WO2019223037A1 - Condenseur de type divisé pour récupérer une chaleur totale à haute température - Google Patents

Condenseur de type divisé pour récupérer une chaleur totale à haute température Download PDF

Info

Publication number
WO2019223037A1
WO2019223037A1 PCT/CN2018/091013 CN2018091013W WO2019223037A1 WO 2019223037 A1 WO2019223037 A1 WO 2019223037A1 CN 2018091013 W CN2018091013 W CN 2018091013W WO 2019223037 A1 WO2019223037 A1 WO 2019223037A1
Authority
WO
WIPO (PCT)
Prior art keywords
split
condenser
steam
heat recovery
water
Prior art date
Application number
PCT/CN2018/091013
Other languages
English (en)
Chinese (zh)
Inventor
袁昭
袁世俊
Original Assignee
袁昭
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 袁昭 filed Critical 袁昭
Publication of WO2019223037A1 publication Critical patent/WO2019223037A1/fr

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/02Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using water or other liquid as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00

Definitions

  • the invention belongs to the field of thermoelectricity, and particularly relates to a split condenser for high-temperature full-heat recovery.
  • thermal power generation by steam turbine engines has been the main power generation mode in countries around the world.
  • Thermal power and dust pollution emitted by thermal power generation while consuming a large amount of non-renewable energy are also the main causes of current environmental pollution.
  • Source but for more than two centuries, although the power generation process has made continuous progress, there have been no major technological breakthroughs in energy saving and environmental protection.
  • Condensers are the main equipment of steam turbine power generation technology (including post-thermal power generation programs for nuclear power). Take water-cooled surface condensers as an example. In order to obtain condensate circulation and maintain the effective Rankine cycle of steam turbines, traditional condensers The steamer needs to use a large amount of cooling water to force the medium-low pressure steam heat energy that has been used to perform high-pressure cooling to convert it into waste hot water less than 50 ° C. In order to maintain continuous circulating cooling, the cooling water must also be The temperature is lowered below 35 ° C, and the low-temperature temperature difference heat needs to be dissipated to the surrounding environment of the power plant, resulting in local or large-area air, river, or partial sea area thermal pollution.
  • the purpose of the present invention is to propose a split condenser for high-temperature full-heat recovery, which enables low-temperature waste heat recovery cold water to obtain more than 95% thermal mass (temperature) and more than 95% from high-temperature waste steam. Of heat (power).
  • a split condenser for high-temperature full heat recovery a split condenser box composed of a steel plate structure, and a comb-shaped heat exchange pipe for waste heat recovery is installed in the box, so that The steam and waste heat recovery water form a low-resistance wave-shaped reverse cross-step heat exchange with the high-temperature waste steam in the split condenser cavity.
  • the multi-component bulk condenser assembly is assembled and arranged in a straight line with sufficient length through buffer connection blocks. Heat exchange space, full heat recovery of high-temperature hot water and high-efficiency condensate.
  • the split condenser is a high-temperature full-heat recovery split condenser.
  • the split condenser is welded by steel plates to form a sealed rectangular waste steam channel space, and a waste heat recovery comb heat exchanger is installed in the channel space at the same direction as the steam operation.
  • Pipe group The two ends of the pipe group are connected with the honeycomb pipe group baffle to form a water channel steam-water heat exchange component.
  • the obliquely installed pipe group baffle forms a water channel V-shaped bin at the two ends of the split condenser to enable the split condensation.
  • the steam running direction of the steam turbine and the direction of the waste heat recovery water form a reverse cross running channel.
  • the split condenser with high temperature and full heat recovery which connects a plurality of split condenser boxes in a forward and reverse direction through a buffer connection block, is connected in series in a straight line, so that the reversely flowing gas and liquid form a wave-shaped cross heat exchange channel.
  • the waste steam is gradually converted into condensed water at the end of the series structure of the split condenser, and the waste heat recovery cold water is heated by reverse stepwise heat exchange at the waste heat recovery hot water outlet and returned to the occasion where hot water is needed.
  • the entire condenser In the split condenser with high-temperature and full-heat recovery, the entire condenser is installed in the form of a trench in the ground, and insulation material is filled between the trench and the condenser in an environment of ultra-low heat leakage. In the reverse step-shaped full-heat high-temperature heat energy recovery.
  • the internal vacuum state and condensate replenishment measures maintain the original condenser process.
  • a split condenser with high-temperature and full-heat recovery which can fully recover the high-temperature waste steam energy of a thermoelectric boiler, and generate high-temperature hot water that can be used for secondary power generation, and widely replace production and domestic hot water boilers.
  • a split condenser with high temperature and full heat recovery which removes the traditional cooling tower, and realizes ultra-low thermal pollution emission in the thermoelectric industry.
  • the drawing is a schematic diagram of the cross-sectional structure of a split condenser with high-temperature full heat recovery.
  • the components in the drawing are marked as follows: 1. Condensing well; 2. Outlet of condensed water; 3. Waste steam inlet; 4. Direction of waste steam running direction; 5. V-shaped silo of water channel; 6. Insulation layer; 7. Split condenser box; 8. Residual heat recovery comb-shaped heat exchange pipeline group; 9. Ground plane; 10. Split steam condenser channel; 11. Split condenser water connection channel; 12. Pipe group Baffle plate; 13. Waste heat recovery cold water inlet; 14. Waste heat recovery hot water outlet; 15. Underground; 16. Buffer connection block; 17. Condensate internal outlet; 18. Steam running direction indication in condenser; 19. Condensation Water collection channel.
  • the split condenser is a high-temperature full-heat recovery split condenser.
  • the split condenser is welded by steel plates to form a sealed rectangular waste steam channel space, and a waste heat recovery comb heat exchanger is installed in the channel space at the same direction as the steam operation.
  • Pipe group 8 the two ends of the pipe group are connected to the honeycomb pipe group baffle plate 12 to form a water channel steam-water heat exchange component.
  • the obliquely installed pipe group baffle plate 12 forms a water channel V-shaped bin 5 at the ends of the split condenser.
  • the direction of the steam running of the split condenser and the direction of the waste heat recovery water are formed to form a reverse cross running channel.
  • the above-mentioned split condenser with high temperature and full heat recovery connects a plurality of split condenser boxes in series in a straight line through the buffer connection block 16 so that the reversely flowing gas and liquid form a wavy cross-heat exchange.
  • the waste steam is gradually converted into condensed water at the end of the split condenser series structure.
  • the waste heat recovery cold water is heated by reverse stepwise heat exchange and returned to the place where hot water is needed at the waste heat recovery hot water outlet 14.
  • the above-mentioned split condenser for high-temperature and full-heat recovery collects the condensed water internal outlet 17 after heat exchange into the condensed water collection channel 19, enters the condensing well 1 and provides a steam turbine at the condensed water external outlet 2. Circulating water.
  • the drawing is a schematic diagram of a split condenser for high-temperature total heat recovery.
  • the schematic diagram of the cross-section structure of a thermoelectric steam turbine engine application embodiment is described in detail with reference to the drawing.
  • the body type condenser is installed in the underground 15 trench below the ground level 9.
  • the body type condenser is designed according to the different sizes and numbers of the body type condenser body 7 and the surrounding is filled with insulation material. Shown structure.
  • thermoelectric steam turbine engine enters the condenser at the waste steam inlet 3 and forms a wave-shaped low-impedance long-distance cross-step heat exchange with the low-temperature tap water from the waste heat recovery cold water inlet 13.
  • the steam gradually forms condensate during the gradual cooling process.
  • high-temperature tap water that is heated stepwise and step-by-step is placed in 5 V-shaped silos in the water channel near the waste steam inlet 3 to output hot water for secondary low-temperature power generation or production and domestic use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

L'invention concerne un condenseur de type divisé pour récupérer une chaleur totale à haute température, qui appartient au domaine de la thermoélectricité. Un corps (7) de boîtier de condenseur de type fendu est formé au moyen d'une structure à plaque d'acier, un pipeline d'échange de chaleur en forme de peigne de récupération de chaleur résiduelle (8) est installé de manière oblique dans le corps de boîtier, de telle sorte que la vapeur et l'eau de récupération de chaleur résiduelle soient combinées, dans une cavité de condenseur de type divisé, avec de la vapeur de déchets à haute température, pour former un échange de chaleur étagé croisé inversé en forme d'onde à faible résistance ; de multiples groupes de composants de condenseur de type divisé sont assemblés, au moyen de blocs de connexion tampon (16), dans un espace d'échange de chaleur d'une ligne droite ayant une longueur suffisante, pour récupérer, dans un mode de chaleur totale, de l'eau chaude à haute température et de l'eau condensée à haut rendement. La vapeur à basse pression et l'eau chaude à haute température qui sont obtenues peuvent être utilisées pour la production d'énergie secondaire, et peuvent également être utilisées dans l'industrie et la vie quotidienne.
PCT/CN2018/091013 2018-05-22 2018-06-13 Condenseur de type divisé pour récupérer une chaleur totale à haute température WO2019223037A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201820769075.X 2018-05-22
CN201820769075.XU CN208579650U (zh) 2018-05-22 2018-05-22 一种高温全热回收的分体式凝汽器

Publications (1)

Publication Number Publication Date
WO2019223037A1 true WO2019223037A1 (fr) 2019-11-28

Family

ID=65506432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091013 WO2019223037A1 (fr) 2018-05-22 2018-06-13 Condenseur de type divisé pour récupérer une chaleur totale à haute température

Country Status (2)

Country Link
CN (1) CN208579650U (fr)
WO (1) WO2019223037A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108592648A (zh) * 2018-05-22 2018-09-28 袁昭 一种高温全热回收的分体式凝汽器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3842618A (en) * 1971-12-22 1974-10-22 Sarlab Ag Absorption refrigeration apparatus of the inert gas type
US4534175A (en) * 1982-03-11 1985-08-13 Gason Energy Engineering Ltd. Method and apparatus for the absorption of a gas in a liquid and their use in energy conversion cycles
JP2002054886A (ja) * 2000-08-10 2002-02-20 Tlv Co Ltd 熱交換器
CN101576360A (zh) * 2009-06-01 2009-11-11 南京工业大学 基于热管和翅片管的低位能回收用高效组合式换热装置
CN201852502U (zh) * 2010-11-05 2011-06-01 上海彩耀新能源投资发展有限公司 分离式热管换热器
CN105783571A (zh) * 2016-05-04 2016-07-20 大连鑫汇达制冷设备有限公司 高压盘管组件结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3842618A (en) * 1971-12-22 1974-10-22 Sarlab Ag Absorption refrigeration apparatus of the inert gas type
US4534175A (en) * 1982-03-11 1985-08-13 Gason Energy Engineering Ltd. Method and apparatus for the absorption of a gas in a liquid and their use in energy conversion cycles
JP2002054886A (ja) * 2000-08-10 2002-02-20 Tlv Co Ltd 熱交換器
CN101576360A (zh) * 2009-06-01 2009-11-11 南京工业大学 基于热管和翅片管的低位能回收用高效组合式换热装置
CN201852502U (zh) * 2010-11-05 2011-06-01 上海彩耀新能源投资发展有限公司 分离式热管换热器
CN105783571A (zh) * 2016-05-04 2016-07-20 大连鑫汇达制冷设备有限公司 高压盘管组件结构

Also Published As

Publication number Publication date
CN208579650U (zh) 2019-03-05

Similar Documents

Publication Publication Date Title
Jaber et al. Short review on heat recovery from exhaust gas
JP6230344B2 (ja) 蒸気タービンプラント
CN103089349B (zh) 一种分布式工业锅炉冷热电三联供装置
CN103089441B (zh) 一种分布式气动-朗肯联合循环冷热电三联供装置
CN105423772A (zh) 汽轮机轴封漏汽与锅炉连续排污余热联合制冷电站空冷系统及空冷凝汽器换热系数预测方法
CN104929806A (zh) 带有机朗肯循环余热回收发电的燃气内燃机热电联产系统
CN202195715U (zh) 一种带乏汽换热系统的电厂汽水系统
CN103528044A (zh) 烟气排气脱硫装置的热量回收系统
CN203259020U (zh) 一种利用烧结窑尾气低温余热发电的装置
WO2019223037A1 (fr) Condenseur de type divisé pour récupérer une chaleur totale à haute température
CN103790793B (zh) 海洋热能开式循环发电系统
Wang et al. Heat transfer and thermal characteristics analysis of direct air-cooled combined heat and power plants under off-design conditions
CN212253779U (zh) 一种分离式相变远程传热系统
CN213300061U (zh) 热电联产冷却水热量梯级回收系统
CN210799058U (zh) 一种汽水双压余热发电系统
CN111396160A (zh) 一种烟气余热热电联供系统及热电联供方法
CN103147806B (zh) 蒸汽朗肯-有机朗肯联合循环发电装置
CN220929496U (zh) 一种复叠式orc余热发电系统
CN204730176U (zh) 一种火力发电厂闭式循环辅机冷却水热量回收系统
CN104929707A (zh) 电站排汽潜热与排烟余热联合发电系统和优化运行方法
CN104034086A (zh) 大型燃煤机组集中制冷设备及其制冷方法
CN216617787U (zh) 一种新型地能干热岩发电系统
CN103775141A (zh) 改进型凝汽式热泵辅助冷却汽轮发电系统及其发电方法
CN103147942A (zh) 利用地热热能的多级发电装置
CN114427484B (zh) 一种掺氨电厂中利用氨冷能的直接空冷系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18920176

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18920176

Country of ref document: EP

Kind code of ref document: A1