WO2019223711A1 - 浇灌系统及其控制方法,浇灌装置,及输送管 - Google Patents

浇灌系统及其控制方法,浇灌装置,及输送管 Download PDF

Info

Publication number
WO2019223711A1
WO2019223711A1 PCT/CN2019/087925 CN2019087925W WO2019223711A1 WO 2019223711 A1 WO2019223711 A1 WO 2019223711A1 CN 2019087925 W CN2019087925 W CN 2019087925W WO 2019223711 A1 WO2019223711 A1 WO 2019223711A1
Authority
WO
WIPO (PCT)
Prior art keywords
irrigation
watering
conveying pipe
interface
valve
Prior art date
Application number
PCT/CN2019/087925
Other languages
English (en)
French (fr)
Inventor
安德罗保罗
多尔夫达维德
Original Assignee
苏州宝时得电动工具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州宝时得电动工具有限公司 filed Critical 苏州宝时得电动工具有限公司
Priority to EP19808471.7A priority Critical patent/EP3797581A4/en
Priority to CN201980007606.9A priority patent/CN111741677A/zh
Priority to US17/056,733 priority patent/US20210204495A1/en
Publication of WO2019223711A1 publication Critical patent/WO2019223711A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • A01G25/16Control of watering
    • A01G25/165Cyclic operations, timing systems, timing valves, impulse operations
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • A01G25/02Watering arrangements located above the soil which make use of perforated pipe-lines or pipe-lines with dispensing fittings, e.g. for drip irrigation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L25/00Constructive types of pipe joints not provided for in groups F16L13/00 - F16L23/00 ; Details of pipe joints not otherwise provided for, e.g. electrically conducting or insulating means
    • F16L25/01Constructive types of pipe joints not provided for in groups F16L13/00 - F16L23/00 ; Details of pipe joints not otherwise provided for, e.g. electrically conducting or insulating means specially adapted for realising electrical conduction between the two pipe ends of the joint or between parts thereof
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • G05D7/0641Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means using a plurality of throttling means
    • G05D7/0652Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means using a plurality of throttling means the plurality of throttling means being arranged in parallel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details

Definitions

  • the invention relates to a watering system, in particular, to a watering system for watering different areas via a conveying pipe; and a method for controlling the watering system, a watering device, and a conveying pipe.
  • Irrigation systems especially horticultural or crop irrigation systems, often require the laying of irrigation pipes to transfer liquid used for irrigation from a watering source, such as a water source, to a specific watering area.
  • a watering source such as a water source
  • a delivery pipe is provided for each irrigation area to transport liquid to different irrigation areas through different delivery pipes. This way of setting a pipeline for each irrigation area increases the cost of the irrigation system, increases the difficulty for the user to arrange the pipeline, and also affects the aesthetics of the irrigation area.
  • the patent application with the application number of CN201510622329.6 discloses an irrigation method for transporting a plurality of replenishment liquids to different irrigation areas by using a pipeline.
  • a technical problem to be overcome by using this method for irrigation is how to control the opening or closing of irrigation devices located in different work areas when different irrigation areas need to be irrigated at different time periods, and how to control the irrigation devices located in different work areas. Energy Supply.
  • the invention provides a watering system, comprising: a conveying pipe for conveying liquid from a watering source to an irrigation area; a watering device connected to the conveying pipe to water the liquid conveyed by the conveying pipe to the irrigation area; At least two of the watering devices are connected to the pipe at intervals; each of the watering devices includes a valve; each of the watering devices further includes a control module that controls the opening or closing of the valve; the control modules of each of the watering devices are independent Controlling the opening or closing of the valve so that the at least two irrigation devices can perform irrigation work at different time periods respectively; the control module includes a communication port to obtain remote irrigation information; and the control module is based on the communication port The obtained watering information controls the opening or closing of the valve.
  • a conductive line is provided in the conveying pipe, and the conductive line includes a communication line connected to the communication port, and the communication port obtains irrigation information through the communication line.
  • a conductive line is provided in the conveying pipe, and the conductive line includes a power line, and is connected to the irrigation device and the power source to provide the irrigation device with power required for work.
  • the irrigation system further includes a conductive line connected to the irrigation device, and the conductive line includes a communication line and a power line.
  • the delivery tube includes a conductive layer for setting a conductive line, and an infusion layer for transferring liquid, and the conductive layer is isolated from the infusion layer.
  • a conductive line is provided in the conveying pipe, the irrigation device includes a first interface, the conveying pipe includes a second interface that cooperates with the first interface, and the first interface and the second interface are shaped. So that when the first interface is mated with the second interface, the port of the conductive line is docked with the corresponding port of the irrigation device.
  • the irrigation device includes a first wireless communication unit connected to the communication port, and the communication port acquires irrigation information through the first wireless communication unit.
  • the first wireless communication unit includes a cellular network communication unit, or a WIFI communication unit, or a Bluetooth communication unit, or an RF communication unit, or a UWB communication unit.
  • the first wireless communication units communicate with each other to form a multi-stage communication network with the first wireless communication unit as a communication node.
  • a power generating device is further provided at the irrigation device to provide electrical energy required for the irrigation device to work.
  • the power generation equipment includes a turbine, or a photovoltaic unit, or a piezoelectric unit.
  • the irrigation system includes a bypass pipe connected to the power generation equipment, and the liquid in the bypass pipe flows through the power generation equipment for generating electricity.
  • the conveying pipe is an annular pipe, and the liquid in the conveying pipe forms a circuit.
  • the communication port of each of the watering devices obtains watering information from a same communication source.
  • the irrigation system includes a control center, and the communication port is communicatively connected to the control center to obtain irrigation information from the control center.
  • control center is disposed at an end of the conveying pipe connected to the irrigation source.
  • control center includes a user interaction interface for a user to set watering information.
  • control center includes a second wireless communication unit to obtain remote watering information.
  • the communication port is communicatively connected with an external control device, for example, it is communicatively connected with a user's smart terminal.
  • the irrigation information includes preset schedule information, and the preset schedule information includes work start time and work end time of each watering device, and the control module controls the watering according to the work start time.
  • the valve of the device is opened, and the valve of the watering device is controlled to close according to the work end time.
  • the invention also provides a method for controlling an irrigation system.
  • the irrigation system includes: a conveying pipe for conveying liquid from a irrigation source to an irrigation area; and an irrigation device connected to the conveying pipe to water the liquid conveyed by the conveying pipe to the irrigation area; At least two of the watering devices are connected to the conveying pipe at a distance; each of the watering devices includes a valve, and a control module for controlling the opening or closing of the valve; the control method includes: each watering device obtains a remote Watering information; the control module of each watering device independently controls the opening or closing of the valve according to the watering information, so that the at least two watering devices can perform watering work at different time periods, respectively.
  • the invention also provides a watering device for matching with a conveying pipe to perform watering work on a watering area, including: a valve, and the watering device performs the watering work when the valve is opened; the watering device further includes: a control module To control the opening or closing of the valve; the control module includes a communication port to obtain remote watering information; the control module controls the opening or closing of the valve according to the watering information obtained by the communication port; and a first interface , For mating with the second interface of the delivery pipe.
  • the irrigation device further includes a power generating device, and provides the electrical energy required for the irrigation device to work.
  • the power generation equipment includes a turbine, or a photovoltaic unit, or a piezoelectric unit.
  • the irrigation device includes a bypass pipe connected to the power generation equipment, and the liquid in the bypass pipe flows through the power generation equipment for generating electricity.
  • the conveying pipe is an annular pipe, and the liquid in the conveying pipe forms a circuit.
  • the delivery pipe includes an infusion layer; the first interface is shapedly connected to the second interface of the delivery pipe, so that when the first interface is connected to the second interface, the irrigation device and the delivery pipe can Fluid communication.
  • the conveying pipe includes a conductive layer, and a communication line and / or a power line are disposed in the conductive layer; the first interface is connected to the communication port and / or the power port of the irrigation device, and the first interface is connected to the The second interface is form-fitted such that when the first interface is mated with the second interface, the communication port and / or the power port of the irrigation device correspond to the ports of the communication line and / or the power line of the delivery pipe.
  • the present invention also provides a conveying pipe for conveying liquid from a watering source to an irrigation area, including: an infusion layer for transmitting liquid; the conveying pipe further includes a conductive layer, and a communication line is provided in the conductive layer and / Or power line, the communication line and / or power line extend along the extension direction of the delivery tube; the infusion layer is isolated from the conductive layer.
  • the present invention has the beneficial effects that the control module of each irrigation device obtains remote irrigation information, and independently controls the opening or closing of the corresponding valve based on the irrigation information, so that different irrigation devices can perform irrigation work at different time periods. , To achieve the use of a pipeline to complete the irrigation tasks with different irrigation needs of multiple irrigation areas.
  • the solution of the invention reduces the cost of the irrigation system, facilitates installation by the user, and maintains the beauty of the irrigation area.
  • FIG. 1 is a schematic diagram of a irrigation system according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a watering device according to an embodiment of the present invention.
  • FIG 3 is a cross-sectional view of a transfer pipe according to an embodiment of the present invention.
  • FIG. 4 is a control flowchart of a watering system according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a irrigation system according to another embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a irrigation system according to another embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a irrigation system according to another embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a irrigation system 1 according to an embodiment of the present invention.
  • the irrigation system 1 includes a conveying pipe 4 for conveying liquid to the irrigation areas A, B, and C.
  • the conveying pipe 4 is connected to the irrigation source, passes through the irrigation areas A, B, and reaches the irrigation area C, and the liquid is transported from the irrigation source to the irrigation areas A, B, and C through the conveying pipe 4.
  • the watering system 1 further includes a watering device, which is connected to the conveying pipe, and is used to water the liquid conveyed by the conveying pipe to the irrigation areas A, B, and C, respectively.
  • at least two irrigation devices are connected to one conveying pipe 4 at intervals.
  • three irrigation devices 51, 52, and 53 are connected to one conveying pipe 4 at intervals, and are respectively located in the irrigation areas A, B, and C, so that the liquid transmitted through the conveying pipe 4 is respectively poured into the irrigation area A, B, C.
  • Irrigation areas A, B, and C are areas with different irrigation needs.
  • One of them is that different types of plants are planted in irrigation areas A, B, and C. Different types of plants require different water or other supplements, such as The plants in area A need more water than the plants in area B. Therefore, the watering frequency of area A is higher than that of area B.
  • area B When area A is in the watering state, area B may be in a non-irrigation state; for example, A
  • the type of nutrient solution required by the plant in the area is different from the type of nutrient solution required by the plant in the area C.
  • the area C is in a non-irrigated state.
  • Other situations where irrigation areas A, B, and C have different irrigation needs include different environments. For example, area A is shaded by tree shades, so there is less need for watering, while area B is more open and has longer sun exposure, so it requires more watering, and so on.
  • a pipeline is set for each irrigation area, and the liquid reaches the corresponding irrigation area through different transportation pipes.
  • the irrigation work in each watering area does not interfere with each other.
  • the main valve is often set in an area that is easy for the user to operate, such as near a house, so that the user can control the irrigation system "closest".
  • each watering device 51, 52, and 53 includes a valve and a control module, which are disposed in the watering device.
  • the control valve opens or closes.
  • the control modules of the respective watering devices 51, 52, 53 independently control the opening or closing of the corresponding valves, so that at least two watering devices can perform watering work at different time periods, respectively.
  • the control module includes a communication port to acquire remote watering information. The control module controls the opening or closing of the valve according to the watering information obtained by the communication port.
  • a conductive line is provided in the conveying pipe.
  • the conductive line includes a communication line 41 and is connected to a communication port.
  • the communication port obtains irrigation information through the communication line 41.
  • the communication port of each watering device 51, 52, 53 acquires watering information from the same communication source.
  • the irrigation system 1 includes a control center 3, and a communication port is communicatively connected to the control center 3 to obtain irrigation information from the control center 3. That is, the control center 3 serves as a communication source and is communicatively connected to a plurality of irrigation devices 51, 52, and 53.
  • the communication port is communicatively connected with the control center 3 through the communication line 41 to obtain the irrigation information.
  • the control center 3 is disposed near the irrigation source of the conveying pipe 4.
  • the control center 3 includes a user interaction interface 31 for the user to set the watering information.
  • the user interaction interface may include keys, a touch screen, a display screen, and LED lights.
  • the user can input watering information through keys or touch screen.
  • the watering information may include preset schedule information, such as work start time, work duration / work end time of each watering device, and may also include a watering interval period or a work frequency, a watering calendar, and the like.
  • schedule information such as work start time, work duration / work end time of each watering device, and may also include a watering interval period or a work frequency, a watering calendar, and the like.
  • the irrigation system 1 needs to configure different kinds of irrigation liquids for different irrigation areas, different kinds of liquids can be set by different irrigation devices.
  • the user can also set the properties of different watering devices, such as changing the factory number of the watering device to a name that is easy for the user to identify, and so on.
  • the display screen or LED light can display the
  • the control center 3 also includes a controller.
  • the controller of the control center 3 is connected to the user interaction interface 31, receives the irrigation information input from the user interaction interface, processes the irrigation information, and transmits the processed irrigation information to the irrigation device through the communication line 41. 51, 52, 53 places.
  • the control modules of the irrigation devices 51, 52, 53 receive irrigation information through a communication port, and control the opening or closing of the valve based on the irrigation information.
  • the control module includes a clock circuit capable of judging the current time. For example, when the time is 9:00 am on Monday, the control module of the irrigation device 51 opens the corresponding valve, and at the same time, the control center opens the water source 7 valve, and the water is transported to the irrigation device 51 located in the irrigation area A through the conveying pipe 4 and the irrigation device. 51 Water is poured into the watering area A. When the time reaches 10:00 am, the control module of the watering device 51 closes the corresponding valve, and the watering device 51 stops watering.
  • the control center closes the water source 7 valve.
  • the control module of the irrigation device 52 opens the corresponding valve, and at the same time, the control center 3 opens the valve corresponding to the liquid storage container 22 that stores the nutrition liquid, and the nutrition liquid is delivered to the A watering device 52 in the watering area B.
  • the watering device 52 waters the nutrient solution into the watering area B.
  • the control module of the watering device 52 closes the corresponding valve, and the watering device 52 stops watering.
  • the control center 3 closes the valve of the liquid storage container 22 storing the nutrition liquid.
  • Other watering devices and the working modes of other watering devices in other time periods are similar to the above, and will not be described again.
  • each watering device 51, 52, 53 independently controls the opening and closing of the corresponding valve according to the watering information received by the communication port, so that different watering devices 51, 52, 53 can be respectively at different times. Irrigation work is performed in sections to achieve the purpose of using only one pipeline 4 to complete the irrigation task of the irrigation area with different requirements.
  • the conductive line in the conveying pipe 4 further includes a power supply line 42 connected to the irrigation devices 51, 52, 53 and a power source, so as to provide the irrigation devices 51, 52, 53 with power required for work.
  • the irrigation system 1 can be powered by AC power, for example, connected to the city power through an adapter, or it can be powered by a battery pack.
  • the power supply provides power for the operation of the irrigation system 1, including power for the control center 3.
  • the power line 42 may be directly connected to the power terminal of the control center 3.
  • the power source of the irrigation system 1 may be integrated with the control center 3 and disposed at an end of the conveying pipe 4 near the irrigation source.
  • the signal line 41 and the power line 42 are integrated with the conveying pipe 4, and the extending direction of the signal line 41 and the power line 42 is consistent with the extending direction of the conveying pipe 4.
  • the delivery pipe 4 includes a conductive layer 43 that is isolated from the liquid infusion layer 44 for transmitting liquid, and the communication line 41 and the power supply line 42 are disposed in the conductive layer 43.
  • the infusion layer 44 and the conductive layer 43 are isolated from each other to prevent the liquid transported by the transport tube 4 from affecting the performance of the communication line 41 and the power line 42.
  • the communication line 41 includes a data transmission line, and specifically includes a network cable.
  • the power line 42 includes a conductive wire, and specifically includes a metal wire.
  • the irrigation system includes a conductive line, the conductive line is connected to the irrigation device, and the conductive line includes a communication line and a power line. Therefore, the conductive line can transmit communication data and power at the same time.
  • the conductive line is independent of the design of the delivery tube.
  • the conductive line is installed in parallel with the delivery tube.
  • the irrigation device includes a power interface and a communication interface.
  • a conductive wire is used to transmit communication data and power at the same time.
  • the power interface and communication interface on the irrigation device are also integrated into a comprehensive port.
  • each irrigation device There are two integrated ports on the top, and the conductive line can connect two adjacent watering devices in the watering system together, so that the watering devices can communicate with each other.
  • the irrigation devices 51, 52, and 53 include a first interface
  • the delivery pipe 4 includes a second interface that cooperates with the first interface.
  • the first interface and the second interface are form-fitted, so that when the first interface is mated with the second interface, the port of the conductive line is docked with the corresponding port of the irrigation device 51, 52, 53.
  • the communication line 41 is connected to the communication port
  • the power line 42 is connected to the power port.
  • the first interface of the irrigation device 51, 52, 53 includes a protrusion
  • the second interface of the conveying pipe 4 includes a groove
  • the protrusion of the first interface and the groove of the second interface have mutually matching shapes.
  • the terminal corresponding to the communication port on the first interface and the terminal corresponding to the communication line 41 on the second interface are connected, and the power source is connected to the first interface.
  • the terminal corresponding to the port is connected to the terminal corresponding to the power line 42 on the second interface.
  • the shape matching of the first interface and the second interface can also be implemented by many other structures, which will not be enumerated one by one.
  • the first interface and the second interface also include a locking structure.
  • the above-mentioned structure of the conveying pipe 4 and the connecting structure of the conveying pipe 4 and the irrigation devices 51, 52, 53 allow the user to simply realize the irrigation devices 51, 52 by connecting the conveying pipe 4 and the irrigation devices 51, 52, 53. , 53 control connection and power supply connection, simplify the user's operation and improve the user experience.
  • the irrigation system 1 of this embodiment provides data transmission and energy transmission from the control center 3 to each irrigation device 51, 52, and 53 by providing a communication line 41 and a power line 42 in the conveying pipe 4, and solves each irrigation device 51 , 52, 53 control and power supply problems, thereby achieving independent control of multiple irrigation devices 51, 52, 53 on the one-way conveying pipe 4, making the irrigation system 1 cost-saving, easy to install, beautiful, and convenient for users to operate.
  • control center 3 since the control center 3 is usually set at a place that is easily accessible by the user, such as near a house, the user can more conveniently set the irrigation information through the control center 3. Through the design of this embodiment, the user can conveniently control the irrigation work of a plurality of irrigation devices through the control center 3.
  • control flow of the irrigation system 1 is as follows:
  • control center 3 receives the watering information input by the user and transmits it to each of the watering devices 51, 52, and 53 through the communication line 41.
  • the communication ports of the watering devices 51, 52, and 53 receive the watering information, and the control module stores the watering information.
  • S2 The control module of each irrigation device independently controls the opening and closing of the corresponding valve according to the irrigation information.
  • the structure and method of the irrigation system 1 are basically the same as those of the above embodiment, except that the control center 3 includes a wireless communication unit (hereinafter referred to as a second wireless communication unit). Receive the watering information, and process the received watering information and further transmit it to the watering devices 51, 52, and 53. That is, each watering device 51, 52, 53 may also indirectly communicate with an external control device through a communication line 41.
  • the manner in which the second wireless communication unit receives the watering information is similar to the first wireless communication units 61, 62, 63 in the following embodiments.
  • Using a wireless communication unit instead of a user interaction interface to receive information input by a user can make it easier for the user to control the irrigation system 1.
  • the irrigation devices 51, 52, and 53 include first wireless communication units 61, 62, and 63, which are connected to the communication port, and the communication port passes the first wireless communication unit 61, 62. , 63 for information.
  • the irrigation devices 51, 52, and 53 communicate with the control center 3 of the irrigation system 1 through the first wireless communication units 61, 62, and 63, for example, with the second wireless communication unit of the control center 3, and with external control equipment. Communication.
  • the communication between the irrigation devices 51, 52, and 53 and an external control device is taken as an example.
  • the communication port is communicatively connected with an external control device through the first wireless communication units 61, 62, and 63. That is, an external control device is used as a communication source and is communicatively connected with a plurality of irrigation devices 51, 52, 53.
  • the external control device includes a user's smart terminal 8.
  • the smart terminal 8 uploads an APP for controlling the irrigation system, and the user can set the irrigation information through the APP interface.
  • the user can remotely control the opening or closing of a valve of a certain irrigation device through a button on the control APP.
  • the APP can present an icon corresponding to each watering device 51, 52, 53 and control keys associated with each watering device 51, 52, 53 such as "start key” and "close key”.
  • the user can also schedule through the APP to set a working calendar as shown in Table 1.
  • the APP can also show the working status and working parameters of each irrigation device 51, 52, 53 to the user, such as the amount of irrigation completed on the day.
  • the APP can provide users with a visualized virtual watering area.
  • the APP can embed an electronic map, such as google map, where the user enters the location information of his own garden, the APP automatically locates and displays the user's garden, or the user can manually circle his own garden on the map.
  • the APP can provide some virtual watering devices. The user can drag these virtual watering devices on the garden image and place them on the image at positions corresponding to the actual watering device positions, thereby simulating the watering work of the watering device. The user judges whether the setting of the watering device is reasonable by observing the working range of the watering device and the types of vegetation covered. The user can also set various parameters for the irrigation device on the imaged map, so the setting is more intuitive and the user experience is better.
  • the APP can also recommend watering parameters for users.
  • the APP can obtain weather forecast information to remind the user of possible weather conditions in the future, or directly recommend a schedule for the user based on the weather forecast information. For example, if there is more rainy weather in the next week, it is recommended that the user cancel the watering operation in the next week.
  • APP can also judge the irrigation needs of vegetation according to the staged climate, for example, it is recommended to increase the irrigation frequency in the season of long sunshine or fast growing vegetation. Or, based on the latitude, longitude, and altitude of the garden location, determine the appropriate irrigation amount for the vegetation, output the recommended irrigation parameters, and so on.
  • the user can choose whether to accept the watering parameters recommended by the APP, or set the default acceptance, and the watering devices 51, 52, 53 will directly perform the watering tasks according to the watering parameters recommended by the APP.
  • the APP can also provide users with data statistics services, statistics on the amount of garden watering at different times of the year, and the healthy growth status of vegetation.
  • the data collection and calculation of the APP can be completed in the cloud, and the first wireless communication units 61, 62, 63 of the irrigation devices 51, 52, 53 can also directly obtain the data from the cloud.
  • the first wireless communication units 61, 62, 63 of the irrigation device acquire the above-mentioned irrigation information by accessing a wireless communication network.
  • the first wireless communication unit 61, 62, 63 includes a cellular network communication unit, or a WIFI communication unit, or a Bluetooth communication unit, or an RF communication unit, or a UWB communication unit.
  • the wireless communication network accessed by the first wireless communication unit 61, 62, 63 includes a LAN (local area network), a MAN (metropolitan area network), a WAN (wide area network), a WPAN (wireless personal area network), and the like.
  • the first wireless communication units 61, 62, and 63 of the respective irrigation devices 51, 52, and 53 communicate with each other to form a multi-level transmission using the first wireless communication units 61, 62, and 63 as communication nodes.
  • Communication network includes a mesh network. Because the total area area composed of different irrigation areas may be large, the coverage area of the wireless communication network may be limited. For example, when using WIFI network communication, WIFI gateway equipment is usually set in the user's house, and the irrigation device is closer to the house.
  • the first wireless communication units 61, 62, and 63 of each of the watering devices 51, 52, and 53 can communicate with each other. In this way, a watering device that is far from the house can be closer to it by being adjacent to it.
  • the watering device of the house obtains the watering information, and the watering device adjacent to it can further obtain the watering information from the neighboring watering device closer to the house, and so on, forming a multi-level transfer communication using a number of first wireless communication units as communication nodes.
  • the network, the irrigation device closest to the house will gradually transmit the irrigation information to each other irrigation device, so that each irrigation device can obtain the irrigation information stably, and ensure the normal operation of the irrigation system 1.
  • the irrigation information acquired by the first wireless communication unit 61, 62, 63 is transmitted to the control module through the communication port, and the control module controls the opening and closing of the valve based on this. Since each watering device 51, 52, 53 includes an independent control module and the first wireless communication unit 61, 62, 63, the first wireless communication unit 61, 62, 63 of each watering device 51, 52, 53 can Independently receives watering information, the control module can independently control the opening and closing of the valve based on the watering information received by the first wireless communication unit 61, 62, 63, thereby achieving independent control of multiple watering devices 51, 52, 53 and making different watering devices 51, 52, 53 can perform watering work at different time periods.
  • the user's control of the irrigation system 1 is simple and convenient, And smarter.
  • the watering devices 51, 52, and 53 can also communicate with the control center 3 of the watering system 1 through the first wireless communication units 61, 62, and 63. Since the control center 3 is often set at a place that is easily accessible by the user, or at a distance The house is near, so the user can control the work of the irrigation system 1 through the control center 3 conveniently and reliably.
  • the control center 3 can become one of the nodes of the multi-stage communication network, and each of the irrigation devices 51, 52, and 53 and the control center 3 implement a wireless communication connection through the first wireless communication unit 61, 62, 63 and the second wireless communication unit.
  • the power generation equipment is further provided at the irrigation devices 51, 52, and 53 to provide electrical energy required for the irrigation devices 51, 52, and 53 to work.
  • the power generation equipment includes a turbine, which is driven by a transport liquid to output electric energy to the irrigation devices 51, 52, 53.
  • the turbine includes a rotor, and the rotor includes a fan blade.
  • the turbine is arranged in the conveying pipe 4. When liquid flows through the conveying pipe 4, the force exerted by the fluid on the fan blades drives the entire rotor to rotate, the rotor rotates to form a magnetic field, and the magnetic field lines cut the coil in the stator, and the potential is induced in the coil.
  • the electric power output line of the turbine is connected to the power supply ports of the irrigation devices 51, 52, 53 and supplies power to the irrigation devices 51, 52, 53.
  • a turbine is provided at the irrigation devices 51, 52, and 53.
  • the liquid flowing in the conveying pipe can be used to generate electricity, which solves the power supply problem of the irrigation devices 51, 52, and 53 and plays an effective use of energy.
  • the irrigation system includes a bypass pipe 55 connected to the power generating device 56, and the liquid in the bypass pipe 55 flows through the power generating device 56 for generating electricity.
  • the power generation device 56 includes a turbine generator, and generates electricity when liquid flows. Specifically, when liquid flows through the turbine generator, the liquid impacts the rotor of the generator to make it rotate, and the generator rotor is driven to rotate by the main shaft. When a direct current is passed in the generator rotor coil, the rotor coil will A rotating magnetic field is generated, and the magnetic field lines are cut by the stator coil during the rotation process. According to the principle of electromagnetic induction, a voltage is generated in the stator coil.
  • each irrigation device 51, 52 is provided with a power generation device 56, so that each irrigation device 51, 52 can be independently powered. If a certain power generation device 56 fails, it will not affect other irrigation devices 51, 52. 52 is working properly.
  • the power generation equipment 56 can be set to be able to supply continuous power to the irrigation devices 51 and 52, that is, under certain circumstances, if the irrigation devices 51, 52 52 can obtain a continuous energy supply, then the power generating equipment 56 needs to keep liquid flowing through at all times to ensure that it can generate continuous power.
  • the irrigation devices 51 and 52 include components such as a valve 57, a power generation device 56, and a control module.
  • the control module can control the opening and closing of the valve 57 in the presence of power to intelligently control the irrigation work.
  • the power generating equipment 56 of the irrigation devices 51 and 52 needs liquid to flow to generate electricity to provide energy for the irrigation devices 51 and 52, and the liquid at the valve 57 needs to provide liquid to the working area when the valve 57 is opened.
  • the conveying pipe 4 By setting bypass pipeline 55, the conveying pipe 4. The liquid can be supplied to the valve 57 and the power generation equipment 56 at the same time, and it is ensured that there is also a liquid supply at the valve 57 when the power generation equipment 56 can generate electricity.
  • the bypass pipe 55 may be provided inside the irrigation devices 51 and 52.
  • the bypass pipe 55 is connected to the power generating equipment 56 and the valve 57.
  • the liquid in the conveying pipe 4 flows through the power generating equipment 56 and the bypass pipe 55 is provided.
  • the liquid flowing through the power generation device 56 is increased to the path of the valve 57 so that the valve 57 has a liquid supply.
  • the bypass pipe 55 may also be provided outside the irrigation devices 51 and 52.
  • one end of the bypass pipe 55 is connected to one of the power generation equipment 56 and the valve 57 so that the irrigation devices 51 and 52 have Two liquid input ports, one is connected to the power generating equipment 56 and the other is connected to the valve 57 so that both the power generating equipment 56 and the valve 57 can be supplied with liquid.
  • the conveying pipe 4 may include multiple bypass pipes 55, and the multiple bypass pipes 55 may be designed in small sections.
  • the bypass pipe 55 may be located inside the irrigation devices 51 and 52, and may also be located outside the irrigation devices 51 and 52.
  • the irrigation devices 51 and 52 may be a packaged structure After the conveying pipe 4 is connected to the irrigation devices 51 and 52, it can be put into work.
  • the liquid inside the irrigation devices 51 and 52 can be automatically divided into two sub-streams, that is, one sub-stream flows through the power generation equipment 56 and the other sub-stream flows through the valve 57.
  • the bypass pipe 55 may be provided integrally with the delivery pipe 4 or may not be provided integrally with the delivery pipe 4.
  • the delivery pipe 4 includes an infusion layer, and the delivery pipe 4 It also includes a bypass pipe 55.
  • the infusion layer and the bypass pipe 55 are arranged in parallel inside the transfer pipe 4, and liquid is passed through the infusion layer and the bypass pipe 55, that is, two liquid flows inside the transfer pipe 4, One stream flows through the power generation device 56 for generating electricity, and the other stream flows through the valve 57 to provide liquid to the irrigation area when the valve 57 is opened.
  • the bypass pipe 55 When the bypass pipe 55 is not integrated with the conveying pipe 4, as described above, the bypass pipe 55 may be located inside the irrigation devices 51 and 52, and may further be packaged with the irrigation devices 51 and 52.
  • the bypass pipe can also be formed as an independent tube.
  • the bypass pipe can be arranged in parallel with the conveying pipe 4 and flow through the power generating equipment 56 and the valve 57 respectively.
  • the conveying pipe 4 is an annular pipe. The liquid forms a flowing circuit, that is, the liquid in the conveying pipe 4 flows out from the liquid source and flows back to the liquid source.
  • the liquid in the conveying pipe 4 may not flow because there is no pressure difference. It is preferable to add a water pump at an appropriate position of the conveying pipe 4, for example, increase the liquid source
  • the pump device enables the liquid in the conveying pipe 4 to flow continuously.
  • the power generating equipment 56 When the liquid flows through the power generating equipment 56 of the irrigation devices 51 and 52, the power generating equipment 56 generates electrical energy.
  • the continuous liquid passes through the power generating equipment 56 to enable the irrigation device 51. , 52 continue to obtain energy supply.
  • the user can make liquids such as water and nutrient liquid flow into the conveying pipe 4 according to the needs of the work area.
  • the power generation equipment 56 can generate electricity through the flow of the liquid for irrigation.
  • the devices 51, 52 provide an energy supply.
  • each of the irrigation devices 51 and 52 can be in a charged state.
  • the control module receives the control information of the communication port, it can effectively open and close the valve 57 in response to the control information.
  • a backup battery may be provided at the power generating device 56.
  • the power generation device includes a photovoltaic unit, receives light energy, converts the light energy into electrical energy, and supplies the watering devices 51, 52, and 53.
  • Solar panels are installed at the irrigation devices 51, 52, and 53 to convert solar energy into electrical energy.
  • the solar panel is disposed on the top surface of the watering device 51, 52, 53 or enveloped on the outer surface of the watering device. Since the period of high irrigation demand in the irrigation area is often also a period of better lighting conditions, the solar panel can provide sufficient power for the irrigation devices 51, 52, and 53.
  • batteries are further provided at the watering devices 51, 52, and 53 for storing the electric energy converted by the solar panel.
  • power can also be provided only by providing batteries for the irrigation devices 51, 52, and 53.
  • the power generation device includes a piezoelectric unit.
  • the piezoelectric unit converts the pressure generated by the liquid flowing through the conveying pipe 4 into electric energy and supplies it to the irrigation device.
  • the communication method and power supply method of the irrigation devices 51, 52, 53 can be arbitrarily combined.
  • the irrigation devices 51, 52, 53 obtain irrigation information through the communication line 41
  • the photovoltaic unit can also be used to generate power at the same time.
  • the watering devices 51, 52, 53 obtain the watering information through the first wireless communication units 61, 62, 63, they can also use the power line 42 to supply power at the same time, and so on.
  • the structure and method of the irrigation system 1 are basically the same as those of the above embodiment, except that the external control device includes a third-party service device, and the first wireless communication unit 61, 62, 63 receives the third-party service device.
  • the external control device includes a third-party service device
  • the first wireless communication unit 61, 62, 63 receives the third-party service device.
  • users can entrust a third party to manage their own irrigation system.
  • the service can be provided by the manufacturer of the irrigation system.
  • Each irrigation system includes an account, and users or third parties can manage the corresponding irrigation system after logging in to the account. Users can authorize third parties to log in to their own irrigation system accounts.
  • the account can record some information about the irrigation system, such as historical irrigation information, vegetation information, location information, and so on.
  • Third parties can also provide users with some optimization services, such as customized special care services for vegetation.
  • the information in the watering system account can be stored in the cloud. After the first / second wireless communication unit accesses the wireless communication network, the watering information is directly obtained from the cloud. The above method can free the user from the labor of garden management and provide more professional customized services for garden management.
  • the conveying pipe 4 conveys the same kind of liquid to different irrigation devices, for example, the conveying pipe 4 conveys water to different irrigation devices 51, 52, and 53, and the conveying pipe 4 is connected to the municipal water supply equipment.
  • the conveying pipe 4 conveys different types of liquids to different irrigation devices 51, 52, and 53.
  • the conveying pipe 4 conveys different types of liquid to different irrigation devices 51, 52, 53
  • different liquids are transmitted to the corresponding irrigation device through the conveying pipe 4 at different time periods, and the irrigation devices 51, 52, 53 are opened at corresponding time periods Valve to water the corresponding liquid to the watering area.
  • the irrigation source includes a plurality of liquid storage containers 21, 22, and 23, which respectively store liquids poured into the irrigation areas A, B, and C.
  • the valve of the watering device 51 is opened, and at the same time, the valve of the liquid storage container 21 is opened, and the liquid is transferred from the liquid storage container 21 to the watering device 51 through the conveying pipe 4, and watered from the watering device 51 to the watering area A.
  • the valve of the watering device 52 is opened, and at the same time, the valve of the liquid storage container 22 is opened.
  • the liquid is transferred from the liquid storage container 22 to the watering device 52 through the conveying pipe 4, and is watered to the watering area B by the watering device 52.
  • the situation when the watering area C needs to be watered is similar, and will not be described again.
  • the watering devices 51, 52, and 53 do not work at the same time, and different types of liquid flow through the same section of the conveying pipe in time.
  • the one-way conveying pipe referred to in the embodiment of the present invention includes both the case where a plurality of sections of conveying pipes are connected to form a one-way conveying pipe and the case where the conveying pipe is integrally formed.
  • the irrigation device may be directly disposed on the trunk of the delivery pipe, or may be connected to the trunk of the delivery pipe through a branch delivery pipe, for example, as shown in FIG. 6.
  • the liquid mainly flows to the respective irrigation areas through the trunk of the conveying pipe, so it still conforms to the technical effect that the present invention wants to achieve, that is, reducing the cost of the irrigation system, facilitating installation by the user, and maintaining the beauty of the irrigation area.
  • control system / controller / control module may include an MCU, a CPU, and the like, and may also include components such as a memory and a clock circuit.
  • the irrigation device may include a spraying device, and may also include other forms of liquid output devices such as a drip irrigation device.
  • the invention also relates to a watering device, which is used to be matched with a conveying pipe to perform watering work on a watering area.
  • a watering device which is used to be matched with a conveying pipe to perform watering work on a watering area.
  • the specific structure is referred to the above-mentioned embodiment and will not be described again.
  • the present invention also relates to a conveying pipe for conveying liquid from a watering source to a watering area.
  • the specific structure is referred to the above-mentioned embodiment and will not be described again.

Abstract

一种浇灌系统(1),包括:输送管(4),用于从浇灌源输送液体至浇灌区域(A,B,C);浇灌装置(51,52,53),与输送管(4)连接,将输送管(4)输送的液体浇灌至浇灌区域(A,B,C);在一路输送管(4)上间隔连接至少两个浇灌装置;每个浇灌装置(51,52,53)包括阀门;每个浇灌装置(51,52,53)还包括控制模块,控制阀门的打开或关闭;各个浇灌装置(51,52,53)的控制模块独立控制阀门的打开或关闭,以使得至少两个浇灌装置能够分别在不同时间段执行浇灌工作;控制模块包括通信端口,获取远程浇灌信息;控制模块根据通信端口获取的浇灌信息控制阀门的打开或关闭。还公开了一种浇灌系统的控制方法,一种浇灌装置,以及一种输送管。

Description

浇灌系统及其控制方法,浇灌装置,及输送管
交叉参考相关引用
本申请要求2018年5月22日提交的申请号为201810495121.6的中国专利申请的优先权,上述申请参考并入本文。
技术领域
本发明涉及一种浇灌系统,尤其的,涉及一种经由一路输送管浇灌不同区域的浇灌系统;以及一种浇灌系统的控制方法,一种浇灌装置,及一种输送管。
背景技术
浇灌系统,尤其是园艺或农作物浇灌系统,往往需要铺设灌溉管道,以将用于灌溉的液体从浇灌源(例如水源)传输至特定的浇灌区域。实际工作环境中往往存在多个浇灌区域,这些浇灌区域或被物理分隔,或虽相连但灌溉需求不同,例如种植有不同类型的植被的区域等。传统的浇灌系统,为实现灌溉多个区域,为每个浇灌区域设置一路输送管,以将液体分别通过不同的输送管输送至不同的浇灌区域。这种为每一浇灌区域设置一路输送管的方式,增加了浇灌系统的成本,增加了用户布置管道的难度,同时也影响了浇灌区域的美观。
为解决上述技术问题,申请号为CN201510622329.6的专利申请公开了一种利用一路输送管输送复数种补给液至不同浇灌区域的灌溉方法。使用该方法进行浇灌需克服的一个技术问题为,当不同浇灌区域需要在不同时间段进行灌溉时,如何控制位于不同工作区域的浇灌装置的打开或关闭,以及如何为位于不同工作区域的浇灌装置供能。
发明内容
基于此,有必要针对上述问题,提供一种在同一路输送管上连接两个以上的浇灌装置时,能够控制不同浇灌装置在不同时间段打开或关闭,并为不同浇灌装置供能的浇灌系统。
本发明提供一种浇灌系统,包括:输送管,用于从浇灌源输送液体至浇灌区域;浇灌装置,与输送管连接,将输送管输送的液体浇灌至所述浇灌区域;在一路所述输送管 上间隔连接至少两个所述浇灌装置;每个所述浇灌装置包括阀门;每个所述浇灌装置还包括控制模块,控制所述阀门的打开或关闭;各个所述浇灌装置的控制模块独立控制所述阀门的打开或关闭,以使得所述至少两个浇灌装置能够分别在不同时间段执行浇灌工作;所述控制模块包括通信端口,获取远程浇灌信息;所述控制模块根据所述通信端口获取的浇灌信息控制所述阀门的打开或关闭。
一实施例中,所述输送管内设置有传导线,所述传导线包括通信线,与所述通信端口连接,所述通信端口通过所述通信线获取浇灌信息。
一实施例中,所述输送管内设置有传导线,所述传导线包括电源线,连接所述浇灌装置和电源,以向所述浇灌装置提供工作所需电能。
一实施例中,所述浇灌系统还包括连接于浇灌装置的传导线,所述传导线包括通信线和电源线。
一实施例中,所述输送管包括传导层,用于设置传导线,以及输液层,用于输送液体,所述传导层与所述输液层隔离。
一实施例中,所述输送管内设置有传导线,所述浇灌装置包括第一接口,所述输送管包括与所述第一接口配合的第二接口;所述第一接口与第二接口形配,以使得所述第一接口与第二接口配接时,所述传导线的端口与所述浇灌装置的对应端口对接。
一实施例中,所述浇灌装置包括第一无线通信单元,与所述通信端口连接,所述通信端口通过所述第一无线通信单元获取浇灌信息。
一实施例中,所述第一无线通信单元包括蜂窝网络通信单元、或WIFI通信单元、或蓝牙通信单元、或RF通信单元、或UWB通信单元。
一实施例中,所述第一无线通信单元相互通信,以构成以所述第一无线通信单元为通信节点的多级传递式通信网络。
一实施例中,所述浇灌装置处还设置有发电设备,为浇灌装置提供工作所需电能。
一实施例中,所述发电设备包括涡轮,或者光伏单元,或者压电单元。
一实施例中,所述浇灌系统包括连接于发电设备的旁路管道,所述旁路管道中的液体流经发电设备用于产生电力。
一实施例中,所述输送管为环形管道,所述输送管内的液体形成回路。一实施例中,每个所述浇灌装置的通信端口获取来自同一通信源的浇灌信息。
一实施例中,所述浇灌系统包括控制中心,所述通信端口与所述控制中心通信连接,获取来自控制中心的浇灌信息。
一实施例中,所述控制中心设置于所述输送管连接浇灌源的一端。
一实施例中,所述控制中心包括用户交互界面,供用户设定浇灌信息。
一实施例中,所述控制中心包括第二无线通信单元,获取远程浇灌信息。
一实施例中,所述通信端口与外部控制设备通信连接,例如与用户的智能终端通信连接。
一实施例中,所述浇灌信息包括预设排程信息,所述预设排程信息包括各个浇灌装置的工作开始时间和工作结束时间,所述控制模块根据所述工作开始时间控制所述浇灌装置的阀门打开,并根据所述工作结束时间控制所述浇灌装置的阀门关闭。
本发明还提供一种浇灌系统控制方法,所述浇灌系统包括:输送管,从浇灌源输送液体至浇灌区域;浇灌装置,与输送管连接,将输送管输送的液体浇灌至所述浇灌区域;在一路所述输送管上间隔连接至少两个所述浇灌装置;每个所述浇灌装置包括阀门,以及控制所述阀门打开或关闭的控制模块;所述控制方法包括:各个浇灌装置分别获取远程浇灌信息;各个浇灌装置的控制模块根据所述浇灌信息独立控制所述阀门的打开或关闭,以使得所述至少两个浇灌装置能够分别在不同时间段执行浇灌工作。
本发明还提供一种浇灌装置,用于与输送管配接以对浇灌区域执行浇灌工作,包括:阀门,所述阀门打开时所述浇灌装置执行浇灌工作;所述浇灌装置还包括:控制模块,控制所述阀门的打开或关闭;所述控制模块包括通信端口,获取远程浇灌信息;所述控制模块根据所述通信端口获取的浇灌信息控制所述阀门的打开或关闭;以及,第一接口,用于与输送管的第二接口配接。
一实施例中,所述浇灌装置还包括发电设备,为浇灌装置提供工作所需电能。
一实施例中,所述发电设备包括涡轮,或者光伏单元,或者压电单元。
一实施例中,所述浇灌装置包括连接于发电设备的旁路管道,所述旁路管道中的液体流经发电设备用于产生电力。
一实施例中,所述输送管为环形管道,所述输送管内的液体形成回路。一实施例中,输送管包括输液层;所述第一接口与输送管的第二接口形配,使得所述第一接口与第二接口配接时,所述浇灌装置与所述输送管能够流体连通。
一实施例中,输送管包括传导层,传导层内设置有通信线和/或电源线;所述第一接口连接浇灌装置的通信端口和/或电源端口,所述第一接口与输送管的第二接口形配,以使得所述第一接口与第二接口配接时,所述浇灌装置的通信端口和/或电源端口对应的与输送管的通信线和/或电源线的端口对接。
本发明还提供一种输送管,用于从浇灌源输送液体至浇灌区域,包括:输液层,用于传输液体;所述输送管还包括传导层,所述传导层内设置有通信线和/或电源线,所述通信线和/或电源线沿输送管的延伸方向延伸;所述输液层与所述传导层隔离。
与现有技术相比,本发明的有益效果为:各个浇灌装置的控制模块获取远程浇灌信息,基于浇灌信息独立控制相应阀门的打开或关闭,从而使得不同浇灌装置能够在不同时间段执行浇灌工作,实现了用一路输送管完成具有不同灌溉需求的多个浇灌区域的灌溉任务。本发明的方案降低了浇灌系统的成本,方便用户安装,且保持浇灌区域的美观。
附图说明
以上所述的本发明的目的、技术方案以及有益效果可以通过下面的能够实现本发明的具体实施例的详细描述,同时结合附图描述而清楚地获得。
图1为本发明一实施例的浇灌系统示意图。
图2为本发明一实施例的浇灌装置示意图。
图3为本发明一实施例的输送管截面图。
图4为本发明一实施例的浇灌系统控制流程图。
图5为本发明另一实施例的浇灌系统示意图。
图6为本发明另一实施例的浇灌系统示意图。
图7为本发明另一实施例的浇灌系统示意图。
具体实施方式
图1为本发明一实施例的浇灌系统1示意图。如图1,本实施例中,浇灌系统1包括输送管4,用于输送液体至浇灌区域A、B、C。本实施例中,输送管4与浇灌源连接,先后经过浇灌区域A、B,抵达浇灌区域C,液体由浇灌源经由输送管4输送至浇灌区域A、B、C。浇灌系统1还包括浇灌装置,与输送管连接,用于将输送管输送的液体分别浇灌至浇灌区域A、B、C。本实施例中,在一路输送管4上间隔连接至少两个浇灌装置。具体的,本实施例中,在一路输送管4上间隔连接3个浇灌装置51、52、53,分别位于浇灌区域A、B、C,以将经由输送管4传输的液体分别浇灌至浇灌区域A、B、C。
浇灌区域A、B、C为具有不同灌溉需求的区域,其中一种情况为,浇灌区域A、B、C种植有不同类型的植物,不同类型的植物对水或其他补给液的需求不同,例如,A区域的植物对水的需求比B区域的植物对水的需求多,因此A区域的浇水频率比B区域高,A 区域处于浇灌状态时B区域可能处于非浇灌状态;再例如,A区域植物需要的营养液与C区域植物需要的营养液的种类不同,则A区域浇灌对应营养液时,C区域处于非浇灌状态。浇灌区域A、B、C具有不同灌溉需求的其他情况包括:所处环境不同。例如,A区域被树荫遮蔽,因此对水的浇灌需求少,而B区域较空旷,日晒时间长,因此对水的浇灌需求多,等等。
传统的浇灌系统中,为满足不同浇灌区域的浇灌需求,为每一浇灌区域设置一路输送管,液体经不同输送管分别抵达相应浇灌区域。每一浇灌区域的浇灌工作互不干扰。在这样的系统中,若不同浇灌区域需要进行浇灌工作的时间不同,或需要浇灌的液体种类不同,可以简单的通过控制每一路输送管中液体的输送来实现。例如,当其中一个区域需要浇灌,而另一个区域不需要浇灌时,通过控制位于浇灌源处的总阀,使液体流入需要浇灌的区域对应的输送管中。再例如,当其中一个区域需要浇灌水,另一个区域需要浇灌营养液时,同样通过控制总阀,能够使水和营养液分别流入对应的输送管,从而实现相应的浇灌工作。在这样的系统中,总阀往往设置在便于用户操作的区域,例如靠近住宅的地方,这样,用户可以“就近”实现对浇灌系统的控制。
而当仅使用一路输送管浇灌多个区域时,用户则无法仅仅通过控制总阀来控制位于不同区域的浇灌装置处于不同状态。浇灌区域往往具有较大的面积,若用户手动控制位于不同浇灌区域的浇灌装置的打开和关闭,则费时费力,会给用户带来极大不便。为实现仅使用一路输送管浇灌多个区域,且使多个浇灌装置能够分别在不同时间段执行浇灌工作,本实施例的方案如下。
为实现不同浇灌装置51、52、53能够在不同时间段执行浇灌工作,如图2所示,本实施例中,每个浇灌装置51、52、53包括阀门,以及控制模块,设置在浇灌装置处,控制阀门打开或关闭。各个浇灌装置51、52、53的控制模块独立控制相应的阀门的打开或关闭,以使得至少两个浇灌装置能够分别在不同时间段执行浇灌工作。进一步的,控制模块包括通信端口,获取远程浇灌信息。控制模块根据通信端口获取的浇灌信息控制阀门的打开或关闭。
如图1所示,一实施例中,输送管内设置有传导线,传导线包括通信线41,与通信端口连接,通信端口通过通信线41获取浇灌信息。
本实施例中,每个浇灌装置51、52、53的通信端口获取来自同一通信源的浇灌信息。具体的,本实施例中,浇灌系统1包括控制中心3,通信端口与控制中心3通信连接,获取来自控制中心3的浇灌信息。即控制中心3作为通信源,与多个浇灌装置51、52、 53通信连接。
本实施例中,通信端口通过通信线41与控制中心3通信连接,获取浇灌信息。具体的,控制中心3设置在输送管4的靠近浇灌源处。
在一实施例中,控制中心3包括用户交互界面31,供用户设定浇灌信息。用户交互界面可以包括按键、触摸屏、显示屏、LED灯等。用户可以通过按键或触摸屏输入浇灌信息。浇灌信息可以包括预设排程信息,例如各个浇灌装置的工作开始时间,工作持续时间/工作结束时间,还可以包括浇灌间隔周期或工作频率,浇灌日历等。当浇灌系统1需要为不同浇灌区域配置不同种类的灌溉液体时,还可以设置不同浇灌装置浇灌的液体种类。用户还可以设定不同浇灌装置的属性,例如将浇灌装置的出厂编号修改为便于用户识别的名称,等等。显示屏或LED灯可以向用户显示当前排程信息,还可以在排程出现冲突时提示用户,例如不同种类液体的浇灌时间出现重叠等。
控制中心3还包括控制器,控制中心3的控制器与用户交互界面31连接,接收由用户交互界面输入的浇灌信息,处理浇灌信息,并将处理后的浇灌信息通过通信线41传输至浇灌装置51、52、53处。浇灌装置51、52、53的控制模块通过通信端口接收浇灌信息,并基于浇灌信息控制阀门的打开或关闭。
一个浇灌程序的示例如下表1。当用户为浇灌系统1设定如下浇灌程序时,各个浇灌装置51、52、53的通信端口通过通信线41接收到相应浇灌信息,各个控制模块存储该浇灌信息。控制模块包括时钟电路,能够判断当前时间。例如,当时间为周一9:00am时,浇灌装置51的控制模块打开对应的阀门,同时,控制中心打开水源7阀门,水经输送管4输送至位于浇灌区域A内的浇灌装置51,浇灌装置51将水浇灌至浇灌区域A内。当时间到达10:00am时,浇灌装置51的控制模块关闭对应的阀门,浇灌装置51停止浇灌。同时控制中心关闭水源7阀门。再如,当时间为周二10:00am时,浇灌装置52的控制模块打开对应的阀门,同时,控制中心3打开存储营养液的储液容器22对应的阀门,营养液经输送管4输送至位于浇灌区域B内的浇灌装置52,浇灌装置52将营养液浇灌至浇灌区域B内。当时间到达11:00am时,浇灌装置52的控制模块关闭对应的阀门,浇灌装置52停止浇灌。同时,控制中心3关闭存储营养液的储液容器22的阀门。其他浇灌装置以及各浇灌装置在其他时间段的工作方式与上述类似,不再赘述。
表1
Figure PCTCN2019087925-appb-000001
本实施例中,各个浇灌装置51、52、53的控制模块根据通信端口接收到的浇灌信息,独立控制对应的阀门的打开和关闭,从而使得不同浇灌装置51、52、53能够分别在不同时间段执行浇灌工作,实现了仅用一路输送管4完成具有不同需求的浇灌区域的浇灌任务的目的。
本实施例中,输送管4内的传导线还包括电源线42,连接浇灌装置51、52、53和电源,以向浇灌装置51、52、53提供工作所需的电能。浇灌系统1可以由交流电供电,例如通过适配器连接市电,也可以由电池包直流供电。电源为浇灌系统1的工作提供电能,包括为控制中心3提供电能。本实施例中,电源线42可以直接连接于控制中心3的电源端。浇灌系统1的电源可以与控制中心3集成在一起,设置在输送管4的靠近浇灌源的一端。
结合图1和图3,本实施例中,信号线41和电源线42均与输送管4集成在一起,信号线41与电源线42的延伸方向与输送管4的延伸方向一致。具体的,输送管4包括传导层43,与输送液体的输液层44隔离,通信线41和电源线42设置于传导层43内。输液层44和传导层43相互隔离,以防止输送管4输送的液体影响通信线41和电源线42的性能。本实施例中,通信线41包括数据传输线,具体的,包括网线。电源线42包括导线,具体的,包括金属线。
在另一实施例中,浇灌系统包括传导线,传导线连接于浇灌装置,传导线包括通信线和电源线,因此,传导线能够同时传输通信数据和电力。传导线独立于输送管设计,具体的,传导线与输送管并行安装。具体的,浇灌装置包括电源的接口和通信接口,此处采用一个传导线同时传输通信数据和电力,则浇灌装置上的电源接口和通信接口也集成为一个综合端口,具体的,每个浇灌装置上具有两个综合端口,传导线能够将浇灌系 统中两两相邻的浇灌装置连接在一起,使得浇灌装置能够彼此通信。通过设计传导线兼具通信线和电源线的功能,使得浇灌系统耗能更低,成本更低,布线更容易。
本实施例中,浇灌装置51、52、53包括第一接口,输送管4包括与第一接口配合的第二接口。第一接口与第二接口形配,以使得第一接口与第二接口配接时,传导线的端口与浇灌装置51、52、53的对应端口对接。具体的,通信线41与通信端口对接,电源线42与电源端口对接。具体的,浇灌装置51、52、53的第一接口包括一凸起,输送管4的第二接口包括一凹槽,第一接口的凸起与第二接口的凹槽具有相互配合的形状,当且仅当第一接口的凸起嵌入第二接口的凹槽时,第一接口上与通信端口对应的端子和第二接口上与通信线41对应的端子相连接,第一接口上与电源端口对应的端子和第二接口上与电源线42对应的端子相连接。当然,第一接口与第二接口的形配还可以由很多其他结构实现,不再一一列举。此外,第一接口与第二接口还包括锁紧结构。
上述输送管4的结构,以及输送管4与浇灌装置51、52、53的配接结构,都使得用户能够简单的通过连接输送管4和浇灌装置51、52、53,实现浇灌装置51、52、53的控制连接和供电连接,简化用户的操作,改善用户体验。
本实施例的浇灌系统1,通过在输送管4中设置通信线41与电源线42,提供从控制中心3到各个浇灌装置51、52、53的数据传输和能量传输,解决了各个浇灌装置51、52、53的控制和供电问题,从而实现了一路输送管4上多个浇灌装置51、52、53的独立控制问题,使得浇灌系统1既节约成本、方便安装、美观,且方便用户操作。
本实施例中,由于控制中心3通常设置在用户易于接近的地方,例如住宅附近,因此用户能够较方便的通过控制中心3设定浇灌信息。通过本实施例的设计,用户能够方便的通过控制中心3控制多个浇灌装置的浇灌工作。
如图4,本实施例中,浇灌系统1的控制流程如下:
S1:各个浇灌装置分别获取远程浇灌信息。
具体的,控制中心3接收用户输入的浇灌信息,通过通信线41传输至各个浇灌装置51、52、53,浇灌装置51、52、53的通信端口接收浇灌信息,控制模块存储该浇灌信息。
S2:各个浇灌装置的控制模块根据浇灌信息独立控制对应阀门的打开和关闭。
具体的控制方法参见上文对表1的描述。
本发明的另一实施例中,浇灌系统1的结构和方法与上述实施例基本相同,差异在于,控制中心3包括一无线通信单元(下文称为第二无线通信单元),通过该无线通信单元接收浇灌信息,并将接收到的浇灌信息处理后进一步传输给浇灌装置51、52、53。 即各浇灌装置51、52、53也可能通过通信线41间接的与外部控制设备实现通信连接。第二无线通信单元接收浇灌信息的方式与下文实施例中的第一无线通信单元61、62、63类似。用无线通信单元代替用户交互界面接收用户输入的信息,能够更方便用户对浇灌系统1的控制。
本发明的另一实施例中,如图5所示,浇灌装置51、52、53包括第一无线通信单元61、62、63,与通信端口连接,通信端口通过第一无线通信单元61、62、63获取信息。浇灌装置51、52、53通过第一无线通信单元61、62、63,既可以与浇灌系统1的控制中心3通信,例如与控制中心3的第二无线通信单元通信,也可以与外部控制设备通信。本实施例中,以浇灌装置51、52、53与外部控制设备通信为例。通信端口通过第一无线通信单元61、62、63与外部控制设备通信连接。即外部控制设备作为通信源,与多个浇灌装置51、52、53通信连接。
一实施例中,外部控制设备包括用户的智能终端8。具体的,智能终端8上载有控制浇灌系统的APP,用户可通过APP界面设置浇灌信息。具体的,用户能够通过控制APP上的按键远程控制某个浇灌装置的阀门打开或关闭。APP上可以呈现与每个浇灌装置51、52、53对应的图示,以及与每个浇灌装置51、52、53相关联的控制键,例如“启动键”和“关闭键”等。用户还可以通过APP排程,设置例如表1所示的工作日历。APP还可以向用户展示各个浇灌装置51、52、53的工作状态和工作参数,例如当日完成的浇灌量等。
进一步的,APP可以为用户提供可视化的虚拟浇灌区域。例如,APP可以内嵌电子地图,例如google地图,用户输入自家花园的位置信息,APP自动定位并显示用户的花园,或者用户可以在地图上手动圈定自家花园。APP中可以提供一些虚拟浇灌装置,用户可以在花园图像上拖动这些虚拟浇灌装置,将其放置在图像上与实际浇灌装置的位置对应的位置,从而模拟浇灌装置的浇灌工作。用户通过观察浇灌装置的工作范围,覆盖的植被种类,判断浇灌装置的设置是否合理。用户还可以在该图像化的地图上为浇灌装置设置各种参数,这样设置更直观,用户体验更好。
进一步的,APP还可以为用户推荐浇灌参数。APP可以获取天气预报信息,提示用户未来一段时间可能发生的天气状况,或根据天气预报信息直接为用户推荐排程,例如,若未来一周多阴雨天气,则建议用户在未来一周取消浇水操作。APP还可以根据阶段性的气候判断植被的浇灌需求,例如在日照时间长、或植被生长快的季节建议增大浇灌频率。或者结合花园位置的经纬度和海拔,判断对植被适宜的浇灌量,输出推荐的浇灌参 数,等等。用户可以选择是否接受APP推荐的浇灌参数,也可以设置默认接受,则浇灌装置51、52、53将直接根据APP推荐的浇灌参数执行浇灌任务。
进一步的,APP还可以为用户提供数据统计服务,统计花园在一年中不同时期的浇灌量,以及提供植被的健康生长状态等。
APP的数据的收集和计算均可以在云端完成,浇灌装置51、52、53的第一无线通信单元61、62、63也可以直接从云端获取数据。
浇灌装置的第一无线通信单元61、62、63通过接入无线通信网络获取上述浇灌信息。具体的,第一无线通信单元61、62、63包括蜂窝网络通信单元、或WIFI通信单元、或蓝牙通信单元、或RF通信单元、或UWB通信单元等。第一无线通信单元61、62、63接入的无线通信网络包括LAN(local area network),MAN(metropolitan area network),WAN(wide area network),WPAN(wireless personal area network)等等。
具体的,本实施例中,各个浇灌装置51、52、53的第一无线通信单元61、62、63相互通信,以构成以第一无线通信单元61、62、63为通信节点的多级传递式通信网络。具体的,无线通信网络包括mesh network。由于不同浇灌区域组成的总区域面积可能较大,无线通信网络的覆盖面积可能是有限的,例如,当利用WIFI网络通信时,WIFI网关设备通常设置在用户住宅中,距离住宅较近的浇灌装置能够较稳定的接入WIFI网络,而距离住宅较远的浇灌装置则可能接收不到WIFI网络,导致浇灌装置无法获取浇灌信息,影响浇灌系统的正常工作。为克服上述问题,本实施例中,各个浇灌装置51、52、53的第一无线通信单元61、62、63能够相互通信,这样,距离住宅较远的浇灌装置可以通过与其相邻的更接近住宅的浇灌装置获取浇灌信息,与其相邻的浇灌装置可以进一步从更接近住宅的相邻浇灌装置获取浇灌信息,以此类推,形成以若干第一无线通信单元为通信节点的多级传递式通信网络,距离住宅最近的浇灌装置将浇灌信息逐级传递至各个其他浇灌装置,从而每一个浇灌装置都可以稳定的获取浇灌信息,保证浇灌系统1的正常工作。
本实施例中,第一无线通信单元61、62、63获取的浇灌信息通过通信端口传输给控制模块,控制模块基于此控制阀门的打开和关闭。由于每个浇灌装置51、52、53包括独立的控制模块和第一无线通信单元61、62、63,因此,每个浇灌装置51、52、53的第一无线通信单元61、62、63可以独立接收浇灌信息,控制模块可以基于第一无线通信单元61、62、63接收的浇灌信息独立控制阀门的打开和关闭,从而实现多个浇灌装置51、52、53的独立控制,使得不同浇灌装置51、52、53能够在不同时间段执行浇灌工作。 通过为浇灌装置51、52、53配置第一无线通信单元61、62、63,利用第一无线通信单元61、62、63与外部控制设备无线通信,使得用户对浇灌系统1的控制简单便捷,且更加智能。
可以理解的是,浇灌装置51、52、53也可以通过第一无线通信单元61、62、63与浇灌系统1的控制中心3通信,由于控制中心3往往设置在用户易于接近的地方,或距离住宅较近的地方,因此用户可以方便、可靠的通过控制中心3来控制浇灌系统1的工作。控制中心3可以成为多级传递式通信网络的节点之一,各个浇灌装置51、52、53和控制中心3通过第一无线通信单元61、62、63和第二无线通信单元实现无线通信连接。
本实施例中,浇灌装置51、52、53处还设置有发电设备,为浇灌装置51、52、53提供工作所需电能。在一具体的实施例中,发电设备包括涡轮,由输送液体驱动以输出电能给浇灌装置51、52、53。具体的,涡轮包括一个转子,转子包括扇叶。涡轮设置在输送管4中,当输送管4中有液体流过时,流体对扇叶施加的力量带动整个转子旋转,转子旋转形成磁场,磁力线切割定子中的线圈,在线圈中感应出电势。涡轮的电能输出线与浇灌装置51、52、53的电源端口连接,向浇灌装置51、52、53供电。在浇灌装置51、52、53处设置涡轮,能够利用输送管中流过的液体发电,解决了浇灌装置51、52、53的供电问题,且起到了能量的有效利用。
一实施例中,所述浇灌系统包括连接于发电设备56的旁路管道55,所述旁路管道55中的液体流经发电设备56用于产生电力。参图7为本发明一实施例的浇灌系统。具体的,发电设备56包括涡轮发电机,当有液体流过时产生电力。具体的,当有液体流过涡轮发电机时,液体冲击发电机的转轮,使其转动,并通过主轴带动发电机转子跟着转动,在发电机转子线圈中通入直流电流,转子线圈就会产生旋转磁场,磁力线在旋转过程中,被定子线圈切割,根据电磁感应原理,定子线圈中就会产生电压,定子线圈接入负载后,定子线圈中产生电流。也就是说,当有液体流过涡轮发电机时,液体流动的能量转化为机械能,发电机的转轴又带动发电机的转子,将机械能转换为电能而输出,使得浇灌装置51、52产生电力,从而能够智能控制阀门57的开启及关闭,智能的控制浇灌系统的工作过程。具体的,每个浇灌装置51、52都设置有发电设备56,使得每个浇灌装置51、52都能被独立供电,若有某一个发电设备56发生故障,也不会影响其他浇灌装置51、52的正常工作。为了使得浇灌装置51、52能够源源不断的获得能量供给,发电设备56可以设置为能够为浇灌装置51、52供给持续的电力,也就是说,在一定的情况下,如果需要使得浇灌装置51、52能够获得持续的能量供给,则发电设备56需要 保持始终有液体流过,以确保其可以产生持续的电力。具体的,浇灌装置51、52包括阀门57、发电设备56、控制模块等部件,控制模块在有电力的情况下能够对阀门57进行开闭控制,以智能控制浇灌工作。具体的,浇灌装置51、52的发电设备56需要有液体流过以产生电力为浇灌装置51、52提供能量,以及阀门57处需要有液体,以供阀门57打开时向工作区域提供液体,当只有一个用于输送液体的管道时,要实现对阀门57和发电设备56两者都同时提供液体,则需要有两个用于向两者输入液体的端口,通过设置旁路管道55,输送管4能够同时向阀门57和发电设备56提供液体,保证在发电设备56能够产生电力的情况下阀门57处也有液体供应。具体的,旁路管道55可以设置于浇灌装置51、52内部,具体的,通过旁路管道55连通发电设备56和阀门57,输送管4的液体流经发电设备56,通过设置旁路管道55,将流经发电设备56的液体增加流向阀门57的路径,使得阀门57有液体供应。在另一实施例中,旁路管道55也可以设置于浇灌装置51、52外部,具体的,旁路管道55的一端连接于发电设备56和阀门57其中之一,使得浇灌装置51、52具有两个液体输入口,一个连接发电设备56,另一个连接阀门57,使得发电设备56和阀门57两者都能得到液体供应。可选择的,浇灌系统中可能具有多个浇灌装置51、52,因而输送管4可能包括多个旁路管道55,多个旁路管道55可能分别为小段式设计。具体的,旁路管道55可以位于浇灌装置51、52内部,也可以位于浇灌装置51、52外部,当旁路管道55位于浇灌装置51、52内部时,浇灌装置51、52可能为封装的结构,输送管4连接浇灌装置51、52后即可以投入工作,浇灌装置51、52内部可以自动实现液体分为两个支流,即一个支流流经发电设备56,另一支流流经阀门57。具体的,旁路管道55可能设置于输送管4一体,也可能不与输送管4设置为一体,当旁路管道55与输送管4设置于一体时,输送管4包括输液层,输送管4还包括旁路管道55,输液层与旁路管道55并行设置于输送管4内部,且输液层和旁路管道55内都通有液体,也就是说,输送管4内部有两股液体流动,一股液体流经发电设备56,用于产生电力,另一股液体流经阀门57,在打开阀门57时向浇灌区域提供液体。当旁路管道55不与输送管4设置为一体时,如前所述,旁路管道55可以位于浇灌装置51、52内部,进一步的可以与浇灌装置51、52封装设计,除此之外,旁路管还可以形成为独立的一根管子,优选的,旁路管可以与输送管4并行设置,分别流经发电设备56和阀门57。在另一实施例中,在一些情况下,若要使得发电设备56能够持续的产生电力,需要使得发电设备56处持续有液体流动,具体的,输送管4为环形管道,输送管4内的液体形成流动的回路,也就是说,输送管4内的液体从液体源头流出,并流回液体源头。具体的, 当输送管4内的液体形成回路时,输送管4内的液体可能因为没有压差而无法流动,优选的,在输送管4的适当位置处增加水泵,例如,在液体源头处增加泵装置,使得输送管4的液体能够源源不断的流动,当液体流经浇灌装置51、52的发电设备56时,发电设备56产生电能,源源不断的液体经发电设备56,可以使得浇灌装置51、52持续的获得能量供给。在该浇灌系统中,用户可根据工作区域的需求使得输送管4内通入水、营养液等液体,当输送管4内通过任何液体时,发电设备56均能够通过液体的流动产生电力,为浇灌装置51、52提供能量供给。通过在浇灌装置51、52上设置发电设备56,每个浇灌装置51、52都能够处于带电状态,在控制模块接收到通信端口的控制信息时,能够响应控制信息有效的开闭阀门57。同时,通过对发电设备56设计液体发电,简化了浇灌系统的硬件设置,不用再设置电力传输的系统,使得智能灌溉系统使用方便且更智能。一实施例中,发电设备56处可提供备用电池。
在另一具体的实施例中,发电设备包括光伏单元,接收光能,并将光能转换为电能,供给浇灌装置51、52、53。浇灌装置51、52、53处设置有太阳能板,将太阳能转换为电能。具体的,太阳能板设置在浇灌装置51、52、53的顶面或包络在浇灌装置的外表面。由于浇灌区域浇灌需求高的时期往往也是光照条件较好的时期,因此太阳能板能够为浇灌装置51、52、53提供较充足的电能。在一实施例中,浇灌装置51、52、53处还设置有电池,用于存储太阳能板转换的电能。当然,在其他实施例中,也可以仅通过为浇灌装置51、52、53设置电池来供电。
在另一具体的实施例中,发电设备包括压电单元。压电单元将流经输送管4的液体产生的压力转换为电能,供给浇灌装置。
可以理解的是,浇灌装置51、52、53的通信方式与供电方式可以任意组合,例如,当浇灌装置51、52、53通过通信线41获取浇灌信息时,也可以同时利用光伏单元发电来供电;当浇灌装置51、52、53通过第一无线通信单元61、62、63获取浇灌信息时,也可以同时利用电源线42来供电,等等。
本发明的另一实施例中,浇灌系统1的结构和方法与上述实施例基本相同,差异在于,外部控制设备包括第三方服务设备,第一无线通信单元61、62、63接收第三方服务设备发送的信息。具体的,用户可以委托第三方对自家的浇灌系统进行管理,具体的,该服务可以由浇灌系统的厂家提供。每个浇灌系统包括一个账户,用户或第三方登录账户后即可对对应的浇灌系统进行管理。用户可授权第三方登录自家浇灌系统的账户。账户中可以记录关于该浇灌系统的若干信息,例如历史浇灌信息,植被信息,位置信息等。 第三方还可以为用户提供一些优化服务,例如定制对植被的特殊护理服务等。浇灌系统账户中的信息可以存储在云端,第一/第二无线通信单元接入无线通信网络后,直接从云端获取浇灌信息。上述方法能够使用户进一步从花园管理的劳务中解脱出来,并为花园管理提供更专业的定制化服务。
本发明的一实施例中,输送管4输送同一种类的液体至不同的浇灌装置,例如输送管4输送水至不同的浇灌装置51、52、53,输送管4连接市政供水设备。
本发明的另一实施例中,输送管4输送不同种类的液体至不同的浇灌装置51、52、53。当输送管4输送不同种类的液体至不同的浇灌装置51、52、53时,不同液体在不同时间段经由输送管4传输至对应浇灌装置,并且浇灌装置51、52、53在对应时间段打开阀门,将对应液体浇灌至浇灌区域。参图1,浇灌源包括多个储液容器21、22、23,分别存储浇灌至浇灌区域A、B、C的液体。当浇灌区域A需要浇灌时,浇灌装置51的阀门打开,同时储液容器21的阀门打开,液体由储液容器21经输送管4传输至浇灌装置51,由浇灌装置51浇灌至浇灌区域A。当浇灌区域B需要浇灌时,浇灌装置52的阀门打开,同时储液容器22的阀门打开,液体由储液容器22经输送管4传输至浇灌装置52,由浇灌装置52浇灌至浇灌区域B。浇灌区域C需要浇灌时的情况类似,不再赘述。当不同浇灌装置51、52、53浇灌的液体种类不同时,浇灌装置51、52、53不同时工作,不同种类的液体分时流过同一段输送管。
本发明实施例中所指的一路输送管,既包括多段输送管连接形成一路输送管的情况,也包括一体成形的输送管的情况。需要指出的是,本发明的实施例中,浇灌装置既可以直接设置在输送管的主干上,也可以通过分支输送管与输送管的主干连接,例如图6所示的情况。这种情况下,液体主要经由输送管的主干流至各个浇灌区域,因此,依然符合本发明想要达到的技术效果,即降低浇灌系统的成本、方便用户安装、且保持浇灌区域的美观。
本发明的实施例中,控制系统/控制器/控制模块可以包括MCU、CPU等,还可以包括存储器、时钟电路等元器件。
本发明的实施例中,浇灌装置可以包括喷洒装置,也可以包括滴灌装置等其他形式的液体输出装置。
本发明还涉及一种浇灌装置,用于与输送管配接以对浇灌区域执行浇灌工作,具体结构参上述实施例,不再赘述。
本发明还涉及一种输送管,用于从浇灌源输送液体至浇灌区域,具体结构参上述实 施例,不再赘述。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (29)

  1. 一种浇灌系统,包括:
    输送管,用于从浇灌源输送液体至浇灌区域;
    浇灌装置,与输送管连接,将输送管输送的液体浇灌至所述浇灌区域;
    在一路所述输送管上间隔连接至少两个所述浇灌装置;每个所述浇灌装置包括阀门;其特征在于,
    每个所述浇灌装置还包括控制模块,控制所述阀门的打开或关闭;各个所述浇灌装置的控制模块独立控制所述阀门的打开或关闭,以使得所述至少两个浇灌装置能够分别在不同时间段执行浇灌工作;
    所述控制模块包括通信端口,获取远程浇灌信息;
    所述控制模块根据所述通信端口获取的浇灌信息控制所述阀门的打开或关闭。
  2. 根据权利要求1所述的浇灌系统,其特征在于,所述输送管内设置有传导线,所述传导线包括通信线,与所述通信端口连接,所述通信端口通过所述通信线获取浇灌信息。
  3. 根据权利要求1所述的浇灌系统,其特征在于,所述输送管内设置有传导线,所述传导线包括电源线,连接所述浇灌装置和电源,以向所述浇灌装置提供工作所需电能。
  4. 根据权利要求1所述的浇灌系统,其特征在于,所述浇灌系统还包括连接于浇灌装置的传导线,所述传导线包括通信线和电源线。
  5. 根据权利要求1所述的浇灌系统,其特征在于,所述输送管包括传导层,用于设置传导线,以及输液层,用于输送液体,所述传导层与所述输液层隔离。
  6. 根据权利要求1所述的浇灌系统,其特征在于,所述输送管内设置有传导线,所述浇灌装置包括第一接口,所述输送管包括与所述第一接口配合的第二接口;所述第一接口与第二接口形配,以使得所述第一接口与第二接口配接时,所述传导线的端口与所述浇灌装置的对应端口对接。
  7. 根据权利要求1所述的浇灌系统,其特征在于,所述浇灌装置包括第一无线通信单元,与所述通信端口连接,所述通信端口通过所述第一无线通信单元获取浇灌信息。
  8. 根据权利要求7所述的浇灌系统,其特征在于,所述第一无线通信单元包括蜂窝网络通信单元、或WIFI通信单元、或蓝牙通信单元、或RF通信单元、或UWB通信单元。
  9. 根据权利要求7所述的浇灌系统,其特征在于,所述第一无线通信单元相互通 信,以构成以所述第一无线通信单元为通信节点的多级传递式通信网络。
  10. 根据权利要求1所述的浇灌系统,其特征在于,所述浇灌装置处还设置有发电设备,为浇灌装置提供工作所需电能。
  11. 根据权利要求10所述的浇灌系统,其特征在于,所述发电设备包括涡轮,或者光伏单元,或者压电单元。
  12. 根据权利要求10所述的浇灌系统,其特征在于,所述浇灌系统包括连接于发电设备的旁路管道,所述旁路管道中的液体流经发电设备用于产生电力。
  13. 根据权利要求1所述的浇灌系统,其特征在于,所述输送管为环形管道,所述输送管内的液体形成回路。
  14. 根据权利要求1所述的浇灌系统,其特征在于,每个所述浇灌装置的通信端口获取来自同一通信源的浇灌信息。
  15. 根据权利要求1所述的浇灌系统,其特征在于,所述浇灌系统包括控制中心,所述通信端口与所述控制中心通信连接,获取来自控制中心的浇灌信息。
  16. 根据权利要求15所述的浇灌系统,其特征在于,所述控制中心设置于所述输送管连接浇灌源的一端。
  17. 根据权利要求15所述的浇灌系统,其特征在于,所述控制中心包括用户交互界面,供用户设定浇灌信息。
  18. 根据权利要求15所述的浇灌系统,其特征在于,所述控制中心包括第二无线通信单元,获取远程浇灌信息。
  19. 根据权利要求1所述的浇灌系统,其特征在于,所述通信端口与外部控制设备通信连接,例如与用户的智能终端通信连接。
  20. 根据权利要求1所述的浇灌系统,其特征在于,所述浇灌信息包括预设排程信息,所述预设排程信息包括各个浇灌装置的工作开始时间和工作结束时间,所述控制模块根据所述工作开始时间控制所述浇灌装置的阀门打开,并根据所述工作结束时间控制所述浇灌装置的阀门关闭。
  21. 一种浇灌系统控制方法,其特征在于,所述浇灌系统包括:输送管,从浇灌源输送液体至浇灌区域;浇灌装置,与输送管连接,将输送管输送的液体浇灌至所述浇灌区域;在一路所述输送管上间隔连接至少两个所述浇灌装置;每个所述浇灌装置包括阀门,以及控制所述阀门打开或关闭的控制模块;所述控制方法包括:
    各个浇灌装置分别获取远程浇灌信息;
    各个浇灌装置的控制模块根据所述浇灌信息独立控制所述阀门的打开或关闭,以使 得所述至少两个浇灌装置能够分别在不同时间段执行浇灌工作。
  22. 一种浇灌装置,用于与输送管配接以对浇灌区域执行浇灌工作,包括:
    阀门,所述阀门打开时所述浇灌装置执行浇灌工作;其特征在于,
    所述浇灌装置还包括:
    控制模块,控制所述阀门的打开或关闭;
    所述控制模块包括通信端口,获取远程浇灌信息;
    所述控制模块根据所述通信端口获取的浇灌信息控制所述阀门的打开或关闭;以及,
    第一接口,用于与输送管的第二接口配接。
  23. 根据权利要求22所述的浇灌装置,其特征在于,所述浇灌装置还包括发电设备,为浇灌装置提供工作所需电能。
  24. 根据权利要求23所述的浇灌装置,其特征在于,所述发电设备包括涡轮,或者光伏单元,或者压电单元。
  25. 根据权利要求23所述的浇灌装置,其特征在于,所述浇灌装置包括连接于发电设备的旁路管道,所述旁路管道中的液体流经发电设备用于产生电力。
  26. 根据权利要求22所述的浇灌装置,其特征在于,所述输送管为环形管道,所述输送管内的液体形成回路。
  27. 根据权利要求22所述的浇灌装置,其特征在于,输送管包括输液层;所述第一接口与输送管的第二接口形配,使得所述第一接口与第二接口配接时,所述浇灌装置与所述输送管能够流体连通。
  28. 根据权利要求22所述的浇灌装置,其特征在于,输送管包括传导层,传导层内设置有通信线和/或电源线;所述第一接口连接浇灌装置的通信端口和/或电源端口,所述第一接口与输送管的第二接口形配,以使得所述第一接口与第二接口配接时,所述浇灌装置的通信端口和/或电源端口对应的与输送管的通信线和/或电源线的端口对接。
  29. 一种输送管,用于从浇灌源输送液体至浇灌区域,包括:
    输液层,用于传输液体;其特征在于,
    所述输送管还包括传导层,所述传导层内设置有通信线和/或电源线,所述通信线和/或电源线沿输送管的延伸方向延伸;
    所述输液层与所述传导层隔离。
PCT/CN2019/087925 2018-05-22 2019-05-22 浇灌系统及其控制方法,浇灌装置,及输送管 WO2019223711A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19808471.7A EP3797581A4 (en) 2018-05-22 2019-05-22 IRRIGATION SYSTEM AND CONTROL METHOD THEREOF, IRRIGATION DEVICE AND DELIVERY HOSE
CN201980007606.9A CN111741677A (zh) 2018-05-22 2019-05-22 浇灌系统及其控制方法,浇灌装置,及输送管
US17/056,733 US20210204495A1 (en) 2018-05-22 2019-05-22 Irrigation system and control method thereof, irrigation apparatus, and conveying pipe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810495121.6 2018-05-22
CN201810495121 2018-05-22

Publications (1)

Publication Number Publication Date
WO2019223711A1 true WO2019223711A1 (zh) 2019-11-28

Family

ID=68617358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/087925 WO2019223711A1 (zh) 2018-05-22 2019-05-22 浇灌系统及其控制方法,浇灌装置,及输送管

Country Status (4)

Country Link
US (1) US20210204495A1 (zh)
EP (1) EP3797581A4 (zh)
CN (1) CN111741677A (zh)
WO (1) WO2019223711A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11185024B2 (en) * 2019-04-26 2021-11-30 Smart Rain Systems, LLC Irrigation system map integration
US20220312697A1 (en) * 2021-03-30 2022-10-06 James Hobbs Irrigation Solenoid Valve Switch Assembly Operable on a Mesh Network
CN113680409B (zh) * 2021-08-24 2022-12-06 中科计算技术西部研究院 一种自动配存方法及系统
CN115777498B (zh) * 2023-01-28 2023-06-09 中城乡生态环保工程有限公司 一种基于图像处理的智能园林绿化装置
CN117461545B (zh) * 2023-12-26 2024-03-15 四川省农业科学院园艺研究所 栽培节水灌溉装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013021945A (ja) * 2011-07-19 2013-02-04 Chuo Green System:Kk 噴霧システム
RU2567521C1 (ru) * 2014-05-13 2015-11-10 Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский институт гидротехники и мелиорации имени А.Н. Костякова" (ФГБНУ "ВНИИГиМ им. А.Н. Костякова") Оросительная сеть для регулирования фитоклимата поля
CN106550854A (zh) * 2015-09-25 2017-04-05 苏州宝时得电动工具有限公司 灌溉系统
RU2629233C1 (ru) * 2016-11-28 2017-08-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный аграрный университет имени Н.И. Вавилова" Электрифицированная многосекционная дождевальная машина кругового действия
WO2018038916A1 (en) * 2016-08-24 2018-03-01 Trimble Inc. Center pivot irrigation system with variable application of water under the corner arm
CN107763302A (zh) * 2017-11-30 2018-03-06 新疆天脉农业智控科技有限公司 一种阀门监测机构及灌溉系统
CN207185484U (zh) * 2017-08-09 2018-04-06 浙江裕丰园林建设有限公司 一种农业灌溉系统
CN207219641U (zh) * 2017-05-11 2018-04-13 河北金硕管业有限公司 一种用于微喷灌的管道
CN207340516U (zh) * 2017-08-24 2018-05-11 中国农业科学院农田灌溉研究所 一种水肥一体化的微喷灌溉施肥系统

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3889881A (en) * 1974-05-29 1975-06-17 Lonnie C Cunningham Liquid dispersal apparatus
ATE235617T1 (de) * 1998-07-30 2003-04-15 Prusate Foundation Verfahren zum verlegen von datenkabeln
US6892114B1 (en) * 2000-09-26 2005-05-10 Aqua Conserve, Inc. Modifying irrigation schedules of existing irrigation controllers
US6311730B2 (en) * 2000-10-05 2001-11-06 G. Gregory Penza Communications conduit installation method and conduit-containing product suitable for use therein
GB2413166B (en) * 2001-04-27 2005-11-30 Fiberspar Corp Improved composite tubing
US6874707B2 (en) * 2001-05-31 2005-04-05 Terra Spase System for automated monitoring and maintenance of crops including computer control of irrigation and chemical delivery using multiple channel conduit
US20060161309A1 (en) * 2002-04-19 2006-07-20 Moore Steven E Irrigation control system
US7010396B2 (en) * 2003-04-04 2006-03-07 David Brent Ware Irrigation controller with embedded web server
US7264177B2 (en) * 2004-08-03 2007-09-04 Intelligent Lawn Systems, L.P. Methods, systems and apparatuses for automated irrigation and chemical treatment
US9301461B2 (en) * 2004-11-09 2016-04-05 Hunter Industries, Inc. Systems and methods to adjust irrigation
US20070016334A1 (en) * 2005-06-30 2007-01-18 Smith Brian J Method and system for transmitting and utilizing forecast meteorological data for irrigation controllers
US7357599B2 (en) * 2005-08-10 2008-04-15 Criptonic Energy Solutions, Inc. Waste water electrical power generating system
US20070074767A1 (en) * 2005-09-30 2007-04-05 Roffey Tony W Self-charging programmable water valve
US7469707B2 (en) * 2006-06-01 2008-12-30 Deere & Company Irrigation control valve and system
US20090099701A1 (en) * 2007-10-12 2009-04-16 Rain Bird Corporation Remote Access to Irrigation Control Systems
US8024074B2 (en) * 2007-12-07 2011-09-20 Deere & Company System and method of managing substances in a plant root zone
US8326440B2 (en) * 2008-02-23 2012-12-04 Ranch Systems Llc System for intelligent delegation of irrigation control
TR200805998A2 (tr) * 2008-08-12 2009-12-21 Kodalfa B�Lg� Ve �Let���M Teknoloj�Ler� Sanay� Ve T�Caret A.�. Seralar için uzaktan kablosuz iklim gözlemleme ve kontrol sistemi
CN102037888B (zh) * 2010-10-28 2011-11-30 重庆市科学技术研究院 分布式网络自动灌溉控制系统及其灌溉控制方法
US8434697B1 (en) * 2011-05-12 2013-05-07 Peter Olt Autonomous system for injecting additives into irrigation water
WO2014011583A1 (en) * 2012-07-13 2014-01-16 R. Hashimshony Engineering Ltd. Smart pipe system
US9468162B2 (en) * 2012-08-01 2016-10-18 Rain Bird Corporation Irrigation controller wireless network adapter and networked remote service
US9433160B2 (en) * 2013-03-21 2016-09-06 Disney Enterprises, Inc. Hydroponic array for the individualized delivery of nutrients
US10251348B2 (en) * 2014-12-08 2019-04-09 International Business Machines Corporation Double drip line variable rate water distribution
KR101816066B1 (ko) * 2015-11-03 2018-01-08 한국과학기술연구원 옥상녹화용 관수 시스템
US10736279B2 (en) * 2016-01-04 2020-08-11 Tony Stephen Method and system for in row variable rate precision irrigation
CN206078080U (zh) * 2016-08-24 2017-04-12 大理时代农业科技发展有限公司 葡萄园水肥滴灌装置
CN206350394U (zh) * 2016-12-13 2017-07-25 云南省昆明农业气象试验站 一种基于物联网的农田墒情监测及灌溉控制装置
CN106942019B (zh) * 2017-02-14 2021-03-19 北京建筑大学 基于自净式雨水桶的绿地浇灌装置、系统及方法
CN206641126U (zh) * 2017-03-16 2017-11-17 韩春晖 一种农业物联网自动灌溉系统
US10757873B2 (en) * 2017-04-24 2020-09-01 Rain Bird Corporation Sensor-based interruption of an irrigation controller
CN107135916A (zh) * 2017-05-12 2017-09-08 刘萍萍 一种远程精准灌溉施肥系统
CN207040436U (zh) * 2017-06-28 2018-02-27 中景汇设计集团有限公司 一种景观园林智能喷洒控制系统
US11503782B2 (en) * 2018-04-11 2022-11-22 Rain Bird Corporation Smart drip irrigation emitter

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013021945A (ja) * 2011-07-19 2013-02-04 Chuo Green System:Kk 噴霧システム
RU2567521C1 (ru) * 2014-05-13 2015-11-10 Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский институт гидротехники и мелиорации имени А.Н. Костякова" (ФГБНУ "ВНИИГиМ им. А.Н. Костякова") Оросительная сеть для регулирования фитоклимата поля
CN106550854A (zh) * 2015-09-25 2017-04-05 苏州宝时得电动工具有限公司 灌溉系统
WO2018038916A1 (en) * 2016-08-24 2018-03-01 Trimble Inc. Center pivot irrigation system with variable application of water under the corner arm
RU2629233C1 (ru) * 2016-11-28 2017-08-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный аграрный университет имени Н.И. Вавилова" Электрифицированная многосекционная дождевальная машина кругового действия
CN207219641U (zh) * 2017-05-11 2018-04-13 河北金硕管业有限公司 一种用于微喷灌的管道
CN207185484U (zh) * 2017-08-09 2018-04-06 浙江裕丰园林建设有限公司 一种农业灌溉系统
CN207340516U (zh) * 2017-08-24 2018-05-11 中国农业科学院农田灌溉研究所 一种水肥一体化的微喷灌溉施肥系统
CN107763302A (zh) * 2017-11-30 2018-03-06 新疆天脉农业智控科技有限公司 一种阀门监测机构及灌溉系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3797581A4

Also Published As

Publication number Publication date
EP3797581A1 (en) 2021-03-31
CN111741677A (zh) 2020-10-02
US20210204495A1 (en) 2021-07-08
EP3797581A4 (en) 2022-02-23

Similar Documents

Publication Publication Date Title
WO2019223711A1 (zh) 浇灌系统及其控制方法,浇灌装置,及输送管
CN109863870B (zh) 一种农业灌溉水利监控系统
CN101692783B (zh) 太阳能光伏驱动及gprs无线通讯监控的大规模节水灌溉网
US8457799B2 (en) Automatic gated pipe actuator
CN202222223U (zh) 太阳能滴灌装置
CN204069961U (zh) 一种大棚灌溉系统
CN105075807A (zh) 基于物联网的智能灌溉系统
CN102388772B (zh) 太阳能光伏发电系统用于蔬菜大棚控制温湿度的调控装置
CN201004875Y (zh) 一种远程遥控灌溉装置
CN202095371U (zh) 自动喷淋系统
FR3025975A1 (fr) Installation d’arrosage et procede de commande d’arrosage
CN102662379A (zh) 植物墙智能控制系统
CN210008361U (zh) 一种基于物联网的智能灌溉管控系统
CN206389912U (zh) 农田灌溉监控系统
CN205320696U (zh) 一种基于Wifi云服务的智能养花系统
US20200178484A1 (en) Irrigation control system that detects cloud cover from an array of photovoltaic cells and methods for same
CN209861778U (zh) 信息化农业大棚
CN206932878U (zh) 一键式远程控制灌溉系统
CN105532291A (zh) 一种基于Wifi云服务的智能养花系统
CN114811116A (zh) 一种多功能三通智能蝶阀
CN107873332A (zh) 基于物联网的农业育苗培植箱、培植控制系统及控制方法
CN202941233U (zh) 一种基于专家系统的农田自动按需灌溉装置
CN202085561U (zh) 家用花卉自动浇淋器
CN109673234A (zh) 一种智能园林灌溉系统
CN204929882U (zh) 植物养护装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19808471

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019808471

Country of ref document: EP

Effective date: 20201222