WO2019221282A1 - Coke dry quenching facility - Google Patents

Coke dry quenching facility Download PDF

Info

Publication number
WO2019221282A1
WO2019221282A1 PCT/JP2019/019718 JP2019019718W WO2019221282A1 WO 2019221282 A1 WO2019221282 A1 WO 2019221282A1 JP 2019019718 W JP2019019718 W JP 2019019718W WO 2019221282 A1 WO2019221282 A1 WO 2019221282A1
Authority
WO
WIPO (PCT)
Prior art keywords
flue
coke
pressure
partition member
detection unit
Prior art date
Application number
PCT/JP2019/019718
Other languages
French (fr)
Japanese (ja)
Inventor
政嗣 森田
耀介 渡邊
正栄 山口
Original Assignee
株式会社Ihiポールワース
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihiポールワース filed Critical 株式会社Ihiポールワース
Priority to KR1020207028404A priority Critical patent/KR20200127237A/en
Priority to CN201980026179.9A priority patent/CN111989385A/en
Priority to JP2020519951A priority patent/JPWO2019221282A1/en
Publication of WO2019221282A1 publication Critical patent/WO2019221282A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B39/00Cooling or quenching coke
    • C10B39/02Dry cooling outside the oven

Definitions

  • This disclosure relates to coke dry fire extinguishing equipment.
  • coke dry fire extinguishing equipment extinguishes and cools the coke extruded from the coke oven.
  • the coke dry fire extinguishing equipment includes a cooling tower. In the cooling tower, a preliminary chamber and a cooling chamber continuous below the preliminary chamber are formed inside. Coke (red hot coke) is charged into the preliminary chamber from the top of the cooling tower. Coke (red hot coke) moves from the reserve chamber to the cooling chamber. An inert gas is supplied to the cooling chamber from below. Coke is extinguished and cooled by heat exchange with the inert gas.
  • the cooling tower is formed with a plurality of small flues that open to the cooling chamber in the circumferential direction.
  • the inert gas goes up the cooling chamber while extinguishing and cooling the coke.
  • the inert gas is discharged from the small flue to the outside of the cooling chamber.
  • Patent Documents 1 and 2 disclose so-called two-stage flue-type coke dry fire extinguishing equipment in which a partition member is provided in a small flue.
  • the upper flue and the lower flue are formed in the small flue by the partition member.
  • ⁇ Coke enters the small flue from the upper end of the cooling chamber opening due to the gas flow.
  • the coke that has entered the small flue is returned to the cooling chamber by being dragged by the coke descending in the cooling chamber.
  • a coke flow occurs in the small flue.
  • the total amount of coke entering the small flue is reduced compared to the single flue type in which no partition member is provided. Therefore, in the two-stage flue type, the ventilation capacity can be improved compared to the single flue type.
  • intrusion coke In the coke dry fire extinguishing equipment, the intrusion and escape of coke into the small flue are made continuously. At this time, the balance between the amount of coke entering the small flue (hereinafter referred to as “intrusion coke”) and the amount of coke exiting from the small flue (hereinafter referred to as “escape coke”) is lost, and the amount of intrusion coke escapes. If the amount of coke is greatly exceeded, normal operation becomes impossible.
  • the small flue can be visually observed from the inspection port of the annular flue ceiling so that the amount of coke in the small flue can be monitored.
  • the visual observation of the small flue is hindered by the partition member, and it may be difficult to monitor the amount of coke in the small flue.
  • the present disclosure is intended to provide a coke dry fire extinguishing facility capable of easily monitoring a dangerous amount of coke in a small flue.
  • a coke dry fire extinguishing facility includes a cooling tower having a cooling chamber surrounded by a wall portion, and a gas supply that is provided in the cooling tower and supplies gas into the cooling chamber. And a small flue that is formed above the gas supply unit in the vertical direction and opens to the cooling chamber, and is provided in the small flue and includes a plurality of small flues in the vertical direction. And a pressure detection unit that detects the pressure of the lowermost flue located at the lowest position in the vertical direction among the plural flues.
  • the pressure detection unit includes a lower detection unit that detects the pressure of the lowermost flue, an upper detection unit that detects a pressure above the lower detection unit in a vertical direction, a pressure detected by the lower detection unit, and an upper portion A differential pressure deriving unit for deriving a differential pressure from the pressure detected by the detection unit.
  • the upper detection unit may detect the pressure above the upper end of the partition member in the vertical direction.
  • a control unit may be provided that performs a predetermined notification when the differential pressure derived by the differential pressure deriving unit exceeds a preset threshold value.
  • the pressure detection unit may be provided in a plurality of different small flues.
  • the dangerous amount of coke in the small flue can be easily monitored.
  • FIG. 1 is a diagram illustrating a coke dry fire extinguishing facility.
  • 2 is a cross-sectional view taken along line II-II in FIG.
  • FIG. 3 is a perspective view of the partition member.
  • 4 is a cross-sectional view taken along line IV-IV in FIG.
  • FIG. 5 is a plan view of the partition member in four directions.
  • FIG. 6 is a view for explaining an attachment state of the partition member.
  • 7 is a cross-sectional view taken along line VII-VII in FIG.
  • FIG. 8 shows a state in which the partition member is removed from FIG.
  • FIG. 9 is a diagram illustrating a state where the amount of intrusion coke is increased.
  • FIG. 10 is a flowchart for explaining an example of the control process of the coke dry fire extinguishing equipment.
  • FIG. 11 is a diagram illustrating a coke dry fire extinguishing facility according to a first modification.
  • FIG. 12 is a diagram illustrating a partition member according to a second modification.
  • FIG. 13 is a diagram illustrating a partition member according to a third modification.
  • FIG. 14 is a diagram illustrating a partition member according to a fourth modification.
  • FIG. 1 is a diagram for explaining the coke dry fire extinguishing equipment 1.
  • 2 is a cross-sectional view taken along line II-II in FIG.
  • the coke dry fire extinguishing equipment 1 includes a cooling tower 3.
  • the cooling tower 3 includes a wall portion 3a formed in an annular shape.
  • the cooling tower 3 is provided with a preliminary chamber 5 and a cooling chamber 7 surrounded by a wall 3a.
  • the preliminary chamber 5 includes an input port 5a formed at the top of the wall 3a. Coke is charged into the cooling tower 3 from the charging port 5a.
  • the cooling chamber 7 is a space continuous with the preliminary chamber 5 and is provided below the preliminary chamber 5.
  • a gas supply port 7a (gas supply unit) penetrating the wall 3a is formed.
  • a circulating gas mainly containing an inert gas such as nitrogen is supplied into the cooling tower 3 from the gas supply port 7a.
  • a gas distribution mechanism 9 is provided at the bottom of the cooling chamber 7. The gas distribution mechanism 9 divides the circulating gas supplied into the cooling tower 3 from the gas supply port 7a.
  • annular flue 11 is formed in a portion of the wall 3 a that surrounds the preliminary chamber 5.
  • the annular flue 11 is an annular hole extending in the circumferential direction of the wall 3a.
  • the wall 3a is provided with a plurality of small flues 13 having openings 13a opened in the cooling chamber 7.
  • the small flue 13 is located above the gas supply port 7a and the gas distribution mechanism 9 in the vertical direction in the wall 3a.
  • a plurality of small flues 13 are formed apart from each other in the circumferential direction of the cooling tower 3.
  • the small flue 13 allows the annular flue 11 and the cooling chamber 7 to communicate with each other. That is, the small flue 13 is a passage connecting the cooling chamber 7 and the annular flue 11.
  • the circulating gas is discharged from the cooling chamber 7 to the annular flue 11 through the small flue 13.
  • a portion of the wall portion 3a that partitions the annular flue 11 and the preliminary chamber 5 is defined as an inner wall portion 3b. That is, in the wall portion 3a, the radially inner side of the annular flue 11 becomes the inner wall portion 3b. Therefore, the opening 13a on the cooling chamber 7 side of the small flue 13 is positioned below the inner wall 3b.
  • the preliminary chamber 5 is a space above the opening 13 a of the small flue 13.
  • the opening 13 a is open to the cooling chamber 7. That is, the upper end portion of the opening 13 a of the small flue 13 serves as a boundary between the preliminary chamber 5 and the cooling chamber 7.
  • the inner diameter of the cooling chamber 7 is larger than the inner diameter of the preliminary chamber 5.
  • the inner diameter of the portion surrounding the cooling chamber 7 in the wall 3a is larger than the inner diameter of the inner wall 3b.
  • An inclined surface 3c whose inner diameter gradually increases downward from the lower end of the inner wall 3b is provided on the inner circumferential surface of the wall 3a.
  • An opening 13a of the small flue 13 is formed on the inclined surface 3c. Therefore, the opening 13a of the small flue 13 is inclined with respect to the vertical direction.
  • the protrusion which protrudes to the radial inside of the cooling tower 3 may be provided in the internal peripheral surface of the inner wall part 3b.
  • annular bottom 11 a of the annular flue 11 is formed on the wall 3 a.
  • the annular bottom portion 11a extends in an annular shape, and an upper opening 13b of the small flue 13 opens into the annular bottom portion 11a.
  • a plurality of air supply ports 15 are provided in the annular bottom portion 11a.
  • the air supply port 15 is located between the adjacent upper openings 13b.
  • branch pipes 17 are connected to the plurality of air supply ports 15, respectively.
  • the plurality of branch pipes 17 are connected to the fan 21 via the main pipe 19.
  • the main pipe 19 supplies combustion air to the air supply port 15 via the branch pipe 17.
  • the branch pipe 17 is provided with a flow rate adjusting valve 23 for adjusting the flow rate of the combustion air.
  • the main pipe 19 is provided with a control valve 25.
  • the coke dry fire extinguishing equipment 1 includes a gravity settling type dust remover 31.
  • the dust remover 31 has a dust removal wall portion 31 a connected to the cooling tower 3.
  • a flue 33 is formed in the dust removing wall portion 31a.
  • the dust removal wall portion 31 a is configured integrally with the wall portion 3 a of the cooling tower 3.
  • the dust removal wall portion 31 a extends from the wall portion 3 a in the radial direction of the cooling tower 3. That is, a communication port 3d that opens the annular flue 11 to the outside of the wall 3a is formed in a part of the wall 3a surrounding the annular flue 11 over a part of the circumferential direction.
  • the dust removal wall portion 31a extends in the radial direction of the cooling tower 3 from the outer peripheral surface of the wall portion 3a so as to cover the periphery of the communication port 3d. Thereby, the flue 33 formed in the dust removing wall portion 31a communicates with the annular flue 11 through the communication port 3d.
  • the dust removing wall portion 31 a includes a tapered portion 31 b that is inclined downward as it is separated from the cooling tower 3. Therefore, the cross-sectional area of the flue 33 increases as the distance from the cooling tower 3 increases. Further, a dust outlet 31c is formed in the dust removing wall portion 31a constituting the bottom surface of the flue 33. The downstream end of the taper part 31b is connected to the escape port 31c. As will be described in detail later, the circulating gas discharged from the cooling tower 3 to the flue 33 contains dust. The dust in the circulating gas is separated from the circulating gas by gravity in the process of flowing through the flue 33 and is discharged out of the system through the outlet 31c.
  • the coke dry fire extinguishing equipment 1 includes a boiler 41.
  • the boiler 41 is provided in the subsequent stage of the dust remover 31.
  • the boiler 41 recovers sensible heat of coke from the circulating gas that has passed through the dust remover 31.
  • the boiler 41 includes a boiler wall 41a that is continuous with the dust removal wall 31a.
  • the boiler wall part 41a is comprised integrally with the dust removal wall part 31a.
  • a screen tube 43 that is a part of a boiler tube that generates steam is provided in the boiler wall 41a.
  • the screen tubes 43 are arranged in parallel with a gap so that the circulating gas can pass therethrough.
  • a heat exchange pipe 45 through which a heat medium flows is provided inside the boiler wall 41a. Heat exchange is performed between the heat medium that circulates inside the heat exchange pipe 45 and the circulating gas that circulates in the boiler wall 41a, and the sensible heat of the coke is recovered.
  • a circulation duct 47 is connected to the boiler 41.
  • the circulation duct 47 is connected to the downstream side in the circulation direction of the circulation gas from the heat exchange pipe 45 in the boiler wall 41a.
  • the circulation duct 47 is connected to the suction side of the circulation blower 51.
  • the discharge side of the circulation blower 51 is connected to the gas supply port 7 a of the cooling tower 3. The circulating gas that has passed through the boiler 41 is blown into the cooling tower 3 by the circulating blower 51.
  • coke red hot coke
  • the cooling tower 3 the preliminary chamber 5 and the cooling chamber 7 are filled with coke.
  • Circulating gas is supplied into the cooling tower 3 through the gas supply port 7 a and the gas distribution mechanism 9 by the circulation blower 51.
  • the circulating gas cools the coke in the process of rising in the cooling chamber 7.
  • the coke cooled by the circulating gas is cut out from the lower part of the cooling chamber 7.
  • coke is newly charged into the cooling tower 3 from the charging port 5a.
  • the circulating gas that has cooled the coke is discharged to the annular flue 11 through the small flue 13.
  • combustion air is supplied from an air supply port 15 provided in the annular bottom 11 a of the annular flue 11.
  • Combustion air is mixed with the hot circulating gas immediately after passing through the small flue 13.
  • the combustion air burns combustible gas (hydrogen, carbon monoxide) contained in the mixed gas.
  • the circulating gas is guided from the annular flue 11 to the dust remover 31.
  • dust is separated by gravity settling in the course of flowing through the flue 33.
  • the dust separated from the circulating gas is discharged out of the system from the outlet 31c.
  • the circulating gas from which the dust has been separated is guided to the boiler 41.
  • the sensible heat of the coke is recovered by the screen tube 43 and the heat exchange pipe 45.
  • the circulating gas cooled by the heat recovery is sucked by the circulating blower 51 through the circulation duct 47.
  • the circulating gas sucked into the circulating blower 51 is again supplied into the cooling tower 3 from the gas supply port 7a.
  • the small flue 13 is provided with a partition member 100.
  • the coke dry fire extinguishing equipment 1 of the present embodiment is configured as a multi-stage flue type in which a small flue 13 is partitioned by a partition member 100 into a plurality of flues (passages).
  • a two-stage flue type in which the small flue 13 is divided into two flues (passages) by the partition member 100 will be described.
  • FIG. 3 is a perspective view of the partition member 100.
  • 4 is a cross-sectional view taken along line IV-IV in FIG.
  • FIG. 5 is a plan view of the partition member 100 in four directions.
  • the partition member 100 includes a plate-shaped main body 102.
  • the x direction illustrated in FIG. 3 is referred to as the width direction of the main body 102
  • the y direction illustrated in FIG. 3 is referred to as the longitudinal direction of the main body 102.
  • the main body 102 is configured by stacking a refractory material on a metal (for example, stainless steel) plate material 104.
  • the plate member 104 includes a flat plate-like flat surface portion 104a and a pair of side surface portions 104b.
  • the side surface portions 104b are provided at both ends in the width direction of the flat surface portion 104a.
  • the side surface portion 104b has a cross-sectional shape in which both ends of a flat plate shape are bent by approximately 90 degrees.
  • the pair of side surface portions 104 b are opposed to the width direction of the main body portion 102.
  • the flat surface portion 104a and the side surface portion 104b extend by the same length in the longitudinal direction.
  • the flat surface portion 104a and the side surface portion 104b are composed of separate members.
  • the present invention is not limited to this, and the flat surface portion 104a and the side surface portion 104b may be formed by bending one member.
  • the plate member 104 has a cross-sectional shape in which the side surface portion 104b is projected at an angle of approximately 90 degrees on the front surface side and the back surface side of the flat surface portion 104a.
  • a refractory material layer 106 (shown by cross-hatching in FIG. 4) made of a refractory material is provided in a portion surrounded by the flat surface portion 104a and the side surface portion 104b.
  • the main body 102 is configured by stacking refractories on the plate material 104.
  • the refractory layer 106 is formed of an indeterminate refractory material (castable refractory material, refractory concrete) in which a binder is blended with an aggregate obtained by pulverizing the refractory material.
  • the plate member 104 is provided with a plurality of reinforcing members 108.
  • the reinforcing member 108 is composed of a rod member such as a castable anchor or an anchor bolt.
  • the reinforcing member 108 is made of metal.
  • the reinforcing member 108 is formed in a V shape, for example. However, the reinforcing member 108 may have a shape different from the V shape, such as a U shape, a J shape, or an L shape.
  • the reinforcing member 108 is welded to the plate material 104. However, the reinforcing member 108 may be fastened to the plate material 104 or may be fitted to the plate material 104.
  • the plurality of reinforcing members 108 are spaced apart from each other in the width direction of the main body 102.
  • the plurality of reinforcing members 108 are spaced apart from each other in the longitudinal direction of the main body 102. That is, the plurality of reinforcing members 108 are arranged on the main body 102 in a lattice shape or a zigzag shape.
  • the reinforcing member 108 has a V-shaped portion embedded in the refractory layer 106. In other words, the V-shaped part of the reinforcing member 108 is covered with an irregular refractory. Thus, the reinforcing member 108 is disposed in the refractory layer 106.
  • a refractory layer 110 is provided on the opposite side of the refractory layer 106 with respect to the flat portion 104 a, that is, on the back side of the plate material 104.
  • the refractory layer 110 is formed of a regular refractory (a refractory brick or a refractory heat insulating brick).
  • the main body 102 of the partition member 100 has the refractory layer 106 laminated on the surface side of the plate member 104 and the refractory layer 110 laminated on the back side of the plate member 104.
  • the plate material 104 is covered with the refractory layers 106 and 110.
  • the refractory layer 106 is made of an irregular refractory and the refractory layer 110 is made of a fixed refractory. That is, the refractory provided in the main body portion 102 includes an irregular refractory.
  • both of the refractory layers 106 and 110 may be formed of an amorphous refractory or a regular refractory.
  • the refractory layer 106 may be formed of a regular refractory
  • the refractory layer 110 may be formed of an amorphous refractory.
  • only one of the refractory layers 106 and 110 may be provided.
  • the partition member 100 includes a pair of locking portions 120 provided on both side surfaces of the main body portion 102 in the width direction.
  • the pair of locking portions 120 are separated from each other in the width direction of the main body portion 102.
  • the locking part 120 is provided at one end (upper end) in the longitudinal direction of the main body part 102 and protrudes to the back side of the main body part 102.
  • a bottom portion 120 a that protrudes to the back side of the main body portion 102 extends in the horizontal direction (the radial direction of the cooling tower 3) in a state where the partition member 100 is attached to the small flue 13.
  • the locking portion 120 includes a fitting portion 122 that protrudes in the vertical direction from the bottom portion 120a.
  • the fitting portion 122 is continuous to the side of the bottom portion 120a that is separated from the main body portion 102.
  • locking part 120 may be comprised with an irregular refractory material and may be comprised with a regular refractory material.
  • the refractory layer 106 of the main body 102 may be extended to form the locking portion 120 (fitting portion 122).
  • the refractory layer 110 of the main body 102 may be extended to form the locking portion 120 (fitting portion 122).
  • the locking member 120 may be configured by protruding the plate member 104 of the main body 102 in the width direction and covering the protruding portion of the plate member 104 with a refractory.
  • the partition member 100 includes leg portions 130 on the back side of the main body portion 102.
  • the leg portion 130 protrudes at a substantially right angle with respect to the back surface of the main body portion 102.
  • the leg portion 130 is located near the center of the main body portion 102 in the width direction and the longitudinal direction.
  • the length in the width direction of the leg portion 130 is shorter than the length in the width direction of the main body portion 102.
  • the length of the leg portion 130 in the longitudinal direction is shorter than the length of the main body portion 102 in the longitudinal direction.
  • the leg portion 130 is provided above the lower end in the longitudinal direction of the main body portion 102 in the vertical direction.
  • the leg portion 130 is made of the same refractory material as the refractory layer 110 provided on the back side of the main body portion 102.
  • the material of the leg part 130 is not particularly limited, and may be composed of any of metal, refractory, and combinations thereof.
  • FIG. 6 is a diagram for explaining an attachment state of the partition member 100.
  • 7 is a cross-sectional view taken along line VII-VII in FIG.
  • FIG. 8 shows a state in which the partition member 100 is removed from FIG.
  • a plurality of small flues 13 are provided apart from each other in the circumferential direction of the wall 3a.
  • the part facing the radial direction of the cooling tower 3 with respect to the inner wall part 3b among the wall parts 3a surrounding the small flue 13 is demonstrated as the outer wall part 3e.
  • a portion connecting the inner wall portion 3b and the outer wall portion 3e will be described as a connecting wall portion 3f (see FIG. 8).
  • the small flue 13 includes a lower passage 13c and an upper passage 13d.
  • the lower passage 13c extends obliquely upward from the opening 13a.
  • the upper passage 13d is continuous above the lower passage 13c and extends along the vertical direction.
  • the upper passage 13d includes an upper opening 13b (see FIG. 2) that opens to the annular bottom 11a of the annular flue 11 described above.
  • the wall 3a (connection wall 3f) surrounding the small flue 13 is provided with a support wall 3g.
  • the support wall 3g is shown in black for easy understanding.
  • the support wall portion 3 g is provided on the opposing surface of the wall portion 3 a that faces in the circumferential direction. That is, two support wall portions 3g are disposed opposite to the small flue 13 so as to be separated from each other in the circumferential direction.
  • the support wall 3g protrudes into the small flue 13 from the wall 3a.
  • Support wall portion 3g is provided with a horizontal portion 3g 1 and the inclined portion 3g 2. As shown in FIG. 6, the horizontal portion 3 g 1 is located above the opening 13 a of the small flue 13 in the vertical direction.
  • Horizontal portion 3 g 1 is located in the upper passage 13d. Horizontal portion 3 g 1 extends in the horizontal direction. Inclined portion 3 g 2 extends from the horizontal portion 3 g 1 downward is located in the lower passage 13c. Inclined portion 3 g 2 has a lower end side is inclined in a direction which is located inward in the radial direction from the upper end side.
  • the partition member 100 is placed on the support wall 3g. More specifically, on the horizontal portion 3 g 1, the bottom 120a of the partition member 100 is placed. Further, on the inclined portion 3 g 2, both side surfaces in the width direction of the main body 102 is placed. As described above, the side surface portions 104b made of a metal plate material are provided on both side surfaces of the main body portion 102 in the width direction (see FIG. 4). The inclined portion 3 g 2 becomes the side surface portion 104b is placed.
  • Fitting portion 122 protrudes downward in the vertical direction than the horizontal portion 3 g 1.
  • the back and the fitting portion 122 of the body portion 102, the horizontal portion 3 g 1 is held. Thereby, falling off of the partition member 100 is prevented. In this way, the partition member 100 is held in the small flue 13 by the support wall 3g.
  • the tip portion of the leg portion 130 in the protruding direction comes into contact with the wall portion 3a.
  • a slight gap may be formed between the distal end portion of the leg portion 130 in the protruding direction and the wall portion 3a.
  • the partition member 100 divides the small flue 13 into two flues in the lower passage 13c. That is, the lower passage 13c of the small flue 13, an upper flues 13c 1, is partitioned into a lower flue 13c 2.
  • the lower flue 13c 2 is located below the upper flue 13c 1 in the vertical direction (on the wall 3a side of the cooling tower 3 (outside in the radial direction of the cooling tower 3)).
  • the lower stage flue 13c2 is the lowermost stage flue located at the lowest position in the vertical direction among the plurality of flues.
  • Body portion 102 of the partition member 100 the surface facing the upper flue 13c 1, the rear surface facing the lower flue 13c 2.
  • the body portion 102 of the partition member 100 so that the refractory layer 106 (monolithic refractories) is provided on the surface of the upper flue 13c 1 side of the plate 104.
  • the main body 102 of the partition member 100 is provided with a refractory layer 110 (standard refractory) on the surface of the plate member 104 on the lower stage 13c 2 side.
  • Legs 130 of the partition member 100 is provided in the lower flue 13c 2. The leg 130 extends from the back surface of the main body 102 facing the lower flue 13c 2 toward the wall 3a.
  • coke enters the small flue 13 from the opening 13a.
  • the intrusion coke that has entered the small flue 13 contacts the partition member 100. That is, the intrusion coke contacts the partition member 100 in a state where it is exposed to a high temperature atmosphere, and the powder coke collides. Therefore, the partition member 100 is in a state where it is easily worn out by coke. Since the partition member 100 of this embodiment has the main-body part 102 by which the refractory material was laminated
  • the temperature of the passing gas, the flow velocity, and the powder coke in the gas vary depending on the operating conditions such as the charging coke temperature. Therefore, the material of the partition member 100 may be determined for each plant.
  • a coke load acts on the main body 102 of the partition member 100 from the upper flue 13c 1 side.
  • the plate member 104 and the refractory layer 106 are integrated by a reinforcing member 108. Therefore, the partition member 100 can sufficiently withstand the coke load.
  • the main body 102 is pressed outward in the radial direction of the cooling tower 3 by the load of coke acting from the upper stage 13c 1 side.
  • Legs 130 are provided on the back side of the main body 102. Therefore, the coke load acts on the wall portion 3 a via the leg portion 130.
  • both ends in the width direction of the main body 102 are supported by the support wall 3g. Therefore, the load of coke is received by the wall 3a, and the creep strength of the partition member 100 is improved.
  • the partition member 100 Since the partition member 100 only needs to be placed on the support wall 3g, the replacement work is easy, and the operating rate of the coke dry fire extinguishing equipment 1 can be increased.
  • the leg part 130 is provided above the height position of the intrusion coke in the lower flue 13c 2 during normal operation. That is, by providing the leg part 130 above the lower end of the main body part 102, contact with the coke is avoided and the ventilation capacity is not adversely affected.
  • a part or the whole of the leg part 130 is provided in a range lower than the height of the intrusion coke in the upper stage flue 13c 1 in the main body part 102.
  • the leg portion 130 extends from the vicinity of the center of the main body portion 102 toward the lower end side.
  • the legs 130 load entering coke acting from the upper flue 13c 1 side to the main body 102, likely acting on the wall portion 3a of the cooling tower 3.
  • the arrangement and shape of the legs 130 are not limited to this.
  • the partition member 100 when the partition member 100 is provided, the visibility of the small flue 13 is lowered, and it may be difficult to monitor the amount of coke in the small flue 13. If it is left without noticing that the amount of intrusion coke has exceeded the limit, the amount of intrusion coke increases without permission, leading to an irreversible state. Therefore, a means for constantly monitoring the amount of intrusion coke in the small flue 13 and knowing the amount of intrusion coke is important.
  • the coke dry fire extinguishing equipment 1 of this embodiment includes a pressure detection unit 200 for estimating the amount of coke in the small flue 13.
  • the pressure detection unit 200 includes a lower detection unit 200a, an upper detection unit 200b, and a differential pressure deriving unit 200c.
  • Lower sensing unit 200a includes a pipe having one end opened to the lower flue 13c 2, and the other end is connected to the differential-pressure detecting portion 200c.
  • Lower sensing unit 200a detects the pressure of the lower flues 13c 2.
  • the upper detection unit 200b includes a pipe having one end opened to the upper passage 13d and the other end connected to the differential pressure deriving unit 200c.
  • the upper detection unit 200 b detects the pressure in the vertical direction above the upper end of the partition member 100 (here, the upper passage 13 d) in the small flue 13.
  • the differential pressure deriving unit 200c derives a differential pressure between the pressure detected by the lower detection unit 200a and the pressure detected by the upper detection unit 200b.
  • the pressure detection unit 200 is provided in a plurality of different small flues 13. Specifically, as shown in FIG. 2, four pressure detection units 200 are provided apart from each other in the circumferential direction of the cooling tower 3. These pressure detection units 200 are approximately 90 degrees in the circumferential direction, except for one pressure detection unit 200 arranged in the vicinity of the communication port 3d communicating with the flue 33 of the dust remover 31 in the cooling tower 3. The phase is shifted.
  • the lower detection unit 200 a detects a pressure above the position where the coke can invade in the lower flue 13 c 2 during normal operation of the coke dry fire extinguishing equipment 1. Therefore, if the amount of intrusion coke in the small flue 13 is within an appropriate range, the difference between the pressure detected by the lower detection unit 200a and the pressure detected by the upper detection unit 200b is small.
  • FIG. 9 is a diagram illustrating a state where the amount of intrusion coke is increased.
  • a penetration amount of coke to the small flue 13 the balance between the escape amount of coke from the small flue 13 collapses, as shown in FIG. 9, entering amount of coke in the upper flue 13c 1 is increased.
  • the intrusion coke in the upper flue 13c 1 gets over the partition member 100 and enters the lower flue 13c 2 from above.
  • the amount of intrusion coke in the lower flue 13c 2 increases.
  • the lower flues 13c 2 when entering coke closes the lower detecting unit 200a, the higher the pressure the lower detecting unit 200a detects.
  • the differential pressure between the lower flues 13c 2 and the upper passage 13d has a coke content and correlation in the small flue 13 (proportional).
  • the differential pressure between the lower flues 13c 2 and the upper passage 13d it is possible to estimate the intrusion amount of coke in the small flue 13.
  • the coke dry fire extinguishing equipment 1 includes a control unit 202 and a notification unit 204.
  • the control unit 202 performs a determination process for determining whether the differential pressure derived by the differential pressure deriving unit 200c is greater than or equal to a preset threshold value.
  • the notification unit 204 includes a speaker, a display unit, and the like that output an alarm. The control unit 202 outputs an alarm from the notification unit 204 when the determination process determines that the differential pressure is equal to or greater than the threshold value.
  • FIG. 10 is a flowchart for explaining an example of the control process of the coke dry fire extinguishing equipment 1.
  • the control unit 202 repeatedly performs the process shown in FIG. 10 at predetermined time intervals.
  • the control unit 202 acquires the differential pressure from the pressure detection unit 200 (differential pressure deriving unit 200c) (S1).
  • the control unit 202 performs a determination process for determining whether the acquired differential pressure is greater than or equal to a preset threshold value (S2). And when it determines with a differential pressure
  • the control unit 202 determines whether the determination process has been completed for all the pressure detection units 200 (S5). And if the determination process is complete
  • the differential pressure between the lower flues 13c 2 and the upper passage 13d, entering coke amounts of the small flue 13 are identified. Accordingly, the amount of intrusion coke in the small flue 13 can be monitored accurately and easily.
  • FIG. 11 is a diagram illustrating a coke dry fire extinguishing facility 1A according to a first modification.
  • the coke dry fire extinguishing equipment 1A of the first modification is different from the above embodiment in that two partition members 100 are provided in the small flue 13. Therefore, description of the same configuration as that of the above embodiment will be omitted here, and different points from the above embodiment will be described.
  • the coke dry fire extinguishing equipment 1 ⁇ / b> A includes two support wall portions 3 g in the small flue 13. The two support wall portions 3g are spaced apart in the vertical direction.
  • a partition member 100 is placed on each of the two support wall portions 3g. The two partition members 100 are arranged in the small flue 13 while being separated in the vertical direction.
  • the lower passage 13c of the small flue 13 is partitioned by the two partition members 100 into three flues (passages), that is, an upper flue 13c 1 , a lower flue 13c 2 and an intermediate flue 13c 3 .
  • the upper stage flue 13c 1 is positioned above the lower stage flue 13c 2 and the middle stage flue 13c 3 in the vertical direction.
  • the lower stage flue 13c 2 is located at the lowermost position in the vertical direction among the three flues. That is, in the coke dry fire extinguishing equipment 1 ⁇ / b > A, the lower flue 13 c 2 is the lowermost flue located at the lowest position in the vertical direction among the plural flues.
  • the middle flue 13c 3 is located between the upper flue 13c 1 and the lower flue 13c 2 . That is, the middle stage flue 13 c 3 is located between the two partition members 100.
  • the leg portion 130 of the partition member 100 provided above in the vertical direction has a surface on the distal end side in the protruding direction in contact with the surface of the main body portion 102 of the partition member 100 provided below in the vertical direction. Thereby, the wall part 3a will receive the load of the intrusion coke which acts on the partition member 100 located relatively upward in the vertical direction via the partition member 100 located relatively below in the vertical direction. . At least a portion of the middle flues 13c 3 and upper flues 13c 1 and the leg portion 130 of the partition member 100 for partitioning is provided to a lower range than the height of the penetration coke in the upper flues 13c 1.
  • leg portion 130 of the partition member 100 that partitions the middle flue 13c 3 and the lower flue 13c 2 is provided in a range lower than the height of the intrusion coke in the middle flue 13c 3 .
  • the load of intrusion coke tends to act on the wall 3 a of the cooling tower 3.
  • the arrangement and shape of the legs 130 are not limited to this.
  • the lower detection unit 200a detects the pressure of the lower flue 13c 2 (the lowermost flue) located at the lowest position in the vertical direction among the plural flues. .
  • the lower passage 13c is partitioned into three flues. Thereby, the ventilation capability can be further improved.
  • FIG. 12 is a diagram illustrating a partition member 100A according to a second modification.
  • the partition member 100 ⁇ / b> A of the second modification is different from the above embodiment in that the refractory layer 110 is not provided on the back side of the plate material 104. That is, the partition member 100A has the back side of the flat surface portion 104a exposed.
  • the partition member 100 ⁇ / b> A is provided with the plate member 104 on the most back side of the main body 102 (the side facing the flue located relatively below in the vertical direction).
  • a load of intrusion coke acts on the main body 102. Therefore, a bending stress acts on the main body 102 in a direction in which the center side in the width direction protrudes toward the back side.
  • the partition member 100A is provided with a plate member 104 on the back side where the bending stress becomes relatively large.
  • the back side of the plate member 104 i.e., the lower flues 13c 2 side (see FIG. 6)
  • the surface side of the plate member 104 i.e., upper flues 13c 1 side (see FIG. 6)
  • the refractory layer 110 of the above embodiment is not provided on the back side of the plate material 104 of the second modified example.
  • a refractory layer 106 made of an irregular refractory is provided on the surface side of the plate member 104.
  • a refractory layer 110 made of a regular refractory may be provided on the surface side of the plate member 104.
  • FIG. 13 is a diagram illustrating a partition member 100B according to a third modification.
  • the partition member 100 ⁇ / b> B according to the third modification is provided with a refractory layer 106 on both the front side and the back side of the plate member 104.
  • reinforcing members 108 are provided on both the front side and the back side of the plate member 104. Accordingly, the reinforcing member 108 is provided on each of the refractory layers 106 provided on both the front side and the back side of the plate member 104.
  • the partition member 100B is curved so that the center side in the width direction of the main body 102 (the plate material 104 and the refractory layer 106) protrudes to the surface side compared to the both end sides.
  • a refractory layer 106 made of an irregular refractory is provided on both the front side and the back side of the plate member 104.
  • a refractory layer 110 made of a regular refractory may be provided on one or both of the front side and the rear side of the plate member 104.
  • the main body 102 (the plate member 104 and the refractory layer 106) may be curved so that the center side in the width direction protrudes to the back side as compared to the both end sides.
  • FIG. 14 is a diagram illustrating a partition member 100C according to a fourth modification.
  • the partition member 100 ⁇ / b> C of the fourth modification is provided with a refractory layer 106 on the surface side of the plate material 104.
  • the partition member 100 ⁇ / b> C is curved so that the center side in the width direction of the main body 102 (the plate material 104 and the refractory layer 106) protrudes to the surface side compared to the both end sides.
  • a refractory layer 106 made of an irregular refractory is provided on the surface side of the plate member 104.
  • a refractory layer 110 made of a regular refractory may be provided on the surface side of the plate member 104.
  • the main body 102 (the plate member 104 and the refractory layer 106) may be curved so that the center side in the width direction protrudes to the back side as compared to the both end sides.
  • the partition members 100A, 100B, and 100C of the second to fourth modifications described above are applicable to both the coke dry fire extinguishing equipment 1 of the embodiment and the coke dry fire extinguishing equipment 1A of the first modification. is there.
  • the pressure detection unit 200 includes the lower detection unit 200a, the upper detection unit 200b, and the differential pressure deriving unit 200c.
  • the pressure detection unit 200 may include only the lower detection unit 200a, for example.
  • the intrusion coke amount may be estimated based on the pressure detected by the lower detection unit 200a.
  • the pressure sensing unit 200 may be detected at least the pressure of the lower flues 13c 2.
  • the upper detection unit 200b detects the pressure above the upper end of the partition member 100 in the vertical direction, that is, the pressure in the upper passage 13d.
  • the upper detection unit 200b if the upper is than the lower detection unit 200a, for example, may be detected pressure of the upper flue 13c 1, may detect the pressure of the lower flues 13c 2.
  • the pressure detection unit 200 is provided in a plurality of different small flues 13, but only one pressure detection unit 200 may be provided. Further, the pressure detection unit 200 may be provided at any position in the circumferential direction of the cooling tower 3.
  • control unit 202 outputs an alarm (predetermined notification) from the notification unit 204 when the differential pressure becomes equal to or greater than a threshold value.
  • control unit 202 may change the operation conditions such as stopping the operation of the coke dry fire extinguishing facility 1 instead of or in addition to the alarm output.
  • the control part 202 when the differential pressure becomes more than a threshold value in any one pressure detection part 200 among the several pressure detection parts 200, the control part 202 outputs an alarm. It was. However, an alarm may be output when the differential pressure is equal to or greater than a threshold value in two or more pressure detection units 200. In this way, false alarms can be prevented.
  • the lower passage 13c is divided into two flues.
  • the lower passage 13c is divided into three flues, but the lower passage 13c has four or more flues. You may partition.
  • This disclosure can be used for coke dry fire extinguishing equipment.
  • Cooling tower 3a Wall part 7: Cooling chamber 7a: Gas supply port (gas supply part) 13: Small flue 13c 1 : Upper stage flue 13c 2 : Lower stage flue 100: Partition member 200: Pressure Detection unit 200a: Lower detection unit 200b: Upper detection unit 200c: Differential pressure deriving unit 202: Control unit

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Coke Industry (AREA)

Abstract

This coke dry quenching facility comprises: a cooling tower 3 having a cooling chamber surrounded by a wall section 3a; a gas supplying unit that is provided on the cooling tower and supplies a gas to the interior of the cooling chamber; a small smoke passage 13 that is formed in the wall section of the cooling tower and vertically above the gas supplying unit, and that opens to the cooling chamber; a partitioning member 100 that is provided in the small smoke passage and that partitions the small smoke passage into an upper flue 13c1 and a lower flue 13c2 positioned farther to the outside in a radial direction of the cooling tower than the upper flue; and a pressure detection unit 200 that detects the pressure of at least the lower flue.

Description

コークス乾式消火設備Coke dry fire extinguishing equipment
 本開示は、コークス乾式消火設備に関する。 This disclosure relates to coke dry fire extinguishing equipment.
 従来、コークス乾式消火設備が知られている。コークス乾式消火設備は、コークス炉から押し出されるコークスを消火、冷却する。コークス乾式消火設備は、冷却塔を備えている。冷却塔は、予備室、および、予備室の下方に連続する冷却室が内部に形成される。コークス(赤熱コークス)は、冷却塔の頂部から予備室に装入される。コークス(赤熱コークス)は、予備室から冷却室に移動する。冷却室には、下部から不活性ガスが供給される。不活性ガスとの熱交換により、コークスが消火、冷却される。 Conventionally, coke dry fire extinguishing equipment is known. The coke dry fire extinguishing equipment extinguishes and cools the coke extruded from the coke oven. The coke dry fire extinguishing equipment includes a cooling tower. In the cooling tower, a preliminary chamber and a cooling chamber continuous below the preliminary chamber are formed inside. Coke (red hot coke) is charged into the preliminary chamber from the top of the cooling tower. Coke (red hot coke) moves from the reserve chamber to the cooling chamber. An inert gas is supplied to the cooling chamber from below. Coke is extinguished and cooled by heat exchange with the inert gas.
 冷却塔には、冷却室に開口する小煙道が周方向に複数形成されている。不活性ガスは、コークスを消火、冷却しながら冷却室を上昇する。不活性ガスは、小煙道から冷却室の外部に排出される。 The cooling tower is formed with a plurality of small flues that open to the cooling chamber in the circumferential direction. The inert gas goes up the cooling chamber while extinguishing and cooling the coke. The inert gas is discharged from the small flue to the outside of the cooling chamber.
 特許文献1、2には、小煙道に仕切部材が設けられた、所謂2段フリュータイプのコークス乾式消火設備が開示されている。2段フリュータイプのコークス乾式消火設備では、仕切部材により、小煙道に上段フリューと下段フリューとが形成される。 Patent Documents 1 and 2 disclose so-called two-stage flue-type coke dry fire extinguishing equipment in which a partition member is provided in a small flue. In the two-stage flue type coke dry fire extinguishing equipment, the upper flue and the lower flue are formed in the small flue by the partition member.
 小煙道には、ガス流れに押されて、冷却室の開口の上端からコークスが侵入する。一方で、冷却室内を降下するコークスに引きずられて、小煙道内に侵入したコークスが冷却室に戻る。このように、小煙道には、コークスの流れが生じる。小煙道が複数のフリューに仕切られる2段フリュータイプでは、仕切部材が設けられないシングルフリュータイプに比べて、小煙道内に侵入するコークスの総量が低減される。そのため、2段フリュータイプでは、シングルフリュータイプに比べて、通風能力を向上させることができる。 ¡Coke enters the small flue from the upper end of the cooling chamber opening due to the gas flow. On the other hand, the coke that has entered the small flue is returned to the cooling chamber by being dragged by the coke descending in the cooling chamber. Thus, a coke flow occurs in the small flue. In the two-stage flue type in which the small flue is divided into a plurality of flues, the total amount of coke entering the small flue is reduced compared to the single flue type in which no partition member is provided. Therefore, in the two-stage flue type, the ventilation capacity can be improved compared to the single flue type.
特許第4137676号公報Japanese Patent No. 4137676 特開2016-23230号公報Japanese Unexamined Patent Publication No. 2016-23230
 コークス乾式消火設備では、小煙道に対するコークスの侵入と脱出とが連続的になされている。このとき、小煙道に侵入するコークス(以下、「侵入コークス」という)量と、小煙道から脱出するコークス(以下、「脱出コークス」という)量とのバランスが崩れ、侵入コークス量が脱出コークス量を大きく上回ると、通常操業が不可能となる。 In the coke dry fire extinguishing equipment, the intrusion and escape of coke into the small flue are made continuously. At this time, the balance between the amount of coke entering the small flue (hereinafter referred to as “intrusion coke”) and the amount of coke exiting from the small flue (hereinafter referred to as “escape coke”) is lost, and the amount of intrusion coke escapes. If the amount of coke is greatly exceeded, normal operation becomes impossible.
 そのため、一般的なコークス乾式消火設備においては、小煙道のコークス量を監視できるように、円環煙道天井部の点検口から、小煙道を目視可能に構成されている。しかしながら、上記の2段フリュータイプのコークス乾式消火設備では、仕切部材によって小煙道の目視が妨げられ、小煙道におけるコークス量の監視が困難となるおそれがある。 Therefore, in general coke dry fire extinguishing equipment, the small flue can be visually observed from the inspection port of the annular flue ceiling so that the amount of coke in the small flue can be monitored. However, in the above-described two-stage flue type coke dry fire extinguishing equipment, the visual observation of the small flue is hindered by the partition member, and it may be difficult to monitor the amount of coke in the small flue.
 上記の課題に鑑み、本開示は、小煙道における危険なコークス量を容易に監視することができるコークス乾式消火設備を提供することを目的としている。 In view of the above problems, the present disclosure is intended to provide a coke dry fire extinguishing facility capable of easily monitoring a dangerous amount of coke in a small flue.
 上記課題を解決するために、本開示の一態様に係るコークス乾式消火設備は、壁部に囲繞された冷却室を有する冷却塔と、冷却塔に設けられ、冷却室内にガスを供給するガス供給部と、冷却塔の壁部のうち、ガス供給部よりも鉛直方向の上方に形成され、冷却室に開口する小煙道と、小煙道に設けられ、小煙道を、鉛直方向に複数のフリューに仕切る仕切部材と、少なくとも、複数のフリューのうち鉛直方向の最も下方に位置する最下段フリューの圧力を検知する圧力検知部と、を備える。 In order to solve the above problems, a coke dry fire extinguishing facility according to one aspect of the present disclosure includes a cooling tower having a cooling chamber surrounded by a wall portion, and a gas supply that is provided in the cooling tower and supplies gas into the cooling chamber. And a small flue that is formed above the gas supply unit in the vertical direction and opens to the cooling chamber, and is provided in the small flue and includes a plurality of small flues in the vertical direction. And a pressure detection unit that detects the pressure of the lowermost flue located at the lowest position in the vertical direction among the plural flues.
 また、圧力検知部は、最下段フリューの圧力を検知する下部検知部と、下部検知部よりも鉛直方向の上方の圧力を検知する上部検知部と、下部検知部により検知された圧力と、上部検知部により検知された圧力との差圧を導出する差圧導出部と、を含んでもよい。 In addition, the pressure detection unit includes a lower detection unit that detects the pressure of the lowermost flue, an upper detection unit that detects a pressure above the lower detection unit in a vertical direction, a pressure detected by the lower detection unit, and an upper portion A differential pressure deriving unit for deriving a differential pressure from the pressure detected by the detection unit.
 また、上部検知部は、仕切部材の上端よりも鉛直方向の上方の圧力を検知してもよい。 Further, the upper detection unit may detect the pressure above the upper end of the partition member in the vertical direction.
 また、差圧導出部によって導出された差圧が予め設定された閾値以上になると所定の報知を行う制御部を備えてもよい。 Further, a control unit may be provided that performs a predetermined notification when the differential pressure derived by the differential pressure deriving unit exceeds a preset threshold value.
 また、圧力検知部は、複数の異なる小煙道に設けられてもよい。 Further, the pressure detection unit may be provided in a plurality of different small flues.
 本開示によれば、小煙道における危険なコークス量を容易に監視することができる。 According to the present disclosure, the dangerous amount of coke in the small flue can be easily monitored.
図1は、コークス乾式消火設備を説明する図である。FIG. 1 is a diagram illustrating a coke dry fire extinguishing facility. 図2は、図1のII-II線断面図である。2 is a cross-sectional view taken along line II-II in FIG. 図3は、仕切部材の斜視図である。FIG. 3 is a perspective view of the partition member. 図4は、図3のIV-IV線断面図である。4 is a cross-sectional view taken along line IV-IV in FIG. 図5は、仕切部材の四方向の平面図である。FIG. 5 is a plan view of the partition member in four directions. 図6は、仕切部材の取り付け状態を説明する図である。FIG. 6 is a view for explaining an attachment state of the partition member. 図7は、図6のVII-VII線断面図である。7 is a cross-sectional view taken along line VII-VII in FIG. 図8は、図7から仕切部材を取り外した状態を示している。FIG. 8 shows a state in which the partition member is removed from FIG. 図9は、侵入コークス量が増加した状態を説明する図である。FIG. 9 is a diagram illustrating a state where the amount of intrusion coke is increased. 図10は、コークス乾式消火設備の制御処理の一例を説明するフローチャートである。FIG. 10 is a flowchart for explaining an example of the control process of the coke dry fire extinguishing equipment. 図11は、第1変形例のコークス乾式消火設備を説明する図である。FIG. 11 is a diagram illustrating a coke dry fire extinguishing facility according to a first modification. 図12は、第2変形例の仕切部材を説明する図である。FIG. 12 is a diagram illustrating a partition member according to a second modification. 図13は、第3変形例の仕切部材を説明する図である。FIG. 13 is a diagram illustrating a partition member according to a third modification. 図14は、第4変形例の仕切部材を説明する図である。FIG. 14 is a diagram illustrating a partition member according to a fourth modification.
 以下に添付図面を参照しながら、本開示の一実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値等は、理解を容易とするための例示にすぎず、特に断る場合を除き、本開示を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本開示に直接関係のない要素は図示を省略する。 Hereinafter, an embodiment of the present disclosure will be described in detail with reference to the accompanying drawings. The dimensions, materials, and other specific numerical values shown in the embodiment are merely examples for facilitating understanding, and do not limit the present disclosure unless otherwise specified. In the present specification and drawings, elements having substantially the same functions and configurations are denoted by the same reference numerals, and redundant description is omitted, and elements not directly related to the present disclosure are not illustrated. To do.
 図1は、コークス乾式消火設備1を説明する図である。図2は、図1のII-II線断面図である。図1に示すように、コークス乾式消火設備1は、冷却塔3を備える。冷却塔3は、環状に形成される壁部3aを備える。冷却塔3には、壁部3aに囲繞された予備室5および冷却室7が設けられる。予備室5は、壁部3aの頂部に形成される投入口5aを備える。投入口5aから冷却塔3内にコークスが装入される。冷却室7は、予備室5に連続する空間であり、予備室5の下方に設けられる。冷却室7の底部には、壁部3aを貫通するガス供給口7a(ガス供給部)が形成される。ガス供給口7aから冷却塔3内に、例えば窒素等の不活性ガスを主とする循環ガスが供給される。また、冷却室7の底部には、ガス分配機構9が設けられている。ガス分配機構9は、ガス供給口7aから冷却塔3内に供給された循環ガスを分流させる。 FIG. 1 is a diagram for explaining the coke dry fire extinguishing equipment 1. 2 is a cross-sectional view taken along line II-II in FIG. As shown in FIG. 1, the coke dry fire extinguishing equipment 1 includes a cooling tower 3. The cooling tower 3 includes a wall portion 3a formed in an annular shape. The cooling tower 3 is provided with a preliminary chamber 5 and a cooling chamber 7 surrounded by a wall 3a. The preliminary chamber 5 includes an input port 5a formed at the top of the wall 3a. Coke is charged into the cooling tower 3 from the charging port 5a. The cooling chamber 7 is a space continuous with the preliminary chamber 5 and is provided below the preliminary chamber 5. At the bottom of the cooling chamber 7, a gas supply port 7a (gas supply unit) penetrating the wall 3a is formed. A circulating gas mainly containing an inert gas such as nitrogen is supplied into the cooling tower 3 from the gas supply port 7a. A gas distribution mechanism 9 is provided at the bottom of the cooling chamber 7. The gas distribution mechanism 9 divides the circulating gas supplied into the cooling tower 3 from the gas supply port 7a.
 壁部3aのうち、予備室5を囲繞形成する部分には、環状煙道11が形成される。環状煙道11は、壁部3aの周方向に延在する環状孔である。また、壁部3aには、冷却室7に開口部13aを開口させた複数の小煙道13が設けられる。小煙道13は、壁部3aのうち、ガス供給口7aおよびガス分配機構9よりも鉛直方向の上方に位置する。小煙道13は、冷却塔3の周方向に離隔して複数形成される。小煙道13は、環状煙道11と冷却室7とを連通させる。つまり、小煙道13は、冷却室7と環状煙道11とを繋ぐ通路である。循環ガスは、小煙道13を介して冷却室7から環状煙道11に排出される。 An annular flue 11 is formed in a portion of the wall 3 a that surrounds the preliminary chamber 5. The annular flue 11 is an annular hole extending in the circumferential direction of the wall 3a. The wall 3a is provided with a plurality of small flues 13 having openings 13a opened in the cooling chamber 7. The small flue 13 is located above the gas supply port 7a and the gas distribution mechanism 9 in the vertical direction in the wall 3a. A plurality of small flues 13 are formed apart from each other in the circumferential direction of the cooling tower 3. The small flue 13 allows the annular flue 11 and the cooling chamber 7 to communicate with each other. That is, the small flue 13 is a passage connecting the cooling chamber 7 and the annular flue 11. The circulating gas is discharged from the cooling chamber 7 to the annular flue 11 through the small flue 13.
 本実施形態では、壁部3aのうち、環状煙道11と予備室5とを仕切る部分を内側壁部3bとする。つまり、壁部3aのうち、環状煙道11の径方向内側が内側壁部3bとなる。したがって、小煙道13の冷却室7側の開口部13aは、内側壁部3bよりも下方に位置することとなる。本実施形態では、予備室5は、小煙道13の開口部13aよりも上方の空間である。開口部13aは、冷却室7に開口している。つまり、小煙道13の開口部13aの上端部分が、予備室5と冷却室7との境界となる。 In the present embodiment, a portion of the wall portion 3a that partitions the annular flue 11 and the preliminary chamber 5 is defined as an inner wall portion 3b. That is, in the wall portion 3a, the radially inner side of the annular flue 11 becomes the inner wall portion 3b. Therefore, the opening 13a on the cooling chamber 7 side of the small flue 13 is positioned below the inner wall 3b. In the present embodiment, the preliminary chamber 5 is a space above the opening 13 a of the small flue 13. The opening 13 a is open to the cooling chamber 7. That is, the upper end portion of the opening 13 a of the small flue 13 serves as a boundary between the preliminary chamber 5 and the cooling chamber 7.
 冷却室7の内径は、予備室5の内径よりも大きい。換言すれば、壁部3aのうち、冷却室7を囲繞する部位の内径は、内側壁部3bの内径よりも大きい。壁部3aの内周面には、内側壁部3bの下端から、下方に向けて内径が漸増する傾斜面3cが設けられる。傾斜面3cには、小煙道13の開口部13aが形成されている。したがって、小煙道13の開口部13aは、鉛直方向に対して傾斜したものとなっている。なお、内側壁部3bの内周面には、冷却塔3の径方向内側に突出する突起が設けられてもよい。 The inner diameter of the cooling chamber 7 is larger than the inner diameter of the preliminary chamber 5. In other words, the inner diameter of the portion surrounding the cooling chamber 7 in the wall 3a is larger than the inner diameter of the inner wall 3b. An inclined surface 3c whose inner diameter gradually increases downward from the lower end of the inner wall 3b is provided on the inner circumferential surface of the wall 3a. An opening 13a of the small flue 13 is formed on the inclined surface 3c. Therefore, the opening 13a of the small flue 13 is inclined with respect to the vertical direction. In addition, the protrusion which protrudes to the radial inside of the cooling tower 3 may be provided in the internal peripheral surface of the inner wall part 3b.
 壁部3aには、図2に示すように、環状煙道11の環状底部11aが形成される。環状底部11aは環状に延在しており、小煙道13の上部開口13bが環状底部11aに開口している。環状底部11aには、複数の空気供給口15が設けられている。空気供給口15は、隣り合う上部開口13bの間に位置している。複数の空気供給口15には、図1に示すように、それぞれ分岐管17が接続されている。複数の分岐管17は、主配管19を介してファン21に接続されている。主配管19は、分岐管17を介し、空気供給口15に燃焼用空気を供給する。なお、分岐管17には、燃焼用空気の流量を調整する流量調整弁23が設けられている。主配管19には、制御弁25が設けられている。 As shown in FIG. 2, an annular bottom 11 a of the annular flue 11 is formed on the wall 3 a. The annular bottom portion 11a extends in an annular shape, and an upper opening 13b of the small flue 13 opens into the annular bottom portion 11a. A plurality of air supply ports 15 are provided in the annular bottom portion 11a. The air supply port 15 is located between the adjacent upper openings 13b. As shown in FIG. 1, branch pipes 17 are connected to the plurality of air supply ports 15, respectively. The plurality of branch pipes 17 are connected to the fan 21 via the main pipe 19. The main pipe 19 supplies combustion air to the air supply port 15 via the branch pipe 17. The branch pipe 17 is provided with a flow rate adjusting valve 23 for adjusting the flow rate of the combustion air. The main pipe 19 is provided with a control valve 25.
 コークス乾式消火設備1は、重力沈降式の除塵器31を備えている。除塵器31は、冷却塔3に接続された除塵壁部31aを有している。除塵壁部31a内には、煙道33が形成されている。除塵壁部31aは、冷却塔3の壁部3aと一体に構成されている。除塵壁部31aは、壁部3aから冷却塔3の径方向に延在している。すなわち、壁部3aのうち、環状煙道11を囲繞する部位には、周方向の一部に亘って環状煙道11を壁部3aの外部に開口させる連通口3dが形成されている。除塵壁部31aは、連通口3dの周囲を覆うように、壁部3aの外周面から冷却塔3の径方向に延在している。これにより、除塵壁部31a内に形成される煙道33は、連通口3dを介して環状煙道11に連通することとなる。 The coke dry fire extinguishing equipment 1 includes a gravity settling type dust remover 31. The dust remover 31 has a dust removal wall portion 31 a connected to the cooling tower 3. A flue 33 is formed in the dust removing wall portion 31a. The dust removal wall portion 31 a is configured integrally with the wall portion 3 a of the cooling tower 3. The dust removal wall portion 31 a extends from the wall portion 3 a in the radial direction of the cooling tower 3. That is, a communication port 3d that opens the annular flue 11 to the outside of the wall 3a is formed in a part of the wall 3a surrounding the annular flue 11 over a part of the circumferential direction. The dust removal wall portion 31a extends in the radial direction of the cooling tower 3 from the outer peripheral surface of the wall portion 3a so as to cover the periphery of the communication port 3d. Thereby, the flue 33 formed in the dust removing wall portion 31a communicates with the annular flue 11 through the communication port 3d.
 除塵壁部31aは、冷却塔3から離隔するほど下方に傾斜するテーパ部31bを備える。したがって、煙道33は、冷却塔3から離隔するほど断面積が大きくなる。また、煙道33の底面を構成する除塵壁部31aには、脱出口31cが形成されている。テーパ部31bの下流側の端部は、脱出口31cに接続されている。詳しくは後述するが、冷却塔3から煙道33に排出される循環ガスには粉塵が含まれている。循環ガス中の粉塵は、煙道33を流通する過程で重力により循環ガスから分離され、脱出口31cから系外に排出される。 The dust removing wall portion 31 a includes a tapered portion 31 b that is inclined downward as it is separated from the cooling tower 3. Therefore, the cross-sectional area of the flue 33 increases as the distance from the cooling tower 3 increases. Further, a dust outlet 31c is formed in the dust removing wall portion 31a constituting the bottom surface of the flue 33. The downstream end of the taper part 31b is connected to the escape port 31c. As will be described in detail later, the circulating gas discharged from the cooling tower 3 to the flue 33 contains dust. The dust in the circulating gas is separated from the circulating gas by gravity in the process of flowing through the flue 33 and is discharged out of the system through the outlet 31c.
 コークス乾式消火設備1は、ボイラ41を備える。ボイラ41は、除塵器31の後段に設けられる。ボイラ41は、除塵器31を通過した循環ガスからコークスの顕熱を熱回収する。ボイラ41は、除塵壁部31aに連続するボイラ壁部41aを備えている。ここでは、ボイラ壁部41aは、除塵壁部31aと一体に構成されている。ボイラ壁部41a内には、蒸気を生成するボイラチューブの一部であるスクリーン管43が設けられている。スクリーン管43は、循環ガスが通過可能となるように、隙間をあけて並列に配列されている。ボイラ壁部41a内には、内部を熱媒が流通する熱交換配管45が設けられている。熱交換配管45の内部を流通する熱媒と、ボイラ壁部41a内を流通する循環ガスとの間で熱交換が行われ、コークスの顕熱が熱回収される。 The coke dry fire extinguishing equipment 1 includes a boiler 41. The boiler 41 is provided in the subsequent stage of the dust remover 31. The boiler 41 recovers sensible heat of coke from the circulating gas that has passed through the dust remover 31. The boiler 41 includes a boiler wall 41a that is continuous with the dust removal wall 31a. Here, the boiler wall part 41a is comprised integrally with the dust removal wall part 31a. A screen tube 43 that is a part of a boiler tube that generates steam is provided in the boiler wall 41a. The screen tubes 43 are arranged in parallel with a gap so that the circulating gas can pass therethrough. Inside the boiler wall 41a, a heat exchange pipe 45 through which a heat medium flows is provided. Heat exchange is performed between the heat medium that circulates inside the heat exchange pipe 45 and the circulating gas that circulates in the boiler wall 41a, and the sensible heat of the coke is recovered.
 ボイラ41には、循環ダクト47が接続されている。循環ダクト47は、ボイラ壁部41aのうち、熱交換配管45よりも循環ガスの流通方向の下流側に接続される。循環ダクト47には、循環ブロワ51の吸入側が接続されている。この循環ブロワ51の吐出側は、冷却塔3のガス供給口7aに接続されている。ボイラ41を通過した循環ガスは、循環ブロワ51により冷却塔3に吹き込まれる。 A circulation duct 47 is connected to the boiler 41. The circulation duct 47 is connected to the downstream side in the circulation direction of the circulation gas from the heat exchange pipe 45 in the boiler wall 41a. The circulation duct 47 is connected to the suction side of the circulation blower 51. The discharge side of the circulation blower 51 is connected to the gas supply port 7 a of the cooling tower 3. The circulating gas that has passed through the boiler 41 is blown into the cooling tower 3 by the circulating blower 51.
 上記のコークス乾式消火設備1によれば、投入口5aから冷却塔3内にコークス(赤熱コークス)が装入される。冷却塔3内では、予備室5および冷却室7にコークスが充填されている。冷却塔3内には、循環ブロワ51により、ガス供給口7aおよびガス分配機構9を介して、循環ガスが供給される。循環ガスは、冷却室7内を上昇する過程でコークスを冷却する。循環ガスにより冷却されたコークスは、冷却室7の下部から切り出される。冷却室7から切り出されたコークス量に応じて、投入口5aから新たに冷却塔3内にコークスが装入される。 According to the above-mentioned coke dry fire extinguishing equipment 1, coke (red hot coke) is charged into the cooling tower 3 from the inlet 5a. In the cooling tower 3, the preliminary chamber 5 and the cooling chamber 7 are filled with coke. Circulating gas is supplied into the cooling tower 3 through the gas supply port 7 a and the gas distribution mechanism 9 by the circulation blower 51. The circulating gas cools the coke in the process of rising in the cooling chamber 7. The coke cooled by the circulating gas is cut out from the lower part of the cooling chamber 7. Depending on the amount of coke cut out from the cooling chamber 7, coke is newly charged into the cooling tower 3 from the charging port 5a.
 コークスを冷却した循環ガスは、小煙道13を介して環状煙道11に排出される。このとき、環状煙道11の環状底部11aに設けられた空気供給口15から、燃焼用空気が供給される。燃焼用空気は、小煙道13を通過した直後の高温の循環ガスと混合される。燃焼用空気は、混合ガス中に含まれる可燃性ガス(水素、一酸化炭素)を燃焼させる。循環ガスは、環状煙道11から除塵器31に導かれる。循環ガスは、煙道33を流通する過程で、重力沈降により粉塵が分離される。循環ガスから分離された粉塵は、脱出口31cから系外に排出される。 The circulating gas that has cooled the coke is discharged to the annular flue 11 through the small flue 13. At this time, combustion air is supplied from an air supply port 15 provided in the annular bottom 11 a of the annular flue 11. Combustion air is mixed with the hot circulating gas immediately after passing through the small flue 13. The combustion air burns combustible gas (hydrogen, carbon monoxide) contained in the mixed gas. The circulating gas is guided from the annular flue 11 to the dust remover 31. In the circulation gas, dust is separated by gravity settling in the course of flowing through the flue 33. The dust separated from the circulating gas is discharged out of the system from the outlet 31c.
 粉塵が分離された循環ガスは、ボイラ41に導かれる。循環ガスは、スクリーン管43および熱交換配管45によって、コークスの顕熱が熱回収される。熱回収により冷却された循環ガスは、循環ダクト47を介して循環ブロワ51により吸入される。循環ブロワ51に吸入された循環ガスは、再度、ガス供給口7aから冷却塔3内に供給されることとなる。 The circulating gas from which the dust has been separated is guided to the boiler 41. As for the circulating gas, the sensible heat of the coke is recovered by the screen tube 43 and the heat exchange pipe 45. The circulating gas cooled by the heat recovery is sucked by the circulating blower 51 through the circulation duct 47. The circulating gas sucked into the circulating blower 51 is again supplied into the cooling tower 3 from the gas supply port 7a.
 ここで、小煙道13には、仕切部材100が設けられている。本実施形態のコークス乾式消火設備1は、仕切部材100によって小煙道13が複数のフリュー(通路)に仕切られた多段フリュータイプで構成される。本実施形態では、小煙道13が、仕切部材100によって2つのフリュー(通路)に仕切られた2段フリュータイプについて説明する。 Here, the small flue 13 is provided with a partition member 100. The coke dry fire extinguishing equipment 1 of the present embodiment is configured as a multi-stage flue type in which a small flue 13 is partitioned by a partition member 100 into a plurality of flues (passages). In the present embodiment, a two-stage flue type in which the small flue 13 is divided into two flues (passages) by the partition member 100 will be described.
 図3は、仕切部材100の斜視図である。図4は、図3のIV-IV線断面図である。図5は、仕切部材100の四方向の平面図である。仕切部材100は、平板形状の本体部102を備えている。以下では、図3に示すx方向を本体部102の幅方向と呼び、図3に示すy方向を本体部102の長手方向と呼ぶ。本体部102は、図4に示すように、金属製(例えばステンレス鋼)の板材104に耐火物が積層されて構成されている。 FIG. 3 is a perspective view of the partition member 100. 4 is a cross-sectional view taken along line IV-IV in FIG. FIG. 5 is a plan view of the partition member 100 in four directions. The partition member 100 includes a plate-shaped main body 102. Hereinafter, the x direction illustrated in FIG. 3 is referred to as the width direction of the main body 102, and the y direction illustrated in FIG. 3 is referred to as the longitudinal direction of the main body 102. As shown in FIG. 4, the main body 102 is configured by stacking a refractory material on a metal (for example, stainless steel) plate material 104.
 具体的には、板材104は、平板形状の平面部104aと、一対の側面部104bとを含む。側面部104bは、平面部104aの幅方向の両端に設けられている。側面部104bは、平板形状の両端を略90度屈曲させた断面形状である。一対の側面部104bは、本体部102の幅方向に対向する。平面部104aおよび側面部104bは、長手方向に同じ長さだけ延在している。なお、本実施形態では、平面部104aと側面部104bとが別々の部材で構成されている。しかし、これに限定されず、平面部104aと側面部104bとは、1つの部材を屈曲させて成形されてもよい。 Specifically, the plate member 104 includes a flat plate-like flat surface portion 104a and a pair of side surface portions 104b. The side surface portions 104b are provided at both ends in the width direction of the flat surface portion 104a. The side surface portion 104b has a cross-sectional shape in which both ends of a flat plate shape are bent by approximately 90 degrees. The pair of side surface portions 104 b are opposed to the width direction of the main body portion 102. The flat surface portion 104a and the side surface portion 104b extend by the same length in the longitudinal direction. In the present embodiment, the flat surface portion 104a and the side surface portion 104b are composed of separate members. However, the present invention is not limited to this, and the flat surface portion 104a and the side surface portion 104b may be formed by bending one member.
 板材104は、平面部104aの表面側および裏面側に、側面部104bを略90度の角度で突出させた断面形状である。平面部104aの表面側には、平面部104aおよび側面部104bに囲繞された部分に、耐火物で構成される耐火物層106(図4にクロスハッチングで示す)が設けられている。換言すれば、本体部102は、板材104に耐火物が積層されて構成されている。ここでは、耐火物層106は、耐火物を粉砕した骨材に結合材が配合された不定形耐火物(キャスタブル耐火物、耐火コンクリート)で構成されている。 The plate member 104 has a cross-sectional shape in which the side surface portion 104b is projected at an angle of approximately 90 degrees on the front surface side and the back surface side of the flat surface portion 104a. On the surface side of the flat surface portion 104a, a refractory material layer 106 (shown by cross-hatching in FIG. 4) made of a refractory material is provided in a portion surrounded by the flat surface portion 104a and the side surface portion 104b. In other words, the main body 102 is configured by stacking refractories on the plate material 104. Here, the refractory layer 106 is formed of an indeterminate refractory material (castable refractory material, refractory concrete) in which a binder is blended with an aggregate obtained by pulverizing the refractory material.
 板材104には、複数の補強部材108が設けられている。補強部材108は、キャスタブルアンカーやアンカーボルト等の棒部材で構成される。補強部材108は、金属製である。補強部材108は、例えば、V字形状に形成される。ただし、補強部材108は、U字形状、J字形状、あるいは、L字形状など、V字形状と異なる形状を有していてもよい。補強部材108は、板材104に溶接される。ただし、補強部材108は、板材104に締結されてもよいし、板材104に嵌合されてもよい。複数の補強部材108は、本体部102の幅方向に互いに離隔して配される。複数の補強部材108は、本体部102の長手方向に互いに離隔して配される。つまり、複数の補強部材108は、本体部102に格子状あるいは千鳥状に配置される。補強部材108は、V字形状部が耐火物層106内に埋設される。換言すれば、補強部材108のV字形状部は、不定形耐火物に被覆されている。このように、補強部材108は、耐火物層106内に配される。 The plate member 104 is provided with a plurality of reinforcing members 108. The reinforcing member 108 is composed of a rod member such as a castable anchor or an anchor bolt. The reinforcing member 108 is made of metal. The reinforcing member 108 is formed in a V shape, for example. However, the reinforcing member 108 may have a shape different from the V shape, such as a U shape, a J shape, or an L shape. The reinforcing member 108 is welded to the plate material 104. However, the reinforcing member 108 may be fastened to the plate material 104 or may be fitted to the plate material 104. The plurality of reinforcing members 108 are spaced apart from each other in the width direction of the main body 102. The plurality of reinforcing members 108 are spaced apart from each other in the longitudinal direction of the main body 102. That is, the plurality of reinforcing members 108 are arranged on the main body 102 in a lattice shape or a zigzag shape. The reinforcing member 108 has a V-shaped portion embedded in the refractory layer 106. In other words, the V-shaped part of the reinforcing member 108 is covered with an irregular refractory. Thus, the reinforcing member 108 is disposed in the refractory layer 106.
 平面部104aを境にして耐火物層106と反対側、すなわち、板材104の背面側には、耐火物層110が設けられている。ここでは、耐火物層110は、定形耐火物(耐火煉瓦または耐火断熱煉瓦)で構成されている。このように、仕切部材100の本体部102は、板材104の表面側に耐火物層106が積層され、板材104の背面側に耐火物層110が積層されている。換言すれば、本体部102は、板材104が耐火物層106、110で被覆されている。 A refractory layer 110 is provided on the opposite side of the refractory layer 106 with respect to the flat portion 104 a, that is, on the back side of the plate material 104. Here, the refractory layer 110 is formed of a regular refractory (a refractory brick or a refractory heat insulating brick). As described above, the main body 102 of the partition member 100 has the refractory layer 106 laminated on the surface side of the plate member 104 and the refractory layer 110 laminated on the back side of the plate member 104. In other words, in the main body 102, the plate material 104 is covered with the refractory layers 106 and 110.
 なお、ここでは、耐火物層106が不定形耐火物で構成され、耐火物層110が定形耐火物で構成されることとした。つまり、本体部102に設けられる耐火物には、不定形耐火物が含まれることとした。しかしながら、例えば、耐火物層106、110の双方が不定形耐火物または定形耐火物で構成されてもよい。また、耐火物層106が定形耐火物で構成され、耐火物層110が不定形耐火物で構成されてもよい。さらには、耐火物層106、110のいずれか一方のみが設けられてもよい。 Here, it is assumed that the refractory layer 106 is made of an irregular refractory and the refractory layer 110 is made of a fixed refractory. That is, the refractory provided in the main body portion 102 includes an irregular refractory. However, for example, both of the refractory layers 106 and 110 may be formed of an amorphous refractory or a regular refractory. Further, the refractory layer 106 may be formed of a regular refractory, and the refractory layer 110 may be formed of an amorphous refractory. Furthermore, only one of the refractory layers 106 and 110 may be provided.
 仕切部材100は、図3および図5に示すように、本体部102の幅方向の両側面に設けられた一対の係止部120を備える。一対の係止部120は、本体部102の幅方向に互いに離隔している。係止部120は、本体部102の長手方向の一端(上端)に設けられ、本体部102の背面側に突出する。係止部120のうち、本体部102よりも背面側に突出する底部120aは、仕切部材100が小煙道13に取り付けられた状態で、水平方向(冷却塔3の径方向)に延在する。係止部120は、底部120aから鉛直方向に突出する嵌合部122を備える。嵌合部122は、底部120aのうち、本体部102から離隔する側に連続している。 As shown in FIGS. 3 and 5, the partition member 100 includes a pair of locking portions 120 provided on both side surfaces of the main body portion 102 in the width direction. The pair of locking portions 120 are separated from each other in the width direction of the main body portion 102. The locking part 120 is provided at one end (upper end) in the longitudinal direction of the main body part 102 and protrudes to the back side of the main body part 102. Of the locking portion 120, a bottom portion 120 a that protrudes to the back side of the main body portion 102 extends in the horizontal direction (the radial direction of the cooling tower 3) in a state where the partition member 100 is attached to the small flue 13. . The locking portion 120 includes a fitting portion 122 that protrudes in the vertical direction from the bottom portion 120a. The fitting portion 122 is continuous to the side of the bottom portion 120a that is separated from the main body portion 102.
 なお、係止部120は、不定形耐火物で構成されてもよいし、定形耐火物で構成されてもよい。例えば、本体部102の耐火物層106を延在させて係止部120(嵌合部122)を形成してもよい。また、本体部102の耐火物層110を延在させて係止部120(嵌合部122)を形成してもよい。また、本体部102の板材104を幅方向に突出させ、板材104の突出部位を耐火物で被覆して係止部120を構成してもよい。 In addition, the latching | locking part 120 may be comprised with an irregular refractory material and may be comprised with a regular refractory material. For example, the refractory layer 106 of the main body 102 may be extended to form the locking portion 120 (fitting portion 122). The refractory layer 110 of the main body 102 may be extended to form the locking portion 120 (fitting portion 122). Alternatively, the locking member 120 may be configured by protruding the plate member 104 of the main body 102 in the width direction and covering the protruding portion of the plate member 104 with a refractory.
 さらに、仕切部材100は、図5に示すように、本体部102の背面側に脚部130を備える。脚部130は、本体部102の背面に対して、略直角に突出する。脚部130は、本体部102の幅方向および長手方向の中央近傍に位置する。脚部130の幅方向の長さは、本体部102の幅方向の長さよりも短い。また、脚部130の長手方向の長さは、本体部102の長手方向の長さよりも短い。脚部130は、本体部102の長手方向の下端よりも鉛直方向の上方に設けられている。ここでは、脚部130が、本体部102の背面側に設けられる耐火物層110と同じ定形耐火物で構成されている。ただし、脚部130の材質は特に限定されるものではなく、金属、耐火物およびこれらの組み合わせのいずれで構成されてもよい。 Furthermore, as shown in FIG. 5, the partition member 100 includes leg portions 130 on the back side of the main body portion 102. The leg portion 130 protrudes at a substantially right angle with respect to the back surface of the main body portion 102. The leg portion 130 is located near the center of the main body portion 102 in the width direction and the longitudinal direction. The length in the width direction of the leg portion 130 is shorter than the length in the width direction of the main body portion 102. Further, the length of the leg portion 130 in the longitudinal direction is shorter than the length of the main body portion 102 in the longitudinal direction. The leg portion 130 is provided above the lower end in the longitudinal direction of the main body portion 102 in the vertical direction. Here, the leg portion 130 is made of the same refractory material as the refractory layer 110 provided on the back side of the main body portion 102. However, the material of the leg part 130 is not particularly limited, and may be composed of any of metal, refractory, and combinations thereof.
 図6は、仕切部材100の取り付け状態を説明する図である。図7は、図6のVII-VII線断面図である。図8は、図7から仕切部材100を取り外した状態を示している。上記したように、小煙道13は、壁部3aの周方向に互いに離隔して複数設けられている。以下では、小煙道13を囲繞する壁部3aのうち、内側壁部3bに対して冷却塔3の径方向に対向する部分を外側壁部3eとして説明する。内側壁部3bおよび外側壁部3eを繋ぐ部分を接続壁部3f(図8参照)として説明する。 FIG. 6 is a diagram for explaining an attachment state of the partition member 100. 7 is a cross-sectional view taken along line VII-VII in FIG. FIG. 8 shows a state in which the partition member 100 is removed from FIG. As described above, a plurality of small flues 13 are provided apart from each other in the circumferential direction of the wall 3a. Below, the part facing the radial direction of the cooling tower 3 with respect to the inner wall part 3b among the wall parts 3a surrounding the small flue 13 is demonstrated as the outer wall part 3e. A portion connecting the inner wall portion 3b and the outer wall portion 3e will be described as a connecting wall portion 3f (see FIG. 8).
 図6に示すように、小煙道13は、下側通路13cと、上側通路13dとを備える。下側通路13cは、開口部13aから斜め上方に向かって延在する。上側通路13dは、下側通路13cの上方に連続し、鉛直方向に沿って延在する。上側通路13dは、上記した環状煙道11の環状底部11aに開口する上部開口13b(図2参照)を含む。 As shown in FIG. 6, the small flue 13 includes a lower passage 13c and an upper passage 13d. The lower passage 13c extends obliquely upward from the opening 13a. The upper passage 13d is continuous above the lower passage 13c and extends along the vertical direction. The upper passage 13d includes an upper opening 13b (see FIG. 2) that opens to the annular bottom 11a of the annular flue 11 described above.
 小煙道13を囲繞する壁部3a(接続壁部3f)には、支持壁部3gが設けられる。図6においては、理解を容易とするため、支持壁部3gを黒塗りで示している。支持壁部3gは、図8に示すように、壁部3aのうち、周方向に対向する対向面に設けられる。つまり、小煙道13には、2つの支持壁部3gが周方向に離隔して対向配置されている。支持壁部3gは、壁部3aから小煙道13内に向けて突出する。支持壁部3gは、水平部3gおよび傾斜部3gを備える。水平部3gは、図6に示すように、小煙道13の開口部13aよりも鉛直方向の上方に位置する。水平部3gは、上側通路13d内に位置している。水平部3gは、水平方向に延在している。傾斜部3gは、水平部3gから下方に延在し、下側通路13c内に位置している。傾斜部3gは、下端側が上端側よりも径方向の内側に位置する向きに傾斜している。 The wall 3a (connection wall 3f) surrounding the small flue 13 is provided with a support wall 3g. In FIG. 6, the support wall 3g is shown in black for easy understanding. As shown in FIG. 8, the support wall portion 3 g is provided on the opposing surface of the wall portion 3 a that faces in the circumferential direction. That is, two support wall portions 3g are disposed opposite to the small flue 13 so as to be separated from each other in the circumferential direction. The support wall 3g protrudes into the small flue 13 from the wall 3a. Support wall portion 3g is provided with a horizontal portion 3g 1 and the inclined portion 3g 2. As shown in FIG. 6, the horizontal portion 3 g 1 is located above the opening 13 a of the small flue 13 in the vertical direction. Horizontal portion 3 g 1 is located in the upper passage 13d. Horizontal portion 3 g 1 extends in the horizontal direction. Inclined portion 3 g 2 extends from the horizontal portion 3 g 1 downward is located in the lower passage 13c. Inclined portion 3 g 2 has a lower end side is inclined in a direction which is located inward in the radial direction from the upper end side.
 支持壁部3gには、仕切部材100が載置される。具体的には、水平部3g上に、仕切部材100の底部120aが載置される。また、傾斜部3g上に、本体部102の幅方向の両側面が載置される。上記したように、本体部102の幅方向の両側面には、金属製の板材からなる側面部104bが設けられている(図4参照)。傾斜部3gには、側面部104bが載置されることとなる。 The partition member 100 is placed on the support wall 3g. More specifically, on the horizontal portion 3 g 1, the bottom 120a of the partition member 100 is placed. Further, on the inclined portion 3 g 2, both side surfaces in the width direction of the main body 102 is placed. As described above, the side surface portions 104b made of a metal plate material are provided on both side surfaces of the main body portion 102 in the width direction (see FIG. 4). The inclined portion 3 g 2 becomes the side surface portion 104b is placed.
 嵌合部122は、水平部3gよりも鉛直方向の下方に突出する。本体部102の背面と嵌合部122によって、水平部3gが挟持される。これにより、仕切部材100の脱落が防止される。このように、仕切部材100は、支持壁部3gにより、小煙道13内に保持される。仕切部材100が小煙道13内に保持された状態では、脚部130の突出方向の先端部分が壁部3aに接触する。ただし、仕切部材100が小煙道13内に保持された状態で、脚部130の突出方向の先端部分と壁部3aとの間に僅かな隙間が形成されてもよい。 Fitting portion 122 protrudes downward in the vertical direction than the horizontal portion 3 g 1. The back and the fitting portion 122 of the body portion 102, the horizontal portion 3 g 1 is held. Thereby, falling off of the partition member 100 is prevented. In this way, the partition member 100 is held in the small flue 13 by the support wall 3g. In a state where the partition member 100 is held in the small flue 13, the tip portion of the leg portion 130 in the protruding direction comes into contact with the wall portion 3a. However, in a state where the partition member 100 is held in the small flue 13, a slight gap may be formed between the distal end portion of the leg portion 130 in the protruding direction and the wall portion 3a.
 仕切部材100により、小煙道13は、下側通路13cが2つのフリューに仕切られる。すなわち、小煙道13の下側通路13cは、上段フリュー13cと、下段フリュー13cとに仕切られる。下段フリュー13cは、上段フリュー13cよりも鉛直方向の下方(冷却塔3の壁部3a側(冷却塔3の径方向外側))に位置する。ここでは、下段フリュー13c2が、複数のフリューのうち鉛直方向の最も下方に位置する最下段フリューとなる。仕切部材100の本体部102は、表面が上段フリュー13cに面し、裏面が下段フリュー13cに面する。したがって、仕切部材100の本体部102は、板材104の上段フリュー13c側の面に耐火物層106(不定形耐火物)が設けられることとなる。また、仕切部材100の本体部102は、板材104の下段フリュー13c側の面に耐火物層110(定形耐火物)が設けられることとなる。仕切部材100の脚部130は、下段フリュー13cに設けられる。脚部130は、下段フリュー13cに面する本体部102の裏面から壁部3aに向けて延在することとなる。 The partition member 100 divides the small flue 13 into two flues in the lower passage 13c. That is, the lower passage 13c of the small flue 13, an upper flues 13c 1, is partitioned into a lower flue 13c 2. The lower flue 13c 2 is located below the upper flue 13c 1 in the vertical direction (on the wall 3a side of the cooling tower 3 (outside in the radial direction of the cooling tower 3)). Here, the lower stage flue 13c2 is the lowermost stage flue located at the lowest position in the vertical direction among the plurality of flues. Body portion 102 of the partition member 100, the surface facing the upper flue 13c 1, the rear surface facing the lower flue 13c 2. Accordingly, the body portion 102 of the partition member 100, so that the refractory layer 106 (monolithic refractories) is provided on the surface of the upper flue 13c 1 side of the plate 104. Further, the main body 102 of the partition member 100 is provided with a refractory layer 110 (standard refractory) on the surface of the plate member 104 on the lower stage 13c 2 side. Legs 130 of the partition member 100 is provided in the lower flue 13c 2. The leg 130 extends from the back surface of the main body 102 facing the lower flue 13c 2 toward the wall 3a.
 図6に示すように、小煙道13には、開口部13aからコークスが侵入する。小煙道13に侵入した侵入コークスは、仕切部材100に接触する。つまり、仕切部材100は、高温雰囲気に晒された状態で侵入コークスが接触し、粉コークスが衝突する。そのため、仕切部材100は、コークスによって損耗しやすい状態におかれている。本実施形態の仕切部材100は、金属製の板材104に耐火物が積層された本体部102を有しているため、耐熱性および耐摩耗性が高い。したがって、仕切部材100の耐用年数が長くなり、メンテナンスの頻度を低減することができる。なお、装入コークス温度等の運転条件により、通過ガスの温度、流速、ガス中の粉コークスが変わる。そのため、仕切部材100の材質は、プラントごとに決めるとよい。 As shown in FIG. 6, coke enters the small flue 13 from the opening 13a. The intrusion coke that has entered the small flue 13 contacts the partition member 100. That is, the intrusion coke contacts the partition member 100 in a state where it is exposed to a high temperature atmosphere, and the powder coke collides. Therefore, the partition member 100 is in a state where it is easily worn out by coke. Since the partition member 100 of this embodiment has the main-body part 102 by which the refractory material was laminated | stacked on the metal board | plate material 104, heat resistance and abrasion resistance are high. Therefore, the service life of the partition member 100 is increased, and the frequency of maintenance can be reduced. The temperature of the passing gas, the flow velocity, and the powder coke in the gas vary depending on the operating conditions such as the charging coke temperature. Therefore, the material of the partition member 100 may be determined for each plant.
 仕切部材100の本体部102には、上段フリュー13c側からコークスの荷重が作用する。本体部102は、補強部材108により、板材104と耐火物層106とが一体化されている。そのため、仕切部材100は、コークスの荷重にも十分に耐えることができる。上段フリュー13c側から作用するコークスの荷重により、本体部102は、冷却塔3の径方向外側に押圧される。本体部102の背面側には、脚部130が設けられている。したがって、コークスの荷重は、脚部130を介して壁部3aに作用する。また、本体部102の幅方向の両端は、支持壁部3gによって支持されている。したがって、コークスの荷重は、壁部3aで受けられることとなり、仕切部材100のクリープ強度が向上する。 A coke load acts on the main body 102 of the partition member 100 from the upper flue 13c 1 side. In the main body 102, the plate member 104 and the refractory layer 106 are integrated by a reinforcing member 108. Therefore, the partition member 100 can sufficiently withstand the coke load. The main body 102 is pressed outward in the radial direction of the cooling tower 3 by the load of coke acting from the upper stage 13c 1 side. Legs 130 are provided on the back side of the main body 102. Therefore, the coke load acts on the wall portion 3 a via the leg portion 130. In addition, both ends in the width direction of the main body 102 are supported by the support wall 3g. Therefore, the load of coke is received by the wall 3a, and the creep strength of the partition member 100 is improved.
 仕切部材100は、支持壁部3gに載置するだけでよいため、交換作業が容易であり、コークス乾式消火設備1の稼働率を高めることができる。 Since the partition member 100 only needs to be placed on the support wall 3g, the replacement work is easy, and the operating rate of the coke dry fire extinguishing equipment 1 can be increased.
 下段フリュー13cにおける侵入コークスの高さは、上段フリュー13cにおける侵入コークスの高さよりも低い。脚部130は、通常操業時の下段フリュー13cにおける侵入コークスの高さ位置よりも上方に設けられている。つまり、脚部130は、本体部102の下端よりも上方に設けられることで、コークスとの接触が回避され、通風能力にも悪影響が与えられない。一方で、脚部130は、その一部もしくは全体が、本体部102のうち、上段フリュー13cにおける侵入コークスの高さよりも低い範囲に設けられている。このように、脚部130は、本体部102の中央近傍から下端側に向けて延在している。脚部130により、上段フリュー13c側から本体部102に作用する侵入コークスの荷重が、冷却塔3の壁部3aに作用しやすい。ただし、脚部130の配置や形状はこれに限らない。 Height of penetration coke in the lower flues 13c 2 is lower than the height of the penetration coke in the upper flues 13c 1. The leg part 130 is provided above the height position of the intrusion coke in the lower flue 13c 2 during normal operation. That is, by providing the leg part 130 above the lower end of the main body part 102, contact with the coke is avoided and the ventilation capacity is not adversely affected. On the other hand, a part or the whole of the leg part 130 is provided in a range lower than the height of the intrusion coke in the upper stage flue 13c 1 in the main body part 102. As described above, the leg portion 130 extends from the vicinity of the center of the main body portion 102 toward the lower end side. The legs 130, load entering coke acting from the upper flue 13c 1 side to the main body 102, likely acting on the wall portion 3a of the cooling tower 3. However, the arrangement and shape of the legs 130 are not limited to this.
 なお、コークス乾式消火設備1の操業中は、小煙道13に対するコークスの侵入と脱出とが連続的になされている。このとき、小煙道13への侵入コークス量と、小煙道13からの脱出コークス量とのバランスが崩れることがある。そして、侵入コークス量が脱出コークス量を大きく上回ると、通常操業が不可能となる。そのため、小煙道13のコークス量を常時監視する必要がある。 In addition, during the operation of the coke dry fire extinguishing equipment 1, the intrusion and escape of the coke into the small flue 13 are continuously performed. At this time, the balance between the amount of coke that enters the small flue 13 and the amount of coke that escapes from the small flue 13 may be lost. When the intrusion coke amount greatly exceeds the escape coke amount, normal operation becomes impossible. Therefore, it is necessary to constantly monitor the amount of coke in the small flue 13.
 ところが、仕切部材100が設けられると、小煙道13の視認性が低下し、小煙道13におけるコークス量の監視が困難となるおそれがある。侵入コークス量が限度を超えたのに気づかずに放置すると、侵入コークス量が勝手に増加し、不可逆状態へ至る。そのため、小煙道13内の侵入コークス量を常時監視し、侵入コークス量を知る手段が重要となる。 However, when the partition member 100 is provided, the visibility of the small flue 13 is lowered, and it may be difficult to monitor the amount of coke in the small flue 13. If it is left without noticing that the amount of intrusion coke has exceeded the limit, the amount of intrusion coke increases without permission, leading to an irreversible state. Therefore, a means for constantly monitoring the amount of intrusion coke in the small flue 13 and knowing the amount of intrusion coke is important.
 本実施形態のコークス乾式消火設備1は、小煙道13におけるコークス量を推定するための圧力検知部200を備える。圧力検知部200は、下部検知部200a、上部検知部200bおよび差圧導出部200cを備える。下部検知部200aは、一端が下段フリュー13cに開口し、他端が差圧導出部200cに接続される配管を含む。下部検知部200aは、下段フリュー13cの圧力を検知する。上部検知部200bは、一端が上側通路13dに開口し、他端が差圧導出部200cに接続される配管を含む。上部検知部200bは、小煙道13のうち、下部検知部200a、より厳密には、仕切部材100の上端よりも鉛直方向の上方(ここでは上側通路13d)の圧力を検知する。差圧導出部200cは、下部検知部200aにより検知された圧力と、上部検知部200bにより検知された圧力との差圧を導出する。 The coke dry fire extinguishing equipment 1 of this embodiment includes a pressure detection unit 200 for estimating the amount of coke in the small flue 13. The pressure detection unit 200 includes a lower detection unit 200a, an upper detection unit 200b, and a differential pressure deriving unit 200c. Lower sensing unit 200a includes a pipe having one end opened to the lower flue 13c 2, and the other end is connected to the differential-pressure detecting portion 200c. Lower sensing unit 200a detects the pressure of the lower flues 13c 2. The upper detection unit 200b includes a pipe having one end opened to the upper passage 13d and the other end connected to the differential pressure deriving unit 200c. The upper detection unit 200 b detects the pressure in the vertical direction above the upper end of the partition member 100 (here, the upper passage 13 d) in the small flue 13. The differential pressure deriving unit 200c derives a differential pressure between the pressure detected by the lower detection unit 200a and the pressure detected by the upper detection unit 200b.
 本実施形態では、圧力検知部200は、複数の異なる小煙道13に設けられる。具体的には、図2に示すように、冷却塔3の周方向に離隔して4つの圧力検知部200が設けられる。これらの圧力検知部200は、冷却塔3のうち、除塵器31の煙道33に連通する連通口3dの近傍に配される1つの圧力検知部200を除いて、周方向に大凡90度の位相をずらして配されている。 In the present embodiment, the pressure detection unit 200 is provided in a plurality of different small flues 13. Specifically, as shown in FIG. 2, four pressure detection units 200 are provided apart from each other in the circumferential direction of the cooling tower 3. These pressure detection units 200 are approximately 90 degrees in the circumferential direction, except for one pressure detection unit 200 arranged in the vicinity of the communication port 3d communicating with the flue 33 of the dust remover 31 in the cooling tower 3. The phase is shifted.
 図6に示すように、下部検知部200aは、コークス乾式消火設備1の通常操業時において、下段フリュー13cのうちコークスが侵入し得る位置よりも上方の圧力を検知する。したがって、小煙道13における侵入コークス量が適正範囲内であれば、下部検知部200aが検知する圧力と、上部検知部200bが検知する圧力との差は小さい。 As shown in FIG. 6, the lower detection unit 200 a detects a pressure above the position where the coke can invade in the lower flue 13 c 2 during normal operation of the coke dry fire extinguishing equipment 1. Therefore, if the amount of intrusion coke in the small flue 13 is within an appropriate range, the difference between the pressure detected by the lower detection unit 200a and the pressure detected by the upper detection unit 200b is small.
 図9は、侵入コークス量が増加した状態を説明する図である。小煙道13への侵入コークス量と、小煙道13からの脱出コークス量とのバランスが崩れると、図9に示すように、上段フリュー13c内の侵入コークス量が増加する。この場合、上段フリュー13c内の侵入コークスは、仕切部材100を乗り越えて下段フリュー13cに上方から侵入する。その結果、下段フリュー13cの侵入コークス量が増加する。このとき、下段フリュー13cにおいて、侵入コークスが下部検知部200aを塞ぐと、下部検知部200aが検知する圧力が高くなる。 FIG. 9 is a diagram illustrating a state where the amount of intrusion coke is increased. A penetration amount of coke to the small flue 13, the balance between the escape amount of coke from the small flue 13 collapses, as shown in FIG. 9, entering amount of coke in the upper flue 13c 1 is increased. In this case, the intrusion coke in the upper flue 13c 1 gets over the partition member 100 and enters the lower flue 13c 2 from above. As a result, the amount of intrusion coke in the lower flue 13c 2 increases. At this time, the lower flues 13c 2, when entering coke closes the lower detecting unit 200a, the higher the pressure the lower detecting unit 200a detects.
 その結果、下部検知部200aが検知する圧力と、上部検知部200bが検知する圧力との差が大きくなる。このように、下段フリュー13cと上側通路13dとの差圧は、小煙道13におけるコークス量と相関性(比例関係)を有している。したがって、下段フリュー13cと上側通路13dとの差圧によって、小煙道13における侵入コークス量を推定することができる。 As a result, the difference between the pressure detected by the lower detection unit 200a and the pressure detected by the upper detection unit 200b increases. Thus, the differential pressure between the lower flues 13c 2 and the upper passage 13d has a coke content and correlation in the small flue 13 (proportional). Thus, the differential pressure between the lower flues 13c 2 and the upper passage 13d, it is possible to estimate the intrusion amount of coke in the small flue 13.
 コークス乾式消火設備1は、制御部202および報知部204を備える。制御部202は、差圧導出部200cによって導出された差圧が、予め設定された閾値以上であるかを判定する判定処理を行う。報知部204は、警報が出力されるスピーカや表示部等で構成される。制御部202は、判定処理により差圧が閾値以上であると判定した場合に、報知部204から警報を出力する。 The coke dry fire extinguishing equipment 1 includes a control unit 202 and a notification unit 204. The control unit 202 performs a determination process for determining whether the differential pressure derived by the differential pressure deriving unit 200c is greater than or equal to a preset threshold value. The notification unit 204 includes a speaker, a display unit, and the like that output an alarm. The control unit 202 outputs an alarm from the notification unit 204 when the determination process determines that the differential pressure is equal to or greater than the threshold value.
 図10は、コークス乾式消火設備1の制御処理の一例を説明するフローチャートである。制御部202は、図10に示す処理を所定時間おきに繰り返し行う。制御部202は、圧力検知部200(差圧導出部200c)から差圧を取得する(S1)。制御部202は、取得した差圧が予め設定された閾値以上であるかを判定する判定処理を行う(S2)。そして、差圧が閾値以上であると判定した場合(S3のYES)、制御部202は、報知部204から警報を出力して所定の報知を開始する(S4)。一方、差圧は閾値以上ではないと判定した場合(S3のNO)、制御部202は、全ての圧力検知部200について判定処理が終了したかを判定する(S5)。そして、全ての圧力検知部200について判定処理が終了していれば(S5のYES)、当該処理を終了する。また、全ての圧力検知部200について判定処理が終了していなければ(S5のNO)、判定処理が行われていない圧力検知部200について、上記の処理を繰り返し行う。 FIG. 10 is a flowchart for explaining an example of the control process of the coke dry fire extinguishing equipment 1. The control unit 202 repeatedly performs the process shown in FIG. 10 at predetermined time intervals. The control unit 202 acquires the differential pressure from the pressure detection unit 200 (differential pressure deriving unit 200c) (S1). The control unit 202 performs a determination process for determining whether the acquired differential pressure is greater than or equal to a preset threshold value (S2). And when it determines with a differential pressure | voltage being more than a threshold value (YES of S3), the control part 202 outputs a warning from the alerting | reporting part 204, and starts predetermined alerting | reporting (S4). On the other hand, when it is determined that the differential pressure is not greater than or equal to the threshold (NO in S3), the control unit 202 determines whether the determination process has been completed for all the pressure detection units 200 (S5). And if the determination process is complete | finished about all the pressure detection parts 200 (YES of S5), the said process will be complete | finished. In addition, if the determination process has not been completed for all the pressure detection units 200 (NO in S5), the above process is repeated for the pressure detection units 200 that have not been subjected to the determination process.
 以上のように、本実施形態のコークス乾式消火設備1によれば、下段フリュー13cと上側通路13dとの差圧により、小煙道13の侵入コークス量が特定される。したがって、小煙道13における侵入コークス量を、精度よく、しかも、容易に監視することが可能となる。 As described above, according to the coke dry quenching equipment 1 of the present embodiment, the differential pressure between the lower flues 13c 2 and the upper passage 13d, entering coke amounts of the small flue 13 are identified. Accordingly, the amount of intrusion coke in the small flue 13 can be monitored accurately and easily.
 図11は、第1変形例のコークス乾式消火設備1Aを説明する図である。第1変形例のコークス乾式消火設備1Aは、小煙道13に2つの仕切部材100が設けられる点が上記実施形態と異なる。したがって、ここでは、上記実施形態と同じ構成については説明を省略し、上記実施形態と異なる点について説明する。コークス乾式消火設備1Aは、小煙道13内に2つの支持壁部3gを備える。2つの支持壁部3gは、鉛直方向に離隔して設けられている。2つの支持壁部3gには、それぞれ仕切部材100が載置されている。2つの仕切部材100は、鉛直方向に離隔して小煙道13内に配されている。 FIG. 11 is a diagram illustrating a coke dry fire extinguishing facility 1A according to a first modification. The coke dry fire extinguishing equipment 1A of the first modification is different from the above embodiment in that two partition members 100 are provided in the small flue 13. Therefore, description of the same configuration as that of the above embodiment will be omitted here, and different points from the above embodiment will be described. The coke dry fire extinguishing equipment 1 </ b> A includes two support wall portions 3 g in the small flue 13. The two support wall portions 3g are spaced apart in the vertical direction. A partition member 100 is placed on each of the two support wall portions 3g. The two partition members 100 are arranged in the small flue 13 while being separated in the vertical direction.
 小煙道13の下側通路13cは、2つの仕切部材100により、上段フリュー13c、下段フリュー13cおよび中段フリュー13cの3つのフリュー(通路)に仕切られる。上段フリュー13cは、下段フリュー13cおよび中段フリュー13cよりも鉛直方向の上方に位置している。下段フリュー13cは、3つのフリューの中で最も鉛直方向の下方に位置している。つまり、コークス乾式消火設備1Aにおいて、下段フリュー13cは、複数のフリューのうち、鉛直方向の最も下方に位置する最下段フリューとなる。 The lower passage 13c of the small flue 13 is partitioned by the two partition members 100 into three flues (passages), that is, an upper flue 13c 1 , a lower flue 13c 2 and an intermediate flue 13c 3 . The upper stage flue 13c 1 is positioned above the lower stage flue 13c 2 and the middle stage flue 13c 3 in the vertical direction. The lower stage flue 13c 2 is located at the lowermost position in the vertical direction among the three flues. That is, in the coke dry fire extinguishing equipment 1 </ b > A, the lower flue 13 c 2 is the lowermost flue located at the lowest position in the vertical direction among the plural flues.
 中段フリュー13cは、上段フリュー13cおよび下段フリュー13cの間に位置している。すなわち、中段フリュー13cは、2つの仕切部材100の間に位置している。 The middle flue 13c 3 is located between the upper flue 13c 1 and the lower flue 13c 2 . That is, the middle stage flue 13 c 3 is located between the two partition members 100.
 鉛直方向の上方に設けられる仕切部材100の脚部130は、突出方向の先端側の面が、鉛直方向の下方に設けられる仕切部材100の本体部102の表面に接触する。これにより、相対的に鉛直方向の上方に位置する仕切部材100に作用する侵入コークスの荷重を、相対的に鉛直方向の下方に位置する仕切部材100を介して、壁部3aが受けることとなる。なお、中段フリュー13cと上段フリュー13cとを仕切る仕切部材100の脚部130の少なくとも一部は、上段フリュー13cにおける侵入コークスの高さよりも低い範囲に設けられる。また、中段フリュー13cと下段フリュー13cとを仕切る仕切部材100の脚部130の少なくとも一部は、中段フリュー13cにおける侵入コークスの高さよりも低い範囲に設けられている。これにより、侵入コークスの荷重が、冷却塔3の壁部3aに作用しやすい。ただし、脚部130の配置や形状はこれに限らない。 The leg portion 130 of the partition member 100 provided above in the vertical direction has a surface on the distal end side in the protruding direction in contact with the surface of the main body portion 102 of the partition member 100 provided below in the vertical direction. Thereby, the wall part 3a will receive the load of the intrusion coke which acts on the partition member 100 located relatively upward in the vertical direction via the partition member 100 located relatively below in the vertical direction. . At least a portion of the middle flues 13c 3 and upper flues 13c 1 and the leg portion 130 of the partition member 100 for partitioning is provided to a lower range than the height of the penetration coke in the upper flues 13c 1. In addition, at least a part of the leg portion 130 of the partition member 100 that partitions the middle flue 13c 3 and the lower flue 13c 2 is provided in a range lower than the height of the intrusion coke in the middle flue 13c 3 . Thereby, the load of intrusion coke tends to act on the wall 3 a of the cooling tower 3. However, the arrangement and shape of the legs 130 are not limited to this.
 また、コークス乾式消火設備1Aにおいても、上記実施形態と同様に、下部検知部200aは、複数のフリューのうち鉛直方向の最も下方に位置する下段フリュー13c(最下段フリュー)の圧力を検知する。 Also in the coke dry fire extinguishing equipment 1A, as in the above embodiment, the lower detection unit 200a detects the pressure of the lower flue 13c 2 (the lowermost flue) located at the lowest position in the vertical direction among the plural flues. .
 以上説明したように、第1変形例のコークス乾式消火設備1Aによれば、下側通路13cが3つのフリューに仕切られる。これにより、さらに通風能力を向上させることができる。 As described above, according to the coke dry fire extinguishing equipment 1A of the first modification, the lower passage 13c is partitioned into three flues. Thereby, the ventilation capability can be further improved.
 図12は、第2変形例の仕切部材100Aを説明する図である。第2変形例の仕切部材100Aは、図12に示すように、板材104の背面側に耐火物層110が設けられていない点が上記実施形態と異なる。つまり、仕切部材100Aは、平面部104aの背面側が露出している。換言すれば、仕切部材100Aは、本体部102の最も背面側(相対的に鉛直方向の下方に位置するフリューに面する側)に板材104が設けられている。 FIG. 12 is a diagram illustrating a partition member 100A according to a second modification. As shown in FIG. 12, the partition member 100 </ b> A of the second modification is different from the above embodiment in that the refractory layer 110 is not provided on the back side of the plate material 104. That is, the partition member 100A has the back side of the flat surface portion 104a exposed. In other words, the partition member 100 </ b> A is provided with the plate member 104 on the most back side of the main body 102 (the side facing the flue located relatively below in the vertical direction).
 本体部102には、侵入コークスの荷重が作用する。そのため、本体部102には、幅方向の中央側が背面側に突出する向きに曲げ応力が作用する。仕切部材100Aは、曲げ応力が相対的に大きくなる背面側に板材104が設けられる。ここで、板材104の背面側(すなわち、下段フリュー13c側(図6参照))は、板材104の表面側(すなわち、上段フリュー13c側(図6参照))に比べて比較的低温である。そのため、第2変形例の板材104の背面側には、上記実施形態の耐火物層110が設けられていない。これにより、第2変形例の仕切部材100Aは、上記実施形態の仕切部材100よりも軽量化を図ることができる。なお、ここでは、板材104の表面側に、不定形耐火物で構成される耐火物層106が設けられている。しかし、これに限定されず、板材104の表面側に、定形耐火物で構成される耐火物層110が設けられてもよい。 A load of intrusion coke acts on the main body 102. Therefore, a bending stress acts on the main body 102 in a direction in which the center side in the width direction protrudes toward the back side. The partition member 100A is provided with a plate member 104 on the back side where the bending stress becomes relatively large. Here, the back side of the plate member 104 (i.e., the lower flues 13c 2 side (see FIG. 6)), the surface side of the plate member 104 (i.e., upper flues 13c 1 side (see FIG. 6)) at a relatively low temperature as compared with is there. Therefore, the refractory layer 110 of the above embodiment is not provided on the back side of the plate material 104 of the second modified example. Thereby, 100 A of partition members of a 2nd modification can achieve weight reduction rather than the partition member 100 of the said embodiment. Here, a refractory layer 106 made of an irregular refractory is provided on the surface side of the plate member 104. However, the present invention is not limited to this, and a refractory layer 110 made of a regular refractory may be provided on the surface side of the plate member 104.
 図13は、第3変形例の仕切部材100Bを説明する図である。第3変形例の仕切部材100Bは、図13に示すように、板材104の表面側および背面側の双方に耐火物層106が設けられている。また、板材104の表面側および背面側の双方に補強部材108が設けられている。したがって、板材104の表面側および背面側の双方に設けられる耐火物層106には、いずれも補強部材108が設けられている。さらに、仕切部材100Bは、本体部102(板材104および耐火物層106)の幅方向の中央側が両端側に比べて、表面側に突出するように湾曲している。 FIG. 13 is a diagram illustrating a partition member 100B according to a third modification. As shown in FIG. 13, the partition member 100 </ b> B according to the third modification is provided with a refractory layer 106 on both the front side and the back side of the plate member 104. Further, reinforcing members 108 are provided on both the front side and the back side of the plate member 104. Accordingly, the reinforcing member 108 is provided on each of the refractory layers 106 provided on both the front side and the back side of the plate member 104. Furthermore, the partition member 100B is curved so that the center side in the width direction of the main body 102 (the plate material 104 and the refractory layer 106) protrudes to the surface side compared to the both end sides.
 なお、ここでは、板材104の表面側および背面側の双方に、不定形耐火物で構成される耐火物層106が設けられている。しかし、これに限定されず、板材104の表面側および背面側のいずれか一方または双方に、定形耐火物で構成される耐火物層110が設けられてもよい。また、本体部102(板材104および耐火物層106)は、幅方向の中央側が両端側に比べて、背面側に突出するように湾曲してもよい。 Here, a refractory layer 106 made of an irregular refractory is provided on both the front side and the back side of the plate member 104. However, the present invention is not limited to this, and a refractory layer 110 made of a regular refractory may be provided on one or both of the front side and the rear side of the plate member 104. In addition, the main body 102 (the plate member 104 and the refractory layer 106) may be curved so that the center side in the width direction protrudes to the back side as compared to the both end sides.
 図14は、第4変形例の仕切部材100Cを説明する図である。第4変形例の仕切部材100Cは、図14に示すように、板材104の表面側に耐火物層106が設けられている。そして、仕切部材100Cは、本体部102(板材104および耐火物層106)の幅方向の中央側が両端側に比べて、表面側に突出するように湾曲している。なお、ここでは、板材104の表面側に、不定形耐火物で構成される耐火物層106が設けられている。しかし、これに限定されず、板材104の表面側に、定形耐火物で構成される耐火物層110が設けられてもよい。また、本体部102(板材104および耐火物層106)は、幅方向の中央側が両端側に比べて、背面側に突出するように湾曲してもよい。 FIG. 14 is a diagram illustrating a partition member 100C according to a fourth modification. As shown in FIG. 14, the partition member 100 </ b> C of the fourth modification is provided with a refractory layer 106 on the surface side of the plate material 104. The partition member 100 </ b> C is curved so that the center side in the width direction of the main body 102 (the plate material 104 and the refractory layer 106) protrudes to the surface side compared to the both end sides. Here, a refractory layer 106 made of an irregular refractory is provided on the surface side of the plate member 104. However, the present invention is not limited to this, and a refractory layer 110 made of a regular refractory may be provided on the surface side of the plate member 104. In addition, the main body 102 (the plate member 104 and the refractory layer 106) may be curved so that the center side in the width direction protrudes to the back side as compared to the both end sides.
 なお、上記の第2変形例~第4変形例の仕切部材100A、100B、100Cは、実施形態のコークス乾式消火設備1、および、第1変形例のコークス乾式消火設備1Aの双方に適用可能である。 The partition members 100A, 100B, and 100C of the second to fourth modifications described above are applicable to both the coke dry fire extinguishing equipment 1 of the embodiment and the coke dry fire extinguishing equipment 1A of the first modification. is there.
 また、上記実施形態および第1変形例では、圧力検知部200が、下部検知部200a、上部検知部200bおよび差圧導出部200cを備えることとした。しかしながら、圧力検知部200は、例えば、下部検知部200aのみを備えてもよい。この場合、下部検知部200aが検知する圧力によって、侵入コークス量を推定すればよい。いずれにしても、圧力検知部200は、少なくとも下段フリュー13cの圧力を検知すればよい。 In the embodiment and the first modification, the pressure detection unit 200 includes the lower detection unit 200a, the upper detection unit 200b, and the differential pressure deriving unit 200c. However, the pressure detection unit 200 may include only the lower detection unit 200a, for example. In this case, the intrusion coke amount may be estimated based on the pressure detected by the lower detection unit 200a. Anyway, the pressure sensing unit 200 may be detected at least the pressure of the lower flues 13c 2.
 また、上記実施形態および第1変形例では、上部検知部200bが、仕切部材100の上端よりも鉛直方向の上方の圧力、すなわち、上側通路13dの圧力を検知する場合について説明した。しかしながら、上部検知部200bは、下部検知部200aよりも上方であれば、例えば、上段フリュー13cの圧力を検知してもよいし、下段フリュー13cの圧力を検知してもよい。 Further, in the above embodiment and the first modification, the case has been described in which the upper detection unit 200b detects the pressure above the upper end of the partition member 100 in the vertical direction, that is, the pressure in the upper passage 13d. However, the upper detection unit 200b, if the upper is than the lower detection unit 200a, for example, may be detected pressure of the upper flue 13c 1, may detect the pressure of the lower flues 13c 2.
 また、上記実施形態および第1変形例では、圧力検知部200が複数の異なる小煙道13に設けられることとしたが、圧力検知部200は1つのみ設けられてもよい。また、圧力検知部200は、冷却塔3の周方向のいずれの位置に設けられてもよい。 In the above embodiment and the first modification, the pressure detection unit 200 is provided in a plurality of different small flues 13, but only one pressure detection unit 200 may be provided. Further, the pressure detection unit 200 may be provided at any position in the circumferential direction of the cooling tower 3.
 また、上記実施形態および第1変形例では、差圧が閾値以上になった場合に、制御部202が報知部204から警報を出力(所定の報知)することとした。しかしながら、制御部202は、警報の出力に代えて、あるいは、警報の出力に加えて、コークス乾式消火設備1の操業を停止させる等、運転条件を変更してもよい。 In the embodiment and the first modification, the control unit 202 outputs an alarm (predetermined notification) from the notification unit 204 when the differential pressure becomes equal to or greater than a threshold value. However, the control unit 202 may change the operation conditions such as stopping the operation of the coke dry fire extinguishing facility 1 instead of or in addition to the alarm output.
 また、上記実施形態および第1変形例では、複数の圧力検知部200のうち、いずれか1つの圧力検知部200において差圧が閾値以上になった場合に、制御部202が警報を出力することとした。しかしながら、2以上の圧力検知部200において差圧が閾値以上になった場合に警報を出力してもよい。このようにすれば、誤報を防止することができる。 Moreover, in the said embodiment and 1st modification, when the differential pressure becomes more than a threshold value in any one pressure detection part 200 among the several pressure detection parts 200, the control part 202 outputs an alarm. It was. However, an alarm may be output when the differential pressure is equal to or greater than a threshold value in two or more pressure detection units 200. In this way, false alarms can be prevented.
 また、上記実施形態では、下側通路13cが2つのフリューに仕切られ、上記第1変形例では、下側通路13cが3つのフリューに仕切られるが、下側通路13cは、4つ以上のフリューに仕切られてもよい。 In the above embodiment, the lower passage 13c is divided into two flues. In the first modification, the lower passage 13c is divided into three flues, but the lower passage 13c has four or more flues. You may partition.
 以上、添付図面を参照しながら実施形態について説明したが、本開示はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に技術的範囲に属するものと了解される。 As mentioned above, although embodiment was described referring an accompanying drawing, it cannot be overemphasized that this indication is not limited to this embodiment. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims and that they naturally fall within the technical scope.
 本開示は、コークス乾式消火設備に利用することができる。 This disclosure can be used for coke dry fire extinguishing equipment.
1:コークス乾式消火設備 3:冷却塔 3a:壁部 7:冷却室 7a:ガス供給口(ガス供給部) 13:小煙道 13c:上段フリュー 13c:下段フリュー 100:仕切部材 200:圧力検知部 200a:下部検知部 200b:上部検知部 200c:差圧導出部 202:制御部 1: Coke dry fire extinguishing equipment 3: Cooling tower 3a: Wall part 7: Cooling chamber 7a: Gas supply port (gas supply part) 13: Small flue 13c 1 : Upper stage flue 13c 2 : Lower stage flue 100: Partition member 200: Pressure Detection unit 200a: Lower detection unit 200b: Upper detection unit 200c: Differential pressure deriving unit 202: Control unit

Claims (5)

  1.  壁部に囲繞された冷却室を有する冷却塔と、
     前記冷却塔に設けられ、前記冷却室内にガスを供給するガス供給部と、
     前記冷却塔の前記壁部のうち、前記ガス供給部よりも鉛直方向の上方に形成され、前記冷却室に開口する小煙道と、
     前記小煙道に設けられ、前記小煙道を、鉛直方向に複数のフリューに仕切る仕切部材と、
     少なくとも、複数の前記フリューのうち鉛直方向の最も下方に位置する最下段フリューの圧力を検知する圧力検知部と、
    を備えるコークス乾式消火設備。
    A cooling tower having a cooling chamber surrounded by a wall;
    A gas supply unit that is provided in the cooling tower and supplies gas into the cooling chamber;
    Of the wall portion of the cooling tower, a small flue that is formed above the gas supply unit in the vertical direction and opens into the cooling chamber;
    A partition member provided in the small flue and partitioning the small flue into a plurality of flues in a vertical direction;
    At least a pressure detection unit that detects the pressure of the lowest stage flue located in the lowest position in the vertical direction among the plurality of flues;
    Coke dry fire extinguishing equipment.
  2.  前記圧力検知部は、
     前記最下段フリューの圧力を検知する下部検知部と、
     前記下部検知部よりも鉛直方向の上方の圧力を検知する上部検知部と、
     前記下部検知部により検知された圧力と、前記上部検知部により検知された圧力との差圧を導出する差圧導出部と、
    を含む請求項1に記載のコークス乾式消火設備。
    The pressure detector is
    A lower detection part for detecting the pressure of the lowermost flue;
    An upper detector that detects a pressure above the lower detector in the vertical direction;
    A differential pressure deriving unit for deriving a differential pressure between the pressure detected by the lower detection unit and the pressure detected by the upper detection unit;
    The coke dry fire extinguishing equipment according to claim 1 containing.
  3.  前記上部検知部は、前記仕切部材の上端よりも鉛直方向の上方の圧力を検知する請求項2に記載のコークス乾式消火設備。 [Claim 3] The coke dry fire extinguishing equipment according to claim 2, wherein the upper detection unit detects a pressure above the upper end of the partition member in a vertical direction.
  4.  前記差圧導出部によって導出された差圧が予め設定された閾値以上になると所定の報知を行う制御部を備える請求項2または3に記載のコークス乾式消火設備。 The coke dry fire extinguishing equipment according to claim 2 or 3, further comprising a control unit that performs a predetermined notification when the differential pressure derived by the differential pressure deriving unit is equal to or greater than a preset threshold value.
  5.  前記圧力検知部は、複数の異なる前記小煙道に設けられる請求項1から4のいずれか1項に記載のコークス乾式消火設備。 The coke dry fire extinguishing equipment according to any one of claims 1 to 4, wherein the pressure detection unit is provided in a plurality of different small flues.
PCT/JP2019/019718 2018-05-18 2019-05-17 Coke dry quenching facility WO2019221282A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207028404A KR20200127237A (en) 2018-05-18 2019-05-17 Coke dry fire extinguishing system
CN201980026179.9A CN111989385A (en) 2018-05-18 2019-05-17 Coke dry fire extinguishing apparatus
JP2020519951A JPWO2019221282A1 (en) 2018-05-18 2019-05-17 Coke dry fire extinguishing equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-096026 2018-05-18
JP2018096026 2018-05-18

Publications (1)

Publication Number Publication Date
WO2019221282A1 true WO2019221282A1 (en) 2019-11-21

Family

ID=68540403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019718 WO2019221282A1 (en) 2018-05-18 2019-05-17 Coke dry quenching facility

Country Status (5)

Country Link
JP (1) JPWO2019221282A1 (en)
KR (1) KR20200127237A (en)
CN (1) CN111989385A (en)
TW (1) TWI683001B (en)
WO (1) WO2019221282A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022071775A1 (en) 2020-09-29 2022-04-07 주식회사 엘지에너지솔루션 Separator for lithium secondary battery, method for manufacturing same, and lithium secondary battery comprising same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58138780A (en) * 1982-02-10 1983-08-17 Ishikawajima Harima Heavy Ind Co Ltd Air flow rate controlling apparatus in coke dry quenching apparatus
JPS59105076A (en) * 1982-12-07 1984-06-18 Ishikawajima Harima Heavy Ind Co Ltd Charging of red-hot coke into dry process coke quencher
JPS6354032U (en) * 1986-09-25 1988-04-11
JPH02167392A (en) * 1988-09-01 1990-06-27 Nippon Steel Corp Flue from gas outlet of coke dry-type extinguisher
JP2016023230A (en) * 2014-07-18 2016-02-08 新日鉄住金エンジニアリング株式会社 Coke dry quenching equipment and gas outlet flue part structure thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1624014A1 (en) * 1989-01-09 1991-01-30 Днепропетровский химико-технологический институт им.Ф.Э.Дзержинского Pressure control device for coke dry quenching plant
JP4137676B2 (en) 2003-03-19 2008-08-20 新日鉄エンジニアリング株式会社 Coke dry fire extinguishing equipment gas outlet flue structure
WO2010044137A1 (en) * 2008-10-14 2010-04-22 新日鉄エンジニアリング株式会社 Coke dry quenching equipment
CN102186947B (en) * 2008-10-14 2014-09-03 新日铁住金工程技术株式会社 Coke dry type extinguishing facility, and coke dry type extinguishing method
KR101199950B1 (en) * 2011-04-22 2012-11-09 주식회사 포스코 Coke dry quenching plant and method for operating the same
JP5202751B1 (en) * 2012-09-13 2013-06-05 新日鉄住金エンジニアリング株式会社 Coke dry fire extinguishing equipment
JP5562477B1 (en) * 2013-08-01 2014-07-30 新日鉄住金エンジニアリング株式会社 Coke dry fire extinguishing device and coke dry fire extinguishing method
CN204079879U (en) * 2014-07-28 2015-01-07 辽宁以太工程技术开发有限公司 Dryly put out annular air channel hydraulic push rod setting device
JP6617870B2 (en) * 2015-08-06 2019-12-11 株式会社Ihi Coke dry fire extinguishing equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58138780A (en) * 1982-02-10 1983-08-17 Ishikawajima Harima Heavy Ind Co Ltd Air flow rate controlling apparatus in coke dry quenching apparatus
JPS59105076A (en) * 1982-12-07 1984-06-18 Ishikawajima Harima Heavy Ind Co Ltd Charging of red-hot coke into dry process coke quencher
JPS6354032U (en) * 1986-09-25 1988-04-11
JPH02167392A (en) * 1988-09-01 1990-06-27 Nippon Steel Corp Flue from gas outlet of coke dry-type extinguisher
JP2016023230A (en) * 2014-07-18 2016-02-08 新日鉄住金エンジニアリング株式会社 Coke dry quenching equipment and gas outlet flue part structure thereof

Also Published As

Publication number Publication date
CN111989385A (en) 2020-11-24
TWI683001B (en) 2020-01-21
KR20200127237A (en) 2020-11-10
TW202003865A (en) 2020-01-16
JPWO2019221282A1 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
WO2019221282A1 (en) Coke dry quenching facility
JP2000512698A (en) Ventilation type fire-resistant water cooling tower
WO2019221281A1 (en) Coke dry quenching facility
JP6472267B2 (en) Economizer, composite boiler, and method of use
EP2251629A1 (en) Combustion gas bleeding probe, and method for running the probe
CN102265108A (en) Method and system for monitoring the operation of a carbon block baking plant
CN111602004B (en) Fluidized bed monitoring method and apparatus
KR102265833B1 (en) Evacuation route securing system and method using smoke prevention facilities
Shoshe et al. Effectiveness of air curtains as thermal and smoke barrier against high gradients of flow parameters
JP4779400B2 (en) Reducing gas injection controller for blast furnace
KR100536877B1 (en) Structure of gas exit flue section of coke dry quenching equipment
JP6618841B2 (en) Fire detection system and alarm device in exhaust duct
CN220131029U (en) A blow stifled device and coal conveying system for coal conveying system
JP4157951B2 (en) Charge distribution control method for blast furnace throat
CN111076694A (en) Method for judging air gap of blast furnace packing layer
JP5438486B2 (en) Coke dry fire extinguishing equipment
JPH02167392A (en) Flue from gas outlet of coke dry-type extinguisher
CN215162858U (en) Wear-resisting copper cooling wall
CN115095268B (en) Method for controlling opening and closing of fireproof rolling curtain of tunnel escape passage
TWI708851B (en) Method for predicting channeling phenomenon of blast furnace
JPH0368443A (en) Gas-liquid system catalytic reactor and burnout preventing method for packed layer thereof
KR20010059375A (en) furnace wall deposition and hearth temperature control system of furnace hearth bottom in a blast furnace
JP3654607B2 (en) Incomplete combustion prevention device for gas combustion equipment
US585304A (en) Limekiln
JPS58138780A (en) Air flow rate controlling apparatus in coke dry quenching apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19802648

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020519951

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207028404

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19802648

Country of ref document: EP

Kind code of ref document: A1