WO2019223483A1 - 一种信号处理方法和装置 - Google Patents

一种信号处理方法和装置 Download PDF

Info

Publication number
WO2019223483A1
WO2019223483A1 PCT/CN2019/083937 CN2019083937W WO2019223483A1 WO 2019223483 A1 WO2019223483 A1 WO 2019223483A1 CN 2019083937 W CN2019083937 W CN 2019083937W WO 2019223483 A1 WO2019223483 A1 WO 2019223483A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
coefficient
useful
scaling factor
power
Prior art date
Application number
PCT/CN2019/083937
Other languages
English (en)
French (fr)
Inventor
吴昊
李军
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2019223483A1 publication Critical patent/WO2019223483A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03821Inter-carrier interference cancellation [ICI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2669Details of algorithms characterised by the domain of operation
    • H04L27/2672Frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2691Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation involving interference determination or cancellation

Definitions

  • the embodiments of the present application relate to communication technologies, and in particular, to a signal processing method and device.
  • An Orthogonal Frequency Division Multiplexing (OFDM) system is a commonly used communication system.
  • Automatic Gain Control (AGC) modules are widely used in OFDM systems to compensate for fluctuations in the power of the received signal. In this way, the quantization error caused by Analog to Digital Converter (ADC) is the smallest.
  • AGC needs a settling time to adjust the received signal power.
  • the length of the cyclic prefix in the OFDM symbol is generally the same as the length of the channel delay.
  • the cyclic prefix of the first OFDM symbol of the target user contains the signal power of other users. Since the cyclic prefix containing the signal power of other users cannot be used for AGC power measurement, if the cyclic prefix of the first OFDM symbol does not contain the signal power of other users is less than the AGC stabilization time, the AGC module will cause The useful part of the adjustment is adjusted, so that the orthogonality between the carriers is destroyed, and inter-carrier interference is generated.
  • the embodiments of the present application provide a signal processing method and device, which can eliminate inter-carrier interference.
  • An embodiment of the present application provides a signal processing method, including:
  • the signal of the first part is multiplied by a coefficient
  • the first part is a part of the useful part before the power point is adjusted; the second part is a part of the useful part after the power point is adjusted, and the average power of the signals of the second part is The average power of the signal of the first part multiplied by the coefficient is the same.
  • An embodiment of the present application provides a signal processing device, including:
  • a processing module configured to multiply a signal of the first portion by a coefficient when an adjusted power point of the automatic gain control module is in a useful portion of an orthogonal frequency division multiplexing symbol
  • a conversion module configured to convert the signal of the second part and the signal of the first part multiplied by the coefficient to the frequency domain
  • the first part is a part of the useful part before the power point is adjusted; the second part is a part of the useful part after the power point is adjusted, and the average power of the signals of the second part is The average power of the signal of the first part multiplied by the coefficient is the same.
  • An embodiment of the present application provides a signal processing apparatus including a processor and a computer-readable storage medium.
  • the computer-readable storage medium stores instructions. When the instructions are executed by the processor, any one of the foregoing is implemented. Signal processing method.
  • An embodiment of the present application provides a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the steps of any one of the foregoing signal processing methods are implemented.
  • the embodiment of the present application includes: when the adjustment power point of the AGC module is in a useful part of the OFDM symbol, multiplying the signal of the first part by a coefficient; converting the signal of the second part and the signal of the first part after multiplying the coefficient to Frequency domain; wherein the first part is a part of the useful part before adjusting the power point; the second part is a part of the useful part after adjusting the power point, and the signal of the second part is The average power is the same as the average power of the signal of the first part multiplied by the coefficient.
  • the signal of the first part is multiplied by a coefficient, so that the average power of the signal of the second part and the average power of the signal of the first part multiplied by the coefficient are the same, that is, the signal of the first part is compensated and then converted.
  • the signal of the first part is compensated and then converted.
  • inter-carrier interference is largely eliminated.
  • FIG. 1 is a flowchart of a signal processing method according to an embodiment of the present application
  • FIG. 2 is a flowchart of an example of a signal processing method according to an embodiment of the present application
  • FIG. 3 is a schematic structural composition diagram of a signal processing apparatus according to another embodiment of the present application.
  • an embodiment of the present application provides a signal processing method, including:
  • Step 100 When the adjustment power point of the AGC module is in a useful part of the OFDM symbol, multiply the signal of the first part by a coefficient.
  • the OFDM symbol includes a cyclic prefix and a useful part.
  • the coefficient is calculated according to the following formula:
  • c is the coefficient
  • a is a power adjustment factor
  • s f is a scaling factor of the signal of the first part
  • s 0 is a scaling factor of the signal of the second part.
  • G is the average power of the signal of the useful part
  • R is the number of intervals after quantization by the analog-to-digital converter
  • erfc is the error complementary function
  • Step 101 Convert the signal of the second part and the signal of the first part multiplied by the coefficient to the frequency domain; wherein the first part is a part of the useful part before adjusting a power point; the second part Part is the part after adjusting the power point in the useful part, and the average power of the signal of the second part is the same as the average power of the signal of the first part multiplied by the coefficient.
  • the signals of the useful parts after power adjustment are expressed as y 0 , ..., y n-1 , ay n , ..., ay N-1 ;
  • the digital signals converted by the ADC are expressed as Q (y 0 ), ..., Q (y n-1 ), Q (y n ), ..., Q (y N-1 );
  • the method when the adjustment power point of the AGC module is a cyclic prefix of an OFDM symbol, the method further includes: converting a signal of a useful part of the orthogonal frequency division multiplexing symbol to a frequency domain.
  • the method before the signal of the first portion is multiplied by a coefficient, the method further includes: converting the useful portion into a digital signal by an ADC. Accordingly, the first part is the part of the digital signal of the useful part before the power point is adjusted; the second part is the part of the digital signal of the useful part after the power point is adjusted.
  • the OFDM symbol refers to an OFDM symbol after power adjustment.
  • the conversion of a useful part into a digital signal by the ADC includes:
  • the signal of the first part is converted into a digital signal by an ADC:
  • the signal of the second part is converted into a digital signal by an ADC:
  • y j is the j-th signal of the useful part
  • Q (y j ) is the j-th digital signal of the useful part
  • d j is the quantization noise of y j
  • a is the power adjustment factor
  • s f is a scaling factor of the signal of the first part
  • s 0 is a scaling factor of the signal of the second part.
  • the accuracy of converting the useful part into a digital signal is log 2 (R), that is, the accuracy of the ADC module is log 2 (R).
  • the adjustment power point of the AGC module when the adjustment power point of the AGC module is in a useful part of the OFDM symbol, it indicates that there is inter-carrier interference, and the inter-carrier interference needs to be eliminated.
  • the method of elimination is to multiply the signal of the first part by a coefficient, and then The two parts and the first part multiplied by the coefficients are converted to the frequency domain.
  • the adjustment power point of the AGC module When the adjustment power point of the AGC module is in the cyclic prefix of the OFDM symbol, it means that there is no inter-carrier interference, and it is not necessary to eliminate the inter-carrier interference, and it is only necessary to directly convert the useful part to the frequency.
  • the method includes:
  • Step 200 Determine the position of the adjusted power point of the AGC module.
  • the adjusted power point of the AGC module is in the cyclic prefix of the OFDM symbol, go to step 201; when the adjusted power point of the AGC module is in the useful part of the OFDM symbol, go to step 202.
  • Step 201 The AGC module performs power adjustment on the signal of the useful part of the OFDM symbol.
  • the ADC module converts the signal of the useful part after power adjustment into a digital signal, and directly sends the digital signal to a Fast Fourier Transform (FFT) ) Module, the FFT module converts the signal of the useful part after power adjustment to the frequency domain.
  • FFT Fast Fourier Transform
  • Step 202 The AGC module performs power adjustment on the signal of the useful part of the OFDM symbol.
  • the ADC module converts the signal of the useful part after power adjustment into a digital signal, multiplies the signal of the first part by a coefficient, and multiplies the signal of the second part by the
  • the signal of the first part after the coefficient is sent to the FFT module, and the FFT module converts the signal of the second part and the signal of the first part after multiplying the coefficient to the frequency domain.
  • the first part is the part of the digital signal before the power point is adjusted;
  • the second part is the part of the digital signal after the power point is adjusted, and the average power of the signal in the second part is multiplied by the coefficient
  • the average power of the first part of the signal is the same.
  • the signal of the useful part after adjusting the power is expressed as y 0 , ..., y n-1 , ay n , ..., ay N-1 ; where y 0 , ..., y n-1 is the first part, ay n , ..., ay N-1 is the second part;
  • the digital signals converted by the ADC are expressed as Q (y 0 ), ..., Q (y n-1 ), Q (y n ), ..., Q (y N-1 );
  • FIG. 3 another embodiment of the present application provides a signal processing apparatus, including:
  • a processing module configured to multiply a signal of the first portion by a coefficient when an adjusted power point of the automatic gain control module is in a useful portion of an orthogonal frequency division multiplexing symbol
  • a conversion module configured to convert a signal of the second part and a signal of the first part multiplied by the coefficient to a frequency domain
  • the first part is a part of the useful part before the power point is adjusted; the second part is a part of the useful part after the power point is adjusted, and the average power of the signals of the second part is The average power of the signal of the first part multiplied by the coefficient is the same.
  • the conversion module is further configured to: when the adjusted power point of the automatic gain control module is a cyclic prefix of the orthogonal frequency division multiplexing symbol, the orthogonal frequency division multiplexing The signal of the useful part of the symbol is converted into the frequency domain.
  • an ADC module is further configured to convert the useful part into a digital signal.
  • the ADC module is configured as:
  • y j is the j-th signal of the useful part
  • Q (y j ) is the j-th digital signal of the useful part
  • d j is the quantization noise of y j
  • a is the power adjustment factor
  • s f is a scaling factor of the signal of the first part
  • s 0 is a scaling factor of the signal of the second part.
  • the processing module is configured to calculate the coefficient according to the following formula:
  • c is the coefficient
  • a is a power adjustment factor
  • s f is a scaling factor of the signal of the first part
  • s 0 is a scaling factor of the signal of the second part.
  • the processing module in the signal processing device may be a central processing unit (CPU, Central Processing Unit), a digital signal processor (DSP), and a micro control unit (MCU, in actual application).
  • CPU Central Processing Unit
  • DSP digital signal processor
  • MCU micro control unit
  • Microcontroller Unit
  • FPGA Programmable Gate Array
  • the conversion module in the device can be realized through the FFT function module in actual applications
  • the ADC module in the device is used in actual applications This can be achieved by an analog-to-digital converter.
  • the signal processing device provided in the foregoing embodiment performs information reminder, only the above-mentioned division of the program modules is used as an example. In practical applications, the above processing may be allocated by different program modules as required. That is, the internal structure of the device is divided into different program modules to complete all or part of the processing described above.
  • the signal processing device and the signal processing method embodiments provided by the foregoing embodiments belong to the same concept. For specific implementation processes, refer to the method embodiments, and details are not described herein again.
  • Another embodiment of the present application provides a signal processing device, including a processor and a computer-readable storage medium, where the computer-readable storage medium stores instructions, and when the instructions are executed by the processor, the foregoing is implemented. Any signal processing method.
  • the memory may be a volatile memory or a non-volatile memory, and may also include both volatile and non-volatile memories.
  • the non-volatile memory may be a read-only memory (ROM, Read Only Memory), a programmable read-only memory (PROM, Programmable Read-Only Memory), or an erasable programmable read-only memory (EPROM, Erasable Programmable Read- Only Memory), Electrically Erasable Programmable Read-Only Memory (EEPROM), Magnetic Random Access Memory (FRAM, ferromagnetic random access memory), Flash Memory (Flash Memory), Magnetic Surface Memory , Compact disc, or read-only compact disc (CD-ROM, Compact Disc-Read-Only Memory); the magnetic surface memory can be a disk memory or a tape memory.
  • the volatile memory may be a random access memory (RAM, Random Access Memory), which is used as an external cache.
  • RAM random access memory
  • RAM Random Access Memory
  • many forms of RAM are available, such as Static Random Access Memory (SRAM, Static Random Access Memory), Synchronous Static Random Access Memory (SSRAM, Static Random Access, Memory), Dynamic Random Access DRAM (Dynamic Random Access Memory), Synchronous Dynamic Random Access Memory (SDRAM), Double Data Rate Synchronous Dynamic Random Access Memory (DDRSDRAM), Double Data Rate Rate Synchronous Dynamic Access Random Access Memory, Enhanced Type Synchronous Dynamic Random Access Memory (ESDRAM, Enhanced Synchronous Random Access Memory), Synchronous Link Dynamic Random Access Memory (SLDRAM, SyncLink Dynamic Access Random Access Memory), Direct Memory Bus Random Access Memory (DRRAM, Direct Rambus Random Access Memory) ).
  • SRAM Static Random Access Memory
  • SSRAM Synchronous Static Random Access Memory
  • SSRAM Synchronous Static Random Access Memory
  • SDRAM Synchronous Dynamic Random
  • the method disclosed in the foregoing embodiments of the present invention may be applied to a processor or implemented by a processor.
  • the processor may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the above method may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the foregoing processor may be a general-purpose processor, a digital signal processor (DSP, Digital Signal Processor), or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and the like.
  • DSP Digital Signal Processor
  • the processor may implement or execute various methods, steps, and logical block diagrams disclosed in the embodiments of the present invention.
  • a general-purpose processor may be a microprocessor or any conventional processor.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by a hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a storage medium.
  • the storage medium is located in the memory.
  • the processor reads the information in the memory and completes the steps of the foregoing method in combination with its hardware.
  • the signal processing device may be implemented by one or more application-specific integrated circuits (ASICs, Application Specific Integrated Circuits), DSPs, Programmable Logic Devices (PLDs), and Complex Programmable Logic Devices (CPLDs) , Complex Programmable Logic Device), Field Programmable Gate Array (FPGA, Field-Programmable Gate Array), general-purpose processor, controller, microcontroller (MCU, Micro Controller Unit), microprocessor (Microprocessor), or other electronics Element implementation for performing the aforementioned method.
  • ASICs application-specific integrated circuits
  • DSPs Programmable Logic Devices
  • PLDs Programmable Logic Devices
  • CPLDs Complex Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • MCU Microcontroller
  • Microprocessor Microprocessor
  • Another embodiment of the present application provides a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the steps of any one of the foregoing signal processing methods are implemented.
  • Computer storage medium includes both volatile and nonvolatile implementations in any method or technology used to store information such as computer-readable instructions, data structures, program modules or other data.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technologies, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, magnetic tape, disk storage or other magnetic storage devices, or may Any other medium used to store desired information and which can be accessed by a computer.
  • a communication medium typically contains computer-readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transmission mechanism, and may include any information delivery medium .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Analogue/Digital Conversion (AREA)
  • Noise Elimination (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

本申请实施例公开了一种信号处理方法和装置,所述信号处理方法包括:当AGC模块的调整功率点在OFDM符号的有用部分时,将第一部分的信号乘以系数;将第二部分的信号和乘以所述系数后的第一部分的信号转换到频域;其中,所述第一部分为所述有用部分中在调整功率点之前的部分;所述第二部分为所述有用部分中在调整功率点之后的部分,所述第二部分的信号的平均功率和乘以所述系数后的第一部分的信号的平均功率相同。

Description

一种信号处理方法和装置
相关申请的交叉引用
本申请基于申请号为201810509876.7、申请日为2018年05月24日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本申请。
技术领域
本申请实施例涉及通信技术,具体涉及一种信号处理方法和装置。
背景技术
正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)系统是常用的通信系统。自动增益控制(AGC,Automatic Gain Control)模块在OFDM系统中广泛采用以补偿接收信号功率的波动,这样模拟数字转换器件(ADC,Analog to Digital Converter)带来的量化误差最小。一般来说AGC需要一个稳定时间以对接收信号功率进行调整。
OFDM符号中循环前缀的长度与信道时延的长度一般相同,当其他用户的信号经过多径信道时,导致目标用户首个OFDM符号的循环前缀包含其他用户的信号功率。由于包含其他用户的信号功率的循环前缀不能用于AGC功率测量,因此,如果首个OFDM符号的循环前缀中不包含其他用户的信号功率的部分小于AGC的稳定时间,则导致AGC模块在OFDM符号的有用部分进行调整,这样破坏了载波间的正交性,从而产生了载波间干扰。
发明内容
本申请实施例提供了一种信号处理方法和装置,能够消除载波间干扰。
本申请实施例提供了一种信号处理方法,包括:
当自动增益控制模块的调整功率点在正交频分复用符号的有用部分时,将第一部分的信号乘以系数;
将第二部分的信号和乘以所述系数后的第一部分的信号转换到频域;
其中,所述第一部分为所述有用部分中在调整功率点之前的部分;所述第二部分为所述有用部分中在调整功率点之后的部分,所述第二部分的信号的平均功率和乘以所述系数后的第一部分的信号的平均功率相同。
本申请实施例提出了一种信号处理装置,包括:
处理模块,配置为当自动增益控制模块的调整功率点在正交频分复用符号的有用部分时,将第一部分的信号乘以系数;
转换模块,配置为将第二部分的信号和乘以所述系数后的第一部分的信号转换到频域;
其中,所述第一部分为所述有用部分中在调整功率点之前的部分;所述第二部分为所述有用部分中在调整功率点之后的部分,所述第二部分的信号的平均功率和乘以所述系数后的第一部分的信号的平均功率相同。
本申请实施例提出了一种信号处理装置,包括处理器和计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令被所述处理器执行时,实现上述任一种信号处理方法。
本申请实施例提出了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述任一种信号处理方法的步骤。
本申请实施例包括:当AGC模块的调整功率点在OFDM符号的有用部分时,将第一部分的信号乘以系数;将第二部分的信号和乘以所述系数后的第一部分的信号转换到频域;其中,所述第一部分为所述有用部分中 在调整功率点之前的部分;所述第二部分为所述有用部分中在调整功率点之后的部分,所述第二部分的信号的平均功率和乘以所述系数后的第一部分的信号的平均功率相同。本申请实施例将第一部分的信号乘以系数,使得第二部分的信号的平均功率和乘以所述系数后的第一部分的信号的平均功率相同,即对第一部分的信号进行补偿后再转换到频域,很大程度的消除了载波间干扰。
本申请实施例的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明实施例而了解。本发明实施例的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本申请实施例技术方案的进一步理解,并且构成说明书的一部分,与本申请实施例的实施例一起用于解释本申请实施例的技术方案,并不构成对本申请实施例技术方案的限制。
图1为本申请一个实施例提出的信号处理方法的流程图;
图2为本申请实施例信号处理方法的示例的流程图;
图3为本申请另一个实施例提出的信号处理装置的结构组成示意图。
具体实施方式
下文中将结合附图对本申请实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
参见图1,本申请一个实施例提出了一种信号处理方法,包括:
步骤100、当AGC模块的调整功率点在OFDM符号的有用部分时,将第一部分的信号乘以系数。
在本申请实施例中,OFDM符号包括循环前缀和有用部分。
在本申请实施例中,按照以下公式计算所述系数:
Figure PCTCN2019083937-appb-000001
其中,c为所述系数,a为功率调整因子,s f为所述第一部分的信号的缩放因子,s 0为所述第二部分的信号的缩放因子。
其中,按照公式
Figure PCTCN2019083937-appb-000002
计算所述第一部分的信号的缩放因子;
按照公式
Figure PCTCN2019083937-appb-000003
计算所述第二部分的信号的缩放因子;
其中,
Figure PCTCN2019083937-appb-000004
Figure PCTCN2019083937-appb-000005
其中,G为有用部分的信号的平均功率,R为模数转换器量化之后的区间数目,erfc为误差互补函数。
步骤101、将第二部分的信号和乘以所述系数后的第一部分的信号转换到频域;其中,所述第一部分为所述有用部分中在调整功率点之前的部分;所述第二部分为所述有用部分中在调整功率点之后的部分,所述第二部分的信号的平均功率和乘以所述系数后的第一部分的信号的平均功率相同。
在本申请实施例中,在OFDM符号的有用部分的信号表示为y=[y 0,y 1,…,y N-1],且AGC模块的调整功率点在y n-1和y n之间的情况下,调整 功率后的有用部分的信号表示为y 0,…,y n-1,ay n,…,ay N-1
ADC转换后的数字信号表示为Q(y 0),...,Q(y n-1),Q(y n),...,Q(y N-1);
则将cQ(y 0),...,cQ(y n-1),Q(y n),...,Q(y N-1)转换到频域。
在本申请另一个实施例中,当AGC模块的调整功率点在OFDM符号的循环前缀时,该方法还包括:将所述正交频分复用符号的有用部分的信号转换到频域。
在本申请另一个实施例中,将第一部分的信号乘以系数之前,该方法还包括:所述有用部分通过ADC转换成数字信号。相应的,第一部分为有用部分的数字信号中在调整功率点之前的部分;第二部分为有用部分的数字信号中在调整功率点之后的部分。
在本申请的上述实施例中,OFDM符号指的是调整功率后的OFDM符号。
在本申请实施例中,有用部分通过ADC转换成数字信号包括:
所述第一部分的信号通过ADC转换成数字信号:Q(y j)=s fy j+d j,j=0,…,n-1;
所述第二部分的信号通过ADC转换成数字信号:Q(y j)=as 0y j+d j,j=n,…,N-1;
其中,y j为所述有用部分的第j个信号,Q(y j)为所述有用部分的第j个所述数字信号,d j为y j的量化噪声,a为功率调整因子,s f为所述第一部分的信号的缩放因子,s 0为所述第二部分的信号的缩放因子。
上述将有用部分转换成数字信号的精度为log 2(R),即ADC模块的精度为log 2(R)。
在本申请实施例中,当AGC模块的调整功率点在OFDM符号的有用部分时,说明存在载波间干扰,需要消除载波间干扰,消除的方法是将第 一部分的信号乘以系数,再将第二部分和乘以系数后的第一部分转换到频域。
当AGC模块的调整功率点在OFDM符号的循环前缀时,说明没有载波间干扰,不需要消除载波间干扰,则直接将有用部分转换到频率即可。
下面结合具体示例对本申请实施例进行详细说明。
参见图2,该方法包括:
步骤200、判断AGC模块的调整功率点位置,当AGC模块的调整功率点在OFDM符号的循环前缀时,执行步骤201;当AGC模块的调整功率点在OFDM符号的有用部分时,执行步骤202。
步骤201、AGC模块对OFDM符号的有用部分的信号进行功率调整,ADC模块将功率调整后的有用部分的信号转换成数字信号,将数字信号直接送到快速傅里叶变换(FFT,Fast Fourier Transformation)模块,FFT模块将功率调整后的有用部分的信号转换到频域。
步骤202、AGC模块对OFDM符号的有用部分的信号进行功率调整,ADC模块将功率调整后的有用部分的信号转换成数字信号,将第一部分的信号乘以系数,将第二部分的信号和乘以所述系数后的第一部分的信号送到FFT模块,FFT模块将第二部分的信号和乘以所述系数后的第一部分的信号转换到频域。
本示例中,第一部分为数字信号中在调整功率点之前的部分;第二部分为数字信号中在调整功率点之后的部分,所述第二部分的信号的平均功率和乘以所述系数后的第一部分的信号的平均功率相同。
本示例中,当OFDM符号的有用部分的信号表示为y=[y 0,y 1,…,y N -1],且AGC模块的调整功率点在y n-1和y n之间时,调整功率后的有用部分的信号表示为y 0,…,y n-1,ay n,…,ay N-1;其中,y 0,…,y n-1为第一部分,ay n,…,ay N-1为第二部分;
ADC转换后的数字信号表示为Q(y 0),...,Q(y n-1),Q(y n),...,Q(y N-1);
则将cQ(y 0),...,cQ(y n-1),Q(y n),...,Q(y N-1)转换到频域。
其中,
Figure PCTCN2019083937-appb-000006
参见图3,本申请另一个实施例提出了一种信号处理装置,包括:
处理模块,配置为当自动增益控制模块的调整功率点在正交频分复用符号的有用部分时,将第一部分的信号乘以系数;
转换模块,配置为将第二部分的信号和乘以所述系数后的第一部分的信号转换到频域;
其中,所述第一部分为所述有用部分中在调整功率点之前的部分;所述第二部分为所述有用部分中在调整功率点之后的部分,所述第二部分的信号的平均功率和乘以所述系数后的第一部分的信号的平均功率相同。
在本申请另一个实施例中,转换模块还配置为:当所述自动增益控制模块的调整功率点在所述正交频分复用符号的循环前缀时,将所述正交频分复用符号的有用部分的信号转换到频域。
在本申请另一个实施例中,还包括:ADC模块,配置为将所述有用部分转换成数字信号。
在本申请实施例中,ADC模块配置为:
所述第一部分的信号转换成数字信号:Q(y j)=s fy j+d j
所述第二部分的信号转换成数字信号:Q(y j)=as 0y j+d j
其中,y j为所述有用部分的第j个信号,Q(y j)为所述有用部分的第j个所述数字信号,d j为y j的量化噪声,a为功率调整因子,s f为所述第一部分的信号的缩放因子,s 0为所述第二部分的信号的缩放因子。
在本申请实施例中,处理模块配置为按照以下公式计算所述系数:
Figure PCTCN2019083937-appb-000007
其中,c为所述系数,a为功率调整因子,s f为所述第一部分的信号的缩放因子,s 0为所述第二部分的信号的缩放因子。
本申请实施例中,所述信号处理装置中的处理模块,在实际应用中可由中央处理器(CPU,Central Processing Unit)、数字信号处理器(DSP,Digital Signal Processor)、微控制单元(MCU,Microcontroller Unit)或可编程门阵列(FPGA,Field-Programmable Gate Array)实现;所述装置中的转换模块,在实际应用中可通过FFT功能模块实现;所述装置中的ADC模块,在实际应用中可通过模数转换器实现。
需要说明的是:上述实施例提供的信号处理装置在进行信息提醒时,仅以上述各程序模块的划分进行举例说明,实际应用中,可以根据需要而将上述处理分配由不同的程序模块完成,即将装置的内部结构划分成不同的程序模块,以完成以上描述的全部或者部分处理。另外,上述实施例提供的信号处理装置与信号处理方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
本申请另一个实施例提出了一种信号处理装置,包括处理器和计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令被所述处理器执行时,实现上述任一种信号处理方法。
可以理解,存储器可以是易失性存储器或非易失性存储器,也可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(ROM,Read Only Memory)、可编程只读存储器(PROM,Programmable Read-Only Memory)、可擦除可编程只读存储器(EPROM,Erasable Programmable Read-Only Memory)、电可擦除可编程只读存储器(EEPROM,Electrically Erasable Programmable Read-Only Memory)、磁性随机存取存储器(FRAM,ferromagnetic random access memory)、快闪存储器(Flash  Memory)、磁表面存储器、光盘、或只读光盘(CD-ROM,Compact Disc Read-Only Memory);磁表面存储器可以是磁盘存储器或磁带存储器。易失性存储器可以是随机存取存储器(RAM,Random Access Memory),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(SRAM,Static Random Access Memory)、同步静态随机存取存储器(SSRAM,Synchronous Static Random Access Memory)、动态随机存取存储器(DRAM,Dynamic Random Access Memory)、同步动态随机存取存储器(SDRAM,Synchronous Dynamic Random Access Memory)、双倍数据速率同步动态随机存取存储器(DDRSDRAM,Double Data Rate Synchronous Dynamic Random Access Memory)、增强型同步动态随机存取存储器(ESDRAM,Enhanced Synchronous Dynamic Random Access Memory)、同步连接动态随机存取存储器(SLDRAM,SyncLink Dynamic Random Access Memory)、直接内存总线随机存取存储器(DRRAM,Direct Rambus Random Access Memory)。本发明实施例描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
上述本发明实施例揭示的方法可以应用于处理器中,或者由处理器实现。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP,Digital Signal Processor),或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。处理器可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本发明实施例所公开的方法的步骤,可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于存储介质中,该存储介质位于存储器,处理器读 取存储器中的信息,结合其硬件完成前述方法的步骤。
在示例性实施例中,信号处理装置可以被一个或多个应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)、现场可编程门阵列(FPGA,Field-Programmable Gate Array)、通用处理器、控制器、微控制器(MCU,Micro Controller Unit)、微处理器(Microprocessor)、或其他电子元件实现,用于执行前述方法。
本申请另一个实施例提出了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述任一种信号处理方法的步骤。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领 域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
虽然本申请实施例所揭露的实施方式如上,但所述的内容仅为便于理解本申请实施例而采用的实施方式,并非用以限定本申请实施例。任何本申请实施例所属领域内的技术人员,在不脱离本申请实施例所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本申请实施例的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (14)

  1. 一种信号处理方法,包括:
    当自动增益控制模块的调整功率点在正交频分复用符号的有用部分时,将第一部分的信号乘以系数;
    将第二部分的信号和乘以所述系数后的第一部分的信号转换到频域;
    其中,所述第一部分为所述有用部分中在调整功率点之前的部分;所述第二部分为所述有用部分中在调整功率点之后的部分,所述第二部分的信号的平均功率和乘以所述系数后的第一部分的信号的平均功率相同。
  2. 根据权利要求1所述的信号处理方法,其中,当所述自动增益控制模块的调整功率点在所述正交频分复用符号的循环前缀时,该方法还包括:
    将所述正交频分复用符号的有用部分的信号转换到频域。
  3. 根据权利要求1或2所述的信号处理方法,其中,所述将第一部分的信号乘以系数之前,该方法还包括:所述有用部分的信号通过模数转换器转换成数字信号。
  4. 根据权利要求3所述的信号处理方法,其中,所述有用部分的信号通过模数转换器转换成数字信号包括:
    所述第一部分的信号通过所述模数转换器转换成数字信号:Q(y j)=s fy j+d j
    所述第二部分的信号通过所述模数转换器转换成数字信号:Q(y j)=as 0y j+d j
    其中,y j为所述有用部分的第j个信号,Q(y j)为所述有用部分的第j个所述数字信号,d j为y j的量化噪声,a为功率调整因子,s f为所述第一部分的信号的缩放因子,s 0为所述第二部分的信号的缩放因子。
  5. 根据权利要求1或2所述的信号处理方法,其中,按照以下公式计 算所述系数:
    Figure PCTCN2019083937-appb-100001
    其中,c为所述系数,a为功率调整因子,s f为所述第一部分的信号的缩放因子,s 0为所述第二部分的信号的缩放因子。
  6. 根据权利要求5所述的信号处理方法,其中,所述系数的计算包括以下至少之一:
    按照公式
    Figure PCTCN2019083937-appb-100002
    计算所述第一部分的信号的缩放因子;
    按照公式
    Figure PCTCN2019083937-appb-100003
    计算所述第二部分的信号的缩放因子;
    其中,
    Figure PCTCN2019083937-appb-100004
    Figure PCTCN2019083937-appb-100005
    G为所述有用部分的信号的平均功率,R为模数转换器量化之后的区间数目,erfc为误差互补函数。
  7. 一种信号处理装置,包括:
    处理模块,配置为当自动增益控制模块的调整功率点在正交频分复用符号的有用部分时,将第一部分的信号乘以系数;
    转换模块,配置为将第二部分的信号和乘以所述系数后的第一部分的信号转换到频域;
    其中,所述第一部分为所述有用部分中在调整功率点之前的部分;所述第二部分为所述有用部分中在调整功率点之后的部分,所述第二部分的信号的平均功率和乘以所述系数后的第一部分的信号的平均功率相同。
  8. 根据权利要求7所述的装置,其中,所述转换模块还配置为:当所述自动增益控制模块的调整功率点在所述正交频分复用符号的循环前缀时,将所述正交频分复用符号的有用部分的信号转换到频域。
  9. 根据权利要求7或8所述的装置,其中,所述装置还包括ADC模块,配置为所述处理模块将第一部分的信号乘以系数之前,将所述有用部分转换成数字信号。
  10. 根据权利要求9所述的装置,其中,所述ADC模块配置为:
    所述第一部分的信号转换成数字信号:Q(y j)=s fy j+d j
    所述第二部分的信号转换成数字信号:Q(y j)=as 0y j+d j
    其中,y j为所述有用部分的第j个信号,Q(y j)为所述有用部分的第j个所述数字信号,d j为y j的量化噪声,a为功率调整因子,s f为所述第一部分的信号的缩放因子,s 0为所述第二部分的信号的缩放因子。
  11. 根据权利要求7或8所述的装置,其中,所述处理模块配置为按照以下公式计算所述系数:
    Figure PCTCN2019083937-appb-100006
    其中,c为所述系数,a为功率调整因子,s f为所述第一部分的信号的缩放因子,s 0为所述第二部分的信号的缩放因子。
  12. 根据权利要求11所述的装置,其中,所述系数的计算包括以下至少之一:
    按照公式
    Figure PCTCN2019083937-appb-100007
    计算所述第一部分的信号的缩放因子;
    按照公式
    Figure PCTCN2019083937-appb-100008
    计算所述第二部分的信号的缩放因子;
    其中,
    Figure PCTCN2019083937-appb-100009
    Figure PCTCN2019083937-appb-100010
    G为所述有用部分的信号的平均功率,R为模数转换器量化之后的区间数目,erfc为误差互补函数。
  13. 一种信号处理装置,包括处理器和计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令被所述处理器执行时,实现如权利要求1至6任一项所述的信号处理方法。
  14. 一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至6任一项所述的信号处理方法的步骤。
PCT/CN2019/083937 2018-05-24 2019-04-23 一种信号处理方法和装置 WO2019223483A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810509876.7 2018-05-24
CN201810509876.7A CN110535795B (zh) 2018-05-24 2018-05-24 一种信号处理方法和装置

Publications (1)

Publication Number Publication Date
WO2019223483A1 true WO2019223483A1 (zh) 2019-11-28

Family

ID=68616269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/083937 WO2019223483A1 (zh) 2018-05-24 2019-04-23 一种信号处理方法和装置

Country Status (2)

Country Link
CN (1) CN110535795B (zh)
WO (1) WO2019223483A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020210118A1 (en) 2019-04-06 2020-10-15 Cargill, Incorporated Sensory modifiers
CN114554583A (zh) * 2022-04-01 2022-05-27 上海星思半导体有限责任公司 一种信号功率调整方法、装置和电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101299623A (zh) * 2007-04-30 2008-11-05 华为技术有限公司 功率分配方法、系统及发送端
CN102273164A (zh) * 2009-01-28 2011-12-07 高通股份有限公司 无线通信网络中对基于ofdm的传输的自动增益控制(agc)
CN102811190A (zh) * 2011-05-31 2012-12-05 上海明波通信技术股份有限公司 Ofdm通信系统中单频干扰的抑制方法
CN104469925A (zh) * 2014-11-28 2015-03-25 深圳市海思半导体有限公司 一种频域自动增益控制方法和装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1439677B9 (en) * 1999-01-08 2007-11-07 Sony Deutschland GmbH Synchronisation symbol structure for an OFDM system
EP2073473A1 (en) * 2007-12-21 2009-06-24 Telefonaktiebolaget LM Ericsson (publ) A Method and Device for Automatic Gain Control
CN101808392A (zh) * 2010-04-01 2010-08-18 复旦大学 一种时分正交频分复用系统的自动增益控制方法
CN102377718A (zh) * 2010-08-20 2012-03-14 联芯科技有限公司 自动增益控制方法和装置
CN102546505B (zh) * 2010-12-30 2014-04-09 联芯科技有限公司 一种自动增益控制方法和装置
CN102231905B (zh) * 2011-06-20 2014-07-16 合肥东芯通信股份有限公司 Lte系统的自动增益控制方法和设备
US8830859B2 (en) * 2012-05-10 2014-09-09 Blackberry Limited Power based gain control adjustment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101299623A (zh) * 2007-04-30 2008-11-05 华为技术有限公司 功率分配方法、系统及发送端
CN102273164A (zh) * 2009-01-28 2011-12-07 高通股份有限公司 无线通信网络中对基于ofdm的传输的自动增益控制(agc)
CN102811190A (zh) * 2011-05-31 2012-12-05 上海明波通信技术股份有限公司 Ofdm通信系统中单频干扰的抑制方法
CN104469925A (zh) * 2014-11-28 2015-03-25 深圳市海思半导体有限公司 一种频域自动增益控制方法和装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020210118A1 (en) 2019-04-06 2020-10-15 Cargill, Incorporated Sensory modifiers
CN114554583A (zh) * 2022-04-01 2022-05-27 上海星思半导体有限责任公司 一种信号功率调整方法、装置和电子设备
CN114554583B (zh) * 2022-04-01 2024-06-07 上海星思半导体有限责任公司 一种信号功率调整方法、装置和电子设备

Also Published As

Publication number Publication date
CN110535795B (zh) 2021-11-05
CN110535795A (zh) 2019-12-03

Similar Documents

Publication Publication Date Title
US9634876B2 (en) Phase reference symbol format for OFDM phase synchronization
WO2019223483A1 (zh) 一种信号处理方法和装置
US8254503B1 (en) Tracking automatic gain control of orthogonal frequency domain multiplexing systems
US9992571B2 (en) Speaker protection from overexcursion
WO2020238371A1 (zh) 一种基于多相结构的削峰方法、装置及计算机存储介质
US20220094516A1 (en) Phase calibration method and device
CN109729032B (zh) 一种频偏估计值的校正方法、装置及计算机可读存储介质
KR101687658B1 (ko) 처프-지 역변환 방법 및 시스템
US20080201137A1 (en) Method of estimating noise levels in a communication system
US20150117656A1 (en) Sampling point adjustment apparatus and method and program
WO2017041495A1 (zh) 一种频偏估计的方法及装置
WO2020000613A1 (zh) 信噪比确定方法及装置、信道均衡方法及装置
CN117235420B (zh) 一种信号处理电路、方法、处理器、存储介质及芯片
CN113259297A (zh) IEEE802.15.4g MR-OFDM在大频偏环境下的帧同步方法及装置
CN109889465A (zh) 一种峰均比抑制方法、装置、电子设备及可读存储介质
US10483997B1 (en) Circuit for frequency to time domain conversion
WO2023040225A1 (zh) 频偏估计方法及装置、电子设备、及计算机可读存储介质
US20170257126A1 (en) System and method for improving narrowband interference performance
US7675984B1 (en) Low complexity, iterative approach to active interference cancellation
US8971170B2 (en) Wireless communication apparatus and wireless communication method
US8917799B2 (en) Edge equalizer
US20150092871A1 (en) Apparatus and method of estimating channel in consideration of residual synchronization offset
WO2016026263A1 (zh) 确定自适应滤波器的稳定因子的方法和装置
CN114826846A (zh) 频偏抵消序列的生成方法、装置、设备及介质
CN117079657B (zh) 压限处理方法、装置、电子设备及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19806671

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16.04.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19806671

Country of ref document: EP

Kind code of ref document: A1