロピレン系複合フィルムおよびそれを用いた包装材に関する。 The present invention relates to a polypropylene-based composite film having high heat seal strength from a low temperature, easy slipping, low temperature impact resistance, and bending whitening resistance, and a packaging material using the same.
 包装用フィルムとしてポリプロピレン系フィルムが用いられることは広く知られており、その他に、ポリプロピレン系フィルムとポリエチレンテレフタレート(PET)フィルムやナイロン(Ny)フィルム、特に延伸PETフィルムや延伸ナイロンフィルム(ONy)、およびアルミニウム箔を積層した包装材が広く知られている。 It is widely known that a polypropylene film is used as a packaging film. In addition, a polypropylene film and a polyethylene terephthalate (PET) film or a nylon (Ny) film, particularly a stretched PET film or a stretched nylon film (ONy), A packaging material in which aluminum foil is laminated is widely known.
 包装用フィルムに用いられるポリプロピレン系フィルムには一般的に有機滑剤が添加されており、製膜後に滑剤がフィルム表面に滲み出すことで良好な滑り性を発現している。従来のポリプロピレン系フィルムにおいては、接着剤を介して延伸PETフィルムやONyなどのフィルム、アルミニウム箔などと貼り合わせ、接着剤を硬化させるために一定以上の温度をかけてエージングすると、フィルム表面に滲み出た有機滑剤(とくに、脂肪酸アミド系滑剤)がフィルム中に再移行するため、滑りが悪くなる傾向があった。 In general, an organic lubricant is added to a polypropylene film used for a packaging film, and the lubricant oozes out to the surface of the film after film formation, thereby exhibiting good slipperiness. In a conventional polypropylene film, it sticks to a film such as a stretched PET film, ONy, or aluminum foil via an adhesive, and bleeds onto the film surface when aged at a certain temperature to cure the adhesive. Since the organic lubricant (particularly fatty acid amide-based lubricant) that came out re-transferred into the film, there was a tendency for slipping to become worse.
 レトルト用途においては延伸PETフィルムやONyなどのフィルムと貼り合わせた後に、粉振りを行なって滑り性を保持することが行われているが、粉振りされる滑剤の量が多くなりすぎると、衛生面等の問題が発生することがあった。 In retort applications, it is practiced to keep the slipperiness by laminating with a film such as stretched PET film or ONy, but if the amount of lubricant to be sprinkled becomes too much, Problems such as surface problems may occur.
 また、絞り成型で易滑性が求められる電池用包装材用途などで満足に使用できないことがあり、ポリプロピレン系フィルムに他のフィルム等をラミネートして積層体とし、40℃以上60℃未満でエージングされる場合にあっても、そのフィルム表面が良好な滑り性、とくにあるレベル以下の静摩擦係数、例えば0.3以下の静摩擦係数を有することが望まれる。 In addition, it may not be satisfactorily used in battery packaging applications where slipperiness is required for draw molding, and other films are laminated on polypropylene film to form a laminate, which is aged at 40 ° C to less than 60 ° C. Even in such a case, it is desirable that the film surface has good slipperiness, particularly a static friction coefficient of a certain level or less, for example, a static friction coefficient of 0.3 or less.
 このような要望に関して、特許文献1には、融点70~90℃の不飽和脂肪酸アマイド0.02~0.2重量%、融点115~135℃の不飽和脂肪酸ビスアマイド0.01~0.12重量%を含有する積層フィルムが開示されているが、エチレン・α-オレフィンを使用しているため、耐熱性に劣り、本知見をポリプロピレン系に適用した場合、不飽和脂肪酸アマイドおよび不飽和脂肪酸ビスアマイドの量を多くする必要があり、摩擦係数は低く抑えられるもののエージング処理後にフィルム表面の滑剤量が多くなりすぎ、ロール等に付着物が生じ、作業環境上の問題が生じる。 With respect to such a request, Patent Document 1 discloses that an unsaturated fatty acid amide having a melting point of 70 to 90 ° C. is 0.02 to 0.2% by weight, and an unsaturated fatty acid bisamide having a melting point of 115 to 135 ° C. is 0.01 to 0.12% by weight. However, when ethylene / α-olefin is used, the heat resistance is inferior, and when this knowledge is applied to a polypropylene system, unsaturated fatty acid amide and unsaturated fatty acid bisamide are Although the amount needs to be increased and the coefficient of friction can be kept low, the amount of lubricant on the film surface becomes too large after the aging treatment, causing deposits on the rolls and the like, resulting in problems in the working environment.
 また、特許文献2には、両外層にエルカ酸アミドなどの最適エージング温度40℃未満の滑剤を添加し、中間層にベヘン酸アミド、エチレンビスアミドなどの最適エージング温度40℃以上の滑剤を添加し、その実施例に記載されているように、中間層にプロピレン・エチレンランダム共重合体、少なくとも一方の外層にプロピレン・エチレンランダム共重合体を用いて3層構成のポリプロピレン系多層フィルムおよび複合フィルムが開示されている。この特許文献2の各実施例では、各層に特殊な滑剤を添加した場合には、積層フィルムのエージング後の表面同士の静摩擦係数として0.3以下が達成されている場合も見受けられるが、後述の如く本発明者らの知見によれば、中間層、表層ともにプロピレン・エチレンランダム共重合体で構成されている場合には、低温から高温まで高いヒートシール強度と、耐低温衝撃性、滑り性、絶縁性を両立することが困難であった。また、特許文献3のプロピレン・エチレンブロック共重合体を原料として使用したフィルムが知られているが、低温から高温まで高いヒートシール強度と、耐低温衝撃性、耐折曲げ白化性、滑り性、絶縁性を両立することが困難であった。 In Patent Document 2, a lubricant having an optimum aging temperature of less than 40 ° C such as erucamide is added to both outer layers, and a lubricant having an optimum aging temperature of 40 ° C or more such as behenamide or ethylenebisamide is added to the intermediate layer. As described in the examples, a polypropylene multilayer film and a composite film having a three-layer structure using a propylene / ethylene random copolymer for an intermediate layer and a propylene / ethylene random copolymer for at least one outer layer are provided. It is disclosed. In each example of Patent Document 2, when a special lubricant is added to each layer, a case where a coefficient of static friction between the surfaces after aging of the laminated film of 0.3 or less is achieved can be seen, which will be described later. According to the knowledge of the present inventors, when both the intermediate layer and the surface layer are composed of a propylene / ethylene random copolymer, a high heat seal strength from low temperature to high temperature, low temperature impact resistance, slipperiness It was difficult to achieve both insulating properties. Moreover, although the film using the propylene-ethylene block copolymer of patent document 3 as a raw material is known, high heat seal strength from low temperature to high temperature, low temperature impact resistance, bending whitening resistance, slipperiness, It was difficult to achieve both insulation properties.
 このようにポリプロピレン系フィルムには、包装用フィルムとして使用される場合に、上述のヒートシール性に加え、耐折曲げ白化性、耐低温衝撃性、滑り性等の特性が高いレベルでバランス良く優れていることが求められるが、従来のフィルムは、近年の高い要求に対し必ずしも満足できるものではなかった。とくに近年、耐低温衝撃性に関して、内容物を収容した袋の状態で、比較的高い位置から繰り返し落下されても破れないだけの、厳しい条件下での破袋強度が求められることがあるが(特にレトルト用途においてはこのような厳しい条件下での破袋強度が求められることがあるが)、このような厳しい条件下での破袋強度を評価基準として耐低温衝撃性を設計したポリプロピレン系フィルムは見当たらない。 As described above, when used as a packaging film, the polypropylene film has excellent properties such as bending whitening resistance, low temperature impact resistance, and slipperiness in a well-balanced manner in addition to the heat sealability described above. However, conventional films have not always been able to satisfy high demands in recent years. Especially in recent years, with regard to low temperature impact resistance, bag breaking strength under severe conditions that can not be torn even when repeatedly dropped from a relatively high position in a bag containing contents may be required ( Especially in retort applications, there is a need for bag breaking strength under such severe conditions), but a polypropylene film designed for low temperature impact resistance based on the criteria for bag breaking strength under such severe conditions. Is not found.
特開平9-77881号公報JP-A-9-77881 特開平11-334004号公報Japanese Patent Laid-Open No. 11-334004 特開平10-87744号公報JP-A-10-87744
 そこで本発明の課題は、低温から高温までヒートシール力が高く、耐低温衝撃性と耐折曲げ白化性に優れ、ラミネート後に60℃でエージングしてもフィルム表面の滑剤量を適切な範囲内に維持できてフィルム表面の静摩擦係数として望ましい値を達成できるポリプロピレン系複合フィルムと、それを用いた包装材を提供することである。 Therefore, the problem of the present invention is that the heat sealing force is high from low temperature to high temperature, excellent in low temperature impact resistance and bending whitening resistance, and even if the film is aged at 60 ° C., the amount of lubricant on the film surface is within an appropriate range. It is to provide a polypropylene-based composite film that can be maintained and achieve a desirable value as a coefficient of static friction on the film surface, and a packaging material using the same.
 上記課題を解決するために、本発明のポリプロピレン系複合フィルムは、以下の構成とした。 In order to solve the above problems, the polypropylene composite film of the present invention has the following configuration.
 少なくともA層/B層の2層からなり、A層は、230℃でのメルトフローレートが2~10g/10分、融点が130~150℃のプロピレン系ランダム共重合体を主成分とし、B層は、20℃キシレンの可溶部の極限粘度[η]Cxsと同不溶部の極限粘度[η]Cxisの比([η]Cxs/[η]Cxis)が1.6以上であるプロピレン・エチレンブロック共重合体(a)100重量部に対して、低密度ポリエチレン系重合体(b)10~90重量部を配合した樹脂組成物を主成分とし、A層は脂肪酸アミド系滑剤を200~2000ppm含有し、B層は脂肪酸アミド系滑剤を500~5000ppm含有することを特徴とするポリプロピレン系複合フィルムである。 It consists of at least two layers of A layer / B layer. The A layer is mainly composed of a propylene random copolymer having a melt flow rate at 230 ° C. of 2 to 10 g / 10 minutes and a melting point of 130 to 150 ° C. The layer has a ratio ([η] Cxs / [η] Cxis) of the intrinsic viscosity [η] Cxs of the soluble part of 20 ° C. xylene to the intrinsic viscosity [η] Cxis of the insoluble part of 1.6 or more. The main component is a resin composition in which 10 to 90 parts by weight of a low density polyethylene polymer (b) is blended with 100 parts by weight of the ethylene block copolymer (a), and the A layer contains 200 to 200 fatty acid amide lubricants. The polypropylene layer is a polypropylene composite film containing 2000 ppm, and the B layer contains 500 to 5000 ppm of a fatty acid amide lubricant.
 上記記載のポリプロピレン系複合フィルムのA層側と反対面に、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリプロピレンフィルム、二軸延伸ナイロンフィルムおよびアルミニウム箔からなる群から選ばれる少なくとも一つがラミネートされた積層体である。 A laminate in which at least one selected from the group consisting of a biaxially stretched polyethylene terephthalate film, a biaxially stretched polypropylene film, a biaxially stretched nylon film, and an aluminum foil is laminated on the surface opposite to the A layer side of the polypropylene-based composite film described above. Is the body.
 上記記載の積層体を用いた電池用包装材である。 A battery packaging material using the laminate described above.
 上記記載の積層体を用いたレトルト用包装材である。 A retort packaging material using the laminate described above.
 本発明によれば、常温(23℃)のフィルム表面の滑剤量を適切な範囲内に維持でき、60℃でエージングしてもフィルム表面の滑剤量を適切な範囲内に維持でき、それによってフィルム表面の静摩擦係数を0.3以下に抑えることが可能となり、易滑性が必要な電池用包装材用途に好適なポリプロピレン系複合フィルム、およびそれを備えた包装材を実現できる。 According to the present invention, the amount of lubricant on the film surface at normal temperature (23 ° C.) can be maintained within an appropriate range, and the amount of lubricant on the film surface can be maintained within an appropriate range even after aging at 60 ° C. The static friction coefficient of the surface can be suppressed to 0.3 or less, and a polypropylene composite film suitable for battery packaging materials requiring slipperiness and a packaging material including the same can be realized.
 また、特にレトルト用包装材の厳しい条件下での破袋強度の要求に鑑み、その要求を満たすことが可能で、しかもヒートシール性や耐低温衝撃性についてもバランス良く満たすことができるので、レトルト用包装材に好適なポリプロピレン系複合フィルム、およびそれを備えた包装材を実現できる。 In particular, in view of the requirements for bag breaking strength under severe conditions of retort packaging materials, it is possible to satisfy the requirements, and also to satisfy heat balance and low-temperature impact resistance in a well-balanced manner. A polypropylene composite film suitable for a packaging material for packaging, and a packaging material including the same can be realized.
 本発明のポリプロピレン系複合フィルムは、少なくともA層/B層の2層からなり、A層はプロピレン系ランダム共重合体を主成分とする。そのA層の片側に、プロピレン・エチレンブロック共重合体(a)と低密度ポリエチレン系樹脂(b)、さらに、好ましくは、ポリマー(c)としてスチレン系ブロックを有するブロック共重合体、または結晶性オレフィンブロックを有するブロック共重合体、より好ましくは、プロピレン系ランダム共重合体(d)を含むB層を配設した構成である。 The polypropylene composite film of the present invention comprises at least two layers of A layer / B layer, and the A layer contains a propylene random copolymer as a main component. On one side of the A layer, a propylene / ethylene block copolymer (a) and a low density polyethylene resin (b), more preferably a block copolymer having a styrene block as the polymer (c), or crystalline A block copolymer having an olefin block, more preferably, a B layer containing a propylene random copolymer (d) is provided.
 本発明のポリプロピレン系複合フィルムのA層は、230℃でのメルトフローレート(以下MFRと省略する)が2~10g/10分、融点が130~150℃のプロピレン系ランダム共重合体を主成分とする。本発明において、A層における主成分とは、A層中で50重量%を超える成分を言う。プロピレン系ランダム共重合体が50重量%以下では、130℃および160℃でのヒートシール強度が低下する。 The layer A of the polypropylene composite film of the present invention is mainly composed of a propylene random copolymer having a melt flow rate at 230 ° C. (hereinafter abbreviated as MFR) of 2 to 10 g / 10 min and a melting point of 130 to 150 ° C. And In the present invention, the main component in the A layer means a component exceeding 50% by weight in the A layer. When the propylene random copolymer is 50% by weight or less, the heat seal strength at 130 ° C. and 160 ° C. decreases.
 また、上記A層のプロピレン系ランダム共重合体の230℃でのMFRが、2g/10分未満ではB層との均一な積層性が悪くなることがあり、130℃での低温ヒートシール強度が低下することがあり、10g/10分を超えると滑剤のブリードアウト性が悪くなって滑り性が低下することがある。 Further, when the MFR at 230 ° C. of the propylene random copolymer of the A layer is less than 2 g / 10 minutes, the uniform lamination property with the B layer may be deteriorated, and the low temperature heat seal strength at 130 ° C. may be deteriorated. If it exceeds 10 g / 10 minutes, the bleed-out property of the lubricant may deteriorate and the slip property may decrease.
 上記A層のプロピレン系ランダム共重合体とは、プロピレンに、α-オレフィンを少なくとも1種以上共重合したものであり、α-オレフィンとしては、エチレン、ブテン、オクテンなどが挙げられるが、滑り性とヒートシール性からエチレンとの共重合体のプロピレン・エチレンランダム共重合体が好ましい。 The propylene random copolymer of layer A is a copolymer of propylene and at least one α-olefin, and examples of the α-olefin include ethylene, butene, and octene. From the viewpoint of heat sealability, a propylene / ethylene random copolymer of ethylene is preferable.
 本発明のポリプロピレン系複合フィルムのA層は、上記プロピレン系ランダム共重合体を主成分とし、脂肪酸アミド系滑剤を200~2000ppm含有することが好ましい。脂肪酸アミド系滑剤の含有量が200ppm未満では滑り性が悪くなることがあり、2000ppmを超えると溶融押出時に熱飛散が多くなり工程を汚して製膜性が悪化することがあり、また130℃での低温ヒートシール強度も低下することはある。 The layer A of the polypropylene composite film of the present invention preferably contains the propylene random copolymer as a main component and 200 to 2000 ppm of a fatty acid amide lubricant. If the content of the fatty acid amide-based lubricant is less than 200 ppm, the slipperiness may be deteriorated. If it exceeds 2000 ppm, heat scattering may increase during melt extrusion, and the film-forming property may deteriorate due to contamination of the process. The low-temperature heat seal strength may also be reduced.
 脂肪酸アミド系滑剤とは、例えば、オレイン酸アミド、エルカ酸アミド、ステアリン酸アミド、パルミチン酸アミド、ベヘン酸アミド等が好ましく挙げられ、特にエルカ酸アミドが本発明のポリプロピレン系複合フィルムで用いる樹脂組成への分散性と、滑り性の発現性から好ましい。 Examples of the fatty acid amide-based lubricant include oleic acid amide, erucic acid amide, stearic acid amide, palmitic acid amide, behenic acid amide and the like, and particularly, resin composition in which erucic acid amide is used in the polypropylene-based composite film of the present invention. It is preferable from the viewpoint of dispersibility in water and expression of slipperiness.
 また、上記A層には、ヒートシール性を阻害しない範囲で、無機または有機の粒子を300~5000ppm添加すると、脂肪酸アミド系滑剤の含有量を減らしても滑り性が向上し、また、本発明のポリプロピレン系複合フィルムを長尺に巻き取るときに、皺やエアー抜け不良による欠点が減少するので好ましい。含有量が300ppm以下では滑り性付与効果がみられず、5000ppmを超えるとヒートシール性が低下することがある。 In addition, when 300 to 5000 ppm of inorganic or organic particles are added to the layer A within a range that does not impair the heat sealability, the slipping property is improved even if the content of the fatty acid amide-based lubricant is reduced. When the polypropylene composite film is wound up in a long length, defects due to defects such as wrinkles and air loss are reduced. If the content is 300 ppm or less, the effect of imparting slipperiness is not observed, and if it exceeds 5000 ppm, the heat sealability may be lowered.
 該無機粒子としては、シリカ、ゼオライト、炭酸カルシウム等が好ましく挙げられ、有機粒子としては、架橋PS、架橋PMMA等が好ましく挙げられる。それらの平均粒径は1~5μmの範囲であることが好ましい。平均粒径が1μm未満では添加効果がみられず、5μmを超えるとヒートシール力が低下することがある。 Preferred examples of the inorganic particles include silica, zeolite, and calcium carbonate, and preferred examples of the organic particles include crosslinked PS and crosslinked PMMA. Their average particle size is preferably in the range of 1 to 5 μm. If the average particle size is less than 1 μm, the effect of addition is not observed, and if it exceeds 5 μm, the heat sealing force may be reduced.
 本発明のポリプロピレン系複合フィルムのB層は、20℃キシレンの可溶部の極限粘度[η]Cxsと同不溶部の極限粘度[η]Cxisの比([η]Cxs/[η]Cxis)が、1.6以上であるプロピレン・エチレンブロック共重合体(a)と、低密度ポリエチレン系重合体(b)からなる樹脂組成物を主成分とするものである。本発明において、B層における上記主成分とは、B層中で50重量%を超える成分を言う。 The B layer of the polypropylene composite film of the present invention is the ratio of the intrinsic viscosity [η] Cxs of the soluble part of xylene at 20 ° C. to the intrinsic viscosity [η] Cxis of the insoluble part ([η] Cxs / [η] Cxis). However, the main component is a resin composition comprising a propylene / ethylene block copolymer (a) having a molecular weight of 1.6 or more and a low density polyethylene polymer (b). In the present invention, the main component in the B layer means a component exceeding 50% by weight in the B layer.
 本発明のポリプロピレン系複合フィルムのB層のプロピレン・エチレンブロック共重合体(a)は、20℃のキシレンの可溶部の極限粘度[η]Cxsと不溶部の極限粘度[η]Cxisの比([η]Cxs/[η]Cxis)が1.6以上であり、1.6~2.0の範囲が好ましい。[η]Cxs/[η]Cxisが1.6未満では、160℃以上でヒートシールした際にフィルムの潰れによる薄膜化でヒートシール強度の低下や、ヒートシールや絞り成型時の加圧によって樹脂のはみ出しが起こり、包装材製造工程の汚れが起こることがある。また、[η]Cxs/[η]Cxisが2.0を超えると、フィルム内に小さなゲル状の欠点ができてフィルム突起となり、他基材とのラミネート時に界面に空気を噛み込んでラミネート強度が低下し、また、ヒートシール強度が低下して内容物の液漏れを生じることがある。 The propylene / ethylene block copolymer (a) of the B layer of the polypropylene-based composite film of the present invention is a ratio of the intrinsic viscosity [η] Cxs of the soluble part of xylene and the intrinsic viscosity [η] Cxis of the insoluble part at 20 ° C. ([Η] Cxs / [η] Cxis) is 1.6 or more, preferably in the range of 1.6 to 2.0. If [η] Cxs / [η] Cxis is less than 1.6, the resin is reduced due to a decrease in heat seal strength due to film crushing when heat-sealed at 160 ° C. or higher, and pressure is applied during heat sealing or drawing. Overflow may occur and contamination of the packaging material manufacturing process may occur. Also, if [η] Cxs / [η] Cxis exceeds 2.0, a small gel-like defect is formed in the film, resulting in film protrusion, and air is taken into the interface when laminating with other base materials, resulting in laminate strength In addition, the heat seal strength may decrease and the content may leak.
 また、B層のプロピレン・エチレンブロック共重合体(a)は、ポリプロピレン部の割合を示す20℃キシレン不溶部の割合が70~85重量%で、該キシレン不溶部の極限粘度[η]Cxisは、1.5~2.0dl/gであり、エチレン・プロピレン共重合のゴム成分の割合を示す20℃キシレン可溶部の極限粘度[η]Cxsは、2.4~4.0dl/gであることが好ましい。キシレン不溶部の極限粘度[η]Cxisは、1.5未満では、ヒートシールや絞り成型時にフィルムの潰れによる薄膜化が起こることがあり、2.0dl/gを超えると、フィルムが硬くなり過ぎて、絞り成型性が悪化することがある。また、キシレン可溶部の極限粘度[η]Cxsが2.4dl/g未満では、シール強度が低下することがあり、4.0dl/gを超えるとゴム成分の粒径が非常に大きく、フィルムの海島構造の界面にクラックが生じ、耐低温衝撃性やヒートシール性低下が生じることがある。 Further, the propylene / ethylene block copolymer (a) of the B layer has a proportion of a polypropylene portion of 20 ° C. xylene insoluble part of 70 to 85% by weight, and the intrinsic viscosity [η] Cxis of the xylene insoluble part is 1.5 to 2.0 dl / g, and the intrinsic viscosity [η] Cxs of the 20 ° C. xylene-soluble part indicating the ratio of the ethylene / propylene copolymer rubber component is 2.4 to 4.0 dl / g. Preferably there is. If the intrinsic viscosity [η] Cxis of the xylene-insoluble part is less than 1.5, the film may be thinned due to crushing of the film during heat sealing or drawing, and if it exceeds 2.0 dl / g, the film becomes too hard. As a result, the drawability may deteriorate. In addition, when the intrinsic viscosity [η] Cxs of the xylene soluble part is less than 2.4 dl / g, the seal strength may be lowered. When the intrinsic viscosity exceeds 4.0 dl / g, the particle size of the rubber component is very large. Cracks may occur at the sea-island structure interface, resulting in low-temperature impact resistance and reduced heat sealability.
 ここで、上記20℃キシレン不溶部、および可溶部とは、上記プロピレン・エチレンブロック共重合体のペレットを沸騰キシレンに完全に溶解させた後20℃に降温し、4時間以上放置し、その後これを析出物と溶液とに濾別した際、析出物を20℃キシレン不溶部と称し、溶液部分(濾液)を乾固して減圧下70℃で乾燥して得られる部分をキシレン可溶部と称す。 Here, the 20 ° C. xylene insoluble part and the soluble part are the above-mentioned propylene / ethylene block copolymer pellets completely dissolved in boiling xylene, then cooled to 20 ° C. and allowed to stand for 4 hours or more. When this was separated into a precipitate and a solution, the precipitate was called a 20 ° C. xylene insoluble part, and the part obtained by drying the solution part (filtrate) at 70 ° C. under reduced pressure was the xylene soluble part. Called.
 上記プロピレン・エチレンブロック共重合体の、かかるキシレン不溶分及び可溶分の極限粘度、及びメルトフローレートの調整方法としては、上記プロピレン・エチレンブロック共重合体の重合時の各工程で、水素ガスや金属化合物などの分子量調整剤を加える方法、パウダー状で得られた重合体を溶融混練し、ペレタイズする際に添加剤を添加する方法、パウダー状で得られた重合体を溶融混練し、ペレタイズする際の混練条件を調整する方法等を挙げることができる。 The propylene / ethylene block copolymer has an intrinsic viscosity of xylene-insoluble and soluble components, and a method for adjusting the melt flow rate includes hydrogen gas in each step during the polymerization of the propylene / ethylene block copolymer. A method of adding a molecular weight adjusting agent such as a metal compound, a method of adding an additive when melt-kneading and pelletizing a polymer obtained in powder form, a melt-kneading of a polymer obtained in powder form, and pelletizing A method for adjusting the kneading conditions during the process can be mentioned.
 なお、本発明に用いるプロピレン・エチレンブロック共重合体の製造方法としては、触媒を用いて原料であるプロピレンやエチレンなどを重合させる方法が挙げられる。ここで触媒としてはチーグラー・ナッタ型やメタロセン触媒などを用いることができ、例えば、特開平07-216017号公報に挙げられるものを好適に用いることができる。 In addition, as a manufacturing method of the propylene / ethylene block copolymer used in the present invention, a method of polymerizing propylene, ethylene or the like as a raw material using a catalyst can be mentioned. Here, a Ziegler-Natta type or metallocene catalyst can be used as the catalyst, and for example, those described in JP-A-07-216017 can be preferably used.
 具体的には(1)Si-O結合を有する有機ケイ素化合物およびエステル化合物の存在下、一般式Ti(OR)4-a(式中、Rは炭素数が1~20の炭化水素基、Xはハロゲン原子、aは0<a≦4を満たし、好ましくは2≦a≦4、特に好ましくはa=4である。)で表されるチタン化合物を、有機マグネシウム化合物で還元して得られる固体生成物を、エステル化合物で処理する。その後、エーテル化合物と四塩化チタンの混合物、もしくは、エーテル化合物と四塩化チタンとエステル化合物の混合物で処理することにより、得られる3価のチタン化合物含有固体触媒、(2)有機アルミニウム化合物、(3)電子供与性化合物(ジアルキルジメトキシシラン等が好ましく用いられる)よりなる触媒系が挙げられる。 Specifically, (1) in the presence of an organosilicon compound having an Si—O bond and an ester compound, the general formula Ti (OR) a X 4-a (wherein R is a hydrocarbon group having 1 to 20 carbon atoms) X is a halogen atom, a is 0 <a ≦ 4, preferably 2 ≦ a ≦ 4, particularly preferably a = 4). The resulting solid product is treated with an ester compound. Then, a trivalent titanium compound-containing solid catalyst obtained by treating with a mixture of an ether compound and titanium tetrachloride or a mixture of an ether compound, titanium tetrachloride and an ester compound, (2) an organoaluminum compound, (3 And a catalyst system comprising an electron donating compound (dialkyldimethoxysilane or the like is preferably used).
 共重合体(a)の製造方法として、生産性および耐低温衝撃性の観点から、第1工程で実質的に不活性剤の不存在下にプロピレンを主体とした重合体部分を重合し、ついで第2工程で気相中でエチレン・プロピレン共重合体部分を重合する方法を用いるのが好ましい。 As a method for producing the copolymer (a), from the viewpoint of productivity and low temperature impact resistance, a polymer part mainly composed of propylene is polymerized in the first step substantially in the absence of an inert agent, It is preferable to use a method in which the ethylene / propylene copolymer portion is polymerized in the gas phase in the second step.
 ここでプロピレンを主体とした重合体部分は、耐熱性、剛性などの点から、融点が160℃以上のプロピレン単独重合体が好ましいが、融点が160℃以上の範囲のものであれば、プロピレンと少量のエチレン、1-ブテンなどのα-オレフィンとの共重合体であってもよい。 Here, the polymer part mainly composed of propylene is preferably a propylene homopolymer having a melting point of 160 ° C. or higher from the viewpoint of heat resistance, rigidity, etc. It may be a copolymer with a small amount of α-olefin such as ethylene and 1-butene.
 本発明のポリプロピレン系複合フィルムにおけるB層は、上記プロピレン・エチレンブロック共重合体(a)に低密度ポリエチレン系重合体(b)が配合される。本発明者らの知見によれば、本発明のポリプロピレン系複合フィルムは、例えば電池外装用途の絞り加工の変形の際に、フィルムの海島構造の界面にクラック(白化)が生じると、内容物である電解液が漏れる懸念がある。よって、プロピレン・エチレンブロック共重合体中の島となる部分のゴム成分の分散を極めて小さくする設計が必要であり、低密度ポリエチレン系重合体を含有することにより分散を極めて小さくすることができる。 In the B layer in the polypropylene composite film of the present invention, a low density polyethylene polymer (b) is blended with the propylene / ethylene block copolymer (a). According to the knowledge of the present inventors, when the polypropylene composite film of the present invention is cracked (whitened) at the interface of the sea-island structure of the film, for example, during deformation of drawing for battery exterior use, There is a concern that some electrolyte will leak. Therefore, it is necessary to design the dispersion of the rubber component at the island portion in the propylene / ethylene block copolymer to be extremely small, and the dispersion can be extremely small by containing the low density polyethylene polymer.
 また、低密度ポリエチレン系重合体(b)を配合することにより、プロピレン・エチレンブロック共重合体よりも低いガラス転移点の成分を増やすことで耐低温衝撃性と耐折曲げ白化性を向上させることができ、またゴム成分をB層中に均一に微分散させることで、レトルト用途包装材に使用する際に、内容物の油性食品によるフィルムの膨潤による凹凸(ユズ肌)の発生を抑制(耐ユズ肌性向上)することができる。上記、低密度ポリエチレン系樹脂(b)とは、低密度ポリエチレン、直鎖状低密度ポリエチレンなどが好ましく挙げられるが、直鎖状低密度ポリエチレンが、プロピレン・エチレンブロック共重合体中のゴム成分の分散効果が高く、耐折曲げ白化性や耐ユズ肌性がよくなるので好ましい。 In addition, by blending the low density polyethylene polymer (b), the low temperature impact resistance and the bending whitening resistance are improved by increasing the glass transition point component lower than that of the propylene / ethylene block copolymer. In addition, by uniformly finely dispersing the rubber component in the B layer, when used for packaging materials for retort, the occurrence of unevenness (swelling skin) due to swelling of the film by the oily food of the contents is suppressed (anti-resistance) Yuzu skin properties can be improved). The low-density polyethylene resin (b) is preferably a low-density polyethylene, a linear low-density polyethylene, or the like, but the linear low-density polyethylene is a rubber component in the propylene / ethylene block copolymer. This is preferable because the dispersion effect is high, and the resistance to bending whitening and the skin resistance is improved.
 直鎖状低密度ポリエチレンの密度は、0.900~0.935g/cmの範囲で、MFRが0.5~20g/10分の範囲であることが、プロピレン・エチレンブロック共重合体への分散性がよく、プロピレン・エチレンブロック共重合体のゴム成分の分散効果が高いので好ましい。 The density of the linear low-density polyethylene is in the range of 0.900 to 0.935 g / cm 3 and the MFR is in the range of 0.5 to 20 g / 10 min. It is preferable because the dispersibility is good and the effect of dispersing the rubber component of the propylene / ethylene block copolymer is high.
 直鎖状低密度ポリエチレンの製造方法については、特に限定されるものではなく、従来のチーグラー・ナッタ触媒や、メタロセン触媒を用いて製造したものを用いることができる。 The method for producing the linear low density polyethylene is not particularly limited, and those produced using a conventional Ziegler-Natta catalyst or a metallocene catalyst can be used.
 さらに、上記プロピレン・エチレンブロック共重合体は、高いゴム含量を達成する触媒技術と重合プロセス技術を組み合わせたことにより製造される高性能のエチレン系やスチレン系等のエラストマーを、必要物性を阻害しない程度に、つまり5~30重量%含有することができる。これによって、低密度ポリエチレン系重合体と同様に海島構造の分散を小さくすることができる。 Furthermore, the above propylene / ethylene block copolymer does not impair the required physical properties of high-performance ethylene-based or styrene-based elastomers that are produced by combining a catalyst technology that achieves a high rubber content and a polymerization process technology. To the extent, that is, 5 to 30% by weight can be contained. Thereby, the dispersion of the sea-island structure can be reduced as in the case of the low-density polyethylene-based polymer.
 本発明のポリプロピレン系複合フィルムにおけるB層は、上記プロピレン・エチレンブロック共重合体(a)100重量部に対して、上記低密度ポリエチレン系重合体(b)15~90重量部を配合した樹脂組成物を主成分とするものである。 The layer B in the polypropylene composite film of the present invention is a resin composition in which 15 to 90 parts by weight of the low density polyethylene polymer (b) is blended with 100 parts by weight of the propylene / ethylene block copolymer (a). It has a main component.
 プロピレン・エチレンブロック共重合体(a)100重量部に対して、上記低密度ポリエチレン系重合体(b)が15重量部未満では、例えば電池用包装材に用いて絞り成型の際にクラックによる白化が生じることがあり、内容物である電解液が漏れる懸念がある。また、レトルト用で油性食品の包装材に使用する際に、ユズ肌が大きくなり外観不良が起こることがある。 When the low density polyethylene polymer (b) is less than 15 parts by weight with respect to 100 parts by weight of the propylene / ethylene block copolymer (a), whitening due to cracks at the time of drawing using, for example, a battery packaging material May occur, and there is a concern that the electrolyte as the content may leak. Moreover, when using it for the retort and the packaging material of an oil-based foodstuff, a yuzu skin may become large and an external appearance defect may arise.
 プロピレン・エチレンブロック共重合体(a)100重量部に対して、上記低密度ポリエチレン系重合体(b)が90重量部を超えると、滑剤のフィルム表層への移行が低下して滑り性が悪くなることがあり、また、耐低温衝撃性の低下を生じることがある。また、分散性が悪くなって、溶融押出時にスジ状欠点が発生して製膜性が悪化することがある。 If the low-density polyethylene polymer (b) exceeds 90 parts by weight with respect to 100 parts by weight of the propylene / ethylene block copolymer (a), the shift of the lubricant to the film surface layer is reduced and the slipperiness is poor. In addition, the low temperature impact resistance may be deteriorated. Further, the dispersibility may be deteriorated, and a streak-like defect may be generated at the time of melt extrusion to deteriorate the film forming property.
 本発明のポリプロピレン系複合フィルムは、B層への脂肪酸アミド系滑剤の含有量を500~5000ppmとすることで、他素材とのラミネート後の接着剤の硬化のため60℃以上でエージングされる場合に、B層内の脂肪酸アミド系滑剤がB層表面側に移行し、さらにはそこからA層へと移行することを可能としたものである。その結果、60℃以上でエージングされる場合に、A層内中に含有されている滑剤が、A層内中で移行されようとするのに対し、B層からA層内中へと移行されてきた滑剤と適切にバランスされ、結果的にラミネート後の滑り性が問題とされるフィルム表面において、滑剤量が最適な範囲、例えば60℃、3日間エージング後のフィルム表面にブリードした脂肪酸アミド系滑剤量の範囲が3~20mg/m、好ましくは5~15mg/mの範囲に維持されることが可能になり、A層面同士の静摩擦係数0.3以下が達成実現される。 When the content of the fatty acid amide-based lubricant in the B layer is 500 to 5000 ppm, the polypropylene composite film of the present invention is aged at 60 ° C. or higher for curing the adhesive after lamination with other materials. In addition, the fatty acid amide-based lubricant in the B layer moves to the B layer surface side, and further from there to the A layer. As a result, when it is aged at 60 ° C. or higher, the lubricant contained in the A layer tends to be transferred in the A layer, whereas it is transferred from the B layer to the A layer. Fatty acid amide bleeds on the film surface after aging for 3 days at an optimum range of the amount of lubricant, for example, on the film surface that is properly balanced with the lubricant thus resulting in the problem of slipperiness after lamination. The range of the amount of lubricant can be maintained in the range of 3 to 20 mg / m 2 , preferably 5 to 15 mg / m 2 , and a static friction coefficient of 0.3 or less between the surfaces of the A layers is achieved.
 また、B層は前記プロピレン・エチレンブロック共重合体(a)100重量部と前記低密度ポリエチレン系重合体(b)10~90重量部に対して、スチレン系ブロックを有するブロック共重合体、または、結晶性オレフィンブロックを有するブロック共重合体であるポリマー(c)5~20重量部を配合した樹脂組成にすることにより、プロピレン・エチレンブロック共重合体中の島となる部分のゴム成分の分散をさらに小さくすることができる。 B layer is a block copolymer having a styrene block with respect to 100 parts by weight of the propylene / ethylene block copolymer (a) and 10 to 90 parts by weight of the low density polyethylene polymer (b), or By adding a resin composition in which 5 to 20 parts by weight of the polymer (c), which is a block copolymer having a crystalline olefin block, is blended, the rubber component in the portion to be islands in the propylene / ethylene block copolymer is further dispersed. Can be small.
 上記ポリマー(c)としてのスチレン系ブロックを有するブロック共重合体、または結晶性オレフィンブロックを有するブロック共重合体とはスチレン系ブロックを有するブロック共重合体(c1)、または結晶性オレフィンブロックを有するブロック共重合体(c2)である。 本発明に用いるスチレン系ブロックを有するブロック共重合体(c1)としては、例えば、特開平3-128957号公報で提供されているものが挙げられる。具体的には、スチレン系単量体(c3)及び共役ジエン系単量体(c4)の重合体ブロックから構成される。スチレン系単量体(c3)は特に制限は無く、具体例としてはスチレン、α-メチルスチレン、パラメチルスチレン等が挙げられるが、これらの中でもスチレン、α-メチルスチレンが好ましく、重合性の点で特にスチレンが好ましい。  The block copolymer having a styrene block or the block copolymer having a crystalline olefin block as the polymer (c) has a block copolymer (c1) having a styrene block or a crystalline olefin block. It is a block copolymer (c2). Examples of the block copolymer (c1) having a styrene block used in the present invention include those provided in JP-A-3-128957. Specifically, the polymer block is composed of a styrene monomer (c3) and a conjugated diene monomer (c4). The styrene monomer (c3) is not particularly limited, and specific examples include styrene, α-methyl styrene, paramethyl styrene, etc. Among these, styrene and α-methyl styrene are preferable, and the polymerization point is high. In particular, styrene is preferable.
 共役ジエン系単量体(c4)としては、例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ペンタジエン、2-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、4,5-ジエチル-1,3-オクタジエン、3-ブチル-1,3-オクタジエン、クロロプレン等が挙げられる。これらのなかでも該重合体ブロックによって発現されるゴム弾性に優れ、最終的に得られる本発明のポリプロピレン系複合フィルムに優れた耐衝撃性を付与できる点からポリブタジエンブロックであることが好ましい。 Examples of the conjugated diene monomer (c4) include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-pentadiene, 2-methyl-1,3-pentadiene, 1,3-hexadiene, Examples include 4,5-diethyl-1,3-octadiene, 3-butyl-1,3-octadiene, chloroprene and the like. Among these, a polybutadiene block is preferable because it is excellent in rubber elasticity expressed by the polymer block and can impart excellent impact resistance to the finally obtained polypropylene-based composite film of the present invention.
 この様なスチレン系ブロックを有するブロック共重合体(c1)として特に好ましく用いることができる市販品としては、スチレン・エチレンブチレン・スチレントリブロック共重合体(以下、SEBSと略記する。)が挙げられる。エチレンブチレンブロック部分がポリプロピレン系樹脂と相溶しやすく、プロピレン・エチレンブロック共重合体(a)との相溶性を高める効果が高い。SEBS中のポリスチレンブロックの含有量は12~67重量%であることが好ましい。ポリスチレンブロックの含有量が12重量%以上であれば、耐ブロッキング性が良好であり、67重量%以下であれば耐低温衝撃性が良好となる。また、230℃でのMFRで0.5~10g/10分のものが好ましい。MFRが0.5g/10分以上であれば混合樹脂の分散性が良好であり、MFRが10g/10分以下であれば耐低温衝撃性が良好となる。 A commercially available product that can be particularly preferably used as such a block copolymer (c1) having a styrene block includes a styrene / ethylene butylene / styrene triblock copolymer (hereinafter abbreviated as SEBS). . The ethylene butylene block portion is easily compatible with the polypropylene-based resin, and the effect of increasing the compatibility with the propylene / ethylene block copolymer (a) is high. The content of polystyrene block in SEBS is preferably 12 to 67% by weight. When the content of the polystyrene block is 12% by weight or more, the blocking resistance is good, and when it is 67% by weight or less, the low-temperature impact resistance is good. Further, an MFR at 230 ° C. of 0.5 to 10 g / 10 min is preferable. When the MFR is 0.5 g / 10 min or more, the dispersibility of the mixed resin is good, and when the MFR is 10 g / 10 min or less, the low temperature impact resistance is good.
 本発明に用いる結晶性オレフィンブロックを有するブロック共重合体(c2)は、結晶性ポリオレフィンからなるブロック(c5)と結晶性を有さないその他のブロック(c6)とを有する共重合体であり、好ましくは、当該その他のブロック(c6)として役ジエン系重合体からなるブロックを有するものである。 The block copolymer (c2) having a crystalline olefin block used in the present invention is a copolymer having a block (c5) made of crystalline polyolefin and another block (c6) not having crystallinity, Preferably, the other block (c6) has a block made of a role diene polymer.
 この様な結晶性オレフィンブロックを有するブロック共重合体(c2)としては、例えば、特開平3-128957号公報で提供されているものが挙げられる。具体的には、1,2-ビニル結合含有率の低い(例えば25%以下)ポリブタジエン重合体ブロックと、共役ジエン化合物を主体とする重合体であって1,2-及び3,4-結合含有率が高い(例えば50%以上)重合体ブロックとからなる共重合体を合成し、これを水素添加することによって該ポリブタジエン部分をポリエチレンと類似の構造とすることで結晶性の重合体ブロックとしたもの等が挙げられる。 Examples of the block copolymer (c2) having such a crystalline olefin block include those provided in JP-A-3-128957. Specifically, a polybutadiene polymer block having a low 1,2-vinyl bond content (for example, 25% or less) and a polymer mainly composed of a conjugated diene compound, which contains 1,2- and 3,4-bonds. A copolymer composed of a polymer block having a high rate (for example, 50% or more) is synthesized, and the polybutadiene portion is made to have a structure similar to polyethylene by hydrogenating the copolymer to form a crystalline polymer block. And the like.
 前記共役ジエン化合物としては、例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ペンタジエン、2-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、4,5-ジエチル-1,3-オクタジエン、3-ブチル-1,3-オクタジエン、クロロプレン等が挙げられ、工業的入手容易性の観点から、1,3-ブタジエン、イソプレンを用いることが好ましい。この様な結晶性オレフィンブロックを有するブロック共重合体として特に好ましく用いることができる市販品としては、ポリエチレン・エチレンブチレン・ポリエチレンの構成を有するブロック共重合体(以下、CEBCと略記する。)が挙げられ、エチレンブチレンブロック部分がポリプロピレン系樹脂と相溶しやすく、ポリエチレンブロック部分がポリエチレン系樹脂と相溶しやすいために、プロピレン・エチレンブロック共重合体(a)と低密度ポリエチレン系重合体(b)との相溶性を高める効果が高い。CEBC中のポリエチレンブロックの含有量は15~40重量%であることが好ましい。ポリエチレンブロックの含有量が15重量%以上であれば、耐ブロッキング性が良好であり、40重量%以下であれば耐低温衝撃性が良好となる。また、230℃でのMFRで0.5~10g/10分のものが好ましい。MFRが0.5g/10分以上であれば混合樹脂の分散性が良好であり、MFRが10g/10分以下であれば耐低温衝撃性が良好となる。 Examples of the conjugated diene compound include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-pentadiene, 2-methyl-1,3-pentadiene, 1,3-hexadiene, 4,5-diethyl. 1,3-octadiene, 3-butyl-1,3-octadiene, chloroprene, and the like. From the viewpoint of industrial availability, 1,3-butadiene and isoprene are preferably used. As a commercially available product that can be particularly preferably used as such a block copolymer having a crystalline olefin block, a block copolymer having a configuration of polyethylene, ethylene butylene, and polyethylene (hereinafter abbreviated as CEBC) can be mentioned. Since the ethylene butylene block portion is easily compatible with the polypropylene resin and the polyethylene block portion is easily compatible with the polyethylene resin, the propylene / ethylene block copolymer (a) and the low density polyethylene polymer (b ) Is highly effective in increasing compatibility. The polyethylene block content in CEBC is preferably 15 to 40% by weight. When the content of the polyethylene block is 15% by weight or more, the blocking resistance is good, and when it is 40% by weight or less, the low-temperature impact resistance is good. Further, an MFR at 230 ° C. of 0.5 to 10 g / 10 min is preferable. When the MFR is 0.5 g / 10 min or more, the dispersibility of the mixed resin is good, and when the MFR is 10 g / 10 min or less, the low temperature impact resistance is good.
 また、B層は前記プロピレン・エチレンブロック共重合体(a)100重量部と前記低密度ポリエチレン系重合体(b)10~90重量部に対して、230℃でのメルトフローレートが2~10g/10分、融点が130~150℃のプロピレン系ランダム共重合体(d)を10~50重量部を配合した樹脂組成物とすることにより、上記A層との界面接着力が高くなり、その結果、ヒートシール強度が高くなるので好ましい。プロピレン系ランダム共重合体(d)の添加量が10重量部未満ではヒートシール強度の向上効果は見られず、50重量部を超えると耐低温衝撃性の低下が生じることがある。 The B layer has a melt flow rate of 2 to 10 g at 230 ° C. with respect to 100 parts by weight of the propylene / ethylene block copolymer (a) and 10 to 90 parts by weight of the low density polyethylene polymer (b). / 10 minutes, by forming a resin composition containing 10 to 50 parts by weight of the propylene random copolymer (d) having a melting point of 130 to 150 ° C., the interfacial adhesive force with the A layer is increased. As a result, the heat seal strength is increased, which is preferable. When the addition amount of the propylene random copolymer (d) is less than 10 parts by weight, the effect of improving the heat seal strength is not observed, and when it exceeds 50 parts by weight, the low temperature impact resistance may be lowered.
 プロピレン系ランダム共重合体(d)とは、エチレン、ブテン、オクテンなどのα-オレフィンとのランダム共重合体が好ましく例示され、エチレンとの共重合体のブロピレン・エチレンランダム共重合体が、ヒートシール力と滑り性を両立できる範囲が広いので好ましい。 The propylene random copolymer (d) is preferably a random copolymer with an α-olefin such as ethylene, butene, octene, etc., and a propylene / ethylene random copolymer of a copolymer with ethylene is a heat. This is preferable because the range in which both the sealing force and the sliding property can be compatible is wide.
 上記プロピレン系ランダム共重合体(d)の融点は、130℃未満ではヒートシール時の温度と圧力によって層厚みが薄くなることがあり、融点が150℃を超えると耐低温衝撃性の低下を生じることがある。 If the melting point of the propylene random copolymer (d) is less than 130 ° C., the layer thickness may be reduced depending on the temperature and pressure at the time of heat sealing, and if the melting point exceeds 150 ° C., the low temperature impact resistance is lowered. Sometimes.
 本発明のポリプロピレン系複合フィルムにおいては、少なくともA層/B層の2層構成をからなるものであるが、本発明におけるB層のもう一方の面に、230℃でのMFRが2~10g/10分、融点が130~150℃のプロピレン系ランダム共重合体を主成分とし、脂肪酸アミド系滑剤を200~2000ppm含有するC層を積層した、A層/B層/C層の3層積層とすることが、他基材とのラミネート強度が高くなるので好ましい。その理由は、フィルム表面にコロナ放電処理をして濡れ張力を上げて、接着剤を塗布して他基材とラミネートする際に、B層よりもC層表面が平滑で滑剤のブリードアウト量が低いためと考えられる。 The polypropylene-based composite film of the present invention comprises at least a two-layer structure of A layer / B layer, but the MFR at 230 ° C. is 2 to 10 g / m on the other surface of the B layer in the present invention. A three-layer laminate of layer A / layer B / layer C comprising a main component of a propylene random copolymer having a melting point of 130 to 150 ° C. for 10 minutes and a layer C containing 200 to 2000 ppm of a fatty acid amide lubricant. This is preferable because the laminate strength with other base materials is increased. The reason for this is that when the film surface is subjected to corona discharge treatment to increase the wetting tension, and the adhesive is applied and laminated with another substrate, the surface of the C layer is smoother than the B layer and the bleed-out amount of the lubricant is increased. It is thought that it is low.
 本発明のポリプロピレン系複合フィルムは、A層面同士の23℃、3日間エージング後での静摩擦係数が0.3以下が好ましく、0.1~0.3の範囲がより好ましい。さらに、本発明のポリプロピレン系複合フィルムは、A層面同士の60℃、3日間エージング後での静摩擦係数が0.3以下が好ましく、0.1~0.3の範囲がより好ましい。A層面同士の静摩擦係数が0.3を超えると、絞り成型で易滑性が求められる電池用包装材用途で、成型時にフィルム破れが起こり製品の歩留まりが悪くなり、また、レトルト食品用包装材の平袋、スタンディングパウチなどに製袋加工され使用されるときに、袋の開封性が悪くて内容物充填性が悪くなることがある。A層面同士の静摩擦係数が0.1未満になると、製袋加工品を積み重ねる際にずれが生じることがある。 In the polypropylene based composite film of the present invention, the static friction coefficient after aging at 23 ° C. for 3 days between the A layer surfaces is preferably 0.3 or less, and more preferably in the range of 0.1 to 0.3. Further, in the polypropylene based composite film of the present invention, the coefficient of static friction after aging at 60 ° C. for 3 days between the A layer surfaces is preferably 0.3 or less, and more preferably in the range of 0.1 to 0.3. If the static friction coefficient between the A layer surfaces exceeds 0.3, battery packaging materials that require slipperiness by drawing, film breakage occurs during molding, resulting in poor product yield, and packaging materials for retort foods. When a bag is processed and used for a flat bag, a standing pouch, etc., the opening of the bag may be poor and the content filling property may be deteriorated. If the static friction coefficient between the A layer surfaces is less than 0.1, a shift may occur when stacking bag-fabricated products.
 また、上記滑剤量が最適な範囲であると、A層面とB層またはC層面を重ねたときの静摩擦係数が0.3以下となるので、本発明のポリプロピレン系複合フィルムを長尺に巻き取るときに皺やエアー溜まりなどが減少して生産性が向上する。 In addition, when the amount of the lubricant is in the optimum range, the static friction coefficient when the A layer surface and the B layer surface or the C layer surface are overlapped is 0.3 or less, so that the polypropylene composite film of the present invention is wound up in a long length. Occasionally, traps and air pockets are reduced and productivity is improved.
 上記B層の脂肪酸アミド系滑剤の含有量が500ppm未満では、A層表面の脂肪酸アミド系滑剤量が少なく、A層面同士の静摩擦係数が0.3を超えて滑り性が悪化することがあり、絞り成型で易滑性が求められる電池用包装材用途では満足に使用することができないことがある。また、5000ppmを超えると摩擦係数は低く抑えられるが、フィルム表面への滑剤量が多くなりすぎて製膜やラミネート工程でのロール等に滑剤が付着して作業環境上の問題が生じることがある。また、ヒートシールをする際に、フィルム界面に滑剤が溜まりヒートシール強度も低下することがある。 When the content of the fatty acid amide-based lubricant in the B layer is less than 500 ppm, the amount of the fatty acid amide-based lubricant on the surface of the A layer is small, the coefficient of static friction between the A layer surfaces exceeds 0.3, and slipperiness may be deteriorated. It may not be satisfactorily used in battery packaging applications where slipperiness is required by drawing. In addition, if it exceeds 5000 ppm, the friction coefficient can be kept low, but the amount of lubricant on the film surface becomes too large, and the lubricant may adhere to the roll or the like in the film forming or laminating process, which may cause problems in the working environment. . Moreover, when heat-sealing, a lubricant may accumulate at the film interface, and the heat-sealing strength may be reduced.
 本発明のポリプロピレン系複合フィルムのA層またはC層の厚さは1μm以上が好ましく、トータル厚さが20~200μmの範囲にあることが好ましい。 The thickness of the A layer or C layer of the polypropylene composite film of the present invention is preferably 1 μm or more, and the total thickness is preferably in the range of 20 to 200 μm.
 A層またはC層の厚さが1μm未満では、上記の130℃および160℃での十分なヒートシール強度が得られないことがあり、2~30μmの範囲が好ましい。また、トータル厚さが20μm未満では耐低温衝撃性が十分に得られないことがあり、内容物である電池の電解液や、レトルト食品の液漏れが起こる懸念がある。また、トータル厚さが200μmを超えるとラミネート加工性が低下して製造コストが高くなるので、好ましくない。 When the thickness of the A layer or the C layer is less than 1 μm, sufficient heat seal strength at 130 ° C. and 160 ° C. may not be obtained, and the range of 2 to 30 μm is preferable. Further, if the total thickness is less than 20 μm, the low temperature impact resistance may not be sufficiently obtained, and there is a concern that the electrolyte solution of the battery, which is the contents, or the retort food may leak. On the other hand, when the total thickness exceeds 200 μm, the laminate processability is lowered and the production cost is increased, which is not preferable.
 また、本発明のポリプロピレン系複合フィルムの体積抵抗率は、1×1011~1×1014Ω・mの範囲であることが好ましい。電気絶縁性を要求される電池包装材では、体積抵抗率が1×1011Ω・m未満では絶縁性に劣り、電池性能が低下することがあり、1×1014Ω・mを超えると静電気が発生してラミネート加工性や、電池性能にも不具合が生じることがある。 The volume resistivity of the polypropylene composite film of the present invention is preferably in the range of 1 × 10 11 to 1 × 10 14 Ω · m. The battery packaging material required electrical insulation, the volume resistivity is less than 1 × 10 11 Ω · m poor insulating properties, there is the battery performance decreases, and when it exceeds 1 × 10 14 Ω · m electrostatic May cause problems in laminating properties and battery performance.
 上記、体積抵抗率を1×1011~1×1014Ω・mの範囲にするには、A層およびC層に脂肪酸アミド系滑剤を200~2000ppm含有し、B層に脂肪酸アミド系滑剤を500~5000ppm含有させることにより達成できる。 In order to make the volume resistivity in the range of 1 × 10 11 to 1 × 10 14 Ω · m, the A layer and the C layer contain 200 to 2000 ppm of fatty acid amide lubricant, and the B layer contains a fatty acid amide lubricant. This can be achieved by adding 500 to 5000 ppm.
 本発明のポリプロピレン系複合フィルムは、A層面同士の130℃でのヒートシール強度が30N/15mm以上であり、160℃以上でのヒートシール強度が55N/15mm以上であることが、上記積層体を包装材として用いたときに、内容物保護において好ましい。 The polypropylene composite film of the present invention has a heat seal strength at 130 ° C. of the A layer surfaces of 30 N / 15 mm or more, and a heat seal strength at 160 ° C. or more of 55 N / 15 mm or more. When used as a packaging material, it is preferable in protecting contents.
 レトルト食品の包装材では低温シール性が求められ、A層面同士の130℃でのヒートシール強度が30N/15mm未満では、レトルト処理後に食品の内容物の漏れが生じることがある。また、160℃以上でのヒートシール強度が55N/15mm未満では、電池用包装材として用いたときに充放電時の熱による内圧上昇で電解液の漏れや、レトルト食品包装材として用いたとき、落袋試験でヒートシール部から液漏れが生じることがある。 The packaging material for retort foods requires low-temperature sealing properties, and if the heat seal strength at 130 ° C. between the A layer surfaces is less than 30 N / 15 mm, the contents of the food may leak after retort processing. In addition, when the heat seal strength at 160 ° C. or higher is less than 55 N / 15 mm, when used as a battery packaging material, leakage of electrolyte due to an increase in internal pressure due to heat during charging and discharging, or when used as a retort food packaging material, Liquid leakage may occur from the heat seal part in the bag drop test.
 本発明は、上記のような積層体からなる電池外装用包装袋とレトルト用包装袋についても提供する。 The present invention also provides a battery outer packaging bag and a retort packaging bag made of the laminate as described above.
 本発明のポリプロピレン系複合フィルムにおけるA層の反対側に、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリプロピレンフィルム、二軸延伸ナイロンフィルムおよびアルミニウム箔から選ばれる1つ以上がラミネートされた積層体からなる包装材についても提供する。 In the polypropylene composite film of the present invention, the laminate is formed by laminating at least one selected from a biaxially stretched polyethylene terephthalate film, a biaxially stretched polypropylene film, a biaxially stretched nylon film, and an aluminum foil on the opposite side of the A layer. We also provide packaging materials.
 積層体の製造方法としては、積層体の構成フィルムに接着剤を用いて貼合わせる通常のドライラミネート法が好適に採用できるが、必要に応じて本発明のポリプロピレン系複合フィルムと基材層の貼合わせには直接接着性のポリオレフィン系樹脂を押出してラミネートする方法も採用できる。 As a manufacturing method of the laminate, a normal dry laminating method in which an adhesive is attached to the constituent film of the laminate can be suitably employed. However, if necessary, the polypropylene composite film of the present invention and the base material layer can be attached. For the bonding, a method of extruding and laminating a directly-adhesive polyolefin resin can also be adopted.
 上記ドライラミネート用接着剤としては特に限定されるものではないが、例えば、二軸延伸ポリエチレンテレフタレートフィルムとラミネートするときは、ポリウレタン系ポリオール、ポリエステル系ポリオール及びポリエーテル系ポリオールからなる群より選ばれるポリオールの1種または2種以上からなる第1液と、イソシアネートからなる第2液(硬化剤)とで構成される2液反応型接着剤などが挙げられる。また、アルミニウム箔とラミネートするときは、例えば、ポリウレタン系接着剤、アクリル系接着剤、エポキシ系接着剤、ポリオレフィン系接着剤、エラストマー系接着剤、フッ素系接着剤等により形成された接着剤層が挙げられる。中でも、アクリル系接着剤、ポリオレフィン系接着剤を用いるのが好ましく、電池用包装材として用いたときに耐電解液性及び水蒸気バリア性を向上させることができる。 The dry laminating adhesive is not particularly limited. For example, when laminating with a biaxially stretched polyethylene terephthalate film, a polyol selected from the group consisting of polyurethane polyols, polyester polyols and polyether polyols. And a two-component reactive adhesive composed of a first liquid composed of one or more of the above and a second liquid (curing agent) composed of isocyanate. When laminating with an aluminum foil, for example, an adhesive layer formed of a polyurethane adhesive, an acrylic adhesive, an epoxy adhesive, a polyolefin adhesive, an elastomer adhesive, a fluorine adhesive, etc. Can be mentioned. Among them, it is preferable to use an acrylic adhesive or a polyolefin-based adhesive, and when used as a battery packaging material, the electrolytic solution resistance and the water vapor barrier property can be improved.
 これら積層体は本発明のポリプロピレン系複合フィルムをシール層として、成型シート、平袋、スタンディングパウチなどの包装材に加工されて使用される。また、これら積層体の積層構造は、包装材の要求特性、例えば包装する食品の品質保持期間を満たすための密封性能、内容物の重量に対応できるサイズや耐低温衝撃性、耐電解液性などに応じて適宜選択される。 These laminates are used after being processed into packaging materials such as molded sheets, flat bags, standing pouches, etc., using the polypropylene composite film of the present invention as a sealing layer. In addition, the laminated structure of these laminates is required for packaging materials, for example, sealing performance to satisfy the quality retention period of the food to be packaged, size that can handle the weight of the contents, low-temperature impact resistance, electrolyte resistance, etc. It is appropriately selected depending on.
 以下に、実施例について本発明を具体的に説明するが、本発明の範囲はこれに限定されるものではない。また、各種物性値の測定方法、および評価方法を以下に示す。 Hereinafter, the present invention will be specifically described with reference to examples, but the scope of the present invention is not limited thereto. Moreover, the measuring method of various physical-property values and the evaluation method are shown below.
 (1)20℃キシレン不溶部と可溶部の含有量
 ポリプロピレンペレット5gを沸騰キシレン(関東化学(株)製1級)500mLに完全に溶解させた後に、20℃に降温し、4時間以上放置する。その後、これを析出物と溶液とにろ過して可溶部と不溶部に分離した。可溶部は濾液を乾固して減圧下70℃で乾燥し、その重量を測定して含有量(重量%)を求めた。
(1) Content of 20 ° C. xylene insoluble part and soluble part After 5 g of polypropylene pellets are completely dissolved in 500 mL of boiling xylene (grade 1 manufactured by Kanto Chemical Co., Ltd.), the temperature is lowered to 20 ° C. and left for 4 hours or more. To do. Thereafter, this was filtered into a precipitate and a solution to separate into a soluble part and an insoluble part. For the soluble part, the filtrate was dried and dried at 70 ° C. under reduced pressure, and the weight was measured to determine the content (% by weight).
 (2)20℃キシレン可溶部と不溶部の極限粘度([η]Cxs、[η]Cxis)
 上記(1)により可溶部と不溶部に分離したサンプルを用い、ウベローデ型粘度計を用いて135℃テトラリン中で測定を行った。
(2) Intrinsic viscosity of 20 ° C. xylene soluble part and insoluble part ([η] Cxs, [η] Cxis)
Using the sample separated into the soluble part and the insoluble part according to the above (1), measurement was performed in 135 ° C. tetralin using an Ubbelohde viscometer.
 (3)共重合体のエチレン含量
 高分子分析ハンドブック(1995年、紀伊国屋書店発行)616頁に記載されている方法により、赤外分光法で測定を行って求めた。
(3) Ethylene content of the copolymer The ethylene content was measured by infrared spectroscopy according to the method described in Polymer Analysis Handbook (1995, published by Kinokuniya).
 (4)メルトフローレート(MFR)
 JIS K7210(1999)に準拠し、プロピレン系ランダム共重合体およびプロピレン・エチレンブロック共重合体は温度230℃、低密度ポリエチレン系重合体は温度190℃で、それぞれ荷重21.18Nにて測定した。
(4) Melt flow rate (MFR)
In accordance with JIS K7210 (1999), the propylene random copolymer and the propylene / ethylene block copolymer were measured at a temperature of 230 ° C., and the low density polyethylene polymer was measured at a temperature of 190 ° C. under a load of 21.18 N, respectively.
 (5)樹脂の融点
 示差走査熱量計(島津製作所製 DSC-60)を用いて、20℃から10℃/分の速度で昇温し、250℃まで加熱した際の融解ピークの最も高いピーク温度を融点とした。
(5) Melting point of resin Using a differential scanning calorimeter (DSC-60, manufactured by Shimadzu Corporation), the highest peak temperature of the melting peak when heated from 20 ° C. at a rate of 10 ° C./min and heated to 250 ° C. Was the melting point.
 (6)樹脂の密度
 JIS K7112(1999)に準拠し、密度勾配管による測定法で測定した。
(6) Density of resin It measured by the measuring method by a density gradient tube based on JISK7112 (1999).
 (7)ヒートシール強度
 電池用包装材においては、厚さ12μmの二軸延伸PETフィルム(PET-BO)と厚さ15μmのナイロン6延伸フィルム(ONy)と両面を化成処理した厚さ40μmのアルミニウム箔と本発明のポリプロピレン系複合フィルムのB層またはC層とをウレタン系接着剤を用いて通常のドライラミネート法で貼合わせ、60℃で3日間エージングして、PET-BO/接着剤/ONy/接着剤/アルミニウム箔/接着剤/本発明のポリプロピレン系複合フィルム(最外層A層面)の積層体(A)を得た。
(7) Heat seal strength For battery packaging materials, a biaxially stretched PET film (PET-BO) with a thickness of 12 μm, a nylon 6 stretched film (ONy) with a thickness of 15 μm, and aluminum with a thickness of 40 μm formed on both sides. The foil and the B layer or C layer of the polypropylene composite film of the present invention are bonded together by an ordinary dry laminating method using a urethane adhesive, and aged at 60 ° C. for 3 days, and then PET-BO / adhesive / ONy. / Adhesive / Aluminum foil / Adhesive / A laminate (A) of the polypropylene composite film of the present invention (outermost layer A layer surface) was obtained.
 また、レトルト包装材においては、厚さ12μmの延伸PETフィルムと厚さ15μmのONyフィルムと本発明のポリプロピレン系複合フィルムとをウレタン系接着剤を用いて通常のドライラミネート法で貼合わせ、40℃で3日間エージングして、PET-BO/接着剤/ONy/接着剤/本発明のポリプロピレン系複合フィルム(最外層A層面)の積層体(B)を得た。 In the retort packaging material, a stretched PET film having a thickness of 12 μm, an ONy film having a thickness of 15 μm, and the polypropylene composite film of the present invention are bonded together by a normal dry laminating method using a urethane-based adhesive, and 40 ° C. Was aged for 3 days to obtain a laminate (B) of PET-BO / adhesive / ONy / adhesive / polypropylene composite film of the present invention (outermost layer A layer surface).
 電池用包装材の評価としては、上記積層体(A)を用いて、平板ヒートシーラーを使用し、A層面同士を重ねてシール温度160℃、シール圧力0.2MPa、 シール時間2秒の条件でヒートシールした後、15mm幅の短冊状に切断し、オリエンテック社製のテンシロンを使用して300mm/分の引張速度で、T型剥離法にてヒートシール強度を測定した。ヒートシール強度が、55N/15mm以上であれば(○)とし、55N/15mm未満を(×)とした。 For evaluation of the battery packaging material, using the laminate (A), a flat plate heat sealer was used, and the A layer surfaces were overlapped with each other under the conditions of a seal temperature of 160 ° C., a seal pressure of 0.2 MPa, and a soot seal time of 2 seconds. After heat sealing, it was cut into strips with a width of 15 mm, and the heat seal strength was measured by a T-type peeling method at a tensile speed of 300 mm / min using Tensilon manufactured by Orientec. When the heat seal strength was 55 N / 15 mm or more, (◯), and less than 55 N / 15 mm were (×).
 また、レトルト包装材用の評価としては、上記積層体(B)を用いて、平板ヒートシーラーを使用し、A層面同士を重ねてシール温度130℃と160℃、シール圧力0.2MPa、シール時間1秒の条件でヒートシールした後、15mm幅の短冊状に切断し、130℃で30分間レトルト処理を行った後、オリエンテック社製のテンシロンを使用して300mm/分の引張速度で、T型剥離法にてヒートシール強度を測定した。130℃でのヒートシール強度が、30N/15mm以上であれば(○)とし、30N/15mm未満を(×)とした。また、160℃でのヒートシール強度が55N/15mm以上を(○)とし、55N/15mm未満を(×)として評価した。 Moreover, as evaluation for retort packaging materials, using the said laminated body (B), a flat plate heat sealer is used, A layer surface is piled up, seal temperature 130 degreeC and 160 degreeC, seal pressure 0.2 MPa, seal time After heat-sealing under conditions of 1 second, after cutting into a strip of 15 mm width and performing a retort treatment at 130 ° C. for 30 minutes, using a Tensilon manufactured by Orientec Corporation at a tensile speed of 300 mm / min, The heat seal strength was measured by a mold peeling method. If the heat seal strength at 130 ° C. was 30 N / 15 mm or more, it was rated as (◯), and less than 30 N / 15 mm was marked as (×). Further, the heat seal strength at 160 ° C. was evaluated as (◯) when the heat seal strength was 55 N / 15 mm or more, and (x) when less than 55 N / 15 mm.
 (8)耐低温衝撃性
 上記ヒートシール強度測定で作成したレトルト包装材用の積層体(B)を用いて、この積層体2枚を本発明のポリプロピレン系複合フィルム(A層面)が袋の内面になるようにして、富士インパルス社製CA-450-10型ヒートシーラーを使用し、加熱時間1.4秒、冷却時間3.0秒で、製袋サイズ150mm×285mmのスタンディングパウチを作成した。この袋に濃度0.1重量%の食塩水1Lを充填した後、135℃で30分レトルト処理する。レトルト処理後の袋を0℃で24時間冷蔵庫で保管した後、50cmの高さから平らな床面に落下させ(n数20個)、破袋に至るまでの回数を記録する。本評価法ではn数20個の平均値で破袋に至るまでの回数の平均が、30回以上を耐低温衝撃性良好(○)とし、30回未満を耐低温衝撃性不良(×)として評価した。
(8) Low-temperature impact resistance Using the laminate (B) for retort packaging material prepared by the above heat seal strength measurement, two of the laminates are made of the polypropylene composite film (layer A surface) of the present invention on the inner surface of the bag. A standing pouch having a bag size of 150 mm × 285 mm was prepared using a CA-450-10 type heat sealer manufactured by Fuji Impulse Co., Ltd., with a heating time of 1.4 seconds and a cooling time of 3.0 seconds. This bag is filled with 1 L of 0.1% by weight saline and then retorted at 135 ° C. for 30 minutes. After the retort-treated bag is stored in a refrigerator at 0 ° C. for 24 hours, it is dropped from a height of 50 cm onto a flat floor (n number: 20), and the number of times until the bag is broken is recorded. In this evaluation method, the average number of n times of 20 times until the bag breaks is 30 times or more as good low temperature impact resistance (◯), and less than 30 times as low temperature impact resistance failure (×). evaluated.
 (9)耐ユズ肌性
 上記ヒートシール強度測定で作成したレトルト包装材用の積層体(B)を用いて、この積層体2枚を本発明のポリプロピレン系複合フィルム(A層面)が袋の内面になるようにして、シール温度160℃、シール圧力0.2MPa、シール時間2秒の条件でヒートシールし、160mm×210mm(内部の寸法)の大きさの3方袋(平袋、シール幅5mm)を作成した。この袋に市販のレトルトカレー(ハウス食品工業社製のレトルトカレー「ククレカレー・辛口」)を充填した後、130℃で30分レトルト処理をした直後の積層体表面の凹凸発生状況を目視判定した。全く発生しないものをランクl、僅かに発生するものをランク2、軽度に発生するものをランク3、明確に発生するものをランク4、重度に発生するものをランク5として評価した。本評価法でランク1を耐ユズ肌性優良(◎)、ランク2を耐ユズ肌性良好(○)、ランク4、5を耐ユズ肌性不良(×)とした。
(9) Scratch-skin resistance Using the laminate (B) for retort packaging material prepared by the above heat seal strength measurement, two laminates were used as the inner surface of the bag. Heat-sealed under the conditions of a seal temperature of 160 ° C., a seal pressure of 0.2 MPa, and a seal time of 2 seconds, and a three-sided bag (flat bag, seal width of 5 mm) of 160 mm × 210 mm (internal dimensions) )created. After this bag was filled with a commercially available retort curry (Retort Curry “Kukure Curry / Dry” manufactured by House Food Industry Co., Ltd.), the surface roughness of the laminate immediately after retorting at 130 ° C. for 30 minutes was visually determined. The rating was evaluated as Rank 1 for those that did not occur at all, Rank 2 for those that occurred slightly, Rank 3 for those that occurred slightly, Rank 4 for those that occurred clearly, and Rank 5 for those that occurred severely. In this evaluation method, Rank 1 was rated as excellent scratch skin resistance (◎), Rank 2 as excellent scratch skin resistance (耐), and Ranks 4 and 5 as poor scratch skin resistance (×).
 (10)耐折曲げ白化性
 上記レトルト包装材用の積層体(B)を130℃で30分レトルト処理した後、東洋精機製作所製MIT屈曲試験器を用いて、サンプル幅10mm、屈曲角度135度(左右)、荷重5.04Nの条件で、100回屈曲した後、屈曲部の白化状況を目視判定した(n数5個)。全く白化しないものをランク1、僅かに白化するものをランク2、軽度に白化するものをランク3、明確に白化するものをランク4、白化して屈曲部が白くきつい線状となるものをランク5として評価した。本評価方法でランク1、2を耐折曲げ白化性良好(○)とし、ランク4、5を耐折曲げ白化性不良(×)とした。
(10) Folding whitening resistance After the above retort packaging material laminate (B) was retorted at 130 ° C. for 30 minutes, using a MIT bending tester manufactured by Toyo Seiki Seisakusho, the sample width was 10 mm and the bending angle was 135 degrees. (Left and right) After bending 100 times under the condition of a load of 5.04 N, the whitening state of the bent portion was visually determined (n number of 5). Rank 1 for non-whitening, rank 2 for slightly whitening, rank 3 for light whitening, rank 4 for whitening clearly, rank whitening and the bent portion is white and linear Rated as 5. In this evaluation method, ranks 1 and 2 were evaluated as good folding whitening resistance (◯), and ranks 4 and 5 were rated as poor bending whitening resistance (×).
 (11)フィルム厚さおよび厚さ構成
 フィルム厚さは、ダイヤルゲージを用い、JIS K7130(1992)A-2法に準じて、フィルムの任意の10ヶ所について厚さを測定した。その平均値を10で除してフィルム厚みとした。
(11) Film Thickness and Thickness Configuration The film thickness was measured at any 10 points on the film using a dial gauge according to JIS K7130 (1992) A-2 method. The average value was divided by 10 to obtain the film thickness.
 また、積層フィルムの場合の各層の厚さは、積層フィルムをエポキシ樹脂に包埋しフィルム断面をミクロトームで切り出し、該断面を走査型電子顕微鏡で3,000倍の倍率で観察して、各層の厚みを算出した。 The thickness of each layer in the case of a laminated film is determined by embedding the laminated film in an epoxy resin, cutting out the film cross section with a microtome, observing the cross section with a scanning electron microscope at a magnification of 3,000 times, The thickness was calculated.
 (12)静摩擦係数
 本発明のポリプロピレン系複合フィルムのA層面同士、またはA層面とB層またはC層を重ねて用いて、JIS K7125(1999)に準じて測定を行った。
(12) Coefficient of static friction Measurement was performed according to JIS K7125 (1999) using the A-layer surfaces of the polypropylene-based composite film of the present invention or by overlapping the A-layer surface and the B-layer or C-layer.
 (13)体積抵抗率
 JIS K6911(1995)に準じて、二重リング電極法(10~1016Ωの絶縁体の抵抗率測定)にて、円形電極の間で500Vを電極間に印加し、1分後の抵抗値を測定して求めた。 
(13) Volume resistivity In accordance with JIS K6911 (1995), 500 V is applied between the electrodes between the circular electrodes by the double ring electrode method (measurement of resistivity of 10 8 to 10 16 Ω insulator). The resistance value after 1 minute was measured and determined.
 (14)工程通過性、絞り成型性
 本発明のポリプロピレン系複合フィルムの製膜工程において、積層乱れおよび工程ロールの汚れや、上記(7)のヒートシール強度測定用サンプル作成用の積層体ラミネート工程において、工程ロールの汚れや皺の発生、また、絞り成型時の樹脂のはみ出し等をみて、下記の評価をした。
○:製膜工程、ラミネート工程でのロール汚れや皺等の発生がなく、外観良好な製品が得られ、絞り成型性も良好であった。
×:製膜工程、ラミネート工程でのロール汚れや皺等の発生、絞り成型時の樹脂のはみ出しがあった。
(14) Process passability and drawability In the film-forming process of the polypropylene composite film of the present invention, laminating disorder and process roll contamination, and the laminate laminate process for preparing the heat seal strength measurement sample as described in (7) above. Then, the following evaluations were made in view of the occurrence of stains and wrinkles on the process roll and the protrusion of the resin during the drawing.
○: Roll stains and wrinkles were not generated in the film forming process and the laminating process, a product having a good appearance was obtained, and the drawability was also good.
X: Roll stains, wrinkles and the like were generated in the film forming process and the laminating process, and the resin protruded during drawing.
 実施例および比較例のA層、B層、C層用の樹脂と滑剤として、下記を準備した。
(1)プロピレン系ランダム共重合体-1
 MFR3.3g/10分、融点142℃のプロピレン・エチレンランダム共重合体(「EPC-1」と表示)。
(2)プロピレン系ランダム共重合体-2
 MFR6.0g/10分の、融点138℃のプロピレン・エチレンランダム共重合体(「EPC-2」と表示)。
(3)プロピレン系ランダム共重合体-3
 MFR12.0g/10分の、融点127℃のプロピレン・エチレンランダム共重合体(「EPC-3」と表示)。
(4)プロピレン系ランダム共重合体-4
 MFR1.5g/10分の、融点132℃のプロピレン・エチレンランダム共重合体(「EPC-4」と表示)。
(5)プロピレン系ランダム共重合体-5
 MFR5.0g/10分の、融点156℃のプロピレン・エチレンランダム共重合体(「EPC-5」と表示)。
(6)プロピレン・エチレンブロック共重合体-1
 20℃キシレン可溶部10重量%、該可溶部の極限粘度[η]Cxs3.2dl/g、20℃キシレン不溶部90重量%、該不溶部の極限粘度[η]Cxis1.9dl/g、[η]Cxs/[η]Cxis=1.68のプロピレン・エチレンブロック共重合体(「BPP-1」と表示)。
(7)プロピレン・エチレンブロック共重合体-2
 20℃キシレン可溶部10重量%、該可溶部の極限粘度[η]Cxs3.6dl/g、20℃キシレン不溶部90重量%、該不溶部の極限粘度[η]Cxis1.82dl/g、[η]Cxs/[η]Cxis=1.98のプロピレン・エチレンブロック共重合体(「BPP-2」と表示)。
(8)プロピレン・エチレンブロック共重合体-3
 20℃キシレン可溶部20重量%、該可溶部の極限粘度[η]Cxs2.5dl/g、20℃キシレン不溶部80重量%、該不溶部の極限粘度[η]Cxis1.8dl/g、[η]Cxs/[η]Cxis=1.39のプロピレン・エチレンブロック共重合体(「BPP-3」と表示)。
(9)プロピレン・エチレンブロック共重合体-4
 20℃キシレン可溶部20重量%、該可溶部の極限粘度[η]Cxs2.6dl/g、20℃キシレン不溶部80重量%、該不溶部の極限粘度[η]Cxis1.71dl/g、[η]Cxs/[η]Cxis=1.52のプロピレン・エチレンブロック共重合体(「BPP-4」と表示)。
(10)低密度ポリエチレン系重合体-1
 密度0.921g/cm、MFR2.2g/10分の直鎖状低密度ポリエチレン(「LLDPE」と表示)。
(11)脂肪酸アミド系滑剤
 脂肪酸アミド系滑剤として、エルカ酸アミドを用いた。
The following were prepared as resins and lubricants for the A layer, B layer, and C layer of Examples and Comparative Examples.
(1) Propylene random copolymer-1
Propylene / ethylene random copolymer (denoted as “EPC-1”) having an MFR of 3.3 g / 10 min and a melting point of 142 ° C.
(2) Propylene random copolymer-2
Propylene-ethylene random copolymer (denoted as “EPC-2”) having a melting point of 138 ° C. with an MFR of 6.0 g / 10 min.
(3) Propylene random copolymer-3
Propylene-ethylene random copolymer (denoted as “EPC-3”) having a melting point of 127 ° C. with an MFR of 12.0 g / 10 min.
(4) Propylene random copolymer-4
A propylene / ethylene random copolymer (denoted as “EPC-4”) having an MFR of 1.5 g / 10 min and a melting point of 132 ° C.
(5) Propylene random copolymer-5
Propylene / ethylene random copolymer having a melting point of 156 ° C. (denoted as “EPC-5”), MFR 5.0 g / 10 min.
(6) Propylene / ethylene block copolymer-1
20 ° C. xylene soluble part 10% by weight, intrinsic viscosity [η] Cxs 3.2 dl / g of the soluble part, 20 ° C. xylene insoluble part 90% by weight, intrinsic viscosity [η] Cxis 1.9 dl / g of the insoluble part, [Η] Cxs / [η] Cxis = 1.68 propylene / ethylene block copolymer (indicated as “BPP-1”).
(7) Propylene / ethylene block copolymer-2
20 ° C. xylene soluble part 10% by weight, intrinsic viscosity [η] Cxs 3.6 dl / g of the soluble part, 20 ° C. xylene insoluble part 90% by weight, intrinsic viscosity [η] Cxis 1.82 dl / g of the insoluble part, [Η] Cxs / [η] Cxis = 1.98 propylene / ethylene block copolymer (indicated as “BPP-2”).
(8) Propylene / ethylene block copolymer-3
20 ° C. xylene soluble part 20% by weight, intrinsic viscosity [η] Cxs 2.5 dl / g of the soluble part, 20 ° C. xylene insoluble part 80% by weight, intrinsic viscosity [η] Cxis 1.8 dl / g of the insoluble part, [Η] Cxs / [η] Cxis = 1.39 propylene / ethylene block copolymer (indicated as “BPP-3”).
(9) Propylene / ethylene block copolymer-4
20 ° C. xylene soluble part 20% by weight, soluble part intrinsic viscosity [η] Cxs 2.6 dl / g, 20 ° C. xylene insoluble part 80% by weight, insoluble part intrinsic viscosity [η] Cxis 1.71 dl / g, [Η] Cxs / [η] Cxis = 1.52 propylene / ethylene block copolymer (indicated as “BPP-4”).
(10) Low density polyethylene polymer-1
Linear low density polyethylene (designated “LLDPE”) with a density of 0.921 g / cm 3 and MFR of 2.2 g / 10 min.
(11) Fatty acid amide lubricant As the fatty acid amide lubricant, erucic acid amide was used.
 実施例1~5および比較例1~3では、表1に示すように、A層組成として、前記プロピレン系ランダム共重合体のEPC-1~EPC-5にエルカ酸アミドを混合した。B層組成として、20℃のキシレン可溶部[η]Cxsと不溶部[η]Cxisの比、[η]Cxs/[η]Cxisが1.68のプロピレン・エチレンブロック共重合体(BPP-1)と、低密度ポリエチレン系重合体として直鎖状低密度ポリエチレン(LLDPE)と、エルカ酸アミドを混合した。A層、B層それぞれ別々の押出機に供給して、A層/B層の2層共押出からなる無延伸ポリプロピレン系複合フィルムを作製した。それぞれの層の厚さは、5μm/35μmの合計40μmとした。 In Examples 1 to 5 and Comparative Examples 1 to 3, as shown in Table 1, erucic acid amide was mixed with the propylene random copolymers EPC-1 to EPC-5 as the A layer composition. The composition of the B layer is a propylene / ethylene block copolymer (BPP-) having a ratio of xylene soluble part [η] Cxs and insoluble part [η] Cxis at 20 ° C. of [η] Cxs / [η] Cxis of 1.68. 1), linear low density polyethylene (LLDPE) as a low density polyethylene polymer, and erucic acid amide were mixed. Each of the A layer and the B layer was supplied to separate extruders to prepare a non-stretched polypropylene composite film composed of a two-layer coextrusion of A layer / B layer. The thickness of each layer was set to 40 μm in total of 5 μm / 35 μm.
 実施例6~9、比較例4~10では、表1に示すように、A層とC層組成として、プロピレン系ランダム共重合体のEPC-1にエルカ酸アミドを混合した。B層組成として、プロピレン・エチレンブロック共重合体のBPP-1またはBPP-2とLLDPEとプロピレン系ランダム共重合体のEPC-1を混合した樹脂組成に、エルカ酸アミドを混合した。A層、B層、C層それぞれ別々の押出機に供給して、A層/B層/C層の3層共押出からなる無延伸ポリプロピレン系複合フィルムを作製した。それぞれの層の厚さは、5μm/30μm/5μmの合計40μmとした。 In Examples 6 to 9 and Comparative Examples 4 to 10, as shown in Table 1, erucic acid amide was mixed with propylene random copolymer EPC-1 as the composition of layer A and layer C. As the B layer composition, erucic acid amide was mixed with a resin composition in which BPP-1 or BPP-2 of propylene / ethylene block copolymer, LLDPE, and EPC-1 of propylene random copolymer were mixed. Each of the A layer, the B layer, and the C layer was supplied to separate extruders to prepare a non-stretched polypropylene-based composite film composed of a three-layer coextrusion of A layer / B layer / C layer. The thickness of each layer was set to 40 μm in total of 5 μm / 30 μm / 5 μm.
 実施例10では、A層/B層/C層を実施例6と同じ原料組成にして、それぞれの層の厚さを、10μm/60μm/10μmの合計80μmとした。 In Example 10, A layer / B layer / C layer were made to have the same raw material composition as Example 6, and the thickness of each layer was 80 μm in total of 10 μm / 60 μm / 10 μm.
 実施例11では、B層組成として、[η]Cxs/[η]Cxisが1.98のプロピレン・エチレンブロック共重合体(BPP-2)を用いた以外は、実施例6と同じ処方でA層/B層/C層の3層共押出からなる無延伸ポリプロピレン系複合フィルムを作製した。 In Example 11, the same formulation as in Example 6 was used except that a propylene / ethylene block copolymer (BPP-2) having [η] Cxs / [η] Cxis of 1.98 was used as the B layer composition. An unstretched polypropylene-based composite film composed of three-layer coextrusion of layer / B layer / C layer was produced.
 表1に示すように、実施例1~5では、工程通過性、耐低温衝撃強度、耐折曲げ白化性、耐ユズ肌性に優れ、130℃と160℃のシール強度も充分なものであり、静摩擦係数は0.3以下で良好な滑り性のものであり、体積抵抗率も1×1011~1×1014Ω・mの範囲にあった。 As shown in Table 1, Examples 1 to 5 are excellent in process passability, low-temperature impact resistance, resistance to bending whitening, and scratch resistance, and have sufficient seal strength at 130 ° C and 160 ° C. The static friction coefficient was 0.3 or less and good slipping property, and the volume resistivity was in the range of 1 × 10 11 to 1 × 10 14 Ω · m.
 実施例6~9では、A層/B層/C層の3層共押出からなる無延伸ポリプロピレン系複合フィルムとしたが、工程通過性、絞り成型性、耐低温衝撃性、耐折曲げ白化性、耐ユズ肌性に優れ、130℃と160℃のシール強度も充分なものであり、静摩擦係数は0.3以下で良好な滑り性のものであり、体積抵抗率も1×1011~1×1014Ω・mの範囲にあった。 In Examples 6 to 9, an unstretched polypropylene-based composite film composed of a three-layer coextrusion of A layer / B layer / C layer was used, but the process passability, drawability, low temperature impact resistance, and bending whitening resistance It has excellent scratch resistance, has sufficient seal strength at 130 ° C. and 160 ° C., has a static friction coefficient of 0.3 or less, has good slipperiness, and has a volume resistivity of 1 × 10 11 to 1 It was in the range of × 10 14 Ω · m.
 また、実施例10では、トータル厚さを80μmとしたが、工程通過性、絞り成型性、耐低温衝撃性、耐折曲げ白化性、耐ユズ肌性に優れ、130℃と160℃のシール強度も充分なものであり、静摩擦係数は0.3以下で良好な滑り性のものであり、体積抵抗率は3.2×1012Ω・mであった。 In Example 10, the total thickness was 80 μm, but it was excellent in process passability, drawability, low temperature impact resistance, bending whitening resistance, and scratch skin resistance, and seal strengths of 130 ° C. and 160 ° C. In addition, the coefficient of static friction was 0.3 or less and good slipping property, and the volume resistivity was 3.2 × 10 12 Ω · m.
 実施例11では、B層組成として、[η]Cxs/[η]Cxisが1.98のプロピレン・エチレンブロック共重合体(BPP-2)を用いたが、工程通過性、絞り成型性、耐低温衝撃性、耐折曲げ白化性、耐ユズ肌性に優れ、130℃と160℃のシール強度も充分なものであり、静摩擦係数は0.3以下で良好な滑り性のものであり、体積抵抗率は7.0×1012Ω・mであった。 In Example 11, a propylene / ethylene block copolymer (BPP-2) having [η] Cxs / [η] Cxis of 1.98 was used as the B layer composition. It has excellent low-temperature impact resistance, anti-bending whitening resistance, and scratch-proof skin resistance, sufficient seal strength at 130 ° C and 160 ° C, a static friction coefficient of 0.3 or less, and good slipperiness. The resistivity was 7.0 × 10 12 Ω · m.
 比較例1では、A層のMFRが10g/10分を超え、融点が130℃未満であるため、160℃でのヒートシール強度が低く、A層表層の滑剤ブリード量が少なく、A層面同士の静摩擦係数が高くて滑り性に劣り、工程通過性に劣るものであった。 In Comparative Example 1, since the MFR of layer A exceeds 10 g / 10 min and the melting point is less than 130 ° C, the heat seal strength at 160 ° C is low, the amount of lubricant bleed on the surface of layer A is small, The static friction coefficient was high, the slipperiness was poor, and the process passability was poor.
 比較例2では、A層のMFRが1.5g/10分と低いために、B層との均一積層性が悪くて製膜安定性に劣り、130℃でのヒートシール強度も低いものであった。 In Comparative Example 2, since the MFR of the A layer was as low as 1.5 g / 10 min, the uniform lamination with the B layer was poor, the film formation stability was poor, and the heat seal strength at 130 ° C. was also low. It was.
 比較例3では、A層の融点が156℃と高いために、130℃および160℃でのヒートシール強度が低く、A層面同士の静摩擦係数も高くて滑り性に劣り、ラミネート工程時に皺が入り、工程通過性に劣るものであった。 In Comparative Example 3, since the melting point of the A layer is as high as 156 ° C., the heat seal strength at 130 ° C. and 160 ° C. is low, the coefficient of static friction between the A layer surfaces is high, and the slipperiness is poor, and wrinkles enter during the lamination process. The process passability was inferior.
 比較例4では、A層へのエルカ酸アミドの含有量が150ppmと少ないために、A層表層の滑剤ブリード量が少なくて滑り性に劣り、ラミネート工程時に皺が入り、工程通過性に劣るものであった。 In Comparative Example 4, since the content of erucic acid amide in the A layer is as low as 150 ppm, the amount of lubricant bleed on the surface layer of the A layer is small and the slipperiness is inferior. Met.
 比較例5では、A層へのエルカ酸アミドの含有量が2500ppmと多いために、静摩擦係数が0.3以下であるものの滑剤の工程ロールへの付着があり、工程通過性に劣るものであった。また、A層の滑剤量が多いために130℃でのヒートシール強度も低いものであった。 In Comparative Example 5, since the content of erucic acid amide in the A layer was as high as 2500 ppm, the static friction coefficient was 0.3 or less, but the lubricant was adhered to the process roll, and the process passability was poor. It was. Further, since the amount of lubricant in the A layer was large, the heat seal strength at 130 ° C. was also low.
 比較例6では、LLDPEの配合量が多いために耐低温衝撃性に劣り、A層表層の滑剤ブリード量も少なくて滑り性に劣り、工程通過性に劣るものであった。 Comparative Example 6 was inferior in low-temperature impact resistance due to a large amount of LLDPE, inferior in slipperiness due to a small amount of lubricant bleed on the surface layer A, and inferior in process passability.
 比較例7では、LLDPEの配合量が少ないために、耐折曲げ白化性と耐ユズ肌性に劣り、また、ヒートシール強度も低いものであった。 In Comparative Example 7, since the amount of LLDPE was small, it was inferior in bending whitening resistance and scratch skin resistance, and also had low heat seal strength.
 比較例8では、B層へのエルカ酸アミドの添加量が300ppmと少ないために、A層表層の滑剤ブリード量が少なく、滑り性に劣っていた。また、体積抵抗率も2.5×1015Ω・mと高いために静電気が発生して工程通過性に劣ったものあった。 In Comparative Example 8, since the amount of erucamide added to the B layer was as small as 300 ppm, the amount of lubricant bleed on the surface layer of the A layer was small and the slipperiness was poor. Moreover, since the volume resistivity was as high as 2.5 × 10 15 Ω · m, static electricity was generated and the process passability was poor.
 比較例9では、B層のエルカ酸アミドの含有量が6000ppmと多いために、A層表層の滑剤ブリード量が多くなり過ぎて滑剤の工程ロールへの付着があり、また、ヒートシール強度が低くなり、体積抵抗率が3.5×1010Ω・mと低くなって電池用包装材として用いたときに絶縁性に劣ったものあった。 In Comparative Example 9, since the content of erucic amide in the B layer is as high as 6000 ppm, the amount of lubricant bleed on the surface layer of the A layer is excessive, and the lubricant adheres to the process roll, and the heat seal strength is low. Thus, the volume resistivity was as low as 3.5 × 10 10 Ω · m, and the insulation was poor when used as a battery packaging material.
 比較例10では、B層には主成分として、[η]Cxs/[η]Cxisが1.39のプロピレン・エチレンブロック共重合体(BPP-3)を用いた以外は、実施例6と同様にしてA層/B層/C層の3層共押出からなる無延伸ポリプロピレン系複合フィルムを作製した。それぞれの層の厚さは、5μm/30μm/5μmの合計40μmとした。[η]Cxs/[η]Cxisが1.6未満であるため、ヒートシールしたときにフィルムが潰れて薄膜化してヒートシール力が低下し、また、絞り成型時の加圧によって樹脂のはみ出しが見られた。 Comparative Example 10 was the same as Example 6 except that the propylene / ethylene block copolymer (BPP-3) having [η] Cxs / [η] Cxis of 1.39 was used as the main component for the B layer. Thus, an unstretched polypropylene-based composite film composed of three-layer coextrusion of A layer / B layer / C layer was produced. The thickness of each layer was set to 40 μm in total of 5 μm / 30 μm / 5 μm. Since [η] Cxs / [η] Cxis is less than 1.6, when heat-sealed, the film is crushed and thinned to reduce the heat-sealing force, and the resin is not protruded by pressurization during drawing. It was seen.
 比較例11では、B層には主成分として、[η]Cxs/[η]Cxisが1.52のプロピレン・エチレンブロック共重合体(BPP-4)を用いた以外は、実施例6と同様にしてA層/B層/C層の3層共押出からなる無延伸ポリプロピレン系複合フィルムを作製した。[η]Cxs/[η]Cxisが1.6に近いが、絞り成型時の加圧によって樹脂のはみ出しが見られ、ヒートシール時に薄膜化してヒートシール強度も低いものであった。 Comparative Example 11 was the same as Example 6 except that the propylene / ethylene block copolymer (BPP-4) having [η] Cxs / [η] Cxis of 1.52 was used as the main component for the B layer. Thus, an unstretched polypropylene-based composite film composed of three-layer coextrusion of A layer / B layer / C layer was produced. Although [η] Cxs / [η] Cxis was close to 1.6, the resin was protruded by pressurization during drawing, and the heat seal strength was low due to thinning during heat sealing.
 実施例12~21および比較例12~15では、表1に示すように、A層組成として、前記プロピレン系ランダム共重合体のEPC-1~EPC-5にエルカ酸アミドを混合した。B層組成として、20℃のキシレン可溶部[η]Cxsと不溶部[η]Cxisの比、[η]Cxs/[η]Cxisが1.68のプロピレン・エチレンブロック共重合体(BPP-1)と、低密度ポリエチレン系重合体として直鎖状低密度ポリエチレン(LLDPE)と、スチレン・エチレンブチレン・スチレントリブロック共重合体(SEBS)または、ポリエチレン・エチレンブチレン・ポリエチレントリブロック共重合体(CEBC)と、エルカ酸アミドを混合した。A層、B層それぞれ別々の押出機に供給して、A層/B層の2層共押出からなる無延伸ポリプロピレン系複合フィルムを作製した。それぞれの層の厚さは、5μm/35μmの合計40μmとした。 In Examples 12 to 21 and Comparative Examples 12 to 15, as shown in Table 1, erucic acid amide was mixed with the propylene random copolymers EPC-1 to EPC-5 as the A layer composition. The composition of the B layer is a propylene / ethylene block copolymer (BPP-) having a ratio of xylene soluble part [η] Cxs and insoluble part [η] Cxis at 20 ° C. of [η] Cxs / [η] Cxis of 1.68. 1), linear low density polyethylene (LLDPE) as a low density polyethylene polymer, and styrene / ethylene butylene / styrene triblock copolymer (SEBS) or polyethylene / ethylene butylene / polyethylene triblock copolymer (SEBS) CEBC) and erucic amide were mixed. Each of the A layer and the B layer was supplied to separate extruders to prepare a non-stretched polypropylene composite film composed of a two-layer coextrusion of A layer / B layer. The thickness of each layer was set to 40 μm in total of 5 μm / 35 μm.
 実施例22~29、比較例16~21では、表1に示すように、A層とC層組成として、プロピレン系ランダム共重合体のEPC-1にエルカ酸アミドを混合した。B層組成として、プロピレン・エチレンブロック共重合体のBPP-1またはBPP-2とLLDPEとSEBSまたは、CEBCと、プロピレン系ランダム共重合体のEPC-1を混合した樹脂組成に、エルカ酸アミドを混合した。A層、B層、C層それぞれ別々の押出機に供給して、A層/B層/C層の3層共押出からなる無延伸ポリプロピレン系複合フィルムを作製した。それぞれの層の厚さは、5μm/30μm/5μmの合計40μmとした。 In Examples 22 to 29 and Comparative Examples 16 to 21, as shown in Table 1, erucic acid amide was mixed with propylene random copolymer EPC-1 as the composition of the A layer and the C layer. B layer composition is BPP-1 or BPP-2 of propylene / ethylene block copolymer and LLDPE and SEBS or CEBC, and EPC-1 of propylene random copolymer is mixed with erucic acid amide. Mixed. Each of the A layer, the B layer, and the C layer was supplied to separate extruders to prepare a non-stretched polypropylene-based composite film composed of a three-layer coextrusion of A layer / B layer / C layer. The thickness of each layer was set to 40 μm in total of 5 μm / 30 μm / 5 μm.
 実施例30では、A層/B層/C層を実施例22と同じ原料組成にして、それぞれの層の厚さを、10μm/60μm/10μmの合計80μmとした。 In Example 30, A layer / B layer / C layer were made to have the same raw material composition as Example 22, and the thickness of each layer was 80 μm in total of 10 μm / 60 μm / 10 μm.
 表1に示すように、実施例12~21では、工程通過性、耐低温衝撃強度、耐折曲げ白化性がさらに優れ、130℃と160℃のシール強度も充分なものであり、静摩擦係数は0.3以下で良好な滑り性のものであり、体積抵抗率も1×1011~1×1014Ω・mの範囲にあった。 As shown in Table 1, in Examples 12 to 21, the process passability, the low temperature impact resistance, the bending whitening resistance are further excellent, the seal strengths at 130 ° C. and 160 ° C. are sufficient, and the static friction coefficient is The slip resistance was 0.3 or less and the volume resistivity was in the range of 1 × 10 11 to 1 × 10 14 Ω · m.
 実施例22~29では、A層/B層/C層の3層共押出からなる無延伸ポリプロピレン系複合フィルムとしたが、工程通過性、絞り成型性、耐低温衝撃性、耐折曲げ白化性に優れ、130℃と160℃のシール強度も充分なものであり、静摩擦係数は0.3以下で良好な滑り性のものであり、体積抵抗率も1×1011~1×1014Ω・mの範囲にあった。 In Examples 22 to 29, a non-stretched polypropylene-based composite film composed of a three-layer coextrusion of A layer / B layer / C layer was used, but the process passability, drawability, low temperature impact resistance, and bending whitening resistance With excellent seal strength at 130 ° C and 160 ° C, a coefficient of static friction of 0.3 or less and good slipperiness, and a volume resistivity of 1 × 10 11 to 1 × 10 14 Ω · m.
 また、実施例30では、トータル厚さを80μmとしたが、工程通過性、絞り成型性、耐低温衝撃性、耐折曲げ白化性に優れ、130℃と160℃のシール強度も充分なものであり、静摩擦係数は0.3以下で良好な滑り性のものであり、体積抵抗率は3.2×1012Ω・mであった。 In Example 30, the total thickness was 80 μm, but it was excellent in process passability, drawability, low temperature impact resistance, and bending whitening resistance, and had sufficient seal strength at 130 ° C. and 160 ° C. Yes, the coefficient of static friction was 0.3 or less and good slipping property, and the volume resistivity was 3.2 × 10 12 Ω · m.
 比較例12、13では、A層のMFRが10g/10分を超え、融点が130℃未満であるため、160℃でのヒートシール強度が低く、A層表層の滑剤ブリード量が少なく、A層面同士の静摩擦係数が高くて滑り性に劣り、工程通過性に劣るものであった。 In Comparative Examples 12 and 13, since the MFR of the A layer exceeds 10 g / 10 min and the melting point is less than 130 ° C, the heat seal strength at 160 ° C is low, the amount of lubricant bleed on the surface of the A layer is small, and the surface of the A layer The coefficient of static friction between them was high, the slipperiness was poor, and the process passability was poor.
 比較例14では、A層のMFRが1.5g/10分と低いために、B層との均一積層性が悪くて製膜安定性に劣り、130℃でのヒートシール強度も低いものであった。 In Comparative Example 14, since the MFR of the A layer was as low as 1.5 g / 10 min, the uniform lamination with the B layer was poor, the film formation stability was poor, and the heat seal strength at 130 ° C. was also low. It was.
 比較例15では、A層の融点が156℃と高いために、130℃および160℃でのヒートシール強度が低く、A層面同士の静摩擦係数も高くて滑り性に劣り、ラミネート工程時に皺が入り、工程通過性に劣るものであった。 In Comparative Example 15, since the melting point of the A layer is as high as 156 ° C., the heat seal strength at 130 ° C. and 160 ° C. is low, the coefficient of static friction between the A layer surfaces is high and the slipperiness is poor, and wrinkles enter during the lamination process. The process passability was inferior.
 比較例16では、A層へのエルカ酸アミドの含有量が150ppmと少ないために、A層表層の滑剤ブリード量が少なくて滑り性に劣り、ラミネート工程時に皺が入り、工程通過性に劣るものであった。 In Comparative Example 16, since the content of erucic acid amide in the A layer is as low as 150 ppm, the amount of the lubricant bleed on the surface of the A layer is small and the slipperiness is inferior. Met.
 比較例17では、A層へのエルカ酸アミドの含有量が2500ppmと多いために、静摩擦係数が0.3以下であるものの滑剤の工程ロールへの付着があり、工程通過性に劣るものであった。また、A層の滑剤量が多いために130℃でのヒートシール強度も低いものであった。 In Comparative Example 17, since the content of erucic acid amide in the A layer was as high as 2500 ppm, although the static friction coefficient was 0.3 or less, there was adhesion of the lubricant to the process roll, and the process passability was poor. It was. Further, since the amount of lubricant in the A layer was large, the heat seal strength at 130 ° C. was also low.
 比較例18では、B層のLDPE配合量が多いために耐低温衝撃性に劣り、A層表層の滑剤ブリード量も少なくて滑り性に劣り、工程通過性に劣るものであった。 Comparative Example 18 was inferior in low-temperature impact resistance due to the large amount of LDPE blended in layer B, inferior in slipperiness due to a small amount of lubricant bleed in the surface layer A and inferior in process passability.
 比較例19では、B層のLLDPEの配合量が少ないために、耐折曲げ白化性に劣り、また、ヒートシール強度も低いものであった。 In Comparative Example 19, since the amount of LLDPE in the B layer was small, the folding whitening resistance was inferior and the heat seal strength was low.
 比較例20では、B層へのエルカ酸アミドの添加量が300ppmと少ないために、A層表層の滑剤ブリード量が少なく、滑り性に劣っていた。また、体積抵抗率も2.5×1015Ω・mと高いために静電気が発生して工程通過性に劣ったものあった。 In Comparative Example 20, since the amount of erucic acid amide added to the B layer was as small as 300 ppm, the amount of lubricant bleed on the surface layer of the A layer was small, and the slipperiness was poor. Moreover, since the volume resistivity was as high as 2.5 × 10 15 Ω · m, static electricity was generated and the process passability was poor.
 比較例21では、B層のエルカ酸アミドの含有量が6000ppmと多いために、A層表層の滑剤ブリード量が多くなり過ぎて滑剤の工程ロールへの付着があり、また、ヒートシール強度が低くなり、体積抵抗率が3.5×1010Ω・mと低くなって電池用包装材として用いたときに絶縁性に劣ったものあった。 In Comparative Example 21, since the content of erucamide in the B layer is as high as 6000 ppm, the amount of lubricant bleed on the surface layer of the A layer is excessive, and the lubricant adheres to the process roll, and the heat seal strength is low. Thus, the volume resistivity was as low as 3.5 × 10 10 Ω · m, and the insulation was poor when used as a battery packaging material.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 本発明のポリプロピレン系複合フィルムおよびそれを用いた包装材は、ヒートシール力が高く、易滑性に優れ、電池外装用途として好適に使用できるものである。また、本発明のポリプロピレン系複合フィルムおよびそれを用いた包装材は、易滑性および耐低温衝撃性、耐ユズ肌性に優れ、かつ、低温でのヒートシール強度が求められるレトルト食品の包装材料として、好適に使用できるものである。 The polypropylene-based composite film of the present invention and a packaging material using the polypropylene-based composite film have high heat-sealing power, excellent slipperiness, and can be suitably used for battery exterior applications. The polypropylene composite film of the present invention and a packaging material using the same are packaging materials for retort foods that are excellent in slipperiness, low-temperature impact resistance, and skin-resistant properties, and that require heat seal strength at low temperatures. Can be suitably used.

Claims (15)

  1.  少なくともA層/B層の2層からなり、
    A層は、230℃でのメルトフローレートが2~10g/10分、融点が130~150℃のプロピレン系ランダム共重合体を主成分とし、
    B層は、20℃キシレンの可溶部の極限粘度[η]Cxsと同不溶部の極限粘度[η]Cxisの比([η]Cxs/[η]Cxis)が1.6以上であるプロピレン・エチレンブロック共重合体(a)100重量部に対して、低密度ポリエチレン系重合体(b)10~90重量部を配合した樹脂組成物を主成分とし、
    A層は脂肪酸アミド系滑剤を200~2000ppm含有し、
    B層は脂肪酸アミド系滑剤を500~5000ppm含有することを特徴とするポリプロピレン系複合フィルム。
    It consists of at least two layers of A layer / B layer,
    Layer A is composed mainly of a propylene random copolymer having a melt flow rate at 230 ° C. of 2 to 10 g / 10 min and a melting point of 130 to 150 ° C.
    Layer B is propylene having a ratio ([η] Cxs / [η] Cxis) of the intrinsic viscosity [η] Cxs of the soluble part of 20 ° C. xylene to the intrinsic viscosity [η] Cxis of the insoluble part of 1.6 or more. The main component is a resin composition in which 10 to 90 parts by weight of the low density polyethylene polymer (b) is blended with 100 parts by weight of the ethylene block copolymer (a).
    Layer A contains 200-2000 ppm of fatty acid amide lubricant,
    Layer B contains a polypropylene based composite film containing 500 to 5000 ppm of fatty acid amide based lubricant.
  2.  B層が、前記プロピレン・エチレンブロック共重合体(a)100重量部に対して、さらに、スチレン系ブロックを有するブロック共重合体、または、結晶性オレフィンブロックを有するブロック共重合体であるポリマー(c)5~20重量部を配合した請求項1に記載のポリプロピレン系複合フィルム。 The polymer (B) is a block copolymer having a styrene block or a block copolymer having a crystalline olefin block with respect to 100 parts by weight of the propylene / ethylene block copolymer (a). The polypropylene composite film according to claim 1, wherein 5) to 20 parts by weight of c) is blended.
  3.  前記B層のポリマー(c)が、スチレン・エチレンブチレン・スチレントリブロック共重合体である請求項1または2に記載のポリプロピレン系複合フィルム。 The polypropylene-based composite film according to claim 1 or 2, wherein the polymer (c) of the B layer is a styrene / ethylene butylene / styrene triblock copolymer.
  4.  前記B層のポリマー(c)が、ポリエチレン・エチレンブチレン・ポリエチレントリブロック共重合体である請求項1または2に記載のポリプロピレン系複合フィルム。 The polypropylene-based composite film according to claim 1 or 2, wherein the polymer (c) of the B layer is a polyethylene / ethylene butylene / polyethylene triblock copolymer.
  5.  B層が、前記プロピレン・エチレンブロック共重合体(a)100重量部に対して、さらに、230℃でのメルトフローレートが2~10g/10分、融点が130~150℃のプロピレン系ランダム共重合体(d)10~50重量部を配合した請求項1~4のいずれかに記載のポリプロピレン系複合フィルム。 Layer B is a propylene-based random copolymer having a melt flow rate of 2 to 10 g / 10 min at 230 ° C. and a melting point of 130 to 150 ° C. with respect to 100 parts by weight of the propylene / ethylene block copolymer (a). 5. The polypropylene based composite film according to claim 1, wherein 10 to 50 parts by weight of the polymer (d) is blended.
  6.  230℃でのメルトフローレートが2~10g/10分、融点が130~150℃のプロピレン系ランダム共重合体を主成分とし、脂肪酸アミド系滑剤を200~2000ppm含有するC層を積層したA層/B層/C層の3層積層からなる請求項1~5のいずれかに記載のポリプロピレン系複合フィルム。 A layer in which a C layer containing a propylene random copolymer having a melt flow rate at 230 ° C. of 2 to 10 g / 10 min and a melting point of 130 to 150 ° C. as a main component and containing 200 to 2000 ppm of a fatty acid amide lubricant is laminated. The polypropylene composite film according to any one of claims 1 to 5, comprising a three-layer laminate of / B layer / C layer.
  7.  C層の厚さが1μm以上であり、トータル厚さが20~200μmの範囲にある、請求項6に記載のポリプロピレン系複合フィルム。 The polypropylene composite film according to claim 6, wherein the thickness of the C layer is 1 μm or more and the total thickness is in the range of 20 to 200 μm.
  8.  A層の厚さが1μm以上であり、トータル厚さが20~200μmの範囲にある、請求項1~7のいずれかに記載のポリプロピレン系複合フィルム。 The polypropylene composite film according to any one of claims 1 to 7, wherein the layer A has a thickness of 1 µm or more and a total thickness in the range of 20 to 200 µm.
  9.  前記A層面同士の静摩擦係数が23℃、3日間エージング後で0.3以下である請求項1~8のいずれかに記載のポリプロピレン系複合フィルム。 The polypropylene based composite film according to any one of claims 1 to 8, wherein the static friction coefficient between the A layer surfaces is 0.3 or less after aging at 23 ° C for 3 days.
  10.  前記A層面同士の静摩擦係数が60℃、3日間エージング後で0.3以下である請求項1~9のいずれかに記載のポリプロピレン系複合フィルム。 The polypropylene composite film according to any one of claims 1 to 9, wherein the static friction coefficient between the A layer surfaces is 0.3 or less after aging at 60 ° C for 3 days.
  11.  体積抵抗率が1×1011~1×1014Ω・mの範囲である、請求項1~10のいずれかに記載のポリプロピレン系複合フィルム。 11. The polypropylene based composite film according to claim 1, wherein the volume resistivity is in the range of 1 × 10 11 to 1 × 10 14 Ω · m.
  12.  請求項1~11のいずれかに記載のポリプロピレン系複合フィルムのA層側でない面に、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリプロピレンフィルム、二軸延伸ナイロンフィルムおよびアルミニウム箔からなる群から選ばれる少なくとも一つがラミネートされた積層体。 The surface of the polypropylene-based composite film according to any one of claims 1 to 11 is selected from the group consisting of a biaxially stretched polyethylene terephthalate film, a biaxially stretched polypropylene film, a biaxially stretched nylon film, and an aluminum foil. A laminate in which at least one is laminated.
  13.  前記ラミネートされた後のポリプロピレン系複合フィルムのA層面同士の130℃でのヒートシール強度が30N/15mm以上であり、160℃以上でのヒートシール強度が55N/15mm以上である、請求項12に記載の積層体。 The heat seal strength at 130 ° C. between the A layer surfaces of the laminated polypropylene-based composite film is 30 N / 15 mm or more, and the heat seal strength at 160 ° C. or more is 55 N / 15 mm or more. The laminated body of description.
  14.  請求項12または13に記載の積層体を用いた電池用包装材。 A battery packaging material using the laminate according to claim 12 or 13.
  15.  請求項12または13に記載の積層体を用いたレトルト用包装材。 A packaging material for retort using the laminate according to claim 12 or 13.
PCT/JP2019/017550 2018-05-21 2019-04-25 Polypropylene-based composite film and packaging material using same WO2019225282A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207020151A KR20210012996A (en) 2018-05-21 2019-04-25 Polypropylene composite film and packaging material using the same
JP2019523119A JP7237827B2 (en) 2018-05-21 2019-04-25 Laminate and packaging material using the same
CN201980015145.XA CN111757809A (en) 2018-05-21 2019-04-25 Polypropylene composite film and packaging material using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018096798 2018-05-21
JP2018-096798 2018-05-21
JP2019066500 2019-03-29
JP2019-066500 2019-03-29

Publications (1)

Publication Number Publication Date
WO2019225282A1 true WO2019225282A1 (en) 2019-11-28

Family

ID=68615695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017550 WO2019225282A1 (en) 2018-05-21 2019-04-25 Polypropylene-based composite film and packaging material using same

Country Status (5)

Country Link
JP (1) JP7237827B2 (en)
KR (1) KR20210012996A (en)
CN (1) CN111757809A (en)
TW (1) TWI797330B (en)
WO (1) WO2019225282A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021006069A1 (en) * 2019-07-09 2021-01-14 東レフィルム加工株式会社 Sealant film
JP2021176691A (en) * 2020-05-08 2021-11-11 サン・トックス株式会社 Non-stretched multilayer film
WO2022153783A1 (en) * 2021-01-15 2022-07-21 東洋紡株式会社 Polyolefin resin film and laminate
JP7156587B1 (en) * 2021-05-31 2022-10-19 凸版印刷株式会社 Multilayer films, packaging materials and packages
WO2022255041A1 (en) * 2021-05-31 2022-12-08 凸版印刷株式会社 Multilayer film, packaging material, and package
CN115991907A (en) * 2021-10-20 2023-04-21 中国石油化工股份有限公司 Low-haze high-impact heat-sealing polypropylene composite film and preparation method and application thereof
WO2023090244A1 (en) * 2021-11-18 2023-05-25 東レフィルム加工株式会社 Sealant film and power storage device exterior material using same
JP2023075056A (en) * 2021-11-18 2023-05-30 東レフィルム加工株式会社 Sealant film, and jacket material for power storage device using the same
JP7461152B2 (en) 2020-01-31 2024-04-03 三井化学東セロ株式会社 Laminated film, packaging material, and packaging body

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI705098B (en) * 2020-02-19 2020-09-21 南亞塑膠工業股份有限公司 Packaging material for carton products and packaging method thereof
CN113502018B (en) * 2021-07-23 2022-12-09 浙江工业大学 Preparation method of composite film for polypropylene packaging

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001129943A (en) * 1999-11-01 2001-05-15 Chisso Corp Decorative laminate sheet
JP2004043545A (en) * 2002-07-09 2004-02-12 Mitsui Chemicals Inc Resin composition for sealant, and easily heat-sealable sealant film to be obtained therefrom
JP2004130732A (en) * 2002-10-11 2004-04-30 Japan Polychem Corp Easily heat-sealable laminate
JP2011025432A (en) * 2009-07-22 2011-02-10 Toray Advanced Film Co Ltd Polypropylene composite film
JP2017132187A (en) * 2016-01-29 2017-08-03 東レフィルム加工株式会社 Easily slidable film and laminate using the same
WO2018088257A1 (en) * 2016-11-14 2018-05-17 東レフィルム加工株式会社 Polypropylene-based composite film, laminate using same, packaging pouch for battery exterior, and retort packaging pouch

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0977881A (en) 1995-09-18 1997-03-25 Mitsubishi Chem Corp Film for laminating
JP3850493B2 (en) 1996-09-18 2006-11-29 住友化学株式会社 Polypropylene copolymer and film thereof
JPH11334004A (en) 1998-03-26 1999-12-07 Idemitsu Petrochem Co Ltd Polypropylene multilayered film and composite film
JP2002210898A (en) * 2000-11-17 2002-07-31 Tohcello Co Ltd Laminated polyolefin film and package
JP5601537B2 (en) * 2011-10-24 2014-10-08 東レフィルム加工株式会社 Polypropylene film and laminate thereof
JP6205205B2 (en) * 2013-08-09 2017-09-27 昭和電工パッケージング株式会社 Molding packaging material
JP6457402B2 (en) * 2013-12-12 2019-01-23 サン・トックス株式会社 Polyolefin-based unstretched multilayer film
JP6694613B2 (en) * 2015-08-31 2020-05-20 東レフィルム加工株式会社 Polypropylene sealant film for retort packaging and laminate using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001129943A (en) * 1999-11-01 2001-05-15 Chisso Corp Decorative laminate sheet
JP2004043545A (en) * 2002-07-09 2004-02-12 Mitsui Chemicals Inc Resin composition for sealant, and easily heat-sealable sealant film to be obtained therefrom
JP2004130732A (en) * 2002-10-11 2004-04-30 Japan Polychem Corp Easily heat-sealable laminate
JP2011025432A (en) * 2009-07-22 2011-02-10 Toray Advanced Film Co Ltd Polypropylene composite film
JP2017132187A (en) * 2016-01-29 2017-08-03 東レフィルム加工株式会社 Easily slidable film and laminate using the same
WO2018088257A1 (en) * 2016-11-14 2018-05-17 東レフィルム加工株式会社 Polypropylene-based composite film, laminate using same, packaging pouch for battery exterior, and retort packaging pouch

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021006069A1 (en) * 2019-07-09 2021-01-14 東レフィルム加工株式会社 Sealant film
JP6855654B1 (en) * 2019-07-09 2021-04-07 東レフィルム加工株式会社 Sealant film
JP7461152B2 (en) 2020-01-31 2024-04-03 三井化学東セロ株式会社 Laminated film, packaging material, and packaging body
JP2021176691A (en) * 2020-05-08 2021-11-11 サン・トックス株式会社 Non-stretched multilayer film
JP7464441B2 (en) 2020-05-08 2024-04-09 サン・トックス株式会社 Non-oriented multi-layer film
WO2022153783A1 (en) * 2021-01-15 2022-07-21 東洋紡株式会社 Polyolefin resin film and laminate
JP7188636B1 (en) 2021-05-31 2022-12-13 凸版印刷株式会社 Packaging materials and packages
JP2022188781A (en) * 2021-05-31 2022-12-21 凸版印刷株式会社 Packaging material, and package
WO2022255041A1 (en) * 2021-05-31 2022-12-08 凸版印刷株式会社 Multilayer film, packaging material, and package
JP7156587B1 (en) * 2021-05-31 2022-10-19 凸版印刷株式会社 Multilayer films, packaging materials and packages
CN115991907A (en) * 2021-10-20 2023-04-21 中国石油化工股份有限公司 Low-haze high-impact heat-sealing polypropylene composite film and preparation method and application thereof
WO2023090244A1 (en) * 2021-11-18 2023-05-25 東レフィルム加工株式会社 Sealant film and power storage device exterior material using same
JP2023075056A (en) * 2021-11-18 2023-05-30 東レフィルム加工株式会社 Sealant film, and jacket material for power storage device using the same

Also Published As

Publication number Publication date
KR20210012996A (en) 2021-02-03
JPWO2019225282A1 (en) 2021-04-22
TW202003245A (en) 2020-01-16
JP7237827B2 (en) 2023-03-13
TWI797330B (en) 2023-04-01
CN111757809A (en) 2020-10-09

Similar Documents

Publication Publication Date Title
JP7237827B2 (en) Laminate and packaging material using the same
JP6548746B2 (en) Polypropylene-based composite film, laminate using the same, packaging bag for battery exterior and packaging bag for retort
JP5229578B2 (en) Polypropylene composite film
JP7279837B2 (en) Polyolefin resin film
JP6292442B2 (en) Polypropylene composite film and laminate using the same
JP6304547B2 (en) Easy-open multilayer film
WO2013070187A1 (en) Heat sealable monoaxially oriented propylene-based film with directional tear
JP2023153153A (en) Packaging film for food product, and package for food product
EP2329947A1 (en) Multi-layer opaque films, methods of manufacture and use thereof
JP2023121783A (en) Packaging film for food and packaging body for food
JP7392718B2 (en) Polyolefin resin film and laminate using the same
JP5205252B2 (en) Sealant film for retort food packaging containers
JP2007136866A (en) Coextruded multilayer film and laminated film using the film
US20130202904A1 (en) Sealable Polypropylene Films With Enhanced Stability
JP4692818B2 (en) Co-extrusion laminated film and laminate film and packaging container using the same
US11708483B2 (en) Heat sealable films
WO2013119316A1 (en) Metalized polypropylene films with improved adhesion
WO2023090244A1 (en) Sealant film and power storage device exterior material using same
TW202313319A (en) Multi-layer film, packaging material, and package
TW202348706A (en) Polypropylene-based film for retort packaging, and laminate
JP2024028700A (en) Polyolefin resin film and laminate using the same
JP2023075056A (en) Sealant film, and jacket material for power storage device using the same
JP2022151583A (en) Polypropylene-based sealant film and exterior material for power storage device
KR20220166100A (en) Phase separating agent for sealant film, sealant film matted using the phase separating agent, cell pouch using the same and method for manufacturing the same
JPH08252894A (en) Polyethylene laminated film

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019523119

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19808111

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19808111

Country of ref document: EP

Kind code of ref document: A1