WO2019220794A1 - Vehicle wheel - Google Patents

Vehicle wheel Download PDF

Info

Publication number
WO2019220794A1
WO2019220794A1 PCT/JP2019/014203 JP2019014203W WO2019220794A1 WO 2019220794 A1 WO2019220794 A1 WO 2019220794A1 JP 2019014203 W JP2019014203 W JP 2019014203W WO 2019220794 A1 WO2019220794 A1 WO 2019220794A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring portion
outer ring
detection device
sensor
wheel
Prior art date
Application number
PCT/JP2019/014203
Other languages
French (fr)
Japanese (ja)
Inventor
克文 杉本
康久 神川
弘樹 西條
一生 本郷
鈴木 裕之
良 寺澤
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2019220794A1 publication Critical patent/WO2019220794A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B19/00Wheels not otherwise provided for or having characteristics specified in one of the subgroups of this group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R11/04Mounting of cameras operative during drive; Arrangement of controls thereof relative to the vehicle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/36Devices characterised by the use of optical means, e.g. using infrared, visible, or ultraviolet light

Definitions

  • This disclosure relates to wheels.
  • a topographic feature is specified by an in-vehicle ToF camera, a vehicle speed is specified, and a topographic feature and an expected speed of the vehicle when the vehicle reaches the topographic feature are described. Accordingly, it is described that the suspension parameters of the vehicle are automatically adjusted in advance.
  • a sensor such as a ToF camera is disposed on the vehicle body. This is due to the fact that the body part does not change its posture greatly, and therefore the sensor is arranged at a position where the posture change is small.
  • the rotating wheel is reflected on a sensor such as a ToF camera, and it is difficult to detect the state of the wheel. This is because, for example, it is assumed that the information on the movement of the driving part of the wheel becomes noise and affects the recognition of the external environment.
  • the driving torque of the driving wheel using a general wheel is reduced.
  • a wheel including an inner ring portion whose rotation is fixed, an outer ring portion that rotates with respect to the inner ring portion during traveling, and a detection device that detects external environment information.
  • FIG. 3 is a cross-sectional view showing a cross section taken along one-dot chain line I-I ′ in FIG. 2. It is a schematic diagram which shows the example which increased the number of sensors with respect to FIG. It is a schematic diagram which shows a mode that it determines that the outer ring
  • FIGS. 1 and 2 a schematic configuration of a hubless wheel 1000 according to an embodiment of the present disclosure will be described with reference to FIGS. 1 and 2.
  • the hubless wheel 1000 can be widely applied to a moving body including wheels, such as a robot leg structure, a bicycle, and a wheelchair.
  • the hubless wheel 1000 according to the present embodiment has a wide measurable range of the external environment, a wheel mechanism with a high degree of freedom of sensor arrangement, and a wheel capable of measuring the ground contact state of the entire wheel without applying a moment or the like to the measuring unit. It has a structure that achieves the mechanism simultaneously.
  • FIG. 1 is a perspective view showing the entire hubless wheel 1000.
  • the hubless wheel 1000 includes an outer ring portion 100 and an inner ring portion 200 that rotatably holds the outer ring portion 100.
  • a pneumatic tire may be used, or an airless tire may be used.
  • Hubless wheel 1000 has an opening at the center of inner ring portion 200. By configuring the wheel as the hubless wheel 1000, an opening can be provided in the inner ring portion 200 whose rotation is fixed.
  • a sensor 300 is provided in the opening. By providing the sensor 300 in the opening, it is possible to acquire various external environmental information such as the road surface condition and the situation in the forward direction of travel.
  • the sensor is arranged inside the wheel, and the environment is recognized by observing the external environment from the inside of the wheel using the sensor. Further, by measuring the outer ring portion 100 from the inner ring portion 200 using a sensor, information such as the ground contact state of the wheel is acquired. At this time, the hubless wheel 1000 is divided into an outer ring part 100 and an inner ring part 200, and a sensor is provided on the inner ring part 200 whose rotation is fixed, so that external environment information and information such as the grounding state of the outer ring part 100 can be reliably obtained. It is possible to detect.
  • FIG. 2 is a cross-sectional view of the hubless wheel 1000 and is a schematic view showing a cross section along a plane passing through the center of the outer ring portion 100 in the lateral width direction.
  • the hubless wheel 1000 has a structure divided into an outer ring portion 100 and an inner ring portion 200.
  • the inner ring part 200 is provided with a plurality of rotatable support parts (bearings) 210 along the inner periphery of the outer ring part 100.
  • the support portion 210 that contacts the inner surface of the outer ring portion 100 rotates.
  • the outer ring part 100 rotates with respect to the inner ring part 200 in a state where the outer ring part 100 is supported by the inner ring part 200.
  • the outer ring portion 100 is supported by the plurality of support portions 210 and freely rotates, while the inner ring portion 200 does not rotate.
  • illustration of components for driving the outer ring portion 100 such as a motor is omitted, it may be mounted on the inner ring portion 200.
  • the support part 210 which supports the outer ring part 100 is fixed to the inner ring part 200, the support part 210 may be fixed to the inner ring part 200 by an elastic body such as a suspension.
  • the sensor 300 is a sensor such as an image sensor (camera), a ToF (Time of Flight) sensor, or a distance measuring sensor.
  • the sensor 300 is arranged at a position where an external environment such as the ground surface or the front is taken into view, and observes the external environment.
  • the sensor 302 is disposed at a position where the outer ring portion 100 is put in the field of view, and measures the behavior of the outer ring portion 100.
  • the degree of freedom of arrangement of the sensors 300 and 302 can be improved, and the sensors can be installed at or near the wheels while suppressing noise and a reduction in the field of view. .
  • the grounding of the wheel can be accurately detected as will be described later.
  • no moment acts on the sensors 300 and 302 it is possible to detect the wheel driving situation and the generated force of the wheels.
  • the sensors 300 and 302 are hidden in the inner ring portion 200, the degree of freedom in the design surface is also improved.
  • the measurement may be performed separately for different purposes by the plurality of sensors 300 and 302, or may be performed for different purposes by using a single sensor.
  • a single sensor is also used, only one of the sensors 300 and 302 shown in FIG. 2 may be measured.
  • the sensors 300 and 302 may be electrostatic or magnetic sensors.
  • the operation depends on the state of contact with the ground, the relative speed, the surface roughness, the slipping state, and the like. This information can be acquired in advance by the sensors 300 and 302 to improve exercise performance.
  • FIG. 3 is a cross-sectional view showing a cross section taken along one-dot chain line II ′ in FIG.
  • a convex portion 212 or a concave portion 214 is provided on the outer peripheral surface of the support portion 210.
  • a concave portion 102 or a convex portion 104 corresponding to the convex portion 212 or the concave portion 214 is provided on the inner peripheral surface of the outer ring portion 100.
  • the convex portion 212 of the support portion 210 is engaged with the concave portion 102 of the outer ring portion 100, or the concave portion 214 of the support portion 210 is engaged with the convex portion 104 of the outer ring portion 100. With such a configuration, the outer ring portion 100 is suppressed from deviating from the support portion 210.
  • FIG. 4 is a schematic diagram showing an example in which the number of sensors is increased with respect to FIG.
  • sensors 304, 306 and 308 are further provided in the inner ring portion 200.
  • the external environment is observed and the outer ring portion 100 is measured from the sensor provided in the inner ring portion 200.
  • the external environment is observed using a sensor arranged at a position where the external environment can be measured from the inner ring part 200.
  • the torus shape realized by the hubless wheel structure is adopted, and the sensors 300 to 308 are arranged in the “hole (opening)” portion of the torus shape, so that the ground surface on both sides of the wheel is single. Or it recognizes simultaneously with several cameras.
  • the external environment information to be observed information on the front in the traveling direction and the road surface is assumed. As information ahead of the direction of travel, information about obstacles can be cited.
  • the environment recognition sensor 310 is disposed at a position where the front and the road surface can be recognized.
  • the shape of the inner ring portion 200 is determined so as to realize such an arrangement. In the present embodiment, a torus shape in which an opening is provided in the inner ring portion 200 is illustrated, but the inner ring portion 200 may have a disk shape in which no opening is provided.
  • the sensors 300 to 308 are provided on the inner ring part 200 whose rotation is fixed, and the area of the outer ring part 100 relative to the area recognized by the sensor can be suppressed. It can suppress and can recognize an external environment correctly.
  • the sensor provided in the inner ring portion 200 detects external environment information, so that the reflection of the outer ring portion 100 is reflected. Since it is not necessary to provide a separate cover or the like, it can be designed to be lightweight and space-saving. Although it is desirable that the number of sensors is small, the external environment may be recognized by a plurality of sensors.
  • FIG. 5 is a schematic diagram showing how the outer ring portion 100 is determined to be in contact with the ground.
  • the distance from the inner ring portion 200 to the outer ring portion 100 is measured by the sensor 302 in order to determine that the outer ring portion 100 is in contact with the ground.
  • the outer ring portion 100 bends and is reflected in the distance from the sensor 302 to the outer ring portion 100. Grounding determination can be performed by this detection.
  • the distance from the sensor 302 to the outer ring portion 100 is equal to or smaller than a predetermined threshold value, it is determined that the outer ring portion 100 is in contact with the road surface. Similarly, it can be detected that the outer ring portion 100 has collided with an object on the ground. In addition, the lateral shift of the outer ring portion 100 with respect to the traveling direction can be detected by the sensor 302.
  • FIG. 6 is a schematic diagram for explaining the skid determination. As shown in the drawing on the right side of FIG. 6, when the outer ring portion 100 is in contact with the road surface, the relative speed between the outer ring portion 100 and the road surface in the direction perpendicular to the rotation direction of the outer ring portion 100 is determined as long as the outer ring portion 100 does not slip. Is satisfied.
  • the information by the sensor for observing the surrounding environment and the information by the sensor for measuring the deformation of the outer ring portion can be referred to each other and used for abnormality detection. Further, information from a sensor that observes the surrounding environment may be used to improve the accuracy of the sensor that measures the deformation of the outer ring portion 100, and conversely, the latter may be used to improve the accuracy of the former.
  • FIG. 6 shows a case where the outer ring portion 100 is moved from the road surface to the left and right in the air. Only with the recognition function of the external environment, the difference between the case where the outer ring portion 100 moves away from the road surface and moves left and right in the air and the side slip cannot be determined. Therefore, a combination of recognition of the external environment and ground contact determination makes it possible to reliably perform the skid determination.
  • the distance measuring sensor By measuring the distance and speed in the vertical direction with respect to the ground surface and the wall surface by the distance measuring sensor, the time when the outer ring portion 100 contacts the ground is predicted.
  • the distance to the ground surface or wall surface when the outer ring portion 100 is grounded is acquired in advance as a specified value, the distance to the ground surface or wall surface measured by the distance measuring sensor becomes close to the specified value. It can be predicted that the outer ring portion 100 is grounded.
  • the detection threshold value of the ground determination by the sensor 302 is raised outside the time at which the grounding is predicted. It is possible to prevent erroneous detection of the ground contact determination.
  • information that can be measured both from the observed ground contact determination and the external environment may be used in parallel to detect the abnormality.
  • the amount of deformation of the outer ring portion 100 and the height in the vertical direction estimated from a sensor that recognizes the external environment can be compared to detect an abnormality in the outer ring portion 100 such as puncture or deformation.
  • the sensor may be installed not only on the inner ring portion 200 but also on the outside of the hubless wheel 1000 or on a body such as a robot to which the hubless wheel 1000 is attached.
  • peripheral devices of the sensor and a control system using the sensor may be incorporated in the inner ring portion 200 of the hubless wheel 1000.
  • the drive source of the outer ring portion 100 may be built in the inner ring portion 200.
  • the lateral force generated in the outer ring portion 100 can be estimated by observing the lateral distortion of the wheel by a sensor.
  • the lateral force of the outer ring portion 100 can be detected by providing a sensor for measuring strain on the support portion 210.
  • a sensor for measuring distortion may be provided in the inner ring portion 200 and the distortion of the inner ring portion 200 may be measured.
  • a special pattern may be arranged on the outer ring portion 100, and a force such as a lateral force generated in the outer ring portion 100 may be estimated by detecting the shape of the pattern.
  • the vertical load may be estimated from the amount of deformation of the outer ring portion 100 in the vertical direction.
  • An electrostatic or magnetic sensor may be used for behavior observation.
  • the measurement of the outer ring portion 100 may be performed by arranging sensors 302 for measuring the outer ring portion 100 at a plurality of locations. Further, as shown in FIG. 8, the sensor 302 for recognizing the outer ring portion 100 may be sufficiently separated from the inner periphery of the outer ring portion 100 and may also be used as an external environment recognition sensor.
  • a strain sensor or the like may be attached to the inner ring portion 200 or the support portion 210 of the outer ring portion 100, and the behavior measurement of the outer ring portion 100 or behavior measurement assistance may be performed.
  • the information on the driving part of the outer ring portion 100 is removed from the information obtained by the external environment observation for recognition of the external environment.
  • the recognition range may include a drive source for operating the outer ring portion 100 and a part of the drive portion of the outer ring portion 100 to monitor the behavior and abnormality of the outer ring portion 100.
  • the sensor 310 is provided outside the hubless wheel 1000, and the recognition range of the sensor 310 includes a drive source for operating the outer ring portion 100 and a part of the drive portion of the outer ring portion 100.
  • the recognition range of the sensor 310 includes a driving source for operating the outer ring portion 100 and driving of the outer ring portion 100. Part of the part is included.
  • the senor is mounted on the inner ring portion 200 of the hubless wheel 1000, and the state of the outer ring portion 100 and the external environment are recognized by the sensor. Thereby, it is possible to acquire information regarding the state of the outer ring portion 100 and external environmental information.
  • the detection device detects a state of a road surface on which the outer ring portion contacts the ground as the external environment information.
  • a plurality of the detection devices are provided, The wheel according to (2), wherein at least one detection device detects the external environment information, and at least one other detection device detects information related to the outer ring portion. (7) The wheel according to (2), wherein the detection device is provided in the inner ring portion and detects information related to the outer ring portion from the inside of the outer ring portion. (8) The wheel according to (7), wherein the detection device detects a distance to an inner surface of the outer ring portion. (9) The wheel according to (7) or (8), wherein the detection device detects a lateral shift of the outer ring portion with respect to a traveling direction. (10) The wheel according to (4), wherein the detection device detects a distance to the road surface.

Abstract

[Problem] To detect the state of a vehicle wheel and external environment information in an optimum manner. [Solution] The present disclosure provides a vehicle wheel comprising: an inner wheel portion of which rotation is fixed; an outer wheel portion which rotates relative to the inner wheel portion when running; and a detection device for detecting external environment information. With the configuration, it is possible to detect the state of a vehicle wheel and external environment information in an optimum manner.

Description

車輪Wheel
 本開示は、車輪に関する。 This disclosure relates to wheels.
 従来、例えば下記の特許文献1には、車載式ToFカメラによって地形的特徴を特定し、乗物の速度を特定し、地形的特徴と乗物が地形的特徴に到達するときの前記乗物の予想速度にしたがって、前もって前記乗物のサスペンションパラメータを自動的に調整することが記載されている。 Conventionally, for example, in Patent Document 1 below, a topographic feature is specified by an in-vehicle ToF camera, a vehicle speed is specified, and a topographic feature and an expected speed of the vehicle when the vehicle reaches the topographic feature are described. Accordingly, it is described that the suspension parameters of the vehicle are automatically adjusted in advance.
特開2015-133541号公報Japanese Patent Laying-Open No. 2015-133541
 上記特許文献1に記載されているような従来のシステムでは、車体にToFカメラなどのセンサが配置されている。これは、車体部分が姿勢を大きく変化しないため、姿勢変化の少ない箇所にセンサを配置することに起因する。 In the conventional system as described in Patent Document 1, a sensor such as a ToF camera is disposed on the vehicle body. This is due to the fact that the body part does not change its posture greatly, and therefore the sensor is arranged at a position where the posture change is small.
 しかしながら、このような配置では、回転する車輪がToFカメラなどのセンサに映り込んでしまうことになり、車輪の状態を検出することは困難である。例えば、車輪の駆動部分の動きの情報がノイズとなり、外部環境の認識に影響を及ぼすことが想定されるためである。 However, in such an arrangement, the rotating wheel is reflected on a sensor such as a ToF camera, and it is difficult to detect the state of the wheel. This is because, for example, it is assumed that the information on the movement of the driving part of the wheel becomes noise and affects the recognition of the external environment.
 また、車輪駆動によって運動する機械システムにおいて、車輪と地面との間に発生する力の計測や接地状態の計測を行うことを想定した場合、一般的な車輪を利用した駆動輪において、駆動トルクの影響を受けずに外力を測定するためには、駆動源が固定されるリンクより駆動輪に近い部位で計測を行うことが望ましい。 Also, in a mechanical system that moves by wheel driving, when it is assumed that the force generated between the wheel and the ground is measured or the ground contact state is measured, the driving torque of the driving wheel using a general wheel is reduced. In order to measure the external force without being affected, it is desirable to perform measurement at a location closer to the drive wheel than the link to which the drive source is fixed.
 そこで、車輪の外部環境情報を最適に検出することが求められていた。 Therefore, it was required to optimally detect the external environment information of the wheels.
 本開示によれば、回転が固定された内輪部と、走行時に前記内輪部に対して回転する外輪部と、外部環境情報を検出する検出装置と、を備える、車輪が提供される。 According to the present disclosure, there is provided a wheel including an inner ring portion whose rotation is fixed, an outer ring portion that rotates with respect to the inner ring portion during traveling, and a detection device that detects external environment information.
 以上説明したように本開示によれば、車輪の外部環境情報を最適に検出することができる。
 なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。
As described above, according to the present disclosure, it is possible to optimally detect the external environment information of the wheel.
Note that the above effects are not necessarily limited, and any of the effects shown in the present specification, or other effects that can be grasped from the present specification, together with or in place of the above effects. May be played.
ハブレスホイールの全体を示す斜視図である。It is a perspective view which shows the whole hubless wheel. ハブレスホイールの断面図であって、外輪部の横幅方向の中心を通る平面に沿った断面を示す模式図である。It is sectional drawing of a hubless wheel, Comprising: It is a schematic diagram which shows the cross section along the plane which passes along the center of the horizontal width direction of an outer ring | wheel part. 図2中の一点鎖線I-I’に沿った断面を示す断面図である。FIG. 3 is a cross-sectional view showing a cross section taken along one-dot chain line I-I ′ in FIG. 2. 図2に対して、センサの数を増やした例を示す模式図である。It is a schematic diagram which shows the example which increased the number of sensors with respect to FIG. 外輪部が地面に接地していることを判定する様子を示す模式図である。It is a schematic diagram which shows a mode that it determines that the outer ring | wheel part is contacting the ground. 横滑り判定を説明するための模式図である。It is a schematic diagram for demonstrating a skid determination. 外輪部を認識するためのセンサを複数箇所に配置した例を示す模式図である。It is a schematic diagram which shows the example which has arrange | positioned the sensor for recognizing an outer ring | wheel part in multiple places. 外輪部を認識するためのセンサを外部環境認識用のセンサと兼用にした例を示す模式図である。It is a schematic diagram which shows the example which used the sensor for recognizing an outer ring part also as the sensor for external environment recognition. センサの認識範囲に外輪部を動作させるための駆動源や外輪部の駆動部分の一部が含まれるようにした構成例を示す模式図である。It is a schematic diagram showing a configuration example in which a driving source for operating the outer ring portion and a part of the driving portion of the outer ring portion are included in the recognition range of the sensor. センサの認識範囲に外輪部を動作させるための駆動源や外輪部の駆動部分の一部が含まれるようにした構成例を示す模式図である。It is a schematic diagram showing a configuration example in which a driving source for operating the outer ring portion and a part of the driving portion of the outer ring portion are included in the recognition range of the sensor.
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.
 なお、説明は以下の順序で行うものとする。
 1.ハブレスホイールの構成例
 2.センサの配置例
 3.外輪部の支持構造
 4.センサによる検出の具体例
 5.変形例
The description will be made in the following order.
1. Configuration example of hubless wheel 2. Sensor arrangement example 3. Support structure of outer ring part 4. Specific example of detection by a sensor Modified example
 1.ハブレスホイールの構成例
 まず、図1、図2を参照して、本開示の一実施形態に係るハブレスホイール1000の概略構成について説明する。ハブレスホイール1000は、ロボットの脚の構造、自転車、車椅子など、車輪を備える移動体に広く適用することができる。本実施形態に係るハブレスホイール1000は、外部環境の計測可能範囲が広く、センサ配置自由度が高い車輪機構と、測定部にモーメント等を加えずに、車輪全体の接地状態を計測可能な車輪機構を同時に達成する構造を有する。
1. Configuration Example of Hubless Wheel First, a schematic configuration of a hubless wheel 1000 according to an embodiment of the present disclosure will be described with reference to FIGS. 1 and 2. The hubless wheel 1000 can be widely applied to a moving body including wheels, such as a robot leg structure, a bicycle, and a wheelchair. The hubless wheel 1000 according to the present embodiment has a wide measurable range of the external environment, a wheel mechanism with a high degree of freedom of sensor arrangement, and a wheel capable of measuring the ground contact state of the entire wheel without applying a moment or the like to the measuring unit. It has a structure that achieves the mechanism simultaneously.
 図1は、ハブレスホイール1000の全体を示す斜視図である。図1に示すように、ハブレスホイール1000は、外輪部100と、外輪部100を回転可能に保持する内輪部200を有している。外輪部100として、空気入りタイヤを使っても良いし、エアレスタイヤを利用しても良い。ハブレスホイール1000は、内輪部200の中央に開口が設けられている。ホイールをハブレスホイール1000として構成することで、回転が固定された内輪部200に開口を設けることができる。そして、開口にはセンサ300が設けられている。開口にセンサ300を設けることで、路面の状態や進行方向前方の状況など、外部の様々な環境情報を取得することができる。 FIG. 1 is a perspective view showing the entire hubless wheel 1000. As shown in FIG. 1, the hubless wheel 1000 includes an outer ring portion 100 and an inner ring portion 200 that rotatably holds the outer ring portion 100. As the outer ring portion 100, a pneumatic tire may be used, or an airless tire may be used. Hubless wheel 1000 has an opening at the center of inner ring portion 200. By configuring the wheel as the hubless wheel 1000, an opening can be provided in the inner ring portion 200 whose rotation is fixed. A sensor 300 is provided in the opening. By providing the sensor 300 in the opening, it is possible to acquire various external environmental information such as the road surface condition and the situation in the forward direction of travel.
 このように、本実施形態では、ハブレスホイール1000を利用することによって、車輪内部へのセンサの配置を実現し、センサを用いた車輪内部からの外部環境観測による環境認識を行う。また、センサを用いて内輪部200から外輪部100を計測することで、車輪の接地状態などの情報を取得する。この際、ハブレスホイール1000を外輪部100と内輪部200に分け、回転が固定された内輪部200にセンサを設けることで、外部環境情報と、外輪部100の接地状態などの情報を確実に検出することを可能とする。 Thus, in this embodiment, by using the hubless wheel 1000, the sensor is arranged inside the wheel, and the environment is recognized by observing the external environment from the inside of the wheel using the sensor. Further, by measuring the outer ring portion 100 from the inner ring portion 200 using a sensor, information such as the ground contact state of the wheel is acquired. At this time, the hubless wheel 1000 is divided into an outer ring part 100 and an inner ring part 200, and a sensor is provided on the inner ring part 200 whose rotation is fixed, so that external environment information and information such as the grounding state of the outer ring part 100 can be reliably obtained. It is possible to detect.
 図2は、ハブレスホイール1000の断面図であって、外輪部100の横幅方向の中心を通る平面に沿った断面を示す模式図である。図2に示すように、ハブレスホイール1000は、外輪部100と内輪部200に分割された構造を有する。内輪部200には、外輪部100の内周に沿って、複数の回転可能な支持部(軸受(ベアリング))210が設けられている。ハブレスホイール1000が路面を走行する際に、外輪部100が回転すると、外輪部100の内面に接触した支持部210が回転する。これにより、内輪部200に外輪部100が支持された状態で、外輪部100が内輪部200に対して回転する。 FIG. 2 is a cross-sectional view of the hubless wheel 1000 and is a schematic view showing a cross section along a plane passing through the center of the outer ring portion 100 in the lateral width direction. As shown in FIG. 2, the hubless wheel 1000 has a structure divided into an outer ring portion 100 and an inner ring portion 200. The inner ring part 200 is provided with a plurality of rotatable support parts (bearings) 210 along the inner periphery of the outer ring part 100. When the hubless wheel 1000 travels on the road surface, when the outer ring portion 100 rotates, the support portion 210 that contacts the inner surface of the outer ring portion 100 rotates. Thereby, the outer ring part 100 rotates with respect to the inner ring part 200 in a state where the outer ring part 100 is supported by the inner ring part 200.
 このように、外輪部100は複数の支持部210によって支持され、自在に回転する一方で、内輪部200は回転しない。なお、モータなど外輪部100を駆動する部品の図示は省略しているが、内輪部200に搭載しても良い。また、外輪部100を支持する支持部210は内輪部200に対して固定した構造しているが、支持部210はサスペンション等の弾性体によって内輪部200に対して固定されても良い。 Thus, the outer ring portion 100 is supported by the plurality of support portions 210 and freely rotates, while the inner ring portion 200 does not rotate. Although illustration of components for driving the outer ring portion 100 such as a motor is omitted, it may be mounted on the inner ring portion 200. Moreover, although the support part 210 which supports the outer ring part 100 is fixed to the inner ring part 200, the support part 210 may be fixed to the inner ring part 200 by an elastic body such as a suspension.
 2.センサの配置例
 図2に示すように、内輪部200には、複数のセンサ300,302が固定されている。センサ300は、画像センサ(カメラ)、ToF(Time of Flight)センサ、測距センサ等のセンサである。複数のセンサ300,302のうち、センサ300は、地表面や前方といった外部環境を視野に入れる位置に配置され、外部の環境観測を行う。また、センサ302は、外輪部100を視野に入れる位置に配置され、外輪部100の挙動を計測する。センサ300,302を内輪部200に配置することにより、センサ300,302の配置自由度を向上させることができ、ノイズや視界の減少を抑えつつ、センサを車輪又はその近傍に設置することができる。これにより、車体の姿勢によらず車輪近傍の状態を広く取得することが可能となる。また、センサ300,302にモーメントが作用しないため、後述するように車輪の接地を正確に検出できる。また、センサ300,302にモーメントが作用しないため、車輪駆動状況、車輪の発生力を検出することも可能である。また、センサ300,302は、内輪部200の中に隠れるため、意匠面における自由度も向上する。
2. Sensor Arrangement Example As shown in FIG. 2, a plurality of sensors 300 and 302 are fixed to the inner ring portion 200. The sensor 300 is a sensor such as an image sensor (camera), a ToF (Time of Flight) sensor, or a distance measuring sensor. Among the plurality of sensors 300 and 302, the sensor 300 is arranged at a position where an external environment such as the ground surface or the front is taken into view, and observes the external environment. The sensor 302 is disposed at a position where the outer ring portion 100 is put in the field of view, and measures the behavior of the outer ring portion 100. By arranging the sensors 300 and 302 on the inner ring portion 200, the degree of freedom of arrangement of the sensors 300 and 302 can be improved, and the sensors can be installed at or near the wheels while suppressing noise and a reduction in the field of view. . As a result, it is possible to widely acquire the state near the wheel regardless of the posture of the vehicle body. Further, since no moment acts on the sensors 300 and 302, the grounding of the wheel can be accurately detected as will be described later. Further, since no moment acts on the sensors 300 and 302, it is possible to detect the wheel driving situation and the generated force of the wheels. Moreover, since the sensors 300 and 302 are hidden in the inner ring portion 200, the degree of freedom in the design surface is also improved.
 なお、計測は、上述したように複数のセンサ300,302で異なる目的の計測を別々に行っても良いし、単一のセンサを兼用することで異なる目的の計測を行っても良い。単一のセンサを兼用する場合、図2に示すセンサ300,302のいずれか一方の計測のみでも良い。また、センサ300,302は静電式や磁気式のセンサであっても良い。 As described above, the measurement may be performed separately for different purposes by the plurality of sensors 300 and 302, or may be performed for different purposes by using a single sensor. When a single sensor is also used, only one of the sensors 300 and 302 shown in FIG. 2 may be measured. The sensors 300 and 302 may be electrostatic or magnetic sensors.
 本実施形態に係るハブレスホイール1000など、地面との摩擦によって動作する機械システムでは、その動作は、地面との接触状態、相対速度、地表面粗さ、滑り状態等の状態に依存し、これらの情報をセンサ300,302で予め取得することで運動性能を向上させることができる。 In a mechanical system that operates by friction with the ground, such as the hubless wheel 1000 according to the present embodiment, the operation depends on the state of contact with the ground, the relative speed, the surface roughness, the slipping state, and the like. This information can be acquired in advance by the sensors 300 and 302 to improve exercise performance.
 3.外輪部の支持構造
 図3は、図2中の一点鎖線I-I’に沿った断面を示す断面図である。図3に示すように、支持部210の外周面には、凸部212または凹部214が設けられている。外輪部100の内周面には、凸部212または凹部214に対応する凹部102または凸部104が設けられている。そして、支持部210の凸部212は外輪部100の凹部102に係合し、または、支持部210の凹部214は外輪部100の凸部104に係合している。このような構成により、外輪部100が支持部210から逸脱することが抑制される。
3. FIG. 3 is a cross-sectional view showing a cross section taken along one-dot chain line II ′ in FIG. As shown in FIG. 3, a convex portion 212 or a concave portion 214 is provided on the outer peripheral surface of the support portion 210. A concave portion 102 or a convex portion 104 corresponding to the convex portion 212 or the concave portion 214 is provided on the inner peripheral surface of the outer ring portion 100. The convex portion 212 of the support portion 210 is engaged with the concave portion 102 of the outer ring portion 100, or the concave portion 214 of the support portion 210 is engaged with the convex portion 104 of the outer ring portion 100. With such a configuration, the outer ring portion 100 is suppressed from deviating from the support portion 210.
 4.センサによる検出の具体例
 図4は、図2に対して、センサの数を増やした例を示す模式図である。図4に示す例では、センサ300,302に加えて、センサ304,306,308が更に内輪部200に設けられている。
4). Specific Example of Detection by Sensor FIG. 4 is a schematic diagram showing an example in which the number of sensors is increased with respect to FIG. In the example shown in FIG. 4, in addition to the sensors 300 and 302, sensors 304, 306 and 308 are further provided in the inner ring portion 200.
 上述のように本実施形態では、内輪部200に設けられたセンサから、外部環境の観測と外輪部100の計測を行う。外部環境の観測については、内輪部200から外部環境を計測可能な位置に配置したセンサを用いて行う。本実施形態では、ハブレスホイール構造によって実現されるトーラス形状を採用し、トーラス形状の「穴(開口)」の部分にセンサ300~308を配置することによって、車輪の両側の地表面を単一又は複数のカメラで同時に認識している。観測する外部環境情報としては、主として進行方向前方及び路面に関する情報を想定する。進行方向前方の情報として、障害物に関する情報等を挙げることができる。また、路面に関する情報として、路面までの距離、地表面粗さ、滑り状態等を上げることができる。このため、環境認識センサ310は、前方及び路面を認識可能な位置に配置されることが望ましく。そのような配置を実現するように内輪部200の形状が決定されている。なお、本実施形態では、内輪部200に開口を設けたトーラス形状を例示するが、内輪部200は開口が設けられていない円盤状であっても良い。 As described above, in this embodiment, the external environment is observed and the outer ring portion 100 is measured from the sensor provided in the inner ring portion 200. The external environment is observed using a sensor arranged at a position where the external environment can be measured from the inner ring part 200. In this embodiment, the torus shape realized by the hubless wheel structure is adopted, and the sensors 300 to 308 are arranged in the “hole (opening)” portion of the torus shape, so that the ground surface on both sides of the wheel is single. Or it recognizes simultaneously with several cameras. As the external environment information to be observed, information on the front in the traveling direction and the road surface is assumed. As information ahead of the direction of travel, information about obstacles can be cited. Further, as information on the road surface, the distance to the road surface, the ground surface roughness, the slipping state, and the like can be increased. For this reason, it is desirable that the environment recognition sensor 310 is disposed at a position where the front and the road surface can be recognized. The shape of the inner ring portion 200 is determined so as to realize such an arrangement. In the present embodiment, a torus shape in which an opening is provided in the inner ring portion 200 is illustrated, but the inner ring portion 200 may have a disk shape in which no opening is provided.
 また、外部環境を認識するにあたっては、センサ300~308で認識される情報から外輪部100の駆動部分に関する情報ができるだけ除かれていることが望ましい。外輪部100の駆動部分の動きの情報がノイズとなり、外部環境の認識に影響を及ぼすことが想定されるためである。本実施形態では、回転が固定された内輪部200にセンサ300~308を設け、センサが認識する領域に対する外輪部100の領域を抑えることができるため、外輪部100の駆動部分の動きの情報を抑制することができ、外部環境を正確に認識することができる。なお、センサ300~308で認識される情報から外輪部100の駆動部分に関する情報を除くことを考慮した際に、内輪部200に設けたセンサが外部環境情報を検出するため、外輪部100の映り込みを抑制することができ、別途カバー等を設ける必要が無いため、軽量、省スペースに設計できる。センサの個数は少ないほうが望ましいが、複数のセンサによって外部環境を認識しても良い。 Also, when recognizing the external environment, it is desirable that information regarding the driving portion of the outer ring portion 100 is removed as much as possible from information recognized by the sensors 300 to 308. This is because it is assumed that the information on the movement of the driving portion of the outer ring portion 100 becomes noise and affects the recognition of the external environment. In the present embodiment, the sensors 300 to 308 are provided on the inner ring part 200 whose rotation is fixed, and the area of the outer ring part 100 relative to the area recognized by the sensor can be suppressed. It can suppress and can recognize an external environment correctly. When considering that information related to the driving portion of the outer ring portion 100 is excluded from information recognized by the sensors 300 to 308, the sensor provided in the inner ring portion 200 detects external environment information, so that the reflection of the outer ring portion 100 is reflected. Since it is not necessary to provide a separate cover or the like, it can be designed to be lightweight and space-saving. Although it is desirable that the number of sensors is small, the external environment may be recognized by a plurality of sensors.
 一方で、外輪部100の計測は、内輪部200から外輪部100を計測可能な位置に配置したセンサ302によって行う。図5は、外輪部100が地面に接地していることを判定する様子を示す模式図である。図5では、外輪部100が地面に接地していることを判定するために、センサ302により内輪部200から外輪部100までの距離を測定している。外輪部100を支持する支持部210の間の区間において、外輪部100が地面に接地した場合、外輪部100がたわみ、センサ302から外輪部100までの距離に反映される。この検出によって接地判定を行うことができる。例えば、センサ302から外輪部100までの距離が所定のしきい値以下の場合、外輪部100が路面に接地したと判定する。同様にして、外輪部100が地面の上の物体に衝突したことを検知することもできる。また、センサ302により進行方向に対する外輪部100の横ずれを検出することもできる。 On the other hand, the measurement of the outer ring part 100 is performed by the sensor 302 arranged at a position where the outer ring part 100 can be measured from the inner ring part 200. FIG. 5 is a schematic diagram showing how the outer ring portion 100 is determined to be in contact with the ground. In FIG. 5, the distance from the inner ring portion 200 to the outer ring portion 100 is measured by the sensor 302 in order to determine that the outer ring portion 100 is in contact with the ground. In the section between the support portions 210 that support the outer ring portion 100, when the outer ring portion 100 contacts the ground, the outer ring portion 100 bends and is reflected in the distance from the sensor 302 to the outer ring portion 100. Grounding determination can be performed by this detection. For example, when the distance from the sensor 302 to the outer ring portion 100 is equal to or smaller than a predetermined threshold value, it is determined that the outer ring portion 100 is in contact with the road surface. Similarly, it can be detected that the outer ring portion 100 has collided with an object on the ground. In addition, the lateral shift of the outer ring portion 100 with respect to the traveling direction can be detected by the sensor 302.
 また、上述のようにして観測した外輪部100の接地判定情報と、ハブレスホイール1000の外部環境情報とから、これらの単体では計測できない車輪の地面に対する状態の測定も実現できる。 In addition, from the ground contact determination information of the outer ring portion 100 and the external environment information of the hubless wheel 1000 observed as described above, it is possible to measure the state of the wheel with respect to the ground that cannot be measured alone.
 例えば、接地判定情報と外部環境情報の双方を用いた機能実現の例として,車輪の横滑り判定が挙げられる。図6は、横滑り判定を説明するための模式図である。図6の右側の図に示すように、外輪部100が路面に接地していた場合、横滑りしない限りにおいて、外輪部100の回転方向と垂直な方向における、外輪部100と路面との相対速度には0となる拘束条件が成立する。 For example, as an example of function realization using both the ground contact determination information and the external environment information, there is a wheel slip determination. FIG. 6 is a schematic diagram for explaining the skid determination. As shown in the drawing on the right side of FIG. 6, when the outer ring portion 100 is in contact with the road surface, the relative speed between the outer ring portion 100 and the road surface in the direction perpendicular to the rotation direction of the outer ring portion 100 is determined as long as the outer ring portion 100 does not slip. Is satisfied.
 この時、センサを用いた外部環境認識により、画像処理等によって算出した、外輪部100の回転方向と垂直な方向における、外輪部100と路面との相対速度が上記拘束条件を満たしているか否かを用いて、横滑りの判定を実現できる。拘束条件を満たしている場合は横滑りが発生しておらず、拘束条件を満たしていない場合は横滑りが発生していることになる。このように、周囲の環境を観測するセンサによる情報と外輪部の変形を測定するセンサによる情報を相互に参照し、異常検出に利用することができる。また、周囲の環境を観測するセンサによる情報を、外輪部100の変形を測定するセンサの精度向上に利用しても良いし、逆に後者を前者の精度向上に利用しても良い。 At this time, whether or not the relative speed between the outer ring portion 100 and the road surface in the direction perpendicular to the rotation direction of the outer ring portion 100 calculated by image processing or the like by external environment recognition using a sensor satisfies the constraint condition. The side slip can be determined by using. If the constraint condition is satisfied, no skid has occurred, and if the constraint condition is not met, skid has occurred. As described above, the information by the sensor for observing the surrounding environment and the information by the sensor for measuring the deformation of the outer ring portion can be referred to each other and used for abnormality detection. Further, information from a sensor that observes the surrounding environment may be used to improve the accuracy of the sensor that measures the deformation of the outer ring portion 100, and conversely, the latter may be used to improve the accuracy of the former.
 なお、図6の左側の図では、外輪部100が路面から離れ、空中において左右に移動している場合を示している。外部環境の認識機能のみでは、外輪部100が路面から離れ、空中において左右に移動している場合と、横滑りとの相違を判別できない。従って、外部環境の認識と接地判定を組み合わせることで、横滑り判定を確実に行うことができる。 In addition, the figure on the left side of FIG. 6 shows a case where the outer ring portion 100 is moved from the road surface to the left and right in the air. Only with the recognition function of the external environment, the difference between the case where the outer ring portion 100 moves away from the road surface and moves left and right in the air and the side slip cannot be determined. Therefore, a combination of recognition of the external environment and ground contact determination makes it possible to reliably perform the skid determination.
 また、外部環境を認識するセンサとして、ToFセンサ、ステレオカメラ等の測距可能なセンサを利用することで、図5で説明したセンサ302による接地判定の誤検出を防ぐこともできる。測距センサによって、地表面や壁面に対する鉛直方向の距離、速度を計測することで、外輪部100が接地する時刻を予測する。外輪部100が接地する際の地表面や壁面までの距離を規定値として予め取得しておくことで、測距センサによって計測された地表面や壁面までの距離が、規定値と近くなった場合に外輪部100が接地することを予測できる。従って、この接地が予測される時刻の近傍以外では、外輪部100が接地する蓋然性が比較的低いため、接地が予測される時刻の近傍以外においてセンサ302による接地判定の検出閾値を引き上げることで、接地判定の誤検出を防止することができる。 In addition, by using a sensor capable of ranging, such as a ToF sensor or a stereo camera, as a sensor for recognizing the external environment, it is possible to prevent erroneous detection of the ground determination by the sensor 302 described in FIG. By measuring the distance and speed in the vertical direction with respect to the ground surface and the wall surface by the distance measuring sensor, the time when the outer ring portion 100 contacts the ground is predicted. When the distance to the ground surface or wall surface when the outer ring portion 100 is grounded is acquired in advance as a specified value, the distance to the ground surface or wall surface measured by the distance measuring sensor becomes close to the specified value. It can be predicted that the outer ring portion 100 is grounded. Therefore, since the probability that the outer ring portion 100 is grounded is relatively low except in the vicinity of the time at which the grounding is predicted, the detection threshold value of the ground determination by the sensor 302 is raised outside the time at which the grounding is predicted. It is possible to prevent erroneous detection of the ground contact determination.
 また、観測した接地判定と外部環境からともに計測できる情報を並列に利用して、異常検出に利用しても良い。例えば、外輪部100の変形量と外部環境を認識するセンサから推測される鉛直方向の高さを比較し、パンクや変形などの外輪部100の異常を検出することもできる。 In addition, information that can be measured both from the observed ground contact determination and the external environment may be used in parallel to detect the abnormality. For example, the amount of deformation of the outer ring portion 100 and the height in the vertical direction estimated from a sensor that recognizes the external environment can be compared to detect an abnormality in the outer ring portion 100 such as puncture or deformation.
 5.変形例
 次に、本実施形態の変形例について説明する。センサは、内輪部200上のみならず、ハブレスホイール1000の外部、またはハブレスホイール1000が装着されたロボットなどの胴体に設置されてもよい。
5. Modified Example Next, a modified example of the present embodiment will be described. The sensor may be installed not only on the inner ring portion 200 but also on the outside of the hubless wheel 1000 or on a body such as a robot to which the hubless wheel 1000 is attached.
 また、センサの視野が確保される限りにおいて、ハブレスホイール1000の内輪部200にセンサの周辺機器や、センサを利用した制御システムを内蔵しても良い。あるいは、外輪部100の駆動源を内輪部200に内蔵しても良い。 Further, as long as the field of view of the sensor is secured, peripheral devices of the sensor and a control system using the sensor may be incorporated in the inner ring portion 200 of the hubless wheel 1000. Alternatively, the drive source of the outer ring portion 100 may be built in the inner ring portion 200.
 また、センサによって車輪の横方向の歪みを観測することで、外輪部100に発生している横力の推定を行うこともできる。例えば、支持部210に歪みを計測するセンサを設けることで、外輪部100の横力を検出することができる。また、歪みを計測するセンサを内輪部200に設け、内輪部200の歪みを計測しても良い。あるいは外輪部100に特殊な模様を配置し、模様の形状を検出することによって、外輪部100に発生している横力などの力の推定を行っても良い。また、外輪部100の垂直方向の変形量から、垂直荷重を推定しても良い。また、挙動の観測に静電式や磁気式のセンサを使用しても良い。 Further, the lateral force generated in the outer ring portion 100 can be estimated by observing the lateral distortion of the wheel by a sensor. For example, the lateral force of the outer ring portion 100 can be detected by providing a sensor for measuring strain on the support portion 210. Further, a sensor for measuring distortion may be provided in the inner ring portion 200 and the distortion of the inner ring portion 200 may be measured. Alternatively, a special pattern may be arranged on the outer ring portion 100, and a force such as a lateral force generated in the outer ring portion 100 may be estimated by detecting the shape of the pattern. Further, the vertical load may be estimated from the amount of deformation of the outer ring portion 100 in the vertical direction. An electrostatic or magnetic sensor may be used for behavior observation.
 また、外輪部100の計測については、図7に示すように、複数箇所に外輪部100を計測するためのセンサ302を配置して実行しても良い。また、図8に示すように、外輪部100を認識するセンサ302を外輪部100の内周から十分に離し、外部環境認識用のセンサと兼用しても良い。 Moreover, as shown in FIG. 7, the measurement of the outer ring portion 100 may be performed by arranging sensors 302 for measuring the outer ring portion 100 at a plurality of locations. Further, as shown in FIG. 8, the sensor 302 for recognizing the outer ring portion 100 may be sufficiently separated from the inner periphery of the outer ring portion 100 and may also be used as an external environment recognition sensor.
 また、内輪部200、または外輪部100の支持部210などに歪みセンサ等を装着し、外輪部100の挙動計測、あるいは挙動計測の補助を行っても良い。また、上述した例では、外部環境認識のために、外輪部100の駆動部分の情報を外部環境観測により得られる情報から除く例を示したが、図9、図10に示すように、センサの認識範囲に外輪部100を動作させるための駆動源や外輪部100の駆動部分の一部が含まれるようにして、外輪部100の挙動や異常を監視しても良い。図9、図10は、ハブレスホイール1000の外部にセンサ310を設け、センサ310の認識範囲に外輪部100を動作させるための駆動源や外輪部100の駆動部分の一部が含まれるようにした構成例を示す模式図である。この場合、センサ310は、ハブレスホイール1000を支持する構造、例えば車体などに設置される。図9、図10では、センサ310(図9において不図示)の認識範囲を破線で示しており、センサ310の認識範囲には、外輪部100を動作させるための駆動源や外輪部100の駆動部分の一部が含まれている。この場合、センサ310で認識した外部環境情報が、駆動源や駆動部分の動きによるノイズの影響を受けることも想定されるが、外輪部100を動作させるための駆動源や外輪部100の駆動部分の情報をセンサ310で取得することができる。また、車両のように左右のハブレスホイール1000が設けられる場合は、左右輪の一方に設けられたセンサ310により、左右輪の他方の情報を取得することもできる。 Also, a strain sensor or the like may be attached to the inner ring portion 200 or the support portion 210 of the outer ring portion 100, and the behavior measurement of the outer ring portion 100 or behavior measurement assistance may be performed. In the above-described example, the information on the driving part of the outer ring portion 100 is removed from the information obtained by the external environment observation for recognition of the external environment. However, as shown in FIGS. The recognition range may include a drive source for operating the outer ring portion 100 and a part of the drive portion of the outer ring portion 100 to monitor the behavior and abnormality of the outer ring portion 100. 9 and 10, the sensor 310 is provided outside the hubless wheel 1000, and the recognition range of the sensor 310 includes a drive source for operating the outer ring portion 100 and a part of the drive portion of the outer ring portion 100. It is a schematic diagram which shows the example of a structure. In this case, the sensor 310 is installed in a structure that supports the hubless wheel 1000, such as a vehicle body. 9 and 10, the recognition range of the sensor 310 (not shown in FIG. 9) is indicated by a broken line. The recognition range of the sensor 310 includes a driving source for operating the outer ring portion 100 and driving of the outer ring portion 100. Part of the part is included. In this case, it is assumed that the external environment information recognized by the sensor 310 is affected by noise due to the movement of the drive source and the drive part, but the drive source for operating the outer ring part 100 and the drive part of the outer ring part 100 This information can be acquired by the sensor 310. When left and right hubless wheels 1000 are provided as in a vehicle, information on the other of the left and right wheels can be acquired by a sensor 310 provided on one of the left and right wheels.
 以上説明したように本実施形態によれば、ハブレスホイール1000の内輪部200にセンサを搭載し、センサにより外輪部100の状態や外部環境を認識するようにした。これにより、外輪部100の状態に関する情報、外部の環境情報を取得することが可能となる。 As described above, according to the present embodiment, the sensor is mounted on the inner ring portion 200 of the hubless wheel 1000, and the state of the outer ring portion 100 and the external environment are recognized by the sensor. Thereby, it is possible to acquire information regarding the state of the outer ring portion 100 and external environmental information.
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。 The preferred embodiments of the present disclosure have been described in detail above with reference to the accompanying drawings, but the technical scope of the present disclosure is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field of the present disclosure can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that it belongs to the technical scope of the present disclosure.
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。 In addition, the effects described in this specification are merely illustrative or illustrative, and are not limited. That is, the technology according to the present disclosure can exhibit other effects that are apparent to those skilled in the art from the description of the present specification in addition to or instead of the above effects.
 なお、以下のような構成も本開示の技術的範囲に属する。
(1) 回転が固定された内輪部と、
 走行時に前記内輪部に対して回転する外輪部と、
 外部環境情報を検出する検出装置と、
 を備える、車輪。
(2) 前記検出装置は、前記外部環境情報に加えて、前記外輪部に関する情報を検出する、前記(1)に記載の車輪。
(3) 前記検出装置は、前記内輪部に設けられた、前記(1)又は(2)に記載の車輪。
(4) 前記検出装置は、前記外輪部が接地する路面の状況を前記外部環境情報として検出する、前記(1)~(3)のいずれかに記載の車輪。
(5) 前記検出装置は、進行方向前方の状況を前記外部環境情報として検出する、前記(1)~(4)のいずれかに記載の車輪。
(6) 複数の前記検出装置が設けられ、
 少なくとも1つの前記検出装置は前記外部環境情報を検出し、少なくとも1つの他の前記検出装置は前記外輪部に関する情報を検出する、前記(2)に記載の車輪。
(7) 前記検出装置は、前記内輪部に設けられ、前記外輪部に関する情報を前記外輪部の内側から検出する、前記(2)に記載の車輪。
(8) 前記検出装置は、前記外輪部の内面までの距離を検出する、前記(7)に記載の車輪。
(9) 前記検出装置は、進行方向に対する前記外輪部の横ずれを検出する、前記(7)又は(8)に記載の車輪。
(10) 前記検出装置は、前記路面までの距離を検出する、前記(4)に記載の車輪。
(11) 前記外輪部は輪状をなし、前記内輪部の外周に設けられ、前記内輪部の外周に対して回転する、前記(1)~(10)のいずれかに記載の車輪。
(12) 前記外輪部の内周面が前記内輪部の外周面に対して移動することで、前記外輪部が前記内輪部に対して回転し、
 前記内輪部は、前記外輪部の内周面を支持する複数の支持部を有する、前記(11)に記載の車輪。
(13) 前記支持部は、前記外輪部の内周面の前記移動に伴い回転する、前記(12)に記載の車輪。
(14) 前記内輪部には開口が設けられ、前記検出装置は前記開口の縁に設けられた、前記(1)~(13)のいずれかに記載の車輪。
The following configurations also belong to the technical scope of the present disclosure.
(1) an inner ring portion with fixed rotation;
An outer ring that rotates relative to the inner ring during travel;
A detection device for detecting external environment information;
With wheels.
(2) The wheel according to (1), wherein the detection device detects information related to the outer ring portion in addition to the external environment information.
(3) The wheel according to (1) or (2), wherein the detection device is provided in the inner ring portion.
(4) The wheel according to any one of (1) to (3), wherein the detection device detects a state of a road surface on which the outer ring portion contacts the ground as the external environment information.
(5) The wheel according to any one of (1) to (4), wherein the detection device detects a situation ahead in a traveling direction as the external environment information.
(6) A plurality of the detection devices are provided,
The wheel according to (2), wherein at least one detection device detects the external environment information, and at least one other detection device detects information related to the outer ring portion.
(7) The wheel according to (2), wherein the detection device is provided in the inner ring portion and detects information related to the outer ring portion from the inside of the outer ring portion.
(8) The wheel according to (7), wherein the detection device detects a distance to an inner surface of the outer ring portion.
(9) The wheel according to (7) or (8), wherein the detection device detects a lateral shift of the outer ring portion with respect to a traveling direction.
(10) The wheel according to (4), wherein the detection device detects a distance to the road surface.
(11) The wheel according to any one of (1) to (10), wherein the outer ring portion has a ring shape, is provided on an outer periphery of the inner ring portion, and rotates with respect to an outer periphery of the inner ring portion.
(12) When the inner peripheral surface of the outer ring portion moves relative to the outer peripheral surface of the inner ring portion, the outer ring portion rotates with respect to the inner ring portion,
The said inner ring | wheel part is a wheel as described in said (11) which has a some support part which supports the internal peripheral surface of the said outer ring | wheel part.
(13) The wheel according to (12), wherein the support portion rotates with the movement of the inner peripheral surface of the outer ring portion.
(14) The wheel according to any one of (1) to (13), wherein an opening is provided in the inner ring portion, and the detection device is provided at an edge of the opening.
 100  外輪部
 200  内輪部
 210  支持部
 300,302,304,306,308,310  センサ
 1000 ハブレスホイール
DESCRIPTION OF SYMBOLS 100 Outer ring part 200 Inner ring part 210 Support part 300,302,304,306,308,310 Sensor 1000 Hubless wheel

Claims (14)

  1.  回転が固定された内輪部と、
     走行時に前記内輪部に対して回転する外輪部と、
     外部環境情報を検出する検出装置と、
     を備える、車輪。
    An inner ring with fixed rotation,
    An outer ring that rotates relative to the inner ring during travel;
    A detection device for detecting external environment information;
    With wheels.
  2.  前記検出装置は、前記外部環境情報に加えて、前記外輪部に関する情報を検出する、請求項1に記載の車輪。 The wheel according to claim 1, wherein the detection device detects information related to the outer ring portion in addition to the external environment information.
  3.  前記検出装置は、前記内輪部に設けられた、請求項1に記載の車輪。 The wheel according to claim 1, wherein the detection device is provided in the inner ring portion.
  4.  前記検出装置は、前記外輪部が接地する路面の状況を前記外部環境情報として検出する、請求項1に記載の車輪。 The wheel according to claim 1, wherein the detection device detects a state of a road surface on which the outer ring portion contacts the ground as the external environment information.
  5.  前記検出装置は、進行方向前方の状況を前記外部環境情報として検出する、請求項1に記載の車輪。 The wheel according to claim 1, wherein the detection device detects a situation ahead of the traveling direction as the external environment information.
  6.  複数の前記検出装置が設けられ、
     少なくとも1つの前記検出装置は前記外部環境情報を検出し、少なくとも1つの他の前記検出装置は前記外輪部に関する情報を検出する、請求項2に記載の車輪。
    A plurality of the detection devices are provided;
    The wheel according to claim 2, wherein at least one detection device detects the external environment information, and at least one other detection device detects information related to the outer ring portion.
  7.  前記検出装置は、前記内輪部に設けられ、前記外輪部に関する情報を前記外輪部の内側から検出する、請求項2に記載の車輪。 The wheel according to claim 2, wherein the detection device is provided in the inner ring portion and detects information related to the outer ring portion from the inside of the outer ring portion.
  8.  前記検出装置は、前記外輪部の内面までの距離を検出する、請求項7に記載の車輪。 The wheel according to claim 7, wherein the detection device detects a distance to an inner surface of the outer ring portion.
  9.  前記検出装置は、進行方向に対する前記外輪部の横ずれを検出する、請求項7に記載の車輪。 The wheel according to claim 7, wherein the detection device detects a lateral shift of the outer ring portion with respect to a traveling direction.
  10.  前記検出装置は、前記路面までの距離を検出する、請求項4に記載の車輪。 The wheel according to claim 4, wherein the detection device detects a distance to the road surface.
  11.  前記外輪部は輪状をなし、前記内輪部の外周に設けられ、前記内輪部の外周に対して回転する、請求項1に記載の車輪。 The wheel according to claim 1, wherein the outer ring portion has a ring shape, is provided on an outer periphery of the inner ring portion, and rotates with respect to an outer periphery of the inner ring portion.
  12.  前記外輪部の内周面が前記内輪部の外周面に対して移動することで、前記外輪部が前記内輪部に対して回転し、
     前記内輪部は、前記外輪部の内周面を支持する複数の支持部を有する、請求項11に記載の車輪。
    When the inner peripheral surface of the outer ring portion moves relative to the outer peripheral surface of the inner ring portion, the outer ring portion rotates with respect to the inner ring portion,
    The wheel according to claim 11, wherein the inner ring portion includes a plurality of support portions that support an inner peripheral surface of the outer ring portion.
  13.  前記支持部は、前記外輪部の内周面の前記移動に伴い回転する、請求項12に記載の車輪。 The wheel according to claim 12, wherein the support portion rotates with the movement of the inner peripheral surface of the outer ring portion.
  14.  前記内輪部には開口が設けられ、前記検出装置は前記開口の縁に設けられた、請求項1に記載の車輪。 The wheel according to claim 1, wherein an opening is provided in the inner ring portion, and the detection device is provided at an edge of the opening.
PCT/JP2019/014203 2018-05-14 2019-03-29 Vehicle wheel WO2019220794A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-093049 2018-05-14
JP2018093049A JP2021121510A (en) 2018-05-14 2018-05-14 Wheel

Publications (1)

Publication Number Publication Date
WO2019220794A1 true WO2019220794A1 (en) 2019-11-21

Family

ID=68540182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014203 WO2019220794A1 (en) 2018-05-14 2019-03-29 Vehicle wheel

Country Status (2)

Country Link
JP (1) JP2021121510A (en)
WO (1) WO2019220794A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113954762A (en) * 2021-11-19 2022-01-21 江苏大学 Fixing device of instrument is shot to tire inboard
CN114408082A (en) * 2022-01-27 2022-04-29 四川卓能智控科技有限公司 Hollow ring wheel type riding vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156269A (en) * 2007-12-25 2009-07-16 Ntn Corp Bearing device for wheel
JP2009269590A (en) * 2008-04-11 2009-11-19 Nsk Ltd Caster device and wheel type robot
JP2013116689A (en) * 2011-12-05 2013-06-13 Ntn Corp Bearing device for wheel and method of manufacturing the same
JP2017013632A (en) * 2015-07-01 2017-01-19 地方独立行政法人東京都立産業技術研究センター Wheel structure
JP2018070094A (en) * 2016-11-04 2018-05-10 錢立生 Roller unit for cart

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156269A (en) * 2007-12-25 2009-07-16 Ntn Corp Bearing device for wheel
JP2009269590A (en) * 2008-04-11 2009-11-19 Nsk Ltd Caster device and wheel type robot
JP2013116689A (en) * 2011-12-05 2013-06-13 Ntn Corp Bearing device for wheel and method of manufacturing the same
JP2017013632A (en) * 2015-07-01 2017-01-19 地方独立行政法人東京都立産業技術研究センター Wheel structure
JP2018070094A (en) * 2016-11-04 2018-05-10 錢立生 Roller unit for cart

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113954762A (en) * 2021-11-19 2022-01-21 江苏大学 Fixing device of instrument is shot to tire inboard
CN113954762B (en) * 2021-11-19 2024-04-09 江苏大学 Fixing device of tire inside shooting instrument
CN114408082A (en) * 2022-01-27 2022-04-29 四川卓能智控科技有限公司 Hollow ring wheel type riding vehicle

Also Published As

Publication number Publication date
JP2021121510A (en) 2021-08-26

Similar Documents

Publication Publication Date Title
WO2019220794A1 (en) Vehicle wheel
JP5498172B2 (en) Sensor misalignment detection and measurement system
JP3016047B2 (en) Position Estimation Method of Contrast Obstacle in Vehicle
US20180173224A1 (en) Vehicle and a control method thereof
JP5012675B2 (en) Tire attitude control apparatus and method
US20090234591A1 (en) Method for Calculating Forces Acting on the Footprint Area of a Tyre and Apparatus for Calculating Said Forces
JP2007030700A (en) Parking support device
JP2010023546A (en) Device and method for detecting decrease in tire air pressure, and program for detecting decrease in tire air pressure
JP6386412B2 (en) Transport vehicle
JP6687113B2 (en) Wheel with sensing device
CN110244292A (en) For determining the method and system at the direction angle of mobile object
CN110244293A (en) For determining the method and system at the direction angle of mobile object
WO2016006233A1 (en) Drive control system, automobile, and drive control method
JP4635667B2 (en) Wheel lift state determination device, vehicle rollover avoidance device, vehicle rollover resistance evaluation device, wheel lift state determination method, vehicle rollover avoidance method, and vehicle rollover resistance evaluation method
JP2016206084A (en) Obstacle detection device for vehicle
US20060219000A1 (en) Method of detecting longitudinal force of tire and longitudinal force detecting apparatus used therein
JP4939210B2 (en) Tire longitudinal force detection method and pneumatic tire used therefor
JP7133458B2 (en) Sound source identification method
KR20230161387A (en) Road condition diagnosis system and wheel bearing provided therewith
US20140331790A1 (en) Wheel reaction force detecting apparatus
JP6721134B2 (en) Tire assembly and tire deformation state determination system
US9475351B2 (en) Intelligent tire system
KR101521841B1 (en) Right Side And Left Side Distinction Method Using TPMS And Distiction Device Thereof
JP4363103B2 (en) Hub unit with sensor
KR101571109B1 (en) Position Distiction Method Using TPMS And Position Distiction Device Thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19803753

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19803753

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP