WO2019223544A1 - 一种用于肿瘤患者放射治疗精准定位及摆位的系统及方法 - Google Patents
一种用于肿瘤患者放射治疗精准定位及摆位的系统及方法 Download PDFInfo
- Publication number
- WO2019223544A1 WO2019223544A1 PCT/CN2019/086236 CN2019086236W WO2019223544A1 WO 2019223544 A1 WO2019223544 A1 WO 2019223544A1 CN 2019086236 W CN2019086236 W CN 2019086236W WO 2019223544 A1 WO2019223544 A1 WO 2019223544A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- body surface
- surface area
- distribution map
- superficial blood
- positioning
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1048—Monitoring, verifying, controlling systems and methods
- A61N5/1049—Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N2005/1092—Details
- A61N2005/1097—Means for immobilizing the patient
Definitions
- the invention relates to the field of medical equipment, and relates to a system and method for accurate positioning and positioning of radiation therapy for tumor patients.
- Radiotherapy Radiation therapy
- PET-CT multimodal imaging
- MRI magnetic resonance imaging
- SPET-CT magnetic resonance imaging
- PET-MR magnetic resonance imaging
- TPS treatment planning system
- Continuous optimization and updating has made the tumor target area more accurate, the radiation dose calculation more accurate, the tumor control efficacy has been significantly improved, and the radiation-related toxic reactions have been reduced to varying degrees, thereby further consolidating the status of radiation therapy.
- the scope has been further expanded.
- the improvement of the irradiation target area and the technical precision have put forward higher requirements on the accuracy of the patient in the positioning and positioning links.
- Clinical practice shows that if the positioning and positioning accuracy of radiotherapy is poor, it will not only reduce the benefits of irradiation target area and improve the technical accuracy, but also directly affect the curative effect of radiotherapy. Therefore, improving the accuracy of radiotherapy positioning and positioning is as important as improving the target area and technical accuracy.
- the involuntary movement that may occur during the treatment of a patient can be monitored in real time, it will help to improve the treatment plan (ie, adaptive radiotherapy) in a timely manner, and better ensure the treatment efficacy and quality of life of the patient.
- the traditional positioning and positioning technology based on the body surface auxiliary line method (“ten" line) has been used for nearly a century. Although it is simple and easy to implement, it obviously cannot meet the position accuracy requirements of modern precision radiotherapy. There are many limitations. Including: (1) the marker line is greatly affected by the patient's skin deformation, especially in elderly and obese patients; (2) the fountain pen used as a positioning marker, there is currently no specific unified standard, and staff of various medical units even The marker lines drawn by the same radiotherapy technician each time are of different thickness, depth and variability. (3) It is not conducive to detecting and correcting the rotational deviation of the patient's position, especially when the line is short and thick.
- the epidermal marking line is easy to fade and blur, and the marking line is deformed, thickened, and mixed after the addition of color, and it is difficult to identify;
- the current model does not have the function of real-time position detection during treatment, so it is impossible to make real-time judgments about the uncomfort or self-subjective changes of patients during the treatment process, which constitutes one of the factors affecting the risk of radiotherapy efficacy.
- the current treatment placement process is mainly performed by the therapist alone, and there is no effective real-time record monitoring and placement review tracking analysis mechanism, so there is a deviation in the placement caused by human factors, especially in the case of late shift treatment. Easy to happen. Therefore, new mechanisms and processes are urgently needed to prevent and eradicate such human errors.
- the present invention provides a system and method for precise positioning and positioning of radiation therapy for tumor patients.
- a system for precise positioning and positioning of radiation therapy for a tumor patient includes an imaging device, a positioning bed or a treatment bed, and an image processing system.
- the imaging device is used for positioning the bed or The patient's body surface area on the treatment bed projects and receives light signals and converts the light signals into electrical signals.
- the image processing system performs image reconstruction and image matching processing on the received electrical signals and moves the positioning bed or treatment according to the matching results.
- the image processing system includes an image reconstruction unit for image reconstruction of the electrical signal to determine a distribution map of superficial blood vessels in the body surface area, wherein the distribution map of superficial blood vessels in the body surface area Including the distribution map of superficial blood vessels in the reference body surface area, the distribution map of superficial blood vessels in the body surface before correction, and the distribution map of the superficial blood vessels in the body surface area after correction;
- the image processing system includes an image matching unit, which is used by The distribution map of superficial blood vessels in the reference body surface area and the superficial blood vessels in the corrected body surface area
- the running distribution map is used to match the anastomosis to obtain the difference between the superficial blood vessel running distribution map of the corrected body surface area and the superficial blood vessel running distribution map of the reference body surface area.
- the image matching unit is used for The position of the positioning bed or the treatment table is moved for correction until the difference between the superficial blood vessel running distribution map of the body surface area and the superficial blood vessel running distribution map of the reference body surface area is within tolerance.
- the error between positioning and positioning can be controlled within the range of difference, such as horizontal deviation ⁇ 3mm, angle deviation ⁇ 5, avoiding the current tumor positioning and positioning methods can not meet the precise radiotherapy position. Requirements for accuracy, repeatability and retrospective.
- the image processing system further includes an infrared attenuation calculation unit, which is configured to analyze and compare the electrical signals converted by the optical signals projected and received by the imaging device to form preliminary infrared attenuation information; the image reconstruction unit The preliminary infrared attenuation information is processed to determine the distribution map of superficial blood vessels in the patient's surface area.
- an infrared attenuation calculation unit which is configured to analyze and compare the electrical signals converted by the optical signals projected and received by the imaging device to form preliminary infrared attenuation information
- the image reconstruction unit The preliminary infrared attenuation information is processed to determine the distribution map of superficial blood vessels in the patient's surface area.
- the imaging device includes an emission source that projects infrared light onto the body surface area of the patient, and an infrared reflection receiver for receiving infrared light reflected from the body surface area of the patient.
- the tolerance range is a distribution map of the superficial blood vessels in the reference body surface area and a correction map of the superficial blood vessels in the reference body surface area or a superficial blood vessel distribution map in the reference body surface area and the superficial blood vessels in the corrected body surface area
- the deviation of the running distribution chart in the horizontal direction is less than 3mm, and the angular deviation is less than 5 °.
- the infrared wavelength emitted by the infrared emitting source is between 650 nm and 1100 nm, and preferably, the infrared wavelength is between 730 nm and 740 nm.
- This range of wavelength infrared is most strongly absorbed by the deoxyhemoglobin in the blood, and has the most significant effect on reflected infrared, so the quality of the reconstructed image is better.
- the imaging device further includes an optical projection device.
- the optical projection device projects the distribution map of superficial blood vessels in the body surface area in the form of visible light onto the body surface area of the patient.
- the positioning bed or treatment bed is a six-dimensional bed.
- the superficial blood vessel running distribution map of the reference body surface area and the corrected superficial blood vessel running distribution map of the front body surface area can be quickly and automatically matched.
- the imaging device is fixed in the room through a bracket, and the bracket has a ruler.
- the bracket includes a frame assembly or a telescopic rod that can adjust the relative position of the positioning bed or treatment bed and the imaging device in the system.
- a method for applying the system to accurately locate and position radiation therapy for a tumor patient including the following steps: S1, obtaining a reference body surface area of a tumor body surface area and a superficial blood vessel running distribution map; S2, obtaining a body surface area where a tumor is located S3, the distribution map of the superficial blood vessels in the surface area of the corrected precursor surface; S3, match the degree of matching between the distribution map of the superficial blood vessels in the reference body surface area and the distribution of the superficial blood vessels in the reference body surface area through the image matching unit to obtain the two And determine whether the difference is within the tolerance range. If not, calculate the direction and data required for the treatment bed or positioning bed; S4. After the calibration is completed, refer to S1 again to collect the corrected body surface area.
- the superficial blood vessel running distribution map is matched with the superficial blood vessel running distribution map of the reference body surface area to obtain the degree of difference. If the degree of difference is within the tolerance range, the patient is subjected to radiation therapy. Otherwise, the aforementioned S1-S3 process needs to be repeated. Until the difference is within tolerance. S5.
- the distribution map of the superficial blood vessels in the corrected body surface area is collected every 5-30 seconds and matched with the superficial blood vessel movement in the reference body surface area to obtain the degree of difference, and the patient's position status is monitored in real time. If the degree of difference exceeds the preset latitude range, the treatment will be stopped immediately and corrected with reference to S3.
- the system provided by the present invention for precise positioning and positioning of radiation therapy for tumor patients has the following advantages: (1) Matching with the patient's own blood vessel distribution map, naturally and without the need to draw a marker line on the body surface, which helps reduce the body surface drawing The line brings psychological pressure to the patient, completely avoids the possibility of ink allergy and the impact on the patient's daily life (such as shower, etc.), which greatly improves the patient's quality of life. (2) The superficial vein is under the skin and has better stability than the epidermis, and is less deformed by skin pulling and folds.
- the matching object is the superficial blood vessel distribution pattern of the corresponding part of the radiotherapy ("superficial blood vessel distribution map of the body surface area"), which includes a wealth of information such as length, thickness, interval, and angle, which is more traditional than the "ten" Marker alignment is more accurate.
- Automatic matching and position offset correction greatly reduce the errors caused by human factors of radiotherapy technicians, ensure the accuracy of treatment, and prevent medical accidents; at the same time, help reduce the alignment between different radiotherapy technicians The difference from before correction helps to stabilize the quality of treatment.
- It can monitor and store the position matching information in real time during the treatment, display the patient's displacement deviation, and ensure the high degree of position accuracy.
- FIG. 1 is a schematic diagram of a positioning and positioning system according to a preferred embodiment of the present invention
- FIG. 2 shows the indoor position of an image device according to a preferred embodiment of the present invention
- FIG. 3 illustrates the indoor position of an image device according to another preferred embodiment of the present invention
- FIG. 4 illustrates a position of an image device in another embodiment of the present invention in a room
- FIG. 5 shows a working condition diagram of a preferred embodiment provided by the invention.
- the present invention provides a system for precise positioning and positioning of radiation therapy for tumor patients, as shown in FIGS. 1-2, including an imaging device 1, a positioning bed 2 (or treatment bed), and a computer 3, wherein the imaging device 1 is mounted on a wall facing the positioning bed 2 through a metal bracket 11 to project and receive a light signal to a body surface area of the patient located on the positioning bed 2.
- the image device 1 is communicatively connected with the computer 3 to perform information interaction.
- the metal bracket 11 can be angled downward to meet the needs of the imaging device 1 to project infrared and visible light on the patient's body surface area on the positioning bed 2. The angle of the angle can be measured and recorded.
- the imaging device 1 includes an infrared emission source 12, an infrared reflection receiver 13, and an optical projection device 14.
- the infrared emitting source 12 is used to project infrared rays with an infrared wavelength between 650 nm and 1100 nm to a body surface area of a patient lying on the positioning bed 2 (in this embodiment, an area of about 50 cm ⁇ 50 cm in the abdomen).
- the deoxyhemoglobin in the patient's blood is absorbed and reflected to the infrared reflection receiver 13 to form an optical signal.
- the optical signal is converted into an electrical signal by a photoelectric converter in the infrared reflection receiver 13 and transmitted to an image processing system in the computer 3 for image reconstruction to obtain a running distribution map of the superficial blood vessels in the body surface area of the patient's tumor (i.e. Locate the blood vessel fingerprint 31), display it directly on the monitor of the computer 3, and project it in the form of visible light through the optical projection device 14 to the body surface area where the patient's tumor is located.
- the image processing system includes an infrared attenuation calculation unit and an image reconstruction unit.
- the infrared attenuation calculation unit is responsible for analyzing and comparing the projected infrared rays and the received reflected infrared rays to form preliminary infrared attenuation information.
- the image reconstruction unit combines the preliminary infrared attenuation information with background noise and coordinate matrix to reconstruct the image. Identify the vascular fingerprint of the infrared scan site.
- the above data information is recorded in the computer chip for offline or later quality control and data analysis.
- the system for precise positioning and positioning of radiation therapy for tumor patients has a reference mode, a pre-correction mode (that is, a post-correction mode), and a post-correction mode.
- the positioning bed 2 In the reference mode, the positioning bed 2 is set at a reference position, and a reference blood vessel fingerprint 311 can be obtained through the system, as shown in FIG. 5.
- the pre-correction mode the positioning bed 2 is set at a pre-correction position, and the pre-correction blood vessel fingerprint 312 can be obtained through the system, see FIG. 5.
- the corrected mode the positioning bed 2 is moved to a corrected position, and a corrected blood vessel fingerprint 313 can be obtained through the system.
- the image processing system further includes an image matching unit, which analyzes the size, shape, and position of the reference blood vessel fingerprint 311 and the pre-corrected blood vessel fingerprint 312 and performs a matching calculation to obtain a degree of difference between the two. .
- the tolerance range is ⁇ 3mm in the horizontal direction and ⁇ 5 ° in the angular deviation. If the difference is within the tolerance range, it means that the positions are basically consistent, and subsequent treatment can be performed. If the difference is outside the tolerance range (for example: horizontal deviation> 3mm, angular deviation> 5 °), it means position deviation, which needs to be corrected.
- the image matching unit calculates the direction and data required for positioning the bed 2 when the blood vessel fingerprint 312 before calibration is consistent with the reference blood vessel fingerprint 311, and displays it on the monitor of the computer 3. Accordingly, the positioning bed 2 is moved. After that, the corrected blood vessel fingerprint 313 is acquired again and matched with the reference blood vessel fingerprint 311 again until the deviation is within the tolerance range.
- the imaging device 1 is vertically installed on the ceiling of the positioning bed 2 through a retractable rod 4, and the imaging device 1 is fixed to the head 41 of the retractable rod.
- the telescopic rod 4 can be pulled down or pushed up as needed to adjust the size and range of the projection area. The amplitude of the pull-down or push-up can be measured and recorded.
- the image device 1 is fixed by a frame assembly 5.
- the frame assembly 5 includes a slide rail 51, a moving frame arm 52, an upper frame 53, and a sliding bracket 54.
- the upper frame 53 and the slide rail 51 are connected by a moving frame arm 52, and the image device 1 is fixed on the upper frame 53 by a sliding bracket 54.
- the imaging device 1 is moved on the upper frame 53 by the sliding bracket 54, and the synchronous movement of the upper frame 53 and the imaging device 1 is achieved by the movement of the moving frame arm 52 on the slide rail 51 to adapt to the positioning on the positioning bed 2.
- a method for accurately positioning and positioning the radiation therapy of a tumor patient using the system includes the following steps:
- the patient lies supine or prone on the positioning bed 2 (in this embodiment, the patient is positioned supine).
- the infrared emission source 12 of the imaging device 1 is turned on, and infrared rays with a wavelength of 730nm-740nm are projected on the body surface area of the patient's tumor.
- This range of wavelength infrared rays is most capable of being absorbed by the deoxyhemoglobin in the blood. The effect on the reflected infrared is the most obvious, so the reconstructed imaging quality is better.
- a 30cm ⁇ 40cm infrared irradiation area is projected on the chest and abdomen of the patient, and this area is the body surface area where the tumor is located.
- the infrared rays are absorbed by the deoxyhemoglobin in the blood in the region where the tumor is located, and reflected to the infrared reflection receiver 13.
- the reference blood vessel fingerprint 311 After the infrared reflection line passes through the infrared attenuation calculation unit and the image reconstruction unit, the reference blood vessel fingerprint 311 of the body surface area where the tumor is located.
- the reference blood vessel fingerprint 311 is displayed on the monitor of the computer 3 and is projected on the body surface area where the tumor of the patient is located by the optical projection device 14.
- the patient's personalized reference blood vessel fingerprint 311 is stored in the radiotherapy network system for subsequent position matching before correction.
- S3 Analyze the size, shape, and position of the reference blood vessel fingerprint 311 and the pre-corrected blood vessel fingerprint 312 through the image matching unit, and calculate the matching degree to obtain the difference between the two, and determine whether the difference is within the tolerance range. If not, the direction and data required to move the positioning bed 2 are calculated. Specifically, in this embodiment, referring to FIG. 5, a deviation of 15 ° occurs between the positions of the reference blood vessel fingerprint 311 and the blood vessel fingerprint 312 before correction, and the height of the positioning bed 2 is too low. The degree of difference is not within tolerance, and is calculated by the image position deviation algorithm. After (1) rotation, (2) raising the bed, (3) matching, and (4) exact matching, the patient's position is corrected to make the correction. The degree of difference between the posterior blood vessel fingerprint 313 and the reference blood vessel fingerprint 311 is within a tolerance range.
- the pre-correction vascular fingerprint 312 is collected every 5-30 seconds, and the degree of difference calculation is performed with the reference vascular fingerprint 311 to monitor the patient's position in real time. If the difference exceeds the preset tolerance range, then Immediately stop the treatment and refer to S3 for correction to further ensure the safety and accuracy of the treatment.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Radiation-Therapy Devices (AREA)
Abstract
一种用于肿瘤患者放射治疗精准定位及摆位的系统及应用该系统进行肿瘤患者放射治疗精准定位和摆位的方法。系统包括影像装置(1)、定位床(2)或治疗床、影像处理系统,影像装置(1)用于对定位床(2)或治疗床上的患者的体表区域投射和接收光信号并将该光信号转化为电信号,影像处理系统对接受到的电信号进行图像重建和图像匹配等处理并根据匹配的结果移动定位床(2)或治疗床的位置。避免了现行肿瘤定位及摆位方法不能满足精确放疗对位置精准度、可重复性和可回顾性的要求。
Description
本发明涉及医疗设备领域,涉及一种用于肿瘤患者放射治疗精准定位及摆位的系统及方法。
放射治疗(下简称“放疗”)是恶性肿瘤治疗的主要手段之一。随着放疗相关硬件和软件的发展,特别是放疗中多模态影像(PET-CT、MRI、SPET-CT、PET-MR等)融合技术引入和治疗计划系统(下简称“TPS”)算法的不断优化更新,使得肿瘤靶区勾画更加精准,放疗剂量计算更加精确,肿瘤的控制疗效显著提高,而与放疗相关的毒性反应则不同程度的降低,从而使得放疗的地位进一步得到巩固,适应症的范围得到进一步扩展。
照射靶区和技术精度的提高,对患者在定位和摆位环节的精准度提出了更高的要求。临床实践表明,如果放疗中定位及治疗摆位精准性差,不但降低照射靶区和技术精度提高所带来的好处,而且直接影响放疗疗效。因此提高放疗定位和摆位的精准性,与照射靶区和技术精度的提高意义同等重要。此外,如果能够实时监控患者治疗过程中可能出现的不自主运动,则有助于及时改进治疗方案(即适应性放疗),更好的保证治疗疗效和患者的生活质量。
除了极少数皮肤肿瘤直视可见外,绝大多数肿瘤位于体内较深区域,无法直视可见。为了准确的定位和摆位,通常在CT影像的引导下,在激光灯的辅助下在患者体表的正前方(0°和两侧方90°、-90°)用油性不易褪色墨水画三个“十”形标记线,根据三点共面、垂直相交的原理确定肿瘤治疗的中心层面。后续的治疗则以三个“十”字线为对位参考坐标。坐标对好,则默认为体内肿瘤位置对准。
这种方式在头颈部肿瘤患者中比较可靠。这些患者通常采用热塑形头颈面罩模具固定,标记线位于模具上,受患者皮肤牵拉、皱褶及挤压等形变影响较小,故而可以获得较好的位置精度(通常位置偏差≤3毫米)。但在体部 肿瘤,包括胸、腹、盆腔部位以及四肢肿瘤的定位中,基于“十”字线的定位和摆位方式可靠性相对较差,而这些部位的肿瘤患者构成了放疗患者的80%左右,包括常见的乳腺癌、肺癌、食管癌、胃癌、肝癌、胰腺癌、大肠癌、宫颈癌、前列腺癌等。如定位“十”字标记线多勾画在患者体表皮肤上,受患者皮肤变形影响较大,尤其在老年及肥胖患者身上表现尤为明显,有时治疗摆位偏差甚至高达10毫米。
基于体表辅助线方法(“十”线)的传统定位和摆位技术已经沿用近一个世纪,虽然简便易行,但显然不能满足现代精确放疗对位置精准度的要求,其存在诸多局限性,包括:(1)标记线受患者皮肤变形影响较大,尤其在老年及肥胖患者身上表现尤为明显;(2)用作定位标记的水笔,目前没有一个具体统一的标准,各医疗单位工作人员甚至同一放疗技术人员每次勾画出的标记线粗细、深浅、曲直不一。(3)不利于发现和纠正患者位置存在的旋转偏移,特别是当线条较短粗时。(4)受患者皮肤出汗、油脂、衣服摩擦等因素影响,表皮标记线易褪色模糊,补加色后标记线变形、变粗、混杂难以辨认;(5)部分患者对于体表标记线的油墨存在不同程度的过敏,增加了患者医疗成本及心理负担,甚至影响治疗的进度。(6)现行的模式不具备治疗中实时位置检测的功能,因而对于患者在治疗过程中出现的不自在或自主体为变动不能做出实时判断,构成了影响放疗疗效风险的因素之一。(7)目前的治疗摆位过程主要由治疗师单独进行,缺乏有效的实时记录监督和摆位回顾跟踪分析机制,因而存在人为因素导致的摆位偏差,这种情况尤其在晚班治疗时更易于发生。因此急需建立新的机制和流程来防止和杜绝这类人为错误。
发明内容
为避免现行肿瘤定位及摆位方法不能满足精确放疗对位置精准度、可重复性和可回顾性的要求,本发明提供一种用于肿瘤患者放射治疗精准定位及摆位的系统及方法。
根据本发明提供的一种用于肿瘤患者放射治疗精准定位及摆位的系统,其特征在于,该系统包括影像装置、定位床或治疗床和影像处理系统,该影像装置用于对定位床或治疗床上的患者的体表区域投射和接收光信号并将该 光信号转化为电信号,该影像处理系统对接受到的该电信号进行影像重建和影像匹配处理并根据匹配的结果移动定位床或治疗床的位置;该影像处理系统包括影像重建单元,该影像重建单元用于将该电信号进行影像重建以确定体表区域浅表血管走行分布图,其中,该体表区域浅表血管走行分布图包括基准体表区域浅表血管走行分布图、校正前体表区域浅表血管走行分布图和校正后体表区域浅表血管走行分布图;该影像处理系统包括影像匹配单元,该影像匹配单元用于将该基准体表区域浅表血管走行分布图与校正前体表区域浅表血管走行分布图进行吻合度匹配,获得校正前体表区域浅表血管走行分布图与基准体表区域浅表血管走行分布图的差异度,如果该差异度超出宽容度范围,该影像匹配单元用于移动定位床或治疗床的位置以进行校正,直至使得校正后体表区域浅表血管走行分布图与基准体表区域浅表血管走行分布图的差异度在宽容度范围内。
采用该系统进行定位校正,可使得摆位与定位时的误差控制在差异度范围内,例如水平方向偏差≤3mm,角度偏差≤5,避免了现行肿瘤定位及摆位方法不能满足精确放疗对位置精准度、可重复性和可回顾性的要求。
优选的,该影像处理系统还包括红外线衰减计算单元,该红外线衰减计算单元用于对影像装置投射和接收的光信号转化的的电信号进行分析和对比,形成初步红外线衰减信息;该影像重建单元对初步红外线衰减信息,进行处理,确定患者的体表区域浅表血管走行分布图。
优选的,该影像装置包括向患者的体表区域投射红外线的发射源、用于接收患者的体表区域反射的红外线的红外线反射接收器。
优选的,该宽容度范围为基准体表区域浅表血管走行分布图与校正前体表区域浅表血管走行分布图或基准体表区域浅表血管走行分布图与校正后体表区域浅表血管走行分布图在水平方向上偏差小于3mm,角度偏差小于5°。
优选的,该红外线发射源发射的红外线波长介于介于650nm-1100nm,优选的,该红外线波长介于730nm-740nm。此范围波长红外线被血液中的脱氧血红蛋白吸收的能力最强,对反射红外线的影响最为明显,故重建的成像质量更好。
优选的,该影像装置还包括光学投影装置。该光学投影装置将体表区域 浅表血管走行分布图以可见光的形式投射到患者的体表区域。
优选的,该定位床或治疗床是六维床。使基准体表区域浅表血管走行分布图和校正前体表区域浅表血管走行分布图实现快速化、自动化匹配。
优选的,该影像装置通过支架固定于室内,该支架具有标尺。
优选的,该支架包括可调节该系统内定位床或治疗床和影像装置相对位置的框架组件或伸缩杆。
一种应用该系统进行肿瘤患者放射治疗精准定位和摆位的方法,包括以下步骤:S1,获取肿瘤所在体表区域的基准体表区域浅表血管走行分布图;S2,获取肿瘤所在体表区域的校正前体表区域浅表血管走行分布图;S3,通过影像匹配单元将基准体表区域浅表血管走行分布图和校正前体表区域浅表血管走行分布图进行吻合度匹配,获得两者的差异度,并判断该差异度是否在宽容度范围内,若不在则计算出治疗床或定位床所需移动的方向和数据;S4,待校正完成后,再次参照S1采集校正后体表区域浅表血管走行分布图与基准体表区域浅表血管走行分布图进行匹配,获得差异度,若差异度在宽容度范围内,则对患者进行放射治疗,否则,需重复前述S1-S3过程,直至差异度在宽容度范围内。S5,在治疗过程中,每5-30秒钟采集一次校正前体表区域浅表血管走行分布图,并与基准体表区域浅表血管走行分布图匹配获得差异度,实时监控患者的位置状态,如差异度超过预设宽容度范围,则即时停止治疗,参照S3进行校正。
本发明提供的一种用于肿瘤患者放射治疗精准定位及摆位的系统具有以下优点(1)利用患者自身血管分布图进行匹配,自然且无需体表勾画标记线,有助于降低体表画线带给患者的心理压力,完全避免油墨过敏的可能性和对患者日常生活(如淋浴等)的影响,极大改善了患者的生活质量。(2)浅静脉处于皮下,相比表皮具有更好的稳定性,受皮肤牵拉、褶皱等变形程度小。(3)匹配对象为放疗相应部位的浅表血管分布模式(“体表区域浅表血管走行分布图”),包括长短、粗细、间隔、夹角等丰富信息量,较传统的“十”字标记线对位精准度更高。(4)自动匹配和位置偏移校正,极大地降低了放疗技术人员人为因素带来的误差,保证治疗的精确度,预防医疗事故的发生;同时有助于降低不同放疗技术人员之间对位和校正前的差异,有助于治疗质量 的稳定性。(5)治疗全程可实时监测、存储位置匹配信息,显示患者位移偏差,位置精度保证程度高。(6)可离线回顾、跟踪分析每位患者的每次校正前匹配数据,预测患者放疗副反应和治疗效果。(7)结合最新放疗“六维床”技术,匹配过程可快速化、自动化。(8)医生可以离线分析和评估放疗技术人员的校正前准确性,特别是在晚班治疗时,进而掌握患者的治疗安全性。(9)对于发生了放疗相关毒副反应的患者,医生可以回顾性的分析患者治疗时的位置数据,排除或明确校正前因素在其中的可能影响。
图1为本发明提供的一个优选实施例的定位摆位系统示意图;
图2示出了本发明提供的一个优选实施例的影像装置在室内的位置;
图3示出了本发明提供的另一优选实施例的影像装置在室内的位置;
图4示出了本发明提供的又一优选实施例的影像装置在室内的位置;
图5示出了发明提供的一个优选实施例的工况示意图。
下面将结合本发明的具体实施方式,对本发明的技术方案进行详细的说明,但如下实施例仅是用以理解本发明,而不能限制本发明,本发明中的实施例及实施例中的特征可以相互组合,本发明可以由权利要求限定和覆盖的多种不同方式实施。
本发明提供一种用于肿瘤患者放射治疗精准定位及摆位的系统,如图1-图2所示,包括影像装置1、定位床2(或治疗床)和计算机3,其中,该影像装置1通过金属支架11安装于正对定位床2的墙面上,以向位于定位床2上的患者的体表区域投射和接收光信号。该影像装置1与计算机3通信连接,进行信息交互。该金属支架11可向下成角,以适应影像装置1在定位床2上的患者的体表区域投射红外线和可见光的需要,成角的角度可测量,可记录。
该影像装置1包括红外线的发射源12、红外线反射接收器13和光学投影装置14。其中,该红外线发射源12用于向平躺在定位床2上的患者的体表区域(在本实施例中为腹部约50cm×50cm的区域)投射红外线波长在650nm 至1100nm的红外线,该红外线被患者血液中的脱氧血红蛋白部分吸收后反射至红外线反射接收器13,形成光信号。该光信号经红外线反射接收器13中的光电转换器转换成电信号,并传输至计算机3中的影像处理系统进行图像的重建,获得患者肿瘤所在体表区域浅表血管的走行分布图(即定位血管指纹31),在计算机3的监视器上直接显示,并且经由光学投影装置14以可见光的形式投射到患者肿瘤所在体表区域。
具体地,该影像处理系统包含由红外线衰减计算单元和影像重建单元。该红外线衰减计算单元负责对投射的红外线和接收到的反射红外线进行分析和比对处理,形成初步红外线衰减信息;该影像重建单元将初步红外线衰减信息,结合背景噪音及坐标矩阵等进行影像重建,确定红外线扫描部位的血管指纹。上述数据信息记录于计算机芯片内,以备离线或后期质控和数据分析。
本发明提供的用于肿瘤患者放射治疗精准定位及摆位的系统具有基准模式、校正前模式(即摆位模式)和校正后模式。在基准模式下,定位床2被设置于一基准位置,通过该系统可获得基准血管指纹311,参见图5。在校正前模式下,定位床2被设置于一校正前位置,通过该系统可获得校正前血管指纹312,参见图5。在校正后模式下,定位床2被移动至一校正后位置,通过该系统可获得校正后血管指纹313。
进一步地,该影像处理系统还包含影像匹配单元,该影像匹配单元将基准血管指纹311和校正前血管指纹312的大小、形状、位置进行分析并进行吻合度的匹配计算,获得两者的差异度。设置系统宽容度范围,例如,在本实施例中宽容度范围为水平方向偏差≤3mm,角度偏差≤5°。若差异度在宽容度范围内,则表示位置基本吻合,可进行后续的治疗。若差异度超出宽容度范围(如:水平方向偏差>3mm,角度偏差>5°),则表示位置偏差,需进行校正。
该影像匹配单元计算出使校正前血管指纹312与基准血管指纹311一致时,定位床2所需移动的方向和数据并显示在计算机3的监视器上。据此移动定位床2。此后,再获取一次校正后血管指纹313,并再次与基准血管指纹311进行匹配直至偏差在宽容度范围内。
在另一实施例中,如图3所示,影像装置1通过可伸缩杆4垂直安装于定位床2的天花板上,影像装置1固定于伸缩杆头部41。根据需要可下拉或上推伸缩杆4,以调整投射区域的大小和范围。下拉或上推的幅度可测量,可记录。
在又一实施例中,如图4所示,影像装置1通过框架组件5安装固定,该框架组件5包括:滑轨51、移动框架臂52、上方框架53和滑行支架54。其中,上方框架53和滑轨51间通过移动框架臂52连接,影像装置1通过滑行支架54固定于上方框架53上。如此,通过滑行支架54使影像装置1在上方框架53上移动,通过移动框架臂52在滑轨51上的移动,实现上方框架53及影像装置1的同步运动,以适应在定位床2上的患者的不同体表区域投射红外线的需要。
实施例1
根据本发明还提供一种应用该系统进行肿瘤患者放射治疗精准定位和摆位的方法包括以下步骤:
S1,获取肿瘤所在区域的基准血管指纹311。具体地,参见图1,根据肿瘤部位,患者仰卧或俯卧于定位床2上(本实施例所示为患者仰卧位定位)。对患者身体予以适当固定后,开启影像装置1的红外线发射源12,向患者肿瘤所在体表区域投射波长在730nm-740nm的红外线,此范围波长红外线被血液中的脱氧血红蛋白吸收的能力最强,对反射红外线的影响最为明显,故重建的成像质量更好。在患者的胸腹部投射一个30cm×40cm的红外线照射区,此区即为肿瘤所在体表区域。红外线被肿瘤所在区域的血液中的脱氧血红蛋白部分吸收后反射至红外线反射接收器13。红外反射线经红外线衰减计算单元和影像重建单元后,肿瘤所在体表区域的基准血管指纹311。该基准血管指纹311显示于计算机3的监视器,并通过光学投影装置14投射于患者肿瘤所在的体表区域。该患者的个体化基准血管指纹311储存于放疗网络系统,用于后续的校正前位置匹配。
S2,获取肿瘤所在区域的校正前血管指纹312。具体地,参见定位时的要求再次固定好患者(本实施例为患者仰卧位定位)。参照S1获得患者的校正前 血管指纹312。
S3,通过影像匹配单元将基准血管指纹311和校正前血管指纹312的大小、形状、位置进行分析并进行吻合度的匹配计算,获得两者的差异度,并判断该差异度是否在宽容度范围内,若不在则计算出定位床2所需移动的方向和数据。具体地,在本实施例中,参见图5,基准血管指纹311和校正前血管指纹312的位置出现15°偏差且定位床2的高度过低。该差异度不在宽容度内,通过影像位置位移偏差算法计算,经过(1)旋转、(2)升高床位、(3)匹配和(4)精确匹配后,对患者的位置予以校正,使校正后血管指纹313与基准血管指纹311的差异度在宽容度范围内。
S4,待校正完成后,再次参照S1采集校正后血管指纹313与基准血管指纹311进行匹配,获得差异度,若差异度在宽容度内,则可进行后续治疗;否则,需重复前述S1-S3过程,直至差异度在宽容度内。
S5,在治疗过程中,每5-30秒钟采集一次校正前血管指纹312,并与基准血管指纹311进行差异度计算,实时监控患者的位置状态,如差异度超过预设宽容度范围,则即时停止治疗,参照S3进行校正,进一步保证治疗的安全和精确。
以上所述的,仅为本发明的较佳实施例,并非用以限定本发明的范围,本发明的上述实施例还可以做出各种变化。即凡是依据本发明的权利要求书及说明书内容所作的简单、等效变化与修饰,皆落入本发明的权利要求保护范围。本发明未详尽描述的均为常规技术内容。
Claims (10)
- 一种用于肿瘤患者放射治疗精准定位及摆位的系统,其特征在于,该系统包括影像装置、定位床或治疗床和影像处理系统,所述影像装置用于对定位床或治疗床上的患者的体表区域投射和接收光信号并将该光信号转化为电信号,所述影像处理系统对接受到的该电信号进行影像重建和影像匹配处理并根据匹配的结果移动定位床或治疗床的位置;所述影像处理系统包括影像重建单元,所述影像重建单元用于将所述电信号进行影像重建以确定体表区域浅表血管走行分布图,其中,该体表区域浅表血管走行分布图包括基准体表区域浅表血管走行分布图、校正前体表区域浅表血管走行分布图和校正后体表区域浅表血管走行分布图;所述影像处理系统包括影像匹配单元,所述影像匹配单元用于将所述基准体表区域浅表血管走行分布图与校正前体表区域浅表血管走行分布图进行吻合度匹配,获得校正前体表区域浅表血管走行分布图与基准体表区域浅表血管走行分布图的差异度,如果该差异度超出宽容度范围,该影像匹配单元用于移动定位床或治疗床的位置以进行校正,直至使得校正后体表区域浅表血管走行分布图与基准体表区域浅表血管走行分布图的差异度在宽容度范围内。
- 根据权利要求1所述的系统,其特征在于,所述影像处理系统还包括红外线衰减计算单元,所述红外线衰减计算单元用于对影像装置投射和接收的光信号转化的的电信号进行分析和对比,形成初步红外线衰减信息;该影像重建单元对初步红外线衰减信息,进行处理,确定患者的体表区域浅表血管走行分布图。
- 根据权利要求1所述的系统,其特征在于,所述影像装置包括向患者的体表区域投射红外线的发射源、用于接收患者的体表区域反射的红外线的红外线反射接收器。
- 根据权利要求1所述的系统,其特征在于,所述宽容度范围为基准体表区域浅表血管走行分布图与校正前体表区域浅表血管走行分布图或基准体表区域浅表血管走行分布图与校正后体表区域浅表血管走行分布图在水平方 向上偏差小于3mm,角度偏差小于5°。
- 根据权利要求3所述的系统,其特征在于,所述红外线发射源发射的红外线波长介于650nm-1100nm。
- 根据权利要求1所述的系统,其特征在于,所述影像装置还包括光学投影装置。
- 根据权利要求1所述的系统,其特征在于,所述定位床或治疗床是六维床。
- 根据权利要求1所述的系统,其特征在于,所述影像装置通过支架固定于室内,所述支架具有标尺。
- 根据权利要求8所述的系统,其特征在于,所述支架包括可调节该系统内定位床或治疗床和影像装置相对位置的框架组件或伸缩杆。
- 一种应用该系统进行肿瘤患者放射治疗精准定位和摆位的方法,包括以下步骤:S1,获取肿瘤所在体表区域的基准体表区域浅表血管走行分布图;S2,获取肿瘤所在体表区域的校正前体表区域浅表血管走行分布图;S3,通过影像匹配单元将基准体表区域浅表血管走行分布图和校正前体表区域浅表血管走行分布图进行吻合度匹配,获得两者的差异度,并判断该差异度是否在宽容度范围内,若不在则计算出定位床或治疗床所需移动的方向和数据;S4,待校正完成后,再次参照S1采集校正后体表区域浅表血管走行分布图与基准体表区域浅表血管走行分布图进行匹配,获得差异度,若差异度在宽容度范围内,则对患者进行放射治疗,否则,需重复前述S1-S3过程,直至差异度在宽容度范围内;S5,在治疗过程中,每5-30秒钟采集一次校正前体表区域浅表血管走行分布图,并与基准体表区域浅表血管走行分布图匹配获得差异度,实时监控患者的位置状态,如差异度超过预设宽容度范围,则即时停止治疗,参照S3进行校正。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810503462.3 | 2018-05-23 | ||
CN201810503462.3A CN108619621B (zh) | 2018-05-23 | 2018-05-23 | 一种用于肿瘤患者放射治疗精准定位及摆位的系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019223544A1 true WO2019223544A1 (zh) | 2019-11-28 |
Family
ID=63690280
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/086236 WO2019223544A1 (zh) | 2018-05-23 | 2019-05-09 | 一种用于肿瘤患者放射治疗精准定位及摆位的系统及方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108619621B (zh) |
WO (1) | WO2019223544A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113521570A (zh) * | 2021-08-18 | 2021-10-22 | 浙江省人民医院 | 一种便于固定患者体位的放射治疗设备 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108619621B (zh) * | 2018-05-23 | 2020-08-21 | 郑向鹏 | 一种用于肿瘤患者放射治疗精准定位及摆位的系统 |
CN109464757B (zh) | 2018-12-29 | 2021-07-20 | 上海联影医疗科技股份有限公司 | 一种确定目标对象位置的方法、系统、装置及存储介质 |
CN109453472B (zh) * | 2018-12-29 | 2021-03-02 | 上海联影医疗科技股份有限公司 | 一种病床系统、放射治疗系统、装置及存储介质 |
CN110227214B (zh) * | 2019-07-12 | 2021-11-30 | 江苏瑞尔医疗科技有限公司 | 一种基于定位标的放射治疗定位方法 |
CN110652660B (zh) * | 2019-09-03 | 2021-06-01 | 华侨大学 | 一种患者摆位检测系统 |
CN110956865B (zh) * | 2019-11-25 | 2022-08-09 | 武汉湾流科技股份有限公司 | 基于虚拟现实技术的放疗模拟训练系统及方法 |
CN112138288A (zh) * | 2020-09-25 | 2020-12-29 | 太和县人民医院 | 一种放射治疗用血管指纹采集系统及其方法 |
CN113181566B (zh) * | 2021-06-04 | 2023-05-16 | 上海市肺科医院 | 一种用于加速器激光灯、obi精度检测的质控模体 |
CN115040238B (zh) * | 2022-08-15 | 2022-11-15 | 南昌大学第二附属医院 | 体表皮损区域激光定位设备的控制方法及激光定位设备 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102811769A (zh) * | 2009-12-07 | 2012-12-05 | C-Rad定位公司 | 具有视觉反馈的对象定位 |
EP2837332A2 (en) * | 2013-08-13 | 2015-02-18 | Samsung Electronics Co., Ltd. | Apparatus for capturing medical image and method of adjusting table thereof |
CN106422088A (zh) * | 2015-08-11 | 2017-02-22 | 株式会社东芝 | 辐射治疗装置和辐射治疗方法 |
CN206950155U (zh) * | 2017-02-06 | 2018-02-02 | 义乌工商职业技术学院 | 一种便携式静脉血管成像反馈定位投影仪 |
CN108619621A (zh) * | 2018-05-23 | 2018-10-09 | 郑向鹏 | 一种用于肿瘤患者放射治疗精准定位及摆位的系统及方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1686052A (zh) * | 2004-12-23 | 2005-10-26 | 中国科学院等离子体物理研究所 | 放射治疗非接触测量胸腹肿瘤位置的方法 |
US8478386B2 (en) * | 2006-01-10 | 2013-07-02 | Accuvein Inc. | Practitioner-mounted micro vein enhancer |
WO2009012577A1 (en) * | 2007-07-20 | 2009-01-29 | Resonant Medical Inc. | Methods and systems for compensating for changes in anatomy of radiotherapy patients |
CN102429644B (zh) * | 2011-12-02 | 2014-04-16 | 执鼎医疗科技江苏有限公司 | 血管影像定位装置 |
CN105142722B (zh) * | 2012-12-28 | 2019-12-13 | 计算机心脏股份有限公司 | 基于血液-组织表面的放射外科肾脏治疗设计 |
CN103491328A (zh) * | 2013-06-26 | 2014-01-01 | 苏州联科盛世科技有限公司 | 带图像校正的静脉投影仪及图像校正方法 |
EP3176753B1 (en) * | 2014-04-10 | 2018-10-24 | Sync-RX, Ltd. | Image analysis in the presence of a medical device |
EP3452988B1 (en) * | 2016-05-04 | 2021-06-23 | Brainlab AG | Patient pre-positioning in frameless cranial radiosurgery using thermal imaging |
CN107358607A (zh) * | 2017-08-13 | 2017-11-17 | 强深智能医疗科技(昆山)有限公司 | 肿瘤放射治疗视觉监测与视觉伺服智能控制方法 |
-
2018
- 2018-05-23 CN CN201810503462.3A patent/CN108619621B/zh active Active
-
2019
- 2019-05-09 WO PCT/CN2019/086236 patent/WO2019223544A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102811769A (zh) * | 2009-12-07 | 2012-12-05 | C-Rad定位公司 | 具有视觉反馈的对象定位 |
EP2837332A2 (en) * | 2013-08-13 | 2015-02-18 | Samsung Electronics Co., Ltd. | Apparatus for capturing medical image and method of adjusting table thereof |
CN106422088A (zh) * | 2015-08-11 | 2017-02-22 | 株式会社东芝 | 辐射治疗装置和辐射治疗方法 |
CN206950155U (zh) * | 2017-02-06 | 2018-02-02 | 义乌工商职业技术学院 | 一种便携式静脉血管成像反馈定位投影仪 |
CN108619621A (zh) * | 2018-05-23 | 2018-10-09 | 郑向鹏 | 一种用于肿瘤患者放射治疗精准定位及摆位的系统及方法 |
Non-Patent Citations (1)
Title |
---|
YUAN, KE ET AL.: "Accuracy of 2D and 3D image auto-registration used in radiotherapy positioning", CHINESE JOURNAL OF CANCER PREVENTION AND TREATMENT, vol. 21, no. 15, 31 August 2014 (2014-08-31), pages 1184 - 1189 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113521570A (zh) * | 2021-08-18 | 2021-10-22 | 浙江省人民医院 | 一种便于固定患者体位的放射治疗设备 |
CN113521570B (zh) * | 2021-08-18 | 2023-09-05 | 浙江省人民医院 | 一种便于固定患者体位的放射治疗设备 |
Also Published As
Publication number | Publication date |
---|---|
CN108619621A (zh) | 2018-10-09 |
CN108619621B (zh) | 2020-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019223544A1 (zh) | 一种用于肿瘤患者放射治疗精准定位及摆位的系统及方法 | |
Bert et al. | Clinical experience with a 3D surface patient setup system for alignment of partial-breast irradiation patients | |
US6937696B1 (en) | Method and system for predictive physiological gating | |
US7853308B2 (en) | System and method for patient positioning for radiotherapy in the presence of respiratory motion | |
US10646188B2 (en) | Method and system for radiation application | |
Jin et al. | Use of the BrainLAB ExacTrac X-Ray 6D system in image-guided radiotherapy | |
Tsunashima et al. | Correlation between the respiratory waveform measured using a respiratory sensor and 3D tumor motion in gated radiotherapy | |
EP2239010B1 (en) | Patient representation in medical machines | |
CN108744310B (zh) | 多模式引导自适应放疗系统 | |
US7869562B2 (en) | Automatic patient positioning system | |
US20030125622A1 (en) | Apparatus and method for compensating for respiratory and patient motion during treatment | |
US20120213333A1 (en) | Adaptive x-ray control | |
JP2002177406A (ja) | 放射線照射システム及びその照射ターゲット動きモニタ方法並びに照射ターゲット定位化方法 | |
CN112089991B (zh) | 一种患者引导摆位及靶区位移实时监测和矫正系统及方法 | |
Via et al. | Optical eye tracking system for real‐time noninvasive tumor localization in external beam radiotherapy | |
JP2008022896A (ja) | 位置決め装置 | |
CN108635025A (zh) | 一种激光穿刺引导系统的操作方法 | |
US10376712B2 (en) | Real-time applicator position monitoring system | |
CN109078270A (zh) | 一种基于放射治疗的辅助红外定位装置及方法 | |
CN108648592A (zh) | 一种激光穿刺引导系统的人体模型训练操作方法 | |
JP4159227B2 (ja) | 患者位置ずれ計測装置、及び、これを用いた患者位置決め装置、並びに放射線治療装置 | |
Spadea et al. | Patient set-up verification by infrared optical localization and body surface sensing in breast radiation therapy | |
Straßmann et al. | Navigation system for interstitial brachytherapy | |
Rasmussen et al. | Technical Overview and Features of the C-RAD Catalyst™ and Sentinel™ Systems | |
Sasaki et al. | Verification of patient‐setup accuracy using a surface imaging system with steep measurement angle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19806695 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21.04.2021) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19806695 Country of ref document: EP Kind code of ref document: A1 |