WO2019223712A1 - 通信方法和通信装置 - Google Patents

通信方法和通信装置 Download PDF

Info

Publication number
WO2019223712A1
WO2019223712A1 PCT/CN2019/087929 CN2019087929W WO2019223712A1 WO 2019223712 A1 WO2019223712 A1 WO 2019223712A1 CN 2019087929 W CN2019087929 W CN 2019087929W WO 2019223712 A1 WO2019223712 A1 WO 2019223712A1
Authority
WO
WIPO (PCT)
Prior art keywords
bwp
qcl
relationship
information
qcl relationship
Prior art date
Application number
PCT/CN2019/087929
Other languages
English (en)
French (fr)
Inventor
张荻
刘建琴
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112020023678-0A priority Critical patent/BR112020023678A2/pt
Priority to EP19808324.8A priority patent/EP3817479B1/en
Priority to KR1020207036298A priority patent/KR20210010560A/ko
Publication of WO2019223712A1 publication Critical patent/WO2019223712A1/zh
Priority to US17/100,444 priority patent/US11569949B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present application relates to a communication system, and more particularly, to a communication method and a communication device.
  • the current standard supports dynamic switching of bandwidth regions (BWP).
  • BWP switching may be performed within the same carrier or between different carriers.
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • the present application provides a communication method capable of transmitting PDCCH and / or PDSCH according to an association relationship between a first BWP and a second BWP.
  • a communication method which includes: determining a first BWP and a second BWP, and determining an association relationship between the first BWP and the second BWP. Determine a first quasi-co-location (QCL) relationship according to the association relationship, and receive PDSCH on a second BWP according to the first QCL relationship; and / or determine a second QCL relationship according to the association relationship And receiving the PDCCH on the second BWP according to the second QCL relationship.
  • QCL quasi-co-location
  • the first QCL relationship may be a specific QCL information, or a QCL relationship indicated by the QCL information.
  • the QCL information may be configured by the network device to the terminal through signaling, or the terminal may assume that certain parameters of the second BWP and certain parameters of the first BWP are QCL or have some association according to preset conditions. relationship.
  • the network device may indicate the transmission configuration indication (TCI) status of the PDSCH or PDCCH through signaling.
  • TCI status is used to indicate the demodulation reference signal (DMRS) of the PDSCH or PDCCH and the TCI status.
  • DMRS demodulation reference signal
  • the reference signal satisfies the QCL relationship.
  • the DMRS of the PDSCH or PDCCH and a certain reference signal (such as a synchronous signal broadcast channel block (synchronous signal / PBCH block) (SSB) satisfy a (spatial) QCL relationship.
  • a certain reference signal such as a synchronous signal broadcast channel block (synchronous signal / PBCH block) (SSB)
  • SSB synchronous signal broadcast channel block
  • the second QCL relationship reference may be made to the description of the first QCL relationship.
  • the first QCL relationship may be the same as the second QCL relationship, but this application does not limit this.
  • the communication method in the embodiment of the present application can determine the first QCL relationship and / or the second QCL relationship according to the association relationship between the first BWP and the second BWP, and can further determine the first QCL relationship and / or the second QCL relationship. Relationship, to perform PDCCH and / or PDSCH transmission.
  • determining the first BWP and the second BWP includes: receiving BWP switching instruction information; and switching from the first BWP to according to the BWP switching instruction information.
  • the second BWP includes: receiving BWP switching instruction information; and switching from the first BWP to according to the BWP switching instruction information.
  • the first BWP is the BWP before switching
  • the second BWP is the BWP after switching. Therefore, according to the communication method in the embodiment of the present application, the PDCCH and / or PDSCH may be received on the BWP after the handover according to the association relationship between the BWP before the handover and the BWP after the handover.
  • the first BWP and the second BWP may be BWP on one carrier or BWP on multiple carriers.
  • the first BWP may be a BWP configured on carrier # 1
  • the second BWP may be configured on carrier # 2.
  • BWP, carrier # 1 and carrier # 2 may be two carriers for carrier aggregation.
  • BWP in this application can be replaced with “carrier wave”.
  • the carrier can also be called a carrier unit (Component Carrier, CC).
  • the terminal can access multiple carriers simultaneously, and each carrier can be configured with one BWP, that is, there can be multiple activated BWPs.
  • the first BWP may be a BWP that has been configured with QCL information among the activated multiple BWPs
  • the second BWP may be a BWP that has not been configured with QCL information among the activated multiple BWPs. Therefore, according to the method in the embodiment of the present application, the PDCCH and / or PDSCH may be received on the second BWP according to the association relationship between the first BWP and the second BWP between the second BWP unconfigured QCL information.
  • the first QCL relationship and the second QCL relationship may be a QCL relationship indicated by QCL information configured by the network device for the first BWP.
  • the terminal may receive the PDSCH according to the first QCL relationship and / or the PDCCH according to the second QCL relationship in the following cases: before the terminal receives QCL information of the control resource set (CORSET) and / or PDSCH on the second BWP.
  • CORSET control resource set
  • the terminal and the network device can transmit the PDCCH and / or PDSCH on the second BWP by multiplexing the QCL information of the first BWP without having to wait until the network device beams are trained before being configured.
  • QCL information which can reduce the delay problem caused by beam training.
  • the network device and the terminal device can be aligned with the QCL hypothesis or beam (sending beam and receiving beam), so that the terminal can accurately receive data, and can reduce the network device to the second BWP Configure the required signaling overhead for QCL information.
  • the existence of an association relationship between the first BWP and the second BWP includes at least one of the following situations:
  • the first BWP and the second BWP partially or completely overlap in the frequency domain
  • a reference signal configured for the first BWP and a reference signal configured for the second BWP satisfy a QCL relationship
  • the first BWP and the second BWP include the same set of control resources
  • the first BWP and the second BWP are intra-band (BWP) in the same frequency band.
  • the overlapping of the first BWP and the second BWP in the frequency domain can also be understood as: the first BWP and the second BWP include the same resource block (RB).
  • the overlapping of the first BWP and the second BWP in the frequency domain may be any of the following: A: The first BWP and the second BWP partially overlap in the frequency domain, and there is no inclusion relationship. That is, the first BWP and the second BWP include the same RB, but the first BWP is not a subset of the second BWP and the second BWP is not a subset of the first BWP.
  • B The first BWP is a true subset of the second BWP.
  • the second BWP includes all RBs constituting the first BWP, and at least one RB among all RBs constituting the second BWP is different from the RBs constituting the first BWP.
  • C The second BWP is a true subset of the first BWP. That is, the first BWP includes all RBs constituting the second BWP, and at least one RB among all RBs constituting the first BWP is different from the RBs constituting the second BWP.
  • D The second BWP completely overlaps the first BWP. That is, the second BWP is the same as the RB included in the first BWP. In this case, some parameters of the first BWP and the second BWP may be different, for example, the subcarrier interval of the two may be different, and the configured CORSET may be different.
  • the first BWP and the second BWP include the same control resource set (CORESET), that is, the first BWP and the second BWP overlap in the frequency domain, and the first BWP and the network device in the first BWP and At least one CORESET configured in the overlapping area of the second BWP is partially or completely the same as at least one CORESET configured in the overlapping area of the first BWP and the second BWP of the device.
  • CORESET control resource set
  • the reference signal configured by the network device for the first BWP and the reference signal configured for the second BWP satisfies a QCL relationship.
  • the reference signal indicated by the QCL information configured by the network device for the COREST and / or PDSCH included in the first BWP includes the reference signal of the second BWP.
  • the reference signal indicated by the QCL information configured by the network device for the reference signal included in the first BWP is a reference signal of the second BWP.
  • the first BWP and the second BWP are considered to have connection relation.
  • the reference signal indicated by the QCL information configured by the network device for the COREST and / or PDSCH included in the second BWP includes the reference signal of the first BWP.
  • the reference signal indicated by the QCL information configured by the network device for the reference signal included in the second BWP is the reference signal of the first BWP.
  • the TCI state configured by the network device for CORESET # 2 of the second BWP includes the reference signal CSI-RS # 2, and CSI-RS # 2 is the reference signal of the first BWP, then the first BWP and the second BWP are considered to have connection relation.
  • the determining the first QCL relationship according to the association relationship includes:
  • the first QCL relationship is a QCL relationship indicated by QCL information included in downlink control information (DCI), where the DCI further includes BWP handover instruction information.
  • DCI downlink control information
  • the DCI is located at the first BWP. That is, the QCL information included in the DCI located at the first BWP to indicate the BWP switching is the first QCL relationship.
  • the QCL information included in the DCI may be one candidate QCL information configured for the first BWP. Therefore, the terminal and the network device can transmit the PDCCH and / or PDSCH on the second BWP by multiplexing the QCL information of the first BWP without having to wait until the network device beam training and then configure the QCL information, thereby reducing the Delay problems caused by beam training.
  • the network device and the terminal device can be aligned with the QCL hypothesis or beam (sending beam and receiving beam), so that the terminal can accurately receive data, and the network device can be reduced to the second BWP. Configure the required signaling overhead for QCL information.
  • the DCI may also be a candidate QCL information configured for the second BWP, which is not limited in this application.
  • the first QCL relationship may be QCL information included in the DCI for indicating BWP handover.
  • the scheduling offset refers to a time offset between downlink DCI and PDSCH.
  • the first threshold may be reported by the terminal according to its capability, or may be configured by a network device, or may be predefined.
  • the first threshold is the sum of the time required for beam switching and BWP switching.
  • the first threshold is the time required for beam switching.
  • the determining the first QCL relationship and / or the second QCL relationship according to the association relationship includes:
  • the first QCL relationship and / or the second QCL relationship is a QCL relationship indicated by default QCL information, and the default QCL information is at least one of the following:
  • the control resource set in the first BWP and / or the third QCL information in the QCL information configured by the PDSCH, and the reference signal indicated by the third QCL information is located in the second BWP;
  • the control resource set in the second BWP and / or the fourth QCL information in the QCL information configured by the PDSCH, and the reference signal indicated by the fourth QCL information is located in the first BWP.
  • control resource set included in the first BWP or the second BWP may be a CORESET configured with valid QCL information, that is, all control resource sets included in the first BWP or the second BWP are configured. CORESET for QCL information.
  • control resource set included in the first BWP or the second BWP may be a CORESET with a minimum identification value or an index value in the control resource set for transmitting a broadcast PDCCH or a control for transmitting a non-broadcast PDCCH. CORESET with the smallest identification or index value in the resource collection.
  • the determining the first QCL relationship according to the association relationship includes:
  • the first QCL relationship is a QCL relationship indicated by default QCL information, and the default QCL information is: QCL information of a control resource set in which the DCI that schedules the PDSCH is located.
  • the QCL information of CORESET where DCI # 1 is located can be used as the first QCL relationship.
  • the determining a first QCL relationship according to the association relationship, and / or determining a second QCL relationship according to the association relationship includes:
  • the first QCL relationship and / or the second QCL relationship is a QCL relationship indicated by default QCL information, and the default QCL information is at least one of the following:
  • the QCL information of the SSB having the smallest index among the SSBs included in the second BWP is the QCL information of the SSB having the smallest index among the SSBs included in the second BWP.
  • the first QCL relationship and / or the second QCL relationship is used for initial access
  • the first QCL relationship and / or the second QCL relationship is a QCL of an SSB having the smallest index among the SSBs included in the second BWP QCL relationship indicated by the message.
  • the second BWP including the initial BWP means that the initial BWP is a subset of the second BWP.
  • the QCL information of the first QCL relationship being the initially accessed SSB may be understood as: the PDSCH and / or the DMRS of the PDCCH and the SSB satisfy the QCL hypothetical relationship.
  • the PDSCH is scheduled by downlink control information DCI, where the DCI further includes the BWP handover indication information. That is, the PDSCH is scheduled by the DCI located in the first BWP.
  • the first QCL relationship is a QCL relationship indicated by QCL information included in the BWP handover instruction information; and /or
  • the first QCL relationship is a QCL relationship indicated by the default QCL information
  • the first threshold is a sum of time required for the beam switching and the BWP switching of the terminal.
  • the determining a first QCL relationship according to the association relationship, and / or determining a second QCL relationship according to the association relationship includes:
  • the second QCL relationship is a QCL relationship indicated by at least one of the following QCL information:
  • the present application provides a communication method, which includes: determining a first BWP and a second BWP, and determining an association relationship between the first BWP and the second BWP. Determining a first QCL relationship according to the association relationship, and sending a PDSCH on a second BWP according to the first QCL relationship; and / or, determining a second QCL relationship according to the association relationship, and transmitting the second QCL relationship according to the second QCL relationship The PDCCH is transmitted on.
  • the communication method in the embodiment of the present application can determine the first QCL relationship and / or the second QCL relationship according to the association relationship between the first BWP and the second BWP, and can further determine the first QCL relationship and / or the second QCL Relationship to perform PDCCH and / or PDSCH transmission.
  • the method may further include: sending BWP handover instruction information, where the BWP handover instruction information is used to instruct the terminal from the first A BWP is switched to the second BWP.
  • the first BWP is the BWP before switching
  • the second BWP is the BWP after switching. Therefore, according to the communication method in the embodiment of the present application, the PDCCH and / or PDSCH may be transmitted on the BWP after the handover according to the association relationship between the BWP before the handover and the BWP after the handover.
  • the first QCL relationship and the second QCL relationship may be a QCL relationship indicated by QCL information configured by the network device for the first BWP.
  • the network device may send the PDSCH according to the first QCL relationship and / or the PDCCH according to the second QCL relationship in the following cases: before the network device sends the CORSET and / or the QCL information of the PDSCH of the second BWP.
  • the terminal and the network device can transmit the PDCCH and / or PDSCH on the second BWP by multiplexing the QCL information of the first BWP without having to wait until the network device beams are trained before being configured.
  • QCL information which can reduce the delay problem caused by beam training.
  • the network device and the terminal device can be aligned with the QCL hypothesis or beam (sending beam and receiving beam), so that the terminal can accurately receive data, and the network device can be reduced to the second BWP. Configure the required signaling overhead for QCL information.
  • the association relationship between the first BWP and the second BWP includes at least one of the following situations:
  • the first BWP and the second BWP partially or completely overlap in the frequency domain
  • a reference signal configured for the first BWP and a reference signal configured for the second BWP satisfy a QCL relationship
  • the first BWP and the second BWP include the same set of control resources
  • the first BWP and the second BWP are intra-band (BWP) in the same frequency band.
  • the determining the first QCL relationship according to the association relationship includes:
  • the first QCL relationship is a QCL relationship indicated by the QCL information included in the downlink control information DCI, wherein the DCI further includes the BWP switching indication information.
  • the DCI is located at the first BWP. That is, the QCL information included in the DCI located at the first BWP to indicate the BWP switching is the first QCL relationship.
  • the QCL information included in the DCI may be one candidate QCL information configured for the first BWP. Therefore, the terminal and the network device can transmit the PDCCH and / or PDSCH on the second BWP by multiplexing the QCL information of the first BWP without having to wait until the network device beam training and then configure the QCL information, thereby reducing the Delay problems caused by beam training.
  • the network device and the terminal device can be aligned with the QCL hypothesis or beam (sending beam and receiving beam), so that the terminal can accurately receive data, and can reduce the network device to the second BWP Configure the required signaling overhead for QCL information.
  • the DCI may also be a candidate QCL information configured by the network device for the second BWP, which is not limited in this application.
  • the first QCL relationship may be QCL information included in the DCI for indicating BWP handover.
  • the determining the first QCL relationship and / or the second QCL relationship according to the association relationship includes:
  • the first QCL relationship and / or the second QCL relationship is a QCL relationship indicated by default QCL information, and the default QCL information is at least one of the following:
  • the control resource set in the first BWP and / or the third QCL information in the QCL information configured by the PDSCH, and the reference signal indicated by the third QCL information is located in the second BWP;
  • the control resource set in the second BWP and / or the fourth QCL information in the QCL information configured by the PDSCH, and the reference signal indicated by the fourth QCL information is located in the first BWP.
  • the determining the first QCL relationship according to the association relationship includes:
  • the first QCL relationship is a QCL relationship indicated by default QCL information, and the default QCL information is: QCL information of a control resource set in which the DCI that schedules the PDSCH is located.
  • the QCL information of CORESET where DCI # 1 is located can be used as the first QCL relationship.
  • the determining the first QCL relationship according to the association relationship, and / or the determining the second QCL relationship according to the association relationship includes:
  • the first QCL relationship and / or the second QCL relationship is a QCL relationship indicated by default QCL information, and the default QCL information is at least one of the following:
  • the QCL information of the SSB having the smallest index among the SSBs included in the second BWP is the QCL information of the SSB having the smallest index among the SSBs included in the second BWP.
  • the first QCL relationship and / or the second QCL relationship is used for initial access
  • the first QCL relationship and / or the second QCL relationship is a QCL of an SSB having the smallest index among the SSBs included in the second BWP QCL relationship indicated by the message.
  • the PDSCH is scheduled by downlink control information DCI, where the DCI further includes the BWP handover indication information. That is, the PDSCH is scheduled by the DCI located in the first BWP.
  • the first QCL relationship is a QCL relationship indicated by QCL information included in the BWP handover instruction information; and /or
  • the first QCL relationship is a QCL relationship indicated by the default QCL information
  • the first threshold is a sum of time required for the beam switching and the BWP switching of the terminal.
  • the determining the first QCL relationship according to the association relationship, and / or the determining the second QCL relationship according to the association relationship includes:
  • the second QCL relationship is a QCL relationship indicated by at least one of the following QCL information:
  • a communication method which includes: determining a first BWP and a second BWP; determining a first QCL relationship, and receiving a PDSCH on the second BWP according to the first QCL relationship; and / or, determining a first A second QCL relationship, and receiving a PDCCH on a second BWP according to the second QCL relationship.
  • the first QCL relationship may be a specific QCL information, or a QCL relationship indicated by the QCL information.
  • the QCL information may be configured by the network device to the terminal through signaling, or the terminal may assume that certain parameters of the second BWP and certain parameters of the first BWP are QCL or have some association according to preset conditions. relationship.
  • the network device may indicate the TCI status of the PDSCH or PDCCH through signaling.
  • the TCI status is used to indicate that the DMRS of the PDSCH or PDCCH and the reference signal included in the TCI status satisfy the QCL relationship.
  • the DMRS of the PDSCH or PDCCH and a certain reference signal (such as a synchronous signal broadcast channel block (synchronous signal / PBCH block) (SSB) satisfy a (spatial) QCL relationship.
  • a certain reference signal such as a synchronous signal broadcast channel block (synchronous signal / PBCH block) (SSB)
  • SSB synchronous signal broadcast channel block
  • the second QCL relationship reference may be made to the description of the first QCL relationship.
  • the first QCL relationship may be the same as the second QCL relationship, but this application does not limit this.
  • the communication method in the embodiment of the present application can perform PDCCH and / or PDSCH transmission according to the first QCL relationship and / or the second QCL relationship.
  • determining the first QCL relationship includes: determining the first QCL relationship according to the association relationship between the first BWP and the second BWP; and / or, determining the first QCL relationship, Including: determining a second QCL relationship according to the association relationship between the first BWP and the second BWP.
  • the network device and the terminal device can perform PDCCH and / or PDSCH on the second BWP according to the first QCL relationship and / or the second QCL relationship. transmission.
  • determining the first BWP and the second BWP includes: receiving BWP switching instruction information; and switching from the first BWP to the first BWP according to the BWP switching instruction information.
  • the second BWP includes: receiving BWP switching instruction information; and switching from the first BWP to the first BWP according to the BWP switching instruction information.
  • the first BWP is the BWP before switching
  • the second BWP is the BWP after switching. Therefore, according to the communication method in the embodiment of the present application, the PDCCH and / or PDSCH may be received on the BWP after the handover according to the association relationship between the BWP before the handover and the BWP after the handover.
  • the first BWP and the second BWP may be BWP on one carrier or BWP on multiple carriers.
  • the first BWP may be a BWP configured on carrier # 1
  • the second BWP may be configured on carrier # 2.
  • BWP, carrier # 1 and carrier # 2 may be two carriers for carrier aggregation.
  • the terminal can access multiple carriers simultaneously, and each carrier can be configured with one BWP, that is, there can be multiple activated BWPs.
  • the first BWP may be a BWP that has been configured with QCL information among the activated multiple BWPs
  • the second BWP may be a BWP that has not been configured with QCL information among the activated multiple BWPs. Therefore, according to the method in the embodiment of the present application, the PDCCH and / or PDSCH may be received on the second BWP according to the association relationship between the first BWP and the second BWP between the second BWP unconfigured QCL information.
  • the first QCL relationship and the second QCL relationship may be a QCL relationship indicated by QCL information configured by the network device for the first BWP.
  • the terminal may receive the PDSCH according to the first QCL relationship and / or the PDCCH according to the second QCL relationship in the following cases: before the terminal receives the QCL information of CORSET and / or PDSCH on the second BWP.
  • the terminal and the network device can perform PDCCH and / or PDSCH transmission on the second BWP by multiplexing the QCL information of the first BWP, and It is not necessary to wait until network equipment beam training before configuring QCL information, so that the delay problem caused by beam training can be reduced.
  • the network device and the terminal device can be aligned with the QCL hypothesis or beam (sending beam and receiving beam), so that the terminal can accurately receive data, and the network device can be reduced to the second BWP. Configure the required signaling overhead for QCL information.
  • the existence of an association relationship between the first BWP and the second BWP includes at least one of the following situations:
  • the first BWP and the second BWP partially or completely overlap in the frequency domain
  • a reference signal configured for the first BWP and a reference signal configured for the second BWP satisfy a QCL relationship
  • the first BWP and the second BWP include the same set of control resources
  • the first BWP and the second BWP are intra-band (BWP) in the same frequency band.
  • the overlapping of the first BWP and the second BWP in the frequency domain can also be understood as: the first BWP and the second BWP include the same resource block (RB).
  • the overlapping of the first BWP and the second BWP in the frequency domain may be any of the following: A: The first BWP and the second BWP partially overlap in the frequency domain, and there is no inclusion relationship. That is, the first BWP and the second BWP include the same RB, but the first BWP is not a subset of the second BWP and the second BWP is not a subset of the first BWP.
  • B The first BWP is a true subset of the second BWP.
  • the second BWP includes all RBs constituting the first BWP, and at least one RB among all RBs constituting the second BWP is different from the RBs constituting the first BWP.
  • C The second BWP is a true subset of the first BWP. That is, the first BWP includes all RBs constituting the second BWP, and at least one RB among all RBs constituting the first BWP is different from the RBs constituting the second BWP.
  • D The second BWP completely overlaps the first BWP. That is, the second BWP is the same as the RB included in the first BWP. In this case, some parameters of the first BWP and the second BWP may be different, for example, the subcarrier interval of the two may be different, and the configured CORSET may be different.
  • the first BWP and the second BWP include the same CORESET, that is, the first BWP and the second BWP overlap in the frequency domain, and the network device is configured in the overlapping area of the first BWP and the second BWP in the first BWP.
  • the at least one CORESET is partially or completely the same as the at least one CORESET configured by the device in an overlapping area of the first BWP and the second BWP in the second BWP.
  • the reference signal configured by the network device for the first BWP and the reference signal configured for the second BWP satisfies a QCL relationship.
  • the reference signal indicated by the QCL information configured by the network device for the COREST and / or PDSCH included in the first BWP includes the reference signal of the second BWP.
  • the reference signal indicated by the QCL information configured by the network device for the reference signal included in the first BWP is a reference signal of the second BWP.
  • the TCI state configured by the network device for CORESET # 1 of the first BWP includes the reference signal CSI-RS # 1, and CSI-RS # 1 is the reference signal of the second BWP, then the first BWP and the second BWP are considered to have connection relation.
  • the reference signal indicated by the QCL information configured by the network device for the COREST and / or PDSCH included in the second BWP includes the reference signal of the first BWP.
  • the reference signal indicated by the QCL information configured by the network device for the reference signal included in the second BWP is the reference signal of the first BWP.
  • the TCI state configured by the network device for CORESET # 2 of the second BWP includes the reference signal CSI-RS # 2, and CSI-RS # 2 is the reference signal of the first BWP, then the first BWP and the second BWP are considered to have connection relation.
  • the determining the first QCL relationship includes:
  • the first QCL relationship is a QCL relationship indicated by the QCL information included in the downlink control information DCI, wherein the DCI further includes the BWP switching indication information.
  • the DCI is located at the first BWP. That is, the QCL information included in the DCI located at the first BWP to indicate the BWP switching is the first QCL relationship.
  • the QCL information included in the DCI may be one candidate QCL information configured for the first BWP. Therefore, by multiplexing the QCL information of the first BWP, the terminal and the network device can transmit the PDCCH and / or PDSCH on the second BWP by multiplexing the QCL information of the first BWP, without waiting for the network device beam training Reconfiguring the QCL information can reduce the delay problem caused by beam training. In addition, by multiplexing the QCL information of the first BWP, the network device and the terminal device can be aligned with the QCL hypothesis or beam (sending beam and receiving beam), so that the terminal can accurately receive data, and the network device can be reduced to the second BWP. Configure the required signaling overhead for QCL information.
  • the DCI may also be a candidate QCL information configured for the second BWP, which is not limited in this application.
  • the first QCL relationship may be QCL information included in the DCI for indicating BWP handover.
  • the scheduling offset refers to a time offset between downlink DCI and PDSCH.
  • the first threshold may be reported by the terminal according to its capability, or may be configured by a network device, or may be predefined.
  • the first threshold is the sum of the time required for beam switching and BWP switching.
  • the first threshold is the time required for beam switching.
  • the determining the first QCL relationship and / or the second QCL relationship according to the method includes:
  • the control resource set in the first BWP and / or the third QCL information in the QCL information configured by the PDSCH, and the reference signal indicated by the third QCL information is located in the second BWP;
  • the control resource set in the second BWP and / or the fourth QCL information in the QCL information configured by the PDSCH, and the reference signal indicated by the fourth QCL information is located in the first BWP.
  • control resource set included in the first BWP or the second BWP may be a CORESET configured with valid QCL information, that is, all control resource sets included in the first BWP or the second BWP are configured. CORESET for QCL information.
  • control resource set included in the first BWP or the second BWP may be a CORESET with a minimum identification value or an index value in the control resource set for transmitting a broadcast PDCCH or a control for transmitting a non-broadcast PDCCH. CORESET with the smallest identification or index value in the resource collection.
  • the determining the first QCL relationship includes:
  • the first QCL relationship is a QCL relationship indicated by default QCL information
  • the default QCL information is: a set of control resources where the DCI scheduling the PDSCH is located QCL information.
  • the QCL information of CORESET where DCI # 1 is located can be used as the first QCL relationship.
  • the determining a first QCL relationship and / or determining a second QCL relationship includes:
  • the first QCL relationship and / or the second QCL relationship is a QCL relationship indicated by default QCL information, and the default QCL information is at least one of the following:
  • the QCL information of the SSB having the smallest index among the SSBs included in the second BWP is the QCL information of the SSB having the smallest index among the SSBs included in the second BWP.
  • the first QCL relationship and / or the second QCL relationship is used for initial access
  • the first QCL relationship and / or the second QCL relationship is a QCL of an SSB having the smallest index among the SSBs included in the second BWP QCL relationship indicated by the message.
  • the second BWP including the initial BWP means that the initial BWP is a subset of the second BWP.
  • the QCL information of the first QCL relationship being the initially accessed SSB may be understood as: the PDSCH and / or the DMRS of the PDCCH and the SSB satisfy the QCL hypothetical relationship.
  • the PDSCH is scheduled by downlink control information DCI, wherein the DCI further includes the BWP handover indication information. That is, the PDSCH is scheduled by the DCI located in the first BWP.
  • the first QCL relationship is a QCL relationship indicated by the QCL information included in the BWP handover instruction information;
  • the first QCL relationship is a QCL relationship indicated by the default QCL information
  • the first threshold is a sum of time required for the beam switching and the BWP switching of the terminal.
  • the determining a first quasi-co-located QCL relationship and / or determining a second QCL relationship includes:
  • the second QCL relationship is a QCL relationship indicated by at least one of the following QCL information:
  • a communication method which includes: determining a first BWP and a second BWP; sending a PDSCH on the second BWP according to the first QCL relationship; and / or, determining a second QCL relationship, and according to the first The two QCL relationship sends the PDCCH on the second BWP.
  • the communication method in the embodiment of the present application can perform PDCCH and / or PDSCH transmission according to the first QCL relationship and / or the second QCL relationship.
  • determining the first QCL relationship includes: determining the first QCL relationship according to the association relationship between the first BWP and the second BWP; and / or, determining the first QCL relationship, Including: determining a second QCL relationship according to the association relationship between the first BWP and the second BWP.
  • the network device and the terminal device can perform PDCCH and / or PDSCH on the second BWP according to the first QCL relationship and / or the second QCL relationship. transmission.
  • the method may further include: sending BWP handover instruction information, where the BWP handover instruction information is used to instruct the terminal from The first BWP is switched to the second BWP.
  • the first QCL relationship and the second QCL relationship may be a QCL relationship indicated by the QCL information configured by the network device for the first BWP.
  • the PDSCH may be sent according to the first QCL relationship and / or the PDCCH is sent according to the second QCL relationship in the following cases: before the QCL information of CORSET and / or PDSCH is sent on the second BWP.
  • the terminal and the network device can perform PDCCH and / or PDSCH transmission on the second BWP by multiplexing the QCL information of the first BWP, and It is not necessary to wait until network equipment beam training before configuring QCL information, so that the delay problem caused by beam training can be reduced.
  • the network device and the terminal device can be aligned with the QCL hypothesis or beam (sending beam and receiving beam), so that the terminal can accurately receive data, and the network device can be reduced to the second BWP. Configure the required signaling overhead for QCL information.
  • the existence of an association relationship between the first BWP and the second BWP includes at least one of the following situations:
  • the first BWP and the second BWP partially or completely overlap in the frequency domain
  • a reference signal configured for the first BWP and a reference signal configured for the second BWP satisfy a quasi co-location QCL relationship
  • the first BWP and the second BWP include the same set of control resources
  • the first BWP and the second BWP are intra-band (BWP) in the same frequency band.
  • the determining the first quasi-co-located QCL relationship includes:
  • the first QCL relationship is a QCL relationship indicated by the QCL information included in the downlink control information DCI, wherein the DCI further includes the BWP switching indication information.
  • the DCI is located at the first BWP. That is, the QCL information included in the DCI located at the first BWP to indicate the BWP switching is the first QCL relationship.
  • the QCL information included in the DCI may be one candidate QCL information configured for the first BWP. Therefore, by multiplexing the QCL information of the first BWP, the terminal and the network device can perform PDCCH and / or PDSCH transmission on the second BWP by multiplexing the QCL information of the first BWP, without waiting for the network device beam training Reconfiguring the QCL information can reduce the delay problem caused by beam training. In addition, by multiplexing the QCL information of the first BWP, the network device and the terminal device can be aligned with the QCL hypothesis or beam (sending beam and receiving beam), so that the terminal can accurately receive data, and the network device can be reduced to the second BWP. Configure the required signaling overhead for QCL information.
  • the DCI may also be a candidate QCL information configured for the second BWP, which is not limited in this application.
  • the first QCL relationship may be QCL information included in the DCI for indicating BWP handover.
  • determining the first quasi-co-located QCL relationship and / or the second QCL relationship according to the method includes:
  • the control resource set in the first BWP and / or the third QCL information in the QCL information configured by the PDSCH, and the reference signal indicated by the third QCL information is located in the second BWP;
  • the control resource set in the second BWP and / or the fourth QCL information in the QCL information configured by the PDSCH, and the reference signal indicated by the fourth QCL information is located in the first BWP.
  • control resource set included in the first BWP or the second BWP may be a CORESET configured with valid QCL information, that is, all control resource sets included in the first BWP or the second BWP are configured. CORESET for QCL information.
  • control resource set included in the first BWP or the second BWP may be a CORESET with a minimum identification value or an index value in the control resource set for transmitting a broadcast PDCCH or a control for transmitting a non-broadcast PDCCH. CORESET with the smallest identification or index value in the resource collection.
  • the determining the first quasi-co-located QCL relationship includes:
  • the first QCL relationship is a QCL relationship indicated by default QCL information
  • the default QCL information is: a set of control resources in which the DCI scheduling the PDSCH is located QCL information.
  • the determining a first quasi-co-located QCL relationship and / or determining a second QCL relationship includes:
  • the first QCL relationship and / or the second QCL relationship is a QCL relationship indicated by default QCL information, and the default QCL information is at least one of the following:
  • the QCL information of the SSB having the smallest index among the SSBs included in the second BWP is the QCL information of the SSB having the smallest index among the SSBs included in the second BWP.
  • the first QCL relationship and / or the second QCL relationship is used for initial access
  • the first QCL relationship and / or the second QCL relationship is a QCL of an SSB having the smallest index among the SSBs included in the second BWP QCL relationship indicated by the message.
  • the PDSCH is scheduled by downlink control information DCI, where the DCI further includes the BWP handover indication information. That is, the PDSCH is scheduled by the DCI located in the first BWP.
  • the first QCL relationship is a QCL relationship indicated by QCL information included in the BWP handover instruction information; and /or
  • the first QCL relationship is a QCL relationship indicated by the default QCL information
  • the first threshold is a sum of time required for the beam switching and the BWP switching of the terminal.
  • the determining a first quasi-co-located QCL relationship and / or determining a second QCL relationship includes:
  • the second QCL relationship is a QCL relationship indicated by at least one of the following QCL information:
  • a communication method includes: determining a first BWP and a second BWP; indicating a TCI status according to a transmission configuration of the first BWP, and receiving a physical downlink shared channel on the second BWP. PDSCH, and / or, receiving a physical downlink control channel PDCCH on the second BWP.
  • the terminal by multiplexing the TCI state of the first BWP, the terminal can use the PDCCH and / or PDSCH on the second BWP received in advance using more accurate QCL information obtained based on dynamic or semi-static signaling.
  • the TCI state needs to be configured after network equipment beam training, so that the delay problem caused by beam training can be reduced.
  • the signaling overhead required for the network device to configure the TCI state for the second BWP can be reduced.
  • the determining the first BWP and the second BWP includes: receiving BWP switching instruction information; and switching from the first BWP to the first BWP according to the BWP switching instruction information.
  • the second BWP includes: receiving BWP switching instruction information; and switching from the first BWP to the first BWP according to the BWP switching instruction information.
  • the first BWP is the BWP before switching
  • the second BWP is the BWP after switching. Therefore, according to the communication method in the embodiment of the present application, the PDCCH and / or PDSCH may be received on the BWP after the handover according to the association relationship between the BWP before the handover and the BWP after the handover.
  • the first BWP and the second BWP may be BWP on one carrier or BWP on multiple carriers.
  • the first BWP may be a BWP configured on carrier # 1
  • the second BWP may be configured on carrier # 2.
  • BWP, carrier # 1 and carrier # 2 may be two carriers for carrier aggregation.
  • the terminal can access multiple carriers simultaneously, and each carrier can be configured with one BWP, that is, there can be multiple activated BWPs.
  • the first BWP may be a BWP that has a TCI status configured among the activated multiple BWPs
  • the second BWP may be a BWP that has not been configured with a TCI status among the activated multiple BWPs. Therefore, according to the method in the embodiment of the present application, the PDCCH and / or PDSCH can be received on the second BWP between the second BWP unconfigured TCI state and the association relationship between the first BWP and the second BWP.
  • PDCCH including:
  • the first BWP When the first BWP is associated with the second BWP, indicating a TCI status according to the transmission configuration of the first BWP, receiving a PDSCH on the second BWP, and / or receiving the second BWP On the PDCCH.
  • the association relationship between the first BWP and the second BWP includes at least one of the following situations:
  • the first BWP and the second BWP partially or completely overlap in the frequency domain
  • a reference signal configured for the first BWP and a reference signal configured for the second BWP satisfy a quasi co-location QCL relationship
  • the first BWP and the second BWP include the same set of control resources
  • the first BWP and the second BWP are intra-band (BWP) in the same frequency band.
  • the overlapping of the first BWP and the second BWP in the frequency domain can also be understood as: the first BWP and the second BWP include the same resource block (RB).
  • the overlapping of the first BWP and the second BWP in the frequency domain may be any of the following: A: The first BWP and the second BWP partially overlap in the frequency domain, and there is no inclusion relationship. That is, the first BWP and the second BWP include the same RB, but the first BWP is not a subset of the second BWP and the second BWP is not a subset of the first BWP.
  • B The first BWP is a true subset of the second BWP.
  • the second BWP includes all RBs constituting the first BWP, and at least one RB among all RBs constituting the second BWP is different from the RBs constituting the first BWP.
  • C The second BWP is a true subset of the first BWP. That is, the first BWP includes all RBs constituting the second BWP, and at least one RB among all RBs constituting the first BWP is different from the RBs constituting the second BWP.
  • D The second BWP completely overlaps the first BWP. That is, the second BWP is the same as the RB included in the first BWP. In this case, some parameters of the first BWP and the second BWP may be different, for example, the subcarrier interval of the two may be different, and the configured CORSET may be different.
  • the first BWP and the second BWP include the same CORESET, that is, the first BWP and the second BWP overlap in the frequency domain, and the network device is configured in the overlapping area of the first BWP and the second BWP in the first BWP.
  • the at least one CORESET is partially or completely the same as the at least one CORESET configured by the device in an overlapping area of the first BWP and the second BWP in the second BWP.
  • the reference signal configured by the network device for the first BWP and the reference signal configured for the second BWP satisfies a QCL relationship.
  • the reference signal indicated by the TCI state configured by the network device for the COREST and / or PDSCH included in the first BWP includes the reference signal of the second BWP.
  • the reference signal indicated by the TCI state configured by the network device for the reference signal included in the first BWP is a reference signal of the second BWP.
  • the first BWP and the second BWP are considered to have connection relation.
  • the reference signal indicated by the TCI state configured by the network device for the COREST and / or PDSCH included in the second BWP includes the reference signal of the first BWP.
  • the reference signal indicated by the TCI state configured by the network device for the reference signal included in the second BWP is the reference signal of the first BWP.
  • the TCI state configured by the network device for CORESET # 2 of the second BWP includes the reference signal CSI-RS # 2, and CSI-RS # 2 is the reference signal of the first BWP, then the first BWP and the second BWP are considered to have connection relation.
  • the receiving a physical downlink control channel PDCCH on the second BWP according to the TCI status according to the transmission configuration of the first BWP includes:
  • the media access control signaling is sent by the network device on the first BWP. If there are multiple TCI states activated by the media access control signaling, the terminal may use any one of the plurality of TCI states with the smallest or largest index or all TCI states, which is not limited in this embodiment of the present application.
  • the media access control signaling involved in this application is layer two signaling, which may be MAC layer signaling or media access control element (MAC-CE).
  • layer two signaling which may be MAC layer signaling or media access control element (MAC-CE).
  • the terminal receives the PDCCH on the second BWP through the TCI state of the PDCCH for the first BWP indicated by the multiplexed medium access control signaling, which can reduce the signaling for the network device to configure the TCI state for the second BWP. Overhead. In addition, the delay caused by the network device configuring the TCI state for the second BWP can be reduced.
  • the receiving a physical downlink control channel PDCCH on the second BWP according to the TCI status according to the transmission configuration of the first BWP includes:
  • media access control signaling where the media access control signaling is used to indicate one or more TCI states of the plurality of candidate TCI states for the first BWP configured by radio resource control RRC signaling Receiving the PDCCH on the second BWP;
  • the receiving a physical downlink control channel PDCCH on the second BWP according to the TCI status according to the transmission configuration of the first BWP includes:
  • the PDCCH Receiving, on the basis of the TCI status of the control resource set in the first BWP that is the same as the control resource set of the second BWP, the PDCCH.
  • the receiving a physical downlink control channel PDCCH on the second BWP according to the TCI status according to the transmission configuration of the first BWP includes:
  • the receiving a physical downlink control channel PDCCH on the second BWP according to the TCI status according to the transmission configuration of the first BWP includes:
  • the receiving a physical downlink control channel PDCCH on the second BWP according to the TCI status according to the transmission configuration of the first BWP includes:
  • the receiving a physical downlink control channel PDSCH on the second BWP according to the TCI status according to the transmission configuration of the first BWP includes:
  • the DCI signaling is used to indicate that one or more TCI states of the plurality of candidate TCI states for the first BWP configured by receiving media access control signaling are used for the first Reception of PDSCH on two BWPs, wherein the multiple candidate TCI states of the first BWP include multiple candidate TCI states configured for the PDCCH and / or PDSCH on the first BWP;
  • the receiving a physical downlink control channel PDSCH on the second BWP according to the TCI status according to the transmission configuration of the first BWP includes:
  • media access control signaling where the media access control signaling is used to indicate that one or more TCI states of the plurality of candidate TCI states for the first BWP configured by RRC signaling are used for the Reception of PDSCH on the second BWP;
  • the receiving a physical downlink control channel PDSCH on the second BWP according to the TCI status indicated by the transmission configuration of the first BWP includes:
  • the terminal receiving a downlink control channel PDSCH on the second BWP according to a TCI status according to the transmission configuration of the first BWP includes:
  • the DCI further includes the BWP switching indication information.
  • a communication method includes: determining a first BWP and a second BWP; indicating a TCI status according to a transmission configuration of the first BWP, and sending a physical downlink shared channel on the second BWP.
  • PDSCH and / or, sending a physical downlink control channel PDCCH on the second BWP.
  • the terminal by multiplexing the TCI state of the first BWP, the terminal can use the PDCCH and / or PDSCH on the second BWP received in advance using more accurate QCL information obtained based on dynamic or semi-static signaling.
  • the TCI state needs to be configured after network equipment beam training, so that the delay problem caused by beam training can be reduced.
  • the signaling overhead required for the network device to configure the TCI state for the second BWP can be reduced.
  • the method may further include: sending BWP handover instruction information, where the BWP handover instruction information is used to instruct the terminal from The first BWP is switched to the second BWP.
  • the sending a physical downlink shared channel PDSCH on the second BWP indicates the TCI status according to the transmission configuration of the first BWP, and / or, Sending the physical downlink control channel PDCCH on the second BWP includes:
  • the first BWP When the first BWP is associated with the second BWP, indicating a TCI status according to the transmission configuration of the first BWP, sending a PDSCH on the second BWP, and / or, on the second BWP
  • the PDCCH is transmitted on.
  • the association relationship between the first BWP and the second BWP includes at least one of the following situations:
  • the first BWP and the second BWP partially or completely overlap in the frequency domain
  • a reference signal configured for the first BWP and a reference signal configured for the second BWP satisfy a QCL relationship
  • the first BWP and the second BWP include the same set of control resources
  • the first BWP and the second BWP are intra-band (BWP) in the same frequency band.
  • the sending a physical downlink control channel PDCCH on the second BWP according to the TCI status according to the transmission configuration of the first BWP includes:
  • the terminal receives the PDCCH on the second BWP through the TCI state of the PDCCH for the first BWP indicated by the multiplexed medium access control signaling, which can reduce the signaling for the network device to configure the TCI state for the second BWP. Overhead. In addition, the delay caused by the network device configuring the TCI state for the second BWP can be reduced.
  • the sending a physical downlink control channel PDCCH on the second BWP according to the TCI status indicated by the transmission configuration of the first BWP includes:
  • the sending a PDCCH on the second BWP according to the TCI status according to the transmission configuration of the first BWP includes:
  • the sending a PDCCH on the second BWP according to the TCI status according to the transmission configuration of the first BWP includes:
  • the sending a PDCCH on the second BWP according to the TCI status according to the transmission configuration of the first BWP includes:
  • the sending a PDCCH on the second BWP according to the TCI status according to the transmission configuration of the first BWP includes:
  • the sending a PDSCH on the second BWP to indicate a TCI status according to the transmission configuration of the first BWP includes:
  • the sending a PDSCH on the second BWP to indicate a TCI status according to the transmission configuration of the first BWP includes:
  • One or more TCI states of the plurality of candidate TCI states for the first BWP are used for receiving PDSCH on the second BWP.
  • the sending a PDSCH on the second BWP to indicate a TCI status according to the transmission configuration of the first BWP includes:
  • the sending a PDSCH on the second BWP to indicate a TCI status according to the transmission configuration of the first BWP includes:
  • the terminal according to the one or more TCI states,
  • the DCI further includes the BWP handover indication information.
  • a communication device including a unit for performing any one of the first to sixth aspects described above and each step in an implementation thereof.
  • the device is a communication chip
  • the communication chip may include an input circuit or interface for transmitting information or data, and an output circuit or interface for receiving information or data.
  • the device is a terminal, and the terminal may include a transmitter for transmitting information or data, and a receiver for receiving information or data.
  • the apparatus is a network device, and the network device may include a transmitter for sending information or data, and a receiver for receiving information or data.
  • a communication device including a processor and a memory, where the memory is used to store a computer program, and the processor is used to call and run the computer program from the memory, so that the communication device executes the first aspect to Any of the sixth aspects and the methods in its embodiments.
  • processors there are one or more processors, and one or more memories.
  • the memory may be integrated with the processor, or the memory is separately provided from the processor.
  • the communication device further includes a transmitter (transmitter) and a receiver (receiver).
  • a computer program product includes a computer program (also referred to as code or instructions), and when the computer program is executed, the computer executes the first aspect to the first aspect.
  • the method in any of the six possible ways.
  • a computer-readable medium stores a computer program (also referred to as code, or instructions), which when executed on a computer, causes the computer to execute the first to first aspects
  • a computer program also referred to as code, or instructions
  • a chip system including a memory and a processor, where the memory is used to store a computer program, and the processor is used to call and run the computer program from the memory, so that a communication device installed with the chip system executes
  • the method in any one of the foregoing first to sixth aspects may be implemented.
  • the chip system may include an input circuit or interface for sending information or data, and an output circuit or interface for receiving information or data.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a relationship between two BWPs in the frequency domain according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a relationship between two BWPs in the frequency domain according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a relationship between two BWPs in a frequency domain according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a relationship between two BWPs in a frequency domain according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of two BWPs according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of two BWPs according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of two BWPs according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of two BWPs according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of two BWPs according to an embodiment of the present application.
  • FIG. 12 is a schematic flowchart of another communication method according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • FIG. 1 illustrates a communication system 100 suitable for the present application.
  • the communication system 100 includes a network device 110 and a terminal device 120.
  • the network device 110 and the terminal device 120 communicate through a wireless network.
  • the wireless communication module can encode information for transmission.
  • the wireless communication module may obtain a certain number of information bits to be transmitted to the network device 110 through a channel, for example, the information bits are generated by the processing module, received from other devices, or stored in a storage module.
  • the terminal device 120 When the transmission direction of the communication system 100 is uplink transmission, the terminal device 120 is the transmitting end, and the network device 110 is the receiving end.
  • the transmission direction of the communication system 100 is the downlink transmission, the network device 110 is the transmitting end, and the terminal device 120 is the receiving end. end.
  • the technical solution provided in this application may be applied to various communication systems, for example, a 5G mobile communication system.
  • the 5G mobile communication system described in this application includes a 5G mobile communication system and / or a non-standalone (NSA) network.
  • SA non-standalone
  • the technical solution provided in this application can also be applied to future communication systems, such as the sixth generation mobile communication system.
  • a terminal may be referred to as a terminal device, an access terminal, a user equipment (UE), a user unit, a user station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal , Wireless communication equipment, user agent, or user device.
  • the access terminal can be a cellular phone, a handheld device with wireless communication capabilities, a computing device or other processing device connected to a wireless modem, an in-vehicle device, a wearable device, and a user device in a 5G communication system.
  • the network device can be a base station (BTS) in a code division multiple access (CDMA) system, or a base station (WCDMA) system in a wideband code division multiple access (WCDMA) system.
  • B base station
  • WCDMA wideband code division multiple access
  • node B, NB base station
  • eNB evolutionary base station
  • LTE long term evolution
  • gNB base station
  • 5G mobile communication system the above base stations are only
  • the network device may also be a relay station, an access point, an in-vehicle device, a wearable device, and other types of devices.
  • the above communication system applicable to the present application is merely an example, and the communication system applicable to the present application is not limited thereto.
  • the number of network devices and terminal devices included in the communication system may be other numbers.
  • initial BWP initial BWP
  • initial BWP initial BWP
  • the network device schedules the terminal device from the initial BWP to a BWP with a bandwidth that matches its service, and can indicate the current BWP, network device that the terminal device is working on through high-level signaling or layer one signaling.
  • Terminal equipment can send and receive data and or reference signals on this BWP.
  • This BWP is called Activated BWP.
  • a terminal device In the case of a single carrier or a serving cell, a terminal device has only one active BWP at a time, and the terminal device can only receive data / reference signals or send data / reference signals on the activated BWP. .
  • the network device instructs the terminal device to perform BWP handover through downlink control information (downlink control information (DCI)) or radio resource control (radio resource control (RRC)) signaling.
  • DCI downlink control information
  • RRC radio resource control
  • DCI is located in the current BWP, and the size of its frequency domain resource allocation information domain is determined by the current BWP's bandwidth.
  • the DCI has a bandwidth area indicator (bandwidth indicator) information field, which is used to indicate the ID number of the BWP activated by the terminal device.
  • the terminal device When the BWP ID number indicated in this information field is inconsistent with the BWP ID number currently activated by the terminal device (ie, the current BWP transmitting DCI), the terminal device needs to switch from the current BWP to the BWP indicated in the DCI.
  • the target reference signal is generally a demodulation reference signal (DMRS), a channel state information reference signal (CSI-RS). ), Etc.
  • the reference signal or source reference signal can generally be a channel state information reference signal (channel-information reference signal (CSI-RS), a tracking reference signal (tracking reference signal (TRS), a synchronization signal broadcast channel block ( synchronous / signal / PBCH block (SSB), etc.
  • CSI-RS channel-information reference signal
  • TRS tracking reference signal
  • SSB synchronization signal broadcast channel block
  • the spatial characteristic parameters include one or more of the following parameters:
  • Angle of incidence (AoA), Dominant angle of incidence (AoA), average angle of incidence, power angle spectrum (PAS) of angle of incidence, angle of departure (AoD), angle of main emission, Average exit angle, power angle spectrum of exit angle, terminal transmit beamforming, terminal receive beamforming, spatial channel correlation, base station transmit beamforming, base station receive beamforming, average channel gain, average channel delay (average channel delay), time Delay spreading, Doppler spreading, Doppler shifting, spatial Rx parameters, etc.
  • the terminal may receive the target reference signal according to the received beam information of the source reference signal indicated by the QCL information.
  • TCI Transmission configuration indicator
  • a TCI state can include one or two reference signals and the associated QCL type.
  • QCL types can be divided into four categories: A / B / C / D, which are different combinations or choices of ⁇ Doppler shift, Doppler spread, average delay, delay spread, Spatial Rx parameter).
  • the TCI status includes QCL information, or the TCI status is used to indicate QCL information.
  • control resource collection (control resource set, CORESET)
  • the network device may configure one or more CORESETs for the terminal to send the PDCCH.
  • the network device can send a control channel to the terminal device on any CORESET corresponding to the terminal device.
  • the network device needs to notify the terminal device of other related configurations of the CORESET, such as a search space.
  • There is a difference in the configuration information of each CORESET such as a frequency domain width difference and a time domain length difference.
  • the current standard supports dynamic switching of BWP.
  • the BWP switching may be performed within the same carrier or between different carriers. After the terminal switches from one BWP to another BWP, how the terminal receives the physical PDCCH and PDSCH on the switched BWP is not yet covered in the current technology.
  • this application provides a communication method.
  • the network device and the terminal device can determine the first QCL relationship according to the association relationship between the first BWP and the second BWP, and then can be based on The first QCL relationship is PDSCH on the second BWP.
  • the network device and the terminal device may determine a second QCL relationship according to the association relationship between the first BWP and the second BWP, and then perform PDCCH transmission on the second BWP according to the second QCL relationship.
  • the communication method provided in the present application is described in detail.
  • the method in the embodiment of the present application may be executed by a sending end and / or a receiving end.
  • the transmitting end may be a terminal or a chip or a functional module capable of implementing the functions of the transmitting end
  • the receiving end may be a network device or a chip or a functional module capable of implementing the functions of the receiving end.
  • the communication method provided in this application is described in detail below with the sending end as a terminal and the receiving end as a network device as an example.
  • FIG. 2 is a schematic diagram of a communication method provided according to the present application. As shown in FIG. 2, the method mainly includes S210 to S210.
  • the terminal determines a first BWP # BWP # 1 and a second BWP # BWP # 2.
  • a network device when a network device needs to perform a BWP handover, it needs to determine the BWP before the handover and the BWP after the handover. If the currently activated BWP is BWP # 1, the BWP before switching is BWP # 1, and BWP # 2 may be the BWP after switching. Then, the network device may instruct the terminal to switch from BWP # 1 to BWP # 2 by sending BWP switching instruction information to the terminal. The terminal may switch from BWP # 1 to BWP # 2 according to the BWP switching instruction information.
  • BWP # 1 and BWP # 2 can be BWP on one carrier or BWP on multiple carriers.
  • BWP # 1 can be BWP configured on carrier # 1
  • BWP # 2 can be configured on carrier # 2.
  • the BWP, carrier # 1 and carrier # 2 may be two carriers performing carrier switching.
  • a terminal can access multiple carriers simultaneously, and each carrier can be configured with a BWP, that is, there can be multiple activated BWPs.
  • BWP # 1 may be a BWP that has been configured with QCL information among the activated multiple BWPs
  • BWP # 2 may be a BWP that has not been configured with the QCL information among the activated multiple BWPs.
  • the terminal determines an association relationship between BWP # 1 and BWP # 2.
  • S203 The terminal determines a first QCL relationship according to the association relationship.
  • the terminal determines a second QCL relationship according to the association relationship.
  • the network device determines BWP # 1 and BWP # 2.
  • the network device determines an association relationship between BWP # 1 and BWP # 2.
  • the network device determines a first QCL relationship according to the association relationship.
  • the network device determines a second QCL relationship according to the association relationship.
  • the terminal receives the PDSCH sent by the network device on the BWP # 2 according to the first QCL relationship.
  • the terminal receives the PDCCH sent by the network device on BWP # 2 according to the second QCL relationship.
  • S205 corresponds to S201.
  • S202 corresponds to S206.
  • S203 corresponds to S207.
  • S204 corresponds to S208.
  • S209 and S210 can be executed, or either of them can be executed.
  • S203 and S207 are executed, the terminal can execute S209.
  • S204 and S208 are executed, the terminal may execute S210.
  • S202 may be replaced with S202a: it is determined whether there is an association relationship between BWP # 1 and BWP # 2.
  • the terminal may not perform S202.
  • S203 may be replaced by 203a: the terminal determines the first QCL relationship.
  • the network device may not execute S206, and at this time S207 executes 207a: the network device determines the first QCL relationship.
  • the terminal may not perform S202.
  • S204 may be replaced with 204a: the terminal determines the second QCL relationship.
  • the network device may not perform S208.
  • S208 performs 208a: the network device determines the first QCL relationship.
  • the terminal after determining the BWP # 1 and BWP # 2, the terminal determines the association relationship between BWP # 1 and BWP # 2, determines the first QCL relationship and / or determines the second relationship according to the association relationship. QCL relationship.
  • the terminal determines the first QCL relationship
  • the terminal sends a PDSCH according to the first QCL relationship.
  • the terminal sends the PDCCH according to the first QCL relationship.
  • the terminal after determining BWP # 1 and BWP # 2, the terminal determines a first QCL relationship and / or determines a second QCL relationship.
  • the terminal When the terminal determines the first QCL relationship, the terminal sends a PDSCH according to the first QCL relationship. When the terminal determines the second QCL relationship, the terminal sends the PDCCH according to the second QCL relationship. As another embodiment of the present application, the terminal determines whether there is an association relationship between BWP # 1 and BWP # 2 after determining BWP # 1 and BWP # 2, and determines the first QCL according to whether there is an association relationship between BWP # 1 and BWP # 2. Relationship and / or determine a second QCL relationship. When the terminal determines the first QCL relationship, the terminal sends a PDSCH according to the first QCL relationship. When the terminal determines the second QCL relationship, the terminal sends the PDCCH according to the first QCL relationship.
  • the first QCL relationship may be a specific QCL information, or a QCL relationship indicated by the QCL information.
  • the QCL information may be configured by the network device to the terminal through signaling, or the terminal may assume that certain parameters of the BWP # 2 and certain parameters of the BWP # 1 are QCL or have some association according to preset conditions. relationship.
  • the network device may indicate the TCI status of the PDSCH or PDCCH through signaling. The TCI status is used to indicate that the DMRS of the PDSCH or PDCCH and the reference signal included in the TCI status satisfy the QCL relationship.
  • the DMRS of the PDSCH or the PDCCH satisfies a (spatial) QCL relationship with a certain reference signal (such as SSB).
  • a certain reference signal such as SSB
  • association relationship may include multiple association relationships, such as a first association relationship or a second association relationship.
  • the association relationship may refer to certain relationships between certain parameters of BWP # 1 and BWP # 2.
  • the relationship may be determined by the terminal according to related information or may be predefined. The terminal may be based on a certain relationship between BWP # 1 and BWP # 2. These parameters consider that BWP # 1 and BWP # 2 are related or not related.
  • the relationship may be configured by a network device through signaling, and the signaling may be RRC signaling, MAC-CE signaling, DCI, and the like.
  • the PDCCH may be replaced with a PUCCH
  • the PDSCH may be replaced with a PUSCH. That is, the first QCL relationship can be used to transmit PUCCH, and the second QCL relationship can be used to transmit PUSCH.
  • the first QCL relationship may be the same as or different from the second QCL relationship, which is not limited in this application.
  • the terminal may receive the PDSCH according to the first QCL relationship and / or the PDCCH according to the second QCL relationship in the following cases:
  • the terminal may receive the PDSCH according to the first QCL relationship and / or the PDCCH according to the second QCL relationship before the network device configures the CORSET of the BWP # 2 and / or the QCL information of the PDSCH.
  • the network device and the terminal device can determine the first QCL relationship and / or the second QCL relationship according to the association relationship between BWP # 1 and BWP # 2. And, PDSCH transmission may be performed on BWP # 2 according to the first QCL relationship. According to the second QCL relationship, PDCCH transmission is performed on BWP # 2.
  • the first QCL relationship and the second QCL relationship may be the QCL relationship indicated by the QCL information configured by the network device for BWP # 1.
  • the terminal and the network device can perform PDCCH and / or PDSCH transmission on BWP # 2 by multiplexing the QCL information of BWP # 1, and It is not necessary to wait until network equipment beam training before configuring QCL information, so that the delay problem caused by beam training can be reduced.
  • multiplexing the QCL information of BWP # 1 it is possible to align the QCL hypothesis or beam (transmit beam and receive beam) between the network device and the terminal device, so that the terminal can accurately receive data and reduce the network device to BWP # 2 Configure the required signaling overhead for QCL information.
  • BWP # 1 and BWP # 2 satisfy at least one of the following conditions, it can be considered that BWP # 1 and BWP # 2 have an associated relationship or have an associated relationship.
  • the association relationship between BWP # 1 and BWP # 2 may be at least one of the following condition 1.
  • BWP # 1 and BWP # 2 overlap in the frequency domain. It should be understood that BWP # 1 and BWP # 2 overlapping in the frequency domain can also be understood as: BWP # 1 and BWP # 2 include the same resource block (RB).
  • RB resource block
  • BWP # 1 and BWP # 2 can overlap in the frequency domain in any of the following four cases: A, B, C, and D:
  • BWP # 1 and BWP # 2 partially overlap in the frequency domain, and there is no inclusion relationship. That is, BWP # 1 and BWP # 2 include the same RB, but BWP # 1 is not a subset of BWP # 2 and BWP # 2 is not a subset of BWP # 1. For example, as shown in Figure 3.
  • BWP # 1 is a true subset of BWP # 2. That is, BWP # 2 includes all RBs constituting BWP # 1, and at least one of the RBs constituting BWP # 2 is different from the RBs constituting BWP # 1. For example, as shown in Figure 4.
  • BWP # 2 is a true subset of BWP # 1. That is, BWP # 1 includes all RBs constituting BWP # 2, and at least one RB among all RBs constituting BWP # 1 is different from the RBs constituting BWP # 2. For example, as shown in Figure 5.
  • BWP # 2 and BWP # 1 completely overlap. That is, BWP # 2 is the same as the RB included in BWP # 1. For example, as shown in Figure 6. In this case, some parameters of BWP # 1 and BWP # 2 may be different, for example, the subcarrier interval of the two may be different, and the configured CORSET may be different.
  • BWP # 1 and BWP # 2 include the same CORESET.
  • BWP # 1 and BWP # 2 overlap in the frequency domain, and at least one CORESET configured by the network device in the overlapping area of BWP # 1 and BWP # 2 in BWP # 1 and the device in BWP # 2 At least one CORESET disposed in the overlapping area of BWP # 1 and BWP # 2 is partially or completely the same.
  • BWP # 1 and BWP # 2 partially overlap in the frequency domain, and the network device configures CORESET # 1 in the overlapping area of BWP # 1 and BWP # 2 in BWP # 1, and BWP # CORESET # 1 is arranged in the overlapping area of BWP # 1 and BWP # 2 in 2.
  • BWP # 2 may also include other CORESETs, for example, CORESET # 5 shown in FIG. 7.
  • BWP # 1 may also include other CORESETs, for example, CORESET # 3 shown in FIG. 7.
  • the reference signal configured by the network device for BWP # 1 and the reference signal configured for BWP # 2 satisfy the QCL relationship.
  • the reference signal indicated by the QCL information configured by the COREST and / or PDSCH included in the BWP # 1 by the network device includes the reference signal of the BWP # 2.
  • the reference signal indicated by the QCL information configured by the network device for the reference signal included in BWP # 1 is a reference signal of BWP # 2.
  • the TCI state configured by the network device for CORESET # 1 of BWP # 1 includes the reference signal CSI-RS # 1, and CSI-RS # 1 is the reference signal of BWP # 2, then BWP # 1 and BWP # 2 are considered to have connection relation.
  • the reference signal indicated by the QCL information configured by the network device for COREST and / or PDSCH included in BWP # 2 includes a reference signal for BWP # 1.
  • the reference signal indicated by the QCL information configured by the network device for the reference signal included in BWP # 2 is the reference signal of BWP # 1.
  • the TCI state configured by the network device for CORESET # 2 of BWP # 2 includes the reference signal CSI-RS # 2
  • CSI-RS # 2 is the reference signal of BWP # 1
  • BWP # 1 and BWP # 2 are considered to have connection relation.
  • BWP # 1 and BWP # 2 are BWPs in the same frequency band, that is, intra-band BWP.
  • the same frequency band means: in the same frequency band. It is mainly used in multi-carrier aggregation scenarios where a terminal device transmits data on two carriers in the same frequency band.
  • BWP # 1 and BWP # 2 satisfy at least one of the above conditions, and may also be referred to as BWP # 1 and BWP # 2 being QCL or satisfying a QCL hypothetical relationship. That is, the association relationship may be a QCL hypothetical relationship. Accordingly, BWP # 1 and BWP # 2 do not satisfy any of the above conditions, and may also be referred to as BWP # 1 and BWP # 2 are not QCL or do not satisfy the QCL hypothetical relationship.
  • BWP # 1 and BWP # 2 have an association relationship or have an association relationship.
  • the association relationship may also be an association relationship configured by a network device, or an association relationship reported by a terminal device.
  • the PDSCH and BWP # 1 satisfy the scheduling relationship.
  • the PDSCH may be associated with a PDCCH of BWP # 1; in a specific embodiment, the PDCCH located at BWP # 1 schedules the PDSCH (ie, scenario one).
  • PDSCH and BWP # 2 satisfy the scheduling relationship.
  • the PDSCH may be associated with a PDCCH of BWP # 2; in a specific embodiment, the PDCCH located at BWP # 2 schedules the PDSCH (that is, scenario two).
  • the second QCL relationship described in the following scenario two is the QCL relationship of the PDCCH on BWP # 2.
  • the first QCL relationship may be at least one of the following QCL information (a1) to (a7) or a QCL relationship indicated by the QCL information. Each is described below.
  • the DCI also includes the BWP handover instruction information described above.
  • the DCI is located at BWP # 1. That is, the QCL information included in the DCI used to indicate BWP handover at BWP # 1 is the first QCL relationship.
  • the QCL information included in the DCI may be one candidate QCL information configured for BWP # 1. Therefore, by multiplexing the QCL information of the first BWP, the terminal and the network device can perform PDCCH and / or PDSCH transmission on the second BWP by multiplexing the QCL information of the first BWP, without waiting for the network device beam training Reconfiguring the QCL information can reduce the delay problem caused by beam training. In addition, by multiplexing the QCL information of the first BWP, the network device and the terminal device can be aligned with the QCL hypothesis or beam (sending beam and receiving beam), so that the terminal can accurately receive data, and the network device can be reduced to the second BWP. Configure the required signaling overhead for QCL information.
  • the DCI may also be a candidate QCL information configured for BWP # 2, which is not limited in this application.
  • the first QCL relationship may be QCL information included in the DCI for indicating BWP handover.
  • the scheduling offset refers to a time offset between downlink DCI and PDSCH.
  • the first threshold may be reported by the terminal according to its capability, or may be configured by a network device, or may be predefined.
  • the DCI of BWP # 1 schedules the PDSCH of BWP # 2
  • the first threshold is the sum of the time required for beam switching and BWP switching.
  • the DCI of BWP # 2 schedules the PDSCH of BWP # 2
  • the first threshold is the time required for beam switching.
  • BWP # 1 or BWP # 2 is configured with the CORESET index or the smallest CORESET in the valid QCL information.
  • the COREST configured on BWP # 1 includes one or more, and the QCL information of the CORESET indexed or identified in the one or more CORESTs can be used as the first QCL relationship.
  • the COREST configured on the BWP # 2 includes one or more, and the QCL information that indexes or identifies the smallest CORESET in the one or more CORESTs may be used as the first QCL relationship. For example, referring to FIG.
  • CORESET # 1 in BWP # 1 can be configured
  • the QCL information is used as the first QCL relationship, or the QCL information of CORESET # 5 in BWP # 2 may be used as the first QCL relationship.
  • the COREST configured on BWP # 1 or BWP # 2 includes one or more, but only a part of COREST is configured with corresponding QCL information, then the COREST index in the partial COREST or the QCL information identifying the smallest CORESET can be taken as the first QCL relationship.
  • the CORESET with the smallest identification or index may be a CORESET with the smallest identification value or index value in the resource sending the broadcast PDCCH or a CORESET with the smallest identification value or index value in the resource sending the non-broadcast PDCCH.
  • the network device sends the PDSCH by transmitting the beam corresponding to the CORESET where the broadcast PDCCH is located, which can improve the reception success rate of the terminal. Because the beam corresponding to the CORESET where the non-broadcast PDCCH is transmitted is generally narrow and the peak rate is high, the network device sends the PDSCH by transmitting the beam corresponding to the CORESET where the non-broadcast PDCCH is located, which can improve the accuracy of the terminal reception.
  • QCL information of X described in this application can be understood as: QCL information corresponding to X, or QCL information for X, or QCL information applied to X.
  • X can be CORESET, PDSCH, SSB, etc.
  • BWP # 1 and BWP # 2 both include CORESET # 1, then the QCL information of CORESET # 1 can be used as the first QCL relationship.
  • the QCL information of any CORESET in the multiple CORESETs can be used as the first QCL relationship, or the CORESET indexed or identified with the smallest CORESET in the multiple CORESETs
  • the QCL information is used as the first QCL relationship, or the QCL information indexed or identified with the largest CORESET among multiple CORESETs is used as the first QCL relationship, which is not specifically limited in this embodiment of the present application.
  • CORESET included in both BWP # 1 and BWP # 2 means that BWP # 1 and BWP # 2 include the same CORSET.
  • BWP # 1 and BWP # 2 include the same CORSET, which means that BWP # 1 and BWP # 2 include the same time-frequency resource or include the same frequency-domain resource or include the same CORESET with the same identification or index.
  • BWP # 1 and BWP # 2 overlap in the frequency domain
  • the network device configures the CORESET set A in the overlapping area of BWP # 1 and BWP # 2 in BWP # 1, and BWP # 2
  • CORESET set B is configured, CORESET set A includes one or more CORESETs, CORESET set B includes one or more CORESETs, but CORESET set A and CORESET set B do not intersect.
  • the QCL information of the CORESET in the CORESET set A may be used as the first QCL relationship.
  • the QCL information of any CORESET in the CORESET set A may be used as the first QCL relationship, or the plurality of CORESETs may be used in the first QCL relationship.
  • the QCL information indexed or identified with the smallest CORESET is used as the first QCL relationship, or the QCL information indexed or identified with the largest CORESET among the plurality of CORESETs is used as the first QCL relationship, which is not specifically limited in this embodiment of the present application.
  • BWP # 1 and BWP # 2 overlap in the frequency domain, and the network device configures the CORESET set A in the overlapping area of BWP # 1 and BWP # 2 in BWP # 1, and in BWP # 2 CORESET is not configured in the overlapping area of BWP # 1 and BWP # 2.
  • the QCL information of CORESET in the CORESET set A can be used as the first QCL relationship.
  • any CORESET in the CORESET set A can be used.
  • the QCL relationship is not specifically limited in this embodiment of the present application.
  • BWP # 1 and BWP # 2 partially overlap in the frequency domain.
  • the network device is configured with CORESET # 1 and CORESET # 3 in the overlapping area of BWP # 1 and BWP # 2 in BWP # 1, and CORESET # is configured in the overlapping area of BWP # 1 and BWP # 2 in BWP # 2. 2.
  • the network device is configured with CORESET # 1 and CORESET # 3 in the overlapping area of BWP # 1 and BWP # 2 in BWP # 1, and is not configured in the overlapping area of BWP # 1 and BWP # 2 in BWP # 2 Any CORESET.
  • the QCL information of CORESET # 1 or CORESET # 3 in BWP # 1 may be used as the first QCL relationship.
  • the QCL information configured for CORESET in BWP # 1 may be the QCL information of CORESET on BWP # 1 configured by RRC, or may be the QCL information of CORESET on BWP # 1 configured / activated by MAC-CE.
  • the QCL information configured for the PDSCH in BWP # 1 may be the QCL information of the PDSCH on BWP # 1 configured by RRC, or the QCL information of the PDSCH on BWP # 1 configured / activated by MAC-CE, or it may be QCL information of PDSCH triggered by DCI on BWP # 1.
  • the QCL information # 1 As the first QCL relationship.
  • the QCL information configured for CORESET in BWP # 2 may be the QCL information of CORESET on BWP # 2 configured by RRC, or may be the QCL information of CORESET on BWP # 2 configured / activated by MAC-CE.
  • the QCL information configured for PDSCH in BWP # 2 may be QCL information of PDSCH on BWP # 2 on RRC configuration, or may be QCL information of PDSCH on BWP # 2 configured / activated by MAC-CE, or It may be the QCL information of PDSCH on BWP # 2 triggered by DCI.
  • the QCL information # 2 may be As the first QCL relationship.
  • the QCL information of CORESET where DCI # 1 is located can be used as the first QCL relationship.
  • At least one of the above (a2) to (a7) may be referred to as default QCL information or default QCL information.
  • At least one of the above (a1) to (a7) may be used as the first QCL relationship.
  • At least one of the above (a1) to (a7) can be used as the first QCL relationship.
  • the first QCL relationship may be at least one of the following QCL information (b1) to (b5) or a QCL relationship indicated by the QCL information. Each is described below.
  • the QCL information configured for CORSET in BWP # 2 may be one or more, and any one of the QCL information may be used as the first QCL relationship.
  • the QCL information configured for the PDSCH in BWP # 2 may be one or more, and any one of the QCL information may be used as the first QCL relationship.
  • the QCL information configured for CORESET in BWP # 2 may be the QCL information of CORESET on BWP # 2 configured by RRC, or may be the QCL information of CORESET on BWP # 2 configured / activated by MAC-CE.
  • the QCL information configured for PDSCH in BWP # 2 can be the QCL information of PDSCH on BWP # 2 configured by RRC, or the QCL information of PDSCH on BWP # 2 configured / activated by MAC-CE, or it can be QCL information of PDSCH triggered by DCI on BWP # 2.
  • QCL information # A For example, if the QCL information of CORESET # 1 on BWP # 2 configured by RRC is QCL information # A,
  • the QCL information of CORESET # 2 is QCL information # B
  • the QCL information of CORESET # 3 is QCL information # C
  • any QCL information in QCL information # A, QCL information # B, and QCL information # C can be taken as the first QCL relationship.
  • the QCL information indexed or identified by the plurality of CORESETs as the first QCL relationship or the QCL information indexed or identified by the plurality of CORESETs as the first QCL relationship.
  • the synchronization signal used for initial access broadcasts the QCL information of the channel block SSB.
  • the first QCL relationship may be the QCL information of the SSB used for initial access.
  • BWP # 2 including the initial BWP means that the initial BWP is a subset of BWP # 2.
  • the QCL information of the first QCL relationship being the initially accessed SSB may be understood as: the PDSCH and / or the DMRS of the PDCCH and the SSB satisfy the QCL hypothetical relationship.
  • the first QCL relationship may be QCL information for receiving a broadcast PDCCH.
  • the SSB with the smallest index among the SSBs included in BWP # 2 may be the SSB with the smallest index among multiple SSBs configured by the network device for BWP # 2, or the SSB with the smallest index among the multiple SSBs measured by the terminal on BWP # 2. Or the SSB with the smallest index among multiple SSBs reported by the terminal for BWP # 2.
  • the first QCL relationship is the QCL information of the SSB with the smallest index among the SSBs included in BWP # 2.
  • the reference signal with the smallest index among the reference signals used for mobility measurement radio resource association (Radio Resource Management, RRM), which may include SSB and / or CSI-RS.
  • RRM Radio Resource Management
  • At least one of the above (b1) to (b5) may also be referred to as default QCL information or default QCL information.
  • At least one of the above (b1) to (b5) may be used as the first QCL relationship.
  • at least one of the above (b1) to (b5) may be used as the first QCL relationship.
  • the first QCL relationship may be default QCL information, for example, at least one of (a2) to (a7) above, or the above (b1) to (b5).
  • the second QCL relationship may be at least one of (a2) to (a6) described above.
  • the first QCL relationship may be the following (c1):
  • BWP # 1 and BWP # 2 overlap in the frequency domain (ie, case 1) and BWP # 1 and BWP # 2 do not overlap in the frequency domain (ie, case 2).
  • BWP # 1 and BWP # 2 include the same CORESET.
  • the QCL information of the same CORESET on BWP # 1 can be used.
  • the QCL information of the CORESET closest to the PDCCH in the frequency domain in BWP # 1 may be used.
  • the second QCL relationship may be the QCL information of CORESET # 1 on BWP # 1.
  • the second QCL relationship may be QCL information of CORESET # 1 on BWP # 1.
  • the second QCL relationship may be QCL information of CORESET # 3 on BWP # 1.
  • Method 2 BWP # 1 and BWP # 2 overlap in the frequency domain, but BWP # 1 and BWP # 2 do not have the same CORESET, so for the PDCCH on BWP # 2, the overlapped resources in BWP # 1 can be used. CORESET QCL information. For PDCCHs of other frequency domain resources on BWP # 2, the QCL information of the CORESET closest to the PDCCH in the frequency domain in BWP # 1 may be used.
  • the second QCL relationship may be QCL information of CORESET # 1 on BWP # 1.
  • the second QCL relationship may be QCL information of CORESET # 1 on BWP # 1.
  • the second QCL relationship may be QCL information of CORESET # 3 on BWP # 1.
  • BWP # 1 and BWP # 2 do not overlap in the frequency domain.
  • the QCL information of the CORESET closest to the PDCCH in the frequency domain in BWP # 1 can be used.
  • the QCL relationship may be QCL information of CORESET # 1 on BWP # 1.
  • At least one of the above (a2) to (a6) and (c1) may be used as the second QCL relationship.
  • At least one of the above (a2) to (a6) and (c1) can be used as the second QCL relationship.
  • the second QCL information may be at least one of (b1) to (b5) described above.
  • At least one of the above (b1) to (b5) may be used as the second QCL relationship.
  • at least one of the above (b1) to (b5) may be used as the second QCL relationship.
  • the first QCL relationship may be at least one of (a1) to (a7) and (c1) described above.
  • At least one of the above (b1) to (b5) may be used as the first QCL relationship.
  • At least one of the above (a1) to (a7) and (c1) can be used as the first QCL relationship.
  • the first QCL information may be at least one of (b1) to (b5) described above.
  • (b1) to (b5) described above.
  • At least one of the above (b1) to (b5) may be used as the first QCL relationship.
  • at least one of the above (b1) to (b5) may be used as the first QCL relationship.
  • FIG. 12 is a schematic diagram of another communication method provided by the present application. Hereinafter, the communication method shown in FIG. 12 will be described in detail.
  • the terminal determines a first BWP # BWP # 1 and a second BWP # BWP # 2.
  • S1220 The network device determines BWP # 1 and BWP # 2.
  • a network device when a network device needs to perform a BWP handover, it needs to determine the BWP before the handover and the BWP after the handover. If the currently activated BWP is BWP # 1, the BWP before switching is BWP # 1, and BWP # 2 may be the BWP after switching. Then, the network device may instruct the terminal to switch from BWP # 1 to BWP # 2 by sending BWP switching instruction information to the terminal. The terminal may switch from BWP # 1 to BWP # 2 according to the BWP switching instruction information.
  • BWP # 1 and BWP # 2 can be BWP on one carrier or BWP on multiple carriers.
  • BWP # 1 can be BWP configured on carrier # 1
  • BWP # 2 can be configured on carrier # 2.
  • the BWP, carrier # 1 and carrier # 2 may be two carriers performing carrier switching.
  • a terminal can access multiple carriers simultaneously, and each carrier can be configured with a BWP, that is, there can be multiple activated BWPs.
  • BWP # 1 may be a BWP that has been configured with QCL information among the activated multiple BWPs
  • BWP # 2 may be a BWP that is configured with QCL information among the activated multiple BWPs.
  • BWP # 1 and BWP # 2 may or may not overlap in the frequency domain.
  • BWP # 1 and BWP # 2 overlap in the frequency domain can be any one of the four overlap situations described above from A to D. For details, refer to the description above and FIGS. 3 to 6, which will not be described in detail here. .
  • the terminal receives the PDSCH and / or the PDCCH on BWP # 2 according to the TCI state of BWP # 1.
  • the network device sends the PDSCH and / or PDCCH on BWP # 2 according to the TCI state of BWP # 1.
  • the terminal receives the PDSCH on BWP # 2 and / or the PDCCH on BWP # 2 according to the TCI status of BWP # 1, which can also be understood as that the terminal receives BWP by multiplexing the TCI status of BWP # 1. PDSCH on # 2, and / or, receive PDCCH on BWP # 2. It should also be understood that the TCI state of BWP # 1 refers to the TCI state configured for the PDCCH and / or PDSCH on BWP # 1. The TCI status of BWP # 1 can be configured through RRC signaling, MAC-CE signaling, or DCI.
  • the terminal when the terminal has an association relationship between BWP # 1 and BWP # 2, the terminal may receive the PDSCH on BWP # 2 according to the TCI state of BWP # 1, and / or, receive the BWP PDCCH on # 2.
  • the network device when there is an association relationship between BWP # 1 and BWP # 2, the network device may send PDSCH on BWP # 2 and / or send PDCCH on BWP # 2 according to the TCI state of BWP # 1.
  • BWP # 1 and BWP # 2 can also refer to the description above.
  • BWP # 1 and BWP # 2 meet at least one of the conditions 1 to 4 described above, It can be considered that BWP # 1 and BWP # 2 have an associated relationship or have an associated relationship.
  • the terminal by multiplexing the TCI state of BWP # 1, the terminal can use the PDCCH and / or PDSCH on BWP # 2 received in advance using more accurate QCL information obtained based on dynamic or semi-static signaling.
  • the TCI state needs to be configured after network equipment beam training, so that the delay problem caused by beam training can be reduced.
  • the signaling overhead required by the network device to configure the TCI state for BWP # 2 can be reduced.
  • the terminal receives the PDCCH on BWP # 2 according to the TCI status of BWP # 1, which may specifically be any one or any combination of the following implementations.
  • the terminal receives the PDCCH on BWP # 2 using the TCI status of the PDCCH for BWP # 1 indicated by the media access control signaling.
  • the terminal receives the PDCCH on BWP # 2 by multiplexing the TCI state configured for the PDCCH on BWP # 1 activated by the media access control signaling.
  • the network device configures eight candidate TCI states for the PDCCH on BWP # 1 through RRC signaling, that is, TCI state # 1 to TCI state # 8. If the network device activates the TCI state through the media access control signaling # 3, then the terminal can receive the PDCCH on BWP # 2 according to the TCI state # 3.
  • the media access control signaling is sent by the network device on BWP # 1. If there are multiple TCI states activated by the media access control signaling, the terminal may use any one of the plurality of TCI states with the smallest or largest index or all TCI states, which is not limited in this embodiment of the present application.
  • the media access control signaling involved in this application is layer 2 signaling, which may be MAC layer signaling or MAC-CE.
  • the terminal receives the PDCCH on BWP # 2 through the TCI state of the PDCCH for BWP # 1 indicated by the multiplexed media access control signaling, which can reduce the signaling for the network device to configure the TCI state for BWP # 2. Overhead. In addition, the delay caused by the network device configuring the TCI state for BWP # 2 can be reduced.
  • the TCI status configured for the PDCCH on BWP # 1 activated by the network device through the media access control signaling can be understood as the TCI configured for the CORESET on the BWP # 1 activated by the network device through the media access control signaling. status.
  • the terminal receives media access control signaling, which is used to indicate that one or more TCI states of multiple candidate TCI states for BWP # 1 configured by RRC are used for PDCCH on BWP # 2 Receiving; the terminal receives the PDCCH on BWP # 2 according to the one or more TCI states.
  • the multiple candidate TCI states for BWP # 1 refers to multiple candidate TCI states configured for the PDCCH and / or PDSCH on BWP # 1.
  • the network device can configure multiple candidate TCI states for the PDCCH and / or PDSCH on BWP # 1 through RRC signaling, for example, TCI state # 1 to TCI state # 8, which can use media access control signaling
  • TCI state # 1 to TCI state # 8 which can use media access control signaling
  • One or more TCI states of the plurality of candidate TCI states are activated, for example, TCI state # 1, and the activated one or more TCI states are indicated by the medium access control signaling for the PDCCH on BWP # 2 Reception. That is, the TCI state # 1 activated by the network device through the media access control signaling is used for the reception of the PDCCH on the BWP # 2.
  • the media access control signaling is sent by the network device on BWP # 1, or may be sent by the network device on BWP # 2, which is not limited in the embodiment of the present application.
  • the terminal receives the PDCCH on BWP # 2 by multiplexing the TCI status of the PDCCH for BWP # 1 indicated by the RRC signaling, which can reduce the signaling overhead for the network device to configure the TCI status for BWP # 2.
  • the delay caused by the network device configuring the TCI state for BWP # 2 can be reduced.
  • the first method is different from the second method.
  • the second method is to explicitly indicate the activated TCI status for receiving the PDCCH on BWP # 2 through the media access control.
  • the first method may be defined in a predefined way: the TCI for BWP # 1 is activated by the media access control signaling. The status is used for the reception of the PDCCH on BWP # 2. It can be seen that the first method does not need to explicitly indicate the TCI state activated through the media access control signaling for receiving the PDCCH on BWP # 2 through signaling.
  • the number of bitmaps used to configure the TCI status in the media access control signaling in mode 1 may be the same as the bitmap used to configure the TCI status in the media access control signaling in mode 2.
  • the number of bits is different.
  • the bitmap in the media access control signaling in Mode 2 can activate the first or last TCI states of the candidate TCI states configured by RRC signaling.
  • the bitmap bit number in the media access control signaling in method 1 is 4, and the bitmap bit number in the second method is 3, then the bitmap in the media access control signaling in the method 2 can be used to activate the RRC message. Let the first 8 or the last 8 TCI states of the configured candidate 16 TCI states.
  • the terminal receives the PDCCH on the same CORESET in BWP # 2 as the CORESET in BWP # 1 according to the TCI state of the same CORESET in BWP # 1.
  • the terminal may receive the PDCCH on CORESET # 1 on BWP # 2 according to the TCI state of CORESET # 1 on BWP # 1.
  • the terminal receives the PDCCH on BWP # 2 by multiplexing the TCI state of the same CORESET, which can reduce the signaling overhead for the network device to configure the TCI state for BWP # 2.
  • the delay caused by the network device configuring the TCI state for BWP # 2 can be reduced.
  • the two CORESETs in the present application may be the same, or the identifiers or indexes of the two CORESETs may be the same. It should also be understood that the third method is applied to a case where BWP # 1 and BWP # 2 overlap in the frequency domain.
  • the terminal receives the PDCCH on CORESET in BWP # 2 that is different from the CORESET in BWP # 1 according to the TCI state of CORESET in BWP # 1 and the CORESET in BWP # 2.
  • BWP # 1 and BWP # 2 include the same CORESET, and BWP # 1 and BWP # 2 include different CORESETs.
  • the terminal uses the same The TCI status of CORESET is received. For example, referring to FIG. 7, the terminal may receive the PDCCH on CORESET # 5 on BWP # 2 according to the TCI status of CORESET # 1 on BWP # 1.
  • the terminal may according to any of the same multiple CORESETs
  • the TCI state of the CORESET is received, or received according to the TCI state of the smallest or largest CORESET index among the same multiple CORESETs, which is not limited in the embodiment of the present application.
  • the fourth method is applied to a case where BWP # 1 and BWP # 2 overlap in the frequency domain, and BWP # 1 and BWP # 2 are configured with the same CORESET on the overlapping area.
  • the terminal receives the PDCCH on BWP # 2 according to the CORESET of BWP # 2 and BWP # 1 in a manner corresponding to the identification or index in ascending order.
  • the terminal uses the TCI status of the identifier or the larger index of CORESET in BWP # 1, receives the identifier on the BWP # 2 or the PDCCH on the larger CORESET, and uses the identifier or index of the lower BWP # 1.
  • the TCI states of CORESETs in BWP # 2 and BWP # 1 correspond one by one in accordance with the CORESET identification or index increasing order.
  • BWP # 1 includes CORESET # 1, CORESET # 3, and CORESET # 4
  • BWP # 2 includes CORESET # 1, CORESET # 2, and CORESET # 5, so the TCI status of CORESET # 1 on BWP # 2 is the same as BWP # 1.
  • the TCI state of CORESET # 1 on BWP # 2 is the same as the TCI state of CORESET # 2 on BWP # 1 and the TCI state of CORESET # 3 on BWP # 1 is the same.
  • the TCI state of CORESET # 5 on BWP # 2 is the same as BWP # 1.
  • the TCI status of CORESET # 4 is the same.
  • the TCI state of N (the number of CORESETs included in BWP # 2) of CORESET identified or indexed in BWP # 1 is smaller, Corresponds to the COCI identification or index in ascending order, corresponding to the TCI states of the N CORESETs in BWP # 2.
  • BWP # 1 includes CORESET # 1, CORESET # 3, and CORESET # 4
  • BWP # 2 includes CORESET # 1 and CORESET # 2
  • the TCI status of CORESET # 1 on BWP # 2 and CORESET # on BWP # 1 The TCI state of 1 is the same
  • the TCI state of CORESET # 2 on BWP # 2 is the same as the TCI state of CORESET # 3 on BWP # 1.
  • the TCI state of MRESETs (the number of CORESETs included in BWP # 1) with a smaller index or BCI in BWP # 2, Corresponds to the COCI identification or index in ascending order, corresponding to the TCI states of M CORESETs in BWP # 1.
  • the TCI status of the remaining CORESETs in BWP # 2 is the same as the TCI status of the largest or identified CORESET in BWP # 1.
  • BWP # 1 includes CORESET # 1 and CORESET # 3
  • BWP # 2 includes CORESET # 1, CORESET # 2, and CORESET # 5
  • the TCI status of CORESET # 1 on BWP # 2 and CORESET # on BWP # 1 The TCI status of 1 is the same
  • the TCI status of CORESET # 2 on BWP # 2 is the same as the TCI status of CORESET # 3 on BWP # 1
  • the TCI status of CORESET # 5 on BWP # 2 is the same as CORESET # on BWP # 1
  • the TCI status of 3 is the same.
  • N the number of CORESETs included in BWP # 2 of a large number of CORESETs can also be identified or indexed in BWP # 1
  • the TCI status of the corresponding CORESETs corresponds to the TCI status of the N CORESETs in the BWP # 2 in a one-to-one manner according to the CORESET identification or index increasing order.
  • BWP # 1 includes CORESET # 1, CORESET # 3, and CORESET # 4
  • BWP # 2 includes CORESET # 1 and CORESET # 2
  • the TCI status of CORESET # 1 on BWP # 2 and CORESET # on BWP # 1 The TCI state of 3 is the same
  • the TCI state of CORESET # 2 on BWP # 2 is the same as the TCI state of CORESET # 3 on BWP # 1.
  • the number of CORESETs included in BWP # 1 is less than the number of CORESETs included in BWP # 2, it is also possible to make M (the number of CORESETs included in BWP # 1) TCIs with a smaller index or index in BWP # 2
  • M the number of CORESETs included in BWP # 1
  • the states are in one-to-one correspondence with the TCI states of M CORESETs in BWP # 1 according to the CORESET identification or index increasing order.
  • the TCI status of the remaining CORESETs in BWP # 2 is the same as the TCI status of the smallest CORESET indexed or identified in BWP # 1.
  • BWP # 1 includes CORESET # 1 and CORESET # 3
  • BWP # 2 includes CORESET # 1, CORESET # 2, and CORESET # 5
  • the TCI status of CORESET # 1 on BWP # 2 and CORESET # on BWP # 1 The TCI status of 1 is the same
  • the TCI status of CORESET # 2 on BWP # 2 is the same as the TCI status of CORESET # 3 on BWP # 1
  • the TCI status of CORESET # 5 on BWP # 2 is the same as CORESET # on BWP # 1
  • the TCI status of 1 is the same.
  • the terminal receives DCI, and the DCI signaling is used to indicate that one or more TCI states of multiple candidate TCI states for BWP # 1 configured by the media access control signaling are used for the PDCCH on the second BWP # 2.
  • Receive; the terminal receives the PDCCH on BWP # 2 according to the one or more TCI states.
  • the multiple candidate TCI states of BWP # 1 include multiple candidate TCI states configured for the PDCCH and / or PDSCH on BWP # 1.
  • the network device can configure multiple candidate TCI states for the PDCCH and / or PDSCH on BWP # 1 through media access control signaling, for example, TCI state # 1 to TCI state # 8, which can activate this via DCI.
  • TCI state # 1 to TCI state # 8
  • the network device can configure multiple candidate TCI states for the PDCCH and / or PDSCH on BWP # 1 through media access control signaling, for example, TCI state # 1 to TCI state # 8, which can activate this via DCI.
  • One or more TCI states among the plurality of candidate TCI states, for example, TCI state # 1, and the activated one or more TCI states are indicated by the DCI for receiving the PDCCH on BWP # 2. That is, the TCI state # 1 activated by the network device through the DCI signaling is used for the reception of the PDCCH on the BWP # 2.
  • the DCI may be sent by the network device on BWP # 1, or may be sent by the network device on BWP # 2. If there are multiple DCI activated TCI states, the terminal may use any one of the plurality of TCI states with the smallest or largest index or the plurality of TCI states, which is not limited in the embodiment of the present application.
  • the terminal receives the PDCCH on BWP # 2 through the TCI state of the PDCCH and / or PDSCH configured by the medium access control signaling for multiplexing BWP # 2, which can reduce the network device configuration TCI for BWP # 2. Stateful signaling overhead.
  • the terminal receives DCI, the DCI indicates one or more TCI states of BWP # 1; the terminal receives the PDCCH on BWP # 2 using the one or more TCI states.
  • the network device may indicate one or more TCI states through DCI, for example, TCI state # 1. Then, the terminal may use TCI state # 1 to receive PDCCH reception on BWP # 2.
  • the terminal receives the PDCCH on BWP # 2 by multiplexing the TCI state of PDCCH and / or PDSCH configured by DCI signaling, which can reduce the network device's configuration TCI state for BWP # 2. Order overhead.
  • the DCI may be sent by the network device on BWP # 1, or may be sent by the network device on BWP # 2. If there are multiple DCI activated TCI states, the terminal may use any one of the plurality of TCI states with the smallest or largest index or the plurality of TCI states, which is not limited in the embodiment of the present application.
  • Mode 6 is different from Mode 7.
  • Method 6 clearly indicates that the activated TCI status is used for PDCCH reception on BWP # 2 through DCI.
  • Method 7 can be defined in a predefined way: the TCI status for BWP # 1 activated by DCI is used for BWP # 2. PDCCH reception. It can be seen that Mode 7 does not need to explicitly indicate the TCI status activated through DCI for receiving the PDCCH on BWP # 2 through signaling.
  • Mode 6 in The TCI field in DCI can activate one of the first or last TCI states among the candidate TCI states of the media access control signaling configuration, which is not specifically limited in this embodiment of the present application.
  • the number of bits in the TCI field in the DCI in mode 7 is 3, and the number of bits in the TCI field in the DCI in mode 6 is 2.
  • the information in the TCI field in the DCI in mode 6 can be used Activate the TCI state of the first 4 or the last 4 TCI states of the candidate 8 TCI states of the media access control signaling configuration.
  • the terminal receives the PDSCH on BWP # 2 according to the TCI state of BWP # 1, which may specifically be any one or any combination of the following implementations.
  • the terminal receives DCI, and the DCI signaling is used to indicate that one or more TCI states of the plurality of candidate TCI states for BWP # 1 configured by media access control signaling or RRC signaling are used for the second BWP # 2 Receiving the PDSCH on the terminal; the terminal receives the PDSCH on the BWP # 2 according to the one or more TCI states.
  • the multiple candidate TCI states of BWP # 1 include multiple candidate TCI states configured for the PDCCH and / or PDSCH on BWP # 1.
  • the network device can configure multiple candidate TCI states for the PDCCH and / or PDSCH on BWP # 1 through media access control signaling or RRC signaling, for example, TCI state # 1 to TCI state # 8, which can One or more TCI states among the plurality of candidate TCI states are activated through DCI, for example, TCI state # 1, and the activated one or more TCI states are indicated through the DCI for receiving PDSCH on BWP # 2. That is, the TCI state # 1 activated by the network device through DCI signaling is used for the reception of PDSCH on BWP # 2.
  • the DCI may be sent by the network device on BWP # 1, or may be sent by the network device on BWP # 2. If there are multiple DCI activated TCI states, the terminal may use any one of the plurality of TCI states with the smallest or largest index or the plurality of TCI states, which is not limited in the embodiment of the present application.
  • the terminal receives the PDSCH on BWP # 2 by using the TCI state of the PDCCH and / or PDSCH of BWP # 1 configured by multiplexing media access control signaling or RRC signaling, which can reduce the network device to BWP.
  • # 2 Configure the signaling overhead for the TCI state.
  • the delay caused by the network device configuring the TCI state for BWP # 2 can be reduced.
  • the terminal receives media access control signaling, which is used to indicate that one or more TCI states of multiple candidate TCI states for BWP # 1 configured by RRC signaling are used on BWP # 2.
  • the network device can configure multiple candidate TCI states for the PDCCH and / or PDSCH on BWP # 1 through RRC signaling, for example, TCI state # 1 to TCI state # 16, which can use media access control signaling Activate one or more TCI states among the plurality of candidate TCI states, for example, TCI state # 1 to TCI state # 4, and instruct the activated one or more TCI states for BWP through the media access control signaling. Reception of PDSCH on # 2 or as candidate TCI status for receiving PDSCH on BWP # 2.
  • the network device indicates one or more TCI states from TCI state # 1 to TCI state # 4 through DCI signaling, for example, TCI state # 1 is used for receiving PDSCH of BWP # 2. That is, the TCI state # 1 activated by the network device through DCI signaling is used for the reception of PDSCH on BWP # 2.
  • the media access control signaling may be sent by the network device on BWP # 1, or may be sent by the network device on BWP # 2. If there are multiple TCI states activated by the media access control signaling, the terminal may use any one of the multiple or TCI states with the smallest index or the largest index, which is not limited in this embodiment of the present application.
  • the terminal receives the PDSCH on BWP # 2 by multiplexing the TCI status of PDCCH and / or PDSCH indicated by RRC signaling, which can reduce the network device's configuration TCI status for BWP # 2. Order overhead. In addition, the delay caused by the network device configuring the TCI state for BWP # 2 can be reduced.
  • the terminal receives DCI, the DCI indicating one or more TCI states for PDCCH or PDSCH reception of BWP # 1; the terminal receives the PDSCH on BWP # 2 using the one or more TCI states.
  • the network device may configure one or more candidate TCI states for the PDCCH and / or PDSCH on BWP # 1 through media access control signaling or RRC signaling, for example, TCI state # 1 to TCI state # 8, It can activate one or more TCI states among the one or more candidate TCI states through DCI, for example, TCI state # 1. Then, the terminal can use the activated TCI state # 1 to receive PDSCH on BWP # 2. Reception.
  • the DCI may be sent by the network device on BWP # 1. If there are multiple DCI activated TCI states, the terminal can use any one of the plurality of TCI states or the TCI state with the smallest index or the largest index, which is not limited in this embodiment of the present application.
  • Mode 1 is different from Mode 3.
  • Method 1 clearly indicates that the activated TCI status is used for PDSCH reception on BWP # 2 through DCI.
  • Method 3 can be defined in a predefined way: the TCI status for BWP # 1 activated by DCI is used for BWP # 2. Reception of PDSCH. It can be seen that the third method does not need to explicitly indicate the TCI status activated through DCI for receiving PDSCH on BWP # 2 through signaling.
  • Mode 1 in The TCI field in DCI can activate one of the first or last TCI states among the candidate TCI states of the media access control signaling configuration, which is not specifically limited in this embodiment of the present application.
  • the number of bits in the TCI field in the DCI in the third method is 3, and the number of bits in the TCI field in the DCI in the first method is 2.
  • the information in the TCI field in the DCI in the first method can be used for Activate the TCI state of the first 4 or the last 4 TCI states of the candidate 8 TCI states of the media access control signaling configuration.
  • the terminal receives a media access control, which indicates one or more TCI states of one or more candidate TCI states for BWP # 1 configured by the RRC; the terminal receives according to the one or more TCI states.
  • a media access control which indicates one or more TCI states of one or more candidate TCI states for BWP # 1 configured by the RRC; the terminal receives according to the one or more TCI states.
  • the network device can configure one or more candidate TCI states for the PDCCH and / or PDSCH on BWP # 1 through RRC signaling, for example, TCI state # 1 to TCI state # 16, which can be controlled through media access.
  • One or more TCI states among the one or more candidate TCI states are activated, for example, TCI state # 1.
  • the terminal may use the activated TCI state # 1 to receive the PDSCH reception on BWP # 2.
  • the media access control signaling may be sent by the network device on BWP # 1, or may be sent by the network device on BWP # 2. If there are multiple TCI states activated by the media access control signaling, the terminal may use any one of the multiple or TCI states with the smallest index or the largest index, which is not limited in this embodiment of the present application.
  • Mode 2 is different from Mode 4.
  • the activated TCI status is explicitly indicated by the media access control for receiving PDSCH on BWP # 2.
  • the fourth method can be defined in a predefined way: The TCI status for BWP # 1 activated by the media access control is used in Reception of PDSCH on BWP # 2. It can be seen that the fourth method does not need to explicitly indicate the TCI status activated through the media access control for receiving the PDSCH on BWP # 2 through signaling.
  • the number of bitmap bits used to configure the TCI status in the media access control signaling in mode two may be different from the number of bitmap bits used to configure the TCI status in the media access control signaling in mode 4,
  • the bitmap in the media access control signaling in Mode 2 can activate the first or last TCI states among the candidate TCI states configured by RRC signaling, which is not specifically limited in this embodiment of the present application.
  • the number of bitmap bits in the media access control signaling in mode four is four, and the number of bitmap bits in the second mode is 3, so the bitmap in the media access control signaling in mode two can be used to activate the RRC message. Let the first 8 or the last 8 TCI states of the configured candidate 16 TCI states.
  • the DCI in Mode 2 and Mode 4 may further include the BWP handover indication information.
  • the terminal receives DCI, and the DCI includes a TCI status and BWP handover indication information.
  • the terminal switches from BWP # 1 to BWP # 2 according to the BWP switching instruction information, and receives the PDSCH on BWP # 2 according to the TCI state.
  • the terminal and the network device include a hardware structure and / or a software module corresponding to each function.
  • this application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is performed by hardware or computer software-driven hardware depends on the specific application and design constraints of the technical solution. A professional technician can use different methods to implement the described functions for each specific application, but such implementation should not be considered to be beyond the scope of this application.
  • FIG. 13 is a schematic structural diagram of a communication device 1300 provided in the present application.
  • the communication device 1300 includes a processing unit 1310 and a receiving unit 1320.
  • the communication device 1300 may further include a sending unit 1330.
  • a processing unit 1310 configured to determine a first BWP and a second BWP; determine an association relationship between the first BWP and the second BWP; and,
  • a processing unit 1310 is configured to determine a first quasi-co-location QCL relationship according to the association relationship; the receiving unit 1320 is configured to receive a physical downlink shared channel PDSCH on the second BWP according to the first QCL relationship; and /or,
  • the processing unit 1310 is configured to determine a second QCL relationship according to the association relationship, and the receiving unit 1320 is configured to receive a physical downlink control channel PDCCH on the second BWP according to the second QCL relationship.
  • the communication device 1300 may be a communication device (for example, a terminal) or a chip in the communication device.
  • the processing unit may be a processor, the sending unit and the receiving unit may be transceivers; the communication device may further include a storage unit, the storage unit may be a memory; and the storage unit is used for storing An instruction, and the processing unit executes the instruction stored in the storage unit, so that the communication device executes the foregoing method.
  • the processing unit may be a processor, the sending unit and the receiving unit may be input / output interfaces, pins or circuits, etc .; the processing unit executes instructions stored in the storage unit,
  • the storage unit may be a storage unit (for example, a register, a cache, etc.) in the chip, or a storage unit (outside the chip) in the communication device ( (E.g., read-only memory, random access memory, etc.)
  • the steps performed by the communication device 1300 and the corresponding beneficial effects can refer to the related description of the terminal in FIG. 2 or FIG. 13. More details.
  • FIG. 14 is a schematic structural diagram of a communication device 1400 provided in the present application.
  • the communication device 1400 includes a processing unit 1410 and a sending unit 1420.
  • the communication device 1400 may further include a receiving unit 1430.
  • a processing unit 1410 configured to determine a first BWP and a second BWP; determine an association relationship between the first BWP and the second BWP; and,
  • a processing unit 1410 is configured to determine a first quasi-co-located QCL relationship according to the association relationship; the sending unit 1420 is configured to send a physical downlink shared channel PDSCH on the second BWP according to the first QCL relationship; and /or,
  • the processing unit 1410 is configured to determine a second QCL relationship according to the association relationship, and the sending unit 1420 is configured to send a physical downlink control channel PDCCH on the second BWP according to the second QCL relationship.
  • the communication device 1400 may be a communication device (for example, a network device) or a chip in the communication device.
  • the processing unit may be a processor, the sending unit and the receiving unit may be transceivers; the communication device may further include a storage unit, the storage unit may be a memory; and the storage unit is used for storing An instruction, and the processing unit executes the instruction stored in the storage unit, so that the communication device executes the foregoing method.
  • the processing unit may be a processor, the sending unit and the receiving unit may be input / output interfaces, pins or circuits, etc .; the processing unit executes instructions stored in the storage unit,
  • the storage unit may be a storage unit (for example, a register, a cache, etc.) in the chip, or a storage unit located outside the chip in the communication device. (E.g., read-only memory, random access memory, etc.)
  • the steps performed by the communication device 1400 and the corresponding beneficial effects can refer to the related description of the network device in FIG. 2 or FIG. This is not repeated here.
  • the above communication device may be a chip, and the processing unit may be implemented by hardware or software.
  • the processing unit When implemented by hardware, the processing unit may be a logic circuit, an integrated circuit, etc .; when implemented by software, the processing unit It may be a general-purpose processor, which is implemented by reading software codes stored in a storage unit, which may be integrated in the processor, or may be located outside the processor and exist independently.
  • the communication device provided in this application will be further described below by taking the communication device as a terminal or a network device as an example.
  • FIG. 15 is a schematic structural diagram of a terminal 10 provided by the present application. For convenience of explanation, FIG. 15 shows only the main components of the terminal. As shown in FIG. 15, the terminal 10 includes a processor, a memory, a control circuit, an antenna, and an input / output device.
  • the processor is mainly used to process the communication protocol and communication data, and control the entire terminal, execute a software program, and process the data of the software program, for example, to support the terminal to perform the actions described in the foregoing embodiment of the communication method.
  • the memory is mainly used to store software programs and data, such as storing QCL information or TCI status described in the above embodiments.
  • the control circuit is mainly used for conversion of baseband signals and radio frequency signals and processing of radio frequency signals.
  • the control circuit and the antenna can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input / output devices such as a touch screen, a display screen, and a keyboard, are mainly used to receive data input by the user and output data to the user.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit processes the baseband signal, the radio frequency signal is sent out in the form of electromagnetic waves through the antenna.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor.
  • the processor converts the baseband signal into data and processes the data.
  • FIG. 15 shows only one memory and a processor. In an actual terminal, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, which is not limited in the embodiment of the present application.
  • the processor may include a baseband processor and a central processor.
  • the baseband processor is mainly used to process communication protocols and communication data
  • the central processor is mainly used to control the entire terminal and execute software. Programs that process data from software programs.
  • the processor in FIG. 15 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit may also be independent processors, which are interconnected through technologies such as a bus.
  • the terminal may include multiple baseband processors to adapt to different network standards, the terminal may include multiple central processors to enhance its processing capabilities, and various components of the terminal may be connected through various buses.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit may also be expressed as a central processing circuit or a central processing chip.
  • the function of processing communication protocols and communication data may be built in the processor or stored in the storage unit in the form of a software program, and the processor executes the software program to implement the baseband processing function.
  • the antenna and the control circuit having a transmitting and receiving function may be regarded as the transmitting and receiving unit 101 of the terminal 10, and the processor having the processing function may be regarded as the processing unit 102 of the terminal 10.
  • the terminal 10 includes a transceiver unit 101 and a processing unit 102.
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver device, and the like.
  • the device for implementing the receiving function in the transceiver unit 101 may be regarded as a receiving unit, and the device for implementing the transmitting function in the transceiver unit 101 may be regarded as a transmitting unit, that is, the transceiver unit 101 includes a receiving unit and a transmitting unit.
  • the receiving unit may also be called a receiver, a receiver, a receiving circuit, and the like
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit and the like.
  • the terminal shown in FIG. 15 can perform various actions performed by the terminal in the foregoing method. Here, to avoid redundant description, detailed descriptions thereof are omitted.
  • FIG. 16 is a schematic structural diagram of a network device provided in this application.
  • the network device may be, for example, a base station. As shown in FIG. 16, the base station can be applied to the communication system shown in FIG. 1 to perform the functions of the network device in the foregoing method embodiment.
  • the base station 20 may include one or more radio frequency units, such as a remote radio unit (RRU) 201 and one or more baseband units (BBU) (also referred to as a digital unit (DU) ) 202.
  • RRU 201 may be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., and may include at least one antenna 2011 and a radio frequency unit 2012.
  • the RRU 201 is mainly used for receiving and transmitting radio frequency signals and converting radio frequency signals to baseband signals, for example, for sending PDCCH and / or PDSCH in the foregoing method embodiments.
  • the BBU 202 is mainly used for baseband processing and controlling base stations.
  • the RRU 201 and the BBU 202 may be physically located together or physically separated, that is, a distributed base station.
  • the BBU 202 is a control center of a base station, and may also be referred to as a processing unit, which is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, spread spectrum, and so on.
  • the BBU (Processing Unit) 202 may be used to control a base station to execute an operation procedure on a network device in the foregoing method embodiment.
  • the BBU 202 may be composed of one or more boards, and multiple boards may jointly support a single access indication wireless access network (such as an LTE network), or may separately support different access systems. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 202 further includes a memory 2021 and a processor 2022.
  • the memory 2021 is used to store necessary instructions and data.
  • the memory 2021 stores the QCL information or the TCI status in the foregoing method embodiment.
  • the processor 2022 is configured to control the base station to perform necessary actions, for example, to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the memory 2021 and the processor 2022 may serve one or more single boards. That is, the memory and processor can be set separately on each board. It may also be that multiple boards share the same memory and processor. In addition, the necessary circuits can be set on each board.
  • Embodiment 1 A communication method, comprising:
  • a second QCL relationship is determined according to the association relationship, and a physical downlink control channel PDCCH is received on the second BWP according to the second QCL relationship.
  • Embodiment 2 The method according to embodiment 1, wherein the determining the first quasi-co-location QCL relationship according to the association relationship includes:
  • the first QCL relationship is a QCL relationship indicated by the QCL information included in the downlink control information DCI, where the DCI further includes BWP switching indication information .
  • the BWP switching instruction information is used to instruct a terminal to switch from the first BWP to the second BWP.
  • Embodiment 3 The method according to embodiment 1 or 2, wherein the determining a first quasi-co-location QCL relationship based on the association relationship and / or the determining a second QCL relationship based on the association relationship, include:
  • the first QCL relationship and / or the second QCL relationship is a QCL relationship indicated by default QCL information, and the default QCL information is At least one of the following:
  • the control resource set in the first BWP and / or the third QCL information in the QCL information configured by the PDSCH, and the reference signal indicated by the third QCL information is located in the second BWP;
  • the control resource set in the second BWP and / or the fourth QCL information in the QCL information configured by the PDSCH, and the reference signal indicated by the fourth QCL information is located in the first BWP.
  • Embodiment 4 The method according to any one of embodiments 1 to 3, wherein determining the first quasi-co-location QCL relationship according to the association relationship includes:
  • the first QCL relationship is a QCL relationship indicated by default QCL information, and the default QCL information is:
  • Embodiment 5 The method according to any one of embodiments 1 to 4, wherein the first quasi co-location QCL relationship is determined according to the association relationship, and / or the determination is made according to the association relationship.
  • Second QCL relationship including:
  • the first QCL relationship and / or the second QCL relationship is a QCL relationship indicated by default QCL information, and the default QCL information is At least one of the following:
  • the QCL information of the SSB having the smallest index among the SSBs included in the second BWP is the QCL information of the SSB having the smallest index among the SSBs included in the second BWP.
  • Embodiment 6 The method according to embodiment 5, wherein if the second BWP is an initial BWP or includes an initial BWP, or if the second BWP does not include an SSB, the first QCL relationship and / Or the second QCL relationship is a QCL relationship indicated by QCL information of an SSB used for initial access or a QCL relationship indicated by QCL information used for receiving a broadcast PDCCH; and / or,
  • the first QCL relationship and / or the second QCL relationship is a QCL of an SSB having the smallest index among the SSBs included in the second BWP QCL relationship indicated by the message.
  • Embodiment 7 The method according to any one of embodiments 1 to 6, wherein the PDSCH is scheduled by downlink control information DCI, wherein the DCI further includes the BWP handover indication information.
  • Embodiment 8 The method according to Embodiment 7, wherein if the scheduling offset is greater than or equal to a first threshold, the first QCL relationship is a QCL indicated by QCL information included in the BWP handover instruction information. Relationship; and / or
  • the first QCL relationship is a QCL relationship indicated by the default QCL information
  • the first threshold is a sum of time required for the beam switching and the BWP switching of the terminal.
  • Embodiment 9 The method according to embodiment 1, wherein the determining a first quasi-co-located QCL relationship according to the association relationship, and / or the determining a second QCL relationship according to the association relationship includes: :
  • the second QCL relationship is a QCL relationship indicated by at least one of the following QCL information:
  • Embodiment 10 The method according to any one of embodiments 1, 3 to 6, and 9, wherein the receiving the PDSCH and / or the second BWP according to the first QCL relationship Receiving the PDCCH on the second BWP according to the second QCL relationship includes:
  • Embodiment 11 The method according to any one of embodiments 1 to 10, wherein the existence of the association relationship between the first BWP and the second BWP includes at least one of the following situations:
  • the first BWP and the second BWP partially or completely overlap in the frequency domain
  • a reference signal configured for the first BWP and a reference signal configured for the second BWP satisfy a quasi co-location QCL relationship
  • the first BWP and the second BWP include the same set of control resources
  • the first BWP and the second BWP are BWPs in a same frequency band.
  • Embodiment 12 The method according to any one of embodiments 1 to 11, wherein the determining a first bandwidth region BWP and the second BWP comprises:
  • Embodiment 13 A communication method, comprising:
  • Embodiment 14 The method according to embodiment 13, wherein the determining the first quasi-co-location QCL relationship according to the association relationship comprises:
  • the first QCL relationship is a QCL relationship indicated by QCL information included in downlink control information DCI, wherein the DCI further includes a BWP switch Indication information, where the BWP switching indication information is used to instruct a terminal to switch from the first BWP to the second BWP.
  • Embodiment 15 The method according to embodiment 13 or 14, wherein the first quasi-co-location QCL relationship is determined according to the association relationship, and / or the second QCL relationship is determined according to the association relationship. ,include:
  • the first QCL relationship and / or the second QCL relationship is a QCL relationship indicated by default QCL information, and the default QCL information is At least one of the following:
  • the control resource set in the first BWP and / or the third QCL information in the QCL information configured by the PDSCH, and the reference signal indicated by the third QCL information is located in the second BWP;
  • the control resource set in the second BWP and / or the fourth QCL information in the QCL information configured by the PDSCH, and the reference signal indicated by the fourth QCL information is located in the first BWP.
  • Embodiment 16 The method according to any one of embodiments 13 to 15, wherein the determining a first quasi-co-location QCL relationship according to the association relationship includes:
  • the first QCL relationship is a QCL relationship indicated by default QCL information, and the default QCL information is:
  • Embodiment 17 The method according to any one of embodiments 13 to 16, wherein the determining of the first quasi-co-location QCL relationship according to the association relationship, and / or the determining of the first quasi-co-location QCL relationship according to the association relationship Second QCL relationship, including:
  • the first QCL relationship and / or the second QCL relationship is a QCL relationship indicated by default QCL information, and the default QCL information is At least one of the following:
  • the QCL information of the SSB having the smallest index among the SSBs included in the second BWP is the QCL information of the SSB having the smallest index among the SSBs included in the second BWP.
  • Embodiment 18 The method according to embodiment 17, wherein if the second BWP is an initial BWP or includes an initial BWP, or if the second BWP does not include an SSB, the first QCL relationship and / Or the second QCL relationship is a QCL relationship indicated by QCL information of an SSB for initial access or a QCL relationship indicated by QCL information for receiving a broadcast PDCCH; and / or,
  • the first QCL relationship and / or the second QCL relationship is a QCL of an SSB having the smallest index among the SSBs included in the second BWP QCL relationship indicated by the message.
  • Embodiment 19 The method according to any one of embodiments 13 to 18, wherein the PDSCH is scheduled by downlink control information DCI, wherein the DCI further includes the BWP handover indication information.
  • Embodiment 20 The method according to Embodiment 19, wherein if the scheduling offset is greater than or equal to a first threshold, the first QCL relationship is a QCL indicated by QCL information included in the BWP handover instruction information Relationship; and / or
  • the first QCL relationship is a QCL relationship indicated by the default QCL information
  • the first threshold is a sum of time required for the beam switching and the BWP switching of the terminal.
  • Embodiment 21 The method according to embodiment 13, wherein the determining a first quasi co-location QCL relationship according to the association relationship, and / or the determining a second QCL relationship according to the association relationship, includes: :
  • the second QCL relationship is a QCL relationship indicated by at least one of the following QCL information:
  • Embodiment 22 The method according to any one of Embodiments 13, 15 to 18, and 21, wherein the PDSCH and / or is sent on the second BWP according to the first QCL relationship.
  • Sending the PDCCH on the second BWP according to the second QCL relationship includes:
  • Embodiment 23 The method according to any one of embodiments 13 to 21, wherein the existence of the association relationship between the first BWP and the second BWP includes at least one of the following situations:
  • the first BWP and the second BWP partially or completely overlap in the frequency domain
  • a reference signal configured for the first BWP and a reference signal configured for the second BWP satisfy a quasi co-location QCL relationship
  • the first BWP and the second BWP include the same set of control resources
  • the first BWP and the second BWP are BWPs in a same frequency band.
  • Embodiment 24 The method according to any one of embodiments 13 to 23, wherein after determining the first bandwidth region BWP and the second BWP, the method further includes:
  • BWP handover instruction information is used to instruct a terminal to handover from the first BWP to the second BWP.
  • Embodiment 25 A communication device, comprising:
  • a processing unit configured to determine a first bandwidth region BWP and a second BWP
  • the processing unit is further configured to determine an association relationship between the first BWP and the second BWP;
  • the processing unit is configured to determine a first quasi co-location QCL relationship according to the association relationship, and the receiving unit is configured to receive a physical downlink shared channel PDSCH on the second BWP according to the first QCL relationship; and / or
  • the processing unit is configured to determine a second QCL relationship according to the association relationship, and the receiving unit is configured to receive a physical downlink control channel PDCCH on the second BWP according to the second QCL relationship.
  • Embodiment 26 The communication device according to embodiment 25, wherein the processing unit is specifically configured to:
  • the first BWP and the second BWP have the associated relationship, determine that the first QCL relationship is a QCL relationship indicated by the QCL information included in the downlink control information DCI, wherein the DCI further includes a BWP switching indication Information, and the BWP switching instruction information is used to instruct the terminal to switch from the first BWP to the second BWP.
  • Embodiment 27 The communication device according to Embodiment 25 or 26, wherein the processing unit is specifically configured to:
  • first BWP and the second BWP have the associated relationship, determine that the first QCL relationship and / or the second QCL relationship is a QCL relationship indicated by default QCL information, and the default QCL information is At least one of the following:
  • the control resource set in the first BWP and / or the third QCL information in the QCL information configured by the PDSCH, and the reference signal indicated by the third QCL information is located in the second BWP;
  • the control resource set in the second BWP and / or the fourth QCL information in the QCL information configured by the PDSCH, and the reference signal indicated by the fourth QCL information is located in the first BWP.
  • Embodiment 28 The communication device according to any one of embodiments 25 to 27, wherein the processing unit is specifically configured to:
  • the first QCL relationship is a QCL relationship indicated by default QCL information, and the default QCL information is:
  • Embodiment 29 The communication device according to any one of embodiments 25 to 28, wherein the processing unit is specifically configured to:
  • first BWP and the second BWP do not have the associated relationship, determine that the first QCL relationship and / or the second QCL relationship is a QCL relationship indicated by default QCL information, and the default QCL information Is at least one of the following:
  • the QCL information of the SSB having the smallest index among the SSBs included in the second BWP is the QCL information of the SSB having the smallest index among the SSBs included in the second BWP.
  • Embodiment 30 The communication device according to embodiment 29, wherein if the second BWP is an initial BWP or includes an initial BWP, or if the second BWP does not include an SSB, the first QCL relationship And / or the second QCL relationship is a QCL relationship indicated by QCL information of an SSB used for initial access or a QCL relationship indicated by QCL information used for receiving a broadcast PDCCH; and / or,
  • the first QCL relationship and / or the second QCL relationship is a QCL of an SSB having the smallest index among the SSBs included in the second BWP QCL relationship indicated by the message.
  • Embodiment 31 The communication device according to any one of embodiments 25 to 30, wherein the PDSCH is scheduled by downlink control information DCI, wherein the DCI further includes the BWP handover indication information.
  • Embodiment 32 The communication device according to embodiment 31, wherein if the scheduling offset is greater than or equal to a first threshold, the first QCL relationship is indicated by the QCL information included in the BWP handover instruction information QCL relationship; and / or
  • the first QCL relationship is a QCL relationship indicated by the default QCL information
  • the first threshold is a sum of time required for the beam switching and the BWP switching of the terminal.
  • Embodiment 33 The communication device according to embodiment 25, wherein the processing unit is specifically configured to:
  • the second QCL relationship is a QCL relationship indicated by at least one type of QCL information described below:
  • Embodiment 34 The communication device according to any one of Embodiments 25, 27 to 30, and 33, wherein the receiving unit is specifically configured to:
  • Embodiment 35 The communication device according to any one of embodiments 25 to 34, wherein the existence of the association relationship between the first BWP and the second BWP includes at least one of the following situations:
  • the first BWP and the second BWP partially or completely overlap in the frequency domain
  • a reference signal configured for the first BWP and a reference signal configured for the second BWP satisfy a quasi co-location QCL relationship
  • the first BWP and the second BWP include the same set of control resources
  • the first BWP and the second BWP are BWPs in a same frequency band.
  • Embodiment 36 The communication device according to any one of embodiments 25 to 35, wherein the receiving unit is further configured to:
  • the processing unit is specifically configured to switch from the first BWP to the second BWP according to the BWP switching instruction information.
  • Embodiment 37 A communication device, comprising:
  • a processing unit configured to determine a first bandwidth region BWP and a second BWP
  • the processing unit is further configured to determine an association relationship between the first BWP and the second BWP;
  • the processing unit is further configured to determine a first quasi co-location QCL relationship according to the association relationship, and the sending unit is configured to send a physical downlink shared channel PDSCH on the second BWP according to the first QCL relationship; and /or
  • the processing unit is further configured to determine a second QCL relationship according to the association relationship, and the sending unit is configured to send a physical downlink control channel PDCCH on the second BWP according to the second QCL relationship.
  • Embodiment 38 The communication device according to embodiment 37, wherein the processing unit is specifically configured to:
  • the first BWP and the second BWP have the associated relationship, determine that the first QCL relationship is a QCL relationship indicated by the QCL information included in the downlink control information DCI, wherein the DCI further includes a BWP switching indication Information, and the BWP switching instruction information is used to instruct the terminal to switch from the first BWP to the second BWP.
  • Embodiment 39 The communication device according to Embodiment 37 or 38, wherein the processing unit is specifically configured to:
  • first BWP and the second BWP have the associated relationship, determine that the first QCL relationship and / or the second QCL relationship is a QCL relationship indicated by default QCL information, and the default QCL information is At least one of the following:
  • the control resource set in the first BWP and / or the third QCL information in the QCL information configured by the PDSCH, and the reference signal indicated by the third QCL information is located in the second BWP;
  • the control resource set in the second BWP and / or the fourth QCL information in the QCL information configured by the PDSCH, and the reference signal indicated by the fourth QCL information is located in the first BWP.
  • Embodiment 40 The communication device according to any one of embodiments 37 to 39, wherein the processing unit is specifically configured to:
  • the first QCL relationship is a QCL relationship indicated by default QCL information, and the default QCL information is:
  • Embodiment 41 The communication device according to any one of embodiments 37 to 40, wherein the processing unit is specifically configured to:
  • first BWP and the second BWP do not have the associated relationship, determine that the first QCL relationship and / or the second QCL relationship is a QCL relationship indicated by default QCL information, and the default QCL information Is at least one of the following:
  • the QCL information of the SSB having the smallest index among the SSBs included in the second BWP is the QCL information of the SSB having the smallest index among the SSBs included in the second BWP.
  • Embodiment 42 The communication device according to embodiment 41, wherein if the second BWP is an initial BWP or includes an initial BWP, or if the second BWP does not include an SSB, the first QCL relationship And / or the second QCL relationship is a QCL relationship indicated by QCL information of an SSB used for initial access or a QCL relationship indicated by QCL information used for receiving a broadcast PDCCH; and / or,
  • the first QCL relationship and / or the second QCL relationship is a QCL of an SSB having the smallest index among the SSBs included in the second BWP QCL relationship indicated by the message.
  • Embodiment 43 The communication device according to any one of embodiments 37 to 42, wherein the PDSCH is scheduled by downlink control information DCI, wherein the DCI further includes the BWP handover indication information.
  • Embodiment 44 The communication device according to embodiment 43, wherein if the scheduling offset is greater than or equal to a first threshold, the first QCL relationship is indicated by the QCL information included in the BWP handover instruction information. QCL relationship; and / or
  • the first QCL relationship is a QCL relationship indicated by the default QCL information
  • the first threshold is a sum of time required for the beam switching and the BWP switching of the terminal.
  • Embodiment 45 The communication device according to embodiment 37, wherein the processing unit is specifically configured to:
  • the second QCL relationship is a QCL relationship indicated by at least one of the following QCL information:
  • Embodiment 46 The communication device according to any one of Embodiments 37, 39 to 42, and 45, wherein the sending unit is specifically configured to:
  • Embodiment 47 The communication device according to any one of embodiments 37 to 46, wherein the existence of the association relationship between the first BWP and the second BWP includes at least one of the following situations:
  • the first BWP and the second BWP partially or completely overlap in the frequency domain
  • a reference signal configured for the first BWP and a reference signal configured for the second BWP satisfy a quasi co-location QCL relationship
  • the first BWP and the second BWP include the same set of control resources
  • the first BWP and the second BWP are BWPs in a same frequency band.
  • Embodiment 48 The communication device according to any one of Embodiments 37 to 47, wherein the sending unit is further configured to:
  • BWP handover instruction information is used to instruct a terminal to handover from the first BWP to the second BWP.
  • the present application also provides a communication system including one or more of the aforementioned network devices, and one or more terminals.
  • the processor in the embodiment of the present application may be an integrated circuit chip and has a signal processing capability.
  • each step of the foregoing method embodiment may be completed by using an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or other programmable processors. Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • Programming logic devices, discrete gate or transistor logic devices, discrete hardware components Various methods, steps, and logical block diagrams disclosed in the embodiments of the present application may be implemented or executed.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • a software module may be located in a mature storage medium such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), or Erase programmable read-only memory (EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double SDRAM double SDRAM
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • enhanced SDRAM enhanced SDRAM
  • SLDRAM synchronous connection dynamic random access memory
  • direct RAMbus RAM direct RAMbus RAM
  • the present application also provides a computer-readable medium on which a computer program is stored.
  • a computer program When the computer program is executed by a computer, the functions of any one of the foregoing method embodiments are implemented.
  • the present application also provides a computer program product that, when executed by a computer, implements the functions of any of the above method embodiments.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, a computer, a server, or a data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that includes one or more available medium integration.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high density digital video disc (DVD)), or a semiconductor medium (for example, a solid state disk (solid state disk), SSD)) and so on.
  • an embodiment mentioned throughout the specification means that a particular feature, structure, or characteristic related to the embodiment is included in at least one embodiment of the present application. Therefore, the various embodiments do not necessarily refer to the same embodiment throughout the specification. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. It should be understood that, in the various embodiments of the present application, the size of the sequence numbers of the above processes does not mean the order of execution. The execution order of each process should be determined by its function and internal logic, and should not deal with the embodiments of the present application. The implementation process constitutes any limitation.
  • system and “network” are often used interchangeably herein.
  • the term “and / or” in this document is only a kind of association relationship describing related objects, which means that there can be three kinds of relationships, for example, A and / or B can mean: A exists alone, A and B exist simultaneously, and exists alone B these three cases.
  • the term "at least one of” or “at least one of” means all or any combination of the listed items, for example, “at least one of A, B, and C", It can be expressed that there are six cases of A alone, B alone, C alone, A and B, B and C, and A, B, and C.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B based on A does not mean determining B based solely on A, but also determining B based on A and / or other information.
  • Computer-readable media includes computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage media may be any available media that can be accessed by a computer.
  • computer-readable media may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, disk storage media or other magnetic storage devices, or can be used to carry or store instructions or data structures Expected program code and any other medium that can be accessed by a computer. Also. Any connection is properly a computer-readable medium. For example, if software is transmitted from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave, then coaxial cable , Fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, wireless, and microwave are included in the fixing of the media.
  • coaxial cable fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, wireless, and microwave are included in the fixing of the media.
  • disks and discs include compact discs (CDs), laser discs, optical discs, digital versatile discs (DVDs), floppy discs and Blu-ray discs, where discs typically use magnetism to copy data, and Discs use lasers to copy data.
  • CDs compact discs
  • DVDs digital versatile discs
  • Discs use lasers to copy data.
  • the above combination should also be included in the protection scope of the computer-readable medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法,能够根据第一BWP和第二BWP之间的关联关系,进行PDCCH和/或PDSCH的传输。该方法包括:确定第一BWP和第二BWP以及确定第一BWP和第二BWP的关联关系。根据所述关联关系确定第一QCL关系,并根据第一QCL关系在第二BWP上接收PDSCH;和/或,根据所述关联关系确定第二QCL关系,并根据第二QCL关系在第二BWP上接收PDCCH。

Description

通信方法和通信装置
本申请要求于2018年5月22日提交中国专利局、申请号为201810496966.7、申请名称为“通信方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信系统,并且更具体地,涉及一种通信方法和通信装置。
背景技术
当前标准中支持带宽区域(bandwidth part,BWP)的动态切换。其中,BWP的切换可以在相同载波内或者不同载波之间进行。当终端从一个BWP切换至另一BWP后,终端如何接收切换后的BWP上的物理下行控制信息(physical downlink control channel,PDCCH)和物理下行共享信道(physical downlink share channel,PDSCH),当前技术中还未涉及。
发明内容
本申请提供一种通信方法,能够根据第一BWP和第二BWP之间的关联关系,进行PDCCH和/或PDSCH的传输。
第一方面,提供了一种通信方法,该方法包括:确定第一BWP和第二BWP以及确定第一BWP和第二BWP的关联关系。根据所述关联关系确定第一准共址(quasi-co-location,QCL)关系,并根据第一QCL关系在第二BWP上接收PDSCH;和/或,根据所述关联关系确定第二QCL关系,并根据第二QCL关系在第二BWP上接收PDCCH。
第一QCL关系可以是一种具体的QCL信息,或者是该QCL信息所指示的QCL关系。所述QCL信息可以是网络设备通过信令配置给终端的,或者终端可以根据预设条件假设所述第二BWP的某些参数和第一BWP的某些参数是QCL的,或者存在某些关联关系。例如,网络设备可以通过信令指示PDSCH或PDCCH的传输配置指示(transmission configuration indicator,TCI)状态,TCI状态用于指示PDSCH或PDCCH的解调参考信号(demodulation reference signal,DMRS)与TCI状态包括的参考信号满足QCL关系。或者可以通过预定义的方式,假设PDSCH或PDCCH的DMRS与某个参考信号(如同步信号广播信道块(synchronous signal/PBCH block,SSB))满足(空间)QCL关系。第二QCL关系可参照对第一QCL关系所作的说明。进一步地,第一QCL关系可以和第二QCL关系相同,但本申请对此不作限定。
本申请实施例的通信方法,能够根据第一BWP和第二BWP之间的关联关系,确定第一QCL关系和/或第二QCL关系,进而能够根据该第一QCL关系和/或第二QCL关系, 进行PDCCH和/或PDSCH的传输。
结合第一方面,在一种可能的实现方式中,所述确定第一BWP和所述第二BWP,包括:接收BWP切换指示信息;根据所述BWP切换指示信息从所述第一BWP切换至所述第二BWP。
也就是说,第一BWP为切换前的BWP,第二BWP为切换后的BWP。从而,根据本申请实施例的通信方法,可以根据切换前的BWP和切换后的BWP的关联关系,在切换后的BWP上进行PDCCH和/或PDSCH的接收。
第一BWP和第二BWP可以是一个载波上的BWP,也可以是多个载波上的BWP,比如,第一BWP可以是载波#1上配置的BWP,第二BWP可以是载波#2上配置的BWP,载波#1和载波#2可以是进行载波聚合的两个载波。
应理解,本申请中的“BWP”可以替换为“载波”。载波也可以称为载波单元(Component Carrier,CC)。
此外,终端可以同时接入多个载波,每个载波可以配置一个BWP,即激活的BWP可以有多个。第一BWP可以是激活的多个BWP中的已经配置QCL信息的BWP,第二BWP可以是激活的多个BWP中的尚未配置QCL信息的BWP。从而,根据本申请实施例的方法,可以在第二BWP未配置QCL信息之间,根据第一BWP和第二BWP的关联关系,在第二BWP上进行PDCCH和/或PDSCH的接收。
结合第一方面,在一种可能的实现方式中,第一QCL关系和第二QCL关系可以是网络设备为第一BWP配置的QCL信息所指示的QCL关系。
进一步地,终端可以在下述情况下根据第一QCL关系接收PDSCH和/或根据第二QCL关系接收PDCCH:终端在第二BWP上接收到控制资源集合(CORSET)和/或PDSCH的QCL信息之前。
因此,本申请实施例的通信方法,终端和网络设备可以通过复用第一BWP的QCL信息,在第二BWP上进行PDCCH和/或PDSCH的传输,而不需要等到网络设备波束训练之后再配置QCL信息,从而能够减小由波束训练带来的时延问题。并且,通过复用第一BWP的QCL信息,能够使网络设备与终端设备对齐QCL假设或波束(发送波束与接收波束),从而使得终端能够准确接收数据,并能够减小网络设备为第二BWP配置QCL信息的所需的信令开销。
结合第一方面,在一种可能的实现方式中,所述第一BWP与所述第二BWP存在关联关系包括以至少一种情况:
所述第一BWP与所述第二BWP在频域上部分或全部重叠;
为所述第一BWP配置的参考信号和为所述第二BWP配置的参考信号满足QCL关系;
所述第一BWP与所述第二BWP包括相同的控制资源集合;
所述第一BWP与所述第二BWP为同频带的BWP(intra-band BWP)。
具体地,第一BWP和第二BWP在频域上重叠也可以理解为:第一BWP和第二BWP中包括相同的资源块(resource block,RB)。第一BWP和第二BWP在频域上重叠可以是下述中的任一种:A:第一BWP和第二BWP在频域上部分重叠,且不存在包含关系。即,第一BWP与第二BWP包括相同的RB,但第一BWP不是第二BWP的子集且第二BWP也不是第一BWP的子集。B:第一BWP是第二BWP的真子集。即,第二BWP包 括构成第一BWP的所有RB,且构成第二BWP的所有RB中至少有一个RB与构成第一BWP的RB不同。C:第二BWP是第一BWP的真子集。即,第一BWP包括构成第二BWP的所有RB,且构成第一BWP的所有RB中至少有一个RB与构成第二BWP的RB不同。D:第二BWP与第一BWP完全重叠。即,第二BWP与第一BWP包括的RB相同。在此情况下,第一BWP和第二BWP的某些参数可以不同,例如二者的子载波间隔可以不同,配置的CORSET可以不同。
第一BWP和第二BWP中包括相同的控制资源集(control resource set,CORESET),即,第一BWP和第二BWP在频域上重叠,且网络设备在第一BWP中的第一BWP与第二BWP的重叠区域中配置的至少一个CORESET与设备在第二BWP中的第一BWP与第二BWP的重叠区域中配置的至少一个CORESET部分或全部相同。
网络设备为第一BWP配置的参考信号和为第二BWP配置的参考信号满足QCL关系。具体来讲,网络设备为第一BWP包括的COREST和/或PDSCH配置的QCL信息所指示的参考信号包括第二BWP的参考信号。或者,网络设备为第一BWP包括的参考信号配置的QCL信息所指示的参考信号是第二BWP的参考信号。例如,网络设备为第一BWP的CORESET#1配置的TCI状态中包括参考信号CSI-RS#1,CSI-RS#1是第二BWP的参考信号,那么就认为第一BWP与第二BWP有关联关系。或者,网络设备为第二BWP包括的COREST和/或PDSCH配置的QCL信息所指示的参考信号包括第一BWP的参考信号。或者网络设备为第二BWP包括的参考信号配置的QCL信息所指示的参考信号是第一BWP的参考信号。例如,网络设备为第二BWP的CORESET#2配置的TCI状态中包括参考信号CSI-RS#2,CSI-RS#2是第一BWP的参考信号,那么就认为第一BWP与第二BWP有关联关系。
结合第一方面,在一种可能的实现方式中,所述根据所述关联关系确定第一QCL关系,包括:
所述第一QCL关系为下行控制信息(downlink control information,DCI)包括的QCL信息所指示的QCL关系,其中,所述DCI还包括BWP切换指示信息。
应理解,该DCI位于第一BWP。也就是说,位于第一BWP用于指示BWP切换的DCI所包括的QCL信息为第一QCL关系。
可选地,该DCI所包括的QCL信息可以是为第一BWP配置的一个候选QCL信息。从而,终端和网络设备可以通过复用第一BWP的QCL信息,在第二BWP上进行PDCCH和/或PDSCH的传输,而不需要等到网络设备波束训练之后再配置QCL信息,从而能够减小由波束训练带来的时延问题。并且,通过复用第一BWP的QCL信息,能够使网络设备与终端设备对齐QCL假设或波束(发送波束与接收波束),从而使得终端能够准确接收数据,并能够减小网络设备为第二BWP配置QCL信息的所需的信令开销。
应理解,该DCI也可以是为第二BWP配置的一个候选QCL信息,本申请对此不作限定。
进一步地,在调度偏移大于或者等于第一阈值时,第一QCL关系可以是用于指示BWP切换的DCI所包括的QCL信息。
本申请中,调度偏移是指:下行DCI与PDSCH之间的时间偏移。
示例性的,第一阈值可以是终端根据其能力上报的,或者可以是网络设备配置的,或 者可以是预定义的。其中对于跨BWP调度的情况,比如第一BWP的DCI调度第二BWP的PDSCH,第一阈值为波束切换与BWP切换所需的时间总和。对于同一个BWP调度的情况,比如第二BWP的DCI调度第二BWP的PDSCH,第一阈值为波束切换所需的时间。
结合第一方面,在一种可能的实现方式中,所述根据所述关联关系确定第一QCL关系和/或第二QCL关系,包括:
所述第一QCL关系和/或所述第二QCL关系为默认QCL信息所指示的QCL关系,所述默认QCL信息为下述中的至少一种:
所述第一BWP或者所述第二BWP包括的控制资源集合中索引或标识最小的控制资源集合的QCL信息;
所述第一BWP和所述第二BWP均包括的控制资源集合的QCL信息;
所述第一BWP和所述第二BWP重叠的频域资源中所述第一BWP所包括的控制资源集合的QCL信息;
所述第一BWP中的控制资源集合和/或PDSCH配置的QCL信息中的第三QCL信息,所述第三QCL信息所指示的参考信号位于所述第二BWP;
所述第二BWP中的控制资源集合和/或PDSCH配置的QCL信息中的第四QCL信息,所述第四QCL信息所指示的参考信号位于所述第一BWP。
可选地,所述第一BWP或者所述第二BWP包括的控制资源集合可以是配置了有效QCL信息的CORESET,即第一BWP或者所述第二BWP所包括的所有控制资源集合中配置了QCL信息的CORESET。
可选地,所述第一BWP或者所述第二BWP包括的控制资源集合可以是用于发送广播PDCCH的控制资源集合中标识值或索引值最小的CORESET或者是用于发送非广播PDCCH的控制资源集合中标识值或索引值最小的CORESET。
结合第一方面,在一种可能的实现方式中,所述根据所述关联关系确定第一QCL关系,包括:
所述第一QCL关系为默认QCL信息所指示的QCL关系,所述默认QCL信息为:调度所述PDSCH的DCI所在的控制资源集合的QCL信息。
也就是说,若第一BWP上的DCI#1调度了第二BWP上的PDSCH,那么DCI#1所在的CORESET的QCL信息可以作为第一QCL关系。
结合第一方面,在一种可能的实现方式中,所述根据所述关联关系确定第一QCL关系,和/或所述根据所述关联关系确定第二QCL关系,包括:
所述第一QCL关系和/或所述第二QCL关系为默认QCL信息所指示的QCL关系,所述默认QCL信息为下述中的至少一种:
为所述第二BWP中的控制资源集合和/或PDSCH配置的QCL信息中的一个;
用于初始接入的同步信号广播信道块SSB的QCL信息;
用于接收广播PDCCH的QCL信息;
所述第二BWP包括的SSB中索引最小的SSB的QCL信息。
进一步地,若所述第二BWP为初始BWP或包括初始BWP,或者若所述第二BWP不包括SSB时,所述第一QCL关系和/或所述第二QCL关系为用于初始接入的SSB的QCL信息所指示的QCL关系或用于接收广播PDCCH的QCL信息所指示的QCL关系; 和/或,
若所述第二BWP不包括初始BWP,且所述第二BWP包括SSB,所述第一QCL关系和/或所述第二QCL关系为第二BWP包括的SSB中的索引最小的SSB的QCL信息所指示的QCL关系。
应理解,第二BWP包括初始BWP是指初始BWP为第二BWP的子集。
应理解,第一QCL关系为初始接入的SSB的QCL信息可以理解为:所述PDSCH和/或所述PDCCH的DMRS与该SSB满足QCL假设关系。
结合第一方面,在一种可能的实现方式中,所述PDSCH由下行控制信息DCI调度,其中,所述DCI还包括所述BWP切换指示信息。也就是说,所述PDSCH由位于所述第一BWP的DCI调度。
结合第一方面,在一种可能的实现方式中,若调度偏移大于或者等于第一阈值,所述第一QCL关系为所述BWP切换指示信息所包括的QCL信息所指示的QCL关系;和/或
若所述调度偏移小于所述第一阈值,所述第一QCL关系为所述默认QCL信息所指示的QCL关系;
其中,所述第一阈值为终端的波束切换与BWP切换所需的时间总和。
结合第一方面,在一种可能的实现方式中,所述根据所述关联关系确定第一QCL关系,和/或所述根据所述关联关系确定第二QCL关系,包括:
所述第二QCL关系为下述中的至少一种QCL信息所指示的QCL关系:
在频域上距离所述第二BWP最近的所述第一BWP中的控制资源集合的QCL信息。
第二方面,本申请提供了一种通信方法,该方法包括:确定第一BWP和第二BWP以及确定第一BWP和所述第二BWP的关联关系。根据所述关联关系确定第一QCL关系,并根据第一QCL关系在第二BWP上发送PDSCH;和/或,根据所述关联关系确定第二QCL关系,并根据第二QCL关系在第二BWP上发送PDCCH。
本申请实施例的通信方法,能够根据第一BWP和第二BWP之间的关联关系,确定第一QCL关系和/或第二QCL关系,进而能够根据该第一QCL关系和/或第二QCL关系,进行PDCCH和/或PDSCH的传输。
结合第二方面,在一种可能的实现方式中,在确定第一BWP和第二BWP之后,该方法还可以包括:发送BWP切换指示信息,该BWP切换指示信息用于指示终端从所述第一BWP切换至所述第二BWP。
也就是说,第一BWP为切换前的BWP,第二BWP为切换后的BWP。从而,根据本申请实施例的通信方法,可以根据切换前的BWP和切换后的BWP的关联关系,在切换后的BWP上进行PDCCH和/或PDSCH的发送。
结合第二方面,在一种可能的实现方式中,第一QCL关系和第二QCL关系可以是网络设备为第一BWP配置的QCL信息所指示的QCL关系。
进一步地,网络设备可以在下述情况下根据第一QCL关系发送PDSCH和/或根据第二QCL关系发送PDCCH:网络设备在发送第二BWP的CORSET和/或PDSCH的QCL信息之前。
因此,本申请实施例的通信方法,终端和网络设备可以通过复用第一BWP的QCL信息,在第二BWP上进行PDCCH和/或PDSCH的传输,而不需要等到网络设备波束训练 之后再配置QCL信息,从而能够减小由波束训练带来的时延问题。并且,通过复用第一BWP的QCL信息,能够使网络设备与终端设备对齐QCL假设或波束(发送波束与接收波束),从而使得终端能够准确接收数据,并能够减小网络设备为第二BWP配置QCL信息的所需的信令开销。
结合第二方面,在一种可能的实现方式中,所述第一BWP与所述第二BWP存在关联关系包括以至少一种情况:
所述第一BWP与所述第二BWP在频域上部分或全部重叠;
为所述第一BWP配置的参考信号和为所述第二BWP配置的参考信号满足QCL关系;
所述第一BWP与所述第二BWP包括相同的控制资源集合;
所述第一BWP与所述第二BWP为同频带的BWP(intra-band BWP)。
结合第二方面,在一种可能的实现方式中,所述根据所述关联关系确定第一QCL关系,包括:
所述第一QCL关系为下行控制信息DCI包括的QCL信息所指示的QCL关系,其中,所述DCI还包括所述BWP切换指示信息。
应理解,该DCI位于第一BWP。也就是说,位于第一BWP用于指示BWP切换的DCI所包括的QCL信息为第一QCL关系。
可选地,该DCI所包括的QCL信息可以是为第一BWP配置的一个候选QCL信息。从而,终端和网络设备可以通过复用第一BWP的QCL信息,在第二BWP上进行PDCCH和/或PDSCH的传输,而不需要等到网络设备波束训练之后再配置QCL信息,从而能够减小由波束训练带来的时延问题。并且,通过复用第一BWP的QCL信息,能够使网络设备与终端设备对齐QCL假设或波束(发送波束与接收波束),从而使得终端能够准确接收数据,并能够减小网络设备为第二BWP配置QCL信息的所需的信令开销。
应理解,该DCI也可以是网络设备为第二BWP配置的一个候选QCL信息,本申请对此不作限定。
进一步地,在调度偏移大于或者等于第一阈值时,第一QCL关系可以是用于指示BWP切换的DCI所包括的QCL信息。
结合第二方面,在一种可能的实现方式中,所述根据所述关联关系确定第一QCL关系和/或第二QCL关系,包括:
所述第一QCL关系和/或所述第二QCL关系为默认QCL信息所指示的QCL关系,所述默认QCL信息为下述中的至少一种:
所述第一BWP或者所述第二BWP包括的控制资源集合中索引或标识最小的控制资源集合的QCL信息;
所述第一BWP和所述第二BWP均包括的控制资源集合的QCL信息;
所述第一BWP和所述第二BWP重叠的频域资源中所述第一BWP所包括的控制资源集合的QCL信息;
所述第一BWP中的控制资源集合和/或PDSCH配置的QCL信息中的第三QCL信息,所述第三QCL信息所指示的参考信号位于所述第二BWP;
所述第二BWP中的控制资源集合和/或PDSCH配置的QCL信息中的第四QCL信息,所述第四QCL信息所指示的参考信号位于所述第一BWP。
结合第二方面,在一种可能的实现方式中,所述根据所述关联关系确定第一QCL关系,包括:
所述第一QCL关系为默认QCL信息所指示的QCL关系,所述默认QCL信息为:调度所述PDSCH的DCI所在的控制资源集合的QCL信息。
也就是说,若第一BWP上的DCI#1调度了第二BWP上的PDSCH,那么DCI#1所在的CORESET的QCL信息可以作为第一QCL关系。
结合第二方面,在一种可能的实现方式中,所述根据所述关联关系确定第一QCL关系,和/或所述根据所述关联关系确定第二QCL关系,包括:
所述第一QCL关系和/或所述第二QCL关系为默认QCL信息所指示的QCL关系,所述默认QCL信息为下述中的至少一种:
为所述第二BWP中的控制资源集合和/或PDSCH配置的QCL信息中的一个;
用于初始接入的同步信号广播信道块SSB的QCL信息;
用于接收广播PDCCH的QCL信息;
所述第二BWP包括的SSB中索引最小的SSB的QCL信息。
进一步地,若所述第二BWP为初始BWP或包括初始BWP,或者若所述第二BWP不包括SSB时,所述第一QCL关系和/或所述第二QCL关系为用于初始接入的SSB的QCL信息所指示的QCL关系或用于接收广播PDCCH的QCL信息所指示的QCL关系;和/或,
若所述第二BWP不包括初始BWP,且所述第二BWP包括SSB,所述第一QCL关系和/或所述第二QCL关系为第二BWP包括的SSB中的索引最小的SSB的QCL信息所指示的QCL关系。
结合第二方面,在一种可能的实现方式中,所述PDSCH由下行控制信息DCI调度,其中,所述DCI还包括所述BWP切换指示信息。也就是说,所述PDSCH由位于所述第一BWP的DCI调度。
结合第二方面,在一种可能的实现方式中,若调度偏移大于或者等于第一阈值,所述第一QCL关系为所述BWP切换指示信息所包括的QCL信息所指示的QCL关系;和/或
若所述调度偏移小于所述第一阈值,所述第一QCL关系为所述默认QCL信息所指示的QCL关系;
其中,所述第一阈值为终端的波束切换与BWP切换所需的时间总和。
结合第二方面,在一种可能的实现方式中,所述根据所述关联关系确定第一QCL关系,和/或所述根据所述关联关系确定第二QCL关系,包括:
所述第二QCL关系为下述中的至少一种QCL信息所指示的QCL关系:
在频域上距离所述第二BWP最近的所述第一BWP中的控制资源集合的QCL信息。
关于第二方面,具体可以参照第一方面的描述,这里不再赘述。
第三方面,提供了一种通信方法,该方法包括:确定第一BWP和第二BWP;确定第一QCL关系,并根据第一QCL关系在第二BWP上接收PDSCH;和/或,确定第二QCL关系,并根据第二QCL关系在第二BWP上接收PDCCH。
第一QCL关系可以是一种具体的QCL信息,或者是该QCL信息所指示的QCL关系。所述QCL信息可以是网络设备通过信令配置给终端的,或者终端可以根据预设条件假设 所述第二BWP的某些参数和第一BWP的某些参数是QCL的,或者存在某些关联关系。例如,网络设备可以通过信令指示PDSCH或PDCCH的TCI状态,TCI状态用于指示PDSCH或PDCCH的DMRS与TCI状态包括的参考信号满足QCL关系。或者可以通过预定义的方式,假设PDSCH或PDCCH的DMRS与某个参考信号(如同步信号广播信道块(synchronous signal/PBCH block,SSB))满足(空间)QCL关系。第二QCL关系可参照对第一QCL关系所作的说明。进一步地,第一QCL关系可以和第二QCL关系相同,但本申请对此不作限定。
本申请实施例的通信方法,通过确定第一QCL关系和/或第二QCL关系,能够根据该第一QCL关系和/或第二QCL关系,进行PDCCH和/或PDSCH的传输。
结合第三方面,在一种可能的实现方式中,确定第一QCL关系,包括:根据第一BWP和第二BWP的关联关系,确定第一QCL关系;和/或,确定第一QCL关系,包括:根据第一BWP和第二BWP的关联关系,确定第二QCL关系。
本申请实施例的通信方法,网络设备和终端设备在确定第一BWP和第二BWP后,能够根据第一QCL关系和/或第二QCL关系,在第二BWP上进行PDCCH和/或PDSCH的传输。
结合第三方面,在一种可能的实现方式中,所述确定第一BWP和所述第二BWP,包括:接收BWP切换指示信息;根据所述BWP切换指示信息从所述第一BWP切换至所述第二BWP。
也就是说,第一BWP为切换前的BWP,第二BWP为切换后的BWP。从而,根据本申请实施例的通信方法,可以根据切换前的BWP和切换后的BWP的关联关系,在切换后的BWP上进行PDCCH和/或PDSCH的接收。
第一BWP和第二BWP可以是一个载波上的BWP,也可以是多个载波上的BWP,比如,第一BWP可以是载波#1上配置的BWP,第二BWP可以是载波#2上配置的BWP,载波#1和载波#2可以是进行载波聚合的两个载波。
此外,终端可以同时接入多个载波,每个载波可以配置一个BWP,即激活的BWP可以有多个。第一BWP可以是激活的多个BWP中的已经配置QCL信息的BWP,第二BWP可以是激活的多个BWP中的尚未配置QCL信息的BWP。从而,根据本申请实施例的方法,可以在第二BWP未配置QCL信息之间,根据第一BWP和第二BWP的关联关系,在第二BWP上进行PDCCH和/或PDSCH的接收。
结合第三方面,在一种可能的实现方式中,第一QCL关系和第二QCL关系可以是网络设备为第一BWP配置的QCL信息所指示的QCL关系。
进一步地,终端可以在下述情况下根据第一QCL关系接收PDSCH和/或根据第二QCL关系接收PDCCH:终端在第二BWP上接收到CORSET和/或PDSCH的QCL信息之前。
因此,本申请实施例的通信方法,通过复用第一BWP的QCL信息,终端和网络设备可以通过复用第一BWP的QCL信息,在第二BWP上进行PDCCH和/或PDSCH的传输,而不需要等到网络设备波束训练之后再配置QCL信息,从而能够减小由波束训练带来的时延问题。并且,通过复用第一BWP的QCL信息,能够使网络设备与终端设备对齐QCL假设或波束(发送波束与接收波束),从而使得终端能够准确接收数据,并能够减小网络设备为第二BWP配置QCL信息的所需的信令开销。
结合三方面,在一种可能的实现方式中,所述第一BWP与所述第二BWP存在关联关系包括以至少一种情况:
所述第一BWP与所述第二BWP在频域上部分或全部重叠;
为所述第一BWP配置的参考信号和为所述第二BWP配置的参考信号满足QCL关系;
所述第一BWP与所述第二BWP包括相同的控制资源集合;
所述第一BWP与所述第二BWP为同频带的BWP(intra-band BWP)。
具体地,第一BWP和第二BWP在频域上重叠也可以理解为:第一BWP和第二BWP中包括相同的资源块(resource block,RB)。第一BWP和第二BWP在频域上重叠可以是下述中的任一种:A:第一BWP和第二BWP在频域上部分重叠,且不存在包含关系。即,第一BWP与第二BWP包括相同的RB,但第一BWP不是第二BWP的子集且第二BWP也不是第一BWP的子集。B:第一BWP是第二BWP的真子集。即,第二BWP包括构成第一BWP的所有RB,且构成第二BWP的所有RB中至少有一个RB与构成第一BWP的RB不同。C:第二BWP是第一BWP的真子集。即,第一BWP包括构成第二BWP的所有RB,且构成第一BWP的所有RB中至少有一个RB与构成第二BWP的RB不同。D:第二BWP与第一BWP完全重叠。即,第二BWP与第一BWP包括的RB相同。在此情况下,第一BWP和第二BWP的某些参数可以不同,例如二者的子载波间隔可以不同,配置的CORSET可以不同。
第一BWP和第二BWP中包括相同的CORESET,即,第一BWP和第二BWP在频域上重叠,且网络设备在第一BWP中的第一BWP与第二BWP的重叠区域中配置的至少一个CORESET与设备在第二BWP中的第一BWP与第二BWP的重叠区域中配置的至少一个CORESET部分或全部相同。
网络设备为第一BWP配置的参考信号和为第二BWP配置的参考信号满足QCL关系。具体来讲,网络设备为第一BWP包括的COREST和/或PDSCH配置的QCL信息所指示的参考信号包括第二BWP的参考信号。或者,网络设备为第一BWP包括的参考信号配置的QCL信息所指示的参考信号是第二BWP的参考信号。例如,网络设备为第一BWP的CORESET#1配置的TCI状态中包括参考信号CSI-RS#1,CSI-RS#1是第二BWP的参考信号,那么就认为第一BWP与第二BWP有关联关系。或者,网络设备为第二BWP包括的COREST和/或PDSCH配置的QCL信息所指示的参考信号包括第一BWP的参考信号。或者网络设备为第二BWP包括的参考信号配置的QCL信息所指示的参考信号是第一BWP的参考信号。例如,网络设备为第二BWP的CORESET#2配置的TCI状态中包括参考信号CSI-RS#2,CSI-RS#2是第一BWP的参考信号,那么就认为第一BWP与第二BWP有关联关系。
结合第三方面,在一种可能的实现方式中,所述确定第一QCL关系,包括:
所述第一QCL关系为下行控制信息DCI包括的QCL信息所指示的QCL关系,其中,所述DCI还包括所述BWP切换指示信息。
应理解,该DCI位于第一BWP。也就是说,位于第一BWP用于指示BWP切换的DCI所包括的QCL信息为第一QCL关系。
可选地,该DCI所包括的QCL信息可以是为第一BWP配置的一个候选QCL信息。从而,通过复用第一BWP的QCL信息,终端和网络设备可以通过复用第一BWP的QCL 信息,在第二BWP上进行PDCCH和/或PDSCH的传输,而不需要等到网络设备波束训练之后再配置QCL信息,从而能够减小由波束训练带来的时延问题。并且,通过复用第一BWP的QCL信息,能够使网络设备与终端设备对齐QCL假设或波束(发送波束与接收波束),从而使得终端能够准确接收数据,并能够减小网络设备为第二BWP配置QCL信息的所需的信令开销。
应理解,该DCI也可以是为第二BWP配置的一个候选QCL信息,本申请对此不作限定。
进一步地,在调度偏移大于或者等于第一阈值时,第一QCL关系可以是用于指示BWP切换的DCI所包括的QCL信息。
本申请中,调度偏移是指:下行DCI与PDSCH之间的时间偏移。
示例性的,第一阈值可以是终端根据其能力上报的,或者可以是网络设备配置的,或者可以是预定义的。其中对于跨BWP调度的情况,比如第一BWP的DCI调度第二BWP的PDSCH,第一阈值为波束切换与BWP切换所需的时间总和。对于同一个BWP调度的情况,比如第二BWP的DCI调度第二BWP的PDSCH,第一阈值为波束切换所需的时间。
结合第三方面,在一种可能的实现方式中,所述根据确定第一QCL关系和/或第二QCL关系,包括:
所述第一BWP或者所述第二BWP包括的控制资源集合中索引或标识最小的控制资源集合的QCL信息;
所述第一BWP和所述第二BWP均包括的控制资源集合的QCL信息;
所述第一BWP和所述第二BWP重叠的频域资源中所述第一BWP所包括的控制资源集合的QCL信息;
所述第一BWP中的控制资源集合和/或PDSCH配置的QCL信息中的第三QCL信息,所述第三QCL信息所指示的参考信号位于所述第二BWP;
所述第二BWP中的控制资源集合和/或PDSCH配置的QCL信息中的第四QCL信息,所述第四QCL信息所指示的参考信号位于所述第一BWP。
可选地,所述第一BWP或者所述第二BWP包括的控制资源集合可以是配置了有效QCL信息的CORESET,即第一BWP或者所述第二BWP所包括的所有控制资源集合中配置了QCL信息的CORESET。
可选地,所述第一BWP或者所述第二BWP包括的控制资源集合可以是用于发送广播PDCCH的控制资源集合中标识值或索引值最小的CORESET或者是用于发送非广播PDCCH的控制资源集合中标识值或索引值最小的CORESET。
结合第三方面,在一种可能的实现方式中,所述确定第一QCL关系,包括:
若所述第一BWP与所述第二BWP存在关联关系,所述第一QCL关系为默认QCL信息所指示的QCL关系,所述默认QCL信息为:调度所述PDSCH的DCI所在的控制资源集合的QCL信息。
也就是说,若第一BWP上的DCI#1调度了第二BWP上的PDSCH,那么DCI#1所在的CORESET的QCL信息可以作为第一QCL关系。
结合第三方面,在一种可能的实现方式中,所述确定第一QCL关系,和/或确定第二QCL关系,包括:
所述第一QCL关系和/或所述第二QCL关系为默认QCL信息所指示的QCL关系,所述默认QCL信息为下述中的至少一种:
为所述第二BWP中的控制资源集合和/或PDSCH配置的QCL信息中的一个;
用于初始接入的同步信号广播信道块SSB的QCL信息;
用于接收广播PDCCH的QCL信息;
所述第二BWP包括的SSB中索引最小的SSB的QCL信息。
进一步地,若所述第二BWP为初始BWP或包括初始BWP,或者若所述第二BWP不包括SSB时,所述第一QCL关系和/或所述第二QCL关系为用于初始接入的SSB的QCL信息所指示的QCL关系或用于接收广播PDCCH的QCL信息所指示的QCL关系;和/或,
若所述第二BWP不包括初始BWP,且所述第二BWP包括SSB,所述第一QCL关系和/或所述第二QCL关系为第二BWP包括的SSB中的索引最小的SSB的QCL信息所指示的QCL关系。
应理解,第二BWP包括初始BWP是指初始BWP为第二BWP的子集。
应理解,第一QCL关系为初始接入的SSB的QCL信息可以理解为:所述PDSCH和/或所述PDCCH的DMRS与该SSB满足QCL假设关系。
结合第三方面,在一种可能的实现方式中,所述PDSCH由下行控制信息DCI调度,其中,所述DCI还包括所述BWP切换指示信息。也就是说,所述PDSCH由位于所述第一BWP的DCI调度。
结合第三方面,在一种可能的实现方式中,若调度偏移大于或者等于第一阈值,所述第一QCL关系为所述BWP切换指示信息所包括的QCL信息所指示的QCL关系;和/或
若所述调度偏移小于所述第一阈值,所述第一QCL关系为所述默认QCL信息所指示的QCL关系;
其中,所述第一阈值为终端的波束切换与BWP切换所需的时间总和。
结合第三方面,在一种可能的实现方式中,所述确定第一准共址QCL关系,和/或确定第二QCL关系,包括:
所述第二QCL关系为下述中的至少一种QCL信息所指示的QCL关系:
在频域上距离所述第二BWP最近的所述第一BWP中的控制资源集合的QCL信息。
第四方面,提供了一种通信方法,该方法包括:确定第一BWP和第二BWP;根据第一QCL关系在第二BWP上发送PDSCH;和/或,确定第二QCL关系,并根据第二QCL关系在第二BWP上发送PDCCH。
本申请实施例的通信方法,通过确定第一QCL关系和/或第二QCL关系,能够根据该第一QCL关系和/或第二QCL关系,进行PDCCH和/或PDSCH的传输。
结合第四方面,在一种可能的实现方式中,确定第一QCL关系,包括:根据第一BWP和第二BWP的关联关系,确定第一QCL关系;和/或,确定第一QCL关系,包括:根据第一BWP和第二BWP的关联关系,确定第二QCL关系。
本申请实施例的通信方法,网络设备和终端设备在确定第一BWP和第二BWP后,能够根据第一QCL关系和/或第二QCL关系,在第二BWP上进行PDCCH和/或PDSCH的传输。
结合第四方面,在一种可能的实现方式中,在确定第一BWP和所述第二BWP之后,该方法还可以包括:发送BWP切换指示信息,所述BWP切换指示信息用于指示终端从所述第一BWP切换至所述第二BWP。
结合第四方面,在一种可能的实现方式中,第一QCL关系和第二QCL关系可以是网络设备为第一BWP配置的QCL信息所指示的QCL关系。
进一步地可以在下述情况下根据第一QCL关系发送PDSCH和/或根据第二QCL关系发送PDCCH:在第二BWP上发送CORSET和/或PDSCH的QCL信息之前。
因此,本申请实施例的通信方法,通过复用第一BWP的QCL信息,终端和网络设备可以通过复用第一BWP的QCL信息,在第二BWP上进行PDCCH和/或PDSCH的传输,而不需要等到网络设备波束训练之后再配置QCL信息,从而能够减小由波束训练带来的时延问题。并且,通过复用第一BWP的QCL信息,能够使网络设备与终端设备对齐QCL假设或波束(发送波束与接收波束),从而使得终端能够准确接收数据,并能够减小网络设备为第二BWP配置QCL信息的所需的信令开销。
结合第四方面,在一种可能的实现方式中,所述第一BWP与所述第二BWP存在关联关系包括以至少一种情况:
所述第一BWP与所述第二BWP在频域上部分或全部重叠;
为所述第一BWP配置的参考信号和为所述第二BWP配置的参考信号满足准共址QCL关系;
所述第一BWP与所述第二BWP包括相同的控制资源集合;
所述第一BWP与所述第二BWP为同频带的BWP(intra-band BWP)。
结合第四方面,在一种可能的实现方式中,所述确定第一准共址QCL关系,包括:
所述第一QCL关系为下行控制信息DCI包括的QCL信息所指示的QCL关系,其中,所述DCI还包括所述BWP切换指示信息。
应理解,该DCI位于第一BWP。也就是说,位于第一BWP用于指示BWP切换的DCI所包括的QCL信息为第一QCL关系。
可选地,该DCI所包括的QCL信息可以是为第一BWP配置的一个候选QCL信息。从而,通过复用第一BWP的QCL信息,终端和网络设备可以通过复用第一BWP的QCL信息,在第二BWP上进行PDCCH和/或PDSCH的传输,而不需要等到网络设备波束训练之后再配置QCL信息,从而能够减小由波束训练带来的时延问题。并且,通过复用第一BWP的QCL信息,能够使网络设备与终端设备对齐QCL假设或波束(发送波束与接收波束),从而使得终端能够准确接收数据,并能够减小网络设备为第二BWP配置QCL信息的所需的信令开销。
应理解,该DCI也可以是为第二BWP配置的一个候选QCL信息,本申请对此不作限定。
进一步地,在调度偏移大于或者等于第一阈值时,第一QCL关系可以是用于指示BWP切换的DCI所包括的QCL信息。
结合第四方面,在一种可能的实现方式中,所述根据确定第一准共址QCL关系和/或第二QCL关系,包括:
所述第一BWP或者所述第二BWP包括的控制资源集合中索引或标识最小的控制资 源集合的QCL信息;
所述第一BWP和所述第二BWP均包括的控制资源集合的QCL信息;
所述第一BWP和所述第二BWP重叠的频域资源中所述第一BWP所包括的控制资源集合的QCL信息;
所述第一BWP中的控制资源集合和/或PDSCH配置的QCL信息中的第三QCL信息,所述第三QCL信息所指示的参考信号位于所述第二BWP;
所述第二BWP中的控制资源集合和/或PDSCH配置的QCL信息中的第四QCL信息,所述第四QCL信息所指示的参考信号位于所述第一BWP。
可选地,所述第一BWP或者所述第二BWP包括的控制资源集合可以是配置了有效QCL信息的CORESET,即第一BWP或者所述第二BWP所包括的所有控制资源集合中配置了QCL信息的CORESET。
可选地,所述第一BWP或者所述第二BWP包括的控制资源集合可以是用于发送广播PDCCH的控制资源集合中标识值或索引值最小的CORESET或者是用于发送非广播PDCCH的控制资源集合中标识值或索引值最小的CORESET。
结合第四方面,在一种可能的实现方式中,所述确定第一准共址QCL关系,包括:
若所述第一BWP与所述第二BWP存在关联关系,所述第一QCL关系为默认QCL信息所指示的QCL关系,所述默认QCL信息为:调度所述PDSCH的DCI所在的控制资源集合的QCL信息。
结合第四方面,在一种可能的实现方式中,所述确定第一准共址QCL关系,和/或确定第二QCL关系,包括:
所述第一QCL关系和/或所述第二QCL关系为默认QCL信息所指示的QCL关系,所述默认QCL信息为下述中的至少一种:
为所述第二BWP中的控制资源集合和/或PDSCH配置的QCL信息中的一个;
用于初始接入的同步信号广播信道块SSB的QCL信息;
用于接收广播PDCCH的QCL信息;
所述第二BWP包括的SSB中索引最小的SSB的QCL信息。
进一步地,若所述第二BWP为初始BWP或包括初始BWP,或者若所述第二BWP不包括SSB时,所述第一QCL关系和/或所述第二QCL关系为用于初始接入的SSB的QCL信息所指示的QCL关系或用于接收广播PDCCH的QCL信息所指示的QCL关系;和/或,
若所述第二BWP不包括初始BWP,且所述第二BWP包括SSB,所述第一QCL关系和/或所述第二QCL关系为第二BWP包括的SSB中的索引最小的SSB的QCL信息所指示的QCL关系。
结合第四方面,在一种可能的实现方式中,所述PDSCH由下行控制信息DCI调度,其中,所述DCI还包括所述BWP切换指示信息。也就是说,所述PDSCH由位于所述第一BWP的DCI调度。
结合第四方面,在一种可能的实现方式中,若调度偏移大于或者等于第一阈值,所述第一QCL关系为所述BWP切换指示信息所包括的QCL信息所指示的QCL关系;和/或
若所述调度偏移小于所述第一阈值,所述第一QCL关系为所述默认QCL信息所指示 的QCL关系;
其中,所述第一阈值为终端的波束切换与BWP切换所需的时间总和。
结合第四方面,在一种可能的实现方式中,所述确定第一准共址QCL关系,和/或确定第二QCL关系,包括:
所述第二QCL关系为下述中的至少一种QCL信息所指示的QCL关系:
在频域上距离所述第二BWP最近的所述第一BWP中的控制资源集合的QCL信息。
关于第四方面,具体可以参照第三方面的描述,这里不再赘述。
第五方面,提供了一种通信方法,该通信方法包括:确定第一BWP和第二BWP;根据所述第一BWP的传输配置指示TCI状态,接收所述第二BWP上的物理下行共享信道PDSCH,和/或,接收所述第二BWP上的物理下行控制信道PDCCH。
本申请实施例的通信方法,通过复用第一BWP的TCI状态,终端可以提前使用根据动态或半静态信令得到的更加准确的QCL信息接收的第二BWP上的PDCCH和/或PDSCH,不需要等到网络设备波束训练之后再配置TCI状态,从而能够减小由波束训练带来的时延问题。此外,通过复用第一BWP的TCI状态,能够减小网络设备为第二BWP配置TCI状态的所需的信令开销。
结合第五方面,在一种可能的实现方式中,所述确定第一BWP和所述第二BWP,包括:接收BWP切换指示信息;根据所述BWP切换指示信息从所述第一BWP切换至所述第二BWP。
也就是说,第一BWP为切换前的BWP,第二BWP为切换后的BWP。从而,根据本申请实施例的通信方法,可以根据切换前的BWP和切换后的BWP的关联关系,在切换后的BWP上进行PDCCH和/或PDSCH的接收。
第一BWP和第二BWP可以是一个载波上的BWP,也可以是多个载波上的BWP,比如,第一BWP可以是载波#1上配置的BWP,第二BWP可以是载波#2上配置的BWP,载波#1和载波#2可以是进行载波聚合的两个载波。
此外,终端可以同时接入多个载波,每个载波可以配置一个BWP,即激活的BWP可以有多个。第一BWP可以是激活的多个BWP中的已经配置TCI状态的BWP,第二BWP可以是激活的多个BWP中的尚未配置TCI状态的BWP。从而,根据本申请实施例的方法,可以在第二BWP未配置TCI状态之间,根据第一BWP和第二BWP的关联关系,在第二BWP上进行PDCCH和/或PDSCH的接收。
结合第五方面,在一种可能的实现方式中,所述根据所述第一BWP的传输配置指示TCI状态,接收所述第二BWP上的PDSCH,和/或,接收所述第二BWP上的PDCCH,包括:
在所述第一BWP与所述第二BWP存在关联关系时,根据所述第一BWP的传输配置指示TCI状态,接收所述第二BWP上的PDSCH,和/或,接收所述第二BWP上的PDCCH。
结合第五方面,在一种可能的实现方式中,所述第一BWP与所述第二BWP存在关联关系包括以至少一种情况:
所述第一BWP与所述第二BWP在频域上部分或全部重叠;
为所述第一BWP配置的参考信号和为所述第二BWP配置的参考信号满足准共址QCL关系;
所述第一BWP与所述第二BWP包括相同的控制资源集合;
所述第一BWP与所述第二BWP为同频带的BWP(intra-band BWP)。
具体地,第一BWP和第二BWP在频域上重叠也可以理解为:第一BWP和第二BWP中包括相同的资源块(resource block,RB)。第一BWP和第二BWP在频域上重叠可以是下述中的任一种:A:第一BWP和第二BWP在频域上部分重叠,且不存在包含关系。即,第一BWP与第二BWP包括相同的RB,但第一BWP不是第二BWP的子集且第二BWP也不是第一BWP的子集。B:第一BWP是第二BWP的真子集。即,第二BWP包括构成第一BWP的所有RB,且构成第二BWP的所有RB中至少有一个RB与构成第一BWP的RB不同。C:第二BWP是第一BWP的真子集。即,第一BWP包括构成第二BWP的所有RB,且构成第一BWP的所有RB中至少有一个RB与构成第二BWP的RB不同。D:第二BWP与第一BWP完全重叠。即,第二BWP与第一BWP包括的RB相同。在此情况下,第一BWP和第二BWP的某些参数可以不同,例如二者的子载波间隔可以不同,配置的CORSET可以不同。
第一BWP和第二BWP中包括相同的CORESET,即,第一BWP和第二BWP在频域上重叠,且网络设备在第一BWP中的第一BWP与第二BWP的重叠区域中配置的至少一个CORESET与设备在第二BWP中的第一BWP与第二BWP的重叠区域中配置的至少一个CORESET部分或全部相同。
网络设备为第一BWP配置的参考信号和为第二BWP配置的参考信号满足QCL关系。具体来讲,网络设备为第一BWP包括的COREST和/或PDSCH配置的TCI状态所指示的参考信号包括第二BWP的参考信号。或者,网络设备为第一BWP包括的参考信号配置的TCI状态所指示的参考信号是第二BWP的参考信号。例如,网络设备为第一BWP的CORESET#1配置的TCI状态中包括参考信号CSI-RS#1,CSI-RS#1是第二BWP的参考信号,那么就认为第一BWP与第二BWP有关联关系。或者,网络设备为第二BWP包括的COREST和/或PDSCH配置的TCI状态所指示的参考信号包括第一BWP的参考信号。或者网络设备为第二BWP包括的参考信号配置的TCI状态所指示的参考信号是第一BWP的参考信号。例如,网络设备为第二BWP的CORESET#2配置的TCI状态中包括参考信号CSI-RS#2,CSI-RS#2是第一BWP的参考信号,那么就认为第一BWP与第二BWP有关联关系。
结合第五方面,在一种可能的实现方式中,所述根据所述第一BWP的传输配置指示TCI状态,接收所述第二BWP上的物理下行控制信道PDCCH,包括:
根据媒体接入控制信令或无线资源控制RRC信令指示的用于所述第一BWP上的PDCCH的TCI状态,接收所述第二BWP上的PDCCH。
应理解,该媒体接入控制信令是网络设备在第一BWP上发送的。若媒体接入控制信令激活的TCI状态为多个,终端可以使用该多个中的任一个或者索引最小或者索引最大的TCI状态或者所有的TCI状态,本申请实施例对此不作限定。
需要说明的是,本申请所涉及的媒体接入控制信令是层二信令,其可以是MAC层信令或者媒体接入控制控制单元(media access control control element,MAC-CE)等。
本申请实施例,终端通过复用媒体接入控制信令指示的用于第一BWP的PDCCH的TCI状态接收第二BWP上的PDCCH,能够减小网络设备为第二BWP配置TCI状态的信 令开销。并且,能够减小网络设备为第二BWP配置TCI状态所带来的时延。
结合第五方面,在一种可能的实现方式中,所述根据所述第一BWP的传输配置指示TCI状态,接收所述第二BWP上的物理下行控制信道PDCCH,包括:
接收媒体接入控制信令,所述媒体接入控制信令用于指示由无线资源控制RRC信令配置的用于所述第一BWP的多个候选TCI状态中的一个或者多个TCI状态用于所述第二BWP上的PDCCH的接收;
根据所述一个或者多个TCI状态,接收所述第二BWP上的PDCCH。
结合第五方面,在一种可能的实现方式中,所述根据所述第一BWP的传输配置指示TCI状态,接收所述第二BWP上的物理下行控制信道PDCCH,包括:
根据所述第一BWP中与所述第二BWP的控制资源集合相同的控制资源集合的TCI状态,接收所述第二BWP中与所述第一BWP的控制资源集合相同的控制资源集合上的PDCCH。
结合第五方面,在一种可能的实现方式中,所述根据所述第一BWP的传输配置指示TCI状态,接收所述第二BWP上的物理下行控制信道PDCCH,包括:
根据所述第一BWP中与所述第二BWP的控制资源集合相同的控制资源集合的TCI状态,接收所述第二BWP中与所述第一BWP的控制资源集合不同的控制资源集合上的PDCCH。
结合第五方面,在一种可能的实现方式中,所述根据所述第一BWP的传输配置指示TCI状态,接收所述第二BWP上的物理下行控制信道PDCCH,包括:
根据所述第一BWP与所述第二BWP重叠频域资源中所述第一BWP包括的控制资源集合的TCI状态,接收所述第二BWP上的PDCCH。
结合第五方面,在一种可能的实现方式中,所述根据所述第一BWP的传输配置指示TCI状态,接收所述第二BWP上的物理下行控制信道PDCCH,包括:
根据所述第二BWP和所述第一BWP的控制资源集合以标识或索引增序对应的方式,接收所述第二BWP上的PDCCH。
结合第五方面,在一种可能的实现方式中,所述根据所述第一BWP的传输配置指示TCI状态,接收所述第二BWP上的物理下行控制信道PDSCH,包括:
接收下行控制信息DCI,所述DCI信令用于指示由接收媒体接入控制信令配置的用于所述第一BWP的多个候选TCI状态中的一个或者多个TCI状态用于所述第二BWP上的PDSCH的接收,其中所述第一BWP的多个候选TCI状态包括为所述第一BWP上的PDCCH和/或PDSCH配置的多个候选TCI状态;
根据所述一个或者多个TCI状态,接收所述第二BWP上的PDSCH。
结合第五方面,在一种可能的实现方式中,所述根据所述第一BWP的传输配置指示TCI状态,接收所述第二BWP上的物理下行控制信道PDSCH,包括:
接收媒体接入控制信令,所述媒体接入控制信令用于指示由RRC信令配置的用于所述第一BWP的多个候选TCI状态中的一个或者多个TCI状态用于所述第二BWP上的PDSCH的接收;
根据所述一个或者多个TCI状态,接收所述第二BWP上的PDSCH。
结合第五方面,在一种可能的实现方式中,所述根据所述第一BWP的传输配置指示 TCI状态,接收所述第二BWP上的物理下行控制信道PDSCH,包括:
根据下行控制信息DCI指示的用于所述第一BWP的一个或者多个TCI状态,接收所述第二BWP上的PDSCH。
结合第五方面,在一种可能的实现方式中,所述终端根据所述第一BWP的传输配置指示TCI状态,接收所述第二BWP上的下行控制信道PDSCH,包括:
所述终端接收媒体接入控制信令,所述媒体接入控制信令指示RRC配置的用于所述第一BWP的一个或多个候选TCI状态中的一个或者多个TCI状态;
所述终端根据所述一个或者多个TCI状态,接收所述第二BWP上的PDSCH。
结合第五方面,在一种可能的实现方式中,所述DCI还包括所述BWP切换指示信息。
第六方面,提供了一种通信方法,该通信方法包括:确定第一BWP和第二BWP;根据所述第一BWP的传输配置指示TCI状态,在所述第二BWP上发送物理下行共享信道PDSCH,和/或,在所述第二BWP上发送物理下行控制信道PDCCH。
本申请实施例的通信方法,通过复用第一BWP的TCI状态,终端可以提前使用根据动态或半静态信令得到的更加准确的QCL信息接收的第二BWP上的PDCCH和/或PDSCH,不需要等到网络设备波束训练之后再配置TCI状态,从而能够减小由波束训练带来的时延问题。此外,通过复用第一BWP的TCI状态,能够减小网络设备为第二BWP配置TCI状态的所需的信令开销。
结合第六方面,在一种可能的实现方式中,在确定第一BWP和所述第二BWP之后,该方法还可以包括:发送BWP切换指示信息,所述BWP切换指示信息用于指示终端从所述第一BWP切换至所述第二BWP。
结合第六方面,在一种可能的实现方式中,所述根据所述第一BWP的传输配置指示TCI状态,在所述第二BWP上发送物理下行共享信道PDSCH,和/或,在所述第二BWP上发送物理下行控制信道PDCCH,包括:
在所述第一BWP与所述第二BWP存在关联关系时,根据所述第一BWP的传输配置指示TCI状态,在所述第二BWP上发送PDSCH,和/或,在所述第二BWP上发送PDCCH。
结合第六方面,在一种可能的实现方式中,所述第一BWP与所述第二BWP存在关联关系包括以至少一种情况:
所述第一BWP与所述第二BWP在频域上部分或全部重叠;
为所述第一BWP配置的参考信号和为所述第二BWP配置的参考信号满足QCL关系;
所述第一BWP与所述第二BWP包括相同的控制资源集合;
所述第一BWP与所述第二BWP为同频带的BWP(intra-band BWP)。
结合第六方面,在一种可能的实现方式中,所述根据所述第一BWP的传输配置指示TCI状态,在所述第二BWP上发送物理下行控制信道PDCCH,包括:
根据媒体接入控制信令或无线资源控制RRC信令指示的用于所述第一BWP上的PDCCH的TCI状态,在所述第二BWP上发送PDCCH。
本申请实施例,终端通过复用媒体接入控制信令指示的用于第一BWP的PDCCH的TCI状态接收第二BWP上的PDCCH,能够减小网络设备为第二BWP配置TCI状态的信令开销。并且,能够减小网络设备为第二BWP配置TCI状态所带来的时延。
结合第六方面,在一种可能的实现方式中,所述根据所述第一BWP的传输配置指示 TCI状态,在所述第二BWP上发送物理下行控制信道PDCCH,包括:
根据在所述第一BWP上发送的媒体接入控制信令所指示的一个或者多个TCI状态,在所述第二BWP上发送PDCCH,所述媒体接入控制信令用于指示由无线资源控制RRC信令配置的用于所述第一BWP的多个候选TCI状态中的所述一个或者多个TCI状态用于所述第二BWP上的PDCCH的接收。
结合第六方面,在一种可能的实现方式中,所述根据所述第一BWP的传输配置指示TCI状态,在所述第二BWP上发送PDCCH,包括:
根据所述第一BWP中与所述第二BWP的控制资源集合相同的控制资源集合的TCI状态,在所述第二BWP中与所述第一BWP的控制资源集合相同的控制资源集合上发送PDCCH。
结合第六方面,在一种可能的实现方式中,所述根据所述第一BWP的传输配置指示TCI状态,在所述第二BWP上发送PDCCH,包括:
根据所述第一BWP中与所述第二BWP的控制资源集合相同的控制资源集合的TCI状态,在所述第二BWP中与所述第一BWP的控制资源集合不同的控制资源集合上发送PDCCH。
结合第六方面,在一种可能的实现方式中,所述根据所述第一BWP的传输配置指示TCI状态,在所述第二BWP上发送PDCCH,包括:
根据所述第一BWP与所述第二BWP重叠频域资源中所述第一BWP包括的控制资源集合的TCI状态,在所述第二BWP上发送PDCCH。
结合第六方面,在一种可能的实现方式中,所述根据所述第一BWP的传输配置指示TCI状态,在所述第二BWP上发送PDCCH,包括:
根据所述第二BWP和所述第一BWP的控制资源集合以标识或索引增序对应的方式,在所述第二BWP上发送PDCCH。
结合第六方面,在一种可能的实现方式中,所述根据所述第一BWP的传输配置指示TCI状态,在所述第二BWP上发送PDSCH,包括:
根据在所述第一BWP上发送的DCI所指示的一个或者多个TCI状态,在所述第二BWP上发送PDSCH,所述DCI用于指示由媒体接入控制信令配置的用于所述第一BWP的多个候选TCI状态中的所述一个或者多个TCI状态用于所述第二BWP上的PDSCH的接收,其中所述第一BWP的多个候选TCI状态包括为所述第一BWP上的PDCCH和/或PDSCH配置的多个候选TCI状态。
结合第六方面,在一种可能的实现方式中,所述根据所述第一BWP的传输配置指示TCI状态,在所述第二BWP上发送PDSCH,包括:
根据在所述第一BWP上发送的媒体接入控制信令所指示的一个或者多个TCI状态,所述第二BWP上发送PDSCH所述媒体接入控制信令用于指示由RRC信令配置的用于所述第一BWP的多个候选TCI状态中的一个或者多个TCI状态用于所述第二BWP上的PDSCH的接收。
结合第六方面,在一种可能的实现方式中,所述根据所述第一BWP的传输配置指示TCI状态,在所述第二BWP上发送PDSCH,包括:
根据在所述第一BWP上发送的下行控制信息DCI指示的用于所述第一BWP的一个 或者多个TCI状态,在所述第二BWP上发送PDSCH。
结合第六方面,在一种可能的实现方式中,所述根据所述第一BWP的传输配置指示TCI状态,在所述第二BWP上发送PDSCH,包括:
根据在所述第一BWP上发送的接收媒体接入控制信令所指示的一个或者多个TCI状态,在所述第二BWP上发送PDSCH,所述媒体接入控制信令指示RRC配置的用于所述第一BWP的一个或多个候选TCI状态中的所述一个或者多个TCI状态;
所述终端根据所述一个或者多个TCI状态,
结合第六方面,在一种可能的实现方式中,所述DCI还包括所述BWP切换指示信息。
关于第六方面,具体可以参照第五方面的描述,这里不再赘述。
第七方面,提供了一种通信装置,包括用于执行上述第一方面至第六方面中的任一方面及其实施方式中的各步骤的单元。
在一种设计中,该装置为通信芯片,通信芯片可以包括用于发送信息或数据的输入电路或者接口,以及用于接收信息或数据的输出电路或者接口。
在另一种设计中,所述装置为终端,终端可以包括用于发送信息或数据的发射机,以及用于接收信息或数据的接收机。
在又一种设计中,所述装置为网络设备,网络设备可以包括用于发送信息或数据的发射机,以及用于接收信息或数据的接收机。
第八方面,提供了一种通信设备,包括,处理器,存储器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该通信设备执行上述第一方面至第六方面中的任一方面及其实施方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
可选的,该通信设备还包括,发射机(发射器)和接收机(接收器)。
第九方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述第一方面至第六方面中任一种可能实现方式中的方法。
第十方面,提供了一种计算机可读介质,所述计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面至第六方面中任一种可能实现方式中的方法。
第十一方面,提供了一种芯片系统,包括存储器和处理器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得安装有该芯片系统的通信设备执行上述第一方面至第六方面中任一种可能实现方式中的方法。
其中,该芯片系统可以包括用于发送信息或数据的输入电路或者接口,以及用于接收信息或数据的输出电路或者接口。
附图说明
图1是根据本申请实施例的一个通信系统的示意图。
图2是根据本申请实施例的通信方法的示意性流程图。
图3是根据本申请实施例的两个BWP在频域上的关系的示意图。
图4是根据本申请实施例的两个BWP在频域上的关系的示意图。
图5是根据本申请实施例的两个BWP在频域上的关系的示意图。
图6是根据本申请实施例的两个BWP在频域上的关系的示意图。
图7是根据本申请实施例的两个BWP的示意图。
图8是根据本申请实施例的两个BWP的示意图。
图9是根据本申请实施例的两个BWP的示意图。
图10是根据本申请实施例的两个BWP的示意图。
图11是根据本申请实施例的两个BWP的示意图。
图12是根据本申请实施例的另一通信方法的示意性流程图。
图13是根据本申请实施例的通信装置的结构示意图。
图14是根据本申请实施例的通信装置的结构示意图。
图15是根据本申请实施例的终端的结构示意图。
图16是根据本申请实施例的网络设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1示出了一种适用本申请的通信系统100。该通信系统100包括网络设备110和终端设备120,网络设备110与终端设备120通过无线网络进行通信,当终端设备120发送数据时,无线通信模块可对信息进行编码以用于传输,具体地,无线通信模块可获取要通过信道发送至网络设备110的一定数目的信息比特,这些信息比特例如是处理模块生成的、从其它设备接收的或者在存储模块中保存的信息比特。
当通信系统100的传输方向为上行传输时,终端设备120为发送端,网络设备110为接收端,当通信系统100的传输方向为下行传输时,网络设备110为发送端,终端设备120为接收端。
本申请提供的技术方案可以应用于各种通信系统,例如:5G移动通信系统,本申请所述的5G移动通信系统包括非独立组网(non-standalone,NSA)的5G移动通信系统和/或独立组网(standalone,SA)的5G移动通信系统。本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统。
在本申请中,终端可称为终端设备、接入终端、用户设备(user equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及5G通信系统中的用户设备。
网络设备可以是码分多址(code division multiple access,CDMA)系统中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(node B,NB),还可以是长期演进(long term evolution,LTE)系统中的演进型基站(evolutional node B,eNB),还可以是5G移动通信系统中的基站(gNB),上述基站仅是举例说明,网络设备还可以为中继站、接入点、车载设备、可穿 戴设备以及其它类型的设备。
上述适用本申请的通信系统仅是举例说明,适用本申请的通信系统不限于此,例如,通信系统中包括的网络设备和终端设备的数量还可以是其它的数量。
为了便于理解本申请,在介绍本申请提供的通信方法之前,首先对本申请涉及的概念做简要介绍。
1、初始BWP
当终端设备从RRC-idle状态接入一个小区或者一个宽带载波时,终端设备初始接入时的BWP称为:初始BWP(initial BWP)。或者可以理解为终端设备在初始BWP上执行随机接入。
2、激活(active)BWP
当终端设备有业务到达时,网络设备将终端设备从初始BWP调度到一个带宽和其业务相匹配的BWP上,并且可以通过高层信令或者层一信令指示当前终端设备工作的BWP,网络设备,终端设备在这个BWP上可以收发数据和或参考信号。这个BWP就称为激活BWP。对于单载波的情况或一个服务小区的情况,一个终端设备在同一时刻只有一个激活的BWP,终端设备只能在激活的BWP上接收数据/参考信号或者发送数据/参考信号。。
目前通信系统中支持BWP的动态切换。网络设备通过下行控制信息(downlink control information,DCI)或无线资源控制(radio resource control,RRC)信令指示终端设备进行BWP的切换。DCI位于当前BWP中,其频域资源分配信息域的大小由当前BWP的带宽决定。DCI中有一个带宽区域指示(bandwidth part indicator)的信息域,用于指示终端设备所激活的BWP的ID号。当该信息域所指示的BWP ID号与终端设备当前激活的BWP ID号(即传输DCI的当前BWP)不一致时,终端设备需要从当前BWP切换至DCI中所指示的BWP上。
3、QCL信息
QCL信息用于指示两种参考信号之间的QCL关系,其中目标参考信号一般是可以是解调参考信号(demodulation reference signal,DMRS),信道状态信息参考信号(channel state information reference signal,CSI-RS)等,而被引用的参考信号或者源参考信号一般可以是信道状态信息参考信号(channel state information reference signal,CSI-RS)、追踪参考信号(tracking reference signal,TRS)、同步信号广播信道块(synchronous signal/PBCH block,SSB)等。应理解满足QCL关系的两个参考信号或信道的空间特性参数是相同的,从而基于该源参考信号资源索引可推断出目标参考信号的空间特性参数。其中,空间特性参数包括以下参数中的一种或多种:
入射角(angle of arrival,AoA)、主(Dominant)入射角AoA、平均入射角、入射角的功率角度谱(power angular spectrum,PAS)、出射角(angle of departure,AoD)、主出射角、平均出射角、出射角的功率角度谱、终端发送波束成型、终端接收波束成型、空间信道相关性、基站发送波束成型、基站接收波束成型、平均信道增益、平均信道时延(average delay)、时延扩展(delay spread)、多普勒扩展(Doppler spread)、多普勒频移(Doppler shift)、空间接收参数(spatial Rx parameters)等。
应理解,终端可以根据QCL信息指示的源参考信号的接收波束信息,接收目标参考信号。
4、传输配置指示(transmission configuration indicator,TCI)状态
一个TCI状态(TCI state)可以包含一个或两个被引用的参考信号,及所关联的QCL类型(QCL type)。QCL类型又可以分为A/B/C/D四个类别,分别是{Doppler shift,Doppler spread,average delay,delay spread,Spatial Rx parameter}的不同组合或选择。TCI状态包括QCL信息,或者TCI状态用于指示QCL信息。
5、控制资源集合(control resource set,CORESET)
为了提高终端设备盲检控制信道的效率,NR标准制定过程中提出了CORESET的概念。网络设备可为终端配置一个或多个CORESET,用于发送PDCCH。网络设备可以在终端设备对应的任一CORESET上,向终端设备发送控制信道。此外,网络设备还需要通知终端设备所述CORESET的相关联的其他配置,例如搜索空间等。每个CORESET的配置信息存在差异,例如频域宽度差异、时域长度差异等。
当前标准中支持BWP的动态切换。其中,BWP的切换可以在相同载波内或者不同载波之间进行。当终端从一个BWP切换至另一BWP后,终端如何接收切换后的BWP上的物理PDCCH和PDSCH,当前技术中还未涉及。
有鉴于此,本申请提供了一种通信方法,网络设备和终端设备通过确定第一BWP和第二BWP,可以根据第一BWP和第二BWP的关联关系,确定第一QCL关系,进而能够根据第一QCL关系在第二BWP上进行PDSCH。和/或,网络设备和终端设备可以根据第一BWP和第二BWP的关联关系,确定第二QCL关系,进而根据第二QCL关系在第二BWP上进行PDCCH的传输。以下,对本申请提供的通信方法进行详细描述。
本申请实施例的方法可以由发送端和/或接收端执行。发送端可以是终端或者能够实现发送端功能的芯片或者功能模块,接收端可以是网络设备或者能够实现接收端功能的芯片或者功能模块。下文中以发送端为终端,接收端为网络设备为例,对本申请提供的通信方法进行详细说明。
图2是根据本申请提供的通信方法的示意图。如图2所示,该方法主要包括S210~S210。
S201,终端确定第一BWP BWP#1和第二BWP BWP#2。
例如,网络设备在需要进行BWP切换时,需要确定切换前的BWP以及切换后的BWP。若当前激活的BWP为BWP#1,则切换前的BWP为BWP#1,BWP#2可以是切换后的BWP。然后,网络设备可以通过向终端发送BWP切换指示信息,指示终端从BWP#1切换至BWP#2。终端根据该BWP切换指示信息,可以从BWP#1切换至BWP#2。
BWP#1和BWP#2可以是一个载波上的BWP,也可以是多个载波上的BWP,比如,BWP#1可以是载波#1上配置的BWP,BWP#2可以是载波#2上配置的BWP,载波#1和载波#2可以是进行载波切换的两个载波。
再如,终端可以同时接入多个载波,每个载波可以配置一个BWP,即激活的BWP可以有多个。BWP#1可以是激活的多个BWP中的已经配置QCL信息的BWP,BWP#2可以是激活的多个BWP中的尚未配置QCL信息的BWP。
S202,终端确定BWP#1和BWP#2的关联关系。
S203,终端根据所述关联关系,确定第一QCL关系。
S204,终端根据所述关联关系,确定第二QCL关系。
S205,网络设备确定BWP#1和BWP#2。
S206,网络设备确定BWP#1和BWP#2的关联关系。
S207,网络设备根据关联关系,确定第一QCL关系。
S208,网络设备根据关联关系,确定第二QCL关系。
S209,终端根据第一QCL关系,在BWP#2上接收网络设备发送的PDSCH。
S210,终端根据第二QCL关系,在BWP#2上接收网络设备发送的PDCCH。
应理解,S205与S201对应,具体可以参见S210的描述,这里不再赘述。S202与S206对应,当二者之一被执行时,另一个步骤也被执行。S203与S207对应,当二者之一被执行时,另一个步骤也被执行,并且两个步骤中的第一QCL关系相同。S204与S208对应,当二者之一被执行时,另一个步骤也被执行,并且两个步骤中的第二QCL关系相同。S209和S210二者均可被执行,或者二者之一可被执行。当S203和S207被执行时,终端可执行S209。当S204和S208被执行时,终端可执行S210。
可选地,S202可被替换为S202a:判断BWP#1和BWP#2是否存在关联关系。
可选地,终端可以不执行S202。此时,S203可被替换为203a:终端确定第一QCL关系。相应地,网络设备可以不执行S206,此时S207执行207a:网络设备确定第一QCL关系。
可选地,终端可以不执行S202。此时,S204可被替换为204a:终端确定第二QCL关系。相应地,网络设备可以不执行S208,此时S208执行208a:网络设备确定第一QCL关系。
应理解,本发明并不限定各个步骤的先后顺序或某些步骤的同时执行,例如S203和S204可以更换顺序、S207和S208可以更换顺序,S209和S210可以更换顺序,等等。
具体来讲,作为本申请一个实施例,终端通过确定BWP#1和BWP#2后,确定BWP#1和BWP#2的关联关系,根据该关联关系确定第一QCL关系和/或确定第二QCL关系。在终端确定了第一QCL关系的情况下,终端根据第一QCL关系发送PDSCH。在终端确定了第二QCL关系的情况下,终端根据第一QCL关系发送PDCCH。作为本申请一个实施例,终端通过确定BWP#1和BWP#2后,确定第一QCL关系和/或确定第二QCL关系。在终端确定了第一QCL关系的情况下,终端根据第一QCL关系发送PDSCH。在终端确定了第二QCL关系的情况下,终端根据第二QCL关系发送PDCCH。作为本申请另一实施例,终端通过确定BWP#1和BWP#2后,判断BWP#1和BWP#2是否存在关联关系,根据BWP#1和BWP#2是否存在关联关系,确定第一QCL关系和/或确定第二QCL关系。在终端确定了第一QCL关系的情况下,终端根据第一QCL关系发送PDSCH。在终端确定了第二QCL关系的情况下,终端根据第一QCL关系发送PDCCH。
上述中,第一QCL关系可以是一种具体的QCL信息,或者是该QCL信息所指示的QCL关系。所述QCL信息可以是网络设备通过信令配置给终端的,或者终端可以根据预设条件假设所述BWP#2的某些参数和BWP#1的某些参数是QCL的,或者存在某些关联关系。例如,网络设备可以通过信令指示PDSCH或PDCCH的TCI状态,TCI状态用于指示PDSCH或PDCCH的DMRS与TCI状态包括的参考信号满足QCL关系。或者可以通过预定义的方式,假设PDSCH或PDCCH的DMRS与某个参考信号(如SSB)满足(空间)QCL关系。第二QCL关系可参照对第一QCL关系所作的说明。
应理解,所述关联关系可以包括多种关联关系,例如第一关联关系或第二关联关系。例如,关联关系可以指BWP#1和BWP#2的某些参数存在某些关系,该关系可以是终端根据相关信息确定的也可以预定义的,终端可以根据BWP#1和BWP#2的某些参数认为BWP#1和BWP#2存在关联关系或者不存在关联关系。或者,该关系也可以是网络设备通过信令配置的,该信令可以是RRC信令、MAC-CE信令、DCI等。
本申请中,可选地,所述PDCCH可以替换为PUCCH,PDSCH可以替换为PUSCH。也就是说,第一QCL关系可以用于传输PUCCH,第二QCL关系可以用于传输PUSCH。
应理解,本申请应用于上行信号或信道传输时,上述“QCL关系”可以替换为“spatial relation信息”,或替换为用于上行传输的“TCI”。
可选地,第一QCL关系可以和第二QCL关系相同,也可以不同,本申请对此不作限定。
可选地,终端可以在下述情况下,根据第一QCL关系接收PDSCH和/或根据第二QCL关系接收PDCCH:
终端在BWP#2上接收到CORSET和/或PDSCH的QCL信息之前。
也就是说,终端可以在网络设备配置BWP#2的CORSET和/或PDSCH的QCL信息之前,根据第一QCL关系接收PDSCH和/或根据第二QCL关系接收PDCCH。
本申请实施例的通信方法,网络设备和终端设备在确定BWP#1和BWP#2后,能够根据BWP#1和BWP#2的关联关系,确定第一QCL关系和/或第二QCL关系。以及,可以根据第一QCL关系,在BWP#2上进行PDSCH的传输。根据第二QCL关系,在BWP#2上进行PDCCH的传输。
可选地,第一QCL关系和第二QCL关系可以是网络设备为BWP#1配置的QCL信息所指示的QCL关系。
因此,本申请实施例的通信方法,通过复用BWP#1的QCL信息,终端和网络设备可以通过复用BWP#1的QCL信息,在BWP#2上进行PDCCH和/或PDSCH的传输,而不需要等到网络设备波束训练之后再配置QCL信息,从而能够减小由波束训练带来的时延问题。并且,通过复用BWP#1的QCL信息,能够使网络设备与终端设备对齐QCL假设或波束(发送波束与接收波束),从而使得终端能够准确接收数据,并能够减小网络设备为BWP#2配置QCL信息的所需的信令开销。
进一步地,若BWP#1和BWP#2满足下述条件中的至少一种,可以认为BWP#1和BWP#2存在关联关系或者具有关联关系。或者说,BWP#1和BWP#2的关联关系可以是下述条件1中的至少一种。
条件1:
BWP#1和BWP#2在频域上重叠。应理解,BWP#1和BWP#2在频域上重叠也可以理解为:BWP#1和BWP#2中包括相同的资源块(resource block,RB)。
BWP#1和BWP#2在频域上重叠可以是下述A、B、C、D四种情况中的任一种:
A、BWP#1和BWP#2在频域上部分重叠,且不存在包含关系。即,BWP#1与BWP#2包括相同的RB,但BWP#1不是BWP#2的子集且BWP#2也不是BWP#1的子集。例如,如图3所示。
B、BWP#1是BWP#2的真子集。即,BWP#2包括构成BWP#1的所有RB,且构成 BWP#2的所有RB中至少有一个RB与构成BWP#1的RB不同。例如,如图4所示。
C、BWP#2是BWP#1的真子集。即,BWP#1包括构成BWP#2的所有RB,且构成BWP#1的所有RB中至少有一个RB与构成BWP#2的RB不同。例如,如图5所示。
D、BWP#2与BWP#1完全重叠。即,BWP#2与BWP#1包括的RB相同。例如,如图6所示。在此情况下,BWP#1和BWP#2的某些参数可以不同,例如二者的子载波间隔可以不同,配置的CORSET可以不同。
条件2:
BWP#1和BWP#2中包括相同的CORESET。
也就是说,BWP#1和BWP#2在频域上重叠,且网络设备在BWP#1中的BWP#1与BWP#2的重叠区域中配置的至少一个CORESET与设备在BWP#2中的BWP#1与BWP#2的重叠区域中配置的至少一个CORESET部分或全部相同。
例如,参见图7,BWP#1和BWP#2在频域上部分重叠,并且,网络设备在BWP#1中的BWP#1与BWP#2的重叠区域中配置了CORESET#1,在BWP#2中的BWP#1与BWP#2的重叠区域中配置了CORESET#1。此外,BWP#2还可以包括其他的CORESET,例如,图7所示的CORESET#5。BWP#1还可以包括其他的CORESET,例如,图7所示的CORESET#3。
条件3:
网络设备为BWP#1配置的参考信号和为BWP#2配置的参考信号满足QCL关系。
具体来讲,网络设备为BWP#1包括的COREST和/或PDSCH配置的QCL信息所指示的参考信号包括BWP#2的参考信号。或者,网络设备为BWP#1包括的参考信号配置的QCL信息所指示的参考信号是BWP#2的参考信号。例如,网络设备为BWP#1的CORESET#1配置的TCI状态中包括参考信号CSI-RS#1,CSI-RS#1是BWP#2的参考信号,那么就认为BWP#1与BWP#2有关联关系。
或者,网络设备为BWP#2包括的COREST和/或PDSCH配置的QCL信息所指示的参考信号包括BWP#1的参考信号。或者网络设备为BWP#2包括的参考信号配置的QCL信息所指示的参考信号是BWP#1的参考信号。例如,网络设备为BWP#2的CORESET#2配置的TCI状态中包括参考信号CSI-RS#2,CSI-RS#2是BWP#1的参考信号,那么就认为BWP#1与BWP#2有关联关系。
条件4:
BWP#1和BWP#2为同频带BWP,也即intra-band BWP。
同频带是指:在相同的频带内。主要应用于多载波聚合场景下,一个终端设备在同频带的两个载波上进行数据传输。
BWP#1和BWP#2满足上述条件中的至少一种,也可以称为BWP#1和BWP#2是QCL的或者满足QCL假设关系。也就是说,所述关联关系可以是QCL假设关系。相应地,BWP#1和BWP#2不满足上述条件中的任一种,也可以称为BWP#1和BWP#2不是QCL的或者不满足QCL假设关系。
应理解,BWP#1和BWP#2存在关联关系或者具有关联关系除了上述条件外,还可以是网络设备配置的关联关系,或者终端设备上报的关联关系等。
本申请中,PDSCH和BWP#1满足调度关系。一个实施例中,所述PDSCH可以与 BWP#1的PDCCH相关联;一个具体的实施例中,位于BWP#1的PDCCH调度所述PDSCH(即,场景一)。或者,PDSCH和BWP#2满足调度关系。一个实施例中,所述PDSCH可以与BWP#2的PDCCH相关联;一个具体的实施例中,位于BWP#2的PDCCH调度所述PDSCH(即,场景二)。需要说明的是,下述场景二下描述的第二QCL关系为BWP#2上的PDCCH的QCL关系。
场景一
在一种可能的实现方式中,第一QCL关系可以为下述(a1)~(a7)中的至少一种QCL信息或者QCL信息所指示的QCL关系。下面分别进行说明。
(a1)DCI所包括的QCL信息。其中,该DCI还包括上述的BWP切换指示信息。
应理解,该DCI位于BWP#1。也就是说,位于BWP#1用于指示BWP切换的DCI所包括的QCL信息为第一QCL关系。
可选地,该DCI所包括的QCL信息可以是为BWP#1配置的一个候选QCL信息。从而,通过复用第一BWP的QCL信息,终端和网络设备可以通过复用第一BWP的QCL信息,在第二BWP上进行PDCCH和/或PDSCH的传输,而不需要等到网络设备波束训练之后再配置QCL信息,从而能够减小由波束训练带来的时延问题。并且,通过复用第一BWP的QCL信息,能够使网络设备与终端设备对齐QCL假设或波束(发送波束与接收波束),从而使得终端能够准确接收数据,并能够减小网络设备为第二BWP配置QCL信息的所需的信令开销。
应理解,该DCI也可以是为BWP#2配置的一个候选QCL信息,本申请对此不作限定。
进一步地,在调度偏移大于或者等于第一阈值时,第一QCL关系可以是用于指示BWP切换的DCI所包括的QCL信息。
本申请中,调度偏移是指:下行DCI与PDSCH之间的时间偏移。
示例性的,第一阈值可以是终端根据其能力上报的,或者可以是网络设备配置的,或者可以是预定义的。其中对于跨BWP调度的情况,比如BWP#1的DCI调度BWP#2的PDSCH,第一阈值为波束切换与BWP切换所需的时间总和。对于同一个BWP调度的情况,比如BWP#2的DCI调度BWP#2的PDSCH,第一阈值为波束切换所需的时间。
(a2)BWP#1或者BWP#2所包括的CORESET中索引或者标识最小的CORESET的QCL信息。或者,BWP#1或者BWP#2中配置了有效QCL信息的CORESET中索引或者标识最小的CORESET。
具体来讲,BWP#1上配置的COREST包括一个或多个,可以将该一个或多个COREST中索引或者标识最小的CORESET的QCL信息作为第一QCL关系。或者,BWP#2上配置的COREST包括一个或多个,可以将该一个或多个COREST中索引或者标识最小的CORESET的QCL信息作为第一QCL关系。例如,参见图7,网络设备若仅为BWP#1配置了CORESET#1和CORESET#3,仅为BWP#2配置了CORESET#5和CORESET#1,那么可以将BWP#1中的CORESET#1的QCL信息作为第一QCL关系,或者可以将BWP#2中的CORESET#5的QCL信息作为第一QCL关系。
或者,BWP#1或者BWP#2上配置的COREST包括一个或多个,但只有部分COREST配置了相应的QCL信息,那么可以将该部分COREST中COREST索引或者标识最小的 CORESET的QCL信息作为第一QCL关系。
可选地,所述标识或者索引最小的CORESET可以是发送广播PDCCH的资源中标识值或索引值最小的CORESET或者是发送非广播PDCCH的资源中标识值或索引值最小的CORESET。
由于发送广播PDCCH所在的CORESET对应的波束一般较宽,其鲁棒性较好,覆盖范围较大,因此网络设备通过发送广播PDCCH所在的CORESET对应的波束发送PDSCH,能够提高终端的接收成功率。由于发送非广播PDCCH所在的CORESET对应的波束一般较窄,峰值速率高,因此网络设备通过发送非广播PDCCH所在的CORESET对应的波束发送PDSCH,能够提高终端接收的准确性。
应理解,本申请中描述的“X的QCL信息”可以理解为:X对应的QCL信息,或者用于X的QCL信息,或者应用于X的QCL信息。X可以是CORESET、PDSCH、SSB等。
(a3)BWP#1和BWP#2均包括的CORESET的QCL信息。
例如,参见图7,BWP#1和BWP#2均包括CORESET#1,那么可以将CORESET#1的QCL信息作为第一QCL关系。
应理解,BWP#1和BWP#2均包括的CORESET可能是一个也可能是多个。若BWP#1和BWP#2均包括的CORESET为多个,那么可以将该多个CORESET中的任一CORESET的QCL信息作为第一QCL关系,或者将该多个CORESET中索引或者标识最小的CORESET的QCL信息作为第一QCL关系,或者将该多个CORESET中索引或者标识最大的CORESET的QCL信息作为第一QCL关系,对此本申请实施例不作具体限定。
还应理解,BWP#1和BWP#2均包括的CORESET表示BWP#1和BWP#2包括相同的CORSET。BWP#1和BWP#2包括相同的CORSET是指BWP#1和BWP#2包括相同的时频资源或者包括相同的频域资源或者包括标识或索引相同的CORESET。
(a4)BWP#1和BWP#2重叠的频域资源中BWP#1所包括的CORESET的QCL信息。
其中,一种方式是:BWP#1和BWP#2在频域上重叠,且网络设备在BWP#1中的BWP#1与BWP#2的重叠区域中配置了CORESET集合A,在BWP#2中的BWP#1与BWP#2的重叠区域中配置了CORESET集合B,CORESET集合A包括一个或多个CORESET,CORESET集合B包括一个或多个CORESET,但CORESET集合A与CORESET集合B没有交集,在此情况下,可以将CORESET集合A中的CORESET的QCL信息作为第一QCL关系,例如,可以将CORESET集合A中的任一CORESET的QCL信息作为第一QCL关系,或者将该多个CORESET中索引或者标识最小的CORESET的QCL信息作为第一QCL关系,或者将该多个CORESET中索引或者标识最大的CORESET的QCL信息作为第一QCL关系,对此本申请实施例不作具体限定。
另一种方式是:BWP#1和BWP#2在频域上重叠,且网络设备在BWP#1中的BWP#1与BWP#2的重叠区域中配置了CORESET集合A,在BWP#2中的BWP#1与BWP#2的重叠区域中没有配置CORESET,在此情况下,可以将CORESET集合A中的CORESET的QCL信息作为第一QCL关系,例如,可以将CORESET集合A中的任一CORESET的QCL信息作为第一QCL关系,或者将该多个CORESET中索引或者标识最小的CORESET的QCL信息作为第一QCL关系,或者将该多个CORESET中索引或者标识最大的CORESET的QCL信息作为第一QCL关系,对此本申请实施例不作具体限定。
例如,参见图8,BWP#1和BWP#2在频域上部分重叠。网络设备在BWP#1中的BWP#1与BWP#2的重叠区域中配置了CORESET#1和CORESET#3,在BWP#2中的BWP#1与BWP#2的重叠区域中配置了CORESET#2。或者,网络设备在BWP#1中的BWP#1与BWP#2的重叠区域中配置了CORESET#1和CORESET#3,在BWP#2中的BWP#1与BWP#2的重叠区域中没有配置任何CORESET。那么,可以将BWP#1中的CORESET#1或者CORESET#3的QCL信息作为第一QCL关系。
(a5)为BWP#1中的CORESET和/或PDSCH配置的QCL信息中的第三QCL信息,第三QCL信息所指示的参考信号位于BWP#2,也即该参考信号在BWP#2的频带内,或者是为BWP#2配置的资源。
这里,为BWP#1中的CORESET配置的QCL信息可以是RRC配置的BWP#1上的CORESET的QCL信息,或者可以是MAC-CE配置的/激活的BWP#1上的CORESET的QCL信息。为BWP#1中的PDSCH配置的QCL信息可以是RRC配置的BWP#1上的PDSCH的QCL信息,或者可以是MAC-CE配置的/激活的BWP#1上的PDSCH的QCL信息,或者可以是DCI触发的BWP#1上的PDSCH的QCL信息。
比如,若RRC配置的BWP#1的QCL信息中的QCL信息#1(即,第三QCL信息的一例)所指示的参考信号CSI-RS#1位于BWP#2,那么可以将QCL信息#1作为第一QCL关系。
(a6)为BWP#2中的CORESET和/或PDSCH配置的QCL信息中的第四QCL信息,第四QCL信息所指示的参考信号位于BWP#1。
这里,为BWP#2中的CORESET配置的QCL信息可以是RRC配置的BWP#2上的CORESET的QCL信息,或者可以是MAC-CE配置的/激活的BWP#2上的CORESET的QCL信息。为BWP#2中的PDSCH配置的QCL信息可以是RRC配置的上的BWP#2上的PDSCH的QCL信息,或者可以是MAC-CE配置的/激活的BWP#2上的PDSCH的QCL信息,或者可以是DCI触发的BWP#2上的PDSCH的QCL信息。
比如,若RRC配置的BWP#2的QCL信息中的QCL信息#2(即,第四QCL信息的一例)所指示的参考信号CSI-RS#2位于BWP#1,那么可以将QCL信息#2作为第一QCL关系。
(a7)调度所述PDSCH的DCI所在的CORESET的QCL信息。
也就是说,若BWP#1上的DCI#1调度了BWP#2上的PDSCH,那么DCI#1所在的CORESET的QCL信息可以作为第一QCL关系。
本申请中,上述(a2)~(a7)中的至少一种,可以称为默认QCL信息或者缺省QCL信息。
可选地,无论BWP#1和BWP#2是否存在关联关系,都可以将上述(a1)~(a7)中的至少一种,作为第一QCL关系。作为另一种实现方式,只有在BWP#1和BWP#2存在关联关系的情况下,例如,只有在BWP#1和BWP#2满足上文中描述的条件1至条件4中的至少一种时,才可以将上述(a1)~(a7)中的至少一种作为第一QCL关系。
在另一种可能的实现方式中,第一QCL关系可以为下述(b1)~(b5)中的至少一种QCL信息或者QCL信息所指示的QCL关系。下面分别进行说明。
(b1)为BWP#2中的CORSET和/或PDSCH配置的QCL信息中的一个。
具体来讲,为BWP#2中的CORSET配置的QCL信息可以是一个或者多个,可以将该一个或者多个中的任一QCL信息作为第一QCL关系。或者,为BWP#2中的PDSCH配置的QCL信息可以是一个或者多个,可以将该一个或者多个中的任一QCL信息作为第一QCL关系。
这里,为BWP#2中的CORESET配置的QCL信息可以是RRC配置的BWP#2上的CORESET的QCL信息,或者可以是MAC-CE配置的/激活的BWP#2上的CORESET的QCL信息。为BWP#2中的PDSCH配置的QCL信息可以是RRC配置的BWP#2上的PDSCH的QCL信息,或者可以是MAC-CE配置的/激活的BWP#2上的PDSCH的QCL信息,或者可以是DCI触发的BWP#2上的PDSCH的QCL信息。
比如,若RRC配置的BWP#2上的CORESET#1的QCL信息为QCL信息#A、
CORESET#2的QCL信息为QCL信息#B、CORESET#3的QCL信息为QCL信息#C,那么可以将QCL信息#A、QCL信息#B和QCL信息#C中的任一QCL信息作为第一QCL关系。或者将该多个CORESET中索引或者标识最小的CORESET的QCL信息作为第一QCL关系,或者将该多个CORESET中索引或者标识最大的CORESET的QCL信息作为第一QCL关系。
(b2)用于初始接入的同步信号广播信道块SSB的QCL信息。
可选地,若BWP#2为初始BWP,或者BWP#2包括初始BWP,或者BWP#2不包括SSB,第一QCL关系可以是用于初始接入的SSB的QCL信息。
应理解,BWP#2包括初始BWP是指初始BWP为BWP#2的子集。
应理解,第一QCL关系为初始接入的SSB的QCL信息可以理解为:所述PDSCH和/或所述PDCCH的DMRS与该SSB满足QCL假设关系。
(b3)用于接收广播PDCCH的QCL信息。
可选地,若BWP#2为初始BWP,或者BWP#2包括初始BWP,或者BWP#2不包括SSB时,第一QCL关系可以是用于接收广播PDCCH的QCL信息。
(b4)BWP#2包括的SSB中索引最小的SSB的QCL信息。
BWP#2包括的SSB中索引最小的SSB可以是网络设备为BWP#2配置的多个SSB中的索引值最小的SSB,或者终端在BWP#2上测量的的多个SSB中索引最小的SSB,或者终端上报的BWP#2的多个SSB中索引最小的SSB。可选地,若BWP#2不包括初始BWP,且BWP#2包括SSB,第一QCL关系为BWP#2包括的SSB中索引最小的SSB的QCL信息。
(b5)用于移动性测量无线资源关联(Radio Resource Management,RRM)的参考信号中的索引最小的参考信号,所述参考信号可以包括SSB和/或CSI-RS。
本申请中,上述(b1)~(b5)中的至少一种,也可以称为默认QCL信息或者缺省QCL信息。
可选地,无论BWP#1和BWP#2是否存在关联关系,都可以将上述(b1)~(b5)中的至少一种,作为第一QCL关系。作为另一种实现方式,只有在BWP#1和BWP#2不存在关联关系的情况下,例如,只有在BWP#1和BWP#2不满足上文中描述的条件1至条件4中的任意一种时,才可以将上述(b1)~(b5)中的至少一种作为第一QCL关系。
可选地,作为本申请一个实施例,在所述调度偏移小于第一阈值时,第一QCL关系 可以是默认QCL信息,例如上述(a2)~(a7)中的至少一种,或者上述(b1)~(b5)中的至少一种。
场景二
1、第二QCL关系
在一种可能的实现方式中,第二QCL关系可以为上文中描述的(a2)~(a6)中的至少一种。具体可以参见上述描述,此处不再赘述。
在另一种可能的实现方式中,第一QCL关系可以是下述(c1):
(c1)在频域上距离BWP#2最近的BWP#1中的CORESET的QCL信息。
具体可以分为两种情况:BWP#1和BWP#2在频域上重叠(即,情况一)和BWP#1和BWP#2在频域上不重叠(即,情况二)。
情况一
方式一:BWP#1和BWP#2包括相同的CORESET,那么对于BWP#2上该相同的CORESET上的PDCCH,可以采用BWP#1上该相同的CORESET的QCL信息。对于BWP#2上的其他频域资源的PDCCH,可以采用BWP#1中在频域上距离该PDCCH最近的CORESET的QCL信息。
比如,参见图9,对于BWP#2上的CORESET#1上的PDCCH,第二QCL关系可以是BWP#1上的CORESET#1的QCL信息。对于BWP#2上的PDCCH#1,第二QCL关系可以是BWP#1上的CORESET#1的QCL信息。对于BWP#2上的PDCCH#2,第二QCL关系可以是BWP#1上的CORESET#3的QCL信息。
方式二:BWP#1和BWP#2在频域上重叠,但是BWP#1和BWP#2没有相同的CORESET,那么对于BWP#2上的PDCCH,可以采用BWP#1中的该重叠资源上的CORESET的QCL信息。对于BWP#2上的其他频域资源的PDCCH,可以采用BWP#1中在频域上距离该PDCCH最近的CORESET的QCL信息。
比如,参见图10,对于BWP#2上的PDCCH#3,第二QCL关系可以是BWP#1上的CORESET#1的QCL信息。对于BWP#2上的PDCCH#1,第二QCL关系可以是BWP#1上的CORESET#1的QCL信息。对于BWP#2上的PDCCH#2,第二QCL关系可以是BWP#1上的CORESET#3的QCL信息。
情况二:
BWP#1和BWP#2在频域上不重叠,对于BWP#2上的PDCCH,可以采用BWP#1中在频域上距离该PDCCH最近的CORESET的QCL信息。
比如,参见图11,对于BWP#2上的PDCCH#1至PDCCH#3,其QCL关系均可以是BWP#1上的CORESET#1的QCL信息。
可选地,无论BWP#1和BWP#2是否存在关联关系,都可以将上述(a2)~(a6)以及(c1)中的至少一种,作为第二QCL关系。作为另一种实现方式,只有在BWP#1和BWP#2存在关联关系的情况下,例如,只有在BWP#1和BWP#2满足上文中描述的条件1至条件4中的任意一种时,才可以将上述(a2)~(a6)以及(c1)中的至少一种作为第二QCL关系。
在另一种可能的实现方式中,第二QCL信息可以为上文中描述的(b1)~(b5)中的至少一种。具体可以参见上述描述,此处不再赘述。
可选地,无论BWP#1和BWP#2是否存在关联关系,都可以将上述(b1)~(b5)中的至少一种,作为第二QCL关系。作为另一种实现方式,只有在BWP#1和BWP#2不存在关联关系的情况下,例如,只有在BWP#1和BWP#2不满足上文中描述的条件1至条件4中的任意一种时,才可以将上述(b1)~(b5)中的至少一种作为第二QCL关系。
2、第一QCL关系
在一种可能的实现方式中,第一QCL关系可以为上文中描述的(a1)~(a7)和(c1)中的至少一种。具体可以参见上述描述,此处不再赘述。
可选地,无论BWP#1和BWP#2是否存在关联关系,都可以将上述(b1)~(b5)中的至少一种,作为第一QCL关系。作为另一种实现方式,只有在BWP#1和BWP#2存在关联关系的情况下,例如,只有在BWP#1和BWP#2满足上文中描述的条件1至条件4中的任意一种时,才可以将上述(a1)~(a7)以及(c1)中的至少一种作为第一QCL关系。
在一种可能的实现方式中,第一QCL信息可以为上文中描述的(b1)~(b5)中的至少一种。具体可以参见上述描述,此处不再赘述。
可选地,无论BWP#1和BWP#2是否存在关联关系,都可以将上述(b1)~(b5)中的至少一种,作为第一QCL关系。作为另一种实现方式,只有在BWP#1和BWP#2不存在关联关系的情况下,例如,只有在BWP#1和BWP#2不满足上文中描述的条件1至条件4中的任意一种时,才可以将上述(b1)~(b5)中的至少一种作为第一QCL关系。
上文结合图2至图11,对本申请提供的一种通信方法进行了详细说明,下文中将结合图12,对本申请提供的另一种通信方法进行说明。
图12是本申请提供的另一通信方法的示意图。以下,对图12所示的通信方法进行详细说明。
S1210,终端确定第一BWP BWP#1和第二BWP BWP#2。
S1220,网络设备确定BWP#1和BWP#2。
例如,网络设备在需要进行BWP切换时,需要确定切换前的BWP以及切换后的BWP。若当前激活的BWP为BWP#1,则切换前的BWP为BWP#1,BWP#2可以是切换后的BWP。然后,网络设备可以通过向终端发送BWP切换指示信息,指示终端从BWP#1切换至BWP#2。终端根据该BWP切换指示信息,可以从BWP#1切换至BWP#2。
BWP#1和BWP#2可以是一个载波上的BWP,也可以是多个载波上的BWP,比如,BWP#1可以是载波#1上配置的BWP,BWP#2可以是载波#2上配置的BWP,载波#1和载波#2可以是进行载波切换的两个载波。
再如,终端可以同时接入多个载波,每个载波可以配置一个BWP,即激活的BWP可以有多个。BWP#1可以是激活的多个BWP中的已经配置QCL信息的BWP,BWP#2可以是激活的多个BWP中的尚为配置QCL信息的BWP。
其中,BWP#1可以和BWP#2在频域上重叠,也可以不重叠。BWP#1和BWP#2在频域上重叠可以是上文中描述的A至D四种重叠情况中的任一种,具体可以参见上文中的描述以及图3至图6,这里不再详述。
S1230,终端根据BWP#1的TCI状态,接收BWP#2上的PDSCH和/或PDCCH。相应地,网络设备根据BWP#1的TCI状态,在BWP#2上发送该PDSCH和/或PDCCH。
应理解,终端根据BWP#1的TCI状态,接收BWP#2上的PDSCH,和/或,接收BWP#2上的PDCCH,也可以理解为:终端通过复用BWP#1的TCI状态,接收BWP#2上的PDSCH,和/或,接收BWP#2上的PDCCH。还应理解,BWP#1的TCI状态是指为BWP#1上的PDCCH和/或PDSCH配置的TCI状态。BWP#1的TCI状态可以是通过RRC信令、MAC-CE信令或者DCI配置的。
进一步地,作为S1230的一种可能的实现方式,终端可以在BWP#1与BWP#2存在关联关系时,根据BWP#1的TCI状态,接收BWP#2上的PDSCH,和/或,接收BWP#2上的PDCCH。相应地,网络设备可以在BWP#1与BWP#2存在关联关系时,根据BWP#1的TCI状态,在BWP#2上发送PDSCH,和/或,在BWP#2上发送PDCCH。
对于关联关系的理解可以参照上文的描述。以及,何为BWP#1与BWP#2存在关联关系,也可以参照上文的描述,比如,当BWP#1和BWP#2满足上文中描述的条件1至条件4中的至少一种时,可以认为BWP#1和BWP#2存在关联关系或者具有关联关系。
本申请实施例的通信方法,通过复用BWP#1的TCI状态,终端可以提前使用根据动态或半静态信令得到的更加准确的QCL信息接收的BWP#2上的PDCCH和/或PDSCH,不需要等到网络设备波束训练之后再配置TCI状态,从而能够减小由波束训练带来的时延问题。此外,通过复用BWP#1的TCI状态,能够减小网络设备为BWP#2配置TCI状态的所需的信令开销。
可选地,终端根据BWP#1的TCI状态接收BWP#2上的PDCCH,具体可以是如下几种实现方式中的任一种或任意组合。
方式一
终端使用媒体接入控制信令指示的用于BWP#1的PDCCH的TCI状态,接收BWP#2上的PDCCH。
也就是说,终端通过复用由媒体接入控制信令激活的为BWP#1上的PDCCH配置的TCI状态,接收BWP#2上的PDCCH。例如,网络设备通过RRC信令为BWP#1上的PDCCH配置了8个候选TCI状态,即TCI状态#1至TCI状态#8,若网络设备通过媒体接入控制信令激活了其中的TCI状态#3,那么终端就可以根据TCI状态#3接收BWP#2上的PDCCH。
应理解,该媒体接入控制信令是网络设备在BWP#1上发送的。若媒体接入控制信令激活的TCI状态为多个,终端可以使用该多个中的任一个或者索引最小或者索引最大的TCI状态或者所有的TCI状态,本申请实施例对此不作限定。
需要说明的是,本申请所涉及的媒体接入控制信令是层二信令,其可以是MAC层信令或者MAC-CE等。
本申请实施例,终端通过复用媒体接入控制信令指示的用于BWP#1的PDCCH的TCI状态接收BWP#2上的PDCCH,能够减小网络设备为BWP#2配置TCI状态的信令开销。并且,能够减小网络设备为BWP#2配置TCI状态所带来的时延。
应理解,网络设备通过媒体接入控制信令激活的为BWP#1上的PDCCH配置的TCI状态,可以理解为网络设备通过媒体接入控制信令激活的为BWP#1上的CORESET配置的TCI状态。
方式二
终端接收媒体接入控制信令,该媒体接入控制信令用于指示由RRC配置的用于 BWP#1的多个候选TCI状态中的一个或者多个TCI状态用于BWP#2上的PDCCH的接收;终端根据所述一个或者多个TCI状态,接收BWP#2上的PDCCH。其中,用于BWP#1的多个候选TCI状态是指为BWP#1上的PDCCH和/或PDSCH配置的多个候选TCI状态。
具体来讲,网络设备可以通过RRC信令为BWP#1上的PDCCH和/或PDSCH配置多个候选TCI状态,比如,TCI状态#1至TCI状态#8,其可以通过媒体接入控制信令激活该多个候选TCI状态中的其中一个或多个TCI状态,比如,TCI状态#1,并且通过该媒体接入控制信令指示激活的一个或多个TCI状态用于BWP#2上的PDCCH的接收。即,网络设备通过媒体接入控制信令激活的TCI状态#1用于BWP#2上的PDCCH的接收。
应理解,该媒体接入控制信令是网络设备在BWP#1上发送的,也可以是网络设备在BWP#2上发送的,本申请实施例对此不作限定。
本申请实施例,终端通过复用RRC信令指示的用于BWP#1的PDCCH的TCI状态接收BWP#2上的PDCCH,能够减小网络设备为BWP#2配置TCI状态的信令开销。并且,能够减小网络设备为BWP#2配置TCI状态所带来的时延。
需要说明的是,方式一与方式二不同。方式二通过媒体接入控制明确指示激活的TCI状态用于BWP#2上的PDCCH的接收,方式一可以通过预定义的方式定义:由媒体接入控制信令激活的用于BWP#1的TCI状态用于BWP#2上的PDCCH的接收。可见,方式一并不需要通过信令明确指示通过媒体接入控制信令激活的TCI状态用于BWP#2上的PDCCH的接收。
此外,可选地,方式一中的媒体接入控制信令中用于配置TCI状态的位图(bitmap)位数可能与方式二中的媒体接入控制信令中用于配置TCI状态的bitmap位数不同,在此情况下,方式二中的媒体接入控制信令中该bitmap可以激活RRC信令配置的候选TCI状态中的前几个或者后几个TCI状态,本申请实施例对此不作具体限定。比如,方式一中的媒体接入控制信令中该bitmap位数为4,方式二中该bitmap位数为3,那么方式二中的媒体接入控制信令中该bitmap可以用于激活RRC信令配置的候选16个TCI状态中的前8个或者后8个TCI状态。
方式三
终端根据BWP#1中与BWP#2的CORESET相同的CORESET的TCI状态,接收BWP#2中与BWP#1的CORESET相同的CORESET上的PDCCH。
也就是说,BWP#1和BWP#2中相同CORESET的TCI状态也相同。例如,参见图7,终端可根据BWP#1上的CORESET#1的TCI状态,接收BWP#2上的CORESET#1上的PDCCH。
本申请实施例,终端通过复用相同CORESET的TCI状态接收BWP#2上的PDCCH,能够减小网络设备为BWP#2配置TCI状态的信令开销。并且,能够减小网络设备为BWP#2配置TCI状态所带来的时延。
应理解,本申请中两个CORESET相同也可以是这两个CORESET的标识或者索引相同。还应理解,方式三应用于BWP#1与BWP#2在频域上重叠的情况。
方式四
终端根据BWP#1中与BWP#2的CORESET相同的CORESET的TCI状态,接收BWP#2中与BWP#1的CORESET不同的CORESET上的PDCCH。
具体来讲,BWP#1与BWP#2包括相同的CORESET,且BWP#1与BWP#2包括不同的CORESET,对于BWP#2上与BWP#1不同的CORESET上的PDCCH,终端使用所述相同的CORESET的TCI状态进行接收。例如,参见图7,,终端可以根据BWP#1上的CORESET#1的TCI状态,接收BWP#2上的CORESET#5上的PDCCH。
可选地,若BWP#1与BWP#2中相同的CORESET为多个,对于BWP#2中与BWP#1不同的CORESET上的PDCCH,终端根据可以根据该相同的多个CORESET中的任一CORESET的TCI状态进行接收,或者根据该相同的多个CORESET中索引最小或者最大的CORESET的TCI状态进行接收,对此本申请实施例不作限定。
应理解,方式四应用于BWP#1与BWP#2在频域上重叠,且BWP#1和BWP#2在重叠区域上配置了相同的CORESET的情况。
方式五
终端根据BWP#2和BWP#1的CORESET以标识或索引增序对应的方式,接收BWP#2上的PDCCH。
也就是说,终端使用BWP#1中的标识或者索引较大的CORESET的TCI状态,接收BWP#2上的标识或者索引较大的CORESET上的PDCCH,使用BWP#1中的标识或者索引较小的CORESET的TCI状态,接收BWP#2上的标识或者索引较小的CORESET上的PDCCH
具体来讲,若BWP#2和BWP#1所包括的CORESET的数量相同,则BWP#2和BWP#1中的CORESET的TCI状态,按照CORESET的标识或者索引增序的方式一一对应。比如,BWP#1包括CORESET#1、CORESET#3和CORESET#4,BWP#2包括CORESET#1、CORESET#2和CORESET#5,那么BWP#2上的CORESET#1的TCI状态与BWP#1上的CORESET#1的TCI状态相同,BWP#2上的CORESET#2的TCI状态与BWP#1上的CORESET#3的TCI状态相同,BWP#2上的CORESET#5的TCI状态与BWP#1上的CORESET#4的TCI状态相同。
若BWP#1所包括的CORESET的数量大于BWP#2所包括的CORESET的数量,则BWP#1中标识或者索引较小的N(BWP#2所包括的CORESET的数量)个CORESET的TCI状态,按照CORESET的标识或者索引增序的方式,与BWP#2中的N个CORESET的TCI状态一一对应。比如,BWP#1包括CORESET#1、CORESET#3和CORESET#4,BWP#2包括CORESET#1和CORESET#2,那么BWP#2上的CORESET#1的TCI状态与BWP#1上的CORESET#1的TCI状态相同,BWP#2上的CORESET#2的TCI状态与BWP#1上的CORESET#3的TCI状态相同。
若BWP#1所包括的CORESET的数量小于BWP#2所包括的CORESET的数量,则BWP#2中标识或者索引较小的M(BWP#1所包括的CORESET的数量)个CORESET的TCI状态,按照CORESET的标识或者索引增序的方式,与BWP#1中的M个CORESET的TCI状态一一对应。BWP#2中的其余的CORESET的TCI状态与BWP#1中索引或者标识最大的CORESET的TCI状态相同。比如,BWP#1包括CORESET#1和CORESET#3,BWP#2包括CORESET#1、CORESET#2和CORESET#5,那么BWP#2上的CORESET#1的TCI状态与BWP#1上的CORESET#1的TCI状态相同,BWP#2上的CORESET#2的TCI状态与BWP#1上的CORESET#3的TCI状态相同,BWP#2上的CORESET#5的TCI 状态与BWP#1上的CORESET#3的TCI状态相同。
此外,若BWP#1所包括的CORESET的数量大于BWP#2所包括的CORESET的数量,也可使BWP#1中标识或者索引较大的N(BWP#2所包括的CORESET的数量)个CORESET的TCI状态,按照CORESET的标识或者索引增序的方式,与BWP#2中的N个CORESET的TCI状态一一对应。比如,BWP#1包括CORESET#1、CORESET#3和CORESET#4,BWP#2包括CORESET#1和CORESET#2,那么BWP#2上的CORESET#1的TCI状态与BWP#1上的CORESET#3的TCI状态相同,BWP#2上的CORESET#2的TCI状态与BWP#1上的CORESET#3的TCI状态相同。
若BWP#1所包括的CORESET的数量小于BWP#2所包括的CORESET的数量,也可使BWP#2中标识或者索引较小的M(BWP#1所包括的CORESET的数量)个CORESET的TCI状态,按照CORESET的标识或者索引增序的方式,与BWP#1中的M个CORESET的TCI状态一一对应。BWP#2中的其余的CORESET的TCI状态与BWP#1中索引或者标识最小的CORESET的TCI状态相同。比如,BWP#1包括CORESET#1和CORESET#3,BWP#2包括CORESET#1、CORESET#2和CORESET#5,那么BWP#2上的CORESET#1的TCI状态与BWP#1上的CORESET#1的TCI状态相同,BWP#2上的CORESET#2的TCI状态与BWP#1上的CORESET#3的TCI状态相同,BWP#2上的CORESET#5的TCI状态与BWP#1上的CORESET#1的TCI状态相同。
方式六
终端接收DCI,该DCI信令用于指示由媒体接入控制信令配置的用于BWP#1的多个候选TCI状态中的一个或者多个TCI状态用于第二BWP#2上的PDCCH的接收;终端根据所述一个或者多个TCI状态,接收BWP#2上的PDCCH。其中,BWP#1的多个候选TCI状态包括为BWP#1上的PDCCH和/或PDSCH配置的多个候选TCI状态。
具体来讲,网络设备可以通过媒体接入控制信令为BWP#1上的PDCCH和/或PDSCH配置多个候选TCI状态,比如,TCI状态#1至TCI状态#8,其可以通过DCI激活该多个候选TCI状态中的其中一个或多个TCI状态,比如,TCI状态#1,并且通过该DCI指示激活的一个或多个TCI状态用于BWP#2上的PDCCH的接收。即,网络设备通过DCI信令激活的TCI状态#1用于BWP#2上的PDCCH的接收。
应理解,该DCI可以是网络设备在BWP#1上发送的,也可以是网络设备在BWP#2上发送的。若DCI激活的TCI状态为多个,终端可以使用该多个中的任一个或者索引最小或者索引最大的TCI状态或者该多个TCI状态,本申请实施例对此不作限定。
本申请实施例,终端通过复用媒体接入控制信令配置的用于BWP#1的PDCCH和/或PDSCH的TCI状态接收BWP#2上的PDCCH,能够减小网络设备为BWP#2配置TCI状态的信令开销。
方式七
终端接收DCI,该DCI指示BWP#1的一个或者多个TCI状态;终端使用所述一个或者多个TCI状态,接收BWP#2上的PDCCH。
具体来讲,网络设备可以通过DCI指示一个或者多个TCI状态,比如,TCI状态#1,那么,终端可以使用TCI状态#1,接收BWP#2上的PDCCH的接收。
本申请实施例,终端通过复用DCI信令配置的用于BWP#1的PDCCH和/或PDSCH 的TCI状态接收BWP#2上的PDCCH,能够减小网络设备为BWP#2配置TCI状态的信令开销。
应理解,该DCI可以是网络设备在BWP#1上发送的,也可以是网络设备在BWP#2上发送的。若DCI激活的TCI状态为多个,终端可以使用该多个中的任一个或者索引最小或者索引最大的TCI状态或者该多个TCI状态,本申请实施例对此不作限定。
还应理解,方式六与方式七不同。方式六通过DCI明确指示激活的TCI状态用于BWP#2上的PDCCH的接收,方式七可以通过预定义的方式定义:由DCI激活的用于BWP#1的TCI状态用于BWP#2上的PDCCH的接收。可见,方式七并不需要通过信令明确指示通过DCI激活的TCI状态用于BWP#2上的PDCCH的接收。
此外,方式六中的DCI中的TCI域(filed)(用于指示TCI状态)的比特位数可能与方式七中的DCI中的TCI域的比特位数不同,在此情况下,方式六中的DCI中的TCI域可以激活媒体接入控制信令配置的候选TCI状态中的前几个或者后几个TCI状态中的某一TCI状态,本申请实施例对此不作具体限定。比如,方式七中的DCI中的TCI域的比特位数为3,方式六中的DCI中的TCI域的比特位数为2,那么方式六中的DCI中的TCI域中的信息可以用于激活媒体接入控制信令配置的候选8个TCI状态中的前4个或者后4个TCI状态中的某一个TCI状态。
可选地,终端根据BWP#1的TCI状态接收BWP#2上的PDSCH,具体可以是如下几种实现方式中的任一种或任意组合。
方式一
终端接收DCI,该DCI信令用于指示由媒体接入控制信令或RRC信令配置的用于BWP#1的多个候选TCI状态中的一个或者多个TCI状态用于第二BWP#2上的PDSCH的接收;终端根据所述一个或者多个TCI状态,接收BWP#2上的PDSCH。其中,BWP#1的多个候选TCI状态包括为BWP#1上的PDCCH和/或PDSCH配置的多个候选TCI状态。
具体来讲,网络设备可以通过媒体接入控制信令或RRC信令为BWP#1上的PDCCH和/或PDSCH配置多个候选TCI状态,比如,TCI状态#1至TCI状态#8,其可以通过DCI激活该多个候选TCI状态中的其中一个或多个TCI状态,比如,TCI状态#1,并且通过该DCI指示激活的一个或多个TCI状态用于BWP#2上的PDSCH的接收。即,网络设备通过DCI信令激活的TCI状态#1用于BWP#2上的PDSCH的接收。
应理解,该DCI可以是网络设备在BWP#1上发送的,也可以是网络设备在BWP#2上发送的。若DCI激活的TCI状态为多个,终端可以使用该多个中的任一个或者索引最小或者索引最大的TCI状态或者该多个TCI状态,本申请实施例对此不作限定。
本申请实施例,终端通过复用媒体接入控制信令或RRC信令配置的用于BWP#1的PDCCH和/或PDSCH的TCI状态接收BWP#2上的PDSCH,能够减小网络设备为BWP#2配置TCI状态的信令开销。并且,能够减小网络设备为BWP#2配置TCI状态所带来的时延。
方式二
终端接收媒体接入控制信令,该媒体接入控制信令用于指示由RRC信令配置的用于BWP#1的多个候选TCI状态中的一个或者多个TCI状态用于BWP#2上的PDSCH的接收;终端根据所述一个或者多个TCI状态,接收BWP#2上的PDSCH。
具体来讲,网络设备可以通过RRC信令为BWP#1上的PDCCH和/或PDSCH配置多个候选TCI状态,比如,TCI状态#1至TCI状态#16,其可以通过媒体接入控制信令激活该多个候选TCI状态中的其中一个或多个TCI状态,比如,TCI状态#1至TCI状态#4,并且通过该媒体接入控制信令指示激活的一个或多个TCI状态用于BWP#2上的PDSCH的接收或者作为接收BWP#2上的PDSCH的候选TCI状态。可选地,网络设备再通过DCI信令指示TCI状态#1至TCI状态#4中的一个TCI或多个TCI状态,如TCI状态#1用于BWP#2的PDSCH的接收。即,网络设备通过DCI信令激活的TCI状态#1用于BWP#2上的PDSCH的接收。
应理解,该媒体接入控制信令可以是网络设备在BWP#1上发送的,也可以是网络设备在BWP#2上发送的。若媒体接入控制信令激活的TCI状态为多个,终端可以使用该多个中的任一个或者索引最小或者索引最大的TCI状态,本申请实施例对此不作限定。
本申请实施例,终端通过复用RRC信令指示的用于BWP#1的PDCCH和/或PDSCH的TCI状态接收BWP#2上的PDSCH,能够减小网络设备为BWP#2配置TCI状态的信令开销。并且,能够减小网络设备为BWP#2配置TCI状态所带来的时延。
方式三
终端接收DCI,该DCI指示用于BWP#1的PDCCH或PDSCH接收的一个或者多个TCI状态;终端使用所述一个或者多个TCI状态,接收BWP#2上的PDSCH。
具体来讲,网络设备可以通过媒体接入控制信令或RRC信令为BWP#1上的PDCCH和/或PDSCH配置一个或者多个候选TCI状态,比如,TCI状态#1至TCI状态#8,其可以通过DCI激活该一个或者多个候选TCI状态中的其中一个或多个TCI状态,比如,TCI状态#1,那么,终端可以使用该激活的TCI状态#1,接收BWP#2上的PDSCH的接收。
应理解,该DCI可以是网络设备在BWP#1上发送的。若DCI激活的TCI状态为多个,终端可以使用该多个中的任一个或者索引最小或者索引最大的TCI状态,本申请实施例对此不作限定。
还应理解,方式一与方式三不同。方式一通过DCI明确指示激活的TCI状态用于BWP#2上的PDSCH的接收,方式三可以通过预定义的方式定义:由DCI激活的用于BWP#1的TCI状态用于BWP#2上的PDSCH的接收。可见,方式三并不需要通过信令明确指示通过DCI激活的TCI状态用于BWP#2上的PDSCH的接收。
此外,方式一中的DCI中的TCI域(filed)(用于指示TCI状态)的比特位数可能与方式三中的DCI中的TCI域的比特位数不同,在此情况下,方式一中的DCI中的TCI域可以激活媒体接入控制信令配置的候选TCI状态中的前几个或者后几个TCI状态中的某一TCI状态,本申请实施例对此不作具体限定。比如,方式三中的DCI中的TCI域的比特位数为3,方式一中的DCI中的TCI域的比特位数为2,那么方式一中的DCI中的TCI域中的信息可以用于激活媒体接入控制信令配置的候选8个TCI状态中的前4个或者后4个TCI状态中的某一个TCI状态。
方式四
终端接收媒体接入控制,该媒体接入控制指示RRC配置的用于BWP#1的一个或多个候选TCI状态中的一个或者多个TCI状态;终端根据所述一个或者多个TCI状态,接收BWP#2上的PDSCH。
具体来讲,网络设备可以通过RRC信令为BWP#1上的PDCCH和/或PDSCH配置一个或者多个候选TCI状态,比如,TCI状态#1至TCI状态#16,其可以通过媒体接入控制激活该一个或者多个候选TCI状态中的其中一个或多个TCI状态,比如,TCI状态#1,那么,终端可以使用该激活的TCI状态#1,接收BWP#2上的PDSCH的接收。
应理解,该媒体接入控制信令可以是网络设备在BWP#1上发送的,也可以是网络设备在BWP#2上发送的。若媒体接入控制信令激活的TCI状态为多个,终端可以使用该多个中的任一个或者索引最小或者索引最大的TCI状态,本申请实施例对此不作限定。
还应理解,方式二与方式四不同。方式二通过媒体接入控制明确指示激活的TCI状态用于BWP#2上的PDSCH的接收,方式四可以通过预定义的方式定义:由媒体接入控制激活的用于BWP#1的TCI状态用于BWP#2上的PDSCH的接收。可见,方式四并不需要通过信令明确指示通过媒体接入控制激活的TCI状态用于BWP#2上的PDSCH的接收。
此外,方式二中的媒体接入控制信令中用于配置TCI状态的位图(bitmap)位数可能与方式四中的媒体接入控制信令中用于配置TCI状态的bitmap位数不同,在此情况下,方式二中的媒体接入控制信令中该bitmap可以激活RRC信令配置的候选TCI状态中的前几个或者后几个TCI状态,本申请实施例对此不作具体限定。比如,方式四中的媒体接入控制信令中该bitmap位数为4,方式二中该bitmap位数为3,那么方式二中的媒体接入控制信令中该bitmap可以用于激活RRC信令配置的候选16个TCI状态中的前8个或者后8个TCI状态。
进一步地,方式二和方式四中的DCI还可以包括所述BWP切换指示信息。
具体来讲,终端接收DCI,该DCI包括一个TCI状态和BWP切换指示信息。终端根据BWP切换指示信息从BWP#1切换至BWP#2,并且根据该TCI状态,接收BWP#2上的PDSCH。
上文详细介绍了本申请提供的通信方法示例。可以理解的是,终端和网络设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
图13示出了本申请提供的通信装置1300的结构示意图。该通信装置1300包括:处理单元1310和接收单元1320。可选地,该通信装置1300还可以包括发送单元1330。
处理单元1310,用于确定第一BWP和第二BWP;确定所述第一BWP和所述第二BWP的关联关系;以及,
处理单元1310,用于根据所述关联关系确定第一准共址QCL关系;所述接收单元1320用于,根据所述第一QCL关系在所述第二BWP上接收物理下行共享信道PDSCH;和/或,
处理单元1310,用于根据所述关联关系确定第二QCL关系,所述接收单元1320用于,根据所述第二QCL关系在所述第二BWP上接收物理下行控制信道PDCCH。
通信装置1300可以是通信设备(例如,终端),也可以是通信设备内的芯片。当该 通信装置是通信设备时,该处理单元可以是处理器,该发送单元和接收单元可以是收发器;该通信设备还可以包括存储单元,该存储单元可以是存储器;该存储单元用于存储指令,该处理单元执行该存储单元所存储的指令,以使该通信设备执行上述方法。当该通信装置是通信设备内的芯片时,该处理单元可以是处理器,该发送单元和接收单元可以是输入/输出接口、管脚或电路等;该处理单元执行存储单元所存储的指令,以使该通信设备执行上述终端所执行的相应步骤,该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该通信设备内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)
本领域技术人员可以清楚地了解到,当通信装置1300为终端时,通信装置1300所执行的步骤以及相应的有益效果可以参考关于图2或者图13中终端的相关描述,为了简洁,在此不再赘述。
图14示出了本申请提供的通信装置1400的结构示意图。该通信装置1400包括:处理单元1410和发送单元1420。可选地,该通信装置1400还可以包括接收单元1430。
处理单元1410,用于确定第一BWP和第二BWP;确定所述第一BWP和所述第二BWP的关联关系;以及,
处理单元1410,用于根据所述关联关系确定第一准共址QCL关系;所述发送单元1420用于,根据所述第一QCL关系在所述第二BWP上发送物理下行共享信道PDSCH;和/或,
处理单元1410,用于根据所述关联关系确定第二QCL关系,所述发送单元1420用于,根据所述第二QCL关系在所述第二BWP上发送物理下行控制信道PDCCH。
通信装置1400可以是通信设备(例如,网络设备),也可以是通信设备内的芯片。当该通信装置是通信设备时,该处理单元可以是处理器,该发送单元和接收单元可以是收发器;该通信设备还可以包括存储单元,该存储单元可以是存储器;该存储单元用于存储指令,该处理单元执行该存储单元所存储的指令,以使该通信设备执行上述方法。当该通信装置是通信设备内的芯片时,该处理单元可以是处理器,该发送单元和接收单元可以是输入/输出接口、管脚或电路等;该处理单元执行存储单元所存储的指令,以使该通信设备执行上述网络设备所执行的相应步骤,该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该通信设备内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)
本领域技术人员可以清楚地了解到,当通信装置1400为网络设备时,通信装置1400所执行的步骤以及相应的有益效果可以参考关于图2或者图14中网络设备的相关描述,为了简洁,在此不再赘述。
应理解,上述各个单元的划分仅仅是功能上的划分,实际实现时可能会有其它的划分方法。
本领域的技术人员可以清楚地了解到,上述描述的装置和单元的具体工作过程以及执行步骤所产生的技术效果,可以参考前述对应的方法实施例中的描述,为了简洁,在此不再赘述。
上述通信装置可以是一个芯片,处理单元可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理单元可以是逻辑电路、集成电路等;当通过软件来实现时, 该处理单元可以是一个通用处理器,通过读取存储单元中存储的软件代码来实现,该存储单元可以集成在处理器中,也可以位于所述处理器之外,独立存在。
下面以通信装置为终端或网络设备为例对本申请提供的通信装置做进一步描述。
图15为本申请提供的一种终端10的结构示意图。为了便于说明,图15仅示出了终端的主要部件。如图15所示,终端10包括处理器、存储器、控制电路、天线以及输入输出装置。
处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端执行上述通信方法实施例中所描述的动作。存储器主要用于存储软件程序和数据,例如存储上述实施例中所描述的QCL信息或者TCI状态。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图15仅示出了一个存储器和处理器。在实际的终端中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端进行控制,执行软件程序,处理软件程序的数据。图15中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端可以包括多个基带处理器以适应不同的网络制式,终端可以包括多个中央处理器以增强其处理能力,终端的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
示例性的,在本申请实施例中,可以将具有收发功能的天线和控制电路视为终端10的收发单元101,将具有处理功能的处理器视为终端10的处理单元102。如图15所示,终端10包括收发单元101和处理单元102。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元101中用于实现接收功能的器件视为接收单元,将收发单元101中用于实现发送功能的器件视为发送单元,即收发单元101包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
图15所示的终端可以执行上述方法中终端所执行的各动作,这里,为了避免赘述, 省略其详细说明。
图16是本申请提供的一种网络设备的结构示意图,该网络设备例如可以为基站。如图16所示,该基站可应用于如图1所示的通信系统中,执行上述方法实施例中网络设备的功能。基站20可包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)201和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元(digital unit,DU))202。所述RRU 201可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线2011和射频单元2012。所述RRU 201部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于发送上述方法实施例中PDCCH和/或PDSCH。所述BBU 202部分主要用于进行基带处理,对基站进行控制等。所述RRU 201与BBU 202可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 202为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)202可以用于控制基站执行上述方法实施例中关于网络设备的操作流程。
在一个实施例中,所述BBU 202可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如LTE网络),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其它网)。所述BBU 202还包括存储器2021和处理器2022,所述存储器2021用于存储必要的指令和数据。例如存储器2021存储上述方法实施例中的QCL信息或TCI状态。所述处理器2022用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器2021和处理器2022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
本申请还提供以下实施例。需要说明的是,以下实施例的编号并不一定需要遵从前面实施例的编号顺序:
实施例1、一种通信方法,其特征在于,包括:
确定第一带宽区域BWP和第二BWP;
确定所述第一BWP和所述第二BWP的关联关系;
根据所述关联关系确定第一准共址QCL关系,并根据所述第一QCL关系在所述第二BWP上接收物理下行共享信道PDSCH;和/或
根据所述关联关系确定第二QCL关系,并根据所述第二QCL关系在所述第二BWP上接收物理下行控制信道PDCCH。
实施例2、如实施例1所述的方法,其特征在于,所述根据所述关联关系确定第一准共址QCL关系,包括:
若所述第一BWP与所述第二BWP存在所述关联关系,所述第一QCL关系为下行控制信息DCI包括的QCL信息所指示的QCL关系,其中,所述DCI还包括BWP切换指示信息,所述BWP切换指示信息用于指示终端从所述第一BWP切换至所述第二BWP。
实施例3、如实施例1或2所述的方法,其特征在于,所述根据所述关联关系确定第一准共址QCL关系和/或所述根据所述关联关系确定第二QCL关系,包括:
若所述第一BWP与所述第二BWP存在所述关联关系,所述第一QCL关系和/或所述第二QCL关系为默认QCL信息所指示的QCL关系,所述默认QCL信息为下述中的至少 一种:
所述第一BWP或者所述第二BWP包括的控制资源集合中索引或标识最小的控制资源集合的QCL信息;
所述第一BWP和所述第二BWP均包括的控制资源集合的QCL信息;
所述第一BWP和所述第二BWP重叠的频域资源中所述第一BWP所包括的控制资源集合的QCL信息;
所述第一BWP中的控制资源集合和/或PDSCH配置的QCL信息中的第三QCL信息,所述第三QCL信息所指示的参考信号位于所述第二BWP;
所述第二BWP中的控制资源集合和/或PDSCH配置的QCL信息中的第四QCL信息,所述第四QCL信息所指示的参考信号位于所述第一BWP。
实施例4、如实施例1至3中任一项所述的方法,其特征在于,所述根据所述关联关系确定第一准共址QCL关系,包括:
若所述第一BWP与所述第二BWP存在所述关联关系,所述第一QCL关系为默认QCL信息所指示的QCL关系,所述默认QCL信息为:
调度所述PDSCH的下行控制信息DCI所在的控制资源集合的QCL信息。
实施例5、如实施例1至4中任一项所述的方法,其特征在于,所述根据所述关联关系确定第一准共址QCL关系,和/或所述根据所述关联关系确定第二QCL关系,包括:
若所述第一BWP与所述第二BWP不存在所述关联关系,所述第一QCL关系和/或所述第二QCL关系为默认QCL信息所指示的QCL关系,所述默认QCL信息为下述中的至少一种:
所述第二BWP中的控制资源集合和/或PDSCH配置的QCL信息中的一个;
用于初始接入的同步信号广播信道块SSB的QCL信息;
用于接收广播PDCCH的QCL信息;
所述第二BWP包括的SSB中索引最小的SSB的QCL信息。
实施例6、如实施例5所述的方法,其特征在于,若所述第二BWP为初始BWP或包括初始BWP,或者若所述第二BWP不包括SSB,所述第一QCL关系和/或所述第二QCL关系为用于初始接入的SSB的QCL信息所指示的QCL关系或用于接收广播PDCCH的QCL信息所指示的QCL关系;和/或,
若所述第二BWP不包括初始BWP,且所述第二BWP包括SSB,所述第一QCL关系和/或所述第二QCL关系为第二BWP包括的SSB中的索引最小的SSB的QCL信息所指示的QCL关系。
实施例7、如实施例1至6中任一项所述的方法,其特征在于,所述PDSCH由下行控制信息DCI调度,其中,所述DCI还包括所述BWP切换指示信息。
实施例8、如实施例7所述的方法,其特征在于,若调度偏移大于或者等于第一阈值,所述第一QCL关系为所述BWP切换指示信息所包括的QCL信息所指示的QCL关系;和/或
若所述调度偏移小于所述第一阈值,所述第一QCL关系为所述默认QCL信息所指示的QCL关系;
其中,所述第一阈值为终端的波束切换与BWP切换所需的时间总和。
实施例9、如实施例1所述的方法,其特征在于,所述根据所述关联关系确定第一准共址QCL关系,和/或所述根据所述关联关系确定第二QCL关系,包括:
若所述第一BWP与所述第二BWP存在所述关联关系,所述第二QCL关系为下述中的至少一种QCL信息所指示的QCL关系:
在频域上距离所述第二BWP最近的所述第一BWP中的控制资源集合的QCL信息。
实施例10、如实施例1、3至6以及9中任一项所述的方法,其特征在于,所述根据所述第一QCL关系在所述第二BWP上接收所述PDSCH和/或根据所述第二QCL关系在所述第二BWP上接收所述PDCCH,包括:
在所述第二BWP上接收到控制资源集合和/或PDSCH的QCL信息之前,根据所述第一QCL关系在所述第二BWP上接收所述PDSCH和/或根据所述第二QCL关系在所述第二BWP上接收所述PDCCH。
实施例11、如实施例1至10中任一项所述的方法,其特征在于,所述第一BWP与所述第二BWP存在所述关联关系包括以至少一种情况:
所述第一BWP与所述第二BWP在频域上部分或全部重叠;
为所述第一BWP配置的参考信号和为所述第二BWP配置的参考信号满足准共址QCL关系;
所述第一BWP与所述第二BWP包括相同的控制资源集合;
所述第一BWP与所述第二BWP为同频带的BWP。
实施例12、如实施例1至11中任一项所述的方法,其特征在于,所述确定第一带宽区域BWP和所述第二BWP,包括:
接收BWP切换指示信息;
根据所述BWP切换指示信息从所述第一BWP切换至所述第二BWP。
实施例13、一种通信方法,其特征在于,包括:
确定第一带宽区域BWP和第二BWP;
确定所述第一BWP和所述第二BWP的关联关系;
根据所述关联关系确定第一准共址QCL关系,并根据所述第一QCL关系在所述第二BWP上发送物理下行共享信道PDSCH;和/或
根据所述关联关系确定第二QCL关系,并根据所述第二QCL关系在所述第二BWP上发送物理下行控制信道PDCCH。
实施例14、如实施例13所述的方法,其特征在于,所述根据所述关联关系确定第一准共址QCL关系,包括:
若所述第一BWP与所述第二BWP存在所述所述关联关系,所述第一QCL关系为下行控制信息DCI包括的QCL信息所指示的QCL关系,其中,所述DCI还包括BWP切换指示信息,所述BWP切换指示信息用于指示终端从所述第一BWP切换至所述第二BWP。
实施例15、如实施例13或14所述的方法,其特征在于,所述根据所述关联关系确定第一准共址QCL关系,和/或所述根据所述关联关系确定第二QCL关系,包括:
若所述第一BWP与所述第二BWP存在所述关联关系,所述第一QCL关系和/或所述第二QCL关系为默认QCL信息所指示的QCL关系,所述默认QCL信息为下述中的至少一种:
所述第一BWP或者所述第二BWP包括的控制资源集合中索引或标识最小的控制资源集合的QCL信息;
所述第一BWP和所述第二BWP均包括的控制资源集合的QCL信息;
所述第一BWP和所述第二BWP重叠的频域资源中所述第一BWP所包括的控制资源集合的QCL信息;
所述第一BWP中的控制资源集合和/或PDSCH配置的QCL信息中的第三QCL信息,所述第三QCL信息所指示的参考信号位于所述第二BWP;
所述第二BWP中的控制资源集合和/或PDSCH配置的QCL信息中的第四QCL信息,所述第四QCL信息所指示的参考信号位于所述第一BWP。
实施例16、如实施例13至15中任一项所述的方法,其特征在于,所述根据所述关联关系确定第一准共址QCL关系,包括:
若所述第一BWP与所述第二BWP存在所述关联关系,所述第一QCL关系为默认QCL信息所指示的QCL关系,所述默认QCL信息为:
调度所述PDSCH的DCI所在的控制资源集合的QCL信息。
实施例17、如实施例13至16中任一项所述的方法,其特征在于,所述根据所述关联关系确定第一准共址QCL关系,和/或所述根据所述关联关系确定第二QCL关系,包括:
若所述第一BWP与所述第二BWP不存在所述关联关系,所述第一QCL关系和/或所述第二QCL关系为默认QCL信息所指示的QCL关系,所述默认QCL信息为下述中的至少一种:
所述第二BWP中的控制资源集合和/或PDSCH配置的QCL信息中的一个;
用于初始接入的同步信号广播信道块SSB的QCL信息;
用于接收广播PDCCH的QCL信息;
所述第二BWP包括的SSB中索引最小的SSB的QCL信息。
实施例18、如实施例17所述的方法,其特征在于,若所述第二BWP为初始BWP或包括初始BWP,或者若所述第二BWP不包括SSB时,所述第一QCL关系和/或所述第二QCL关系为用于初始接入的SSB的QCL信息所指示的QCL关系或用于接收广播PDCCH的QCL信息所指示的QCL关系;和/或,
若所述第二BWP不包括初始BWP,且所述第二BWP包括SSB,所述第一QCL关系和/或所述第二QCL关系为第二BWP包括的SSB中的索引最小的SSB的QCL信息所指示的QCL关系。
实施例19、如实施例13至18中任一项所述的方法,其特征在于,所述PDSCH由下行控制信息DCI调度,其中,所述DCI还包括所述BWP切换指示信息。
实施例20、如实施例19所述的方法,其特征在于,若调度偏移大于或者等于第一阈值,所述第一QCL关系为所述BWP切换指示信息所包括的QCL信息所指示的QCL关系;和/或
若所述调度偏移小于所述第一阈值,所述第一QCL关系为所述默认QCL信息所指示的QCL关系;
其中,所述第一阈值为终端的波束切换与BWP切换所需的时间总和。
实施例21、如实施例13所述的方法,其特征在于,所述根据所述关联关系确定第一准共址QCL关系,和/或所述根据所述关联关系确定第二QCL关系,包括:
若所述第一BWP与所述第二BWP存在所述关联关系,所述第二QCL关系为下述中的至少一种QCL信息所指示的QCL关系:
在频域上距离所述第二BWP最近的所述第一BWP中的控制资源集合的QCL信息。
实施例22、如实施例13、15至18以及21中任一项所述的方法,其特征在于,所述根据所述第一QCL关系在所述第二BWP上发送所述PDSCH和/或根据所述第二QCL关系在所述第二BWP上发送所述PDCCH,包括:
在所述第二BWP上发送控制资源集合和/或PDSCH的QCL信息之前,根据所述第一QCL关系在所述第二BWP上发送所述PDSCH和/或根据所述第二QCL关系在所述第二BWP上发送所述PDCCH。
实施例23、如实施例13至21中任一项所述的方法,其特征在于,所述第一BWP与所述第二BWP存在所述关联关系包括以至少一种情况:
所述第一BWP与所述第二BWP在频域上部分或全部重叠;
为所述第一BWP配置的参考信号和为所述第二BWP配置的参考信号满足准共址QCL关系;
所述第一BWP与所述第二BWP包括相同的控制资源集合;
所述第一BWP与所述第二BWP为同频带的BWP。
实施例24、如实施例13至23中任一项所述的方法,其特征在于,在所述确定第一带宽区域BWP和所述第二BWP之后,所述方法还包括:
发送BWP切换指示信息,所述BWP切换指示信息用于指示终端从所述第一BWP切换至所述第二BWP。
实施例25、一种通信装置,其特征在于,包括:
处理单元,用于确定第一带宽区域BWP和第二BWP;
所述处理单元还用于,确定所述第一BWP和所述第二BWP的关联关系;
所述处理单元,用于根据所述关联关系确定第一准共址QCL关系,并且接收单元用于,根据所述第一QCL关系在所述第二BWP上接收物理下行共享信道PDSCH;和/或
所述处理单元,用于根据所述关联关系确定第二QCL关系,并且所述接收单元用于,根据所述第二QCL关系在所述第二BWP上接收物理下行控制信道PDCCH。
实施例26、如实施例25所述的通信装置,其特征在于,所述处理单元具体用于:
若所述第一BWP与所述第二BWP存在所述关联关系,确定所述第一QCL关系为下行控制信息DCI包括的QCL信息所指示的QCL关系,其中,所述DCI还包括BWP切换指示信息,所述BWP切换指示信息用于指示终端从所述第一BWP切换至所述第二BWP。
实施例27、如实施例25或26所述的通信装置,其特征在于,所述处理单元具体用于:
若所述第一BWP与所述第二BWP存在所述关联关系,确定所述第一QCL关系和/或所述第二QCL关系为默认QCL信息所指示的QCL关系,所述默认QCL信息为下述中的至少一种:
所述第一BWP或者所述第二BWP包括的控制资源集合中索引或标识最小的控制资 源集合的QCL信息;
所述第一BWP和所述第二BWP均包括的控制资源集合的QCL信息;
所述第一BWP和所述第二BWP重叠的频域资源中所述第一BWP所包括的控制资源集合的QCL信息;
所述第一BWP中的控制资源集合和/或PDSCH配置的QCL信息中的第三QCL信息,所述第三QCL信息所指示的参考信号位于所述第二BWP;
所述第二BWP中的控制资源集合和/或PDSCH配置的QCL信息中的第四QCL信息,所述第四QCL信息所指示的参考信号位于所述第一BWP。
实施例28、如实施例25至27中任一项所述的通信装置,其特征在于,所述处理单元具体用于:
若所述第一BWP与所述第二BWP存在所述关联关系,确定所述第一QCL关系为默认QCL信息所指示的QCL关系,所述默认QCL信息为:
调度所述PDSCH的DCI所在的控制资源集合的QCL信息。
实施例29、如实施例25至28中任一项所述的通信装置,其特征在于,所述处理单元具体用于:
若所述第一BWP与所述第二BWP不存在所述关联关系,确定所述第一QCL关系和/或所述第二QCL关系为默认QCL信息所指示的QCL关系,所述默认QCL信息为下述中的至少一种:
为所述第二BWP中的控制资源集合和/或PDSCH配置的QCL信息中的一个;
用于初始接入的同步信号广播信道块SSB的QCL信息;
用于接收广播PDCCH的QCL信息;
所述第二BWP包括的SSB中索引最小的SSB的QCL信息。
实施例30、如实施例29所述的通信装置,其特征在于,若所述第二BWP为初始BWP或包括初始BWP,或者若所述第二BWP不包括SSB时,所述第一QCL关系和/或所述第二QCL关系为用于初始接入的SSB的QCL信息所指示的QCL关系或用于接收广播PDCCH的QCL信息所指示的QCL关系;和/或,
若所述第二BWP不包括初始BWP,且所述第二BWP包括SSB,所述第一QCL关系和/或所述第二QCL关系为第二BWP包括的SSB中的索引最小的SSB的QCL信息所指示的QCL关系。
实施例31、如实施例25至30中任一项所述的通信装置,其特征在于,所述PDSCH由下行控制信息DCI调度,其中,所述DCI还包括所述BWP切换指示信息。
实施例32、如实施例31所述的通信装置,其特征在于,若调度偏移大于或者等于第一阈值,所述第一QCL关系为所述BWP切换指示信息所包括的QCL信息所指示的QCL关系;和/或
若所述调度偏移小于所述第一阈值,所述第一QCL关系为所述默认QCL信息所指示的QCL关系;
其中,所述第一阈值为终端的波束切换与BWP切换所需的时间总和。
实施例33、如实施例25所述的通信装置,其特征在于,所述处理单元具体用于:
若所述第一BWP与所述第二BWP存在所述关联关系,确定所述第二QCL关系为下 述中的至少一种QCL信息所指示的QCL关系:
在频域上距离所述第二BWP最近的所述第一BWP中的控制资源集合的QCL信息。
实施例34、如实施例25、27至30以及33中任一项所述的通信装置,其特征在于,所述接收单元具体用于:
在所述第二BWP上接收到控制资源集合和/或PDSCH的QCL信息之前,根据所述第一QCL关系在所述第二BWP上接收所述PDSCH和/或根据所述第二QCL关系在所述第二BWP上接收所述PDCCH。
实施例35、如实施例25至34中任一项所述的通信装置,其特征在于,所述第一BWP与所述第二BWP存在所述关联关系包括以至少一种情况:
所述第一BWP与所述第二BWP在频域上部分或全部重叠;
为所述第一BWP配置的参考信号和为所述第二BWP配置的参考信号满足准共址QCL关系;
所述第一BWP与所述第二BWP包括相同的控制资源集合;
所述第一BWP与所述第二BWP为同频带的BWP。
实施例36、如实施例25至35中任一项所述的通信装置,其特征在于,所述接收单元还用于:
接收BWP切换指示信息;
所述处理单元具体用于,根据所述BWP切换指示信息从所述第一BWP切换至所述第二BWP。
实施例37、一种通信装置,其特征在于,包括:
处理单元,用于确定第一带宽区域BWP和第二BWP;
所述处理单元还用于,确定所述第一BWP和所述第二BWP的关联关系;
所述处理单元还用于,根据所述关联关系确定第一准共址QCL关系,并且发送单元用于,根据所述第一QCL关系在所述第二BWP上发送物理下行共享信道PDSCH;和/或
所述处理单元还用于,根据所述关联关系确定第二QCL关系,并且所述发送单元用于,根据所述第二QCL关系在所述第二BWP上发送物理下行控制信道PDCCH。
实施例38、如实施例37所述的通信装置,其特征在于,所述处理单元具体用于:
若所述第一BWP与所述第二BWP存在所述关联关系,确定所述第一QCL关系为下行控制信息DCI包括的QCL信息所指示的QCL关系,其中,所述DCI还包括BWP切换指示信息,所述BWP切换指示信息用于指示终端从所述第一BWP切换至所述第二BWP。
实施例39、如实施例37或38所述的通信装置,其特征在于,所述处理单元具体用于:
若所述第一BWP与所述第二BWP存在所述关联关系,确定所述第一QCL关系和/或所述第二QCL关系为默认QCL信息所指示的QCL关系,所述默认QCL信息为下述中的至少一种:
所述第一BWP或者所述第二BWP包括的控制资源集合中索引或标识最小的控制资源集合的QCL信息;
所述第一BWP和所述第二BWP均包括的控制资源集合的QCL信息;
所述第一BWP和所述第二BWP重叠的频域资源中所述第一BWP所包括的控制资源集合的QCL信息;
所述第一BWP中的控制资源集合和/或PDSCH配置的QCL信息中的第三QCL信息,所述第三QCL信息所指示的参考信号位于所述第二BWP;
所述第二BWP中的控制资源集合和/或PDSCH配置的QCL信息中的第四QCL信息,所述第四QCL信息所指示的参考信号位于所述第一BWP。
实施例40、如实施例37至39中任一项所述的通信装置,其特征在于,所述处理单元具体用于:
若所述第一BWP与所述第二BWP存在所述关联关系,确定所述第一QCL关系为默认QCL信息所指示的QCL关系,所述默认QCL信息为:
调度所述PDSCH的DCI所在的控制资源集合的QCL信息。
实施例41、如实施例37至40中任一项所述的通信装置,其特征在于,所述处理单元具体用于:
若所述第一BWP与所述第二BWP不存在所述关联关系,确定所述第一QCL关系和/或所述第二QCL关系为默认QCL信息所指示的QCL关系,所述默认QCL信息为下述中的至少一种:
为所述第二BWP中的控制资源集合和/或PDSCH配置的QCL信息中的一个;
用于初始接入的同步信号广播信道块SSB的QCL信息;
用于接收广播PDCCH的QCL信息;
所述第二BWP包括的SSB中索引最小的SSB的QCL信息。
实施例42、如实施例41所述的通信装置,其特征在于,若所述第二BWP为初始BWP或包括初始BWP,或者若所述第二BWP不包括SSB时,所述第一QCL关系和/或所述第二QCL关系为用于初始接入的SSB的QCL信息所指示的QCL关系或用于接收广播PDCCH的QCL信息所指示的QCL关系;和/或,
若所述第二BWP不包括初始BWP,且所述第二BWP包括SSB,所述第一QCL关系和/或所述第二QCL关系为第二BWP包括的SSB中的索引最小的SSB的QCL信息所指示的QCL关系。
实施例43、如实施例37至42中任一项所述的通信装置,其特征在于,所述PDSCH由下行控制信息DCI调度,其中,所述DCI还包括所述BWP切换指示信息。
实施例44、如实施例43所述的通信装置,其特征在于,若调度偏移大于或者等于第一阈值,所述第一QCL关系为所述BWP切换指示信息所包括的QCL信息所指示的QCL关系;和/或
若所述调度偏移小于所述第一阈值,所述第一QCL关系为所述默认QCL信息所指示的QCL关系;
其中,所述第一阈值为终端的波束切换与BWP切换所需的时间总和。
实施例45、如实施例37所述的通信装置,其特征在于,所述处理单元具体用于:
若所述第一BWP与所述第二BWP存在所述关联关系,所述第二QCL关系为下述中的至少一种QCL信息所指示的QCL关系:
在频域上距离所述第二BWP最近的所述第一BWP中的控制资源集合的QCL信息。
实施例46、如实施例37、39至42以及45中任一项所述的通信装置,其特征在于,所述发送单元具体用于:
在所述第二BWP上接收到控制资源集合和/或PDSCH的QCL信息之前,根据所述第一QCL关系在所述第二BWP上发送所述PDSCH和/或根据所述第二QCL关系在所述第二BWP上发送所述PDCCH。
实施例47、如实施例37至46中任一项所述的通信装置,其特征在于,所述第一BWP与所述第二BWP存在所述关联关系包括以至少一种情况:
所述第一BWP与所述第二BWP在频域上部分或全部重叠;
为所述第一BWP配置的参考信号和为所述第二BWP配置的参考信号满足准共址QCL关系;
所述第一BWP与所述第二BWP包括相同的控制资源集合;
所述第一BWP与所述第二BWP为同频带的BWP。
实施例48、如实施例37至47中任一项所述的通信装置,其特征在于,所述发送单元还用于:
发送BWP切换指示信息,所述BWP切换指示信息用于指示终端从所述第一BWP切换至所述第二BWP。
本申请还提供一种通信系统,其包括前述的一个或多个网络设备,和,一个或多个终端。
应理解,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请各实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器 (enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请还提供了一种计算机可读介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述任一方法实施例的功能。
本申请还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
应理解,说明书通篇中提到的“实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各个实施例未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还应理解,在本申请中,“当…时”、“若”以及“如果”均指在某种客观情况下UE或者基站会做出相应的处理,并非是限定时间,且也不要求UE或基站实现时一定要有判断的动作,也不意味着存在其它限定。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
本文中术语“……中的至少一个”或“……中的至少一种”,表示所列出的各项的全部或任意组合,例如,“A、B和C中的至少一种”,可以表示:单独存在A,单独存在B,单独存在C,同时存在A和B,同时存在B和C,同时存在A、B和C这六种情况。
应理解,在本申请各实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及 算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可以用硬件实现,或固件实现,或它们的组合方式来实现。当使用软件实现时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括RAM、ROM、EEPROM、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。此外。任何连接可以适当的成为计算机可读介质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、数字用户线(DSL)或者诸如红外线、无线电和微波之类的无线技术从网站、服务器或者其他远程源传输的,那么同轴电缆、光纤光缆、双绞线、DSL或者诸如红外线、无线和微波之类的无线技术包括在所属介质的定影中。如本申请所使用的,盘(disk)和碟(disc)包括压缩光碟(CD)、激光碟、光碟、数字通用光碟(DVD)、软盘和蓝光光碟,其中盘通常使用磁性来复制数据,而碟则使用激光来复制数据。上面的组合也应当包括在计算机可读介质的保护范围之内。
总之,以上所述仅为本申请技术方案的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (48)

  1. 一种通信方法,其特征在于,包括:
    确定第一带宽区域BWP和第二BWP;
    确定所述第一BWP和所述第二BWP的关联关系;
    根据所述关联关系确定第一准共址QCL关系,并根据所述第一QCL关系在所述第二BWP上接收物理下行共享信道PDSCH;和/或
    根据所述关联关系确定第二QCL关系,并根据所述第二QCL关系在所述第二BWP上接收物理下行控制信道PDCCH。
  2. 如权利要求1所述的方法,其特征在于,所述根据所述关联关系确定第一准共址QCL关系,包括:
    所述第一QCL关系为下行控制信息DCI包括的QCL信息所指示的QCL关系,其中,所述DCI还包括BWP切换指示信息,所述BWP切换指示信息用于指示终端从所述第一BWP切换至所述第二BWP。
  3. 如权利要求1或2所述的方法,其特征在于,所述根据所述关联关系确定第一准共址QCL关系和/或所述根据所述关联关系确定第二QCL关系,包括:
    所述第一QCL关系和/或所述第二QCL关系为默认QCL信息所指示的QCL关系,所述默认QCL信息为下述中的至少一种:
    所述第一BWP或者所述第二BWP包括的控制资源集合中索引或标识最小的控制资源集合的QCL信息;
    所述第一BWP和所述第二BWP均包括的控制资源集合的QCL信息;
    所述第一BWP和所述第二BWP重叠的频域资源中所述第一BWP所包括的控制资源集合的QCL信息;
    所述第一BWP中的控制资源集合和/或PDSCH配置的QCL信息中的第三QCL信息,所述第三QCL信息所指示的参考信号位于所述第二BWP;
    所述第二BWP中的控制资源集合和/或PDSCH配置的QCL信息中的第四QCL信息,所述第四QCL信息所指示的参考信号位于所述第一BWP。
  4. 如权利要求1至3中任一项所述的方法,其特征在于,所述根据所述关联关系确定第一准共址QCL关系,包括:
    所述第一QCL关系为默认QCL信息所指示的QCL关系,所述默认QCL信息为:
    调度所述PDSCH的下行控制信息DCI所在的控制资源集合的QCL信息。
  5. 如权利要求1至4中任一项所述的方法,其特征在于,所述根据所述关联关系确定第一准共址QCL关系,和/或所述根据所述关联关系确定第二QCL关系,包括:
    所述第一QCL关系和/或所述第二QCL关系为默认QCL信息所指示的QCL关系,所述默认QCL信息为下述中的至少一种:
    所述第二BWP中的控制资源集合和/或PDSCH配置的QCL信息中的一个;
    用于初始接入的同步信号广播信道块SSB的QCL信息;
    用于接收广播PDCCH的QCL信息;
    所述第二BWP包括的SSB中索引最小的SSB的QCL信息。
  6. 如权利要求5所述的方法,其特征在于,若所述第二BWP为初始BWP或包括初始BWP,或者若所述第二BWP不包括SSB,所述第一QCL关系和/或所述第二QCL关系为用于初始接入的SSB的QCL信息所指示的QCL关系或用于接收广播PDCCH的QCL信息所指示的QCL关系;和/或,
    若所述第二BWP不包括初始BWP,且所述第二BWP包括SSB,所述第一QCL关系和/或所述第二QCL关系为第二BWP包括的SSB中的索引最小的SSB的QCL信息所指示的QCL关系。
  7. 如权利要求1至6中任一项所述的方法,其特征在于,所述PDSCH由下行控制信息DCI调度,其中,所述DCI还包括所述BWP切换指示信息。
  8. 如权利要求7所述的方法,其特征在于,若调度偏移大于或者等于第一阈值,所述第一QCL关系为所述BWP切换指示信息所包括的QCL信息所指示的QCL关系;和/或
    若所述调度偏移小于所述第一阈值,所述第一QCL关系为所述默认QCL信息所指示的QCL关系;
    其中,所述第一阈值为终端的波束切换与BWP切换所需的时间总和。
  9. 如权利要求1所述的方法,其特征在于,所述根据所述关联关系确定第一准共址QCL关系,和/或所述根据所述关联关系确定第二QCL关系,包括:
    所述第二QCL关系为下述中的至少一种QCL信息所指示的QCL关系:
    在频域上距离所述第二BWP最近的所述第一BWP中的控制资源集合的QCL信息。
  10. 如权利要求1、3至6以及9中任一项所述的方法,其特征在于,所述根据所述第一QCL关系在所述第二BWP上接收所述PDSCH和/或根据所述第二QCL关系在所述第二BWP上接收所述PDCCH,包括:
    在所述第二BWP上接收到控制资源集合和/或PDSCH的QCL信息之前,根据所述第一QCL关系在所述第二BWP上接收所述PDSCH和/或根据所述第二QCL关系在所述第二BWP上接收所述PDCCH。
  11. 如权利要求1至10中任一项所述的方法,其特征在于,所述第一BWP与所述第二BWP存在所述关联关系包括以至少一种情况:
    所述第一BWP与所述第二BWP在频域上部分或全部重叠;
    为所述第一BWP配置的参考信号和为所述第二BWP配置的参考信号满足准共址QCL关系;
    所述第一BWP与所述第二BWP包括相同的控制资源集合;
    所述第一BWP与所述第二BWP为同频带的BWP。
  12. 如权利要求1至11中任一项所述的方法,其特征在于,所述确定第一带宽区域BWP和所述第二BWP,包括:
    接收BWP切换指示信息;
    根据所述BWP切换指示信息从所述第一BWP切换至所述第二BWP。
  13. 一种通信方法,其特征在于,包括:
    确定第一带宽区域BWP和第二BWP;
    确定所述第一BWP和所述第二BWP的关联关系;
    根据所述关联关系确定第一准共址QCL关系,并根据所述第一QCL关系在所述第二BWP上发送物理下行共享信道PDSCH;和/或
    根据所述关联关系确定第二QCL关系,并根据所述第二QCL关系在所述第二BWP上发送物理下行控制信道PDCCH。
  14. 如权利要求13所述的方法,其特征在于,所述根据所述关联关系确定第一准共址QCL关系,包括:
    所述第一QCL关系为下行控制信息DCI包括的QCL信息所指示的QCL关系,其中,所述DCI还包括BWP切换指示信息,所述BWP切换指示信息用于指示终端从所述第一BWP切换至所述第二BWP。
  15. 如权利要求13或14所述的方法,其特征在于,所述根据所述关联关系确定第一准共址QCL关系,和/或所述根据所述关联关系确定第二QCL关系,包括:
    所述第一QCL关系和/或所述第二QCL关系为默认QCL信息所指示的QCL关系,所述默认QCL信息为下述中的至少一种:
    所述第一BWP或者所述第二BWP包括的控制资源集合中索引或标识最小的控制资源集合的QCL信息;
    所述第一BWP和所述第二BWP均包括的控制资源集合的QCL信息;
    所述第一BWP和所述第二BWP重叠的频域资源中所述第一BWP所包括的控制资源集合的QCL信息;
    所述第一BWP中的控制资源集合和/或PDSCH配置的QCL信息中的第三QCL信息,所述第三QCL信息所指示的参考信号位于所述第二BWP;
    所述第二BWP中的控制资源集合和/或PDSCH配置的QCL信息中的第四QCL信息,所述第四QCL信息所指示的参考信号位于所述第一BWP。
  16. 如权利要求13至15中任一项所述的方法,其特征在于,所述根据所述关联关系确定第一准共址QCL关系,包括:
    所述第一QCL关系为默认QCL信息所指示的QCL关系,所述默认QCL信息为:
    调度所述PDSCH的DCI所在的控制资源集合的QCL信息。
  17. 如权利要求13至16中任一项所述的方法,其特征在于,所述根据所述关联关系确定第一准共址QCL关系,和/或所述根据所述关联关系确定第二QCL关系,包括:
    所述第一QCL关系和/或所述第二QCL关系为默认QCL信息所指示的QCL关系,所述默认QCL信息为下述中的至少一种:
    所述第二BWP中的控制资源集合和/或PDSCH配置的QCL信息中的一个;
    用于初始接入的同步信号广播信道块SSB的QCL信息;
    用于接收广播PDCCH的QCL信息;
    所述第二BWP包括的SSB中索引最小的SSB的QCL信息。
  18. 如权利要求17所述的方法,其特征在于,若所述第二BWP为初始BWP或包括初始BWP,或者若所述第二BWP不包括SSB时,所述第一QCL关系和/或所述第二QCL关系为用于初始接入的SSB的QCL信息所指示的QCL关系或用于接收广播PDCCH的QCL信息所指示的QCL关系;和/或,
    若所述第二BWP不包括初始BWP,且所述第二BWP包括SSB,所述第一QCL关系和/或所述第二QCL关系为第二BWP包括的SSB中的索引最小的SSB的QCL信息所指示的QCL关系。
  19. 如权利要求13至18中任一项所述的方法,其特征在于,所述PDSCH由下行控制信息DCI调度,其中,所述DCI还包括所述BWP切换指示信息。
  20. 如权利要求19所述的方法,其特征在于,若调度偏移大于或者等于第一阈值,所述第一QCL关系为所述BWP切换指示信息所包括的QCL信息所指示的QCL关系;和/或
    若所述调度偏移小于所述第一阈值,所述第一QCL关系为所述默认QCL信息所指示的QCL关系;
    其中,所述第一阈值为终端的波束切换与BWP切换所需的时间总和。
  21. 如权利要求13所述的方法,其特征在于,所述根据所述关联关系确定第一准共址QCL关系,和/或所述根据所述关联关系确定第二QCL关系,包括:
    所述第二QCL关系为下述中的至少一种QCL信息所指示的QCL关系:
    在频域上距离所述第二BWP最近的所述第一BWP中的控制资源集合的QCL信息。
  22. 如权利要求13、15至18以及21中任一项所述的方法,其特征在于,所述根据所述第一QCL关系在所述第二BWP上发送所述PDSCH和/或根据所述第二QCL关系在所述第二BWP上发送所述PDCCH,包括:
    在所述第二BWP上发送控制资源集合和/或PDSCH的QCL信息之前,根据所述第一QCL关系在所述第二BWP上发送所述PDSCH和/或根据所述第二QCL关系在所述第二BWP上发送所述PDCCH。
  23. 如权利要求13至21中任一项所述的方法,其特征在于,所述第一BWP与所述第二BWP存在所述关联关系包括以至少一种情况:
    所述第一BWP与所述第二BWP在频域上部分或全部重叠;
    为所述第一BWP配置的参考信号和为所述第二BWP配置的参考信号满足准共址QCL关系;
    所述第一BWP与所述第二BWP包括相同的控制资源集合;
    所述第一BWP与所述第二BWP为同频带的BWP。
  24. 如权利要求13至23中任一项所述的方法,其特征在于,在所述确定第一带宽区域BWP和所述第二BWP之后,所述方法还包括:
    发送BWP切换指示信息,所述BWP切换指示信息用于指示终端从所述第一BWP切换至所述第二BWP。
  25. 一种通信装置,其特征在于,包括:
    处理单元,用于确定第一带宽区域BWP和第二BWP;
    所述处理单元还用于,确定所述第一BWP和所述第二BWP的关联关系;
    所述处理单元,用于根据所述关联关系确定第一准共址QCL关系,并且接收单元用于,根据所述第一QCL关系在所述第二BWP上接收物理下行共享信道PDSCH;和/或
    所述处理单元,用于根据所述关联关系确定第二QCL关系,并且所述接收单元用于,根据所述第二QCL关系在所述第二BWP上接收物理下行控制信道PDCCH。
  26. 如权利要求25所述的通信装置,其特征在于,所述处理单元具体用于:
    确定所述第一QCL关系为下行控制信息DCI包括的QCL信息所指示的QCL关系,其中,所述DCI还包括BWP切换指示信息,所述BWP切换指示信息用于指示终端从所述第一BWP切换至所述第二BWP。
  27. 如权利要求25或26所述的通信装置,其特征在于,所述处理单元具体用于:
    确定所述第一QCL关系和/或所述第二QCL关系为默认QCL信息所指示的QCL关系,所述默认QCL信息为下述中的至少一种:
    所述第一BWP或者所述第二BWP包括的控制资源集合中索引或标识最小的控制资源集合的QCL信息;
    所述第一BWP和所述第二BWP均包括的控制资源集合的QCL信息;
    所述第一BWP和所述第二BWP重叠的频域资源中所述第一BWP所包括的控制资源集合的QCL信息;
    所述第一BWP中的控制资源集合和/或PDSCH配置的QCL信息中的第三QCL信息,所述第三QCL信息所指示的参考信号位于所述第二BWP;
    所述第二BWP中的控制资源集合和/或PDSCH配置的QCL信息中的第四QCL信息,所述第四QCL信息所指示的参考信号位于所述第一BWP。
  28. 如权利要求25至27中任一项所述的通信装置,其特征在于,所述处理单元具体用于:
    确定所述第一QCL关系为默认QCL信息所指示的QCL关系,所述默认QCL信息为:
    调度所述PDSCH的DCI所在的控制资源集合的QCL信息。
  29. 如权利要求25至28中任一项所述的通信装置,其特征在于,所述处理单元具体用于:
    确定所述第一QCL关系和/或所述第二QCL关系为默认QCL信息所指示的QCL关系,所述默认QCL信息为下述中的至少一种:
    为所述第二BWP中的控制资源集合和/或PDSCH配置的QCL信息中的一个;
    用于初始接入的同步信号广播信道块SSB的QCL信息;
    用于接收广播PDCCH的QCL信息;
    所述第二BWP包括的SSB中索引最小的SSB的QCL信息。
  30. 如权利要求29所述的通信装置,其特征在于,若所述第二BWP为初始BWP或包括初始BWP,或者若所述第二BWP不包括SSB时,所述第一QCL关系和/或所述第二QCL关系为用于初始接入的SSB的QCL信息所指示的QCL关系或用于接收广播PDCCH的QCL信息所指示的QCL关系;和/或,
    若所述第二BWP不包括初始BWP,且所述第二BWP包括SSB,所述第一QCL关系和/或所述第二QCL关系为第二BWP包括的SSB中的索引最小的SSB的QCL信息所指示的QCL关系。
  31. 如权利要求25至30中任一项所述的通信装置,其特征在于,所述PDSCH由下行控制信息DCI调度,其中,所述DCI还包括所述BWP切换指示信息。
  32. 如权利要求31所述的通信装置,其特征在于,若调度偏移大于或者等于第一阈值,所述第一QCL关系为所述BWP切换指示信息所包括的QCL信息所指示的QCL关系; 和/或
    若所述调度偏移小于所述第一阈值,所述第一QCL关系为所述默认QCL信息所指示的QCL关系;
    其中,所述第一阈值为终端的波束切换与BWP切换所需的时间总和。
  33. 如权利要求25所述的通信装置,其特征在于,所述处理单元具体用于:
    确定所述第二QCL关系为下述中的至少一种QCL信息所指示的QCL关系:
    在频域上距离所述第二BWP最近的所述第一BWP中的控制资源集合的QCL信息。
  34. 如权利要求25、27至30以及33中任一项所述的通信装置,其特征在于,所述接收单元具体用于:
    在所述第二BWP上接收到控制资源集合和/或PDSCH的QCL信息之前,根据所述第一QCL关系在所述第二BWP上接收所述PDSCH和/或根据所述第二QCL关系在所述第二BWP上接收所述PDCCH。
  35. 如权利要求25至34中任一项所述的通信装置,其特征在于,所述第一BWP与所述第二BWP存在所述关联关系包括以至少一种情况:
    所述第一BWP与所述第二BWP在频域上部分或全部重叠;
    为所述第一BWP配置的参考信号和为所述第二BWP配置的参考信号满足准共址QCL关系;
    所述第一BWP与所述第二BWP包括相同的控制资源集合;
    所述第一BWP与所述第二BWP为同频带的BWP。
  36. 如权利要求25至35中任一项所述的通信装置,其特征在于,所述接收单元还用于:
    接收BWP切换指示信息;
    所述处理单元具体用于,根据所述BWP切换指示信息从所述第一BWP切换至所述第二BWP。
  37. 一种通信装置,其特征在于,包括:
    处理单元,用于确定第一带宽区域BWP和第二BWP;
    所述处理单元还用于,确定所述第一BWP和所述第二BWP的关联关系;
    所述处理单元还用于,根据所述关联关系确定第一准共址QCL关系,并且发送单元用于,根据所述第一QCL关系在所述第二BWP上发送物理下行共享信道PDSCH;和/或
    所述处理单元还用于,根据所述关联关系确定第二QCL关系,并且所述发送单元用于,根据所述第二QCL关系在所述第二BWP上发送物理下行控制信道PDCCH。
  38. 如权利要求37所述的通信装置,其特征在于,所述处理单元具体用于:
    确定所述第一QCL关系为下行控制信息DCI包括的QCL信息所指示的QCL关系,其中,所述DCI还包括BWP切换指示信息,所述BWP切换指示信息用于指示终端从所述第一BWP切换至所述第二BWP。
  39. 如权利要求37或38所述的通信装置,其特征在于,所述处理单元具体用于:
    确定所述第一QCL关系和/或所述第二QCL关系为默认QCL信息所指示的QCL关系,所述默认QCL信息为下述中的至少一种:
    所述第一BWP或者所述第二BWP包括的控制资源集合中索引或标识最小的控制资源集合的QCL信息;
    所述第一BWP和所述第二BWP均包括的控制资源集合的QCL信息;
    所述第一BWP和所述第二BWP重叠的频域资源中所述第一BWP所包括的控制资源集合的QCL信息;
    所述第一BWP中的控制资源集合和/或PDSCH配置的QCL信息中的第三QCL信息,所述第三QCL信息所指示的参考信号位于所述第二BWP;
    所述第二BWP中的控制资源集合和/或PDSCH配置的QCL信息中的第四QCL信息,所述第四QCL信息所指示的参考信号位于所述第一BWP。
  40. 如权利要求37至39中任一项所述的通信装置,其特征在于,所述处理单元具体用于:
    确定所述第一QCL关系为默认QCL信息所指示的QCL关系,所述默认QCL信息为:
    调度所述PDSCH的DCI所在的控制资源集合的QCL信息。
  41. 如权利要求37至40中任一项所述的通信装置,其特征在于,所述处理单元具体用于:
    确定所述第一QCL关系和/或所述第二QCL关系为默认QCL信息所指示的QCL关系,所述默认QCL信息为下述中的至少一种:
    为所述第二BWP中的控制资源集合和/或PDSCH配置的QCL信息中的一个;
    用于初始接入的同步信号广播信道块SSB的QCL信息;
    用于接收广播PDCCH的QCL信息;
    所述第二BWP包括的SSB中索引最小的SSB的QCL信息。
  42. 如权利要求41所述的通信装置,其特征在于,若所述第二BWP为初始BWP或包括初始BWP,或者若所述第二BWP不包括SSB时,所述第一QCL关系和/或所述第二QCL关系为用于初始接入的SSB的QCL信息所指示的QCL关系或用于接收广播PDCCH的QCL信息所指示的QCL关系;和/或,
    若所述第二BWP不包括初始BWP,且所述第二BWP包括SSB,所述第一QCL关系和/或所述第二QCL关系为第二BWP包括的SSB中的索引最小的SSB的QCL信息所指示的QCL关系。
  43. 如权利要求37至42中任一项所述的通信装置,其特征在于,所述PDSCH由下行控制信息DCI调度,其中,所述DCI还包括所述BWP切换指示信息。
  44. 如权利要求43所述的通信装置,其特征在于,若调度偏移大于或者等于第一阈值,所述第一QCL关系为所述BWP切换指示信息所包括的QCL信息所指示的QCL关系;和/或
    若所述调度偏移小于所述第一阈值,所述第一QCL关系为所述默认QCL信息所指示的QCL关系;
    其中,所述第一阈值为终端的波束切换与BWP切换所需的时间总和。
  45. 如权利要求37所述的通信装置,其特征在于,所述处理单元具体用于:
    所述第二QCL关系为下述中的至少一种QCL信息所指示的QCL关系:
    在频域上距离所述第二BWP最近的所述第一BWP中的控制资源集合的QCL信息。
  46. 如权利要求37、39至42以及45中任一项所述的通信装置,其特征在于,所述发送单元具体用于:
    在所述第二BWP上接收到控制资源集合和/或PDSCH的QCL信息之前,根据所述第一QCL关系在所述第二BWP上发送所述PDSCH和/或根据所述第二QCL关系在所述第二BWP上发送所述PDCCH。
  47. 如权利要求37至46中任一项所述的通信装置,其特征在于,所述第一BWP与所述第二BWP存在所述关联关系包括以至少一种情况:
    所述第一BWP与所述第二BWP在频域上部分或全部重叠;
    为所述第一BWP配置的参考信号和为所述第二BWP配置的参考信号满足准共址QCL关系;
    所述第一BWP与所述第二BWP包括相同的控制资源集合;
    所述第一BWP与所述第二BWP为同频带的BWP。
  48. 如权利要求37至47中任一项所述的通信装置,其特征在于,所述发送单元还用于:
    发送BWP切换指示信息,所述BWP切换指示信息用于指示终端从所述第一BWP切换至所述第二BWP。
PCT/CN2019/087929 2018-05-22 2019-05-22 通信方法和通信装置 WO2019223712A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BR112020023678-0A BR112020023678A2 (pt) 2018-05-22 2019-05-22 método de comunicação e aparelho de comunicações
EP19808324.8A EP3817479B1 (en) 2018-05-22 2019-05-22 Communication method and communication apparatus
KR1020207036298A KR20210010560A (ko) 2018-05-22 2019-05-22 통신 방법 및 통신 장치
US17/100,444 US11569949B2 (en) 2018-05-22 2020-11-20 Communication method and communications apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810496966.7 2018-05-22
CN201810496966.7A CN110519843B (zh) 2018-05-22 2018-05-22 通信方法和通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/100,444 Continuation US11569949B2 (en) 2018-05-22 2020-11-20 Communication method and communications apparatus

Publications (1)

Publication Number Publication Date
WO2019223712A1 true WO2019223712A1 (zh) 2019-11-28

Family

ID=68617182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/087929 WO2019223712A1 (zh) 2018-05-22 2019-05-22 通信方法和通信装置

Country Status (6)

Country Link
US (1) US11569949B2 (zh)
EP (1) EP3817479B1 (zh)
KR (1) KR20210010560A (zh)
CN (1) CN110519843B (zh)
BR (1) BR112020023678A2 (zh)
WO (1) WO2019223712A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113518355A (zh) * 2020-04-10 2021-10-19 华为技术有限公司 准共址关系管理方法及装置
WO2021226610A2 (en) 2020-08-06 2021-11-11 Futurewei Technologies, Inc. System and method for uplink and downlink in multi-point communications
JP2023513237A (ja) * 2020-02-13 2023-03-30 ノキア テクノロジーズ オサケユイチア 基地局とユーザ機器

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11523419B2 (en) * 2018-06-18 2022-12-06 Ntt Docomo, Inc. User terminal
EP3818757A4 (en) * 2018-07-06 2021-07-21 ZTE Corporation METHOD AND DEVICE FOR SIGNAL TRANSMISSION AND RECEPTION
WO2020031345A1 (ja) * 2018-08-09 2020-02-13 株式会社Nttドコモ ユーザ端末及び無線通信方法
CN115412217A (zh) * 2018-11-02 2022-11-29 中兴通讯股份有限公司 控制信道检测、信息元素传输方法、装置、设备及介质
WO2021008433A1 (en) * 2019-07-12 2021-01-21 FG Innovation Company Limited Method and apparatus for beam management
US11909589B2 (en) * 2019-10-03 2024-02-20 Qualcomm Incorporated Constraints on a source reference signal for quasi-collocation timing reference of a positioning reference signal
US11398893B2 (en) * 2019-10-25 2022-07-26 Qualcomm Incorporated Reporting of multiple component carriers or frequency bands that share quasi co-location information
CN113225801B (zh) * 2020-02-06 2023-07-21 维沃移动通信有限公司 同步信号传输方法和设备
CN115176435B (zh) * 2020-02-28 2024-04-02 高通股份有限公司 用于降低能力的无线设备的空分复用
US11700616B2 (en) * 2020-04-10 2023-07-11 Qualcomm Incorporated Default aperiodic channel state information reference signal beam for same numerology triggering
EP4195815A4 (en) * 2020-08-05 2024-05-01 Beijing Xiaomi Mobile Software Co Ltd SWITCHING METHOD AND DEVICE FOR A TERMINAL DEVICE, DEVICE AND MEDIUM
WO2022098104A1 (ko) * 2020-11-04 2022-05-12 엘지전자 주식회사 무선 통신 시스템에서 공간 파라미터 동적 지시 방법 및 장치
US11736341B2 (en) * 2021-02-05 2023-08-22 Qualcomm Incorporated Beam failure indications between sidelink user equipments
US20220361219A1 (en) * 2021-05-07 2022-11-10 Qualcomm Incorporated Techniques for transmission configuration indicator states of single-frequency network control channel repetitions
CN117322115A (zh) * 2021-05-12 2023-12-29 上海诺基亚贝尔股份有限公司 公共频率资源、控制资源集配置和公共频率资源切换

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180048413A1 (en) * 2016-08-12 2018-02-15 Futurewei Technologies, Inc. System and Method for Network Access
CN108024365A (zh) * 2016-11-03 2018-05-11 华为技术有限公司 一种信息传输方法及设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108347751B (zh) 2017-01-25 2021-08-03 华为技术有限公司 通信方法和通信装置
CN116582404A (zh) * 2017-05-05 2023-08-11 苹果公司 新空口(nr)中用于天线端口的准共址(qcl)
US10554262B2 (en) * 2017-05-12 2020-02-04 Qualcomm Incorporated Cross-sub-band quasi co-location signaling
CN108112080B (zh) 2017-11-17 2021-05-14 中兴通讯股份有限公司 信息处理方法、通信设备及存储介质
WO2019159004A1 (en) * 2018-02-16 2019-08-22 Lenovo (Singapore) Pte, Ltd. Resources corresponding to bandwidth parts
US10979273B2 (en) * 2018-03-23 2021-04-13 Qualcomm Incorporated Quasi co-location assumption during bandwidth part switching

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180048413A1 (en) * 2016-08-12 2018-02-15 Futurewei Technologies, Inc. System and Method for Network Access
CN108024365A (zh) * 2016-11-03 2018-05-11 华为技术有限公司 一种信息传输方法及设备

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Beam management for NR", 3GPP TSG-RAN WG1 MEETING 92BIS, R1-1804787, 20 April 2018 (2018-04-20), XP051427054 *
"Remaining Details on QCL", 3GPP TSG RAN WG1 MEETING #92BIS, R1-1804796, 20 April 2018 (2018-04-20), XP051427063 *
"Remaining Issues on BWP", 3GPP TSG RAN WG1 MEETING #92BIS, R1-1804809, 20 April 2018 (2018-04-20), XP051427076 *
See also references of EP3817479A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023513237A (ja) * 2020-02-13 2023-03-30 ノキア テクノロジーズ オサケユイチア 基地局とユーザ機器
CN113518355A (zh) * 2020-04-10 2021-10-19 华为技术有限公司 准共址关系管理方法及装置
CN113518355B (zh) * 2020-04-10 2023-10-20 华为技术有限公司 准共址关系管理方法及装置
WO2021226610A2 (en) 2020-08-06 2021-11-11 Futurewei Technologies, Inc. System and method for uplink and downlink in multi-point communications
EP4186200A4 (en) * 2020-08-06 2024-01-03 Huawei Tech Co Ltd SYSTEM AND METHOD FOR UPLINK AND DOWNLINK IN MULTIPOINT COMMUNICATIONS

Also Published As

Publication number Publication date
BR112020023678A2 (pt) 2021-02-17
US20210091900A1 (en) 2021-03-25
EP3817479B1 (en) 2023-06-07
CN110519843B (zh) 2023-08-08
CN110519843A (zh) 2019-11-29
EP3817479A4 (en) 2021-06-23
KR20210010560A (ko) 2021-01-27
EP3817479A1 (en) 2021-05-05
US11569949B2 (en) 2023-01-31

Similar Documents

Publication Publication Date Title
WO2019223712A1 (zh) 通信方法和通信装置
WO2020062971A1 (zh) 传输信号的方法和通信装置
WO2019223729A1 (zh) 通信方法、终端设备和网络设备
WO2019136724A1 (zh) Srs传输方法及相关设备
WO2019214713A1 (zh) 链路恢复的方法和装置
WO2019136728A1 (zh) 传输配置方法及相关产品
WO2020034877A1 (zh) 链路失败恢复方法及相关设备
WO2020233299A1 (zh) 数据传输方法、装置、相关设备及存储介质
WO2019136723A1 (zh) 上行数据传输方法及相关设备
CN110741612B (zh) 一种调度请求的配置方法、网络设备及终端设备
US20220045721A1 (en) Transmission of NR Control Information in an LTE Downlink Subframe
US11825322B2 (en) Measurement control method, terminal, and non-transitory computer-readable storage medium
WO2018082566A1 (zh) 一种资源指示方法、设备及系统
WO2019238117A1 (zh) 重复传输方法和通信装置
WO2022028191A1 (zh) 一种监测控制信道、确定传输配置指示的方法及终端
US20230199586A1 (en) Cell State Switching Method and Apparatus
WO2021088012A1 (zh) 信息处理方法、终端设备及存储介质
WO2018083863A1 (ja) ユーザ装置
KR102662198B1 (ko) 빔 실패 복구를 수행하기 위한 방법, 장치, ue, 기지국 및 판독 가능한 저장 매체
WO2020192719A1 (zh) 更新波束的方法与通信装置
WO2021159497A1 (zh) 载波调度的方法及装置
CA3172398A1 (en) Terminal, radio base station, and radio communication method
US20230140502A1 (en) Beam indication method and communications apparatus
WO2019242570A1 (zh) 通信方法和装置
WO2021233323A1 (zh) 上行信号传输方法、装置、通信节点及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19808324

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020023678

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2019808324

Country of ref document: EP

Effective date: 20201208

ENP Entry into the national phase

Ref document number: 20207036298

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112020023678

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20201119