WO2019221002A1 - (poly)alkylene glycol-containing copolymer - Google Patents

(poly)alkylene glycol-containing copolymer Download PDF

Info

Publication number
WO2019221002A1
WO2019221002A1 PCT/JP2019/018551 JP2019018551W WO2019221002A1 WO 2019221002 A1 WO2019221002 A1 WO 2019221002A1 JP 2019018551 W JP2019018551 W JP 2019018551W WO 2019221002 A1 WO2019221002 A1 WO 2019221002A1
Authority
WO
WIPO (PCT)
Prior art keywords
monomer
copolymer
poly
peak
group
Prior art date
Application number
PCT/JP2019/018551
Other languages
French (fr)
Japanese (ja)
Inventor
太一朗 新井
坂本 登
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Priority to JP2020519594A priority Critical patent/JPWO2019221002A1/en
Publication of WO2019221002A1 publication Critical patent/WO2019221002A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G

Definitions

  • the present invention relates to a (poly) alkylene glycol-containing copolymer. More specifically, the present invention relates to a (poly) alkylene glycol-containing copolymer useful for applications such as a dispersant and a cement admixture.
  • a polymer containing a (poly) alkylene glycol chain (hereinafter, also referred to as a (poly) alkylene glycol polymer) has a hydrophilicity, hydrophobicity, flexibility, etc. by appropriately adjusting the chain length and the alkylene oxide constituting the polymer. Since characteristics such as steric repulsion are imparted, it is used in cement admixture applications added to cement compositions such as cement paste, mortar, and concrete. Such a cement admixture is usually used as a water reducing agent or the like, and exerts an effect of improving the strength and durability of the cured product by reducing the cement composition by increasing the fluidity of the cement composition. Used for that purpose.
  • a water reducing agent such as naphthalene type has been conventionally used.
  • a (poly) alkylene glycol chain can act as a dispersing group for dispersing cement particles due to its steric repulsion
  • (poly) alkylene A polycarboxylic acid-based water reducing agent containing a glycol chain has been proposed as exhibiting a high water reducing action, and has recently been used as a high-performance AE water reducing agent.
  • Patent Document 1 discloses a cement dispersant mainly composed of a polycarboxylic acid polymer (A) or a salt thereof.
  • the weight average molecular weight of the polymer (A) is in the range of 10,000 to 500,000 in terms of polyethylene glycol by gel permeation chromatography, and the value obtained by subtracting the peak top molecular weight from the weight average molecular weight is 0.
  • a cement dispersant characterized by ⁇ 8,000 is disclosed.
  • Patent Documents 2 to 5 also disclose polycarboxylic acid polymers containing a (poly) alkylene glycol chain.
  • Patent Document 6 discloses a polymer (A ) And polymer (B) as an essential component, a cement admixture, wherein the polymer (A) and the polymer (B) are unsaturated ( The structural unit (I) derived from the poly) alkylene glycol ether monomer (a) and the structural unit derived from the unsaturated carboxylic acid monomer (b) having a carboxyl group and / or a salt thereof as an adsorbing group (II) ) As an essential structural unit, and the polymer (A) further includes, as an essential structural unit, a structural unit (III) derived from an unsaturated carboxylic acid ester monomer (c) having a hydrophobic group.
  • This invention is made
  • the inventor conducted various studies on copolymers having a structural unit derived from a (poly) alkylene glycol monomer and a structural unit derived from a hydrophobic monomer. As a result, the ratio of the high molecular weight in the copolymer was determined. As a result of the reduction, it was found that the separation in the copolymer solution was sufficiently suppressed and the storage stability was excellent, and it was conceived that the above problems could be solved brilliantly, and the present invention has been achieved.
  • the present invention is a copolymer containing a (poly) alkylene glycol chain, wherein the copolymer is represented by the following formula (1);
  • R 1 , R 2 and R 3 are the same or different and each represents a hydrogen atom or a methyl group.
  • R 4 represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms.
  • (AO) are the same or different and each represents an oxyalkylene group, n represents the average number of moles added of the oxyalkylene group, and is a number from 1 to 300.
  • y represents a number from 0 to 4.
  • z Represents a structural unit (a) derived from the (poly) alkylene glycol-containing monomer (A) and a structural unit (b) derived from the hydrophobic monomer (B).
  • the hydrophobic monomer (B) has an ethylenically unsaturated group and has an octanol / water partition coefficient value (Log P value) of 1.0 to 8.0; Gel Permeation Chromatography (GPC) Differential Refractive Index Detector Chromatography In the ram, a (poly) alkylene glycol-containing copolymer satisfying the following formula (2), the areas of the peak ⁇ and the peak ⁇ defined below. ⁇ ⁇ 100 / ( ⁇ + ⁇ ) ⁇ 3.0 (2) ⁇ Peak ⁇ and ⁇ > Peak ⁇ : A peak having a weight average molecular weight (Mw) larger than 200,000. Peak ⁇ : A peak having Mw of 200,000 or less.
  • Mw weight average molecular weight
  • the hydrophobic monomer (B) is an ester of an unsaturated carboxylic acid and an alcohol, an aromatic vinyl monomer, an olefin monomer, a (meth) acrylamide monomer, or a maleimide monomer. And at least one selected from the group consisting of esters of unsaturated alcohols and carboxylic acids.
  • the (poly) alkylene glycol-containing copolymer preferably has a structural unit (c) derived from an unsaturated carboxylic acid monomer (C).
  • z in the formula (1) is preferably 0.
  • the proportion of the structural unit (a) is preferably 50% by mass to 99% by mass with respect to 100% by mass of all structural units.
  • the proportion of the structural unit (b) is preferably 1% by mass to 30% by mass with respect to 100% by mass of all structural units.
  • the proportion of the structural unit (c) is preferably 0% by mass to 30% by mass with respect to 100% by mass of all structural units.
  • the (poly) alkylene glycol-containing copolymer includes other (poly) alkylene glycol-containing monomer (A), hydrophobic monomer (B), and unsaturated carboxylic acid monomer (C).
  • the structural unit (e) derived from the monomer (E) may be included, and the proportion of the structural unit (e) is 0% by mass or more and 30% by mass or less with respect to 100% by mass of all the structural units. It is preferable.
  • the present invention is also a cement admixture containing the (poly) alkylene glycol-containing copolymer.
  • the present invention is also a cement composition comprising the (poly) alkylene glycol-containing copolymer and cement.
  • the present invention is further a method for producing a cement composition, wherein the production method is also a method for producing a cement composition including a step of adding the (poly) alkylene glycol-containing copolymer to a hydraulic material.
  • the (poly) alkylene glycol-containing copolymer of the present invention has the above-described structure, and is sufficiently suppressed in the copolymer solution and excellent in storage stability. Therefore, it can be suitably used as a cement admixture or the like. .
  • the (poly) alkylene glycol-containing copolymer of the present invention (hereinafter also referred to as the copolymer of the present invention) is a gel-permeation chromatography (GPC) differential refractive index detector measured for the copolymer.
  • GPC gel-permeation chromatography
  • the areas of peak ⁇ and peak ⁇ defined below satisfy the following formula (2).
  • Peak ⁇ A peak having Mw of 200,000 or less.
  • the copolymer by reducing the proportion of the high molecular weight substance having Mw greater than 200,000 corresponding to the peak ⁇ , separation can be sufficiently suppressed in the copolymer and its solution. By suppressing separation in the copolymer solution, the separated product can be prevented from adhering to and contaminating the reactor and the storage container. Further, in the copolymer and its solution, it is possible to suppress the occurrence of non-uniform concentration, and to fully exhibit desired performance during use.
  • the high molecular weight product has a relatively high content of structural units derived from the hydrophobic monomer (B) and / or the unsaturated carboxylic acid monomer (C), and the (poly) alkylene glycol-containing monomer ( It is estimated that the content of the structural unit derived from A) is a (co) polymer having a relatively low content. This is because the UV / RI ratio (value obtained by dividing the UV chromatogram area by the RI chromatogram area) for the peak ⁇ and the peak ⁇ detected by GPC is larger. It is suggested from becoming.
  • the ratio of the high molecular weight corresponding to the peak ⁇ increases in the entire copolymer, not only the separation occurs in the copolymer solution, but also the hydrophobicity of the copolymer having an Mw corresponding to the peak ⁇ of 200,000 or less. Since the content of the structural unit derived from the polymerizable monomer (B) (and optionally the unsaturated carboxylic acid monomer (C)) is decreased, the desired performance may not be sufficiently exhibited. On the other hand, since the copolymer of the present invention has a small proportion of such a high molecular weight, it is presumed that the composition ratio of the constituent units in the copolymer is relatively uniform regardless of Mw. . Thus, the copolymer of this invention will be excellent also in the performance at the time of using for a cement composition etc. because the composition of a copolymer is uniform.
  • the measurement conditions of GPC of the copolymer are as follows. ⁇ GPC analysis conditions> Device: Waters Alliance (2695) Analysis software: Waters, Empor2 Professional + GPC option column: Tosoh Co., Ltd., TSKguardcolumns SWXL + TSKgel G4000SWXL + G3000SWXL + G2000SWXL Detector: differential refractive index (RI) detector (Waters 2414), multi-wavelength visible ultraviolet (PDA) detector (Waters 2996) Eluent: A solution prepared by dissolving 115.6 g of sodium acetate trihydrate in a mixed solvent of 10999 g of water and 6001 g of acetonitrile, and adjusting the pH to 6.0 with acetic acid.
  • RI differential refractive index
  • PDA multi-wavelength visible ultraviolet
  • Standard substance for preparing calibration curve polyethylene glycol (peak top molecular weight (Mp) 272500, 219300, 107000, 50000, 24000, 12600, 7100, 4250, 1470)
  • Calibration curve Prepared by a cubic equation based on the Mp value and elution time of the standard. Flow rate: 1 mL / min Column temperature: 40 ° C Measurement time: 45 minutes
  • Standard substance sample solution injection amount 100 ⁇ L (eluent solution with polymer concentration of 0.1% by mass)
  • Polymer sample solution injection amount 100 ⁇ L (eluent solution having a polymer concentration of 0.5% by mass)
  • ⁇ GPC analysis conditions analysis of polymer>
  • the peaks ⁇ and ⁇ are defined as follows.
  • the weight average molecular weight (Mw) of each peak obtained was determined, and the peak with Mw greater than 200,000 was defined as ⁇ , and Mw was 20 A peak of 10,000 or less is defined as ⁇ .
  • the peak ⁇ is a peak whose Mw is 200,000 or less among peaks that can be analyzed in the chromatogram. There may be a plurality of peaks ⁇ and ⁇ , but the molecular weight and area are calculated together.
  • the peaks ⁇ and ⁇ are detected without overlapping completely, the peaks ⁇ and ⁇ are separated by vertical division at the most concave portion (lowest point) between the peaks. When the lowest point continues in the most concave portion, the peak is vertically divided at the intermediate point.
  • the flat and stable portions are connected with a straight line to form a baseline.
  • the peak areas of the peaks ⁇ and ⁇ are defined as follows.
  • the area of ⁇ is an area surrounded by a peak curve belonging to the peak ⁇ , a base line, and a perpendicular line extending from the concave portion to the base line.
  • the area of the peak ⁇ is an area surrounded by a peak curve belonging to the peak ⁇ , a base line, and a perpendicular line extending from the most concave portion to the base line.
  • a peak is isolate
  • the copolymer of the present invention comprises a structural unit (a) derived from the (poly) alkylene glycol-containing monomer (A) represented by the above formula (1) and a structural unit derived from the hydrophobic monomer (B) ( b), each of which may be one type or two or more types.
  • the proportion of the structural unit (a) in the copolymer of the present invention is sufficient to exhibit performances such as hydrophilicity, compatibility, and dispersion force derived from the structural unit (a). It is preferable that it is 50 mass% or more. More preferably, it is 60 mass% or more, More preferably, it is 70 mass% or more, More preferably, it is 75 mass% or more, Most preferably, it is 80 mass% or more.
  • the proportion of the structural unit (b) in the copolymer of the present invention is sufficient to exhibit performances such as hydrophobicity, compatibility, and surface activity derived from the structural unit (b). And preferably 1% by mass or more. More preferably, it is 3 mass% or more, More preferably, it is 5 mass% or more, Still more preferably, it is 7.5 mass% or more, Most preferably, it is 10 mass% or more. Further, in order to reduce the proportion of the high molecular weight substance, more sufficiently suppress the separation in the copolymer solution, and sufficiently exhibit the performance derived from other structural units, 30% with respect to 100% by mass of all structural units It is preferable that it is below mass%. More preferably, it is 25 mass% or less, More preferably, it is 20 mass% or less, More preferably, it is 15 mass% or less, Most preferably, it is 12.5 mass% or less.
  • the proportion of the structural unit (c) in the copolymer of the present invention may be 0% by mass or more with respect to 100% by mass of all the structural units.
  • the content is preferably 1% by mass or more with respect to 100% by mass of all structural units. More preferably, it is 3 mass% or more, More preferably, it is 5 mass% or more, Still more preferably, it is 7.5 mass% or more, Most preferably, it is 10 mass% or more.
  • the mass of the structural unit (c) is calculated as the corresponding sodium salt type structural unit. For example, if the structure is derived from (meth) acrylic acid, the mass ratio is calculated as a structure derived from sodium (meth) acrylate, and if the structure is derived from maleic acid, the structure is derived from disodium maleate.
  • the copolymer of the present invention comprises other monomers (other than the above (poly) alkylene glycol-containing monomer (A), hydrophobic monomer (B) and unsaturated carboxylic acid monomer (C)). You may have the structural unit (e) derived from E).
  • the proportion of the structural unit (e) in the copolymer of the present invention may be 0% by mass or more with respect to 100% by mass of all the structural units, but sufficiently exhibits the performance derived from the structural unit (e). It is preferable that it is 1 mass% or more. More preferably, it is 2.5 mass% or more, More preferably, it is 5 mass% or more, More preferably, it is 7.5 mass% or more, Most preferably, it is 10 mass% or more.
  • the copolymer of the present invention preferably has a weight average molecular weight of 5,000 to 200,000. In order to sufficiently exhibit the performance of the copolymer, it is more preferably 7,000 or more, still more preferably 10,000 or more, still more preferably 15,000 or more, and particularly preferably 20,000 or more. It is. In order to more sufficiently suppress the separation in the copolymer solution, it is more preferably 150,000 or less, still more preferably 100,000 or less, even more preferably 70,000 or less, and particularly preferably 50. , 000 or less.
  • the weight average molecular weight of a copolymer can be measured by the method as described in an Example.
  • R 1 to R 3 are the same or different and each represents a hydrogen atom or a methyl group.
  • R 1 and R 2 are hydrogen atoms
  • R 3 is a hydrogen atom or a methyl group. More preferably, R 1 and R 2 are hydrogen atoms and R 3 is a methyl group.
  • AO represents “the same or different,” and represents an oxyalkylene group having 2 to 18 carbon atoms, which is the same for all oxyalkylene groups of AO present in n in polyalkylene glycol. Means that it may be different.
  • the oxyalkylene group represented by AO is an alkylene oxide adduct, and examples of such alkylene oxide include ethylene oxide, propylene oxide, butylene oxide, isobutylene oxide, 1-butene oxide, 2- Examples thereof include alkylene oxides having 2 to 8 carbon atoms such as butene oxide, styrene oxide, glycidol and epichlorohydrin.
  • alkylene oxides having 2 to 4 carbon atoms such as ethylene oxide, propylene oxide, butylene oxide, and still more preferred are ethylene oxide and propylene oxide.
  • the polyalkylene glycol is any two or more alkylene oxide adducts selected from ethylene oxide, propylene oxide, butylene oxide, styrene oxide, etc., any of random addition, block addition, alternating addition, etc. Form may be sufficient.
  • the oxyalkylene group represented by AO is preferably selected as appropriate according to the use required for the copolymer of the present invention, but in order to ensure a balance between hydrophilicity and hydrophobicity.
  • the oxyalkylene group in the polyalkylene glycol preferably has an oxyethylene group as an essential component, more preferably 50 mol% or more is an oxyethylene group, and 90 mol% or more is an oxyethylene group. Further preferred.
  • n represents an average addition mole number of the oxyalkylene group and is 1 to 300. From the viewpoint of sufficiently exerting the performance derived from the oxyalkylene group, it is preferably 2 or more, more preferably 10 or more, still more preferably 25 or more, particularly preferably 30 or more, and still more preferably 50. That's it. On the other hand, if it exceeds 300, the viscosity becomes too high during production and use, and workability may not be sufficient. Preferably it is 200 or less, More preferably, it is 150 or less, More preferably, it is 100 or less, Most preferably, it is 75 or less.
  • R 4 in the above formula (1) represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms.
  • Preferred is a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, more preferred is a hydrogen atom or a hydrocarbon group having 1 to 18 carbon atoms, and still more preferred is a hydrogen atom or a hydrocarbon group having 1 to 12 carbon atoms.
  • Particularly preferred is a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, and most preferred is a methyl group or a hydrogen atom.
  • hydrocarbon group examples include methyl, ethyl, n-propyl, n-butyl, n-pentyl (amyl), n-hexyl, n-heptyl, n-octyl, and n-nonyl.
  • n-decyl group n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, n-nonadecyl group Group, n-eicosanyl group, i-propyl group, sec-butyl group, i-butyl group, t-butyl group, 1-methylbutyl group, 1-ethylpropyl group, 2-methylbutyl group, i-amyl group, neopentyl group 1,2-dimethylpropyl group, 1,1-dimethylpropyl group, t-amyl group, 1,3-dimethylbutyl group, 3,3-dimethylbutyl group, 2-ethylbutyl
  • y represents a number from 0 to 2, and z represents 0 or 1.
  • y is preferably 1 or 2.
  • z is preferably 0.
  • y is preferably 1 or 2, and more preferably y is 2.
  • the monomer (A) include (poly) alkylene glycol (meth) acrylates such as polyethylene glycol (meth) acrylate, and alkoxy-modified alkoxy groups having 1 to 30 carbon atoms at the ends thereof ( Poly) alkylene glycol (meth) acrylate; vinyl alcohol, allyl alcohol, methallyl alcohol, 3-methyl-3-buten-1-ol, 3-methyl-2-buten-1-ol, 2-methyl-3-butene Compounds obtained by adding 1 to 300 moles of alkylene oxide to unsaturated alcohols having 2 to 8 carbon atoms such as -1-ol, 2-methyl-2-buten-1-ol, and 3-allyloxy-1,2-propanediol And compounds in which these ends are hydrophobically modified with a hydrocarbon group having 1 to 30 carbon atoms.
  • poly alkylene glycol (meth) acrylates such as polyethylene glycol (meth) acrylate, and alkoxy-modified alkoxy groups having 1 to 30
  • a compound obtained by adding 1 to 300 moles of alkylene oxide to an unsaturated alcohol having 2 to 8 carbon atoms and a compound obtained by hydrophobically modifying these terminals with a hydrocarbon group having 1 to 30 carbon atoms are preferable. More preferred is a compound obtained by adding 1 to 300 moles of an alkylene oxide to an unsaturated alcohol having 2 to 8 carbon atoms, and further preferred is adding an alkylene oxide to methallyl alcohol or 3-methyl-3-buten-1-ol. It has been made.
  • the hydrophobic monomer (B) has an ethylenically unsaturated group and has an octanol / water partition coefficient value (Log P value) of 1.0 to 8.0. Since the copolymer of the present invention has such a structural unit (b) derived from the hydrophobic monomer (B), it is compatible with a hydrophobic substance by a hydrophobic interaction, and is inorganic by a surface active action. Various excellent performances such as reducing the viscosity of the powder slurry will be exhibited.
  • the Log P value is described in, for example, ChemBioDraw Ultra ver. It can be calculated using the software of No. 14 (Kabumoto Cambridge Software).
  • the Log P value is more preferably 1.3 or more, still more preferably 1.5 or more, still more preferably 1.85 or more, particularly preferably from the viewpoint of sufficiently exhibiting hydrophobicity. 2 or more.
  • separation in a copolymer solution cannot fully be suppressed at the time of manufacture and a storage. More preferably, it is 6 or less, More preferably, it is 4 or less, Even more preferably, it is 3 or less, Most preferably, it is 2.5 or less.
  • the hydrophobic monomer (B) is not particularly limited as long as the Log P value is 1.0 to 8.0, but examples thereof include esters of unsaturated carboxylic acids and alcohols, aromatic vinyl monomers, olefins. And amides of unsaturated carboxylic acids and amines, maleimide monomers and esters of unsaturated alcohols and carboxylic acids.
  • an ester of an unsaturated carboxylic acid monomer (C) described later and an alcohol having 2 to 18 carbon atoms is preferable.
  • the alcohol having 2 to 18 carbon atoms include ethanol, propanol, butanol, pentanol, hexanol, heptanol, octanol, 2-ethylhexanol, nonanol, decanol, lauryl alcohol, stearyl alcohol and other alkyl alcohols; Alcohol; unsaturated alcohols such as allyl alcohol, methallyl alcohol, propargyl alcohol, crotyl alcohol, pentenol, hexenol, heptenol, octenol, nonenol, decenol, dodecenol, octadecenol and the like.
  • the alcohol preferably has 3 to 16 carbon atoms, more preferably 4
  • unsaturated carboxylic acid As said unsaturated carboxylic acid, the thing similar to the specific example of the unsaturated carboxylic acid-type monomer (C) mentioned later is mentioned.
  • unsaturated carboxylic acid (meth) acrylic acid and maleic acid are preferable.
  • esters of unsaturated carboxylic acid and alcohol include (meth) acrylic acid alkyl ester (alkyl (meth) acrylate) having an alkyl group having 2 to 18 carbon atoms, maleic having an alkyl group having 4 to 20 carbon atoms. Acid monoalkyl esters (monoalkyl malates) and maleic acid dialkyl esters (dialkyl malates) having two alkyl groups with a total carbon number of 4 to 20 are preferred.
  • alkyl group examples include the above-mentioned aliphatic alkyl groups and alicyclic alkyl groups.
  • the number of carbon atoms of the alkyl group of the alkyl (meth) acrylate is more preferably 3 to 16, further preferably 4 to 12, still more preferably 4 to 8, and particularly preferably 4 to 6.
  • the number of carbon atoms of the alkyl group of the monoalkyl malate and the total number of carbon atoms of the two alkyl groups of the dialkyl malate are more preferably 5 to 16, and further preferably 6 to 12. More preferably, it is 6 to 10, particularly preferably 6 to 8.
  • alkyl (meth) acrylate examples include ethyl methacrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, and tert-butyl (meth).
  • (mono, di) alkyl malate examples include dipropyl malate, (mono, di) n-butyl malate, (mono, di) isobutyl malate, (mono, di) tert-butyl malate, (mono, Examples thereof include di) sec-butyl malate, (mono, di) 2-ethylhexyl malate, (mono, di) octyl malate, (mono, di) decyl malate, monolauryl malate, monostearyl malate and the like.
  • aromatic vinyl monomer examples include styrene, vinyl toluene, ⁇ -methyl styrene, methoxy styrene, 2,4-dimethyl styrene, 4-ethyl styrene, 4-isopropyl styrene, 4-butyl styrene, 4- Examples include phenylstyrene, 4-cyclohexylstyrene, 4-benzylstyrene, 4-crotylbenzene, 2-vinylnaphthalene. Styrene, vinyltoluene and ⁇ -methylstyrene are preferred.
  • olefin monomers include ethylene, propylene, butene, isobutylene, pentene, heptene, diisobutylene, octene, dodecene, octadecene and other alkenes having 2 to 16 carbon atoms; butadiene, isoprene, 1,4- Examples thereof include alkadienes having 4 to 19 carbon atoms such as pentadiene, 1,6-heptadiene, and 1,7-octadiene.
  • an amide of an unsaturated carboxylic acid monomer (C) described later and an amine having 4 to 20 carbon atoms is preferable.
  • the amine include methylamine, ethylamine, (iso) propylamine, butylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, pentylamine, dipentylamine, hexylamine, dihexylamine, heptylamine, diheptylamine, octyl Examples thereof include amines having 1 to 20 carbon atoms such as amine, dioctylamine and dodecylamine.
  • the unsaturated carboxylic acid (meth) acrylic acid is preferable. That is, as the amide of unsaturated carboxylic acid and amine, a (meth) acrylamide monomer is preferable.
  • the (meth) acrylamide monomer examples include N-monosubstituted (meth) acrylamides in which the hydrogen atom of the amino group of (meth) acrylamide is substituted with a hydrocarbon group having 4 to 20 carbon atoms, N, N-disubstituted (meth) acrylamide is mentioned.
  • a hydrocarbon group the above-mentioned alkyl group; alkenyl group; aryl group etc. are mentioned.
  • N-alkyl (meth) acrylamide and N, N-dialkyl (meth) acrylamide are preferable.
  • Specific examples of the alkyl group that the (meth) acrylamide monomer has are as described above.
  • the number of carbon atoms of the alkyl group of the N-alkyl substituent of (meth) acrylamide is more preferably 5 to 16, more preferably 6 to 6 as the total number of carbon atoms of two alkyl groups. 12, more preferably 6 to 10, and particularly preferably 6 to 8.
  • maleimide monomer examples include N-substituted maleimide in which the hydrogen atom of the amino group of maleimide is substituted with a hydrocarbon group having 1 to 16 carbon atoms.
  • hydrocarbon group examples include an alkyl group; an alkenyl group; an aryl group, and specific examples thereof are as described above.
  • maleimide monomer examples include N-heptylmaleimide, N-octylmaleimide, N-dodecylmaleimide (N-laurylmaleimide), N-hexadecylmaleimide, N-octadecylmaleimide (N-stearylmaleimide) and the like
  • N- Preferred are alkyl-substituted maleimides; N-aryl-maleimides such as N-phenylmaleimide, N-methylphenylmaleimide, N-ethylphenylmaleimide, N-butylphenylmaleimide, and N-dimethylphenylmaleimide.
  • the number of carbon atoms of the hydrocarbon group in the N-alkyl-substituted maleimide is more preferably 5 to 16, more preferably 6 to 12, still more preferably 6 to 10, and particularly preferably 6 to 8.
  • ester of the unsaturated alcohol and the carboxylic acid for example, the ester of the unsaturated alcohol having 2 to 8 carbon atoms and the carboxylic acid having 2 to 16 carbon atoms described in the monomer (A) is preferable.
  • carboxylic acid having 2 to 16 carbon atoms include acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, lauric acid, and palmitic acid.
  • esters of unsaturated alcohols and carboxylic acids include vinyl propionate, vinyl butyrate, vinyl caprylate, vinyl palmitate; 2-methylallyl propionate, 2-methylallyl butyrate, 2-methylallyl caprylate, palmitate 2-methylallyl acid; 3-methyl-3-buten-1-yl acetate, 3-methyl-3-buten-1-yl propionate, 3-methyl-3-buten-1-yl butyrate, 3-methyl caprylate -3-buten-1-yl, 3-methyl-3-buten-1-yl palmitate and the like.
  • the number of carbon atoms of the carboxylic acid is more preferably 3 to 14, still more preferably 4 to 12, still more preferably 5 to 10, and particularly preferably 6 to 8.
  • the hydrophobic monomer (B) is preferably an ester of an unsaturated carboxylic acid and an alcohol, an aromatic vinyl monomer, an olefin monomer, a (meth) acrylamide monomer, or a maleimide monomer.
  • esters of unsaturated alcohols and carboxylic acids more preferably esters of unsaturated carboxylic acids and alcohols, aromatic vinyl monomers, and olefin monomers, and more preferably Esters of saturated carboxylic acids and alcohols and aromatic vinyl monomers are preferred, and esters of unsaturated carboxylic acids and alcohols are particularly preferred.
  • the copolymer of the present invention preferably has a structural unit (c) derived from an unsaturated carboxylic acid monomer (C).
  • an unsaturated monocarboxylic acid monomer or an unsaturated dicarboxylic acid monomer is suitable, and as the unsaturated monocarboxylic acid monomer, Any monomer may be used as long as it has one unsaturated group and one group capable of forming a carbanion in the molecule.
  • the unsaturated dicarboxylic acid monomer may be any monomer having one unsaturated group and two groups capable of forming a carbanion in the molecule. Maleic acid, itaconic acid, mesaconic acid, Citraconic acid, fumaric acid, etc., their monovalent metal salts, divalent metal salts, ammonium salts, organic amine salts, etc., their anhydrides or half esters are preferred.
  • unsaturated carboxylic acid monomer (C) (meth) acrylic acid, maleic acid and salts thereof are preferable. More preferred is (meth) acrylic acid, and even more preferred is acrylic acid.
  • the copolymer of the present invention comprises other monomers (other than the above (poly) alkylene glycol-containing monomer (A), hydrophobic monomer (B) and unsaturated carboxylic acid monomer (C)). You may have the structural unit (e) derived from E). Specific examples of the other monomer (E) will be given below. These are all those having the Log P value of less than 1 or greater than 8.
  • Esters of unsaturated (mono, di) carboxylic acids and alcohols such as methyl (meth) acrylate, methoxyethyl (meth) acrylate, monopropyl malate, diethyl malate; hydroxyethyl (meth) acrylate, hydroxyprotyl ( Esters of unsaturated (mono, di) carboxylic acids such as meth) acrylates and diols; amides of unsaturated carboxylic acids such as methyl (meth) acrylamide and diethylacrylamide and amines; N-methylmaleimide; Maleimide monomers such as N-ethylmaleimide; vinyl alcohol, allyl alcohol, methallyl alcohol, 3-methyl-3-buten-1-ol, 3-methyl-2-buten-1-ol, 2-methyl- Such as 3-buten-1-ol and 2-methyl-2-buten-1-ol Japanese alcohols; Diesters of alkyl (poly) alkylene glycols and unsaturated di
  • the method for producing the (poly) alkylene glycol-containing copolymer of the present invention is not particularly limited, but it can be produced by polymerizing the monomer component. Specific examples and preferred examples of the monomer component are described above. It is as follows. Moreover, the content rate of each monomer component with respect to 100 mass% of all monomer components is the same as the ratio of each structural unit with respect to 100 mass% of the above-mentioned all structural units.
  • a chain transfer agent can be used for adjusting the molecular weight of the obtained polymer.
  • the chain transfer agent include thiol chain transfer agents such as mercaptoethanol, thioglycerol, thioglycolic acid, 2-mercaptopropionic acid, 3-mercaptopropionic acid, thiomalic acid, 2-mercaptoethanesulfonic acid; isopropyl alcohol ( Secondary alcohols such as 2-propanol); phosphorous acid, hypophosphorous acid and salts thereof (sodium hypophosphite, potassium hypophosphite, etc.), sulfurous acid, dithionic acid and salts thereof (sodium sulfite, sulfurous acid, etc.)
  • hydrophilic chain transfer agents such as lower oxides such as sodium dithionate and the like, hydrogen sulfites (such as sodium hydrogen sulfite) and metabisulfites (such as sodium metabisulfite) and salts thereof.
  • hydrophilic chain transfer agents such as lower
  • a hydrophobic chain transfer agent can also be used as the chain transfer agent.
  • the hydrophobic chain transfer agent include 3 carbon atoms such as butanethiol, octanethiol, decanethiol, dodecanethiol, hexadecanethiol, octadecanethiol, cyclohexyl mercaptan, thiophenol, octyl thioglycolate, octyl 3-mercaptopropionate, etc.
  • a thiol chain transfer agent having the above hydrocarbon group is preferably used.
  • a monomer having a high chain transfer property such as (meth) allylsulfonic acid (salt) as the monomer (E).
  • the amount of the chain transfer agent used may be appropriately set, but is 0.01 mol or more, more preferably 0.1 mol or more, still more preferably 0.5 mol or more, based on 100 mol of the total amount of monomer components. In particular, it is 1.0 mol or more, preferably 20 mol or less, still more preferably 10 mol or less, particularly preferably 5 mol or less, and most preferably 3 mol or less.
  • the polymerization reaction can be performed by a method such as solution polymerization or bulk polymerization using a radical polymerization initiator as necessary.
  • the polymerization can also be carried out batchwise, semi-batchwise, continuous, or combinations thereof.
  • semi-batch solution polymerization is preferable from the viewpoint of increasing the yield of the copolymer.
  • a solvent for the solution polymerization water, an organic solvent, or a mixed solvent thereof can be used.
  • organic solvent examples include alcohols such as methyl alcohol, ethyl alcohol, and isopropyl alcohol; aromatic or aliphatic hydrocarbons such as benzene, toluene, xylene, cyclohexane, and n-hexane; ester compounds such as ethyl acetate; acetone, methyl ethyl ketone, and the like Ketone compounds; and cyclic ether compounds such as tetrahydrofuran and dioxane.
  • organic solvents hydrophilic solvents such as alcohol are preferable. More preferred is isopropyl alcohol.
  • water or a mixed solvent of water and an organic solvent is preferable.
  • the ratio of the organic solvent to 100% by mass of the mixed solvent is preferably 20 to 80% by mass, more preferably 40 to 60% by mass.
  • the concentration of the monomer may be set as appropriate, but the amount of all raw materials used such as the monomer and solvent used from the start to the end of the polymerization reaction Is 100% by mass, the mass concentration of all monomers is preferably 50% by mass or more and 90% by mass or less.
  • variation of a monomer concentration shall be 30 mass% or less from the start to the completion
  • a water-soluble polymerization initiator for example, a persulfate such as ammonium persulfate, sodium persulfate, or potassium persulfate; hydrogen peroxide; 2,2′-azobis- Azoamidine compounds such as 2-methylpropionamidine hydrochloride, cyclic azoamidine compounds such as 2,2′-azobis-2- (2-imidazolin-2-yl) propane hydrochloride, and azonitriles such as 2-carbamoylazoisobutyronitrile Water-soluble azo initiators such as compounds are used.
  • a persulfate such as ammonium persulfate, sodium persulfate, or potassium persulfate
  • hydrogen peroxide 2,2′-azobis- Azoamidine compounds
  • 2,2′-azobis- Azoamidine compounds such as 2-methylpropionamidine hydrochloride
  • cyclic azoamidine compounds such as 2,2′-azobis-2- (2-imidazolin
  • alkali metal sulfites such as sodium hydrogen sulfite, metabisulphite, sodium hypophosphite, Fe (II) salts such as Mole salt, hydroxymethanesulfine Acid sodium dihydrate, hydroxylamine hydrochloride, thiourea, L-ascorbic acid (salt), erythorbium It can also be used in combination accelerator acid (salt) and the like.
  • a combination of persulfate or hydrogen peroxide and an accelerator such as L-ascorbic acid (salt) or Fe (II) salt is preferable.
  • These radical polymerization initiators and accelerators may be used alone or in combination of two or more.
  • the amount of the radical polymerization initiator used is preferably 0.01 mol or more, more preferably 0.1 mol or more, still more preferably 0.5 mol or more, particularly preferably with respect to 100 mol of the total amount of monomer components. 1.0 mole or more, preferably 20 moles or less, even more preferably 10 moles or less, particularly preferably 5 moles or less, and most preferably 3 moles or less.
  • the polymerization conditions such as the polymerization temperature are appropriately determined depending on the polymerization method used, the solvent, the polymerization initiator, and the chain transfer agent. Moreover, it is preferable that it is 150 degrees C or less. More preferably, it is 40 degreeC or more, More preferably, it is 50 degreeC or more. More preferably, it is 120 degrees C or less, More preferably, it is 100 degrees C or less. Furthermore, from the viewpoint of proceeding the copolymerization reaction more uniformly, it is preferable to set the fluctuation range of the polymerization temperature to 15 ° C. or less from the start to the end of the polymerization reaction.
  • the method of charging each monomer component into the reaction vessel is not particularly limited, a method in which the entire amount is initially charged into the reaction vessel; a method in which the entire amount is divided or continuously charged into the reaction vessel; a part is initially in the reaction vessel
  • a method may be used in which the remainder is charged and the remainder is divided or continuously charged into the reaction vessel.
  • the charging rate of each monomer into the reaction vessel in the middle of the reaction continuously or stepwise, and changing the weight ratio of each monomer per unit time continuously or stepwise the monomer ratio
  • Two or more types of copolymers having different values may be synthesized simultaneously during the polymerization reaction.
  • the radical polymerization initiator may be charged into the reaction vessel from the beginning, may be dropped into the reaction vessel, or may be combined according to the purpose.
  • Each polymer obtained as described above can be used as it is as a dispersant, but if necessary, it may be further neutralized with an alkaline substance.
  • alkaline substance inorganic salts such as hydroxides or carbonates of monovalent metals or divalent metals; ammonia; organic amines are suitable. Further, after the reaction is completed, the concentration can be adjusted if necessary.
  • the (poly) alkylene glycol-containing copolymer of the present invention exhibits good performance as a water-insoluble inorganic or organic dispersant.
  • good performance can be exhibited as a dispersant for inorganic pigments such as heavy or light calcium carbonate and clay used for paper coating; a dispersant for water slurry such as cement and coal;
  • water treatment agents for scale prevention in cooling water systems, boiler water systems, seawater desalination equipment, pulp digesters, and black liquor concentration tanks scale treatment agents; textile treatments such as dyeing aids and textile antistatic aids Agent; Adhesive; Sealing agent; Flexibility-imparting component for various polymers; Detergent builder and the like.
  • the method of using the (poly) alkylene glycol-containing copolymer of the present invention as a cement admixture is also one aspect of the present invention. It is particularly useful as a cement admixture for ready-mixed concrete and shotcrete.
  • the form in which the copolymer is a copolymer for cement admixture is a preferred form of the present invention, and the cement admixture containing the copolymer, the copolymer and cement are combined.
  • a cement composition that includes the cement admixture and cement.
  • the manufacturing method of the cement composition including the process of adding the said (poly) alkylene glycol containing copolymer to a hydraulic material is also one of this invention.
  • a cement admixture will be described as a typical dispersant.
  • the cement admixture of the present invention essentially comprises the copolymer of the present invention, but may contain two or more kinds of the above-mentioned copolymers, and one or more kinds of copolymers different from the above-mentioned copolymers. May be included.
  • the content of the copolymer in the cement admixture (the total content in the case where two or more types of copolymers are included) is not particularly limited, but in order to sufficiently exhibit the performance derived from the copolymer.
  • the solid content (that is, the non-volatile content) in the cement admixture is preferably 30% by mass or more in 100% by mass.
  • cement admixture refers to a cement additive added to a cement composition such as cement paste, mortar, and concrete, and may be an agent composed only of the above copolymer. Moreover, it may be an agent containing not only the above copolymer but also other components and additives as required.
  • the cement admixture may further contain other commonly used cement dispersants and water reducing agents, and can be used in combination.
  • Other cement dispersants water reducing agents
  • Other cement dispersants are not particularly limited.
  • various sulfonic acid-based dispersants having a sulfonic acid group in the molecule, polyoxyalkylene chains and carboxyl groups in the molecule.
  • examples thereof include various polycarboxylic acid-based dispersants (water reducing agents) and various phosphoric acid-based dispersants (water reducing agents) having a phosphate group in the molecule.
  • the content of the copolymer of the present invention is contained in the cement admixture in order to sufficiently exhibit the performance derived from the copolymer. It is preferable that it is 30 mass% or more in total solid content (namely, non-volatile content) of 100 mass%. More preferably, it is 50 mass% or more, More preferably, it is 60 mass% or more, Most preferably, it is 70 mass% or more.
  • the cement admixture includes, for example, water-soluble polymer substances, polymer emulsions, retarders, early strengthening agents / accelerators, mineral oil-based antifoaming agents, fat-based antifoaming agents, fatty acid-based antifoaming agents, and fatty acid esters.
  • Antifoaming agent oxyalkylene antifoaming agent, alcohol antifoaming agent, amide antifoaming agent, phosphate ester antifoaming agent, metal soap antifoaming agent, silicone antifoaming agent, AE agent, surfactant Agent, waterproof agent, rust preventive agent, crack reducing agent, expansion agent, cement wetting agent, thickener, separation reducing agent, flocculant, drying shrinkage reducing agent, strength enhancer, self-leveling agent, rust preventive agent, colorant ,
  • cement additives materials such as fungicides, blast furnace slag, fly ash, cinder ash, clinker ash, husk ash, silica fume, silica powder, and gypsum may be included.
  • the cement admixture can be used for various hydraulic materials, that is, cement compositions such as cement and gypsum, and other hydraulic materials.
  • cement compositions such as cement and gypsum
  • other hydraulic materials As a specific example of a hydraulic composition containing such a hydraulic material, water and the above cement admixture, and further containing fine aggregate (sand, etc.) and coarse aggregate (crushed stone, etc.) as necessary, Cement paste, mortar, concrete, plaster, etc. are mentioned.
  • a cement composition using cement as the hydraulic material is most preferable, and a cement composition containing the cement admixture and cement is also one aspect of the present invention.
  • cement composition In the cement composition of the present invention, as the cement, Portland cement (ordinary, early strength, ultra-early strength, moderate heat, sulfate resistance and low alkali type thereof); various mixed cements (blast furnace cement, silica cement, fly ash) Cement); white Portland cement; alumina cement; super fast cement (1 clinker fast cement, 2 clinker fast cement, magnesium phosphate cement); grout cement; oil well cement; low heat cement (low heat blast furnace cement, fly Ash mixed low heat generation type blast furnace cement, cement with high belite content); ultra high strength cement; cement-based solidified material; eco-cement (cement manufactured using one or more of municipal waste incineration ash and sewage sludge incineration ash) Besides these, blast furnace slag, fly ash, shi Dar ash, clinker ash, husk ash, silica fume, silica powder, and a film obtained by adding a fine powder and gypsum limestone powder.
  • the cement contained in the cement composition of the present invention may be only one type or two or more types.
  • As the above aggregate in addition to gravel, crushed stone, granulated slag, recycled aggregate, etc., siliceous, clay, zircon, high alumina, silicon carbide, graphite, chrome, chromic, magnesia, etc. Refractory aggregate and the like.
  • the unit water amount per 1 m 3 , the amount of cement used, and the water / cement ratio are not particularly limited.
  • the unit water amount is 100 to 200 kg / m 3
  • the cement amount used is 200 to 800 kg / m 3
  • the cement composition of the present invention can be widely used from poor blends to rich blends, and is effective for both high-strength concrete with a large amount of unit cement and poor blend concrete with a unit cement amount of 300 kg / m 3 or less. It is.
  • the resulting cement composition has excellent workability for a long time in a wide range of blending, and therefore it can be effectively applied particularly to ready-mixed concrete, shotcrete and the like.
  • it can be applied to concrete for concrete secondary products (precast concrete), concrete for centrifugal molding, concrete for vibration compaction, steam-cured concrete, and the like.
  • precast concrete precast concrete
  • concrete for centrifugal molding concrete for centrifugal molding
  • concrete for vibration compaction concrete for vibration compaction
  • steam-cured concrete and the like.
  • high fluidity such as medium fluidity concrete (concrete with slump flow value in the range of 350 to 500 mm), high fluidity concrete (concrete with slump flow value in the range of 500 to 700 mm), self-filling concrete, self-leveling material, etc.
  • the cement admixture of the present invention is also effective for required mortar and concrete.
  • the blending ratio of the cement admixture of the present invention is, for example, the copolymer (the total amount when there are a plurality of components) as an essential component of the present invention, the total amount of cement mass in terms of solid content. It is preferably set to be 0.01 to 5% by mass with respect to 100% by mass. If the amount is less than 0.01% by mass, the performance may not be sufficient. On the other hand, if the amount exceeds 5% by mass, the effect will be practically peaked and disadvantageous in terms of economy, or the cement composition may be separated from the material. And may cause abnormal condensation. More preferably, the content is 0.05 to 3% by mass, and still more preferably 0.1 to 1% by mass.
  • the solid content can be measured as follows. ⁇ Method for measuring solid content> 1. Weigh the aluminum dish. The solid content to be measured is precisely weighed on the aluminum dish precisely weighed in 2.1. 3. A solid content measurement product precisely weighed in 2 is placed in a dryer adjusted to 130 ° C. in a nitrogen atmosphere for 1 hour. 4. After 1 hour, remove from the dryer and allow to cool in a desiccator at room temperature for 15 minutes. 5. After 15 minutes, remove from the desiccator and precisely weigh the aluminum dish and the measurement object. The solid content is measured by subtracting the mass of the aluminum pan obtained in 1 from the mass obtained in 6.5 and dividing by the mass of the solid content measurement product obtained in 2.
  • “monomer composition (preparation)” and “monomer composition (finish)” have the following meanings.
  • “Monomer composition (preparation)” A composition calculated from the amount of monomers charged in a reaction vessel to produce a copolymer.
  • “Monomer composition (finished)” Analyzes the consumption rate in the polymerization reaction of the monomer charged in the reaction vessel to produce the copolymer, and all the consumed monomer is copolymerized by the polymerization reaction. A composition calculated to convert to coalescence.
  • ⁇ Storage stability test> An aqueous solution having a copolymer concentration of 30% by mass was prepared, placed in a 20 mL test tube with a lid, and allowed to stand in a thermostat at 50 ° C., and the presence or absence of turbidity or separation of the solution was visually determined.
  • storage stability it is preferable that the solution is uniform and stable for a long time. It is preferred that no separation occurs in the solution, and more preferred that neither turbidity nor separation occur.
  • Example 1 A solution (1a) was prepared by dissolving 0.3 part of L-ascorbic acid and 1.0 part of 3-mercaptopropionic acid in 68.0 parts of water and 29.2 parts of 2-propanol.
  • a solution of 15.9 parts of acrylic acid (AA) and 20.7 parts of butyl acrylate (BA) (Log P value: 1.88) dissolved in 2.8 parts of water and 1.2 parts of 2-propanol (1b ) was prepared.
  • Ethylene oxide is added to 65.4 parts of water, 28.0 parts of 2-propanol, and 3-methyl-3-buten-1-ol in a reaction vessel equipped with a thermometer, a stirrer, a dropping device, a nitrogen inlet tube, and a reflux condenser.
  • Example 2 An aqueous solution (2a) was prepared by dissolving 0.3 part of L-ascorbic acid and 1.0 part of 3-mercaptopropionic acid in 77.8 parts of water and 19.4 parts of 2-propanol.
  • a solution (2b) was prepared by dissolving 15.9 parts of acrylic acid (AA) and 20.7 parts of butyl acrylate (BA) in 3.3 parts of water and 0.8 part of 2-propanol.
  • AA acrylic acid
  • BA butyl acrylate
  • Example 3 A solution (3a) was prepared by dissolving 0.3 part of L-ascorbic acid and 1.0 part of 3-mercaptopropionic acid in 82.6 parts of water and 14.6 parts of 2-propanol.
  • a solution (3b) was prepared by dissolving 15.9 parts of acrylic acid (AA) and 20.7 parts of butyl acrylate (BA) in 3.5 parts of water and 0.6 part of 2-propanol.
  • AA acrylic acid
  • BA butyl acrylate
  • 2-propanol 2-propanol
  • Example 4 A solution (4a) was prepared by dissolving 0.3 part of L-ascorbic acid and 1.0 part of 3-mercaptopropionic acid in 87.5 parts of water and 9.7 parts of 2-propanol.
  • a solution (4b) was prepared by dissolving 15.9 parts of acrylic acid (AA) and 20.7 parts of butyl acrylate (BA) in 3.7 parts of water and 0.4 part of 2-propanol.
  • AA acrylic acid
  • BA butyl acrylate
  • 2-propanol 2-propanol
  • Example 5 A solution (5a) was prepared by dissolving 0.3 part of L-ascorbic acid and 1.0 part of 3-mercaptopropionic acid in 90.4 parts of water and 6.8 parts of 2-propanol.
  • a solution (5b) was prepared by dissolving 15.9 parts of acrylic acid (AA) and 20.7 parts of butyl acrylate (BA) in 3.8 parts of water and 0.3 part of 2-propanol.
  • AA acrylic acid
  • BA butyl acrylate
  • a reaction vessel equipped with a thermometer, a stirrer, a dropping device, a nitrogen introduction tube, and a reflux condenser 86.8 parts of water, 6.5 parts of 2-propanol, and ethylene oxide were added to 3-methyl-3-buten-1-ol.
  • Example 6 A solution (6a) was prepared by dissolving 0.3 part of L-ascorbic acid and 1.0 part of 3-mercaptopropionic acid in 94.3 parts of water and 2.9 parts of 2-propanol.
  • a solution (6b) was prepared by dissolving 15.9 parts of acrylic acid (AA) and 20.7 parts of butyl acrylate (BA) in 3.9 parts of water and 0.1 part of 2-propanol.
  • AA acrylic acid
  • BA butyl acrylate
  • a reaction vessel equipped with a thermometer, a stirrer, a dropping device, a nitrogen inlet tube, and a reflux condenser 90.6 parts of water, 2.8 parts of 2-propanol, and ethylene oxide were added to 3-methyl-3-buten-1-ol.
  • Example 7 A solution (7a) in which 2.0 parts of 2,2′-azobis (2,4-dimethylvaleronitrile) was dissolved in 105.7 parts of 2-propanol was prepared.
  • a solution (7b) was prepared by dissolving 15.9 parts of acrylic acid (AA) and 20.7 parts of 2-ethylhexyl acrylate (2EHA) (Log P value: 3.53) in 4.1 parts of 2-propanol.
  • EHA 2-ethylhexyl acrylate
  • a reaction vessel equipped with a thermometer, a stirrer, a dropping device, a nitrogen inlet tube, and a reflux condenser 41.5 parts of water, 94.2 parts of 2-propanol, and ethylene oxide were added to 3-methyl-3-buten-1-ol.
  • Example 8 A solution (8a) was prepared by dissolving 0.3 part of L-ascorbic acid and 0.9 part of 3-mercaptopropionic acid in 45.1 parts of water and 57.3 parts of 2-propanol.
  • a solution (8b) was prepared by mixing 15.9 parts of acrylic acid (AA) and 20.7 parts of 2-ethylhexyl acrylate (2EHA).
  • AA acrylic acid
  • EHA 2-ethylhexyl acrylate
  • ethylene oxide is added to 41.1 parts of water, 52.3 parts of 2-propanol, and 3-methyl-3-buten-1-ol.
  • Example 9 A solution (9a) was prepared by dissolving 0.3 part of L-ascorbic acid and 0.9 part of 3-mercaptopropionic acid in 41.0 parts of water and 61.4 parts of 2-propanol.
  • Ethylene oxide was added to 37.3 parts of water, 56.0 parts of 2-propanol, and 3-methyl-3-buten-1-ol in a reaction vessel equipped with a thermometer, a stirrer, a dropping device, a nitrogen introduction tube, and a reflux condenser.
  • Example 10 A solution (10a) was prepared by dissolving 0.3 part of L-ascorbic acid and 0.9 part of 3-mercaptopropionic acid in 43.0 parts of water and 59.4 parts of 2-propanol.
  • a solution (10b) was prepared by mixing 15.9 parts of acrylic acid (AA) and 20.7 parts of 2-ethylhexyl acrylate (2EHA).
  • AA acrylic acid
  • EHA 2-ethylhexyl acrylate
  • 39.2 parts of water, 54.1 parts of 2-propanol, and ethylene oxide were added to 3-methyl-3-buten-1-ol.
  • Example 11 A solution (11a) was prepared by dissolving 0.3 part of L-ascorbic acid and 0.9 part of 3-mercaptopropionic acid in 47.1 parts of water and 55.3 parts of 2-propanol.
  • a solution (11b) was prepared by mixing 15.9 parts of acrylic acid (AA) and 20.7 parts of 2-ethylhexyl acrylate (2EHA).
  • EHA 2-ethylhexyl acrylate
  • a reaction vessel equipped with a thermometer, a stirrer, a dropping device, a nitrogen introduction tube, and a reflux condenser 42.9 parts of water, 50.4 parts of 2-propanol, and ethylene oxide were added to 3-methyl-3-buten-1-ol.
  • Example 12 A solution (12a) was prepared by dissolving 0.4 part of L-ascorbic acid and 0.9 part of 3-mercaptopropionic acid in 44.3 parts of water. A solution (12b) in which 24.7 parts of acrylic acid (AA) and 22.6 parts of butyl acrylate (BA) were mixed was prepared.
  • a reaction vessel equipped with a thermometer, a stirrer, a dripping device, a nitrogen inlet tube, and a reflux condenser, 2.8 parts of water, and an unsaturated polysiloxane having an average of 50 moles of ethylene oxide added to 3-methyl-3-buten-1-ol Charge 334.6 parts of an 80% aqueous solution of an alkylene glycol ether monomer (IPN-50) and 1.4 parts of a 70% aqueous solution of paratoluenesulfonic acid monohydrate, and then stir in the reaction vessel. After replacing with nitrogen and raising the temperature to 60 ° C. in a nitrogen atmosphere, 13.0 parts of a 2% aqueous hydrogen peroxide solution was added.
  • the above mixed solution (12a) was metered dropwise at a constant rate over 3.5 hours and the above mixed solution (12b) over 3 hours.
  • the temperature during this period was constant at 60 ° C.
  • the temperature was continuously maintained at 60 ° C. for 1 hour to complete the polymerization reaction.
  • ⁇ ⁇ 100 / ( ⁇ + ⁇ ) of the obtained copolymer (12) was 0.
  • Table 1 The obtained copolymer (12) was subjected to a storage stability test. The results are shown in Table 2.
  • Example 13 A solution (13a) was prepared by dissolving 0.2 part of L-ascorbic acid and 0.6 part of 3-mercaptopropionic acid in 68.2 parts of water and 68.2 parts of 2-propanol. Ethylene oxide is added to 43.6 parts of water, 43.6 parts of 2-propanol, and 2-methyl-2-propen-1-ol in a reaction vessel equipped with a thermometer, a stirrer, a dropping device, a nitrogen introduction tube, and a reflux condenser.
  • Example 14 A solution (14a) in which 3.3 parts of ammonium persulfate was dissolved in 107.3 parts of water was prepared. A solution (14b) in which 16.5 parts of butyl acrylate (BA) and 19.7 parts of methacrylic acid (MAA) were mixed was prepared. A solution (14c) was prepared by dissolving 123.8 parts of methoxypolyethylene glycol monomethacrylate (average number of moles of ethylene oxide added 23) (PGM-23) and 1.2 parts of 3-mercaptopropionic acid in 53.6 parts of water. .
  • a reaction vessel equipped with a thermometer, a stirrer, a dripping device, a nitrogen inlet tube, and a reflux condenser is 79.5 parts of water, and an unsaturated polysiloxane having an average of 50 mol of ethylene oxide added to 3-methyl-3-buten-1-ol. Then, 267.4 parts of an alkylene glycol ether monomer (IPN-50) and 3.0 parts of acrylic acid were charged. Subsequently, the reaction vessel was purged with nitrogen under stirring, and the temperature was raised to 60 ° C. in a nitrogen atmosphere.
  • IPN-50 alkylene glycol ether monomer
  • a solution (c-2a) was prepared by dissolving 0.3 part of L-ascorbic acid and 0.9 part of 3-mercaptopropionic acid in 51.2 parts of water and 51.2 parts of 2-propanol.
  • a solution (c-2b) was prepared by mixing 15.9 parts of acrylic acid (AA) and 20.7 parts of 2-ethylhexyl acrylate (2EHA).
  • EHA 2-ethylhexyl acrylate
  • a reaction vessel equipped with a thermometer, a stirrer, a dripping device, a nitrogen inlet tube, and a reflux condenser 46.7 parts of water, 46.7 parts of 2-propanol, and ethylene oxide were added to 3-methyl-3-buten-1-ol.
  • a solution (c-4a) in which 3.2 parts of ammonium persulfate was dissolved in 77.4 parts of water was prepared.
  • 41.8 parts of methoxypolyethylene glycol monomethacrylate (average added mole number of ethylene oxide 23) (PGM-23), 1.9 parts of 3-mercaptopropionic acid, 11.1 parts of methacrylic acid were dissolved in 23.5 parts of water.
  • a solution (c-4b) was prepared.
  • a reaction vessel equipped with a thermometer, a stirrer, a dropping device, a nitrogen inlet tube, and a reflux condenser was charged with 253.9 parts of water, and the inside of the reaction vessel was purged with nitrogen under stirring.
  • Mw ( ⁇ ) represents a high molecular weight-derived peak ⁇
  • Mw ( ⁇ 1) represents a copolymer-derived peak ⁇ 1
  • Mw ( ⁇ 2) represents a weight-average molecular weight of a monomer-derived peak ⁇ 2.

Abstract

The purpose of the present invention is to provide a (poly)alkylene glycol-containing copolymer exhibiting sufficiently suppressed separation in a copolymer solution and having excellent storage stability. The present invention pertains to a (poly)alkylene glycol chain-containing copolymer having structural unit (a) derived from (poly)alkylene glycol-containing monomer (A) represented by formula (1) below, and structural unit (b) derived from hydrophobic monomer (B), wherein the hydrophobic monomer (B) has an ethylenically unsaturated group, and has an octanol/water partition coefficient (Log P value) of 1.0-8.0. In a chromatogram of the copolymer as measured by a differential refractive index detector for gel permeation chromatography (GPC), the areas of peak α and peak β defined below satisfy equation (2) below. (2): α×100/(α+β)≤3.0 <peaks α and β> peak α: a peak corresponding to a weight average molecular weight (Mw) of greater than 200000. peak β: a peak corresponding to a Mw of 200000 or less.

Description

(ポリ)アルキレングリコール含有共重合体(Poly) alkylene glycol-containing copolymer
本発明は、(ポリ)アルキレングリコール含有共重合体に関する。より詳しくは、分散剤、セメント混和剤等の用途に有用な(ポリ)アルキレングリコール含有共重合体に関する。 The present invention relates to a (poly) alkylene glycol-containing copolymer. More specifically, the present invention relates to a (poly) alkylene glycol-containing copolymer useful for applications such as a dispersant and a cement admixture.
(ポリ)アルキレングリコール鎖を含有する重合体(以下、(ポリ)アルキレングリコール系重合体ともいう)は、その鎖長や構成するアルキレンオキシドを適宜調整することによって親水性や疎水性、柔軟性や立体反発等の特性が付与されることから、セメントペースト、モルタル、コンクリート等のセメント組成物に添加されるセメント混和剤用途において利用されている。このようなセメント混和剤は、通常、減水剤等として用いられ、セメント組成物の流動性を高めてセメント組成物を減水させることにより、硬化物の強度や耐久性等を向上させる作用を発揮させることを目的として使用される。減水剤としては、従来、ナフタレン系等の減水剤が使用されていたが、(ポリ)アルキレングリコール鎖がその立体反発によりセメント粒子を分散させる分散基として作用することができるため、(ポリ)アルキレングリコール鎖を含有するポリカルボン酸系減水剤が高い減水作用を発揮するものとして提案され、最近では高性能AE減水剤として多くの使用実績を有するに至っている。 A polymer containing a (poly) alkylene glycol chain (hereinafter, also referred to as a (poly) alkylene glycol polymer) has a hydrophilicity, hydrophobicity, flexibility, etc. by appropriately adjusting the chain length and the alkylene oxide constituting the polymer. Since characteristics such as steric repulsion are imparted, it is used in cement admixture applications added to cement compositions such as cement paste, mortar, and concrete. Such a cement admixture is usually used as a water reducing agent or the like, and exerts an effect of improving the strength and durability of the cured product by reducing the cement composition by increasing the fluidity of the cement composition. Used for that purpose. As a water reducing agent, a water reducing agent such as naphthalene type has been conventionally used. However, since a (poly) alkylene glycol chain can act as a dispersing group for dispersing cement particles due to its steric repulsion, (poly) alkylene A polycarboxylic acid-based water reducing agent containing a glycol chain has been proposed as exhibiting a high water reducing action, and has recently been used as a high-performance AE water reducing agent.
従来の(ポリ)アルキレングリコール鎖を含有するポリカルボン酸系重合体に関して、例えば、特許文献1には、ポリカルボン酸系重合体(A)またはその塩を主成分とするセメント分散剤であって、該重合体(A)の重量平均分子量が、ゲルパーミエーションクロマトグラフィーによるポリエチレングリコール換算で10,000~500,000の範囲内にあり、かつ重量平均分子量からピークトップ分子量を差し引いた値が0~8,000であることを特徴とするセメント分散剤が開示されている。
特許文献2~5にも、(ポリ)アルキレングリコール鎖を含有するポリカルボン酸系重合体が開示されている。
Regarding a conventional polycarboxylic acid polymer containing a (poly) alkylene glycol chain, for example, Patent Document 1 discloses a cement dispersant mainly composed of a polycarboxylic acid polymer (A) or a salt thereof. The weight average molecular weight of the polymer (A) is in the range of 10,000 to 500,000 in terms of polyethylene glycol by gel permeation chromatography, and the value obtained by subtracting the peak top molecular weight from the weight average molecular weight is 0. A cement dispersant characterized by ˜8,000 is disclosed.
Patent Documents 2 to 5 also disclose polycarboxylic acid polymers containing a (poly) alkylene glycol chain.
また、(ポリ)アルキレングリコール鎖を含有するポリカルボン酸系重合体に疎水性基を導入して、セメント分散性を向上させる技術も開発されており、例えば特許文献6には、重合体(A)と重合体(B)との2種類の重合体を必須成分として含むセメント混和剤であって、該重合体(A)及び重合体(B)は、所定の構造で表される不飽和(ポリ)アルキレングリコールエーテル系単量体(a)由来の構成単位(I)と、カルボキシル基及び/又はその塩を吸着基として有する不飽和カルボン酸系単量体(b)由来の構成単位(II)とを必須の構成単位として含み、該重合体(A)は、更に、疎水性基を有する不飽和カルボン酸エステル系単量体(c)由来の構成単位(III)を必須の構成単位として含み、重合体1分子あたりの吸着基の数が1以上16未満、かつ、重合体1分子あたりの疎水性基の数が1以上20未満であり、該重合体(B)は、重合体1分子あたりの吸着基の数が16以上70未満であり、該セメント混和剤における重合体(A)と重合体(B)との比率(質量%)は、40~99/60~1であることを特徴とするセメント混和剤が開示されている。 In addition, a technique for improving cement dispersibility by introducing a hydrophobic group into a polycarboxylic acid polymer containing a (poly) alkylene glycol chain has been developed. For example, Patent Document 6 discloses a polymer (A ) And polymer (B) as an essential component, a cement admixture, wherein the polymer (A) and the polymer (B) are unsaturated ( The structural unit (I) derived from the poly) alkylene glycol ether monomer (a) and the structural unit derived from the unsaturated carboxylic acid monomer (b) having a carboxyl group and / or a salt thereof as an adsorbing group (II) ) As an essential structural unit, and the polymer (A) further includes, as an essential structural unit, a structural unit (III) derived from an unsaturated carboxylic acid ester monomer (c) having a hydrophobic group. Including, absorption per molecule of polymer The number of groups is 1 or more and less than 16, and the number of hydrophobic groups per molecule of the polymer is 1 or more and less than 20, and the polymer (B) has 16 adsorbing groups per molecule of the polymer. A cement admixture characterized in that the ratio (mass%) of the polymer (A) and the polymer (B) in the cement admixture is 40 to 99/60 to 1 in the cement admixture. Has been.
特開平9-86990号公報JP-A-9-86990 特開2011-195842号公報JP 2011-195842 A 特開2003-206169号公報JP 2003-206169 A 特開2006-282864号公報JP 2006-282864 A 特開2007-270072号公報JP 2007-270072 A 特開2012-067011号公報JP 2012-067011 A
上記のように、従来から種々の(ポリ)アルキレングリコール系重合体が開発されているが、従来の(ポリ)アルキレングリコール系単量体由来の構造単位と疎水性単量体由来の構造単位とを有する共重合体は安定性が悪く、反応中や保存中に分離が生じるという課題があった。 As described above, various (poly) alkylene glycol-based polymers have been developed conventionally, and structural units derived from conventional (poly) alkylene glycol-based monomers and structural units derived from hydrophobic monomers There is a problem in that the copolymer having a poor stability and separation occurs during the reaction or storage.
本発明は、上記現状に鑑みてなされたものであり、共重合体溶液において分離が充分に抑制され、保存安定性に優れる(ポリ)アルキレングリコール含有共重合体を提供することを目的とする。 This invention is made | formed in view of the said present condition, and it aims at providing the (poly) alkylene glycol containing copolymer by which separation is fully suppressed in a copolymer solution and excellent in storage stability.
本発明者は、(ポリ)アルキレングリコール系単量体由来の構造単位と疎水性単量体由来の構造単位とを有する共重合体について種々検討したところ、共重合体における高分子量体の割合を低減することにより、共重合体溶液において分離が充分に抑制され、保存安定性に優れることを見いだし、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。 The inventor conducted various studies on copolymers having a structural unit derived from a (poly) alkylene glycol monomer and a structural unit derived from a hydrophobic monomer. As a result, the ratio of the high molecular weight in the copolymer was determined. As a result of the reduction, it was found that the separation in the copolymer solution was sufficiently suppressed and the storage stability was excellent, and it was conceived that the above problems could be solved brilliantly, and the present invention has been achieved.
すなわち本発明は、(ポリ)アルキレングリコール鎖を含有する共重合体であって、上記共重合体は、下記式(1); That is, the present invention is a copolymer containing a (poly) alkylene glycol chain, wherein the copolymer is represented by the following formula (1);
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式中、R、R及びRは、同一又は異なって、水素原子、又は、メチル基を表す。Rは、水素原子、又は、炭素数1~30の炭化水素基を表す。(AO)は、同一又は異なって、オキシアルキレン基を表す。nは、オキシアルキレン基の平均付加モル数を表し、1~300の数である。yは、0~4の数を表す。 zは、0又は1を表す。)で表される(ポリ)アルキレングリコール含有単量体(A)由来の構造単位(a)と疎水性単量体(B)由来の構造単位(b)とを有し、上記疎水性単量体(B)は、エチレン性不飽和基を有し、オクタノール/水分配係数の値(Log P値)が1.0~8.0であり、上記共重合体について測定されたゲルパーミエーションクロマトグラフィー(GPC)の示差屈折率検出器のクロマトグラムにおいて、以下に規定するピークα及びピークβの面積が、下記式(2)を満たす(ポリ)アルキレングリコール含有共重合体である。
α×100/(α+β)≦3.0 (2)
<ピークα及びβ>
ピークα:重量平均分子量(Mw)が、20万よりも大きいピーク。
ピークβ:Mwが20万以下であるピーク。
(In the formula, R 1 , R 2 and R 3 are the same or different and each represents a hydrogen atom or a methyl group. R 4 represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms. (AO) are the same or different and each represents an oxyalkylene group, n represents the average number of moles added of the oxyalkylene group, and is a number from 1 to 300. y represents a number from 0 to 4. z Represents a structural unit (a) derived from the (poly) alkylene glycol-containing monomer (A) and a structural unit (b) derived from the hydrophobic monomer (B). The hydrophobic monomer (B) has an ethylenically unsaturated group and has an octanol / water partition coefficient value (Log P value) of 1.0 to 8.0; Gel Permeation Chromatography (GPC) Differential Refractive Index Detector Chromatography In the ram, a (poly) alkylene glycol-containing copolymer satisfying the following formula (2), the areas of the peak α and the peak β defined below.
α × 100 / (α + β) ≦ 3.0 (2)
<Peak α and β>
Peak α: A peak having a weight average molecular weight (Mw) larger than 200,000.
Peak β: A peak having Mw of 200,000 or less.
上記疎水性単量体(B)は、不飽和カルボン酸とアルコールとのエステル類、芳香族ビニル系単量体、オレフィン系単量体、(メタ)アクリルアミド系単量体、マレイミド系単量体及び不飽和アルコールとカルボン酸とのエステル類からなる群より選択される少なくとも1種を含むことが好ましい。 The hydrophobic monomer (B) is an ester of an unsaturated carboxylic acid and an alcohol, an aromatic vinyl monomer, an olefin monomer, a (meth) acrylamide monomer, or a maleimide monomer. And at least one selected from the group consisting of esters of unsaturated alcohols and carboxylic acids.
上記(ポリ)アルキレングリコール含有共重合体は、不飽和カルボン酸系単量体(C)由来の構造単位(c)を有することが好ましい。
上記(ポリ)アルキレングリコール含有単量体(A)は、上記式(1)におけるzが0であることが好ましい。
The (poly) alkylene glycol-containing copolymer preferably has a structural unit (c) derived from an unsaturated carboxylic acid monomer (C).
In the (poly) alkylene glycol-containing monomer (A), z in the formula (1) is preferably 0.
上記構造単位(a)の割合は、全構造単位100質量%に対して50質量%以上、99質量%以下であることが好ましい。 The proportion of the structural unit (a) is preferably 50% by mass to 99% by mass with respect to 100% by mass of all structural units.
上記構造単位(b)の割合は、全構造単位100質量%に対して1質量%以上、30質量%以下であることが好ましい。 The proportion of the structural unit (b) is preferably 1% by mass to 30% by mass with respect to 100% by mass of all structural units.
上記構造単位(c)の割合は、全構造単位100質量%に対して0質量%以上、30質量%以下であることが好ましい。 The proportion of the structural unit (c) is preferably 0% by mass to 30% by mass with respect to 100% by mass of all structural units.
上記(ポリ)アルキレングリコール含有共重合体は、上記(ポリ)アルキレングリコール含有単量体(A)、疎水性単量体(B)及び不飽和カルボン酸系単量体(C)以外のその他の単量体(E)由来の構造単位(e)を有していてもよく、構造単位(e)の割合は、全構造単位100質量%に対して0質量%以上、30質量%以下であることが好ましい。 The (poly) alkylene glycol-containing copolymer includes other (poly) alkylene glycol-containing monomer (A), hydrophobic monomer (B), and unsaturated carboxylic acid monomer (C). The structural unit (e) derived from the monomer (E) may be included, and the proportion of the structural unit (e) is 0% by mass or more and 30% by mass or less with respect to 100% by mass of all the structural units. It is preferable.
本発明はまた、上記(ポリ)アルキレングリコール含有共重合体を含むセメント混和剤でもある。 The present invention is also a cement admixture containing the (poly) alkylene glycol-containing copolymer.
本発明は更に、上記(ポリ)アルキレングリコール含有共重合体とセメントとを含むセメント組成物でもある。 The present invention is also a cement composition comprising the (poly) alkylene glycol-containing copolymer and cement.
本発明は更に、セメント組成物を製造する方法であって、上記製造方法は、上記(ポリ)アルキレングリコール含有共重合体を水硬性材料に添加する工程を含むセメント組成物の製造方法でもある。 The present invention is further a method for producing a cement composition, wherein the production method is also a method for producing a cement composition including a step of adding the (poly) alkylene glycol-containing copolymer to a hydraulic material.
以下に本発明の好ましい形態について具体的に説明するが、本発明は以下の記載のみに限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。なお、以下に記載される本発明の個々の好ましい形態を2又は3以上組み合わせた形態も、本発明の好ましい形態に該当する。 Although the preferable form of this invention is demonstrated concretely below, this invention is not limited only to the following description, In the range which does not change the summary of this invention, it can change suitably and can apply. In addition, the form which combined each preferable form of this invention described below 2 or 3 or more also corresponds to the preferable form of this invention.
本発明の(ポリ)アルキレングリコール含有共重合体は、上述の構成よりなり、共重合体溶液において分離が充分に抑制され、保存安定性に優れるため、セメント混和剤等に好適に用いることができる。 The (poly) alkylene glycol-containing copolymer of the present invention has the above-described structure, and is sufficiently suppressed in the copolymer solution and excellent in storage stability. Therefore, it can be suitably used as a cement admixture or the like. .
実施例3で得られた共重合体についてGPCの示差屈折率検出器で検出されたピークを示した概念図である。It is the conceptual diagram which showed the peak detected with the differential refractive index detector of GPC about the copolymer obtained in Example 3. FIG.
≪(ポリ)アルキレングリコール含有共重合体≫
本発明の(ポリ)アルキレングリコール含有共重合体(以下、本発明の共重合体ともいう。)は、上記共重合体について測定されたゲルパーミエーションクロマトグラフィー(GPC)の示差屈折率検出器のクロマトグラムにおいて、以下に規定するピークα及びピークβの面積が、下記式(2)を満たすことを特徴とする。
α×100/(α+β)≦3.0 (2)
<ピークα及びβ>
ピークα:重量平均分子量(Mw)が、20万よりも大きいピーク。
ピークβ:Mwが20万以下であるピーク。
共重合体において、上記ピークαに相当するMwが20万よりも大きい高分子量体の割合を低減することで、共重合体やその溶液において、分離を充分に抑制することができる。共重合体溶液において分離を抑制することにより、分離物が反応器や貯蔵容器に付着して汚染することを防ぐことができる。また、共重合体やその溶液において、濃度に不均一が生じることを抑制し、使用時に所望の性能を充分に発揮させることができる。
上記高分子量体は、疎水性単量体(B)及び/又は不飽和カルボン酸系単量体(C)由来の構成単位の含有量が比較的高く、(ポリ)アルキレングリコール含有単量体(A)由来の構造単位の含有量が比較的低い(共)重合体であると推測される。この事は、GPCで検出されたピークαとピークβについて、UV/RI比(UVクロマトグラム面積をRIクロマトグラム面積で除した値)を比較すると、ピークαのUV/RI比の方が大きくなることから示唆される。
全共重合体中にピークαに相当する高分子量体の割合が多くなると、共重合体溶液中に分離が生じるだけでなく、ピークβに相当するMwが20万以下の共重合体において、疎水性単量体(B)(及び任意に不飽和カルボン酸系単量体(C))由来の構成単位の含有量が少なくなるため、所望の性能が十分に発現しないことがある。
これに対して本発明の共重合体は、このような高分子量体の割合が少ないため、共重合体中の構成単位の組成比はMwによらず比較的均一になっていると推測される。このように本発明の共重合体は、共重合体の組成が均一であることにより、セメント組成物等に用いた場合の性能にも優れることとなる。
≪ (Poly) alkylene glycol-containing copolymer≫
The (poly) alkylene glycol-containing copolymer of the present invention (hereinafter also referred to as the copolymer of the present invention) is a gel-permeation chromatography (GPC) differential refractive index detector measured for the copolymer. In the chromatogram, the areas of peak α and peak β defined below satisfy the following formula (2).
α × 100 / (α + β) ≦ 3.0 (2)
<Peak α and β>
Peak α: A peak having a weight average molecular weight (Mw) larger than 200,000.
Peak β: A peak having Mw of 200,000 or less.
In the copolymer, by reducing the proportion of the high molecular weight substance having Mw greater than 200,000 corresponding to the peak α, separation can be sufficiently suppressed in the copolymer and its solution. By suppressing separation in the copolymer solution, the separated product can be prevented from adhering to and contaminating the reactor and the storage container. Further, in the copolymer and its solution, it is possible to suppress the occurrence of non-uniform concentration, and to fully exhibit desired performance during use.
The high molecular weight product has a relatively high content of structural units derived from the hydrophobic monomer (B) and / or the unsaturated carboxylic acid monomer (C), and the (poly) alkylene glycol-containing monomer ( It is estimated that the content of the structural unit derived from A) is a (co) polymer having a relatively low content. This is because the UV / RI ratio (value obtained by dividing the UV chromatogram area by the RI chromatogram area) for the peak α and the peak β detected by GPC is larger. It is suggested from becoming.
When the ratio of the high molecular weight corresponding to the peak α increases in the entire copolymer, not only the separation occurs in the copolymer solution, but also the hydrophobicity of the copolymer having an Mw corresponding to the peak β of 200,000 or less. Since the content of the structural unit derived from the polymerizable monomer (B) (and optionally the unsaturated carboxylic acid monomer (C)) is decreased, the desired performance may not be sufficiently exhibited.
On the other hand, since the copolymer of the present invention has a small proportion of such a high molecular weight, it is presumed that the composition ratio of the constituent units in the copolymer is relatively uniform regardless of Mw. . Thus, the copolymer of this invention will be excellent also in the performance at the time of using for a cement composition etc. because the composition of a copolymer is uniform.
上記共重合体のGPCの測定条件は、以下のとおりである。
<GPC分析条件>
装置:Waters Alliance(2695)
解析ソフト:Waters社製、Empower2プロフェッショナル+GPCオプション
使用カラム:東ソー(株)製、TSKguardcolumnsSWXL+TSKgel G4000SWXL+G3000SWXL+G2000SWXL
検出器:示差屈折率(RI)検出器(Waters 2414)、多波長可視紫外(PDA)検出器(Waters 2996)
溶離液:水10999g、アセトニトリル6001gの混合溶媒に酢酸ナトリウム三水和物115.6gを溶解し、さらに酢酸でpH6.0に調整したもの。
較正曲線作成用標準物質:ポリエチレングリコール(ピークトップ分子量(Mp)272500、219300、107000、50000、24000、12600、7100、4250、1470)
較正曲線:上記標準物質のMp値と溶出時間とを基礎にして3次式で作成した。
流量:1mL/分
カラム温度:40℃
測定時間:45分
標準物質試料液注入量:100μL(重合体濃度0.1質量%の溶離液溶液)
重合体試料液注入量:100μL(重合体濃度0.5質量%の溶離液溶液)
The measurement conditions of GPC of the copolymer are as follows.
<GPC analysis conditions>
Device: Waters Alliance (2695)
Analysis software: Waters, Empor2 Professional + GPC option column: Tosoh Co., Ltd., TSKguardcolumns SWXL + TSKgel G4000SWXL + G3000SWXL + G2000SWXL
Detector: differential refractive index (RI) detector (Waters 2414), multi-wavelength visible ultraviolet (PDA) detector (Waters 2996)
Eluent: A solution prepared by dissolving 115.6 g of sodium acetate trihydrate in a mixed solvent of 10999 g of water and 6001 g of acetonitrile, and adjusting the pH to 6.0 with acetic acid.
Standard substance for preparing calibration curve: polyethylene glycol (peak top molecular weight (Mp) 272500, 219300, 107000, 50000, 24000, 12600, 7100, 4250, 1470)
Calibration curve: Prepared by a cubic equation based on the Mp value and elution time of the standard.
Flow rate: 1 mL / min Column temperature: 40 ° C
Measurement time: 45 minutes Standard substance sample solution injection amount: 100 μL (eluent solution with polymer concentration of 0.1% by mass)
Polymer sample solution injection amount: 100 μL (eluent solution having a polymer concentration of 0.5% by mass)
<GPC解析条件(重合体の分析)>
上記ピークα、βは、以下のように定義する。
上記共重合体について測定されたGPCの示差屈折率検出器のクロマトグラムにおいて、得られた各ピークの重量平均分子量(Mw)を求め、Mwが20万よりも大きいピークをαとし、Mwが20万以下のピークをβとする。
なお、ピークβは、クロマトグラムにおいて分析可能なピークのうち、Mwが20万以下のピークである。
ピークα、βは、それぞれ複数であってもよいが、分子量や面積の計算においては、それぞれをまとめて計算する。
ピークαとβが完全に分離せず重なって検出された場合、ピーク間の最凹部(最低点)において垂直分割してピークαとβを分離する。なお、最凹部において最低点が連続する場合、その中間点でピークを垂直分割する。
なお、クロマトグラムの重合体溶出直前・溶出直後において、平らに安定している部分を直線で結び、ベースラインとする。
<GPC analysis conditions (analysis of polymer)>
The peaks α and β are defined as follows.
In the chromatogram of the differential refractive index detector of GPC measured for the above copolymer, the weight average molecular weight (Mw) of each peak obtained was determined, and the peak with Mw greater than 200,000 was defined as α, and Mw was 20 A peak of 10,000 or less is defined as β.
The peak β is a peak whose Mw is 200,000 or less among peaks that can be analyzed in the chromatogram.
There may be a plurality of peaks α and β, but the molecular weight and area are calculated together.
When the peaks α and β are detected without overlapping completely, the peaks α and β are separated by vertical division at the most concave portion (lowest point) between the peaks. When the lowest point continues in the most concave portion, the peak is vertically divided at the intermediate point.
In addition, immediately before and after elution of the polymer in the chromatogram, the flat and stable portions are connected with a straight line to form a baseline.
ピークα、βのピーク面積は、以下のように定義する。
(i)ピークαに属するピークがピークβに属するピークと完全に分離している場合、ピークαの面積は、ピークαに属するピークの曲線とベースラインとで囲まれる面積である。上記の場合、ピークβの面積は、ピークβに属するピークの曲線とベースラインとで囲まれる面積である。
(ii)ピークαに属するピークがピークβに属するピークと完全に分離せず、重なっている場合、ピークαとβの間の最凹部(最低点)において垂直分割してピークを分離し、ピークαの面積は、ピークαに属するピークの曲線とベースラインと該最凹部からベースラインに下した垂線とで囲まれる面積である。上記の場合、ピークβの面積は、ピークβに属するピークの曲線とベースラインと該最凹部からベースラインに下した垂線とで囲まれる面積である。なお、上記最凹部において最低点が連続する場合、その中間点でピークを分離する。
ピークα、βに属するピークが複数である場合、複数のピークの総面積がピークα、βの面積である。
The peak areas of the peaks α and β are defined as follows.
(I) When the peak belonging to the peak α is completely separated from the peak belonging to the peak β, the area of the peak α is an area surrounded by the curve of the peak belonging to the peak α and the baseline. In the above case, the area of the peak β is an area surrounded by the curve of the peak belonging to the peak β and the baseline.
(Ii) When the peak belonging to the peak α does not completely separate from the peak belonging to the peak β and overlaps, the peak is separated by vertically dividing at the most concave portion (lowest point) between the peaks α and β. The area of α is an area surrounded by a peak curve belonging to the peak α, a base line, and a perpendicular line extending from the concave portion to the base line. In the above case, the area of the peak β is an area surrounded by a peak curve belonging to the peak β, a base line, and a perpendicular line extending from the most concave portion to the base line. In addition, when the lowest point continues in the said most recessed part, a peak is isolate | separated in the intermediate point.
When there are a plurality of peaks belonging to the peaks α and β, the total area of the plurality of peaks is the area of the peaks α and β.
ピークα及びピークβの面積は、上記式(2)を満たすものであればよいが、α×100/(α+β)は、2.5以下であることが好ましく、より好ましくは2.0以下であり、更に好ましくは1.5以下であり、更により好ましくは1.0以下であり、特に好ましくは0.5以下である。
また、ピークα(Mwが20万以上であるピーク)は検出されなくてもよい。ピークαが未検出(定性限界以下)の場合、上記式(2)は、α×100/(α+β)=0.0となる。α×100/(α+β)=0.0の場合もまた、本発明の好ましい実施形態の1つである。
The area of the peak α and the peak β may be any as long as the above formula (2) is satisfied, but α × 100 / (α + β) is preferably 2.5 or less, more preferably 2.0 or less. More preferably 1.5 or less, even more preferably 1.0 or less, and particularly preferably 0.5 or less.
Moreover, the peak α (a peak having Mw of 200,000 or more) may not be detected. When the peak α is not detected (below the qualitative limit), the above equation (2) becomes α × 100 / (α + β) = 0.0. The case of α × 100 / (α + β) = 0.0 is also one of the preferred embodiments of the present invention.
本発明の共重合体は、上記式(1)で表される(ポリ)アルキレングリコール含有単量体(A)由来の構造単位(a)と疎水性単量体(B)由来の構造単位(b)とを有し、それぞれ1種有していてもよく、2種以上有していてもよい。
本発明の共重合体における構造単位(a)の割合は、構造単位(a)由来の、親水性、相溶性、分散力等といった性能を十分に発揮するため、全構造単位100質量%に対して50質量%以上であることが好ましい。より好ましくは60質量%以上であり、更に好ましくは70質量%以上であり、更により好ましくは75質量%以上であり、特に好ましくは80質量%以上である。また他の構成単位由来の性能を充分に発揮するため、全構造単位100質量%に対して99質量%以下であることが好ましい。より好ましくは97質量%以下であり、更に好ましくは95質量%以下であり、更により好ましくは90質量%以下であり、特に好ましくは85質量%以下である。
The copolymer of the present invention comprises a structural unit (a) derived from the (poly) alkylene glycol-containing monomer (A) represented by the above formula (1) and a structural unit derived from the hydrophobic monomer (B) ( b), each of which may be one type or two or more types.
The proportion of the structural unit (a) in the copolymer of the present invention is sufficient to exhibit performances such as hydrophilicity, compatibility, and dispersion force derived from the structural unit (a). It is preferable that it is 50 mass% or more. More preferably, it is 60 mass% or more, More preferably, it is 70 mass% or more, More preferably, it is 75 mass% or more, Most preferably, it is 80 mass% or more. Moreover, in order to fully exhibit the performance derived from another structural unit, it is preferable that it is 99 mass% or less with respect to 100 mass% of all the structural units. More preferably, it is 97 mass% or less, More preferably, it is 95 mass% or less, More preferably, it is 90 mass% or less, Most preferably, it is 85 mass% or less.
本発明の共重合体における構造単位(b)の割合は、構造単位(b)由来の、疎水性、相溶性、界面活性等といった性能を十分に発揮するため、全構造単位100質量%に対して1質量%以上であることが好ましい。より好ましくは3質量%以上であり、更に好ましくは5質量%以上であり、更により好ましくは7.5質量%以上であり、特に好ましくは10質量%以上である。また、高分子量体の割合を低減し、共重合体溶液における分離をより充分に抑制し、かつ、他の構成単位由来の性能を充分に発揮するため、全構造単位100質量%に対して30質量%以下であることが好ましい。より好ましくは25質量%以下であり、更に好ましくは20質量%以下であり、更により好ましくは15質量%以下であり、特に好ましくは12.5質量%以下である。 The proportion of the structural unit (b) in the copolymer of the present invention is sufficient to exhibit performances such as hydrophobicity, compatibility, and surface activity derived from the structural unit (b). And preferably 1% by mass or more. More preferably, it is 3 mass% or more, More preferably, it is 5 mass% or more, Still more preferably, it is 7.5 mass% or more, Most preferably, it is 10 mass% or more. Further, in order to reduce the proportion of the high molecular weight substance, more sufficiently suppress the separation in the copolymer solution, and sufficiently exhibit the performance derived from other structural units, 30% with respect to 100% by mass of all structural units It is preferable that it is below mass%. More preferably, it is 25 mass% or less, More preferably, it is 20 mass% or less, More preferably, it is 15 mass% or less, Most preferably, it is 12.5 mass% or less.
本発明の共重合体における構造単位(c)の割合は、全構造単位100質量%に対して0質量%以上であればよいが、構造単位(c)由来の、親水性、吸着力、界面活性等といった性能を十分に発揮するため、全構造単位100質量%に対して1質量%以上であることが好ましい。より好ましくは3質量%以上であり、更に好ましくは5質量%以上であり、更により好ましくは7.5質量%以上であり、特に好ましくは10質量%以上である。また他の構成単位由来の性能を充分に発揮するため、全構造単位100質量%に対して30質量%以下であることが好ましい。より好ましくは25質量%以下であり、更に好ましくは20質量%以下であり、更により好ましくは15質量%以下であり、特に好ましくは12.5質量%以下である。
なお、本発明の共重合体における構造単位(c)の割合の計算において、構造単位(c)の質量は、対応するナトリウム塩型の構造単位として質量を計算するものとする。例えば(メタ)アクリル酸由来の構造であれば、(メタ)アクリル酸ナトリウム由来の構造として、マレイン酸由来の構造であれば、マレイン酸二ナトリウム由来の構造として、質量割合を計算する。
The proportion of the structural unit (c) in the copolymer of the present invention may be 0% by mass or more with respect to 100% by mass of all the structural units. In order to sufficiently exhibit performance such as activity, the content is preferably 1% by mass or more with respect to 100% by mass of all structural units. More preferably, it is 3 mass% or more, More preferably, it is 5 mass% or more, Still more preferably, it is 7.5 mass% or more, Most preferably, it is 10 mass% or more. Moreover, in order to fully exhibit the performance derived from another structural unit, it is preferable that it is 30 mass% or less with respect to 100 mass% of all the structural units. More preferably, it is 25 mass% or less, More preferably, it is 20 mass% or less, More preferably, it is 15 mass% or less, Most preferably, it is 12.5 mass% or less.
In the calculation of the proportion of the structural unit (c) in the copolymer of the present invention, the mass of the structural unit (c) is calculated as the corresponding sodium salt type structural unit. For example, if the structure is derived from (meth) acrylic acid, the mass ratio is calculated as a structure derived from sodium (meth) acrylate, and if the structure is derived from maleic acid, the structure is derived from disodium maleate.
本発明の共重合体は、上記(ポリ)アルキレングリコール含有単量体(A)、疎水性単量体(B)及び不飽和カルボン酸系単量体(C)以外のその他の単量体(E)由来の構造単位(e)を有していてもよい。
本発明の共重合体における構造単位(e)の割合は、全構造単位100質量%に対して0質量%以上であればよいが、構造単位(e)由来の性能を十分に発揮するため、1質量%以上であることが好ましい。より好ましくは2.5質量%以上であり、更に好ましくは5質量%以上であり、更により好ましくは7.5質量%以上であり、特に好ましくは10質量%以上である。また他の構成単位由来の性能を充分に発揮するため、全構造単位100質量%に対して30質量%以下であることが好ましい。より好ましくは25質量%以下であり、更に好ましくは20質量%以下であり、更により好ましくは15質量%以下であり、特に好ましくは12.5質量%以下である。
The copolymer of the present invention comprises other monomers (other than the above (poly) alkylene glycol-containing monomer (A), hydrophobic monomer (B) and unsaturated carboxylic acid monomer (C)). You may have the structural unit (e) derived from E).
The proportion of the structural unit (e) in the copolymer of the present invention may be 0% by mass or more with respect to 100% by mass of all the structural units, but sufficiently exhibits the performance derived from the structural unit (e). It is preferable that it is 1 mass% or more. More preferably, it is 2.5 mass% or more, More preferably, it is 5 mass% or more, More preferably, it is 7.5 mass% or more, Most preferably, it is 10 mass% or more. Moreover, in order to fully exhibit the performance derived from another structural unit, it is preferable that it is 30 mass% or less with respect to 100 mass% of all the structural units. More preferably, it is 25 mass% or less, More preferably, it is 20 mass% or less, More preferably, it is 15 mass% or less, Most preferably, it is 12.5 mass% or less.
本発明の共重合体は、重量平均分子量が5,000~200,000であることが好ましい。共重合体の性能を十分に発揮するため、より好ましくは7,000以上であり、更に好ましくは10,000以上であり、更により好ましくは15,000以上であり、特に好ましくは20,000以上である。また共重合体溶液において分離をより充分に抑制するため、より好ましくは150,000以下であり、更に好ましくは100,000以下であり、更により好ましくは70,000以下であり、特に好ましくは50,000以下である。
共重合体の重量平均分子量は実施例に記載の方法により測定することができる。
The copolymer of the present invention preferably has a weight average molecular weight of 5,000 to 200,000. In order to sufficiently exhibit the performance of the copolymer, it is more preferably 7,000 or more, still more preferably 10,000 or more, still more preferably 15,000 or more, and particularly preferably 20,000 or more. It is. In order to more sufficiently suppress the separation in the copolymer solution, it is more preferably 150,000 or less, still more preferably 100,000 or less, even more preferably 70,000 or less, and particularly preferably 50. , 000 or less.
The weight average molecular weight of a copolymer can be measured by the method as described in an Example.
<(ポリ)アルキレングリコール含有単量体(A)>
上記式(1)において、R~Rは、同一又は異なって、水素原子又はメチル基を表す。好ましくはR、Rが水素原子であって、Rが水素原子又はメチル基である。より好ましくは、R、Rが水素原子であって、Rがメチル基である。
<(Poly) alkylene glycol-containing monomer (A)>
In the above formula (1), R 1 to R 3 are the same or different and each represents a hydrogen atom or a methyl group. Preferably, R 1 and R 2 are hydrogen atoms, and R 3 is a hydrogen atom or a methyl group. More preferably, R 1 and R 2 are hydrogen atoms and R 3 is a methyl group.
上記式(1)中、AOは、「同一又は異なって、」炭素数2~18のオキシアルキレン基を表すが、これは、ポリアルキレングリコール中にn個存在するAOのオキシアルキレン基が全て同一であってもよく、異なっていてもよいことを意味する。
上記式(1)中、AOで表されるオキシアルキレン基は、アルキレンオキシド付加物であり、このようなアルキレンオキシドとしては、エチレンオキシド、プロピレンオキシド、ブチレンオキシド、イソブチレンオキシド、1-ブテンオキシド、2-ブテンオキシド、スチレンオキシド、グリシドール、エピクロロヒドリン等の炭素数2~8のアルキレンオキシドが挙げられる。より好ましくは、エチレンオキシド、プロピレンオキシド、ブチレンオキシド等の炭素数2~4のアルキレンオキシドであり、更に好ましくは、エチレンオキシド、プロピレンオキシドである。
また、上記ポリアルキレングリコールが、エチレンオキシド、プロピレンオキシド、ブチレンオキシド、スチレンオキシド等の中から選ばれる任意の2種類以上のアルキレンオキシド付加物である場合、ランダム付加、ブロック付加、交互付加等のいずれの形態であってもよい。
上記式(1)中、AOで表されるオキシアルキレン基は、本発明の共重合体に求められる用途等に応じて適宜選択することが好ましいが、親水性と疎水性とのバランス確保のため、ポリアルキレングリコール中のオキシアルキレン基として、オキシエチレン基を必須成分として有することが好ましく、50モル%以上がオキシエチレン基であることがより好ましく、90モル%以上がオキシエチレン基であることが更に好ましい。
In the above formula (1), AO represents “the same or different,” and represents an oxyalkylene group having 2 to 18 carbon atoms, which is the same for all oxyalkylene groups of AO present in n in polyalkylene glycol. Means that it may be different.
In the above formula (1), the oxyalkylene group represented by AO is an alkylene oxide adduct, and examples of such alkylene oxide include ethylene oxide, propylene oxide, butylene oxide, isobutylene oxide, 1-butene oxide, 2- Examples thereof include alkylene oxides having 2 to 8 carbon atoms such as butene oxide, styrene oxide, glycidol and epichlorohydrin. More preferred are alkylene oxides having 2 to 4 carbon atoms such as ethylene oxide, propylene oxide, butylene oxide, and still more preferred are ethylene oxide and propylene oxide.
Further, when the polyalkylene glycol is any two or more alkylene oxide adducts selected from ethylene oxide, propylene oxide, butylene oxide, styrene oxide, etc., any of random addition, block addition, alternating addition, etc. Form may be sufficient.
In the above formula (1), the oxyalkylene group represented by AO is preferably selected as appropriate according to the use required for the copolymer of the present invention, but in order to ensure a balance between hydrophilicity and hydrophobicity. The oxyalkylene group in the polyalkylene glycol preferably has an oxyethylene group as an essential component, more preferably 50 mol% or more is an oxyethylene group, and 90 mol% or more is an oxyethylene group. Further preferred.
上記式(1)中、nは、オキシアルキレン基の平均付加モル数を表し、1~300である。オキシアルキレン基由来の性能を充分に発揮させる観点から、好ましくは2以上であり、より好ましくは10以上であり、更に好ましくは25以上であり、特に好ましくは30以上であり、更に特に好ましくは50以上である。また300を超えると、製造時および使用時に粘性が高くなりすぎ、作業性が充分とはならないおそれがある。好ましくは200以下であり、より好ましくは150以下であり、更に好ましくは100以下であり、特に好ましくは75以下である。 In the above formula (1), n represents an average addition mole number of the oxyalkylene group and is 1 to 300. From the viewpoint of sufficiently exerting the performance derived from the oxyalkylene group, it is preferably 2 or more, more preferably 10 or more, still more preferably 25 or more, particularly preferably 30 or more, and still more preferably 50. That's it. On the other hand, if it exceeds 300, the viscosity becomes too high during production and use, and workability may not be sufficient. Preferably it is 200 or less, More preferably, it is 150 or less, More preferably, it is 100 or less, Most preferably, it is 75 or less.
上記式(1)におけるRは、水素原子、又は、炭素数1~30の炭化水素基を表す。好ましくは水素原子又は炭素数1~20の炭化水素基であり、より好ましくは、水素原子又は炭素数1~18の炭化水素基、更に好ましくは、水素原子又は炭素数1~12の炭化水素基、特に好ましくは水素原子又は炭素数1~8の炭化水素基であり、最も好ましくはメチル基又は水素原子である。 R 4 in the above formula (1) represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms. Preferred is a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, more preferred is a hydrogen atom or a hydrocarbon group having 1 to 18 carbon atoms, and still more preferred is a hydrogen atom or a hydrocarbon group having 1 to 12 carbon atoms. Particularly preferred is a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, and most preferred is a methyl group or a hydrogen atom.
上記炭化水素基としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基(アミル基)、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、n-ノナデシル基、n-エイコサニル基、i-プロピル基、sec-ブチル基、i-ブチル基、t-ブチル基、1-メチルブチル基、1-エチルプロピル基、2-メチルブチル基、i-アミル基、ネオペンチル基、1,2-ジメチルプロピル基、1,1-ジメチルプロピル基、t-アミル基、1,3-ジメチルブチル基、3,3-ジメチルブチル基、2-エチルブチル基、2-エチル-2-メチルプロピル基、1-メチルヘプチル基、2-エチルヘキシル基、1,5-ジメチルヘキシル基、t-オクチル基、分岐したノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基、イコシル基等の脂肪族アルキル基;シクロプロピル基、シクロプロピルメチル基、シクロブチル基、シクロブチルメチル基、シクロペンチル基、シクロヘキシル基、シクロヘキシルメチル基、シクロヘプチル基、シクロオクチル基、シクロヘキシルプロピル基、シクロドデシル基、ノルボルニル基(C7)、アダマンチル基(C10)、シクロペンチルエチル基等の脂環式アルキル基;上記アルケニル基としては、例えば、ビニル基、アリル基、1-ブテニル基、2-ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、ノネニル基、デセニル基、ドデセニル基、オクタデセニル基、イコセニル基等のアルケニル基;フェニル基、ベンジル基、フェネチル基、o-,m-若しくはp-トリル基、2,3-若しくは2,4-キシリル基、メシチル基、ナフチル基、アントリル基、フェナントリル基、ビフェニリル基、ベンズヒドリル基、トリチル基及びピレニル基等のアリール基等が挙げられる。これらの中でも、直鎖、分岐鎖又は環状のアルキル基、フェニル基が好ましい。 Examples of the hydrocarbon group include methyl, ethyl, n-propyl, n-butyl, n-pentyl (amyl), n-hexyl, n-heptyl, n-octyl, and n-nonyl. Group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, n-nonadecyl group Group, n-eicosanyl group, i-propyl group, sec-butyl group, i-butyl group, t-butyl group, 1-methylbutyl group, 1-ethylpropyl group, 2-methylbutyl group, i-amyl group, neopentyl group 1,2-dimethylpropyl group, 1,1-dimethylpropyl group, t-amyl group, 1,3-dimethylbutyl group, 3,3-dimethylbutyl group, 2-ethylbutyl group, 2 Ethyl-2-methylpropyl, 1-methylheptyl, 2-ethylhexyl, 1,5-dimethylhexyl, t-octyl, branched nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl Group, pentadecyl group, hexadecyl group, heptadecyl group, stearyl group, icosyl group and other aliphatic alkyl groups; cyclopropyl group, cyclopropylmethyl group, cyclobutyl group, cyclobutylmethyl group, cyclopentyl group, cyclohexyl group, cyclohexylmethyl group, An alicyclic alkyl group such as a cycloheptyl group, a cyclooctyl group, a cyclohexylpropyl group, a cyclododecyl group, a norbornyl group (C7), an adamantyl group (C10), a cyclopentylethyl group; the alkenyl group includes, for example, a vinyl group, Allyl group, -Butenyl group, 2-butenyl group, pentenyl group, hexenyl group, heptenyl group, octenyl group, nonenyl group, decenyl group, alkenyl group such as dodecenyl group, octadecenyl group, icocenyl group; phenyl group, benzyl group, phenethyl group, o -, M- or p-tolyl group, 2,3- or 2,4-xylyl group, mesityl group, naphthyl group, anthryl group, phenanthryl group, biphenylyl group, benzhydryl group, trityl group, pyrenyl group and other aryl groups, etc. Is mentioned. Among these, a linear, branched or cyclic alkyl group and a phenyl group are preferable.
上記式(1)中、yは、0~2の数を表し、zは、0又は1を表すが、zが0の場合には、yは1又は2であることが好ましい。
上記zが1の場合には、yは0であることが好ましい。
zは0であることが好ましく、このときyは1又は2であることが好ましく、より好ましくはyが2である。
In the above formula (1), y represents a number from 0 to 2, and z represents 0 or 1. When z is 0, y is preferably 1 or 2.
When z is 1, y is preferably 0.
z is preferably 0. In this case, y is preferably 1 or 2, and more preferably y is 2.
上記単量体(A)として具体的には、ポリエチレングリコール(メタ)アクリレート等の(ポリ)アルキレングリコール(メタ)アクリレート及びこれらの末端を炭素数1~30の炭化水素基で疎水変性したアルコキシ(ポリ)アルキレングリコール(メタ)アクリレート;ビニルアルコール、アリルアルコール、メタリルアルコール、3-メチル-3-ブテン-1-オール、3-メチル-2-ブテン-1-オール、2-メチル-3-ブテン-1-オール、2-メチル-2-ブテン-1-オール、3-アリルオキシ-1,2-プロパンジオール等の炭素数2~8の不飽和アルコールにアルキレンオキサイドを1~300モル付加させた化合物及びこれらの末端を炭素数1~30の炭化水素基で疎水変性した化合物等が挙げられる。これらの中でも、炭素数2~8の不飽和アルコールにアルキレンオキサイドを1~300モル付加させた化合物及びこれらの末端を炭素数1~30の炭化水素基で疎水変性した化合物が好ましい。より好ましくは炭素数2~8の不飽和アルコールにアルキレンオキサイドを1~300モル付加させた化合物であり、更に好ましくはメタリルアルコール又は3-メチル-3-ブテン-1-オールにアルキレンオキサイドを付加させたものである。 Specific examples of the monomer (A) include (poly) alkylene glycol (meth) acrylates such as polyethylene glycol (meth) acrylate, and alkoxy-modified alkoxy groups having 1 to 30 carbon atoms at the ends thereof ( Poly) alkylene glycol (meth) acrylate; vinyl alcohol, allyl alcohol, methallyl alcohol, 3-methyl-3-buten-1-ol, 3-methyl-2-buten-1-ol, 2-methyl-3-butene Compounds obtained by adding 1 to 300 moles of alkylene oxide to unsaturated alcohols having 2 to 8 carbon atoms such as -1-ol, 2-methyl-2-buten-1-ol, and 3-allyloxy-1,2-propanediol And compounds in which these ends are hydrophobically modified with a hydrocarbon group having 1 to 30 carbon atoms. Among these, a compound obtained by adding 1 to 300 moles of alkylene oxide to an unsaturated alcohol having 2 to 8 carbon atoms and a compound obtained by hydrophobically modifying these terminals with a hydrocarbon group having 1 to 30 carbon atoms are preferable. More preferred is a compound obtained by adding 1 to 300 moles of an alkylene oxide to an unsaturated alcohol having 2 to 8 carbon atoms, and further preferred is adding an alkylene oxide to methallyl alcohol or 3-methyl-3-buten-1-ol. It has been made.
<疎水性単量体(B)>
疎水性単量体(B)は、エチレン性不飽和基を有し、オクタノール/水分配係数の値(Log P値)が1.0~8.0である。本発明の共重合体は、このような疎水性単量体(B)由来の構造単位(b)を有することにより、疎水性相互作用による疎水性物質との相溶性や、界面活性作用による無機粉体スラリーの粘性低減など、種々の優れた性能を発揮することとなる。
なお、上記(ポリ)アルキレングリコール含有単量体(A)及び後述する不飽和カルボン酸系単量体(C)は、Log P値が1.0~8.0の範囲であっても、単量体(A)又は(C)に分類するものとする。
上記Log P値は、例えばChemBioDraw Ultra ver.14(頒布元 ケンブリッジソフト)のソフトウエアを用いて計算することができる。
上記Log P値は、疎水性を充分に発揮させる観点から、より好ましくは1.3以上であり、更に好ましくは1.5以上であり、更により好ましくは1.85以上であり、特に好ましくは2以上である。また8を超えると、製造時および貯蔵時に共重合体溶液における分離を充分に抑制することができないおそれがある。より好ましくは6以下であり、更に好ましくは4以下であり、更により好ましくは3以下であり、特に好ましくは2.5以下である。
<Hydrophobic monomer (B)>
The hydrophobic monomer (B) has an ethylenically unsaturated group and has an octanol / water partition coefficient value (Log P value) of 1.0 to 8.0. Since the copolymer of the present invention has such a structural unit (b) derived from the hydrophobic monomer (B), it is compatible with a hydrophobic substance by a hydrophobic interaction, and is inorganic by a surface active action. Various excellent performances such as reducing the viscosity of the powder slurry will be exhibited.
Note that the (poly) alkylene glycol-containing monomer (A) and the unsaturated carboxylic acid monomer (C) described later can be used even if the Log P value is in the range of 1.0 to 8.0. It shall be classified into the monomer (A) or (C).
The Log P value is described in, for example, ChemBioDraw Ultra ver. It can be calculated using the software of No. 14 (Kabumoto Cambridge Software).
The Log P value is more preferably 1.3 or more, still more preferably 1.5 or more, still more preferably 1.85 or more, particularly preferably from the viewpoint of sufficiently exhibiting hydrophobicity. 2 or more. Moreover, when it exceeds 8, there exists a possibility that the isolation | separation in a copolymer solution cannot fully be suppressed at the time of manufacture and a storage. More preferably, it is 6 or less, More preferably, it is 4 or less, Even more preferably, it is 3 or less, Most preferably, it is 2.5 or less.
疎水性単量体(B)はLog P値が1.0~8.0であれば特に制限されないが、例えば、不飽和カルボン酸とアルコールとのエステル類、芳香族ビニル系単量体、オレフィン系単量体、不飽和カルボン酸とアミンとのアミド類、マレイミド系単量体及び不飽和アルコールとカルボン酸とのエステル類等が挙げられる。 The hydrophobic monomer (B) is not particularly limited as long as the Log P value is 1.0 to 8.0, but examples thereof include esters of unsaturated carboxylic acids and alcohols, aromatic vinyl monomers, olefins. And amides of unsaturated carboxylic acids and amines, maleimide monomers and esters of unsaturated alcohols and carboxylic acids.
上記不飽和カルボン酸とアルコールとのエステル類としては、例えば、後述する不飽和カルボン酸系単量体(C)と炭素数2~18のアルコールとのエステルが好ましい。
上記炭素数2~18のアルコールとしては、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、2-エチルヘキサノール、ノナノール、デカノール、ラウリルアルコール、ステアリルアルコール等のアルキルアルコール;ベンジルアルコール等のアリールアルコール;アリルアルコール、メタリルアルコール、プロパルギルアルコール、クロチルアルコール、ペンテノール、ヘキセノール、ヘプテノール、オクテノール、ノネノール、デセノール、ドデセノール、オクタデセノール等の不飽和アルコール等が挙げられる。
上記アルコールの炭素数は、3~16であることがより好ましく、更に好ましくは4~12であり、更に好ましくは4~8であり、特に好ましくは4~6である。
上記アルコールとして好ましくはアルキルアルコールである。
As the ester of the unsaturated carboxylic acid and the alcohol, for example, an ester of an unsaturated carboxylic acid monomer (C) described later and an alcohol having 2 to 18 carbon atoms is preferable.
Examples of the alcohol having 2 to 18 carbon atoms include ethanol, propanol, butanol, pentanol, hexanol, heptanol, octanol, 2-ethylhexanol, nonanol, decanol, lauryl alcohol, stearyl alcohol and other alkyl alcohols; Alcohol; unsaturated alcohols such as allyl alcohol, methallyl alcohol, propargyl alcohol, crotyl alcohol, pentenol, hexenol, heptenol, octenol, nonenol, decenol, dodecenol, octadecenol and the like.
The alcohol preferably has 3 to 16 carbon atoms, more preferably 4 to 12, still more preferably 4 to 8, and particularly preferably 4 to 6.
The alcohol is preferably an alkyl alcohol.
上記不飽和カルボン酸としては、後述する不飽和カルボン酸系単量体(C)の具体例と同様のものが挙げられる。不飽和カルボン酸としては、(メタ)アクリル酸、マレイン酸が好ましい。
上記不飽和カルボン酸とアルコールとのエステル類としては、炭素数2~18のアルキル基を有する(メタ)アクリル酸アルキルエステル(アルキル(メタ)アクリレート)、炭素数4~20のアルキル基を有するマレイン酸モノアルキルエステル(モノアルキルマレート)、炭素数の合計が4~20である2つのアルキル基を有するマレイン酸ジアルキルエステル(ジアルキルマレート)が好ましい。
As said unsaturated carboxylic acid, the thing similar to the specific example of the unsaturated carboxylic acid-type monomer (C) mentioned later is mentioned. As the unsaturated carboxylic acid, (meth) acrylic acid and maleic acid are preferable.
Examples of the esters of unsaturated carboxylic acid and alcohol include (meth) acrylic acid alkyl ester (alkyl (meth) acrylate) having an alkyl group having 2 to 18 carbon atoms, maleic having an alkyl group having 4 to 20 carbon atoms. Acid monoalkyl esters (monoalkyl malates) and maleic acid dialkyl esters (dialkyl malates) having two alkyl groups with a total carbon number of 4 to 20 are preferred.
上記アルキル基の具体例としては、上述の脂肪族アルキル基、脂環式アルキル基が挙げられる。
上記アルキル(メタ)アクリレートが有するアルキル基の炭素数としてより好ましくは3~16であり、更に好ましくは4~12であり、一層好ましくは4~8であり、特に好ましくは4~6である。
上記モノアルキルマレートが有するアルキル基の炭素数として、及び、上記ジアルキルマレートが有する2つのアルキル基の合計の炭素数として、より好ましくは5~16であり、更に好ましくは6~12であり、一層好ましくは6~10であり、特に好ましくは6~8である。
Specific examples of the alkyl group include the above-mentioned aliphatic alkyl groups and alicyclic alkyl groups.
The number of carbon atoms of the alkyl group of the alkyl (meth) acrylate is more preferably 3 to 16, further preferably 4 to 12, still more preferably 4 to 8, and particularly preferably 4 to 6.
The number of carbon atoms of the alkyl group of the monoalkyl malate and the total number of carbon atoms of the two alkyl groups of the dialkyl malate are more preferably 5 to 16, and further preferably 6 to 12. More preferably, it is 6 to 10, particularly preferably 6 to 8.
上記アルキル(メタ)アクリレートとして具体的には、エチルメタアクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、テトラデシル(メタ)アクリレート、ペンタデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、ヘプタデシル(メタ)アクリレート、オクタデシルアクリレート等が挙げられる。 Specific examples of the alkyl (meth) acrylate include ethyl methacrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, and tert-butyl (meth). Acrylate, sec-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, undecyl (meth) acrylate, lauryl (meth) acrylate, tridecyl ( (Meth) acrylate, tetradecyl (meth) acrylate, pentadecyl (meth) acrylate, hexadecyl (meth) acrylate, heptadecyl (meth) acrylate, octadecyl acrylate, etc. It is.
上記(モノ、ジ)アルキルマレートとして具体的には、ジプロピルマレート、(モノ、ジ)n-ブチルマレート、(モノ、ジ)イソブチルマレート、(モノ、ジ)tert-ブチルマレート、(モノ、ジ)sec-ブチルマレート、(モノ、ジ)2-エチルヘキシルマレート、(モノ、ジ)オクチルマレート、(モノ、ジ)デシルマレート、モノラウリルマレート、モノステアリルマレート等が挙げられる。 Specific examples of the (mono, di) alkyl malate include dipropyl malate, (mono, di) n-butyl malate, (mono, di) isobutyl malate, (mono, di) tert-butyl malate, (mono, Examples thereof include di) sec-butyl malate, (mono, di) 2-ethylhexyl malate, (mono, di) octyl malate, (mono, di) decyl malate, monolauryl malate, monostearyl malate and the like.
上記芳香族ビニル系単量体としては、例えば、スチレン、ビニルトルエン、α-メチルスチレン、メトキシスチレン、2,4-ジメチルスチレン、4-エチルスチレン、4-イソプロピルスチレン、4-ブチルスチレン、4-フェニルスチレン、4-シクロヘキシルスチレン、4-ベンジルスチレン、4-クロチルベンゼン、2-ビニルナフタレン等が挙げられる。好ましくはスチレン、ビニルトルエン、α-メチルスチレンである。 Examples of the aromatic vinyl monomer include styrene, vinyl toluene, α-methyl styrene, methoxy styrene, 2,4-dimethyl styrene, 4-ethyl styrene, 4-isopropyl styrene, 4-butyl styrene, 4- Examples include phenylstyrene, 4-cyclohexylstyrene, 4-benzylstyrene, 4-crotylbenzene, 2-vinylnaphthalene. Styrene, vinyltoluene and α-methylstyrene are preferred.
上記オレフィン系単量体として具体的には、エチレン、プロピレン、ブテン、イソブチレン、ペンテン、ヘプテン、ジイソブチレン、オクテン、ドデセン、オクタデセン等の炭素数2~16のアルケン;ブタジエン、イソプレン、1,4-ペンタジエン、1,6ヘプタジエン、1,7-オクタジエン等の炭素数4~19のアルカジエン等が挙げられる。 Specific examples of the olefin monomers include ethylene, propylene, butene, isobutylene, pentene, heptene, diisobutylene, octene, dodecene, octadecene and other alkenes having 2 to 16 carbon atoms; butadiene, isoprene, 1,4- Examples thereof include alkadienes having 4 to 19 carbon atoms such as pentadiene, 1,6-heptadiene, and 1,7-octadiene.
不飽和カルボン酸とアミンとのアミド類としては、後述する不飽和カルボン酸系単量体(C)と炭素数4~20のアミンとのアミドが好ましい。
上記アミンとしては、メチルアミン、エチルアミン、(イソ)プロピルアミン、ブチルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ペンチルアミン、ジペンチルアミン、ヘキシルアミン、ジヘキシルアミン、ヘプチルアミン、ジヘプチルアミン、オクチルアミン、ジオクチルアミン、ドデシルアミン等の炭素数1~20のアミンが挙げられる。
不飽和カルボン酸としては、(メタ)アクリル酸が好ましい。すなわち、不飽和カルボン酸とアミンとのアミド類としては(メタ)アクリルアミド系単量体が好ましい。
As the amide of an unsaturated carboxylic acid and an amine, an amide of an unsaturated carboxylic acid monomer (C) described later and an amine having 4 to 20 carbon atoms is preferable.
Examples of the amine include methylamine, ethylamine, (iso) propylamine, butylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, pentylamine, dipentylamine, hexylamine, dihexylamine, heptylamine, diheptylamine, octyl Examples thereof include amines having 1 to 20 carbon atoms such as amine, dioctylamine and dodecylamine.
As the unsaturated carboxylic acid, (meth) acrylic acid is preferable. That is, as the amide of unsaturated carboxylic acid and amine, a (meth) acrylamide monomer is preferable.
上記(メタ)アクリルアミド系単量体として具体的には、(メタ)アクリルアミドのアミノ基の水素原子が炭素数4~20の炭化水素基に置換されたN-モノ置換(メタ)アクリルアミド、N,N-ジ置換(メタ)アクリルアミドが挙げられる。
上記炭化水素基としては、上述のアルキル基;アルケニル基;アリール基等が挙げられる。
Specific examples of the (meth) acrylamide monomer include N-monosubstituted (meth) acrylamides in which the hydrogen atom of the amino group of (meth) acrylamide is substituted with a hydrocarbon group having 4 to 20 carbon atoms, N, N-disubstituted (meth) acrylamide is mentioned.
As said hydrocarbon group, the above-mentioned alkyl group; alkenyl group; aryl group etc. are mentioned.
上記(メタ)アクリルアミド系単量体としてはN-アルキル(メタ)アクリルアミド、N,N-ジアルキル(メタ)アクリルアミドが好ましい。
(メタ)アクリルアミド系単量体が有するアルキル基の具体例としては、上述の通りである。
(メタ)アクリルアミドのN-アルキル置換体が有するアルキル基の炭素数(二置換体の場合は、2つのアルキル基の合計の炭素数)としてより好ましくは5~16であり、更に好ましくは6~12であり、一層好ましくは6~10であり、特に好ましくは6~8である。
As the (meth) acrylamide monomer, N-alkyl (meth) acrylamide and N, N-dialkyl (meth) acrylamide are preferable.
Specific examples of the alkyl group that the (meth) acrylamide monomer has are as described above.
The number of carbon atoms of the alkyl group of the N-alkyl substituent of (meth) acrylamide is more preferably 5 to 16, more preferably 6 to 6 as the total number of carbon atoms of two alkyl groups. 12, more preferably 6 to 10, and particularly preferably 6 to 8.
上記(メタ)アクリルアミド系単量体としてN-n-プロピルメタアクリルアミド、N-ブチル(メタ)アクリルアミド、N-ペンチル(メタ)アクリルアミド、N-ヘキシル(メタ)アクリルアミド、N-オクチル(メタ)アクリルアミド、N-オクタデシル(メタ)アクリルアミド、N-フェニル(メタ)アクリルアミド、N-フェニルメチルアクリルアミド、N-シクロヘキシル(メタ)アクリルアミド、N,N-ジプロピル(メタ)アクリルアミド、N,N-ジブチル(メタ)アクリルアミド、N,N-ジノニル(メタ)アクリルアミド、N-メチル-N-フェニル(メタ)アクリルアミド等が好ましい。 As the (meth) acrylamide monomer, Nn-propylmethacrylamide, N-butyl (meth) acrylamide, N-pentyl (meth) acrylamide, N-hexyl (meth) acrylamide, N-octyl (meth) acrylamide, N-octadecyl (meth) acrylamide, N-phenyl (meth) acrylamide, N-phenylmethyl acrylamide, N-cyclohexyl (meth) acrylamide, N, N-dipropyl (meth) acrylamide, N, N-dibutyl (meth) acrylamide, N, N-dinonyl (meth) acrylamide, N-methyl-N-phenyl (meth) acrylamide and the like are preferable.
上記マレイミド系単量体として具体的には、マレイミドのアミノ基の水素原子が炭素数1~16の炭化水素基に置換されたN置換マレイミドが挙げられる。上記炭化水素基としてはアルキル基;アルケニル基;アリール基等が挙げられ、これらの具体例は上述の通りである。
上記マレイミド系単量体としては、N-ヘプチルマレイミド、N-オクチルマレイミド、N-ドデシルマレイミド(N-ラウリルマレイミド)、N-ヘキサデシルマレイミド、N-オクタデシルマレイミド(N-ステアリルマレイミド)等のN-アルキル置換マレイミド;N-フェニルマレイミド、N-メチルフェニルマレイミド、N-エチルフェニルマレイミド、N-ブチルフェニルマレイミド、N-ジメチルフェニルマレイミド等のN-アリール置換マレイミド等が好ましい。
Specific examples of the maleimide monomer include N-substituted maleimide in which the hydrogen atom of the amino group of maleimide is substituted with a hydrocarbon group having 1 to 16 carbon atoms. Examples of the hydrocarbon group include an alkyl group; an alkenyl group; an aryl group, and specific examples thereof are as described above.
Examples of the maleimide monomer include N-heptylmaleimide, N-octylmaleimide, N-dodecylmaleimide (N-laurylmaleimide), N-hexadecylmaleimide, N-octadecylmaleimide (N-stearylmaleimide) and the like N- Preferred are alkyl-substituted maleimides; N-aryl-maleimides such as N-phenylmaleimide, N-methylphenylmaleimide, N-ethylphenylmaleimide, N-butylphenylmaleimide, and N-dimethylphenylmaleimide.
上記N-アルキル置換マレイミドにおける炭化水素基の炭素数としてより好ましくは5~16であり、更に好ましくは6~12であり、一層好ましくは6~10であり、特に好ましくは6~8である。 The number of carbon atoms of the hydrocarbon group in the N-alkyl-substituted maleimide is more preferably 5 to 16, more preferably 6 to 12, still more preferably 6 to 10, and particularly preferably 6 to 8.
上記不飽和アルコールとカルボン酸とのエステル類としては、例えば、上記単量体(A)において述べた炭素数2~8の不飽和アルコールと炭素数2~16のカルボン酸とのエステルが好ましい。炭素数2~16のカルボン酸としては、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、ラウリン酸、パルミチン酸等が挙げられる。
上記不飽和アルコールとカルボン酸とのエステル類として具体的には、プロピオン酸ビニル、酪酸ビニル、カプリル酸ビニル、パルミチン酸ビニル;プロピオン酸2-メチルアリル、酪酸2-メチルアリル、カプリル酸2-メチルアリル、パルミチン酸2-メチルアリル;酢酸3-メチル-3-ブテン-1-イル、プロピオン酸3-メチル-3-ブテン-1-イル、酪酸3-メチル-3-ブテン-1-イル、カプリル酸3-メチル-3-ブテン-1-イル、パルミチン酸3-メチル-3-ブテン-1-イル等が挙げられる。
上記カルボン酸の炭素数としてより好ましくは3~14であり、更に好ましくは4~12であり、一層好ましくは5~10であり、特に好ましくは6~8である。
As the ester of the unsaturated alcohol and the carboxylic acid, for example, the ester of the unsaturated alcohol having 2 to 8 carbon atoms and the carboxylic acid having 2 to 16 carbon atoms described in the monomer (A) is preferable. Examples of the carboxylic acid having 2 to 16 carbon atoms include acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, lauric acid, and palmitic acid.
Specific examples of the esters of unsaturated alcohols and carboxylic acids include vinyl propionate, vinyl butyrate, vinyl caprylate, vinyl palmitate; 2-methylallyl propionate, 2-methylallyl butyrate, 2-methylallyl caprylate, palmitate 2-methylallyl acid; 3-methyl-3-buten-1-yl acetate, 3-methyl-3-buten-1-yl propionate, 3-methyl-3-buten-1-yl butyrate, 3-methyl caprylate -3-buten-1-yl, 3-methyl-3-buten-1-yl palmitate and the like.
The number of carbon atoms of the carboxylic acid is more preferably 3 to 14, still more preferably 4 to 12, still more preferably 5 to 10, and particularly preferably 6 to 8.
上記疎水性単量体(B)として、好ましくは不飽和カルボン酸とアルコールとのエステル類、芳香族ビニル系単量体、オレフィン系単量体、(メタ)アクリルアミド系単量体、マレイミド系単量体及び不飽和アルコールとカルボン酸とのエステル類であり、より好ましくは不飽和カルボン酸とアルコールとのエステル類、芳香族ビニル系単量体、オレフィン系単量体であり、更に好ましくは不飽和カルボン酸とアルコールとのエステル類、芳香族ビニル系単量体であり、特に好ましくは不飽和カルボン酸とアルコールとのエステル類である。 The hydrophobic monomer (B) is preferably an ester of an unsaturated carboxylic acid and an alcohol, an aromatic vinyl monomer, an olefin monomer, a (meth) acrylamide monomer, or a maleimide monomer. And esters of unsaturated alcohols and carboxylic acids, more preferably esters of unsaturated carboxylic acids and alcohols, aromatic vinyl monomers, and olefin monomers, and more preferably Esters of saturated carboxylic acids and alcohols and aromatic vinyl monomers are preferred, and esters of unsaturated carboxylic acids and alcohols are particularly preferred.
 <不飽和カルボン酸系単量体(C)>
本発明の共重合体は、不飽和カルボン酸系単量体(C)由来の構造単位(c)を有するものであることが好ましい。不飽和カルボン酸系単量体(C)としては、不飽和モノカルボン酸系単量体や不飽和ジカルボン酸系単量体等が好適であり、不飽和モノカルボン酸系単量体としては、分子内に不飽和基とカルボアニオンを形成しうる基とを1つずつ有する単量体であればよく、例えば、(メタ)アクリル酸、クロトン酸、チグリン酸、3-メチルクロトン酸、2-メチル-2-ペンテン酸、イタコン酸等;これらの1価金属塩、2価金属塩、アンモニウム塩、有機アミン塩が好ましい。上記不飽和ジカルボン酸系単量体としては、分子内に不飽和基を1つとカルボアニオンを形成しうる基を2つとを有する単量体であればよく、マレイン酸、イタコン酸、メサコン酸、シトラコン酸、フマル酸等や、それらの1価金属塩、2価金属塩、アンモニウム塩及び有機アミン塩等、それらの無水物、又は、ハーフエステルが好ましい。
上記不飽和カルボン酸系単量体(C)としては、(メタ)アクリル酸、マレイン酸及びこれらの塩が好ましい。より好ましくは(メタ)アクリル酸であり、更に好ましくはアクリル酸である。
<Unsaturated carboxylic acid monomer (C)>
The copolymer of the present invention preferably has a structural unit (c) derived from an unsaturated carboxylic acid monomer (C). As the unsaturated carboxylic acid monomer (C), an unsaturated monocarboxylic acid monomer or an unsaturated dicarboxylic acid monomer is suitable, and as the unsaturated monocarboxylic acid monomer, Any monomer may be used as long as it has one unsaturated group and one group capable of forming a carbanion in the molecule. For example, (meth) acrylic acid, crotonic acid, tiglic acid, 3-methylcrotonic acid, 2-methyl Methyl-2-pentenoic acid, itaconic acid, etc .; these monovalent metal salts, divalent metal salts, ammonium salts, and organic amine salts are preferred. The unsaturated dicarboxylic acid monomer may be any monomer having one unsaturated group and two groups capable of forming a carbanion in the molecule. Maleic acid, itaconic acid, mesaconic acid, Citraconic acid, fumaric acid, etc., their monovalent metal salts, divalent metal salts, ammonium salts, organic amine salts, etc., their anhydrides or half esters are preferred.
As the unsaturated carboxylic acid monomer (C), (meth) acrylic acid, maleic acid and salts thereof are preferable. More preferred is (meth) acrylic acid, and even more preferred is acrylic acid.
<その他の単量体(E)>
本発明の共重合体は、上記(ポリ)アルキレングリコール含有単量体(A)、疎水性単量体(B)及び不飽和カルボン酸系単量体(C)以外のその他の単量体(E)由来の構造単位(e)を有していてもよい。
その他の単量体(E)として以下に具体例を挙げるが、これらはいずれも上記Log P値が1よりも小さい又は8よりも大きいものである。
メチル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、モノプロピルマレート、ジエチルマレート等の不飽和(モノ、ジ)カルボン酸とアルコールとのエステル類;ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロチル(メタ)アクリレート等の不飽和(モノ、ジ)カルボン酸とジオールとのエステル類;(ジ)メチル(メタ)アクリルアミド、ジエチルアクリルアミド等の不飽和カルボン酸とアミンとのアミド類;N-メチルマレイミド、N-エチルマレイミド等のマレイミド系単量体;ビニルアルコール、アリルアルコール、メタリルアルコール、3-メチル-3-ブテン-1-オール、3-メチル-2-ブテン-1-オール、2-メチル-3-ブテン-1-オール、2-メチル-2-ブテン-1-オール等の不飽和アルコール;アルコールやアミンに炭素原子数2~18のアルキレンオキシドを1~500モル付加させたアルキル(ポリ)アルキレングリコールと不飽和ジカルボン酸類とのジエステル類;不飽和ジカルボン酸類と炭素原子数2~18のグリコール又はこれらのグリコールの付加モル数2~500のポリアルキレングリコールとジエステル類;(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート等の(ポリ)アルキレングリコールジ(メタ)アクリレート類;ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート等の多官能(メタ)アクリレート類;ポリエチレングリコールジマレート等の(ポリ)アルキレングリコールジマレート類;ビニルスルホネート、(メタ)アリルスルホネート、2-メチルプロパンスルホン酸(メタ)アクリルアミド、スチレンスルホン酸等の不飽和スルホン酸(塩)類;(メタ)アクリロニトリル等の不飽和シアン類;グリシジル(メタ)アリルエーテル等のエポキシ類。
<Other monomer (E)>
The copolymer of the present invention comprises other monomers (other than the above (poly) alkylene glycol-containing monomer (A), hydrophobic monomer (B) and unsaturated carboxylic acid monomer (C)). You may have the structural unit (e) derived from E).
Specific examples of the other monomer (E) will be given below. These are all those having the Log P value of less than 1 or greater than 8.
Esters of unsaturated (mono, di) carboxylic acids and alcohols such as methyl (meth) acrylate, methoxyethyl (meth) acrylate, monopropyl malate, diethyl malate; hydroxyethyl (meth) acrylate, hydroxyprotyl ( Esters of unsaturated (mono, di) carboxylic acids such as meth) acrylates and diols; amides of unsaturated carboxylic acids such as methyl (meth) acrylamide and diethylacrylamide and amines; N-methylmaleimide; Maleimide monomers such as N-ethylmaleimide; vinyl alcohol, allyl alcohol, methallyl alcohol, 3-methyl-3-buten-1-ol, 3-methyl-2-buten-1-ol, 2-methyl- Such as 3-buten-1-ol and 2-methyl-2-buten-1-ol Japanese alcohols; Diesters of alkyl (poly) alkylene glycols and unsaturated dicarboxylic acids obtained by adding 1 to 500 moles of alkylene oxides having 2 to 18 carbon atoms to alcohols or amines; Unsaturated dicarboxylic acids and 2 to 2 carbon atoms 18 glycols or polyalkylene glycols and diesters having 2 to 500 addition moles of these glycols; (poly) alkylene glycols such as (poly) ethylene glycol di (meth) acrylate and (poly) propylene glycol di (meth) acrylate Di (meth) acrylates; polyfunctional (meth) acrylates such as hexanediol di (meth) acrylate and trimethylolpropane tri (meth) acrylate; (poly) alkylene glycol dimaleates such as polyethylene glycol dimaleate ; Unsaturated sulfonic acids (salts) such as vinyl sulfonate, (meth) allyl sulfonate, 2-methylpropane sulfonic acid (meth) acrylamide and styrene sulfonic acid; unsaturated cyanates such as (meth) acrylonitrile; glycidyl (meth) Epoxys such as allyl ether.
≪共重合体の製造方法≫
本発明の(ポリ)アルキレングリコール含有共重合体の製造方法は特に制限されないが、単量体成分を重合することにより製造することができ、単量体成分の具体例及び好ましい例は、上述のとおりである。また、全単量体成分100質量%に対する各単量体成分の含有割合は、上述の全構造単位100質量%に対する各構造単位の割合と同様である。
≪Method for producing copolymer≫
The method for producing the (poly) alkylene glycol-containing copolymer of the present invention is not particularly limited, but it can be produced by polymerizing the monomer component. Specific examples and preferred examples of the monomer component are described above. It is as follows. Moreover, the content rate of each monomer component with respect to 100 mass% of all monomer components is the same as the ratio of each structural unit with respect to 100 mass% of the above-mentioned all structural units.
上記共重合体の製造において、得られる重合体の分子量調整のために、連鎖移動剤を使用することができる。連鎖移動剤としては、例えば、メルカプトエタノール、チオグリセロール、チオグリコール酸、2-メルカプトプロピオン酸、3-メルカプトプロピオン酸、チオリンゴ酸、2-メルカプトエタンスルホン酸等のチオール系連鎖移動剤;イソプロピルアルコール(2-プロパノール)等の2級アルコール;亜リン酸、次亜リン酸及びその塩(次亜リン酸ナトリウム、次亜リン酸カリウム等)、亜硫酸、亜二チオン酸及びその塩(亜硫酸ナトリウム、亜二チオン酸ナトリウム等)、亜硫酸水素塩(亜硫酸水素ナトリウム等)、メタ重亜硫酸塩(メタ重亜硫酸ナトリウム等)等の低級酸化物及びその塩等の親水性連鎖移動剤が挙げられる。中でも好ましくは3-メルカプトプロピオン酸、イソプロピルアルコール、次亜リン酸ナトリウム、亜硫酸水素ナトリウムである。 In the production of the copolymer, a chain transfer agent can be used for adjusting the molecular weight of the obtained polymer. Examples of the chain transfer agent include thiol chain transfer agents such as mercaptoethanol, thioglycerol, thioglycolic acid, 2-mercaptopropionic acid, 3-mercaptopropionic acid, thiomalic acid, 2-mercaptoethanesulfonic acid; isopropyl alcohol ( Secondary alcohols such as 2-propanol); phosphorous acid, hypophosphorous acid and salts thereof (sodium hypophosphite, potassium hypophosphite, etc.), sulfurous acid, dithionic acid and salts thereof (sodium sulfite, sulfurous acid, etc.) Examples thereof include hydrophilic chain transfer agents such as lower oxides such as sodium dithionate and the like, hydrogen sulfites (such as sodium hydrogen sulfite) and metabisulfites (such as sodium metabisulfite) and salts thereof. Of these, 3-mercaptopropionic acid, isopropyl alcohol, sodium hypophosphite, and sodium bisulfite are preferable.
上記連鎖移動剤としてはまた、疎水性連鎖移動剤を使用することもできる。疎水性連鎖移動剤としては、例えば、ブタンチオール、オクタンチオール、デカンチオール、ドデカンチオール、ヘキサデカンチオール、オクタデカンチオール、シクロヘキシルメルカプタン、チオフェノール、チオグリコール酸オクチル、3-メルカプトプロピオン酸オクチル等の炭素数3以上の炭化水素基を有するチオール系連鎖移動剤が好適に使用される。
また、共重合体の分子量調整のためには、単量体(E)として、(メタ)アリルスルホン酸(塩)類等の連鎖移動性の高い単量体を用いることも有効である。
A hydrophobic chain transfer agent can also be used as the chain transfer agent. Examples of the hydrophobic chain transfer agent include 3 carbon atoms such as butanethiol, octanethiol, decanethiol, dodecanethiol, hexadecanethiol, octadecanethiol, cyclohexyl mercaptan, thiophenol, octyl thioglycolate, octyl 3-mercaptopropionate, etc. A thiol chain transfer agent having the above hydrocarbon group is preferably used.
In order to adjust the molecular weight of the copolymer, it is also effective to use a monomer having a high chain transfer property such as (meth) allylsulfonic acid (salt) as the monomer (E).
上記連鎖移動剤の使用量は、適宜設定すればよいが、単量体成分の総量100モルに対し、0.01モル以上、より好ましくは0.1モル以上、更に好ましくは0.5モル以上、特に好ましくは1.0モル以上であり、また、好ましくは20モル以下、更により好ましくは10モル以下、特に好ましくは5モル以下、最も好ましくは3モル以下である。 The amount of the chain transfer agent used may be appropriately set, but is 0.01 mol or more, more preferably 0.1 mol or more, still more preferably 0.5 mol or more, based on 100 mol of the total amount of monomer components. In particular, it is 1.0 mol or more, preferably 20 mol or less, still more preferably 10 mol or less, particularly preferably 5 mol or less, and most preferably 3 mol or less.
上記重合反応は、必要に応じてラジカル重合開始剤を使用し、溶液重合や塊状重合等の方法により行うことができる。重合は、回分式、半回分式、連続式又はそれらの組み合わせでも行うことができる。本願の共重合体のように上記(ポリ)アルキレングリコール含有単量体(A)を用いる重合では、共重合体の収率を高める観点から、半回分式の溶液重合が好ましい。
溶液重合の際の溶媒としては、水や有機溶媒、これらの混合溶媒を用いることができる。有機溶媒としては、メチルアルコール、エチルアルコール、イソプロピルアルコール等のアルコール;ベンゼン、トルエン、キシレン、シクロヘキサン、n-ヘキサン等の芳香族又は脂肪族炭化水素;酢酸エチル等のエステル化合物;アセトン、メチルエチルケトン等のケトン化合物;テトラヒドロフラン、ジオキサン等の環状エーテル化合物等が挙げられる。有機溶媒の中でも、アルコール等の親水性溶媒が好ましい。より好ましくはイソプロピルアルコールである。
上記溶媒としては、水、又は、水と有機溶媒との混合溶媒が好ましい。これにより、単量体の溶解性が向上し、反応性がより向上するため、モノマー組成がより均一な共重合体が得られ、高分子量体の生成をより充分に抑制することができる。
上記混合溶媒100質量%に対する有機溶媒の割合は、20~80質量%であることが好ましく、より好ましくは40~60質量%である。
上記重合反応において、溶媒を使用する場合、単量体の濃度は適宜設定すればよいが、重合反応の開始から終了までの間に使用される、単量体や溶媒などすべての原料の使用量の和を100質量%とした場合、全単量体の質量濃度を50質量%以上90質量%以下とすることが好ましい。より好ましくは60質量%以上であり、更に好ましくは62.5質量%以上であり、特に好ましくは65質量%以上である。また、より好ましくは80質量%以下であり、更に好ましくは75質量%以下であり、特に好ましくは70質量%以下である。また、重合反応の開始から終了までの間、単量体濃度の変動を30質量%以下とする事が好ましい。より好ましくは20質量%以下であり、更に好ましくは10質量%以下であり、特に好ましくは5質量%以下である。単量体濃度をこの範囲に設定することにより、共重合体の高い生産性と良好な保存安定性を両立することができる。
The polymerization reaction can be performed by a method such as solution polymerization or bulk polymerization using a radical polymerization initiator as necessary. The polymerization can also be carried out batchwise, semi-batchwise, continuous, or combinations thereof. In the polymerization using the above (poly) alkylene glycol-containing monomer (A) as in the copolymer of the present application, semi-batch solution polymerization is preferable from the viewpoint of increasing the yield of the copolymer.
As a solvent for the solution polymerization, water, an organic solvent, or a mixed solvent thereof can be used. Examples of the organic solvent include alcohols such as methyl alcohol, ethyl alcohol, and isopropyl alcohol; aromatic or aliphatic hydrocarbons such as benzene, toluene, xylene, cyclohexane, and n-hexane; ester compounds such as ethyl acetate; acetone, methyl ethyl ketone, and the like Ketone compounds; and cyclic ether compounds such as tetrahydrofuran and dioxane. Among organic solvents, hydrophilic solvents such as alcohol are preferable. More preferred is isopropyl alcohol.
As the solvent, water or a mixed solvent of water and an organic solvent is preferable. Thereby, since the solubility of a monomer improves and the reactivity improves more, the copolymer with a more uniform monomer composition is obtained, and the production | generation of a high molecular weight body can be suppressed more fully.
The ratio of the organic solvent to 100% by mass of the mixed solvent is preferably 20 to 80% by mass, more preferably 40 to 60% by mass.
In the above polymerization reaction, when a solvent is used, the concentration of the monomer may be set as appropriate, but the amount of all raw materials used such as the monomer and solvent used from the start to the end of the polymerization reaction Is 100% by mass, the mass concentration of all monomers is preferably 50% by mass or more and 90% by mass or less. More preferably, it is 60 mass% or more, More preferably, it is 62.5 mass% or more, Most preferably, it is 65 mass% or more. Further, it is more preferably 80% by mass or less, still more preferably 75% by mass or less, and particularly preferably 70% by mass or less. Moreover, it is preferable that the fluctuation | variation of a monomer concentration shall be 30 mass% or less from the start to the completion | finish of a polymerization reaction. More preferably, it is 20 mass% or less, More preferably, it is 10 mass% or less, Most preferably, it is 5 mass% or less. By setting the monomer concentration within this range, both high productivity of the copolymer and good storage stability can be achieved.
上記水溶液重合を行う場合は、ラジカル重合開始剤として、水溶性の重合開始剤、例えば、過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウム等の過硫酸塩;過酸化水素;2,2’-アゾビス-2-メチルプロピオンアミジン塩酸塩等のアゾアミジン化合物、2,2’-アゾビス-2-(2-イミダゾリン-2-イル)プロパン塩酸塩等の環状アゾアミジン化合物、2-カルバモイルアゾイソブチロニトリル等のアゾニトリル化合物等の水溶性アゾ系開始剤等が使用され、この際、亜硫酸水素ナトリウム等のアルカリ金属亜硫酸塩、メタ二亜硫酸塩、次亜燐酸ナトリウム、モール塩等のFe(II)塩、ヒドロキシメタンスルフィン酸ナトリウム二水和物、ヒドロキシルアミン塩酸塩、チオ尿素、L-アスコルビン酸(塩)、エリソルビン酸(塩)等の促進剤を併用することもできる。中でも、過硫酸塩や過酸化水素と、L-アスコルビン酸(塩)やFe(II)塩等の促進剤との組み合わせが好ましい。これらのラジカル重合開始剤や促進剤はそれぞれ単独で用いてもよく、2種以上を併用してもよい。
また、低級アルコール、芳香族若しくは脂肪族炭化水素、エステル化合物又はケトン化合物を溶媒とする溶液重合を行う場合、又は、塊状重合を行う場合には、ベンゾイルパーオキシド、ラウロイルパーオキシド、ナトリウムパーオキシド等のパーオキシド;t-ブチルハイドロパーオキシド、クメンハイドロパーオキシド等のハイドロパーオキシド;アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)等のアゾ化合物等がラジカル重合開始剤として用いられる。この際アミン化合物等の促進剤を併用することもできる。更に、水-低級アルコール混合溶媒を用いる場合には、上記の種々のラジカル重合開始剤又はラジカル重合開始剤と促進剤の組み合わせの中から適宜選択して用いることができる。
When the aqueous solution polymerization is performed, a water-soluble polymerization initiator, for example, a persulfate such as ammonium persulfate, sodium persulfate, or potassium persulfate; hydrogen peroxide; 2,2′-azobis- Azoamidine compounds such as 2-methylpropionamidine hydrochloride, cyclic azoamidine compounds such as 2,2′-azobis-2- (2-imidazolin-2-yl) propane hydrochloride, and azonitriles such as 2-carbamoylazoisobutyronitrile Water-soluble azo initiators such as compounds are used. In this case, alkali metal sulfites such as sodium hydrogen sulfite, metabisulphite, sodium hypophosphite, Fe (II) salts such as Mole salt, hydroxymethanesulfine Acid sodium dihydrate, hydroxylamine hydrochloride, thiourea, L-ascorbic acid (salt), erythorbium It can also be used in combination accelerator acid (salt) and the like. Among these, a combination of persulfate or hydrogen peroxide and an accelerator such as L-ascorbic acid (salt) or Fe (II) salt is preferable. These radical polymerization initiators and accelerators may be used alone or in combination of two or more.
In addition, when performing solution polymerization using a lower alcohol, aromatic or aliphatic hydrocarbon, ester compound or ketone compound as a solvent, or when performing bulk polymerization, benzoyl peroxide, lauroyl peroxide, sodium peroxide, etc. Peroxides; hydroperoxides such as t-butyl hydroperoxide and cumene hydroperoxide; radical polymerization of azo compounds such as azobisisobutyronitrile and 2,2′-azobis (2,4-dimethylvaleronitrile) Used as an initiator. In this case, an accelerator such as an amine compound can be used in combination. Further, when a water-lower alcohol mixed solvent is used, it can be appropriately selected from the above-mentioned various radical polymerization initiators or combinations of radical polymerization initiators and accelerators.
上記ラジカル重合開始剤の使用量は、単量体成分の総量100モルに対し、好ましくは0.01モル以上、より好ましくは0.1モル以上、更に好ましくは0.5モル以上、特に好ましくは1.0モル以上であり、また、好ましくは20モル以下、更により好ましくは10モル以下、特に好ましくは5モル以下、最も好ましくは3モル以下である。 The amount of the radical polymerization initiator used is preferably 0.01 mol or more, more preferably 0.1 mol or more, still more preferably 0.5 mol or more, particularly preferably with respect to 100 mol of the total amount of monomer components. 1.0 mole or more, preferably 20 moles or less, even more preferably 10 moles or less, particularly preferably 5 moles or less, and most preferably 3 moles or less.
上記重合反応において、重合温度等の重合条件としては、用いられる重合方法、溶媒、重合開始剤、連鎖移動剤により適宜定められるが、重合温度としては、経済的観点から、0℃以上であることが好ましく、また、150℃以下であることが好ましい。より好ましくは40℃以上であり、更に好ましくは50℃以上である。また、より好ましくは120℃以下であり、更に好ましくは100℃以下である。さらに、共重合反応をより均一に進める観点から、重合反応の開始から終了までの間、重合温度の変動幅を15℃以下とする事が好ましい。より好ましくは10℃以下であり、更に好ましくは8℃以下であり、特に好ましくは6℃以下である。重合温度をこの範囲に設定することにより、経済性と共重合体の良好な保存安定性を両立することができる。 In the above polymerization reaction, the polymerization conditions such as the polymerization temperature are appropriately determined depending on the polymerization method used, the solvent, the polymerization initiator, and the chain transfer agent. Moreover, it is preferable that it is 150 degrees C or less. More preferably, it is 40 degreeC or more, More preferably, it is 50 degreeC or more. More preferably, it is 120 degrees C or less, More preferably, it is 100 degrees C or less. Furthermore, from the viewpoint of proceeding the copolymerization reaction more uniformly, it is preferable to set the fluctuation range of the polymerization temperature to 15 ° C. or less from the start to the end of the polymerization reaction. More preferably, it is 10 degrees C or less, More preferably, it is 8 degrees C or less, Especially preferably, it is 6 degrees C or less. By setting the polymerization temperature within this range, both economic efficiency and good storage stability of the copolymer can be achieved.
各単量体成分の反応容器への投入方法は特に限定されず、全量を反応容器に初期に一括投入する方法;全量を反応容器に分割又は連続投入する方法;一部を反応容器に初期に投入し、残りを反応容器に分割又は連続投入する方法等が挙げられる。また、反応途中で各モノマーの反応容器への投入速度を連続的又は段階的に変えて、各単量体の単位時間あたりの投入重量比を連続的又は段階的に変化させることにより、モノマー比が異なる2種以上の共重合体を重合反応中に同時に合成するようにしてもよい。なお、ラジカル重合開始剤は反応容器に初めから仕込んでもよく、反応容器へ滴下してもよく、また目的に応じてこれらを組み合わせてもよい。
上記のようにして得られた各重合体は、そのままでも分散剤として用いることができるが、必要に応じて、更にアルカリ性物質で中和して用いてもよい。アルカリ性物質としては、一価金属又は二価金属の水酸化物や炭酸塩等の無機塩;アンモニア;有機アミンが好適である。また、反応終了後、必要ならば濃度調整を行うこともできる。
The method of charging each monomer component into the reaction vessel is not particularly limited, a method in which the entire amount is initially charged into the reaction vessel; a method in which the entire amount is divided or continuously charged into the reaction vessel; a part is initially in the reaction vessel For example, a method may be used in which the remainder is charged and the remainder is divided or continuously charged into the reaction vessel. In addition, by changing the charging rate of each monomer into the reaction vessel in the middle of the reaction continuously or stepwise, and changing the weight ratio of each monomer per unit time continuously or stepwise, the monomer ratio Two or more types of copolymers having different values may be synthesized simultaneously during the polymerization reaction. The radical polymerization initiator may be charged into the reaction vessel from the beginning, may be dropped into the reaction vessel, or may be combined according to the purpose.
Each polymer obtained as described above can be used as it is as a dispersant, but if necessary, it may be further neutralized with an alkaline substance. As the alkaline substance, inorganic salts such as hydroxides or carbonates of monovalent metals or divalent metals; ammonia; organic amines are suitable. Further, after the reaction is completed, the concentration can be adjusted if necessary.
≪共重合体の用途≫
本発明の(ポリ)アルキレングリコール含有共重合体は、水に難溶性の無機物又は有機物の分散剤として良好な性能を発揮する。例えば、紙コーティングに用いられる重質又は軽質炭酸カルシウム、クレイ等の無機顔料の分散剤;セメント、石炭等の水スラリー用分散剤;等として良好な性能を発揮できる。その他にも、冷却水系、ボイラー水系、海水淡水化装置、パルプ蒸解釜、黒液濃縮釜でのスケール防止の水処理剤;スケール防止剤;染色助剤や繊維の帯電防止助剤等の繊維処理剤;接着剤;シーリング剤;各種重合体への柔軟性付与成分;洗剤ビルダー等にも好適に使用することができる。更に、シャンプー、リンス、ボディーソープ等の身体用洗剤、繊維加工、建材加工、塗料、窯業等の分野において幅広く応用することが可能である。中でも、セメント混和剤用途に用いることが好適である。すなわち、本発明の(ポリ)アルキレングリコール含有共重合体をセメント混和剤として使用する方法もまた、本発明の1つである。
なお、レディーミクストコンクリート、吹付けコンクリート用のセメント混和剤として特に有用である。このように、上記共重合体がセメント混和剤用共重合体である形態は、本発明の好適な形態であり、また、上記共重合体を含むセメント混和剤、上記共重合体とセメントとを含むセメント組成物、及び、上記セメント混和剤とセメントとを含むセメント組成物もまた、本発明に含まれる。また、上記(ポリ)アルキレングリコール含有共重合体を水硬性材料に添加する工程を含むセメント組成物の製造方法もまた本発明の1つである。
以下、代表的な分散剤として、セメント混和剤について説明する。
≪Use of copolymer≫
The (poly) alkylene glycol-containing copolymer of the present invention exhibits good performance as a water-insoluble inorganic or organic dispersant. For example, good performance can be exhibited as a dispersant for inorganic pigments such as heavy or light calcium carbonate and clay used for paper coating; a dispersant for water slurry such as cement and coal; In addition, water treatment agents for scale prevention in cooling water systems, boiler water systems, seawater desalination equipment, pulp digesters, and black liquor concentration tanks; scale treatment agents; textile treatments such as dyeing aids and textile antistatic aids Agent; Adhesive; Sealing agent; Flexibility-imparting component for various polymers; Detergent builder and the like. Furthermore, it can be widely applied in the fields of body detergents such as shampoos, rinses, body soaps, fiber processing, building material processing, paints, ceramics and the like. Among them, it is preferable to use for cement admixture. That is, the method of using the (poly) alkylene glycol-containing copolymer of the present invention as a cement admixture is also one aspect of the present invention.
It is particularly useful as a cement admixture for ready-mixed concrete and shotcrete. Thus, the form in which the copolymer is a copolymer for cement admixture is a preferred form of the present invention, and the cement admixture containing the copolymer, the copolymer and cement are combined. Also included in the present invention are a cement composition that includes the cement admixture and cement. Moreover, the manufacturing method of the cement composition including the process of adding the said (poly) alkylene glycol containing copolymer to a hydraulic material is also one of this invention.
Hereinafter, a cement admixture will be described as a typical dispersant.
<セメント混和剤>
本発明のセメント混和剤は、本発明の共重合体を必須とするものであるが、上記共重合体を2種以上含んでいてもよく、上記共重合体と異なる共重合体を1種以上含んでいてもよい。
上記セメント混和剤における上記共重合体の含有量(2種以上の共重合体を含む場合は、その総含有量)は、特に制限されないが、上記共重合体由来の性能を充分に発揮するため、セメント混和剤中の固形分(すなわち不揮発分)100質量%中、30質量%以上であることが好ましい。より好ましくは50質量%以上、更に好ましくは60質量%以上、特に好ましくは70質量%以上である。
なお、本明細書中、「セメント混和剤」とは、セメントペースト、モルタル、コンクリート等のセメント組成物へ添加されるセメント添加剤のことをいい、上記共重合体のみからなる剤であってもよいし、また、上記共重合体だけでなく、必要に応じて更に他の成分や添加剤等を含む剤であってもよい。
<Cement admixture>
The cement admixture of the present invention essentially comprises the copolymer of the present invention, but may contain two or more kinds of the above-mentioned copolymers, and one or more kinds of copolymers different from the above-mentioned copolymers. May be included.
The content of the copolymer in the cement admixture (the total content in the case where two or more types of copolymers are included) is not particularly limited, but in order to sufficiently exhibit the performance derived from the copolymer. The solid content (that is, the non-volatile content) in the cement admixture is preferably 30% by mass or more in 100% by mass. More preferably, it is 50 mass% or more, More preferably, it is 60 mass% or more, Most preferably, it is 70 mass% or more.
In the present specification, the “cement admixture” refers to a cement additive added to a cement composition such as cement paste, mortar, and concrete, and may be an agent composed only of the above copolymer. Moreover, it may be an agent containing not only the above copolymer but also other components and additives as required.
上記セメント混和剤はまた、通常使用される他のセメント分散剤や減水剤を更に含有していてもよく、複数の併用も可能である。他のセメント分散剤(減水剤)としては特に限定されず、例えば、分子中にスルホン酸基を有する各種スルホン酸系分散剤(減水剤)や、分子中にポリオキシアルキレン鎖とカルボキシル基とを有する各種ポリカルボン酸系分散剤(減水剤)、分子中にリン酸基を有する各種リン酸系分散剤(減水剤)等が挙げられる。
本発明の共重合体を他のセメント分散剤(減水剤)と併用する場合、上記共重合体由来の性能を充分に発揮するため、本発明の共重合体の含有量は、セメント混和剤中の固形分(すなわち不揮発分)合計100質量%中、30質量%以上であることが好ましい。より好ましくは50質量%以上、更に好ましくは60質量%以上、特に好ましくは70質量%以上である。
The cement admixture may further contain other commonly used cement dispersants and water reducing agents, and can be used in combination. Other cement dispersants (water reducing agents) are not particularly limited. For example, various sulfonic acid-based dispersants (water reducing agents) having a sulfonic acid group in the molecule, polyoxyalkylene chains and carboxyl groups in the molecule. Examples thereof include various polycarboxylic acid-based dispersants (water reducing agents) and various phosphoric acid-based dispersants (water reducing agents) having a phosphate group in the molecule.
When the copolymer of the present invention is used in combination with another cement dispersant (water reducing agent), the content of the copolymer of the present invention is contained in the cement admixture in order to sufficiently exhibit the performance derived from the copolymer. It is preferable that it is 30 mass% or more in total solid content (namely, non-volatile content) of 100 mass%. More preferably, it is 50 mass% or more, More preferably, it is 60 mass% or more, Most preferably, it is 70 mass% or more.
また、上記セメント混和剤は、例えば、水溶性高分子物質、高分子エマルジョン、遅延剤、早強剤・促進剤、鉱油系消泡剤、油脂系消泡剤、脂肪酸系消泡剤、脂肪酸エステル系消泡剤、オキシアルキレン系消泡剤、アルコール系消泡剤、アミド系消泡剤、リン酸エステル系消泡剤、金属石鹸系消泡剤、シリコーン系消泡剤、AE剤、界面活性剤、防水剤、防錆剤、ひび割れ低減剤、膨張材、セメント湿潤剤、増粘剤、分離低減剤、凝集剤、乾燥収縮低減剤、強度増進剤、セルフレベリング剤、防錆剤、着色剤、防カビ剤、高炉スラグ、フライアッシュ、シンダーアッシュ、クリンカーアッシュ、ハスクアッシュ、シリカヒューム、シリカ粉末、石膏等のセメント添加剤(材)の1種又は2種以上を含んでいてもよい。 The cement admixture includes, for example, water-soluble polymer substances, polymer emulsions, retarders, early strengthening agents / accelerators, mineral oil-based antifoaming agents, fat-based antifoaming agents, fatty acid-based antifoaming agents, and fatty acid esters. Antifoaming agent, oxyalkylene antifoaming agent, alcohol antifoaming agent, amide antifoaming agent, phosphate ester antifoaming agent, metal soap antifoaming agent, silicone antifoaming agent, AE agent, surfactant Agent, waterproof agent, rust preventive agent, crack reducing agent, expansion agent, cement wetting agent, thickener, separation reducing agent, flocculant, drying shrinkage reducing agent, strength enhancer, self-leveling agent, rust preventive agent, colorant , One or more of cement additives (materials) such as fungicides, blast furnace slag, fly ash, cinder ash, clinker ash, husk ash, silica fume, silica powder, and gypsum may be included.
上記セメント混和剤は、各種水硬性材料、すなわちセメントや石膏等のセメント組成物やそれ以外の水硬性材料に用いることができる。このような水硬性材料と水と上記セメント混和剤とを含有し、更に必要に応じて細骨材(砂等)や粗骨材(砕石等)を含む水硬性組成物の具体例としては、セメントペースト、モルタル、コンクリート、プラスター等が挙げられる。これらの水硬性組成物の中でも、水硬性材料としてセメントを使用するセメント組成物が最も好ましく、上記セメント混和剤と、セメントとを含むセメント組成物もまた、本発明の1つである。 The cement admixture can be used for various hydraulic materials, that is, cement compositions such as cement and gypsum, and other hydraulic materials. As a specific example of a hydraulic composition containing such a hydraulic material, water and the above cement admixture, and further containing fine aggregate (sand, etc.) and coarse aggregate (crushed stone, etc.) as necessary, Cement paste, mortar, concrete, plaster, etc. are mentioned. Among these hydraulic compositions, a cement composition using cement as the hydraulic material is most preferable, and a cement composition containing the cement admixture and cement is also one aspect of the present invention.
<セメント組成物>
本発明のセメント組成物において、セメントとしては、ポルトランドセメント(普通、早強、超早強、中庸熱、耐硫酸塩及びそれぞれの低アルカリ形);各種混合セメント(高炉セメント、シリカセメント、フライアッシュセメント);白色ポルトランドセメント;アルミナセメント;超速硬セメント(1クリンカー速硬性セメント、2クリンカー速硬性セメント、リン酸マグネシウムセメント);グラウト用セメント;油井セメント;低発熱セメント(低発熱型高炉セメント、フライアッシュ混合低発熱型高炉セメント、ビーライト高含有セメント);超高強度セメント;セメント系固化材;エコセメント(都市ごみ焼却灰、下水汚泥焼却灰の1種以上を原料として製造されたセメント)等の他、これらに高炉スラグ、フライアッシュ、シンダーアッシュ、クリンカーアッシュ、ハスクアッシュ、シリカヒューム、シリカ粉末、石灰石粉末等の微粉体や石膏を添加したもの等が挙げられる。本発明のセメント組成物に含まれるセメントは、1種のみであってもよいし、2種以上であってもよい。
上記骨材としては、砂利、砕石、水砕スラグ、再生骨材等以外に、珪石質、粘土質、ジルコン質、ハイアルミナ質、炭化珪素質、黒鉛質、クロム質、クロマグ質、マグネシア質等の耐火骨材等が挙げられる。
<Cement composition>
In the cement composition of the present invention, as the cement, Portland cement (ordinary, early strength, ultra-early strength, moderate heat, sulfate resistance and low alkali type thereof); various mixed cements (blast furnace cement, silica cement, fly ash) Cement); white Portland cement; alumina cement; super fast cement (1 clinker fast cement, 2 clinker fast cement, magnesium phosphate cement); grout cement; oil well cement; low heat cement (low heat blast furnace cement, fly Ash mixed low heat generation type blast furnace cement, cement with high belite content); ultra high strength cement; cement-based solidified material; eco-cement (cement manufactured using one or more of municipal waste incineration ash and sewage sludge incineration ash) Besides these, blast furnace slag, fly ash, shi Dar ash, clinker ash, husk ash, silica fume, silica powder, and a film obtained by adding a fine powder and gypsum limestone powder. The cement contained in the cement composition of the present invention may be only one type or two or more types.
As the above aggregate, in addition to gravel, crushed stone, granulated slag, recycled aggregate, etc., siliceous, clay, zircon, high alumina, silicon carbide, graphite, chrome, chromic, magnesia, etc. Refractory aggregate and the like.
上記セメント組成物においては、その1mあたりの単位水量、セメント使用量及び水/セメント比は特に限定されず、例えば、単位水量100~200kg/m、使用セメント量200~800kg/m、水/セメント比(重量比)=0.1~0.7であることが好ましい。より好ましくは、単位水量120~185kg/m、使用セメント量250~600kg/m、水/セメント比(重量比)=0.15~0.6である。このように本発明のセメント組成物は、貧配合~富配合まで幅広く使用可能であり、単位セメント量の多い高強度コンクリート、単位セメント量が300kg/m以下の貧配合コンクリートのいずれにも有効である。また、本発明のセメント組成物は、比較的低水/セメント比の領域、すなわち、水/セメント比(重量比)=0.15~0.5(好ましくは0.15~0.4)といった水/セメント比の低い領域においても、良好に使用することができる。 In the cement composition, the unit water amount per 1 m 3 , the amount of cement used, and the water / cement ratio are not particularly limited. For example, the unit water amount is 100 to 200 kg / m 3 , the cement amount used is 200 to 800 kg / m 3 , The water / cement ratio (weight ratio) is preferably 0.1 to 0.7. More preferably, the unit water amount 120 ~ 185 kg / m 3, use amount of cement 250 ~ 600 kg / m 3, water / cement ratio (weight ratio) = 0.15 to 0.6. Thus, the cement composition of the present invention can be widely used from poor blends to rich blends, and is effective for both high-strength concrete with a large amount of unit cement and poor blend concrete with a unit cement amount of 300 kg / m 3 or less. It is. The cement composition of the present invention has a relatively low water / cement ratio region, that is, water / cement ratio (weight ratio) = 0.15 to 0.5 (preferably 0.15 to 0.4). Even in a region where the water / cement ratio is low, it can be used satisfactorily.
また本発明のセメント混和剤を使用することにより、得られるセメント組成物は幅広い配合において長時間の優れた作業性を有することから、特にレディーミクストコンクリート、吹付けコンクリート等に有効に適用できる。その一方で、コンクリート2次製品用のコンクリート(プレキャストコンクリート)、遠心成形用コンクリート、振動締め固め用コンクリート、蒸気養生コンクリート等にも適用可能である。また、中流動コンクリート(スランプフロー値が350~500mmの範囲のコンクリート)、高流動コンクリート(スランプフロー値が500~700mmの範囲のコンクリート)、自己充填性コンクリート、セルフレベリング材等の高い流動性を要求されるモルタルやコンクリートにも本発明のセメント混和剤は有効である。 Further, by using the cement admixture of the present invention, the resulting cement composition has excellent workability for a long time in a wide range of blending, and therefore it can be effectively applied particularly to ready-mixed concrete, shotcrete and the like. On the other hand, it can be applied to concrete for concrete secondary products (precast concrete), concrete for centrifugal molding, concrete for vibration compaction, steam-cured concrete, and the like. In addition, it has high fluidity such as medium fluidity concrete (concrete with slump flow value in the range of 350 to 500 mm), high fluidity concrete (concrete with slump flow value in the range of 500 to 700 mm), self-filling concrete, self-leveling material, etc. The cement admixture of the present invention is also effective for required mortar and concrete.
上記セメント組成物において、本発明のセメント混和剤の配合割合としては、例えば、本発明の必須成分である共重合体(複数含む場合はその合計量)が、固形分換算で、セメント質量の全量100質量%に対して、0.01~5質量%となるように設定することが好ましい。0.01質量%未満では性能的に充分とはならないおそれがあり、逆に5質量%を超えると、その効果が実質上頭打ちとなり経済性の面から不利となったり、セメント組成物が材料分離や凝結異常を起こしたりするおそれがある。より好ましくは0.05~3質量%であり、更に好ましくは0.1~1質量%である。なお、本明細書中、固形分含量は、以下のようにして測定することができる。
<固形分測定方法>
1.アルミ皿を精秤する。
2.1で精秤したアルミ皿に固形分測定物を精秤する。
3.窒素雰囲気下130℃に調温した乾燥機に2で精秤した固形分測定物を1時間入れる。
4.1時間後、乾燥機から取り出し、室温のデシケーター内で15分間放冷する。
5.15分後、デシケーターから取り出し、アルミ皿+測定物を精秤する。
6.5で得られた質量から1で得られたアルミ皿の質量を差し引き、2で得られた固形分測定物の質量で除することで固形分を測定する。
In the above cement composition, the blending ratio of the cement admixture of the present invention is, for example, the copolymer (the total amount when there are a plurality of components) as an essential component of the present invention, the total amount of cement mass in terms of solid content. It is preferably set to be 0.01 to 5% by mass with respect to 100% by mass. If the amount is less than 0.01% by mass, the performance may not be sufficient. On the other hand, if the amount exceeds 5% by mass, the effect will be practically peaked and disadvantageous in terms of economy, or the cement composition may be separated from the material. And may cause abnormal condensation. More preferably, the content is 0.05 to 3% by mass, and still more preferably 0.1 to 1% by mass. In the present specification, the solid content can be measured as follows.
<Method for measuring solid content>
1. Weigh the aluminum dish.
The solid content to be measured is precisely weighed on the aluminum dish precisely weighed in 2.1.
3. A solid content measurement product precisely weighed in 2 is placed in a dryer adjusted to 130 ° C. in a nitrogen atmosphere for 1 hour.
4. After 1 hour, remove from the dryer and allow to cool in a desiccator at room temperature for 15 minutes.
5. After 15 minutes, remove from the desiccator and precisely weigh the aluminum dish and the measurement object.
The solid content is measured by subtracting the mass of the aluminum pan obtained in 1 from the mass obtained in 6.5 and dividing by the mass of the solid content measurement product obtained in 2.
以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。なお、特に断りのない限り、「部」は「質量部」を、「%」は「質量%」を意味するものとする。 The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. Unless otherwise specified, “part” means “part by mass” and “%” means “% by mass”.
後に示す表3において、「単量体組成(仕込み)」、「単量体組成(仕上り)」は、次のような意味である。
「単量体組成(仕込み)」:共重合体を製造するために反応容器に仕込んだ単量体の量から計算される組成。
「単量体組成(仕上り)」:共重合体を製造するために反応容器に仕込んだ単量体の、重合反応における消費率を分析し、消費された単量体が全て重合反応によって共重合体に転化するものとして計算される組成。
In Table 3 below, “monomer composition (preparation)” and “monomer composition (finish)” have the following meanings.
“Monomer composition (preparation)”: A composition calculated from the amount of monomers charged in a reaction vessel to produce a copolymer.
“Monomer composition (finished)”: Analyzes the consumption rate in the polymerization reaction of the monomer charged in the reaction vessel to produce the copolymer, and all the consumed monomer is copolymerized by the polymerization reaction. A composition calculated to convert to coalescence.
重合反応における単量体消費率分析法の一例として、LC(液体クロマトグラフィー)の分析条件、分析法を以下に記載した。
<LC分析条件>
機種:Waters Alliance(2695)
解析ソフト:Waters社製、Empower2プロフェッショナル
使用カラム:Waters社製、Atlantis dC18ガードカラム+Atlantis dC18、4.6×250mm、2本 
検出器:示差屈折率(RI)検出器(Waters 2414)、多波長可視紫外(PDA)検出器(Waters 2996)
溶離液:水9000g、アセトニトリル6000gの混合溶媒に酢酸ナトリウム三水和物3.75g、酢酸52.2gを溶解させたもの。
流量:1mL/分
カラム温度:40℃
解析法:各単量体の濃度検量線を1次式で作成し、サンプル中の単量体濃度を算出した。
As an example of the monomer consumption rate analysis method in the polymerization reaction, the analysis conditions and analysis method of LC (liquid chromatography) are described below.
<LC analysis conditions>
Model: Waters Alliance (2695)
Analysis software: Waters, Empor2 Professional column: Waters, Atlantis dC18 guard column + Atlantis dC18, 4.6 x 250 mm, 2
Detector: differential refractive index (RI) detector (Waters 2414), multi-wavelength visible ultraviolet (PDA) detector (Waters 2996)
Eluent: A solution obtained by dissolving 3.75 g of sodium acetate trihydrate and 52.2 g of acetic acid in a mixed solvent of 9000 g of water and 6000 g of acetonitrile.
Flow rate: 1 mL / min Column temperature: 40 ° C
Analysis method: A concentration calibration curve of each monomer was prepared by a linear equation, and the monomer concentration in the sample was calculated.
<保存安定性試験>
共重合体濃度30質量%の水溶液を調整し、20mLの蓋付試験管に入れ、50℃の恒温器内に静置し、溶液の濁りや分離の有無を目視で判定した。
保存安定性については、溶液が長期間均一で安定であることが好ましい。溶液に分離が生じないことが好ましく、濁りも分離も生じないことがより好ましい。
<Storage stability test>
An aqueous solution having a copolymer concentration of 30% by mass was prepared, placed in a 20 mL test tube with a lid, and allowed to stand in a thermostat at 50 ° C., and the presence or absence of turbidity or separation of the solution was visually determined.
Regarding storage stability, it is preferable that the solution is uniform and stable for a long time. It is preferred that no separation occurs in the solution, and more preferred that neither turbidity nor separation occur.
〔実施例1〕
L-アスコルビン酸0.3部、3-メルカプトプロピオン酸1.0部を水68.0部及び2-プロパノール29.2部に溶解させた溶液(1a)を調製した。
アクリル酸(AA)15.9部およびアクリル酸ブチル(BA)(Log P値: 1.88)20.7部を水2.8部及び2-プロパノール1.2部に溶解させた溶液(1b)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水65.4部、2-プロパノール28.0部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)の80%水溶液207.4部、パラトルエンスルホン酸1水和物の70%水溶液0.9部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素2%水溶液を9.3部投入した。
30分後、上述の混合溶液(1a)を3.5時間かけて、上述の混合溶液(1b)を3時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(1a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=5.0まで中和した。このようにして、共重合体(1)を含む重合体溶液を得た。得られた共重合体(1)のα×100/(α+β)は0であった。結果を表1に示す。
得られた共重合体(1)の保存安定性試験を行った。結果を表2に示す。
[Example 1]
A solution (1a) was prepared by dissolving 0.3 part of L-ascorbic acid and 1.0 part of 3-mercaptopropionic acid in 68.0 parts of water and 29.2 parts of 2-propanol.
A solution of 15.9 parts of acrylic acid (AA) and 20.7 parts of butyl acrylate (BA) (Log P value: 1.88) dissolved in 2.8 parts of water and 1.2 parts of 2-propanol (1b ) Was prepared.
Ethylene oxide is added to 65.4 parts of water, 28.0 parts of 2-propanol, and 3-methyl-3-buten-1-ol in a reaction vessel equipped with a thermometer, a stirrer, a dropping device, a nitrogen inlet tube, and a reflux condenser. 207.4 parts of an 80% aqueous solution of an unsaturated polyalkylene glycol ether monomer (IPN-50) added with an average of 50 moles and 0.9 part of a 70% aqueous solution of paratoluenesulfonic acid monohydrate were added, and The inside of the reaction vessel was purged with nitrogen under stirring, and the temperature was raised to 60 ° C. in a nitrogen atmosphere, and then 9.3 parts of a 2% aqueous hydrogen peroxide solution was added.
After 30 minutes, the above mixed solution (1a) was metered dropwise at a constant rate over 3.5 hours and the above mixed solution (1b) over 3 hours. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (1a), the temperature was continuously maintained at 60 ° C. for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 5.0 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. In this way, a polymer solution containing the copolymer (1) was obtained. Α × 100 / (α + β) of the obtained copolymer (1) was 0. The results are shown in Table 1.
The obtained copolymer (1) was subjected to a storage stability test. The results are shown in Table 2.
〔実施例2〕
L-アスコルビン酸0.3部、3-メルカプトプロピオン酸1.0部を水77.8部及び2-プロパノール19.4部に溶解させた水溶液(2a)を調製した。アクリル酸(AA)15.9部およびアクリル酸ブチル(BA)20.7部を水3.3部及び2-プロパノール0.8部に溶解させた溶液(2b)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水74.7部、2-プロパノール18.7部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)の80%水溶液207.4部、パラトルエンスルホン酸1水和物の70%水溶液0.9部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素2%水溶液を9.3部投入した。
30分後、上述の混合溶液(2a)を3.5時間かけて、上述の混合溶液(2b)を3時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(2a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=5.0まで中和した。このようにして、共重合体(2)を含む重合体溶液を得た。得られた共重合体(2)のα×100/(α+β)は0.31であった。結果を表1に示す。
得られた共重合体(2)の保存安定性試験を行った。結果を表2に示す。
[Example 2]
An aqueous solution (2a) was prepared by dissolving 0.3 part of L-ascorbic acid and 1.0 part of 3-mercaptopropionic acid in 77.8 parts of water and 19.4 parts of 2-propanol. A solution (2b) was prepared by dissolving 15.9 parts of acrylic acid (AA) and 20.7 parts of butyl acrylate (BA) in 3.3 parts of water and 0.8 part of 2-propanol.
In a reaction vessel equipped with a thermometer, a stirrer, a dripping device, a nitrogen inlet tube, and a reflux condenser, 74.7 parts of water, 18.7 parts of 2-propanol, and ethylene oxide were added to 3-methyl-3-buten-1-ol. 207.4 parts of an 80% aqueous solution of an unsaturated polyalkylene glycol ether monomer (IPN-50) added with an average of 50 moles and 0.9 part of a 70% aqueous solution of paratoluenesulfonic acid monohydrate were added, and The inside of the reaction vessel was purged with nitrogen under stirring, and the temperature was raised to 60 ° C. in a nitrogen atmosphere, and then 9.3 parts of a 2% aqueous hydrogen peroxide solution was added.
After 30 minutes, the above mixed solution (2a) was metered dropwise at a constant rate over 3.5 hours and the above mixed solution (2b) over 3 hours. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (2a), the temperature was continuously maintained at 60 ° C. for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 5.0 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. In this way, a polymer solution containing the copolymer (2) was obtained. Α × 100 / (α + β) of the obtained copolymer (2) was 0.31. The results are shown in Table 1.
The obtained copolymer (2) was subjected to a storage stability test. The results are shown in Table 2.
〔実施例3〕
L-アスコルビン酸0.3部、3-メルカプトプロピオン酸1.0部を水82.6部及び2-プロパノール14.6部に溶解させた溶液(3a)を調製した。
アクリル酸(AA)15.9部およびアクリル酸ブチル(BA)20.7部を水3.5部及び2-プロパノール0.6部に溶解させた溶液(3b)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水79.4部、2-プロパノール17.0部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)の80%水溶液207.4部、パラトルエンスルホン酸1水和物の70%水溶液0.9部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素2%水溶液を9.3部投入した。
30分後、上述の混合溶液(3a)を3.5時間かけて、上述の混合溶液(3b)を3時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(3a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=5.0まで中和した。このようにして、共重合体(3)を含む重合体溶液を得た。得られた共重合体(3)のα×100/(α+β)は0.99であった。結果を表1に示す。
得られた共重合体(3)の保存安定性試験を行った。結果を表2に示す。
Example 3
A solution (3a) was prepared by dissolving 0.3 part of L-ascorbic acid and 1.0 part of 3-mercaptopropionic acid in 82.6 parts of water and 14.6 parts of 2-propanol.
A solution (3b) was prepared by dissolving 15.9 parts of acrylic acid (AA) and 20.7 parts of butyl acrylate (BA) in 3.5 parts of water and 0.6 part of 2-propanol.
In a reaction vessel equipped with a thermometer, a stirrer, a dropping device, a nitrogen inlet tube, and a reflux condenser, 79.4 parts of water, 17.0 parts of 2-propanol, and ethylene oxide were added to 3-methyl-3-buten-1-ol. 207.4 parts of an 80% aqueous solution of an unsaturated polyalkylene glycol ether monomer (IPN-50) added with an average of 50 moles and 0.9 part of a 70% aqueous solution of paratoluenesulfonic acid monohydrate were added, and The inside of the reaction vessel was purged with nitrogen under stirring, and the temperature was raised to 60 ° C. in a nitrogen atmosphere, and then 9.3 parts of a 2% aqueous hydrogen peroxide solution was added.
After 30 minutes, the above mixed solution (3a) was metered dropwise at a constant rate over 3.5 hours and the above mixed solution (3b) over 3 hours. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (3a), the temperature was continuously maintained at 60 ° C. for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 5.0 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. In this way, a polymer solution containing the copolymer (3) was obtained. Α × 100 / (α + β) of the obtained copolymer (3) was 0.99. The results are shown in Table 1.
The obtained copolymer (3) was subjected to a storage stability test. The results are shown in Table 2.
〔実施例4〕
L-アスコルビン酸0.3部、3-メルカプトプロピオン酸1.0部を水87.5部及び2-プロパノール9.7部に溶解させた溶液(4a)を調製した。
アクリル酸(AA)15.9部およびアクリル酸ブチル(BA)20.7部を水3.7部及び2-プロパノール0.4部に溶解させた溶液(4b)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水84.0部、2-プロパノール9.3部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)の80%水溶液207.4部、パラトルエンスルホン酸1水和物の70%水溶液0.9部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素2%水溶液を9.3部投入した。
30分後、上述の混合溶液(4a)を3.5時間かけて、上述の混合溶液(4b)を3時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(4a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=5.0まで中和した。このようにして、共重合体(4)を含む重合体溶液を得た。得られた共重合体(4)のα×100/(α+β)は1.50であった。結果を表1に示す。
得られた共重合体(4)の保存安定性試験を行った。結果を表2に示す。
Example 4
A solution (4a) was prepared by dissolving 0.3 part of L-ascorbic acid and 1.0 part of 3-mercaptopropionic acid in 87.5 parts of water and 9.7 parts of 2-propanol.
A solution (4b) was prepared by dissolving 15.9 parts of acrylic acid (AA) and 20.7 parts of butyl acrylate (BA) in 3.7 parts of water and 0.4 part of 2-propanol.
In a reaction vessel equipped with a thermometer, a stirrer, a dripping device, a nitrogen introduction tube, and a reflux condenser, 84.0 parts of water, 9.3 parts of 2-propanol, and 3-methyl-3-buten-1-ol were mixed with ethylene oxide. 207.4 parts of an 80% aqueous solution of an unsaturated polyalkylene glycol ether monomer (IPN-50) added with an average of 50 moles and 0.9 part of a 70% aqueous solution of paratoluenesulfonic acid monohydrate were added, and The inside of the reaction vessel was purged with nitrogen under stirring, and the temperature was raised to 60 ° C. in a nitrogen atmosphere, and then 9.3 parts of a 2% aqueous hydrogen peroxide solution was added.
After 30 minutes, the above mixed solution (4a) was metered dropwise at a constant rate over 3.5 hours and the above mixed solution (4b) over 3 hours. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (4a), the temperature was continuously maintained at 60 ° C. for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 5.0 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. In this way, a polymer solution containing the copolymer (4) was obtained. Α × 100 / (α + β) of the obtained copolymer (4) was 1.50. The results are shown in Table 1.
The obtained copolymer (4) was subjected to a storage stability test. The results are shown in Table 2.
〔実施例5〕
L-アスコルビン酸0.3部、3-メルカプトプロピオン酸1.0部を水90.4部及び2-プロパノール6.8部に溶解させた溶液(5a)を調製した。
アクリル酸(AA)15.9部およびアクリル酸ブチル(BA)20.7部を水3.8部及び2-プロパノール0.3部に溶解させた溶液(5b)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水86.8部、2-プロパノール6.5部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)の80%水溶液207.4部、パラトルエンスルホン酸1水和物の70%水溶液0.9部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素2%水溶液を9.3部投入した。
30分後、上述の混合溶液(5a)を3.5時間かけて、上述の混合溶液(5b)を3時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(5a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=5.0まで中和した。このようにして、共重合体(5)を含む重合体溶液を得た。得られた共重合体(5)のα×100/(α+β)は2.52であった。結果を表1に示す。
得られた共重合体(5)の保存安定性試験を行った。結果を表2に示す。
Example 5
A solution (5a) was prepared by dissolving 0.3 part of L-ascorbic acid and 1.0 part of 3-mercaptopropionic acid in 90.4 parts of water and 6.8 parts of 2-propanol.
A solution (5b) was prepared by dissolving 15.9 parts of acrylic acid (AA) and 20.7 parts of butyl acrylate (BA) in 3.8 parts of water and 0.3 part of 2-propanol.
In a reaction vessel equipped with a thermometer, a stirrer, a dropping device, a nitrogen introduction tube, and a reflux condenser, 86.8 parts of water, 6.5 parts of 2-propanol, and ethylene oxide were added to 3-methyl-3-buten-1-ol. 207.4 parts of an 80% aqueous solution of an unsaturated polyalkylene glycol ether monomer (IPN-50) added with an average of 50 moles and 0.9 part of a 70% aqueous solution of paratoluenesulfonic acid monohydrate were added, and The inside of the reaction vessel was purged with nitrogen under stirring, and the temperature was raised to 60 ° C. in a nitrogen atmosphere, and then 9.3 parts of a 2% aqueous hydrogen peroxide solution was added.
After 30 minutes, the above mixed solution (5a) was metered dropwise at a constant rate over 3.5 hours and the above mixed solution (5b) over 3 hours. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (5a), 60 ° C. was continuously maintained for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 5.0 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. In this way, a polymer solution containing the copolymer (5) was obtained. Α × 100 / (α + β) of the obtained copolymer (5) was 2.52. The results are shown in Table 1.
The obtained copolymer (5) was subjected to a storage stability test. The results are shown in Table 2.
〔実施例6〕
L-アスコルビン酸0.3部、3-メルカプトプロピオン酸1.0部を水94.3部及び2-プロパノール2.9部に溶解させた溶液(6a)を調製した。
アクリル酸(AA)15.9部およびアクリル酸ブチル(BA)20.7部を水3.9部及び2-プロパノール0.1部に溶解させた溶液(6b)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水90.6部、2-プロパノール2.8部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)の80%水溶液207.4部、パラトルエンスルホン酸1水和物の70%水溶液0.9部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素2%水溶液を9.3部投入した。
30分後、上述の混合溶液(6a)を3.5時間かけて、上述の混合溶液(6b)を3時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(6a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=5.0まで中和した。このようにして、共重合体(6)を含む重合体溶液を得た。得られた共重合体(6)のα×100/(α+β)は2.05であった。結果を表1に示す。
得られた共重合体(6)の保存安定性試験を行った。結果を表2に示す。
Example 6
A solution (6a) was prepared by dissolving 0.3 part of L-ascorbic acid and 1.0 part of 3-mercaptopropionic acid in 94.3 parts of water and 2.9 parts of 2-propanol.
A solution (6b) was prepared by dissolving 15.9 parts of acrylic acid (AA) and 20.7 parts of butyl acrylate (BA) in 3.9 parts of water and 0.1 part of 2-propanol.
In a reaction vessel equipped with a thermometer, a stirrer, a dropping device, a nitrogen inlet tube, and a reflux condenser, 90.6 parts of water, 2.8 parts of 2-propanol, and ethylene oxide were added to 3-methyl-3-buten-1-ol. 207.4 parts of an 80% aqueous solution of an unsaturated polyalkylene glycol ether monomer (IPN-50) added with an average of 50 moles and 0.9 part of a 70% aqueous solution of paratoluenesulfonic acid monohydrate were added, and The inside of the reaction vessel was purged with nitrogen under stirring, and the temperature was raised to 60 ° C. in a nitrogen atmosphere, and then 9.3 parts of a 2% aqueous hydrogen peroxide solution was added.
After 30 minutes, the above mixed solution (6a) was metered dropwise at a constant rate over 3.5 hours and the above mixed solution (6b) over 3 hours. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (6a), the temperature was continuously maintained at 60 ° C. for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 5.0 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. In this way, a polymer solution containing the copolymer (6) was obtained. Α × 100 / (α + β) of the obtained copolymer (6) was 2.05. The results are shown in Table 1.
The obtained copolymer (6) was subjected to a storage stability test. The results are shown in Table 2.
〔実施例7〕
2,2’-アゾビス(2,4-ジメチルバレロニトリル)2.0部を2-プロパノール105.7部に溶解させた溶液(7a)を調製した。
アクリル酸(AA)15.9部およびアクリル酸2エチルヘキシル(2EHA)(Log P値:3.53)20.7部を2-プロパノール4.1部に溶解させた溶液(7b)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水41.5部、2-プロパノール94.2部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)165.9部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した。
30分後、上述の混合溶液(7a)を3.5時間かけて、上述の混合溶液(7b)を3時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(7a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。このようにして、共重合体(7)を含む重合体溶液を得た。得られた共重合体(7)のα×100/(α+β)は0であった。結果を表1に示す。
得られた共重合体(7)の保存安定性試験を行った。結果を表2に示す。
Example 7
A solution (7a) in which 2.0 parts of 2,2′-azobis (2,4-dimethylvaleronitrile) was dissolved in 105.7 parts of 2-propanol was prepared.
A solution (7b) was prepared by dissolving 15.9 parts of acrylic acid (AA) and 20.7 parts of 2-ethylhexyl acrylate (2EHA) (Log P value: 3.53) in 4.1 parts of 2-propanol.
In a reaction vessel equipped with a thermometer, a stirrer, a dropping device, a nitrogen inlet tube, and a reflux condenser, 41.5 parts of water, 94.2 parts of 2-propanol, and ethylene oxide were added to 3-methyl-3-buten-1-ol. 165.9 parts of unsaturated polyalkylene glycol ether monomer (IPN-50) added in an average of 50 moles was charged, and then the inside of the reaction vessel was purged with nitrogen under stirring, and the temperature was raised to 60 ° C. in a nitrogen atmosphere. .
After 30 minutes, the above mixed solution (7a) was metered dropwise at a constant rate over 3.5 hours and the above mixed solution (7b) over 3 hours. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (7a), the temperature was continuously maintained at 60 ° C. for 1 hour to complete the polymerization reaction. In this way, a polymer solution containing the copolymer (7) was obtained. Α × 100 / (α + β) of the obtained copolymer (7) was 0. The results are shown in Table 1.
The obtained copolymer (7) was subjected to a storage stability test. The results are shown in Table 2.
〔実施例8〕
L-アスコルビン酸0.3部、3-メルカプトプロピオン酸0.9部を水45.1部及び2-プロパノール57.3部に溶解させた溶液(8a)を調製した。
アクリル酸(AA)15.9部およびアクリル酸2エチルヘキシル(2EHA)20.7部を混合した溶液(8b)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水41.1部、2-プロパノール52.3部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)の80%水溶液を207.4部、パラトルエンスルホン酸1水和物の70%水溶液0.9部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素2%水溶液を8.3部投入した。
30分後、上述の混合溶液(8a)を3.5時間かけて、上述の混合溶液(8b)を3時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。 
混合溶液(8a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=5.0まで中和した。このようにして、共重合体(8)を含む重合体溶液を得た。得られた共重合体(8)のα×100/(α+β)は0.31であった。結果を表1に示す。
得られた共重合体(8)の保存安定性試験を行った。結果を表2に示す。
Example 8
A solution (8a) was prepared by dissolving 0.3 part of L-ascorbic acid and 0.9 part of 3-mercaptopropionic acid in 45.1 parts of water and 57.3 parts of 2-propanol.
A solution (8b) was prepared by mixing 15.9 parts of acrylic acid (AA) and 20.7 parts of 2-ethylhexyl acrylate (2EHA).
In a reaction vessel equipped with a thermometer, a stirrer, a dropping device, a nitrogen inlet tube, and a reflux condenser, ethylene oxide is added to 41.1 parts of water, 52.3 parts of 2-propanol, and 3-methyl-3-buten-1-ol. 207.4 parts of an 80% aqueous solution of an unsaturated polyalkylene glycol ether monomer (IPN-50) added with an average of 50 moles and 0.9 part of a 70% aqueous solution of paratoluenesulfonic acid monohydrate were added, and Then, the inside of the reaction vessel was purged with nitrogen under stirring, the temperature was raised to 60 ° C. in a nitrogen atmosphere, and 8.3 parts of a 2% aqueous hydrogen peroxide solution was added.
After 30 minutes, the above mixed solution (8a) was metered dropwise at a constant rate over 3.5 hours and the above mixed solution (8b) over 3 hours. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (8a), the temperature was continuously maintained at 60 ° C. for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 5.0 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. In this way, a polymer solution containing the copolymer (8) was obtained. Α × 100 / (α + β) of the obtained copolymer (8) was 0.31. The results are shown in Table 1.
The obtained copolymer (8) was subjected to a storage stability test. The results are shown in Table 2.
〔実施例9〕
L-アスコルビン酸0.3部、3-メルカプトプロピオン酸0.9部を水41.0部及び2-プロパノール61.4部に溶解させた溶液(9a)を調製した。
アクリル酸(AA)15.9部およびアクリル酸2エチルヘキシル(2EHA)20.7部を混合した溶液(9b)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水37.3部、2-プロパノール56.0部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)の80%水溶液を207.4部、パラトルエンスルホン酸1水和物の70%水溶液0.9部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素2%水溶液を8.3部投入した。
30分後、上述の混合溶液(9a)を3.5時間かけて、上述の混合溶液(9b)を3時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(9a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=5.0まで中和した。このようにして、共重合体(9)を含む重合体溶液を得た。得られた共重合体(9)のα×100/(α+β)は0.58であった。結果を表1に示す。
 得られた共重合体(9)の保存安定性試験を行った。結果を表2に示す。
Example 9
A solution (9a) was prepared by dissolving 0.3 part of L-ascorbic acid and 0.9 part of 3-mercaptopropionic acid in 41.0 parts of water and 61.4 parts of 2-propanol.
A solution (9b) in which 15.9 parts of acrylic acid (AA) and 20.7 parts of 2-ethylhexyl acrylate (2EHA) were mixed was prepared.
Ethylene oxide was added to 37.3 parts of water, 56.0 parts of 2-propanol, and 3-methyl-3-buten-1-ol in a reaction vessel equipped with a thermometer, a stirrer, a dropping device, a nitrogen introduction tube, and a reflux condenser. 207.4 parts of an 80% aqueous solution of an unsaturated polyalkylene glycol ether monomer (IPN-50) added with an average of 50 moles and 0.9 part of a 70% aqueous solution of paratoluenesulfonic acid monohydrate were added, and Then, the inside of the reaction vessel was purged with nitrogen under stirring, the temperature was raised to 60 ° C. in a nitrogen atmosphere, and 8.3 parts of a 2% aqueous hydrogen peroxide solution was added.
After 30 minutes, the above mixed solution (9a) was metered dropwise at a constant rate over 3.5 hours and the above mixed solution (9b) over 3 hours. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (9a), the temperature was continuously maintained at 60 ° C. for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 5.0 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. In this way, a polymer solution containing the copolymer (9) was obtained. Α × 100 / (α + β) of the obtained copolymer (9) was 0.58. The results are shown in Table 1.
The obtained copolymer (9) was subjected to a storage stability test. The results are shown in Table 2.
〔実施例10〕
L-アスコルビン酸0.3部、3-メルカプトプロピオン酸0.9部を水43.0部及び2-プロパノール59.4部に溶解させた溶液(10a)を調製した。
アクリル酸(AA)15.9部およびアクリル酸2エチルヘキシル(2EHA)20.7部を混合した溶液(10b)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水39.2部、2-プロパノール54.1部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)の80%水溶液を207.4部、パラトルエンスルホン酸1水和物の70%水溶液0.9部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素2%水溶液を8.3部投入した。
30分後、上述の混合溶液(10a)を3.5時間かけて、上述の混合溶液(10b)を3時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(10a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=5.0まで中和した。このようにして、共重合体(10)を含む重合体溶液を得た。得られた共重合体(10)のα×100/(α+β)は0.81であった。結果を表1に示す。
得られた共重合体(10)の保存安定性試験を行った。結果を表2に示す。
Example 10
A solution (10a) was prepared by dissolving 0.3 part of L-ascorbic acid and 0.9 part of 3-mercaptopropionic acid in 43.0 parts of water and 59.4 parts of 2-propanol.
A solution (10b) was prepared by mixing 15.9 parts of acrylic acid (AA) and 20.7 parts of 2-ethylhexyl acrylate (2EHA).
In a reaction vessel equipped with a thermometer, a stirrer, a dropping device, a nitrogen inlet tube, and a reflux condenser, 39.2 parts of water, 54.1 parts of 2-propanol, and ethylene oxide were added to 3-methyl-3-buten-1-ol. 207.4 parts of an 80% aqueous solution of an unsaturated polyalkylene glycol ether monomer (IPN-50) added with an average of 50 moles and 0.9 part of a 70% aqueous solution of paratoluenesulfonic acid monohydrate were added, and Then, the inside of the reaction vessel was purged with nitrogen under stirring, the temperature was raised to 60 ° C. in a nitrogen atmosphere, and 8.3 parts of a 2% aqueous hydrogen peroxide solution was added.
After 30 minutes, the above mixed solution (10a) was metered dropwise at a constant rate over 3.5 hours and the above mixed solution (10b) over 3 hours. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (10a), 60 ° C. was continuously maintained for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 5.0 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. In this way, a polymer solution containing the copolymer (10) was obtained. Α × 100 / (α + β) of the obtained copolymer (10) was 0.81. The results are shown in Table 1.
The obtained copolymer (10) was subjected to a storage stability test. The results are shown in Table 2.
〔実施例11〕
L-アスコルビン酸0.3部、3-メルカプトプロピオン酸0.9部を水47.1部及び2-プロパノール55.3部に溶解させた溶液(11a)を調製した。
アクリル酸(AA)15.9部およびアクリル酸2エチルヘキシル(2EHA)20.7部を混合した溶液(11b)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水42.9部、2-プロパノール50.4部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)の80%水溶液を207.4部、パラトルエンスルホン酸1水和物の70%水溶液0.9部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素2%水溶液を8.3部投入した。
30分後、上述の混合溶液(11a)を3.5時間かけて、上述の混合溶液(11b)を3時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(11a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=5.0まで中和した。このようにして、共重合体(11)を含む重合体溶液を得た。得られた共重合体(11)のα×100/(α+β)は1.14であった。結果を表1に示す。
得られた共重合体(11)の保存安定性試験を行った。結果を表2に示す。
Example 11
A solution (11a) was prepared by dissolving 0.3 part of L-ascorbic acid and 0.9 part of 3-mercaptopropionic acid in 47.1 parts of water and 55.3 parts of 2-propanol.
A solution (11b) was prepared by mixing 15.9 parts of acrylic acid (AA) and 20.7 parts of 2-ethylhexyl acrylate (2EHA).
In a reaction vessel equipped with a thermometer, a stirrer, a dropping device, a nitrogen introduction tube, and a reflux condenser, 42.9 parts of water, 50.4 parts of 2-propanol, and ethylene oxide were added to 3-methyl-3-buten-1-ol. 207.4 parts of an 80% aqueous solution of an unsaturated polyalkylene glycol ether monomer (IPN-50) added with an average of 50 moles and 0.9 part of a 70% aqueous solution of paratoluenesulfonic acid monohydrate were added, and Then, the inside of the reaction vessel was purged with nitrogen under stirring, the temperature was raised to 60 ° C. in a nitrogen atmosphere, and 8.3 parts of a 2% aqueous hydrogen peroxide solution was added.
After 30 minutes, the above mixed solution (11a) was metered dropwise at a constant rate over 3.5 hours and the above mixed solution (11b) over 3 hours. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (11a), the temperature was continuously maintained at 60 ° C. for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 5.0 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. In this way, a polymer solution containing the copolymer (11) was obtained. Α × 100 / (α + β) of the obtained copolymer (11) was 1.14. The results are shown in Table 1.
The obtained copolymer (11) was subjected to a storage stability test. The results are shown in Table 2.
〔実施例12〕
L-アスコルビン酸0.4部、3-メルカプトプロピオン酸0.9部を水44.3部に溶解させた溶液(12a)を調製した。
アクリル酸(AA)24.7部およびアクリル酸ブチル(BA)22.6部を混合した溶液(12b)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水2.8部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)の80%水溶液を334.6部、パラトルエンスルホン酸1水和物の70%水溶液1.4部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素2%水溶液を13.0部投入した。
30分後、上述の混合溶液(12a)を3.5時間かけて、上述の混合溶液(12b)を3時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(12a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=5.0まで中和した。このようにして、共重合体(12)を含む重合体溶液を得た。得られた共重合体(12)のα×100/(α+β)は0であった。結果を表1に示す。
得られた共重合体(12)の保存安定性試験を行った。結果を表2に示す。
Example 12
A solution (12a) was prepared by dissolving 0.4 part of L-ascorbic acid and 0.9 part of 3-mercaptopropionic acid in 44.3 parts of water.
A solution (12b) in which 24.7 parts of acrylic acid (AA) and 22.6 parts of butyl acrylate (BA) were mixed was prepared.
A reaction vessel equipped with a thermometer, a stirrer, a dripping device, a nitrogen inlet tube, and a reflux condenser, 2.8 parts of water, and an unsaturated polysiloxane having an average of 50 moles of ethylene oxide added to 3-methyl-3-buten-1-ol Charge 334.6 parts of an 80% aqueous solution of an alkylene glycol ether monomer (IPN-50) and 1.4 parts of a 70% aqueous solution of paratoluenesulfonic acid monohydrate, and then stir in the reaction vessel. After replacing with nitrogen and raising the temperature to 60 ° C. in a nitrogen atmosphere, 13.0 parts of a 2% aqueous hydrogen peroxide solution was added.
After 30 minutes, the above mixed solution (12a) was metered dropwise at a constant rate over 3.5 hours and the above mixed solution (12b) over 3 hours. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (12a), the temperature was continuously maintained at 60 ° C. for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 5.0 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. In this way, a polymer solution containing the copolymer (12) was obtained. Α × 100 / (α + β) of the obtained copolymer (12) was 0. The results are shown in Table 1.
The obtained copolymer (12) was subjected to a storage stability test. The results are shown in Table 2.
〔実施例13〕
L-アスコルビン酸0.2部、3-メルカプトプロピオン酸0.6部を水68.2部、2-プロパノール68.2部に溶解させた溶液(13a)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水43.6部、2-プロパノール43.6部、2-メチル-2-プロペン-1-オールにエチレンオキシドが平均150モル付加した不飽和ポリアルキレングリコールエーテル系単量体(MLA-150)の80%水溶液を193.5部、パラトルエンスルホン酸1水和物の70%水溶液0.8部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素2%水溶液を5.4部投入した。
30分後、上述の混合溶液(13a)を3.5時間かけて、アクリル酸(AA)の90%水溶液7.0部およびアクリル酸ブチル(BA)18.2部を3時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(13a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=5.0まで中和した。このようにして、共重合体(13)を含む重合体溶液を得た。得られた共重合体(13)のα×100/(α+β)は0であった。結果を表1に示す。
得られた共重合体(13)の保存安定性試験を行った。結果を表2に示す。
Example 13
A solution (13a) was prepared by dissolving 0.2 part of L-ascorbic acid and 0.6 part of 3-mercaptopropionic acid in 68.2 parts of water and 68.2 parts of 2-propanol.
Ethylene oxide is added to 43.6 parts of water, 43.6 parts of 2-propanol, and 2-methyl-2-propen-1-ol in a reaction vessel equipped with a thermometer, a stirrer, a dropping device, a nitrogen introduction tube, and a reflux condenser. 193.5 parts of an 80% aqueous solution of an unsaturated polyalkylene glycol ether monomer (MLA-150) added with an average of 150 moles and 0.8 part of a 70% aqueous solution of paratoluenesulfonic acid monohydrate were added, and Then, the inside of the reaction vessel was purged with nitrogen under stirring, the temperature was raised to 60 ° C. in a nitrogen atmosphere, and 5.4 parts of a 2% aqueous hydrogen peroxide solution was added.
After 30 minutes, the above mixed solution (13a) was added over 3.5 hours, 7.0 parts of 90% aqueous solution of acrylic acid (AA) and 18.2 parts of butyl acrylate (BA) were added over 3 hours, respectively. Metered dropwise at a constant rate. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (13a), the temperature was continuously maintained at 60 ° C. for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 5.0 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. In this way, a polymer solution containing the copolymer (13) was obtained. Α × 100 / (α + β) of the obtained copolymer (13) was 0. The results are shown in Table 1.
The storage stability test of the obtained copolymer (13) was performed. The results are shown in Table 2.
〔実施例14〕
過流酸アンモニウム3.3部を水107.3部に溶解させた溶液(14a)を調製した。
アクリル酸ブチル(BA)16.5部およびメタクリル酸(MAA)19.7部を混合した溶液(14b)を調製した。
メトキシポリエチレングリコールモノメタクリレート(エチレンオキシドの平均付加モル数23)(PGM-23)123.8部、3-メルカプトプロピオン酸1.2部を水53.6部に溶解させた溶液(14c)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水35.3部、2-プロパノール35.3部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で80℃に昇温した後、上述の混合溶液(14a)を5時間かけて、上述の混合溶液(14b)及び(14c)を4時間かけて、それぞれ一定速度で計量滴下した。この間の温度は80℃で一定とした。
混合溶液(14a)の滴下終了後、1時間引き続き80℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=5.0まで中和した。このようにして、共重合体(14)を含む重合体溶液を得た。得られた共重合体(13)のα×100/(α+β)は0であった。結果を表1に示す。
得られた共重合体(14)の保存安定性試験を行った。結果を表2に示す。
Example 14
A solution (14a) in which 3.3 parts of ammonium persulfate was dissolved in 107.3 parts of water was prepared.
A solution (14b) in which 16.5 parts of butyl acrylate (BA) and 19.7 parts of methacrylic acid (MAA) were mixed was prepared.
A solution (14c) was prepared by dissolving 123.8 parts of methoxypolyethylene glycol monomethacrylate (average number of moles of ethylene oxide added 23) (PGM-23) and 1.2 parts of 3-mercaptopropionic acid in 53.6 parts of water. .
Charge 35.3 parts of water and 35.3 parts of 2-propanol to a reaction vessel equipped with a thermometer, a stirrer, a dropping device, a nitrogen inlet tube, and a reflux condenser, and then purge the inside of the reaction vessel with nitrogen under stirring. After heating to 80 ° C. in a nitrogen atmosphere, the above mixed solution (14a) was metered dropwise at a constant rate over 5 hours and the above mixed solutions (14b) and (14c) over 4 hours. . The temperature during this period was constant at 80 ° C.
After completion of the dropwise addition of the mixed solution (14a), the temperature was maintained at 80 ° C. for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 5.0 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. In this way, a polymer solution containing the copolymer (14) was obtained. Α × 100 / (α + β) of the obtained copolymer (13) was 0. The results are shown in Table 1.
The obtained copolymer (14) was subjected to a storage stability test. The results are shown in Table 2.
〔比較例1〕
L-アスコルビン酸0.3部、3-メルカプトプロピオン酸0.5部を水34.5部に溶解させた溶液(c-1a)を調製した。
アクリル酸(AA)9.1部およびアクリル酸2エチルヘキシル(2EHA)14.7部を混合した溶液(c-1b)を調製した。
過硫酸アンモニウム1.6部を水39.3部に溶解させた溶液(c-1c)を調整した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水79.5部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)267.4部、アクリル酸3.0部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した。
30分後、上述の混合溶液(c-1a)及び(c-1c)を3.5時間かけて、上述の混合溶液(c-1b)を3時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。混合溶液(c-1a)および(c-1c)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=7.0まで中和した。このようにして、比較共重合体(1)を含む重合体溶液を得た。得られた比較共重合体(1)のα×100/(α+β)は4.23であった。結果を表1に示す。
得られた比較共重合体(1)の保存安定性試験を行った。結果を表2に示す。
[Comparative Example 1]
A solution (c-1a) in which 0.3 part of L-ascorbic acid and 0.5 part of 3-mercaptopropionic acid were dissolved in 34.5 parts of water was prepared.
A solution (c-1b) was prepared by mixing 9.1 parts of acrylic acid (AA) and 14.7 parts of 2-ethylhexyl acrylate (2EHA).
A solution (c-1c) in which 1.6 parts of ammonium persulfate was dissolved in 39.3 parts of water was prepared.
A reaction vessel equipped with a thermometer, a stirrer, a dripping device, a nitrogen inlet tube, and a reflux condenser is 79.5 parts of water, and an unsaturated polysiloxane having an average of 50 mol of ethylene oxide added to 3-methyl-3-buten-1-ol. Then, 267.4 parts of an alkylene glycol ether monomer (IPN-50) and 3.0 parts of acrylic acid were charged. Subsequently, the reaction vessel was purged with nitrogen under stirring, and the temperature was raised to 60 ° C. in a nitrogen atmosphere.
After 30 minutes, the above mixed solutions (c-1a) and (c-1c) were metered dropwise at a constant rate over 3.5 hours and the above mixed solution (c-1b) over 3 hours. The temperature during this period was constant at 60 ° C. After completion of the dropwise addition of the mixed solutions (c-1a) and (c-1c), the temperature was maintained at 60 ° C. for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 7.0 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. In this way, a polymer solution containing the comparative copolymer (1) was obtained. Α × 100 / (α + β) of the obtained comparative copolymer (1) was 4.23. The results are shown in Table 1.
The obtained comparative copolymer (1) was subjected to a storage stability test. The results are shown in Table 2.
〔比較例2〕
L-アスコルビン酸0.3部、3-メルカプトプロピオン酸0.9部を水51.2部及び2-プロパノール51.2部に溶解させた溶液(c-2a)を調製した。
アクリル酸(AA)15.9部およびアクリル酸2エチルヘキシル(2EHA)20.7部を混合した溶液(c-2b)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水46.7部、2-プロパノール46.7部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)の80%水溶液を207.4部、パラトルエンスルホン酸1水和物の70%水溶液0.9部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素2%水溶液を8.3部投入した。
30分後、上述の混合溶液(c-2a)を3.5時間かけて、上述の混合溶液(c-2b)を3時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(c-2a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=5.0まで中和した。このようにして、比較共重合体(2)を含む重合体溶液を得た。得られた比較共重合体(2)のα×100/(α+β)は3.11であった。結果を表1に示す。
得られた比較共重合体(2)の保存安定性試験を行った。結果を表2に示す。
[Comparative Example 2]
A solution (c-2a) was prepared by dissolving 0.3 part of L-ascorbic acid and 0.9 part of 3-mercaptopropionic acid in 51.2 parts of water and 51.2 parts of 2-propanol.
A solution (c-2b) was prepared by mixing 15.9 parts of acrylic acid (AA) and 20.7 parts of 2-ethylhexyl acrylate (2EHA).
In a reaction vessel equipped with a thermometer, a stirrer, a dripping device, a nitrogen inlet tube, and a reflux condenser, 46.7 parts of water, 46.7 parts of 2-propanol, and ethylene oxide were added to 3-methyl-3-buten-1-ol. 207.4 parts of an 80% aqueous solution of an unsaturated polyalkylene glycol ether monomer (IPN-50) added with an average of 50 moles and 0.9 part of a 70% aqueous solution of paratoluenesulfonic acid monohydrate were added, and Then, the inside of the reaction vessel was purged with nitrogen under stirring, the temperature was raised to 60 ° C. in a nitrogen atmosphere, and 8.3 parts of a 2% aqueous hydrogen peroxide solution was added.
After 30 minutes, the above mixed solution (c-2a) was metered dropwise at a constant rate over 3.5 hours and the above mixed solution (c-2b) over 3 hours. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (c-2a), the temperature was continuously maintained at 60 ° C. for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 5.0 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. In this way, a polymer solution containing the comparative copolymer (2) was obtained. Α × 100 / (α + β) of the obtained comparative copolymer (2) was 3.11. The results are shown in Table 1.
The obtained comparative copolymer (2) was subjected to a storage stability test. The results are shown in Table 2.
〔比較例3〕
L-アスコルビン酸0.2部、3-メルカプトプロピオン酸0.6部を水136.5部に溶解させた溶液(c-3a)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水87.1部、2-メチル-2-プロペン-1-オールにエチレンオキシドが平均150モル付加した不飽和ポリアルキレングリコールエーテル系単量体(MLA-150)の80%水溶液を193.5部、パラトルエンスルホン酸1水和物の70%水溶液0.8部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素2%水溶液を5.4部投入した。
30分後、上述の混合溶液(c-3a)を3.5時間かけて、アクリル酸(AA)の90%水溶液7.0部およびアクリル酸ブチル(BA)18.2部を3時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(c-3a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=5.0まで中和した。このようにして、共重合体(13)を含む重合体溶液を得た。得られた共重合体(c-3)のα×100/(α+β)は8.18であった。結果を表1に示す。
得られた共重合体(c-3)の保存安定性試験を行った。結果を表2に示す。
[Comparative Example 3]
A solution (c-3a) in which 0.2 part of L-ascorbic acid and 0.6 part of 3-mercaptopropionic acid were dissolved in 136.5 parts of water was prepared.
A reaction vessel equipped with a thermometer, a stirrer, a dropping device, a nitrogen inlet tube, and a reflux condenser. 87.1 parts of water and 2-methyl-2-propen-1-ol added with an average of 150 moles of ethylene oxide Charge 193.5 parts of an 80% aqueous solution of an alkylene glycol ether monomer (MLA-150) and 0.8 parts of a 70% aqueous solution of paratoluenesulfonic acid monohydrate, and then stir the inside of the reaction vessel with stirring. After purging with nitrogen and raising the temperature to 60 ° C. in a nitrogen atmosphere, 5.4 parts of a 2% aqueous hydrogen peroxide solution was added.
After 30 minutes, the above mixed solution (c-3a) was added over 3.5 hours, 7.0 parts of a 90% aqueous solution of acrylic acid (AA) and 18.2 parts of butyl acrylate (BA) were added over 3 hours. , Each was metered dropwise at a constant rate. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (c-3a), the temperature was continuously maintained at 60 ° C. for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 5.0 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. In this way, a polymer solution containing the copolymer (13) was obtained. Α × 100 / (α + β) of the obtained copolymer (c-3) was 8.18. The results are shown in Table 1.
The storage stability test of the obtained copolymer (c-3) was conducted. The results are shown in Table 2.
〔比較例4〕
過流酸アンモニウム3.2部を水77.4部に溶解させた溶液(c-4a)を調製した。
メトキシポリエチレングリコールモノメタクリレート(エチレンオキシドの平均付加モル数23)(PGM-23)41.8部、3-メルカプトプロピオン酸1.9部、メタクリル酸11.1部を水23.5部に溶解させた溶液(c-4b)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水253.9部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で80℃に昇温した後、上述の混合溶液(c-4a)を5時間かけて、上述の混合溶液(c-4b)及びアクリル酸ブチル37.1部を4時間かけて、それぞれ一定速度で計量滴下した。この間の温度は80℃で一定とした。
混合溶液(c-4a)の滴下終了後、1時間引き続き80℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=5.0まで中和した。このようにして、共重合体(c-4)を含む重合体溶液を得た。得られた共重合体(c-4)のα×100/(α+β)は12.3であった。結果を表1に示す。
得られた共重合体(c-4)の保存安定性試験を行った。結果を表2に示す。
[Comparative Example 4]
A solution (c-4a) in which 3.2 parts of ammonium persulfate was dissolved in 77.4 parts of water was prepared.
41.8 parts of methoxypolyethylene glycol monomethacrylate (average added mole number of ethylene oxide 23) (PGM-23), 1.9 parts of 3-mercaptopropionic acid, 11.1 parts of methacrylic acid were dissolved in 23.5 parts of water. A solution (c-4b) was prepared.
A reaction vessel equipped with a thermometer, a stirrer, a dropping device, a nitrogen inlet tube, and a reflux condenser was charged with 253.9 parts of water, and the inside of the reaction vessel was purged with nitrogen under stirring. After the temperature was raised, the above mixed solution (c-4a) was metered dropwise at a constant rate over 5 hours, and the above mixed solution (c-4b) and 37.1 parts of butyl acrylate over 4 hours. . The temperature during this period was constant at 80 ° C.
After completion of the dropwise addition of the mixed solution (c-4a), the temperature was continuously maintained at 80 ° C. for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 5.0 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. Thus, a polymer solution containing the copolymer (c-4) was obtained. Α × 100 / (α + β) of the obtained copolymer (c-4) was 12.3. The results are shown in Table 1.
The storage stability test of the obtained copolymer (c-4) was performed. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
表1において、Mw(α)は高分子量体由来のピークα、Mw(β1)は共重合体由来のピークβ1、Mw(β2)は単量体由来のピークβ2の重量平均分子量を表す。 In Table 1, Mw (α) represents a high molecular weight-derived peak α, Mw (β1) represents a copolymer-derived peak β1, and Mw (β2) represents a weight-average molecular weight of a monomer-derived peak β2.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005

Claims (7)

  1. (ポリ)アルキレングリコール鎖を含有する共重合体であって、
    該共重合体は、下記式(1);
    Figure JPOXMLDOC01-appb-C000001
    (式中、R、R及びRは、同一又は異なって、水素原子、又は、メチル基を表す。Rは、水素原子、又は、炭素数1~30の炭化水素基を表す。(AO)は、同一又は異なって、オキシアルキレン基を表す。nは、オキシアルキレン基の平均付加モル数を表し、1~300の数である。yは、0~4の数を表す。 zは、0又は1を表す。)で表される(ポリ)アルキレングリコール含有単量体(A)由来の構造単位(a)と疎水性単量体(B)由来の構造単位(b)とを有し、
    該疎水性単量体(B)は、エチレン性不飽和基を有し、オクタノール/水分配係数の値(Log P値)が1.0~8.0であり、
    該共重合体について測定されたゲルパーミエーションクロマトグラフィー(GPC)の示差屈折率検出器のクロマトグラムにおいて、以下に規定するピークα及びピークβの面積が、下記式(2)を満たすことを特徴とする(ポリ)アルキレングリコール含有共重合体。
    α×100/(α+β)≦3.0 (2)
    <ピークα及びβ>
    ピークα:重量平均分子量(Mw)が、20万よりも大きいピーク。
    ピークβ:Mwが20万以下であるピーク。
    A copolymer containing a (poly) alkylene glycol chain,
    The copolymer has the following formula (1);
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R 1 , R 2 and R 3 are the same or different and each represents a hydrogen atom or a methyl group. R 4 represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms. (AO) are the same or different and each represents an oxyalkylene group, n represents the average number of moles added of the oxyalkylene group, and is a number from 1 to 300. y represents a number from 0 to 4. z Represents a structural unit (a) derived from the (poly) alkylene glycol-containing monomer (A) and a structural unit (b) derived from the hydrophobic monomer (B). Have
    The hydrophobic monomer (B) has an ethylenically unsaturated group and has an octanol / water partition coefficient value (Log P value) of 1.0 to 8.0,
    In the chromatogram of the differential refractive index detector of gel permeation chromatography (GPC) measured for the copolymer, the areas of peak α and peak β defined below satisfy the following formula (2): A (poly) alkylene glycol-containing copolymer.
    α × 100 / (α + β) ≦ 3.0 (2)
    <Peak α and β>
    Peak α: A peak having a weight average molecular weight (Mw) larger than 200,000.
    Peak β: A peak having Mw of 200,000 or less.
  2. 前記疎水性単量体(B)は、不飽和カルボン酸とアルコールとのエステル類、芳香族ビニル系単量体、オレフィン系単量体、(メタ)アクリルアミド系単量体、マレイミド系単量体及び不飽和アルコールとカルボン酸とのエステル類からなる群より選択される少なくとも1種を含むことを特徴とする請求項1に記載の(ポリ)アルキレングリコール含有共重合体。 The hydrophobic monomer (B) is an ester of an unsaturated carboxylic acid and an alcohol, an aromatic vinyl monomer, an olefin monomer, a (meth) acrylamide monomer, or a maleimide monomer. The (poly) alkylene glycol-containing copolymer according to claim 1, further comprising at least one selected from the group consisting of esters of unsaturated alcohols and carboxylic acids.
  3. 前記(ポリ)アルキレングリコール含有共重合体は、不飽和カルボン酸系単量体(C)由来の構造単位(c)を有することを特徴とする請求項1又は2に記載の(ポリ)アルキレングリコール含有共重合体。 3. The (poly) alkylene glycol-containing copolymer according to claim 1 or 2, wherein the (poly) alkylene glycol-containing copolymer has a structural unit (c) derived from an unsaturated carboxylic acid monomer (C). Containing copolymer.
  4. 前記(ポリ)アルキレングリコール含有単量体(A)は、前記式(1)におけるzが0であることを特徴とする請求項1~3のいずれかに記載の(ポリ)アルキレングリコール含有共重合体。 4. The (poly) alkylene glycol-containing monomer (A) according to claim 1, wherein z in the formula (1) is 0. Coalescence.
  5. 請求項1~4のいずれかに記載の(ポリ)アルキレングリコール含有共重合体を含むことを特徴とするセメント混和剤。 A cement admixture comprising the (poly) alkylene glycol-containing copolymer according to any one of claims 1 to 4.
  6. 請求項1~4のいずれかに記載の(ポリ)アルキレングリコール含有共重合体とセメントとを含むことを特徴とするセメント組成物。 A cement composition comprising the (poly) alkylene glycol-containing copolymer according to any one of claims 1 to 4 and cement.
  7. セメント組成物を製造する方法であって、
    該製造方法は、請求項1~4のいずれかに記載の(ポリ)アルキレングリコール含有共重合体を水硬性材料に添加する工程を含むことを特徴とするセメント組成物の製造方法。
    A method for producing a cement composition comprising:
    The method for producing a cement composition, comprising the step of adding the (poly) alkylene glycol-containing copolymer according to any one of claims 1 to 4 to a hydraulic material.
PCT/JP2019/018551 2018-05-16 2019-05-09 (poly)alkylene glycol-containing copolymer WO2019221002A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020519594A JPWO2019221002A1 (en) 2018-05-16 2019-05-09 (Poly) alkylene glycol-containing copolymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-094599 2018-05-16
JP2018094599 2018-05-16

Publications (1)

Publication Number Publication Date
WO2019221002A1 true WO2019221002A1 (en) 2019-11-21

Family

ID=68539931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018551 WO2019221002A1 (en) 2018-05-16 2019-05-09 (poly)alkylene glycol-containing copolymer

Country Status (2)

Country Link
JP (1) JPWO2019221002A1 (en)
WO (1) WO2019221002A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113845326B (en) * 2021-10-22 2022-05-20 株洲宏信科技发展有限公司 Concrete anti-mud agent

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004519406A (en) * 2001-05-28 2004-07-02 株式会社日本触媒 Cement admixture and cement composition
JP2010209134A (en) * 2009-03-06 2010-09-24 Nippon Shokubai Co Ltd Polyoxyalkylene polymer and method of producing the same
JP2012171818A (en) * 2011-02-18 2012-09-10 Nippon Shokubai Co Ltd Cement admixture and cement composition
WO2014010572A1 (en) * 2012-07-13 2014-01-16 株式会社日本触媒 Polycarboxylic copolymer, cement dispersion agent, cement admixture, and cement composition
WO2018088529A1 (en) * 2016-11-11 2018-05-17 株式会社日本触媒 Polycarboxylic acid copolymer, concrete admixture, and concrete composition
JP2018154712A (en) * 2017-03-16 2018-10-04 株式会社日本触媒 Polycarboxylic acid-based copolymer, cement dispersion agent, concrete admixture, and concrete composition
JP2019085434A (en) * 2017-11-01 2019-06-06 株式会社日本触媒 Polycarboxylic acid-based copolymer, concrete admixture, and concrete composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004519406A (en) * 2001-05-28 2004-07-02 株式会社日本触媒 Cement admixture and cement composition
JP2010209134A (en) * 2009-03-06 2010-09-24 Nippon Shokubai Co Ltd Polyoxyalkylene polymer and method of producing the same
JP2012171818A (en) * 2011-02-18 2012-09-10 Nippon Shokubai Co Ltd Cement admixture and cement composition
WO2014010572A1 (en) * 2012-07-13 2014-01-16 株式会社日本触媒 Polycarboxylic copolymer, cement dispersion agent, cement admixture, and cement composition
WO2018088529A1 (en) * 2016-11-11 2018-05-17 株式会社日本触媒 Polycarboxylic acid copolymer, concrete admixture, and concrete composition
JP2018154712A (en) * 2017-03-16 2018-10-04 株式会社日本触媒 Polycarboxylic acid-based copolymer, cement dispersion agent, concrete admixture, and concrete composition
JP2019085434A (en) * 2017-11-01 2019-06-06 株式会社日本触媒 Polycarboxylic acid-based copolymer, concrete admixture, and concrete composition

Also Published As

Publication number Publication date
JPWO2019221002A1 (en) 2021-05-20

Similar Documents

Publication Publication Date Title
JP4874255B2 (en) Dispersants and novel lignin derivatives using kraft lignin
JP5769930B2 (en) Dispersant
JP5955386B2 (en) Polycarboxylic acid copolymer, cement dispersant, cement admixture, and cement composition
EP0995727B1 (en) Cement additive on the basis of acrylic copolymers
JP6012139B2 (en) Cement admixture and cement composition
JP2007076969A (en) Admixture composition for hydraulic material
JP5584638B2 (en) Cement admixture and cement composition
JP6145381B2 (en) (Poly) alkylene glycol block copolymer and use thereof
JP2007112703A (en) Polycarboxylic acid polymer for cement admixture and cement admixture
JP5707165B2 (en) Cement admixture and cement composition containing the same
WO2019221002A1 (en) (poly)alkylene glycol-containing copolymer
JP2020023422A (en) Additive for recycled aggregate-containing cement composition
JP5806558B2 (en) Dispersant
JP2004043280A (en) Cement admixture and method for manufacturing the same
JP4274838B2 (en) Cement admixture and method for producing the same
JP4883901B2 (en) Cement admixture
JP4497830B2 (en) Cement admixture and method for producing the same
JP6109240B2 (en) Cement admixture and cement composition
JP7160632B2 (en) Polycarboxylic acid copolymer
JP5581461B1 (en) Copolymer (salt) for cement admixture, method for producing the same, and cement composition using the same
JP2005118684A (en) Dispersant
JP2014031296A (en) Polycarboxylic acid-based copolymer for cement admixture
JP2006069859A (en) Cement admixture composition
JP2024012339A (en) Cement additive
JP4180740B2 (en) Process for producing polyalkylene glycol polycarboxylic acid polymer salt

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19803219

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020519594

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19803219

Country of ref document: EP

Kind code of ref document: A1