WO2019223438A1 - 吹风机 - Google Patents

吹风机 Download PDF

Info

Publication number
WO2019223438A1
WO2019223438A1 PCT/CN2019/082079 CN2019082079W WO2019223438A1 WO 2019223438 A1 WO2019223438 A1 WO 2019223438A1 CN 2019082079 W CN2019082079 W CN 2019082079W WO 2019223438 A1 WO2019223438 A1 WO 2019223438A1
Authority
WO
WIPO (PCT)
Prior art keywords
fan
air
hair dryer
central axis
motor
Prior art date
Application number
PCT/CN2019/082079
Other languages
English (en)
French (fr)
Inventor
祝启鹏
徐谦
Original Assignee
南京德朔实业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811449820.3A external-priority patent/CN110528433B/zh
Application filed by 南京德朔实业有限公司 filed Critical 南京德朔实业有限公司
Publication of WO2019223438A1 publication Critical patent/WO2019223438A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01HSTREET CLEANING; CLEANING OF PERMANENT WAYS; CLEANING BEACHES; DISPERSING OR PREVENTING FOG IN GENERAL CLEANING STREET OR RAILWAY FURNITURE OR TUNNEL WALLS
    • E01H1/00Removing undesirable matter from roads or like surfaces, with or without moistening of the surface
    • E01H1/08Pneumatically dislodging or taking-up undesirable matter or small objects; Drying by heat only or by streams of gas; Cleaning by projecting abrasive particles

Definitions

  • the present disclosure relates to a power tool, and particularly to a hair dryer.
  • a hair dryer can help users clean up the fallen leaves in the garden.
  • Existing hair dryers can be divided into centrifugal hair dryers and axial-flow hair dryers according to the type of fan.
  • the output wind speed and volume are important parameters of the blower, which have a great impact on the working performance of the blower.
  • the current output wind speed or volume of the blower on the market is relatively low.
  • the existing hair dryer has a large volume and weight, which is likely to cause fatigue when used by users.
  • an object of the present disclosure is to provide a hair dryer with a larger output wind speed and volume and a more compact and lightweight structure.
  • a hair dryer includes: a fan; a motor that drives the fan and rotates about a central axis; a casing for accommodating the fan and the motor; the casing includes: an air duct portion that is formed with an air flow extending along the central axis Air duct; two ends of the air duct part are respectively formed with an air inlet for air flow in and an air outlet for air flow out; the fan and the motor are housed in the air duct part; the fan has a fan outlet end and a fan inlet end, and the fan comes out of the wind The fan end and the fan inlet end are located on both sides of the fan along the central axis; the fan outlet end is closer to the air outlet relative to the fan inlet end; any two vertical between the fan outlet end of the fan and the air outlet of the air duct part
  • the ratio of the flow area of the cross section at the center axis is 0.95 or more and 1.1 or less.
  • the hair dryer further includes: a guide portion for guiding the airflow direction, the guide portion extends along a first straight line coincident or parallel to the central axis;
  • the guide portion includes: a rear end of the guide portion; a front end of the guide portion;
  • the rear end of the diversion part and the front end of the diversion part are located at both ends of the diversion part along a first straight line;
  • the rear end of the diversion part is closer to the air outlet than the front end of the diversion part;
  • the rear end of the diversion part to the air outlet is arbitrary
  • the ratio of the air flow area between two cross sections perpendicular to the central axis is 0.95 or more and 1.05 or less.
  • the motor is an inner rotor motor, and the rotation speed of the motor is 31,000 rpm or more.
  • the fan includes an impeller and a blade mounted to the impeller, and a tip diameter of the blade is 82 mm or less.
  • the air duct section includes a first function section for accommodating a fan, and the inner diameter of the first function section is less than or equal to 84 millimeters; the air duct section further includes: a motor case for accommodating the motor. The fan is closer to the air outlet; the first function section is fixedly connected to the motor housing or is an integrated structure.
  • the hair dryer further includes: a guide portion for guiding the airflow direction, the guide portion extends along a first straight line coincident or parallel to the central axis;
  • the guide portion includes: a rear end of the guide portion; a front end of the guide portion;
  • the rear end of the deflector and the front end of the deflector are located at both ends of the deflector along a first straight line; the rear end of the deflector is closer to the air outlet than the front end of the deflector; between the wind outlet of the fan and the front of the deflector
  • the ratio of the flow area of any two cross sections perpendicular to the central axis is 0.95 or more and 1.05 or less.
  • the output wind speed of the hair dryer is 150 meters / hour or more; the air volume of the hair dryer is 510 cubic feet / minute or more; and the inner diameter of the air outlet is 69 mm or less.
  • the area of a cross section perpendicular to the central axis between the rear end of the air guide portion and the air outlet is approximately equal to the air flow area of the cross section.
  • the ratio of the flow area of any two cross sections perpendicular to the central axis between the fan outlet end of the fan and the air outlet of the air duct part is 1.02 or more and 1.1 or less.
  • the fan is an axial fan.
  • a hair dryer includes: a fan; a motor that drives the fan to rotate about a central axis; a housing for accommodating the fan and the motor; the fan has the ability to output wind energy K, the weight of the blower G, the wind speed V output by the blower, and the fan output wind energy
  • the casing includes: an air duct portion, and the air duct portion is formed with an air flow channel extending along a central axis for air flow; two ends of the air duct portion are respectively formed with an air inlet for air flow in and an air outlet for air flow out ;
  • the fan is housed in the duct section.
  • K is 480 or more
  • the wind speed of the hair dryer is 150 MPH or more
  • the weight of the hair dryer is 2.0 kg or less.
  • the hair dryer further includes a deflector for guiding the airflow, and the deflector is accommodated inside the casing and extends along a first straight line that is coincident with or parallel to the central axis.
  • the deflector includes: a rear end of the deflector near the air outlet; a front end of the deflector near the air inlet; a rear end of the diversion part and a front end of the diversion part are located at both ends of the diversion part along a first straight line;
  • the area of any cross section perpendicular to the central axis between the rear end of the air guide portion and the air outlet is approximately equal to the air flow area of the cross section;
  • the air guide portion is a conical guide cone.
  • the disclosure is beneficial in that it provides a hair dryer with a large output wind speed and air volume, while reducing the volume of the hair dryer and reducing the weight of the hair dryer, thereby improving the overall performance of the hair dryer and reducing the use of the user. Fatigue when using a hair dryer.
  • FIG. 1 is a schematic structural diagram of a hair dryer according to a first embodiment of the present disclosure
  • FIG. 2 is a cross-sectional view showing a part of the structure of the hair dryer in FIG. 1;
  • FIG. 3 is an exploded view of a part of the structure of the hair dryer in FIG. 1;
  • FIG. 4 is a cross-sectional view of an air duct portion of the blowing machine in FIG. 1;
  • FIG. 5 is a bottom view of the fan of the blowing extension in FIG. 1;
  • FIG. 6 is a front view of a fan of the blowing extension in FIG. 1; FIG.
  • FIG. 7 is a graph showing the output wind speed V and the weight G of the blower in FIG. 1 as a function of the output power K of the fan 12 within a unit flow area;
  • FIG. 8 is a cross-sectional view showing a partial structure of a hair dryer according to a second embodiment of the present disclosure
  • FIG. 9 is a cross-sectional view showing a partial structure of a hair dryer according to a third embodiment of the present disclosure.
  • the present disclosure proposes a hair dryer 100.
  • the hair dryer 100 may be a handheld hair dryer or a backpack hair dryer.
  • the hair dryer 100 includes a fan 12 that rotates about a central axis 101, a motor 13 that drives the fan to rotate, and a housing for receiving the fan 12 and the motor 13.
  • the casing includes an air duct portion 11 through which air flows, and the casing is also formed with a handle for a user to operate, and the handle is connected to the air duct portion 11 or integrally formed with the air duct portion 11.
  • the air duct portion 11 extends along the central axis 101, and an air inlet A for airflow inflow and an air outlet B for airflow outflow are formed at both ends of the air duct portion 11, respectively; the fan 12 and the motor 13 are accommodated in Inside the air duct portion 11, the motor 13 is closer to the air outlet B than the fan 12. In other embodiments, the motor 13 may be closer to the air inlet A relative to the fan 12, and the arrangement of the motor 13 and the fan 12 in the axial direction is not specific. limit.
  • the fan 12 includes a fan inlet C and a fan outlet D distributed on both sides of the fan 12 along the central axis 101.
  • the fan inlet C is closer to the air inlet A than the fan outlet D, and the fan is out of the wind.
  • the terminal D is closer to the air outlet B than the fan inlet C.
  • the fan 12 is an axial fan, and the fan 12 includes an impeller and a blade mounted to the impeller.
  • the air duct portion 11 is connected by four independent structures. From bottom to top in FIG. 2, the air intake portion 111 is located at one end of the air duct portion 11 near the air inlet A for airflow, The first funnel portion 112 containing the fan 12 and the motor 13, the second funnel portion 113 containing the air guiding portion 14, and a blower pipe 114 near the air outlet B at one end of the air flow portion 11 for airflow.
  • the first function section 112 forms an interference fit with the air inlet section 111 and the second function section 113, respectively
  • the second function section 113 forms an interference fit with the first function section 112 and the blower 114, respectively.
  • the second function section 113 extends along a certain taper along the central axis 101.
  • the air inlet portion 111, the first funnel portion 112, the second funnel portion 113, and the blower pipe 114 may also be integrally formed or several of them may be integrally formed or form a fixed connection.
  • the molding method and connection method are not limited herein.
  • the first funnel section 112 includes a first housing 1121 connecting the air inlet section 111 and the second funnel section 113.
  • a motor housing 1122 for accommodating the motor 13 is provided inside the first funnel section 112.
  • Wind guide ribs 1123 extending along the central axis 101 for guiding the wind direction are also formed outside the body 1122.
  • three wind guide ribs 1123 are evenly distributed on the periphery of the motor housing 1122 inside the first housing 1121.
  • the four sides, that is, the motor housing 1122, the wind deflector 1123, and the first housing 1121 are arranged from the inside to the outside in the radial direction. It can be understood that the specific number of the wind guide ribs 1123 is not limited to three.
  • the wind deflector 1123 connects the motor casing 1122 and the first casing 1121, and the three constitute an integrated structure.
  • the airflow from the fan 12 can be guided by the wind deflector 1123 and then flows into the second function section 113.
  • the motor housing 1122 may also be independent of or connected to the first housing 1121.
  • the motor case 1122 is a part of the first function section 112, and it can be considered that it forms an integrated structure with the first function section 112.
  • the hair dryer 100 further includes a deflector 14 for guiding the airflow.
  • the deflector 14 extends along a first straight line, and the first straight line coincides with or is parallel to the central axis 101. In this embodiment, the first straight line and the central axis 101 coincide.
  • the flow guiding portion 14 is a flow guiding cone having a conical shape, and the cone portion is closer to the air outlet B.
  • the deflector 14 forms an interference fit with the bearing cover 16 near the motor bearing, and is closer to the air outlet B than the motor 13 and the fan 12. It can be understood that the structural form of the flow guiding portion 14 is not limited to a cone.
  • the diversion section 14 includes a rear end E of the diversion section and a front end F of the diversion section. The rear end E of the diversion section is closer to the air outlet B than the front end F of the diversion section; The first straight line is located at both ends of the flow guiding portion 14.
  • the hair dryer 100 further includes a winding portion 15 around which the power supply line is wound.
  • the winding portion 15 and the first funnel portion 112 constitute a detachable connection.
  • the motor is a high-speed inner rotor motor, and the speed of the motor is 31,000 rpm.
  • the diameter of the blade tip of the fan 12 and the size of the air duct portion 11 are limited to obtain a hair dryer with excellent performance.
  • the diameter of the blade tip of the fan 12 is 82 mm or less and accommodates the fan.
  • the inner diameter A1 of 1123 of the first function section 112 of 12 is less than or equal to 84 mm, the outer diameter A2 of the motor case 1121 is 44 mm or less, and the inner diameter A3 of the end of the blow tube 114 near the second function section 113 is less than It is equal to 70 millimeters, and the inner diameter A4 of the end of the blower pipe 114 away from the second funnel section 113 is less than or equal to 69 mm.
  • the ratio of the air flow area between any two cross-sections perpendicular to the central axis 101 between the fan outlet D and the air outlet B of the fan 12 is greater than or equal to 0.95 and less than or equal to 1.1, so that the air flows from the fan of the fan 12
  • the pressure loss from the end D to the air outlet B of the air duct portion 11 is less than or equal to 10 Torr, which ensures that the blower 100 has a high energy utilization rate.
  • the ratio of the air flow area of any two cross-sections perpendicular to the central axis 101 between the fan outlet D and the air outlet B of the fan 12 is greater than or equal to 1.02 and less than or equal to 1.1, so that the air flows out from the fan of the fan 12
  • the pressure loss from the end D to the air outlet B of the air duct portion 11 is 8 Torr or less.
  • the specific value of the above structural size can be Adjust within the corresponding range. It can be understood that the radial dimensions of the air inlet portion 111, the first funnel portion 112, the second funnel portion 113, and the blower pipe 114 are gradually changed in the axial direction.
  • the ratio of the air flow area of any two sections perpendicular to the central axis 101 between the fan outlet D of the fan 12 and the front end F of the air guide portion is greater than or equal to 0.95 and less than or equal to 1.05; the rear end of the air guide portion E to The ratio of the flow area of any two sections between the air outlets B perpendicular to the central axis 101 is 0.95 or more and 1.05 or less. This is a further limitation on the structural size of the air duct portion 11.
  • the area of a cross section perpendicular to the central axis 101 from the rear end E of the air guide portion to the air outlet B is approximately equal to the cross section
  • the air flow area that is to say, the section of the air duct section 11 from the rear end E of the air guide section to the air outlet B basically does not have a structure that blocks air flow.
  • Such a structure is provided so that the air flow from the rear end of the air guide section
  • the pressure loss from E to the air outlet B is small, which further improves the working efficiency of the blower.
  • the section of the air duct portion 11 between the rear end E of the air guiding portion and the air outlet B is referred to as a blower pipe 114.
  • the final output wind speed V of the hair dryer 100 is 150 meters / hour or more, the air volume is 510 cubic feet / minute or more, and the total weight G is 2.0 kg or less.
  • the hair dryer 100 has a smaller volume and a lighter weight, which can effectively reduce user fatigue.
  • we control the output wind speed V and the weight G of the blower 100 by adjusting the structure and performance parameters of the motor 13 and the fan 12.
  • variable K indicates that the fan 12 is at The capacity of output wind energy per unit flow area
  • the capacity K of the fan 12 for outputting wind energy per unit flow area is greater than or equal to 480.
  • K is the ability of the fan 12 to output wind energy within a unit flow area
  • K f ( ⁇ , L, n, d) is obtained through experiments. That is to say, the capability K of the fan 12 to output wind energy within a unit flow area is related to the maximum installation angle ⁇ of the blade, the maximum chord length L of the blade, the fan speed n, and the diameter d of the blade tip.
  • the chord length of the fan blade is the length of the intersection of the fan blade and the imaginary entity coaxially intersected between the diameter of the fan hub and the diameter of the blade tip.
  • the maximum chord length L of the fan is the maximum of the length of multiple lines of intersection.
  • the maximum chord length L of the middle blade is the length of the line of intersection between the root of the blade and the surface of the hub; the tip diameter d is the diameter of the highest position of the blade of the fan 12.
  • the blade root is connected to the surface of the hub to form a connection line.
  • the installation angle of the blade is the acute angle between the tangent of each point of the connection line in a plane perpendicular to the radius of the hub and the tangent of the point on the surface of the hub perpendicular to the central axis 101.
  • the maximum installation angle of the blade ⁇ is the maximum value of the installation angle of the fan blades;
  • the fan speed n is the rotational speed of the fan 12 driven by the motor 13.
  • the motor 13 and the fan 12 are installed coaxially, and the fan speed n is basically the same as the motor.
  • the rotational speeds of 13 are equal. Specifically, the rotational speeds of the motor 13 and the fan 12 are both 31,000 rpm or more. It can be understood that, in other embodiments of the present disclosure, the rotation speed n of the fan and the rotation speed of the motor 13 may be different.
  • FIG. 7 is a graph showing a function relationship between the capacity K of the fan 12 for outputting wind energy per unit flow area, the output wind speed V of the blower 100 at the air outlet B, and the weight G of the blower 100 as a whole.
  • the whole machine weight G is a function of the blade tip diameter d
  • the output wind speed V is a function of the maximum fan blade installation angle ⁇ , the maximum blade chord length L, and the fan speed n. It can be seen from FIG.
  • the present disclosure adjusts the capacity K of the output wind energy of the fan 12 within a unit flow area by setting a specific structure of the fan 12 and improving the performance of the motor 13.
  • the hair dryer 100 has more outstanding performance and better structure Design, specifically with less energy loss, higher output wind speed V, and a more compact and lightweight overall structure.
  • the flow cross-section S1 near the air duct of the motor 22 and the flow cross-section S2 of the air outlet 231 portion on the blower pipe 23 are arbitrarily selected.
  • the ratio of the two flow cross-sectional areas is between 0.95 and 1.1, or in other words, a circular circulation surface (not shown in the figure) is basically formed between the inner wall of the channel 24 and the middle of the motor casing 241, and the middle of the motor casing 241
  • the ratio of any two flow cross-sectional areas between the flow cross-section S1 of the annular circulation surface at the position and the flow cross-section S2 of the air outlet 231 on the blower pipe 23 is between 0.95 and 1.01, which can make the air flow in the motor
  • the first pressure P1 in the nearby air duct flows through the blower pipe 23 and the second pressure P2 formed in the duct of the air outlet 231 is greater than or equal to 90% P1, so that the air flow velocity does not change suddenly, which can effectively improve the air flow characteristics. , Improve the efficiency of blowing.
  • the flow cross section S2 located at the rear of the flow guide cone 36 or the flow guide cone 36 and the flow cross section S3 at the air outlet 331 portion of the blower pipe 33 are arbitrary.
  • the ratio of the two flow cross-sectional areas is between 0.95 and 1.05, which can also make the first pressure P1 of the air flow in the air duct near the motor 32 flow through the second duct formed in the duct of the air duct outlet 331 through the blower pipe 33.
  • the pressure P2 is greater than or equal to 90% P1, so that the air flow velocity does not change suddenly, which can effectively improve the air flow characteristics and improve the blowing efficiency.
  • the flow cross section of the air duct portion near the motor 32 is S1
  • the flow cross section S2 of the rear portion of the guide cone 36, and the flow cross section at the air outlet 331 of the blower pipe 33 is S3, or at the motor
  • the flow cross section at any position between the air duct portion near 32, the air duct portion at the tail of the motor 32 and the funnel 34 at the air outlet portion is Sn
  • the flow cross section S1 the flow cross section S2
  • the flow The cross section is S3 and the flow cross section Sn
  • the ratio of any two flow cross sections is between 0.95 and 1.1.
  • the flow cross section S1 close to the air duct of the motor 32, the flow cross section S2 located at the tail of the motor 32, and the flow cross section S3 of the air outlet 331 portion of the blower pipe 33 are mutually
  • the pipe shells of the connected connecting pipe, the channel 34 and the blower pipe 33 are gradually changed in the axial direction.
  • the present disclosure provides a hair dryer, which can realize a more compact and lightweight structure while outputting higher wind speed and larger air volume.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种吹风机(100),包括:风扇(12);电机(13),驱动风扇(12)并绕中心轴线(101)转动;壳体,用于容纳风扇(12)和电机(13);壳体包括:风道部(11),风道部(11)形成有沿中心轴线(101)延伸的供气流流通的风道;风道部(11)的两端分别形成有供气流流入的进风口(A)和供气流流出的出风口(B);风扇(12)和电机(13)容纳于风道部(11)内;风扇(12)具有风扇出风端(D)和风扇进风端(C),风扇出风端(D)和风扇进风端(C)沿中心轴线(101)分别位于风扇(12)的两侧;风扇出风端(D)相对于风扇进风端(C)更加靠近出风口(B);风扇(12)的风扇出风端(D)到风道部(11)的出风口(B)之间任意两个垂直于中心轴线(101)的截面的气流流通面积之比大于等于0.95且小于等于1.1。该吹风机结构更加小巧轻便,同时输出风速更高风量更大。

Description

吹风机 技术领域
本公开涉及一种电动工具,具体涉及一种吹风机。
背景技术
吹风机作为一种常用的花园类工具,能帮助用户清理花园中的残枝落叶。现有的吹风机根据风扇的种类可分为离心式吹风机和轴流式吹风机。输出风速与风量作为吹风机的重要参数,对吹风机的工作性能影响较大,而目前市面上的吹风机输出风速或风量偏低。另外,现有的吹风机的体积和重量较大,容易造成用户使用时疲劳。
发明内容
为解决现有技术的不足,本公开的目的在于提供一种输出风速与风量较大且结构更加小巧轻便的吹风机。
为了实现上述目标,本公开采用如下的技术方案:
一种吹风机,包括:风扇;电机,驱动风扇并绕中心轴线转动;壳体,用于容纳风扇和电机;壳体包括:风道部,风道部形成有沿中心轴线延伸的供气流流通的风道;风道部的两端分别形成有供气流流入的进风口和供气流流出的出风口;风扇和电机容纳于风道部内;风扇具有风扇出风端和风扇进风端,风扇出风端和风扇进风端沿中心轴线分别位于风扇的两侧;风扇出风端相对于风扇进风端更加靠近出风口;风扇的风扇出风端到风道部的出风口之间任意两个垂直于中心轴线的截面的气流流通面积之比大于等于0.95且小于等于1.1。
进一步地,吹风机还包括:用于引导气流流向的导流部,导流部沿与中心轴线重合或者平行的第一直线延伸;导流部包括:导流部后端;导流部前端;导流部后端和导流部前端沿第一直线位于导流部的两端;导流部后端相对于导流部前端更加靠近出风口;导流部后端到出风口之间任意两个垂直于中心轴线的截面的气流流通面积之比大于等于0.95且小于等于1.05。
进一步地,电机为内转子电机,电机的转速大于等于31000转/分钟。
进一步地,风扇包括叶轮和安装至叶轮的叶片,叶片的叶尖直径小于等于82毫米。
进一步地,风道部包括:用于容纳风扇的第一函道部,第一函道部的内直径小于等于84毫米;风道部还包括:用于容纳电机的电机壳体,电机相对风扇更靠近出风口;第一函道部与电机壳体构成固定连接或者为一体式结构。
进一步地,吹风机还包括:用于引导气流流向的导流部,导流部沿与中心轴线重合或者平行的第一直线延伸;导流部包括:导流部后端;导流部前端;导流部后端和导流部前端沿第一直线位于导流部的两端;导流部后端相对于导流部前端更加靠近出风口;风扇出风端到导流部前端之间任意两个垂直于中心轴线的截面的气流流通面积之比大于等于0.95且小于等于1.05。
进一步地,吹风机的输出风速大于等于150米/小时;吹风机的风量大于等于510立方英尺/分钟;出风口的内直径小于等于69毫米。
进一步地,导流部后端到出风口之间任意垂直于中心轴线的截面的面积约等于该截面的气流流通面积。
进一步地,风扇的风扇出风端到风道部的出风口之间任意两个垂直于中心轴线的截面的气流流通面积之比大于等于1.02且小于等于1.1。
进一步地,风扇为轴流式风扇。
一种吹风机,包括:风扇;电机,驱动风扇绕中心轴线转动;壳体,用于容纳风扇和电机;风扇具有输出风能的能力K,吹风机的重量G和吹风机输出的风速V分别与风扇输出风能的能力K构成函数关系G=f1(K),V=f2(K);风扇输出风能的能力K满足关系式K=(γ*L)*n/d,其中:γ为扇叶最大安装角,单位为度,且γ≥67度;L为扇叶最大弦长,单位为米,且L≥0.019米;n为风扇转速,单位为转/分,且n≥31000转/分;d为风扇叶尖直径,单位为毫米,且d≤82毫米。
进一步地,壳体包括:风道部,风道部形成有沿中心轴线延伸的供气流流通的风道;风道部的两端分别形成有供气流流入的进风口和供气流流出的出风口;风扇容纳于风道部内。
进一步地,当K大于等于480时,吹风机的风速大于等于150MPH,吹风机的重量小于等于2.0kg。
进一步地,吹风机还包括:用于引导气流流向的导流部,导流部容纳于壳体内部且沿与中心轴线重合或者平行的第一直线延伸。
进一步地,导流部包括:靠近出风口的导流部后端;靠近进风口的导流部前端;导流部后端和导流部前端沿第一直线位于导流部的两端;导流部后端到出风口之间任意垂直于中心轴线的截面的面积约等于该截面的气流流通面积;导流部为圆锥形的导流锥。
本公开的有益之处在于:提供了一种输出风速与风量都较大的吹风机,同时缩小了吹风机的体积,减轻了吹风机的重量,从而提高了吹风机的整体使用性能,且减轻了用户在使用吹风机时的疲劳感。
附图说明
图1所示为本公开的第一实施例的吹风机的结构示意图;
图2所示为图1中的吹风机的部分结构的剖视图;
图3所示为图1中的吹风机的部分结构的爆炸图;
图4所示为图1中的吹分机的风道部的剖视图;
图5所示为图1中的吹分机的风扇的仰视图;
图6所示为图1中的吹分机的风扇的正视图;
图7所示为图1中的吹风机的输出风速V、整机重量G关于风扇12在单位通流面积内的输出风能的能力K的函数曲线图;
图8所示为本公开的第二实施例的吹风机的部分结构的剖视图;
图9所示为本公开的第三实施例的吹风机的部分结构的剖视图。
具体实施方式
以下结合附图和具体实施例对本公开作具体介绍。
本公开提出一种吹风机100,根据用户的操作方式,该吹风机100具体可以 为手持式吹风机也可以是背负式吹风机。
如图1至图4所示,吹风机100包括绕中心轴线101转动的风扇12,驱动风扇转动的电机13,以及用于容纳风扇12和电机13的壳体。其中,壳体包括供气流流通的风道部11,壳体还形成有供用户操作的把手,把手连接至风道部11或者与风道部11一体成型。在本实施例中,风道部11沿中心轴线101延伸,在风道部11的两端分别形成有供气流流入的进风口A和供气流流出的出风口B;风扇12和电机13容纳在风道部11内部,电机13相对风扇12更靠近出风口B,在其他实施例中,电机13相对风扇12也可以更靠近进风口A,电机13和风扇12沿轴向的排布位置不作具体限制。风扇12包括沿中心轴线101分布于风扇12的两侧的风扇进风端C与风扇出风端D,其中,风扇进风端C相对于风扇出风端D更靠近进风口A,风扇出风端D相对于风扇进风端C更靠近出风口B。具体地,风扇12为轴流式风扇,风扇12包括叶轮和安装至叶轮的叶片。
本实施例中,风道部11由四部分独立的结构连接而成,图2中从下到上依次为:位于风道部11的一端供气流进入的靠近进风口A的进风部111,容纳风扇12及电机13的第一函道部112,容纳导流部14的第二函道部113,以及位于风道部11的一端供气流流出的靠近出风口B的吹风管114。其中,第一函道部112分别与进风部111和第二函道部113构成过盈配合,第二函道部113分别与第一函道部112和吹风管114构成过盈配合,第二函道部113沿中心轴线101成一定锥度延伸。可以理解的,进风部111、第一函道部112、第二函道部113以及吹风管114也可以是一体成型或其中它们中的几个一体成型或构成固定连接,关于风道部11的成型方式与连接方式在此不作限定。
第一函道部112包括连接进风部111和第二函道部113的第一壳体1121,第一函道部112内部设置有用于容纳电机13的电机壳体1122,在电机壳体1122外部还形成有用于引导风向的沿中心轴线101延伸的导风筋1123,本实施例中,在第一壳体1121内部,3个导风筋1123均匀分布在电机壳体1122的外围四周,也即是说电机壳体1122、导风筋1123以及第一壳体1121沿径向由内而外设置。可以理解的,导风筋1123的具体个数不限于3个。导风筋1123连接电机壳体1122与第一壳体1121,三者构成一体式结构,从风扇12流出的气流可经过导风筋1123引导后流入第二函道部113。当然,可以理解的,电机壳体1122也可独立于第一壳体1121或与第一壳体1121相连接。本实施例中,电机壳体1122 为第一函道部112的一部分,可以认为其与第一函道部112构成一体式结构。
吹风机100还包括用于引导气流流向的导流部14,导流部14沿第一直线延伸,第一直线与中心轴线101重合或平行,本实施例中,第一直线与中心轴线101重合。在本实施例中,导流部14为形状呈圆锥形的导流锥且锥部更靠近出风口B。导流部14与靠近电机轴承的轴承盖16构成过盈配合,相对电机13和风扇12更加靠近出风口B。可以理解的,导流部14的结构形态并不仅限于圆锥体。导流部14包括导流部后端E和导流部前端F,导流部后端E相对于导流部前端F更加靠近出风口B;导流部后端E和导流部前端F沿第一直线位于导流部14的两端。
吹风机100还包括供电线缠绕的绕线部15,在本实施例中,绕线部15与第一函道部112构成可拆卸连接。
在本实施例中,电机为高转速内转子电机,电机的转速为31000转/分钟。在此基础上,对风扇12的叶片的叶尖直径以及风道部11的各处尺寸作出限定而得到性能较优的吹风机,具体而言,风扇12的叶尖直径小于等于82毫米,容纳风扇12的第一函道部112的1123的内直径A1小于等于84毫米,电机壳体1121的外直径A2小于等于44毫米,吹风管114靠近第二函道部113的一端的内直径A3小于等于70毫米,吹风管114远离第二函道部113的一端的内直径A4小于等于69毫米,同时,通过对导流部114、第二函道部113以及吹风管114的锥度进行设计,使得气流从风扇12的风扇出风端D到出风口B之间任意两个垂直于中心轴线101的截面的气流流通面积之比大于等于0.95且小于等于1.1,从而使得气流从风扇12的风扇出风端D到风道部11的出风口B的压力损失小于等于10﹪,保证了吹风机100具有较高的能量利用率。进一步地,风扇12的风扇出风端D到出风口B之间任意两个垂直于中心轴线101的截面的气流流通面积之比大于等于1.02且小于等于1.1,使得气流从风扇12的风扇出风端D到风道部11的出风口B的压力损失小于等于8﹪。当然,在满足风扇出风端D到出风口B之间任意两个垂直于中心轴线101的截面的气流流通面积之比大于等于0.95且小于等于1.1的条件下,上述结构尺寸的具体值可以在相应范围内调节。可以理解的,进风部111、第一函道部112、第二函道部113以及吹风管114的径向尺寸是沿轴向渐进变化的。
进一步地,风扇12的风扇出风端D到导流部前端F之间任意两个垂直于中心轴线101的截面的气流流通面积之比大于等于0.95且小于等于1.05;导流部后端E到出风口B之间任意两个垂直于中心轴线101的截面的气流流通面积之比大于等于0.95且小于等于1.05。这是对风道部11的结构尺寸的进一步限定,事实上,在本实施例中,从导流部后端E到出风口B之间任意垂直于中心轴线101的截面的面积约等于该截面的气流流通面积,也即是说,从导流部后端E到出风口B之间的这一段风道部11内部基本没有阻挡气流的结构,这样的结构设置使得气流从导流部后端E到出风口B的压力损失很小,进一步地提高了吹风机的工作效率。在本实施例中,导流部后端E到出风口B之间的这一段风道部11指的是吹风管114。
本实施例中吹风机100最终的输出风速V大于等于150米/小时,风量大于等于510立方英尺/分钟,整机重量G小于等于2.0kg,相比大多数轴流式吹风机,本实施例中的吹风机100具有更小的体积以及更轻的重量,可有效减轻使用者疲劳。事实上,我们是通过调整电机13和风扇12的结构和性能参数来控制吹风机100的输出风速V以及整机重量G。
具体而言,通过对吹风机100的大量模流实验和分析得出,可以通过调整变量K的大小使吹风机100具有更轻的整机重量G和更高的输出风速V,变量K表示风扇12在单位通流面积内的输出风能的能力,变量K具有以下表达式:
K=γ*L*n/d
其中,γ为扇叶最大安装角,单位为度(°);L为扇叶最大弦长,单位为米(m);n为风扇转速,单位为转/分(rpm);d为风扇12的叶尖直径,单位为毫米(mm)。其中,67°≤γ<90°,L≥0.019m,n≥31000rpm,d≤82mm,满足上述条件时,风扇12在单位通流面积内的输出风能的能力K大于等于480。
此处K为风扇12在单位通流面积内的输出风能的能力,通过实验得出K关于以上四个参数的函数K=f(γ,L,n,d)。也即是说,风扇12在单位通流面积内的输出风能的能力K与扇叶最大安装角γ、扇叶最大弦长L、风扇转速n和叶尖直径d相关。如图5、图6所示,扇叶弦长为扇叶与直径介于风扇轮毂直径与叶尖直径之间的假想实体同轴相交的交线长度,此处假想实体结构与风扇轮毂的结构相同,与风扇轮毂只是大小不同,假想实体的直径长度不同,其与扇叶 同轴相交得到的交线长度也不同,扇叶最大弦长L为多个交线长度的最大值,本实施例中扇叶最大弦长L为扇叶根部与轮毂表面的交线长度;叶尖直径d为风扇12的扇叶的最高处所在位置的直径。扇叶根部与轮毂表面连接形成连接线,扇叶安装角为该连接线各点在垂直于轮毂半径的平面内的切线和轮毂表面上该点垂直于中心轴线101的切线之间的锐角,扇叶最大安装角γ为扇叶安装角的最大值;风扇转速n为受电机13驱动的风扇12的转动速度,在本实施例中,电机13和风扇12同轴安装,风扇转速n基本与电机13的转速相等,具体地,电机13和风扇12的转速均大于等于31000转/分。可以理解的,在本公开其他实施例中,风扇转速n与电机13的转速也可以不相等。
图7所示为风扇12在单位通流面积内的输出风能的能力K、吹风机100在出风口B处的输出风速V和吹风机100整机重量G之间的函数关系的曲线图。实际上,整机重量G是关于叶尖直径d的函数,输出风速V是关于扇叶最大安装角γ、扇叶最大弦长L以及风扇转速n三者的函数。由图7可知,当设计的风扇12在单位通流面积内的输出风能的能力K等于480时,吹风机100在出风口B处的输出风速V达到150MPH(mile per hour),同时吹风机100的整机重量约为2.00kg;当风扇12在单位通流面积内的输出风能的能力K大于480时,吹风机100在出风口B处的输出风速V大于150MPH,同时吹风机100整机重量G小于2.00kg;进一步地,当风扇12在单位通流面积内的输出风能的能力K大于0且小于480时,吹风机100在出风口B处的输出风速V大于0且小于150MPH,同时吹风机100整机重量G大于2.00kg;当风扇12在单位通流面积内的输出风能的能力K>510时,吹风机100在出风口B处的输出风速V大于170MPH,同时吹风机100整机重量G小于1.85kg。因此,通过控制风扇12在单位通流面积内的输出风能的能力K,就可以得到相应的整机重量G和输出风速V。事实上,本公开是通过设置改进风扇12的具体结构以及电机13的性能来调节风扇12在单位通流面积内的输出风能的能力K的。
综上,通过调整本吹风机100的风道部11不同部位的径向尺寸以及控制风扇12在单位通流面积内的输出风能的能力K使得吹风机100具备了更加突出的使用性能和更优的结构设计,具体为具备较少的能量损失、较高的输出风速V以及更加小巧轻便的整机结构。
在本公开的第二实施例中,如图8所示,在风扇21的后端靠近电机22的 风道的流动横截面S1与吹风管23上出风口231部分的流动横截面S2之间任意两个流动截面积的比值介于0.95~1.1之间,或者说,在函道24内壁与电机壳体241中间之间基本形成一个环形流通面(图未标),电机壳体241中间所处位置的环形流通面的流动横截面S1与在吹风管23上出风口231部位的流动横截面S2之间任意两个流动截面积的比值介于0.95~1.01之间,可以使得气流在电机附近的风道内的第一压力P1,流经吹风管23在风管出风口231的涵道内形成的第二压力P2大于等于90%P1,这样气流流速不会突然变化,可以有效改善气流流动特性,提高吹风效率。
如图9所示,在本公开的第三实施例中,位于导流锥36或导流锥36后部的流动横截面S2与在吹风管33出风口331部分的流动横截面S3之间任意两个流动截面积的比值介于0.95~1.05之间,也可以使得气流在电机32附近的风道内的第一压力P1,流经吹风管33在风管出风口331的涵道内形成的第二压力P2大于等于90%P1,这样气流流速不会突然变化,可以有效改善气流流动特性,提高吹风效率。具体而言,位于电机32附近的风道部分的流动横截面为S1,位于导流锥36后部的流动横截面S2,在吹风管33出风口331部分的流动横截面为S3,或在电机32附近的风道部分、位于电机32尾部的风道部分与出风口部分的函道34之间的任一位置处的流动横截面为Sn,则对于流动横截面S1、流动横截面S2、流动横截面为S3,以及流动横截面Sn而言,任意两个流动横截面之比介于0.95~1.1之间。也就是说,通过对电机附近的风道与风管出风口之间的风道流动横截面的优化,可使气流的压力损失得到有效控制,可以提高整机的出风效率。
可以理解的是,在风扇31的后端靠近电机32的风道的流动横截面S1,位于电机32尾部的流动横截面S2,以及在吹风管33出风口331部分的流动横截面S3之间相互连接的连接管,函道34和吹风管33的管道外壳沿轴向是渐进变化的。
需要说明的是,以上仅仅阐述了第二实施例和第三实施例的吹风机与第一实施例的吹风机的不同之处或者相同但未提及之处,第一实施例中已经陈述过的其他适用性技术特征均可以应用到第二实施例和第三实施例中,在此不作赘述。
以上显示和描述了本公开的基本原理、主要特征和优点。本行业的技术人员应该了解,上述实施例不以任何形式限制本公开,凡采用等同替换或等效变换的方式所获得的技术方案,均落在本公开的保护范围内。
工业实用性
本公开提供了一种吹风机,可以实现结构更加小巧轻便同时输出风速更高风量更大。

Claims (15)

  1. 一种吹风机,包括:
    风扇;
    电机,驱动所述风扇并绕中心轴线转动;
    壳体,用于容纳所述风扇和所述电机;
    所述壳体包括:
    风道部,所述风道部形成有沿所述中心轴线延伸的供气流流通的风道;所述风道部的两端分别形成有供气流流入的进风口和供气流流出的出风口;所述风扇和电机容纳于所述风道部内;
    所述风扇具有风扇出风端和风扇进风端,所述风扇出风端和所述风扇进风端沿所述中心轴线分别位于所述风扇的两侧;所述风扇出风端相对于所述风扇进风端更加靠近所述出风口;
    其特征在于:
    所述风扇的所述风扇出风端到所述风道部的所述出风口之间任意两个垂直于所述中心轴线的截面的气流流通面积之比大于等于0.95且小于等于1.1。
  2. 根据权利要求1所述的吹风机,其特征在于:
    所述吹风机还包括:
    用于引导气流流向的导流部,所述导流部沿与所述中心轴线重合或者平行的第一直线延伸;
    所述导流部包括:
    导流部后端;
    导流部前端;
    所述导流部后端和所述导流部前端沿所述第一直线位于所述导流部的两 端;所述导流部后端相对于所述导流部前端更加靠近所述出风口;所述导流部后端到所述出风口之间任意两个垂直于所述中心轴线的截面的气流流通面积之比大于等于0.95且小于等于1.05。
  3. 根据权利要求1所述的吹风机,其特征在于:
    所述电机为内转子电机,所述电机的转速大于等于31000转/分钟。
  4. 根据权利要求1所述的吹风机,其特征在于:
    所述风扇包括叶轮和安装至所述叶轮的叶片,所述叶片的叶尖直径小于等于82毫米。
  5. 根据权利要求1所述的吹风机,其特征在于:
    所述风道部包括:
    用于容纳所述风扇的第一函道部,所述第一函道部的内直径小于等于84毫米;
    所述风道部还包括:
    用于容纳所述电机的电机壳体,所述电机相对所述风扇更靠近所述出风口;所述第一函道部与所述电机壳体构成固定连接或者为一体式结构。
  6. 根据权利要求1所述的吹风机,其特征在于:
    所述吹风机还包括:
    用于引导气流流向的导流部,所述导流部沿与所述中心轴线重合或者平行的第一直线延伸;
    所述导流部包括:
    导流部后端;
    导流部前端;
    所述导流部后端和所述导流部前端沿所述第一直线位于所述导流部的两端;所述导流部后端相对于所述导流部前端更加靠近所述出风口;所述风扇出风端到所述导流部前端之间任意两个垂直于所述中心轴线的截面的气流流通面积之比大于等于0.95且小于等于1.05。
  7. 根据权利要求1所述的吹风机,其特征在于:
    所述吹风机的输出风速大于等于150米/小时;所述吹风机的风量大于等于510立方英尺/分钟;所述出风口的内直径小于等于69毫米。
  8. 根据权利要求2所述的吹风机,其特征在于:
    所述导流部后端到所述出风口之间任意垂直于所述中心轴线的截面的面积约等于该截面的气流流通面积。
  9. 根据权利要求1所述的吹风机,其特征在于:
    所述风扇的所述风扇出风端到所述风道部的所述出风口之间任意两个垂直于所述中心轴线的截面的气流流通面积之比大于等于1.02且小于等于1.1。
  10. 根据权利要求1所述的吹风机,其特征在于:
    所述风扇为轴流式风扇。
  11. 一种吹风机,包括:
    风扇;
    电机,驱动所述风扇绕中心轴线转动;
    壳体,用于容纳所述风扇和所述电机;
    所述风扇具有输出风能的能力K,所述吹风机的重量G和所述吹风机输出的风速V分别与所述风扇输出风能的能力K构成函数关系G=f1(K),V=f2(K);风扇输出风能的能力K满足关系式K=(γ*L)*n/d,其中:
    γ为扇叶最大安装角,单位为度,且γ≥67度;
    L为扇叶最大弦长,单位为米,且L≥0.019米;
    n为风扇转速,单位为转/分,且n≥31000转/分;
    d为风扇叶尖直径,单位为毫米,且d≤82毫米。
  12. 根据权利要求11所述的吹风机,其特征在于:
    所述壳体包括:
    风道部,所述风道部形成有沿所述中心轴线延伸的供气流流通的风道;所述风道部的两端分别形成有供气流流入的进风口和供气流流出的出风口;所述风扇容纳于所述风道部内。
  13. 根据权利要求11所述的吹风机,其特征在于:
    当K大于等于480时,所述吹风机的风速大于等于150MPH,所述吹风机的重量小于等于2.0kg。
  14. 根据权利要求11所述的吹风机,其特征在于:
    所述吹风机还包括:
    用于引导气流流向的导流部,所述导流部容纳于所述壳体内部且沿与所述中心轴线重合或者平行的第一直线延伸。
  15. 根据权利要求14所述的吹风机,其特征在于:
    所述导流部包括:
    靠近所述出风口的导流部后端;
    靠近所述进风口的导流部前端;
    所述导流部后端和所述导流部前端沿所述第一直线位于所述导流部的两端;所述导流部后端到所述出风口之间任意垂直于所述中心轴线的截面的面积 约等于该截面的气流流通面积;所述导流部为圆锥形的导流锥。
PCT/CN2019/082079 2018-05-25 2019-04-10 吹风机 WO2019223438A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201810515140 2018-05-25
CN201810515140.0 2018-05-25
CN201811449820.3A CN110528433B (zh) 2018-05-25 2018-11-30 吹风机
CN201811449820.3 2018-11-30
CN201811450194.X 2018-11-30
CN201811450194.XA CN110528434A (zh) 2018-05-25 2018-11-30 吹风机

Publications (1)

Publication Number Publication Date
WO2019223438A1 true WO2019223438A1 (zh) 2019-11-28

Family

ID=68615513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/082079 WO2019223438A1 (zh) 2018-05-25 2019-04-10 吹风机

Country Status (1)

Country Link
WO (1) WO2019223438A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1085994A (zh) * 1992-07-11 1994-04-27 株式会社金星社 通风机的蜗壳装置
US6439839B1 (en) * 1999-08-10 2002-08-27 Lg Electronics Inc. Blower
CN104420432A (zh) * 2013-08-28 2015-03-18 苏州宝时得电动工具有限公司 吹风装置
CN104564839A (zh) * 2013-10-11 2015-04-29 南京德朔实业有限公司 一种吹风机及其风筒
CN204306255U (zh) * 2014-08-01 2015-05-06 南京德朔实业有限公司 风机
CN106930214A (zh) * 2015-12-31 2017-07-07 南京德朔实业有限公司 吹风机
CN206448217U (zh) * 2016-12-23 2017-08-29 南京德朔实业有限公司 适配具有出风管的吹风机的附件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1085994A (zh) * 1992-07-11 1994-04-27 株式会社金星社 通风机的蜗壳装置
US6439839B1 (en) * 1999-08-10 2002-08-27 Lg Electronics Inc. Blower
CN104420432A (zh) * 2013-08-28 2015-03-18 苏州宝时得电动工具有限公司 吹风装置
CN104564839A (zh) * 2013-10-11 2015-04-29 南京德朔实业有限公司 一种吹风机及其风筒
CN204306255U (zh) * 2014-08-01 2015-05-06 南京德朔实业有限公司 风机
CN106930214A (zh) * 2015-12-31 2017-07-07 南京德朔实业有限公司 吹风机
CN206448217U (zh) * 2016-12-23 2017-08-29 南京德朔实业有限公司 适配具有出风管的吹风机的附件

Similar Documents

Publication Publication Date Title
US10405707B2 (en) Blower
WO2018028639A1 (zh) 花园吹风机
CN104728160B (zh) 径流式叶轮和风机单元
CN108071090B (zh) 吹风机及其轴流风扇
JP2012520407A (ja) 吸込み風抑圧器組立体
US7008189B2 (en) Centrifugal fan
CN109611356A (zh) 一种后向离心风机
CN110528433B (zh) 吹风机
CN108797480A (zh) 一种吹风机
CN206815252U (zh) 一种吹风机
WO2019223438A1 (zh) 吹风机
CN105179275A (zh) 新混流管道风机
CN210568923U (zh) 一种新型空气净化器
CN201865968U (zh) 用于电吹风机上的叶轮
CN105090122A (zh) 一种离心式风机及其无叶扩压器
CN108684444A (zh) 吹风机
CN108138455A (zh) 花园吹风机
CN107339265B (zh) 风扇
CN104564839B (zh) 一种吹风机及其风筒
CN207235677U (zh) 吹风机
CN111893933B (zh) 背负式吹风机
CN217399505U (zh) 一种风道组件及吹风机
KR101672260B1 (ko) 후향전곡 비틀림깃 원심임펠러
KR20150137483A (ko) 에어포일 형상의 후향깃 원심임펠러
KR101467223B1 (ko) 후향전곡 역익형 깃의 원심임펠러

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19807588

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19807588

Country of ref document: EP

Kind code of ref document: A1