WO2016006233A1 - Drive control system, automobile, and drive control method - Google Patents

Drive control system, automobile, and drive control method Download PDF

Info

Publication number
WO2016006233A1
WO2016006233A1 PCT/JP2015/003428 JP2015003428W WO2016006233A1 WO 2016006233 A1 WO2016006233 A1 WO 2016006233A1 JP 2015003428 W JP2015003428 W JP 2015003428W WO 2016006233 A1 WO2016006233 A1 WO 2016006233A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
automobile
sound wave
friction coefficient
unit
Prior art date
Application number
PCT/JP2015/003428
Other languages
French (fr)
Japanese (ja)
Inventor
順昭 小俣
Original Assignee
高周波粘弾性株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 高周波粘弾性株式会社 filed Critical 高周波粘弾性株式会社
Publication of WO2016006233A1 publication Critical patent/WO2016006233A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/172Determining control parameters used in the regulation, e.g. by calculations involving measured or detected parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/14Adaptive cruise control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/12Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present invention relates to an operation control device, an automobile, and an operation control method, and more particularly to an operation control device, an automobile, and an operation control method for controlling the operation of an automobile based on a friction coefficient of a tire.
  • Patent Document 1 discloses a technique for slowly decelerating an automobile during turning when the grip state of the tire is close to the limit of turning performance.
  • the grip state of the tire is estimated to be closer to the limit of turning performance as the slip ratio of the wheel is higher.
  • Patent Document 2 discloses a technique for controlling a transmission gear ratio when a tire grip force is reduced.
  • Patent Document 3 discloses a technique for measuring friction characteristics in a viscoelastic body such as a tire.
  • the grip force of automobile tires is reduced not only due to road surface conditions, but also due to deterioration of the tire itself (particularly, a reduction in the friction coefficient of the tire). Therefore, measuring the deterioration of the tire is important for safely controlling the running of the automobile.
  • Patent Document 2 does not specifically describe a method for measuring a decrease in the grip force of a tire.
  • the present invention has been made to solve such problems, and provides a driving control device, a car, and a driving control method capable of controlling driving of a car by appropriately reflecting deterioration of a tire.
  • the purpose is to do.
  • the operation control apparatus includes a measurement sensor, a viscoelastic characteristic calculation unit, a friction coefficient calculation unit, and an operation control unit.
  • the measurement sensor measures a measurement amount related to viscoelastic characteristics of the tire of the automobile.
  • a viscoelastic characteristic calculation part calculates the viscoelastic characteristic of a tire using the measured quantity which the measurement sensor measured.
  • the friction coefficient calculating unit calculates the friction coefficient of the tire using the viscoelastic characteristic calculated by the viscoelastic characteristic calculating unit.
  • the driving control unit controls driving of the automobile based on the tire friction coefficient calculated by the friction coefficient calculating unit.
  • the vehicle driving control method includes the following steps (a) to (d).
  • the technology according to the present invention can accurately measure the deterioration of the tire and control the driving of the automobile based on the measurement result.
  • a driving control device capable of appropriately controlling the driving of the automobile by reflecting the deterioration of the tire.
  • FIG. 1 is a block diagram illustrating a configuration example of an automobile equipped with an operation control apparatus according to a first embodiment.
  • FIG. 3 is a block diagram illustrating a configuration example of a measurement sensor and a viscoelastic property calculation unit according to the first embodiment. It is the figure which showed an example which provided the measurement sensor in the tire of the motor vehicle in Embodiment 1.
  • FIG. 6 is a diagram for explaining a method of calculating viscoelastic characteristics in Embodiment 1.
  • FIG. 6 is a diagram for explaining a method of calculating viscoelastic characteristics in Embodiment 1.
  • FIG. FIG. 3 is a block diagram illustrating a configuration example of a friction coefficient calculation unit according to the first embodiment.
  • FIG. 3 is a flowchart illustrating an example of processing of the operation control apparatus according to the first embodiment.
  • 10 is a diagram for explaining a method for calculating viscoelastic characteristics in Embodiment 3.
  • FIG. 10 is a diagram for explaining a method for calculating viscoelastic characteristics in Embodiment 3.
  • each element of the automobile described in the following figure as a functional block for performing various processes can be configured by hardware and a circuit such as a memory or other IC (Integrated Circuit). Can be realized by a program loaded in a memory.
  • FIG. 1 is a block diagram illustrating a configuration example of an automobile 1 according to the first embodiment.
  • the automobile 1 includes a driving control device 10, a radar sensor 15, a drive unit 16, a brake unit 17, a steering unit 18, and a display unit 19.
  • the operation control device 10 is a device that is mounted on the automobile 1 and controls the operation of the automobile 1.
  • the operation control apparatus 10 includes a measurement sensor 11, a viscoelastic characteristic calculation unit 12, a friction coefficient calculation unit 13, and an operation control unit 14.
  • a measurement sensor 11 a measurement sensor 11
  • a viscoelastic characteristic calculation unit 12 a viscoelastic characteristic calculation unit 13
  • an operation control unit 14 a control unit 14
  • each part of the operation control apparatus 10 will be described.
  • the measurement sensor 11 measures a measurement amount related to the viscoelastic characteristics of the tire of the automobile 1 (not shown in FIG. 1).
  • the tire measured by the measurement sensor 11 may be any one of a plurality of (for example, four) tires included in the automobile 1 or may be a plurality of tires. Further, the portion of the tire measured by the measurement sensor 11 may be any portion of the tire. However, in order to accurately determine the friction deterioration, it is more preferable to measure the tread portion of the tire.
  • the viscoelastic property calculation unit 12 calculates the viscoelastic property of the tire using the measurement amount measured by the measurement sensor 11.
  • FIG. 2 is a block diagram illustrating a configuration example of the measurement sensor 11 and the viscoelastic property calculation unit 12.
  • the measurement sensor 11 includes a sound wave signal generation unit 20 and a contact unit 21.
  • the sound wave signal generation unit 20 generates an electric signal of incident sound waves and outputs the generated electric signal to the contact unit 21.
  • This incident sound wave is a sound wave signal incident on the tire T, and is used to calculate the viscoelastic characteristics of the tire T.
  • the sound wave signal generation unit 20 receives the electric signal of the reflected sound wave acquired by the contact unit 21 and outputs the received electric signal to the viscoelastic characteristic calculation unit 12.
  • This reflected sound wave is a sound wave that is generated when the incident sound wave is reflected by the tire T.
  • the contact unit 21 contacts the tire T of the automobile, radiates the incident sound wave generated by the sound wave signal generation unit 20 to the tire T, and acquires the reflected sound wave.
  • the sound wave signal generation unit 20 includes a drive waveform generator 22, a direction matching unit 23, and a high frequency amplifier 24 in detail. Hereinafter, each part will be described.
  • the drive waveform generator 22 generates an electrical signal (drive waveform) for generating an incident sound wave in accordance with a sound wave emission instruction from the viscoelastic property calculation unit 12 and also directs the generated electric signal of the incident sound wave in a direction. Output to the matching unit 23.
  • Specific examples of the incident sound wave incident on the tire T include a pulsed sound wave and a sound wave including a predetermined frequency component.
  • the drive waveform generator 22 outputs a trigger signal indicating the output timing of the generated electric signal to the high-frequency amplifier 24 when the electric signal is generated and output.
  • the direction matching unit 23 is connected to the drive waveform generator 22, the high frequency amplifier 24, and the transducer 25.
  • the direction matching unit 23 outputs the electric signal of the incident sound wave supplied from the drive waveform generator 22 to the transducer 25 and outputs the electric signal of the reflected sound wave supplied from the transducer 25 to the high frequency amplifier 24.
  • the direction matching unit 23 adjusts the transmission direction of the signal so that the electric signal output from the drive waveform generator 22 is not output to the high frequency amplifier 24.
  • the high frequency amplifier 24 is supplied with an electric signal of a reflected sound wave from the direction matching unit 23.
  • the high frequency amplifier 24 amplifies a high frequency component in the supplied electric signal with a predetermined amplification factor. Then, the high frequency amplifier 24 outputs the amplified electric signal to the time data memory unit 27 of the viscoelastic characteristic calculation unit 12.
  • the high-frequency component in the electric signal amplified by the high-frequency amplifier 24 includes a measurement amount necessary for calculating the viscoelastic characteristics.
  • the high frequency amplifier 24 starts receiving the electric signal supplied from the transducer 25 after receiving the trigger signal from the drive waveform generator 22. By this processing, the high frequency amplifier 24 does not operate during a period in which the measurement of the viscoelastic characteristics of the tire T is not performed. Therefore, unnecessary operations of the high frequency amplifier 24 can be suppressed.
  • the contact part 21 includes a transducer 25 and a delay material 26.
  • the contact portion 21 includes a transducer 25 and a delay material 26.
  • the transducer 25 is constituted by a piezoelectric element, for example.
  • the transducer 25 is attached so as to contact the delay member 26 and to be connected to the direction aligner 23.
  • the transducer 25 converts the supplied electric signal into a sound wave.
  • This electrical signal is an electrical signal output from the drive waveform generator 22.
  • the converted sound wave is emitted to the delay material 26.
  • the transducer 25 converts the reflected sound wave into an electrical signal and outputs the electrical signal to the direction matching unit 23.
  • the drive waveform generator 22, the direction matching unit 23, and the transducer 25 function as a radiating unit that outputs incident sound waves to the tire T.
  • the direction matching unit 23, the high-frequency amplifier 24, and the transducer 25 have the incident sound waves being tire T. It can be said that it functions as a receiving unit that receives a reflected sound wave that is generated by being reflected by the laser beam.
  • the delay member 26 is provided so that one surface thereof is in close contact with the transducer 25 and the other surface facing the one surface is in contact with the tire T. Since the delay member 26 is arranged in this way, the incident sound wave incident from the transducer 25 is propagated to the tire T, and the reflected sound wave generated by the reflection of the incident sound wave by the tire T can be propagated to the transducer 25. it can. When the propagation length of the delay member 26 is increased, the arrival time of the sound wave is further delayed. Therefore, by increasing the propagation length of the delay member 26, it is possible to increase the time from when the transducer 25 radiates the incident sound wave to when it receives the reflected sound wave. Therefore, by increasing the propagation length of the delay member 26, the transducer 25 can be prevented from receiving the reflected sound wave while the transducer 25 is emitting the incident sound wave.
  • FIG. 3 is a view showing an example in which the measurement sensor 11 is provided on the tire T of the automobile.
  • FIG. 3 shows an internal configuration diagram of the tire T.
  • the measurement amount related to the viscoelastic characteristics of the tire T can be measured by incorporating the measurement sensor 11 inside the tire T.
  • the contact portion 21 in the measurement sensor 11 is provided on the back surface of the tire T, and is preferably provided between the carcass and the tread rubber.
  • the sound wave signal generation unit 20 may be provided on a rim (wheel) of the tire T.
  • the viscoelastic property calculation unit 12 includes a time data memory unit 27, a reference value storage unit 28, and a calculation unit 29.
  • the viscoelastic characteristic calculation unit 12 includes a time data memory unit 27, a reference value storage unit 28, and a calculation unit 29.
  • each part will be described.
  • the time waveform of the electrical signal of the reflected sound wave supplied from the high frequency amplifier 24 of the measurement sensor 11 is stored in the time data memory unit 27 at a predetermined cycle.
  • the time data memory unit 27 can change the cycle for storing the time waveform based on the control of the calculation unit 29.
  • the reference value storage unit 28 stores in advance a reference value necessary for calculating the viscoelastic characteristics of the tire T.
  • This reference value is data of an amplitude value and a phase at a frequency to be detected for viscoelastic characteristics. Details of the reference value will be described later.
  • the calculation unit 29 reads out the reference value stored in the reference value storage unit 28.
  • the calculation unit 29 controls the data measurement process of the measurement sensor 11. Further, the calculation unit 29 calculates the viscoelastic characteristics of the tire T based on the reflected sound wave acquired by the measurement of the measurement sensor 11.
  • the calculation unit 29 when the calculation unit 29 outputs a sound wave radiation instruction to the drive waveform generator 22, the drive waveform generator 22 generates an electrical signal for generating an incident sound wave in accordance with the radiation instruction, It outputs to the direction matching device 23. In this way, the calculation unit 29 starts measurement by the measurement sensor 11.
  • the calculation unit 29 reads the data.
  • the calculation unit 29 performs waveform analysis processing in a frequency domain such as FFT (Fast Fourier Transformation) processing, for example, and acquires an amplitude value and a phase at a frequency to be detected.
  • the frequency used as a detection object may be one, and plural may be sufficient as it.
  • the calculation unit 29 reads the reference value stored in the reference value storage unit 28, and the reference value and the amplitude value and phase at the frequency that is the detection target of the reflected sound wave stored in the time data memory unit 27. Based on the above, viscoelastic characteristics of the tire T are calculated.
  • the measurement sensor 11 and the viscoelastic property calculation unit 12 calculate the high frequency viscoelastic property of the tire T. Specifically, when the measurement sensor 11 radiates an incident sound wave to the tire T, the incident sound wave is reflected by the inner surface of the tread of the tire T to generate a reflected sound wave. The inner surface of the tread is a surface opposite to the outer surface of the tread that is in contact with the ground. Based on the reflected sound wave, the viscoelastic characteristic calculation unit 12 calculates the viscoelastic characteristic (particularly loss tangent) on the inner surface of the tread from the complex acoustic impedance that is the acoustic characteristic of the tread. This calculation method is referred to as a surface reflection method (see, for example, Patent Document 2).
  • FIG. 4A and 4B are diagrams illustrating a method for calculating viscoelastic characteristics using this surface reflection method.
  • FIG. 4A is a diagram illustrating a reflection state of an incident sound wave when obtaining a reference value
  • FIG. 4B is a diagram illustrating a reflection state of the incident sound wave when calculating a viscoelastic characteristic of the tire T.
  • acoustic impedance representing the propagation characteristics of incident sound waves radiated from the transducer 25 of the measurement sensor 11 is used.
  • the reference values are the phase and amplitude values at the frequency to be measured when the surface of the retarder 26 opposite to the surface on which the transducer 25 is in contact is not in contact with the tire T.
  • the incident sound wave is reflected at the boundary surface between the end of the delay member 26 and the air.
  • the acoustic impedance of the delay material 26 can be expressed as Z R (f) that is a function of the frequency f.
  • the acoustic impedance in the air can also be expressed as Z A (f) that is a function of the frequency f.
  • the acoustic impedances Z R (f) and Z A (f) are complex values.
  • Z A (f) is sufficiently smaller than Z R (f) at an arbitrary frequency f
  • the reflectance R AR (f) ⁇ 1 from Equation (1). That is, the incident sound wave is totally reflected at the boundary surface between the delay member 26 and the air.
  • the expression of the reflected sound wave incident on the transducer 25 is represented as a 0 (f) exp (i ⁇ 0 (f)).
  • i is an imaginary unit
  • a 0 (f) is a real amplitude value at a target frequency
  • ⁇ 0 (f) is a real number of 0 or more, and represents a phase at each frequency.
  • FIG. 4A it can be considered that the incident sound wave shown to Formula (2) is radiated
  • FIG. In the reference value storage unit 28, the amplitude a 0 (f) and the phase ⁇ 0 (f) in Expression (2) are stored in advance as reference values. This reference value a 0 (f) is acquired by measuring in advance.
  • the expression of the reflected sound wave incident on the transducer 25 is represented as a (f) exp (i ⁇ (f)).
  • i is an imaginary unit
  • a (f) is a real amplitude value at a target frequency
  • ⁇ (f) is a real number equal to or greater than 0 and represents a phase at each frequency.
  • Z T (f) Z R (f) ⁇ (1 ⁇ (a (f) / a 0 (f)) ⁇ exp (i ( ⁇ (f) ⁇ 0 (f))))) / (1+ (a ( f) / a 0 (f)) ⁇ exp (i ( ⁇ (f) ⁇ 0 (f))) (7)
  • the storage elastic modulus E ′ (f), the loss elastic modulus E ′′ (f), and the loss tangent tan ⁇ (f) are all a 0 (f), ⁇ 0 (f) ⁇ A (f) / a 0 (f) ⁇ (ratio of incident sound wave amplitude to reflected sound wave amplitude), ⁇ (f) ⁇ 0 (f) ⁇ (incident sound wave phase and reflection) Therefore, the data of the electric signal of the reflected sound wave acquired at the time of measurement of the tire T with the amplitude a 0 (f) and the phase characteristic ⁇ 0 (f) as reference values.
  • the loss tangent of the tire T depends on the frequency as described above, so that the calculation unit 29 is provided for each of a plurality of frequency components.
  • the loss tangent may be derived at the same time, or when it is necessary to calculate the loss tangent at a high frequency.
  • ultrasound may be supplied from the transducer 25.
  • the friction coefficient calculation unit 13 calculates the friction coefficient of the tire T using the viscoelastic characteristic of the tire T calculated by the viscoelastic characteristic calculation unit 12.
  • the friction coefficient ⁇ (f) of the tire T which is a function of the frequency f, is obtained by using the above loss tangent tan ⁇ (f) and the storage elastic modulus E ′ (f).
  • ⁇ (f) ⁇ ⁇ E ′ (f) n ⁇ tan ⁇ (f) + ⁇ (12) It is expressed.
  • the mathematical formula for obtaining the friction coefficient ⁇ (f) may be other polynomials or higher order formulas using tan ⁇ (f), not the formula (12).
  • tire deterioration can be measured.
  • the constants ⁇ and ⁇ are values obtained by conducting an experiment or the like in advance.
  • the constants ⁇ and tan ⁇ (f) have a large correlation with the friction coefficient during rain (wet). Needless to say, the magnitude of the friction coefficient at the time of wet is closely related to the accident rate.
  • FIG. 5 is a block diagram illustrating a configuration example of the friction coefficient calculation unit 13.
  • the friction coefficient calculation unit 13 includes a constant storage unit 31 and a calculation unit 32 in detail.
  • the constant storage unit 31 stores the above ⁇ and ⁇ .
  • the calculation unit 32 uses the constants ⁇ and ⁇ stored in the constant storage unit 31, based on the loss tangent tan ⁇ (f) and the storage elastic modulus E ′ (f) calculated by the viscoelastic property calculation unit 12.
  • the friction coefficient ⁇ (f) of the tire T is calculated from 12).
  • the viscoelastic property calculation unit 12 calculates the viscoelastic property of the tire T based on the measured data.
  • the friction coefficient calculation unit 13 calculates the friction coefficient of the tire T based on the viscoelastic characteristics calculated by the viscoelastic characteristic calculation unit 12.
  • the driving control unit 14 controls the driving of the vehicle based on the friction coefficient of the tire T calculated by the friction coefficient calculating unit 13, and performs the automatic driving of the vehicle 1 without user operation (hereinafter, the driving control unit 14 is referred to as the driving control unit 14).
  • a mode in which the automobile 1 is automatically driven without user operation is referred to as an automatic driving mode).
  • the operation control unit 14 controls the drive unit 16-display unit 19 to perform automatic operation.
  • the operation control unit 14 does not automatically operate the vehicle 1 during normal operation (the user operates the vehicle).
  • the operation control unit 14 automatically operates the vehicle 1 without any user operation.
  • the predetermined case is, for example, a case where an obstacle is detected in the traveling direction of the automobile 1 or a case where the automobile 1 accelerates. Specific examples of operation control of the operation control unit 14 will be described in [Control Example 1]-[Control Example 4] described later.
  • the viscoelastic characteristic calculation unit 12, the friction coefficient calculation unit 13, and the operation control unit 14 are provided in, for example, an ECU (Electronic Control Unit).
  • the radar sensor 15 detects an object around the automobile 1 when the automobile 1 travels, and outputs a detection result to the operation control unit 14.
  • the radar sensor 15 can detect an object (obstacle) in the traveling direction of the automobile 1 (hereinafter also referred to as the front).
  • the radar sensor 15 emits radio waves, and detects a reflected wave generated by the reflected radio waves being reflected by a front object. Thereby, the radar sensor 15 can detect the distance between the object and the automobile 1, the position of the object, and the like.
  • the radar sensor 15 is, for example, a millimeter wave radar.
  • the driving unit 16 drives the wheels by applying a driving force to the wheels of the automobile 1 according to the control of the operation control unit 14.
  • the drive unit 16 accelerates or decelerates the travel of the automobile 1 by increasing or decreasing the drive force applied to the wheels by the drive unit 16.
  • the drive unit 16 may be, for example, an engine or a motor. Or the drive part 16 may be comprised with both the engine and the motor (namely, the motor vehicle 1 may be a hybrid vehicle).
  • the brake unit 17 decelerates the rotation of the wheels of the automobile 1 according to the control of the operation control unit 14. Thereby, the brake unit 17 decelerates the speed of the automobile 1.
  • the brake part 17 is comprised by the brake pad provided in the brake actuator and the wheel, for example.
  • the steering unit 18 steers the wheels of the automobile 1 in accordance with the control of the operation control unit 14. For example, the steering unit 18 turns the wheels of the automobile 1 in the left-right direction so as to change the current traveling direction of the automobile 1 according to the control of the operation control unit 14.
  • the steering unit 18 includes, for example, a steering wheel, a differential gear, a steering shaft, and the like, and distributes the driving force that the driving unit 16 applies to the wheels according to the control of the operation control unit 14.
  • the display unit 19 displays information related to the driving of the vehicle in accordance with the control of the operation control unit 14.
  • the display unit 19 includes a speedometer or a display, for example.
  • FIG. 6 is a flowchart showing an example of processing of the operation control device 10.
  • the overall processing of the operation control apparatus 10 will be described with reference to FIGS. 1, 2, and 6.
  • the calculation unit 29 outputs a sound wave emission instruction to the drive waveform generator 22.
  • the calculation unit 29 may output a sound wave emission instruction to the drive waveform generator 22 in accordance with a measurement instruction from the operation control unit 14.
  • the drive waveform generator 22 In response to the instruction, the drive waveform generator 22 generates an electric signal of an incident sound wave and outputs it to the direction matching unit 23.
  • the direction aligner 23 outputs an electric signal of the incident sound wave to the transducer 25.
  • the transducer 25 converts the supplied electric signal into an incident sound wave and radiates it to the tire T (step S1 in FIG. 6).
  • the transducer 25 When receiving the reflected sound wave from the tire T, the transducer 25 converts the reflected sound wave into an electric signal, and outputs the converted electric signal to the direction matching unit 23 (step S2 in FIG. 6).
  • the direction matching unit 23 outputs an electric signal of the reflected sound wave to the high frequency amplifier 24.
  • the high frequency amplifier 24 amplifies the high frequency component included in the supplied electric signal and outputs the amplified electric signal to the time data memory unit 27.
  • the calculation unit 29 reads the data stored in the time data memory unit 27, performs waveform analysis processing in the frequency domain, and acquires the amplitude value and phase at the frequency to be detected (step S3 in FIG. 6). Next, the calculation unit 29 reads the reference value stored in the reference value storage unit 28. The calculation unit 29 calculates the viscoelastic characteristics of the tire T based on the reference value and the amplitude value and phase of the reflected sound wave stored in the time data memory unit 27 (step S4 in FIG. 6). The details of this calculation method are as described above.
  • the friction coefficient calculation unit 13 calculates the friction coefficient of the tire T using the viscoelastic property of the tire T calculated by the viscoelastic property calculation unit 12 (step S5).
  • the driving control unit 14 controls driving of the automobile based on the friction coefficient of the tire T calculated by the friction coefficient calculating unit 13 (step S6 in FIG. 6).
  • the friction coefficient of the tire is calculated based on the measured viscoelastic characteristics of the tire of the automobile.
  • a decrease in the coefficient of friction of the tire is directly linked to a decrease in safety, which increases the probability of an accident and increases the damage.
  • the driving of the automobile can be controlled so that stopping the automobile using the brake is in time for avoiding the danger.
  • the friction coefficient of the tire has decreased (the tire characteristics have deteriorated)
  • the driving control unit 14 has a distance between the obstacle and the automobile 1 of 20 m or less when the tire friction coefficient is equal to or greater than a predetermined threshold. At the time, the automobile 1 is stopped. However, when the vehicle 1 is traveling at 60 km / h and the friction coefficient of the tire is less than a predetermined threshold value, the operation control unit 14 determines when the distance between the obstacle and the vehicle 1 is 25 m or less. Then, the car 1 is stopped. As described above, the driving control unit 14 determines that the tire friction coefficient is equal to or greater than the predetermined threshold when the friction coefficient of the tire is less than the predetermined threshold even when the automobile 1 is traveling at the same traveling speed.
  • the distance between the vehicle 1 that causes the vehicle 1 to stop and the obstacle is set longer. That is, the operation control unit 14 causes the automobile 1 to decelerate at an earlier timing during traveling. As described above, the operation control unit 14 can reliably avoid the collision between the automobile 1 and the obstacle even when the tire is deteriorated.
  • the operation control unit 14 controls the steering unit 18 instead of the deceleration of the vehicle 1 (or simultaneously with the deceleration of the vehicle 1). Steering for changing the traveling direction of the automobile may be executed. That is, the driving control unit 14 changes the course of the automobile 1 to the left or right in order to avoid a collision with an obstacle. At this time, when the tire friction coefficient is less than the predetermined threshold, the traveling direction of the automobile 1 is changed at an earlier timing than when the tire friction coefficient is greater than or equal to the predetermined threshold.
  • the operation control unit 14 increases the acceleration of the automobile 1 when the tire friction coefficient is less than a predetermined threshold, compared to the case where the tire friction coefficient is greater than or equal to the predetermined threshold. You may set small.
  • the drive unit 16 applies driving force to the wheels.
  • the driving control unit 14 reduces the driving force applied to the wheel as compared with the case where the tire friction coefficient is equal to or greater than the predetermined threshold.
  • the drive unit 16 is controlled.
  • the driving control unit 14 can perform the same control even when the vehicle 1 is accelerated from a state where the vehicle 1 is traveling at a constant speed. From the above, the operation control unit 14 can prevent sudden acceleration of the automobile 1 when the tire is deteriorated, and can reduce the possibility of an accident.
  • the operation control unit 14 may set the maximum speed of the automobile 1 lower than when the tire friction coefficient is greater than or equal to the predetermined threshold.
  • the operation control unit 14 controls the driving unit 16 to limit the driving force applied to the wheels to less than a predetermined value.
  • the driving control unit 14 limits the maximum speed of the automobile 1 when the tire is deteriorated. Therefore, the driving control unit 14 can reduce the possibility of an accident caused by the automobile 1 when the tire is deteriorated.
  • the driving control unit 14 can perform control so that the driving unit 16 applies a driving force of a predetermined value or more to the wheels.
  • Control Example 4 In Control Example 1-3, the operation control unit 14 controlled the operation of the automobile 1 using the tire friction coefficient. However, in the control example 1-3, the operation control unit 14 may control the operation of the automobile 1 using not only the tire friction coefficient but also the tire braking distance data. Thus, since the driving control unit 14 controls the driving of the automobile 1 using tire information other than the friction coefficient of the tire, the driving control unit 14 more reliably reflects the safety of the tire to control the driving of the automobile 1. Can do.
  • the driving control unit 14 is at least one of the data of the braking distance of the tire when the ABS or TCS function is operating, and the operation frequency of the ABS or TCS function when the automobile has the ABS or TCS function.
  • the driving of the automobile 1 may be controlled by using one of them together with the measured tire friction coefficient. Note that even in the automobile 1 that does not have the ABS or TCS function, the operation control unit 14 uses both the braking distance data of the tire when the user applies the brake and the measured friction coefficient of the tire, and uses the automobile 1 Can be controlled.
  • the driving control part 14 is the data of the steering angle at the time of the turn of the motor vehicle 1, the side slip at the time of the motor vehicle 1 turning, the speed control according to the lateral acceleration, or the degree of the tire lock when the user manually applies the brake.
  • the driving of the automobile 1 may be controlled by using at least one of these together with the measured tire friction coefficient. As a result, the deterioration of the tire can be more accurately reflected in the driving control of the automobile.
  • the braking force acting on the tire and the lateral acceleration G can be calculated from the measured values (acceleration and vehicle weight values) of the acceleration sensor and the vehicle weight sensor mounted on the automobile 1.
  • the operation control unit 14 can accurately determine the degree of deterioration from the reference state of the tire by normalizing the braking distance and the side slip at the time of turning using the calculated braking force and lateral acceleration G. .
  • the braking distance when the ABS or TCS function is operating, the frequency of operation of the ABS or TCS function, and the normalization of the skid when turning Is more reflective of the actual situation is possible to accurately control the operation of the automobile.
  • the vehicle 1 is provided with a sensor for measuring a braking distance when the ABS or TCS function is used as an in-vehicle device, and the sensor outputs braking distance data to the operation control unit 14.
  • the operation control unit 14 controls the operation of the automobile 1 based on the acquired tire braking distance data and tire friction coefficient data.
  • the operation control unit 14 performs the control shown in Control Example 1, if the tire friction coefficient calculated by the friction coefficient calculation unit 13 is the same, the longer the braking distance of the tire, the longer the vehicle 1 decelerates or travels. Make changes happen earlier.
  • the operation control unit 14 can perform the same control even in the case of the control example 2-3.
  • the operation control unit 14 may display that the tire has deteriorated on the display unit 19 when the friction coefficient of the tire is less than a predetermined threshold. Similarly, the braking distance when the ABS or TCS function is operating, the frequency of operation of the ABS or TCS function, or the data of the skid during the turn is not only used for driving control of the car, but also displayed on the display unit 19. It may be displayed and notified to the user.
  • the calculation unit 29 estimates the bulk (overall) acoustic characteristics and viscoelastic characteristics of the tire T based on the viscoelastic characteristics of the inner surface of the tread of the tire T calculated by the surface reflection method in the first embodiment. Can do.
  • the friction coefficient calculation unit 13 calculates a bulk friction coefficient ⁇ in the tire T using the estimated bulk viscoelastic characteristics.
  • the driving control unit 14 can control the driving of the automobile 1 based on whether or not the bulk friction coefficient ⁇ calculated by the friction coefficient calculating unit 13 is less than a predetermined threshold value.
  • the calculation unit 29 may directly calculate the viscoelastic characteristics of the bulk of the tire by using the bottom surface reflection method.
  • the bottom surface reflection method includes a reflected sound wave (hereinafter referred to as a first reflected sound wave) generated when an incident sound wave is incident on the tire and reflected by the inner surface, and an incident sound wave transmitted through the inner surface of the tire.
  • a method for measuring viscoelastic characteristics of a bulk of a tire based on a reflected sound wave (hereinafter referred to as a second reflected sound wave) generated by being reflected on an outer surface opposite to the inner surface for example, Patent Document 1.
  • the tire interior is based on the propagation time of the first reflected sound wave and the second reflected sound wave.
  • Sound wave propagation time can be calculated.
  • the computing unit 29 calculates the thickness of the tread rubber based on the propagation time inside the tire and the reference sound speed of the sound wave (especially the sound speed when the tire is new).
  • an actual sound speed inside the tire may be used instead of the reference sound speed of the sound wave.
  • This actual speed of sound can be calculated by installing a reflector in the tire tread rubber, and measuring the time until the sound wave is reflected by radiating sound waves to the reflector (from the transducer 25 to the reflector). And the thickness of the retarder 26 are known). Further, the sound speed may be measured by measuring the time until the sound wave is reflected by radiating the sound wave to the groove portion of the tire.
  • the calculation unit 29 calculates the bulk storage elastic modulus E ′ (f) of the tire based on the value of the sound velocity and the thickness of the tread rubber calculated as described above. Further, the calculation unit 29 calculates a loss elastic modulus E ′′ (f) of the tire bulk by calculating a sound wave attenuation coefficient ⁇ (f). The calculation unit 29 calculates the calculated E ′ (f) and E ′. The loss tangent tan ⁇ (f) of the bulk of the tire is calculated by calculating the ratio with “(f)”.
  • Embodiment 3 The third embodiment of the present invention will be described below with reference to the drawings.
  • the measured value of the reflected sound wave reflected from the outer surface of the is compared.
  • the viscoelastic characteristic (especially loss tangent) in the outer surface of the tread is calculated.
  • this calculation method is referred to as a bottom surface reflection comparison method.
  • the viscoelastic characteristics of the same tire T deteriorate when a long time elapses.
  • the “first timing” is described as before deterioration
  • the “second timing” is described as after deterioration.
  • FIG. 7A and FIG. 7B are diagrams illustrating a method for calculating viscoelastic properties using this bottom surface reflection comparison method.
  • FIG. 7A is a diagram showing a reflection state of an incident sound wave when obtaining a reference value
  • FIG. 7B is a diagram showing a reflection state of the incident sound wave when calculating a viscoelastic characteristic of the tire T after deterioration. It is.
  • acoustic impedance representing the propagation characteristics of incident sound waves radiated from the transducer 25 of the measurement sensor 11 is used.
  • the reference value is the phase and amplitude value of the reflected sound wave at the frequency to be measured when the tire T is not deteriorated.
  • the incident sound wave is reflected by the boundary surface between the outer surface of the tire T which has not deteriorated and the air.
  • the acoustic impedance of the outer surface of the tire T that has not deteriorated can be expressed as Z TO (f) that is a function of the frequency f.
  • the acoustic impedance in the air can also be expressed as Z A (f) that is a function of the frequency f.
  • the acoustic impedances Z TO (f) and Z A (f) are complex values.
  • R TO (f) (Z A (f) ⁇ Z TO (f)) / (Z A (f) + Z TO (f)) (13) It becomes.
  • Z TO (f) 1.5 ⁇ 10 6 (Pa ⁇ s / m)
  • Z TO (f) may be a value in the range of 1.5 ⁇ 10 6 to 2.4 ⁇ 10 6 (Pa ⁇ s / m).
  • the expression of the reflected sound wave incident on the transducer 25 is expressed as b T0 (f) exp (i ⁇ T0 (f)).
  • i is an imaginary unit
  • b T0 (f) is a real amplitude value at a target frequency
  • ⁇ T0 (f) is a real number greater than or equal to 0 and represents a phase at each frequency.
  • the equation of the incident sound wave radiated from the measurement sensor 11 to the outer surface of the tire T through the delay member 26 and the inside of the tire T is: b T0 (f) exp (i ⁇ T0 (f)) ⁇ R TO (f) (14) It becomes. Therefore, in FIG.
  • the incident sound wave shown in Formula (13) is radiated to the outer surface of the tire T.
  • the amplitude b T0 (f) and the phase ⁇ T0 (f) in Expression (14) are stored in advance as reference values.
  • This reference value b T0 (f) is acquired by measuring in advance.
  • the change in viscoelastic characteristics on the outer surface of the tire T is calculated.
  • the incident sound wave shown in FIG. 7A is radiated to the outer surface of the deteriorated tire T.
  • the transducer 25 receives the reflected sound wave reflected at the boundary surface between the outer surface of the tire T and the air, and the high frequency amplifier 24 amplifies the high frequency component in the electric signal of the reflected sound wave.
  • Z TOG (f) be the acoustic impedance of the outer surface of the deteriorated tire T.
  • the acoustic impedance Z TOG (f) is a function of the frequency f.
  • Z TOG (f) Z A (f) ⁇ (1 ⁇ R TOG (f)) / (1 + R TOG (f)) (16)
  • FIG. 8 is a table illustrating the acoustic impedance and the reflectance in the two cases of the tire T.
  • Case 1 is the acoustic impedance Z TO is 1.5 ⁇ 10 6 (Pa ⁇ s / m) of the outer surface of the tire T which is not degraded, the acoustic impedance Z TO is 2.4 ⁇ the outer surface of the degraded tire T
  • 10 6 Pa ⁇ s / m
  • the acoustic impedance Z TO is 2.4 ⁇ 10 6 of the outer surface of the tire T which is not deteriorated (Pa ⁇ s / m), the acoustic impedance Z TO of the outer surface of the degraded tire T 1.
  • An example of 5 ⁇ 10 6 (Pa ⁇ s / m) is shown.
  • Z A is a common value of 428.6 (Pa ⁇ s / m) .
  • R TO and R TOG is close to a value of -1, not exactly the same value.
  • R TO and R TOG are slightly different from the value of -1.
  • the expression of the reflected sound wave incident on the transducer 25 is expressed as b T0G (f) exp (i ⁇ T0G (f)).
  • i is an imaginary unit
  • b T0G (f) is a real amplitude value at a target frequency
  • ⁇ T0G (f) is a real number greater than or equal to 0 and represents a phase at each frequency.
  • the storage elastic modulus of the tire T as a function of the frequency f is L ′ (f)
  • the loss elastic modulus of the tire T is L ′′ (f).
  • L ′ (f) and L ′′ (f ) And the acoustic impedance Z TOG (f) and density ⁇ T of the deteriorated tire T, the following relationship is established.
  • L ′ (f) + iL ′′ (f) Z TOG (f) 2 / ⁇ T (21)
  • the storage elastic modulus L ′ (f), the loss elastic modulus L ′′ (f), and the loss tangent tan ⁇ (f) are all b T0 (f), ⁇ T0 (f).
  • the calculation unit 29 may derive a loss tangent for each of a plurality of frequency components, and when it is necessary to calculate a loss tangent at a high frequency, an ultrasonic wave is used as the incident sound wave. May be supplied from
  • the calculating part 29 may correct
  • the calculation unit 29 regards the tire tread rubber as the delay member 26 in the first embodiment, and the acoustic impedance of the air The surface reflection method is calculated based on. In this way, the calculation unit 29 calculates viscoelastic characteristics such as loss tangent.
  • the friction coefficient calculation unit 13 calculates the friction coefficient ⁇ of the tire outer surface using the calculated viscoelastic characteristic of the tire outer surface.
  • the driving control unit 14 can control the driving of the automobile 1 based on whether or not the friction coefficient ⁇ of the tire outer surface calculated by the friction coefficient calculating unit 13 is less than a predetermined threshold value. Operation control unit 14 When the friction coefficient ⁇ of the tire outer surface is less than a predetermined threshold value, it is determined that the outer surface of the tire T has deteriorated due to heat, ozone, ultraviolet rays, repeated stress, or the like.
  • a measurement error may occur due to water film or mud adhering to the outer surface of the tire. Therefore, for example, when measuring viscoelastic properties in the groove of a tire, the measurement is performed with the water film attached to the outer surface of the tire (by measuring in the same environment), and the influence of errors. Can be corrected.
  • tire deterioration may be measured after the car is washed.
  • a measurement button is provided on an automobile, and when the button is pressed, the automobile 1 enters a deterioration measurement mode according to the tire condition, and the calculation unit 29 executes the above-described processing.
  • the measurement sensor 11 is not limited to the structure illustrated in FIG. 2 as long as it can measure a measurement amount related to the viscoelastic characteristics of the tire.
  • the operation can be controlled by more accurately reflecting the degree of deterioration of the tire by installing the measurement sensor 11 on the front tire that is easily worn and measuring the viscoelastic characteristics.
  • the rear wheel tire is more easily worn than the front wheel tire. For this reason, it is considered that the operation can be controlled by more accurately reflecting the degree of deterioration of the tire by installing the measurement sensor 11 on the rear wheel tire that is easily worn and measuring the viscoelastic characteristics.
  • the shoulder portions both ends of the tread pattern in the tire
  • the center portion of the tread pattern is easily worn. For this reason, it is considered that the operation can be controlled by more accurately reflecting the degree of deterioration of the tire, as described above, by installing the measurement sensors 11 at those places where they are easily worn and measuring the viscoelastic characteristics. It is done.
  • the measurement sensor 11 When the measurement sensor 11 measures a measurement amount for a plurality of tires, the measurement sensor 11 is provided for each tire whose measurement amount is measured.
  • the method of providing the measurement sensor 11 for each tire is, for example, as shown in FIG.
  • the viscoelastic property calculation unit 12 calculates the viscoelastic property of each tire using the measured measurement amount.
  • the friction coefficient calculation unit 13 calculates the friction coefficient of each tire using the calculated viscoelastic characteristics of each tire.
  • the operation control unit 14 determines whether or not the calculated average value of the friction coefficient of each tire is less than a predetermined threshold value, and executes the control of the above-described control example 1-3 based on the determination result. May be. Further, the operation control unit 14 determines whether or not the friction coefficient is less than a predetermined threshold value for a predetermined number (one or more) of tires, and based on the determination result, the operation control unit 1-3 described above. Control may be performed.
  • the threshold for the operation control unit 14 to determine tire deterioration is not limited to one, and may be two or more.
  • the driving control unit 14 may set the timing of deceleration of the automobile 1 or change in the traveling direction using the first threshold value A1 and the second threshold value A2 (A1> A2).
  • the operation control unit 14 causes the vehicle 1 to decelerate or change the traveling direction at a predetermined timing (timing t1).
  • the operation control unit 14 determines the timing of deceleration of the automobile 1 or change in the traveling direction from the timing t1.
  • the operation control unit 14 causes the vehicle 1 to decelerate or change the traveling direction at a timing earlier than the timing t2. In this way, the operation control unit 14 can perform more detailed operation control according to the degree of deterioration of the tire.
  • the driving control unit 14 not only controls the driving of the automobile 1 when the tire friction coefficient calculated by the friction coefficient calculating unit 13 is less than a predetermined threshold, but also the tire friction coefficient is less than the predetermined threshold. You may output the alerting signal which notifies the circumference
  • the operation control unit 14 irradiates other automobiles with radio wave signals.
  • Another vehicle that has received the signal notifies the user of the vehicle by a screen, voice, or the like that there is the vehicle 1 that has emitted the signal.
  • the other vehicle may control driving so as to avoid the vehicle 1. For example, it is possible to perform the above-described deceleration of the automobile or steering to change the traveling direction thereof.
  • the driving control unit 14 may output a signal to a terminal (smartphone or the like) possessed by a pedestrian or the like.
  • the terminal that has received the signal displays on the display section that the automobile 1 that has transmitted the signal is nearby.
  • the user of the terminal recognizes that the automobile 1 is nearby by looking at this display. As a result, the user can walk so as to avoid the automobile 1, for example.
  • a notification signal is notified to surrounding cars and pedestrians. Therefore, there is a high possibility that surrounding cars and pedestrians can prevent accidents.
  • the radar sensor 15 provided in the automobile 1 is not limited to one, and a plurality of radar sensors that radiate radio waves having different wavelengths may be provided. Further, the automobile 1 may be provided with a stereo camera instead of the radar sensor 15 as a component necessary for automatic driving. This camera photographs the surrounding environment of the automobile 1 and detects an obstacle in front of the automobile 1 based on the photographed data. Furthermore, both the radar sensor 15 and the stereo camera may be provided in the automobile 1.
  • the vehicle 1 is an electric vehicle or a hybrid vehicle
  • the motors that are the drive units 16 are provided on the left and right wheels, respectively
  • the motors provided on the left and right wheels according to the control of the operation control unit 14 Can apply different driving forces to each wheel.
  • the automobile 1 can change the traveling direction.
  • the steering unit 18 may not be provided.
  • Embodiment 1 the control example of the operation control unit 14 in the automatic operation mode has been described. However, similar control can be executed even in the driving assist mode. In this case, the radar sensor 15 may not be provided in the automobile 1.

Abstract

A drive control system (10) according to the present invention is provided with: a measuring sensor (11) that takes measurements related to the viscoelastic properties of the tires of an automobile; a viscoelastic property calculating unit (12) that calculates the viscoelastic properties of the tires by using the measurements taken by the measuring sensor (11); a friction coefficient calculating unit (13) that calculates the friction coefficients of the tires by using the viscoelastic properties calculated by the viscoelastic property calculating unit (12); and a drive control unit (14) that controls driving of the automobile on the basis of the friction coefficients of the tires calculated by the friction coefficient calculating unit (13).

Description

運転制御装置、自動車及び運転制御方法Driving control device, automobile and driving control method
 本発明は運転制御装置、自動車及び運転制御方法に関し、特にタイヤの摩擦係数に基づいて自動車の運転を制御する運転制御装置、自動車及び運転制御方法に関する。 The present invention relates to an operation control device, an automobile, and an operation control method, and more particularly to an operation control device, an automobile, and an operation control method for controlling the operation of an automobile based on a friction coefficient of a tire.
 自動車において、タイヤのグリップ力が減少することは、スリップ等の不安定な走行を引き起こす要因になりえる。そのため、タイヤのグリップ力に応じて、自動車の走行を制御する技術が提案されている。 In a car, a decrease in the grip force of a tire can be a factor that causes unstable running such as slipping. Therefore, a technique for controlling the traveling of the automobile according to the grip force of the tire has been proposed.
 例えば、特許文献1には、タイヤのグリップ状態が旋回性能の限界に近い場合に、旋回の際に自動車を緩やかに減速させる技術が開示されている。ここで、タイヤのグリップ状態は、車輪のスリップ率が高いほど、旋回性能の限界に近いと推定される。また、特許文献2には、タイヤのグリップ力が低下している場合に変速機の変速比を制御する技術が開示されている。なお、タイヤに関する技術として、特許文献3には、タイヤ等の粘弾性体における摩擦特性を測定する技術が開示されている。 For example, Patent Document 1 discloses a technique for slowly decelerating an automobile during turning when the grip state of the tire is close to the limit of turning performance. Here, the grip state of the tire is estimated to be closer to the limit of turning performance as the slip ratio of the wheel is higher. Patent Document 2 discloses a technique for controlling a transmission gear ratio when a tire grip force is reduced. As a technique related to a tire, Patent Document 3 discloses a technique for measuring friction characteristics in a viscoelastic body such as a tire.
特開2006-281935号公報JP 2006-281935 A 特開2014-39449号公報JP 2014-39449 A 特開2007-47130号公報JP 2007-47130 A
 自動車のタイヤのグリップ力は、路面状態だけではなく、タイヤ自体の劣化(特に、タイヤの摩擦係数の低下)が原因でも低下する。従って、タイヤの劣化を測定することは、自動車の走行を安全に制御するために重要である。 The grip force of automobile tires is reduced not only due to road surface conditions, but also due to deterioration of the tire itself (particularly, a reduction in the friction coefficient of the tire). Therefore, measuring the deterioration of the tire is important for safely controlling the running of the automobile.
 上述の特許文献1に記載の技術では、車輪のスリップ率に基づいてタイヤのグリップ状態を推定しているものの、タイヤの劣化を直接測定しているわけではない。従って、タイヤが劣化している場合でも、タイヤのグリップ状態が旋回性能の限界に近いと判定されず、旋回の際に自動車が緩やかに減速されない可能性がある。また、特許文献2には、タイヤのグリップ力の低下を測定する方法について、具体的な記載がない。 In the technique described in Patent Document 1 described above, although the grip state of the tire is estimated based on the slip ratio of the wheel, the deterioration of the tire is not directly measured. Therefore, even when the tire is deteriorated, it is not determined that the grip state of the tire is close to the limit of the turning performance, and the automobile may not be slowly decelerated during the turning. Further, Patent Document 2 does not specifically describe a method for measuring a decrease in the grip force of a tire.
 本発明は、このような問題点を解決するためになされたものであり、タイヤの劣化を適切に反映して自動車の運転を制御することが可能な運転制御装置、自動車及び運転制御方法を提供することを目的とする。 The present invention has been made to solve such problems, and provides a driving control device, a car, and a driving control method capable of controlling driving of a car by appropriately reflecting deterioration of a tire. The purpose is to do.
 本発明の第1の態様における運転制御装置は、測定センサと、粘弾性特性算出部と、摩擦係数算出部と、運転制御部と、を備える。測定センサは、自動車のタイヤの粘弾性特性に関する測定量を測定する。粘弾性特性算出部は、測定センサが測定した測定量を用いてタイヤの粘弾性特性を算出する。摩擦係数算出部は、粘弾性特性算出部が算出した粘弾性特性を用いてタイヤの摩擦係数を算出する。運転制御部は、摩擦係数算出部が算出したタイヤの摩擦係数に基づいて自動車の運転を制御する。 The operation control apparatus according to the first aspect of the present invention includes a measurement sensor, a viscoelastic characteristic calculation unit, a friction coefficient calculation unit, and an operation control unit. The measurement sensor measures a measurement amount related to viscoelastic characteristics of the tire of the automobile. A viscoelastic characteristic calculation part calculates the viscoelastic characteristic of a tire using the measured quantity which the measurement sensor measured. The friction coefficient calculating unit calculates the friction coefficient of the tire using the viscoelastic characteristic calculated by the viscoelastic characteristic calculating unit. The driving control unit controls driving of the automobile based on the tire friction coefficient calculated by the friction coefficient calculating unit.
 本発明の第2の態様における自動車の運転制御方法は、以下のステップ(a)~(d)を備える。
(a)自動車のタイヤの粘弾性特性に関する測定量を測定する測定ステップ、
(b)測定した測定量を用いてタイヤの粘弾性特性を算出する粘弾性特性算出ステップ、
(c)算出した粘弾性特性を用いてタイヤの摩擦係数を算出する摩擦係数算出ステップ、及び
(d)算出したタイヤの摩擦係数に基づいて自動車の運転を制御する運転制御ステップ。
The vehicle driving control method according to the second aspect of the present invention includes the following steps (a) to (d).
(A) a measurement step for measuring a measurement amount relating to viscoelastic characteristics of an automobile tire;
(B) a viscoelastic characteristic calculating step for calculating a viscoelastic characteristic of the tire using the measured amount;
(C) a friction coefficient calculating step for calculating the friction coefficient of the tire using the calculated viscoelastic property, and (d) an operation control step for controlling the driving of the vehicle based on the calculated tire friction coefficient.
 以上の通り、本発明においては、自動車の運転を制御するために、自動車のタイヤの粘弾性特性を実際に測定し、測定した粘弾性特性を用いてタイヤの摩擦係数を算出している。そのため、本発明にかかる技術は、タイヤの劣化を正確に測定し、その測定結果に基づいて自動車の運転を制御することができる。 As described above, in the present invention, in order to control the driving of the automobile, the viscoelastic characteristics of the tire of the automobile are actually measured, and the friction coefficient of the tire is calculated using the measured viscoelastic characteristics. Therefore, the technology according to the present invention can accurately measure the deterioration of the tire and control the driving of the automobile based on the measurement result.
 本発明により、タイヤの劣化を適切に反映して自動車の運転を制御することが可能な運転制御装置、自動車及び運転制御方法を提供することができる。 According to the present invention, it is possible to provide a driving control device, a car, and a driving control method capable of appropriately controlling the driving of the automobile by reflecting the deterioration of the tire.
実施の形態1にかかる運転制御装置を搭載した自動車の構成例を示すブロック図である。1 is a block diagram illustrating a configuration example of an automobile equipped with an operation control apparatus according to a first embodiment. 実施の形態1にかかる測定センサ及び粘弾性特性算出部の構成例を示したブロック図である。FIG. 3 is a block diagram illustrating a configuration example of a measurement sensor and a viscoelastic property calculation unit according to the first embodiment. 実施の形態1において測定センサを自動車のタイヤに設けた一例を示した図である。It is the figure which showed an example which provided the measurement sensor in the tire of the motor vehicle in Embodiment 1. FIG. 実施の形態1において粘弾性特性を算出する方法を説明した図である。6 is a diagram for explaining a method of calculating viscoelastic characteristics in Embodiment 1. FIG. 実施の形態1において粘弾性特性を算出する方法を説明した図である。6 is a diagram for explaining a method of calculating viscoelastic characteristics in Embodiment 1. FIG. 実施の形態1にかかる摩擦係数算出部の構成例を示したブロック図である。FIG. 3 is a block diagram illustrating a configuration example of a friction coefficient calculation unit according to the first embodiment. 実施の形態1にかかる運転制御装置の処理の一例を示したフローチャートである。3 is a flowchart illustrating an example of processing of the operation control apparatus according to the first embodiment. 実施の形態3において粘弾性特性を算出する方法を説明した図である。10 is a diagram for explaining a method for calculating viscoelastic characteristics in Embodiment 3. FIG. 実施の形態3において粘弾性特性を算出する方法を説明した図である。10 is a diagram for explaining a method for calculating viscoelastic characteristics in Embodiment 3. FIG. 実施の形態3において、タイヤTの2つのケースにおける音響インピーダンス及び反射率について例示した表である。In Embodiment 3, it is the table | surface which illustrated about the acoustic impedance and reflectance in two cases of the tire T. FIG.
 以下、図面を参照して本発明の実施の形態について説明する。なお、様々な処理を行う機能ブロックとして以下の図に記載された自動車の各要素は、ハードウェア的には、メモリやその他のIC(Integrated Circuit)等の回路で構成することができ、ソフトウェア的には、メモリにロードされたプログラムなどによって実現することができる。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, each element of the automobile described in the following figure as a functional block for performing various processes can be configured by hardware and a circuit such as a memory or other IC (Integrated Circuit). Can be realized by a program loaded in a memory.
[実施の形態1]
 図1は、実施の形態1にかかる自動車1の構成例を示したブロック図である。自動車1は、運転制御装置10とレーダーセンサ15と駆動部16とブレーキ部17とステアリング部18と表示部19を備える。
[Embodiment 1]
FIG. 1 is a block diagram illustrating a configuration example of an automobile 1 according to the first embodiment. The automobile 1 includes a driving control device 10, a radar sensor 15, a drive unit 16, a brake unit 17, a steering unit 18, and a display unit 19.
 運転制御装置10は、自動車1に搭載され、自動車1の運転を制御する装置である。運転制御装置10は、詳細には、測定センサ11と粘弾性特性算出部12と摩擦係数算出部13と運転制御部14を備える。以下、運転制御装置10の各部について説明する。 The operation control device 10 is a device that is mounted on the automobile 1 and controls the operation of the automobile 1. In detail, the operation control apparatus 10 includes a measurement sensor 11, a viscoelastic characteristic calculation unit 12, a friction coefficient calculation unit 13, and an operation control unit 14. Hereinafter, each part of the operation control apparatus 10 will be described.
 測定センサ11は、自動車1のタイヤ(図1には図示せず)の粘弾性特性に関する測定量を測定する。なお、測定センサ11が測定するタイヤは、自動車1が備える複数(例えば4つ)のタイヤのうち、任意の1つのタイヤでもよく、複数のタイヤであってもよい。また、測定センサ11が測定するタイヤの箇所は、タイヤのどの部分でもよい。ただし、摩擦劣化の判断を正確に行うには、タイヤのトレッド部を測定するのがより好適である。粘弾性特性算出部12は、測定センサ11が測定した測定量を用いて、タイヤの粘弾性特性を算出する。 The measurement sensor 11 measures a measurement amount related to the viscoelastic characteristics of the tire of the automobile 1 (not shown in FIG. 1). The tire measured by the measurement sensor 11 may be any one of a plurality of (for example, four) tires included in the automobile 1 or may be a plurality of tires. Further, the portion of the tire measured by the measurement sensor 11 may be any portion of the tire. However, in order to accurately determine the friction deterioration, it is more preferable to measure the tread portion of the tire. The viscoelastic property calculation unit 12 calculates the viscoelastic property of the tire using the measurement amount measured by the measurement sensor 11.
 図2は、測定センサ11及び粘弾性特性算出部12の構成例を示したブロック図である。測定センサ11は、音波信号発生部20と接触部21を備える。音波信号発生部20は、入射音波の電気信号を発生させて、発生させた電気信号を接触部21に出力する。この入射音波は、タイヤTに入射される音波信号であり、タイヤTの粘弾性特性を算出するために用いられる。また、音波信号発生部20は、接触部21が取得した反射音波の電気信号を受信し、受信した電気信号を粘弾性特性算出部12に出力する。この反射音波は、入射音波がタイヤTに反射されて生じる音波である。接触部21は、自動車のタイヤTに接触し、音波信号発生部20が発生した入射音波をタイヤTに放射するとともに、反射音波を取得する。 FIG. 2 is a block diagram illustrating a configuration example of the measurement sensor 11 and the viscoelastic property calculation unit 12. The measurement sensor 11 includes a sound wave signal generation unit 20 and a contact unit 21. The sound wave signal generation unit 20 generates an electric signal of incident sound waves and outputs the generated electric signal to the contact unit 21. This incident sound wave is a sound wave signal incident on the tire T, and is used to calculate the viscoelastic characteristics of the tire T. In addition, the sound wave signal generation unit 20 receives the electric signal of the reflected sound wave acquired by the contact unit 21 and outputs the received electric signal to the viscoelastic characteristic calculation unit 12. This reflected sound wave is a sound wave that is generated when the incident sound wave is reflected by the tire T. The contact unit 21 contacts the tire T of the automobile, radiates the incident sound wave generated by the sound wave signal generation unit 20 to the tire T, and acquires the reflected sound wave.
 音波信号発生部20は、詳細には、駆動波形発生器22と方向整合器23と高周波増幅器24を有する。以下、各部について説明する。 The sound wave signal generation unit 20 includes a drive waveform generator 22, a direction matching unit 23, and a high frequency amplifier 24 in detail. Hereinafter, each part will be described.
 駆動波形発生器22は、粘弾性特性算出部12からの音波の放射指示に応じて、入射音波を生成させるための電気信号(駆動波形)を生成するとともに、生成した入射音波の電気信号を方向整合器23に出力する。タイヤTに入射させる入射音波の具体例としては、パルス状の音波や、所定の周波数成分を含むような音波が挙げられる。さらに、駆動波形発生器22は、上述の電気信号を生成して出力する際、生成した電気信号の出力タイミングを示すトリガ信号を高周波増幅器24に出力する。 The drive waveform generator 22 generates an electrical signal (drive waveform) for generating an incident sound wave in accordance with a sound wave emission instruction from the viscoelastic property calculation unit 12 and also directs the generated electric signal of the incident sound wave in a direction. Output to the matching unit 23. Specific examples of the incident sound wave incident on the tire T include a pulsed sound wave and a sound wave including a predetermined frequency component. Further, the drive waveform generator 22 outputs a trigger signal indicating the output timing of the generated electric signal to the high-frequency amplifier 24 when the electric signal is generated and output.
 方向整合器23は、駆動波形発生器22、高周波増幅器24及びトランスデューサ25に接続されている。方向整合器23は、駆動波形発生器22から供給された入射音波の電気信号をトランスデューサ25に出力するとともに、トランスデューサ25から供給された反射音波の電気信号を高周波増幅器24に出力する。ここで方向整合器23は、駆動波形発生器22から出力された電気信号が高周波増幅器24に出力されないように、信号の伝送方向を調節している。 The direction matching unit 23 is connected to the drive waveform generator 22, the high frequency amplifier 24, and the transducer 25. The direction matching unit 23 outputs the electric signal of the incident sound wave supplied from the drive waveform generator 22 to the transducer 25 and outputs the electric signal of the reflected sound wave supplied from the transducer 25 to the high frequency amplifier 24. Here, the direction matching unit 23 adjusts the transmission direction of the signal so that the electric signal output from the drive waveform generator 22 is not output to the high frequency amplifier 24.
 高周波増幅器24には、方向整合器23から反射音波の電気信号が供給される。高周波増幅器24は、供給された電気信号における高周波成分を所定の増幅率で増幅する。そして、高周波増幅器24は、増幅後の電気信号を粘弾性特性算出部12の時間データメモリ部27に出力する。高周波増幅器24が増幅する電気信号中の高周波成分には、粘弾性特性を算出するのに必要となる測定量が含まれている。なお、高周波増幅器24は、駆動波形発生器22からトリガ信号を受信後、トランスデューサ25から供給される電気信号の受信を開始する。この処理により、高周波増幅器24は、タイヤTの粘弾性特性の測定を行わない期間、動作を行わない。そのため、高周波増幅器24の不要な動作を抑制することができる。 The high frequency amplifier 24 is supplied with an electric signal of a reflected sound wave from the direction matching unit 23. The high frequency amplifier 24 amplifies a high frequency component in the supplied electric signal with a predetermined amplification factor. Then, the high frequency amplifier 24 outputs the amplified electric signal to the time data memory unit 27 of the viscoelastic characteristic calculation unit 12. The high-frequency component in the electric signal amplified by the high-frequency amplifier 24 includes a measurement amount necessary for calculating the viscoelastic characteristics. The high frequency amplifier 24 starts receiving the electric signal supplied from the transducer 25 after receiving the trigger signal from the drive waveform generator 22. By this processing, the high frequency amplifier 24 does not operate during a period in which the measurement of the viscoelastic characteristics of the tire T is not performed. Therefore, unnecessary operations of the high frequency amplifier 24 can be suppressed.
 次に、接触部21について説明する。接触部21は、詳細には、トランスデューサ25と遅延材26を有する。以下、各部について説明する。 Next, the contact part 21 will be described. Specifically, the contact portion 21 includes a transducer 25 and a delay material 26. Hereinafter, each part will be described.
 トランスデューサ25は、例えば圧電素子で構成される。トランスデューサ25は、遅延材26と接触するとともに、方向整合器23と接続されるように取付けられている。トランスデューサ25は、方向整合器23から入射音波の電気信号が供給されると、供給された電気信号を音波に変換する。なお、この電気信号は、駆動波形発生器22が出力した電気信号である。変換された音波は、遅延材26に放射される。さらに、トランスデューサ25は、遅延材26から反射音波を受信すると、その反射音波を電気信号に変換し、その電気信号を方向整合器23に出力する。 The transducer 25 is constituted by a piezoelectric element, for example. The transducer 25 is attached so as to contact the delay member 26 and to be connected to the direction aligner 23. When the electric signal of the incident sound wave is supplied from the direction matching unit 23, the transducer 25 converts the supplied electric signal into a sound wave. This electrical signal is an electrical signal output from the drive waveform generator 22. The converted sound wave is emitted to the delay material 26. Further, when receiving the reflected sound wave from the delay material 26, the transducer 25 converts the reflected sound wave into an electrical signal and outputs the electrical signal to the direction matching unit 23.
 以上から、駆動波形発生器22、方向整合器23及びトランスデューサ25は、タイヤTに入射音波を出力する放射部として機能し、方向整合器23、高周波増幅器24及びトランスデューサ25は、入射音波がタイヤTで反射されて生じる反射音波を受信する受信部として機能するといえる。 From the above, the drive waveform generator 22, the direction matching unit 23, and the transducer 25 function as a radiating unit that outputs incident sound waves to the tire T. The direction matching unit 23, the high-frequency amplifier 24, and the transducer 25 have the incident sound waves being tire T. It can be said that it functions as a receiving unit that receives a reflected sound wave that is generated by being reflected by the laser beam.
 遅延材26は、一方の面がトランスデューサ25と密着しており、一方の面と対向する他方の面はタイヤTと接触するように設けられている。遅延材26は、このように配置されているため、トランスデューサ25から入射された入射音波をタイヤTに伝搬させるとともに、入射音波がタイヤTで反射されて生じる反射音波をトランスデューサ25に伝搬させることができる。遅延材26の伝搬長を長くすると、音波の到達時間がより遅延する。そのため、遅延材26の伝搬長を長くすることで、トランスデューサ25が入射音波を放射してから反射音波を受信するまでの時間を長くすることができる。従って、遅延材26の伝搬長を長くすることで、トランスデューサ25が入射音波を放射している間にトランスデューサ25が反射音波を受信することを回避できる。 The delay member 26 is provided so that one surface thereof is in close contact with the transducer 25 and the other surface facing the one surface is in contact with the tire T. Since the delay member 26 is arranged in this way, the incident sound wave incident from the transducer 25 is propagated to the tire T, and the reflected sound wave generated by the reflection of the incident sound wave by the tire T can be propagated to the transducer 25. it can. When the propagation length of the delay member 26 is increased, the arrival time of the sound wave is further delayed. Therefore, by increasing the propagation length of the delay member 26, it is possible to increase the time from when the transducer 25 radiates the incident sound wave to when it receives the reflected sound wave. Therefore, by increasing the propagation length of the delay member 26, the transducer 25 can be prevented from receiving the reflected sound wave while the transducer 25 is emitting the incident sound wave.
 図3は、測定センサ11を自動車のタイヤTに設けた一例を示した図である。図3は、タイヤTの内部構成図を示している。図3に示す通り、測定センサ11をタイヤTの内部に組込むことで、タイヤTの粘弾性特性に関する測定量を測定することができる。例えば、測定センサ11における接触部21は、タイヤTの裏面に設けられ、好適にはカーカスとトレッドゴムの間に設けられるのが望ましい。また、音波信号発生部20は、タイヤTのリム(ホイール)に設けられてもよい。 FIG. 3 is a view showing an example in which the measurement sensor 11 is provided on the tire T of the automobile. FIG. 3 shows an internal configuration diagram of the tire T. As shown in FIG. 3, the measurement amount related to the viscoelastic characteristics of the tire T can be measured by incorporating the measurement sensor 11 inside the tire T. For example, the contact portion 21 in the measurement sensor 11 is provided on the back surface of the tire T, and is preferably provided between the carcass and the tread rubber. Further, the sound wave signal generation unit 20 may be provided on a rim (wheel) of the tire T.
 図2に戻り、粘弾性特性算出部12について説明する。粘弾性特性算出部12は、詳細には、時間データメモリ部27と基準値記憶部28と演算部29を有する。以下、各部について説明する。 Referring back to FIG. 2, the viscoelastic property calculation unit 12 will be described. Specifically, the viscoelastic characteristic calculation unit 12 includes a time data memory unit 27, a reference value storage unit 28, and a calculation unit 29. Hereinafter, each part will be described.
 時間データメモリ部27には、測定センサ11の高周波増幅器24から供給された反射音波の電気信号の時間波形が、予め定められた周期で格納される。なお、時間データメモリ部27は、演算部29の制御に基づいて、時間波形を格納する周期を変更することができる。 The time waveform of the electrical signal of the reflected sound wave supplied from the high frequency amplifier 24 of the measurement sensor 11 is stored in the time data memory unit 27 at a predetermined cycle. The time data memory unit 27 can change the cycle for storing the time waveform based on the control of the calculation unit 29.
 基準値記憶部28は、タイヤTの粘弾性特性を算出するのに必要な基準値を予め格納している。この基準値は、粘弾性特性の検出対象となる周波数における振幅値及び位相のデータである。基準値の詳細については後述する。基準値記憶部28に格納された基準値は、演算部29が読み出す。 The reference value storage unit 28 stores in advance a reference value necessary for calculating the viscoelastic characteristics of the tire T. This reference value is data of an amplitude value and a phase at a frequency to be detected for viscoelastic characteristics. Details of the reference value will be described later. The calculation unit 29 reads out the reference value stored in the reference value storage unit 28.
 演算部29は、測定センサ11のデータ測定処理を制御する。さらに演算部29は、測定センサ11の測定で取得した反射音波に基づいて、タイヤTの粘弾性特性を算出する。 The calculation unit 29 controls the data measurement process of the measurement sensor 11. Further, the calculation unit 29 calculates the viscoelastic characteristics of the tire T based on the reflected sound wave acquired by the measurement of the measurement sensor 11.
 具体的には、演算部29が駆動波形発生器22に対し、音波の放射指示を出力すると、駆動波形発生器22は放射指示に応じて、入射音波を生成させるための電気信号を生成し、方向整合器23に出力する。このようにして、演算部29は、測定センサ11の測定を開始させる。 Specifically, when the calculation unit 29 outputs a sound wave radiation instruction to the drive waveform generator 22, the drive waveform generator 22 generates an electrical signal for generating an incident sound wave in accordance with the radiation instruction, It outputs to the direction matching device 23. In this way, the calculation unit 29 starts measurement by the measurement sensor 11.
 測定センサ11がタイヤTの測定を実施し、時間データメモリ部27に反射音波の時間波形データが格納されると、演算部29はそのデータを読み出す。演算部29は、例えばFFT(Fast Fourier Transformation)処理のような周波数領域での波形解析処理を行ない、検出対象となる周波数における振幅値及び位相を取得する。なお、検出対象となる周波数は、1つであってもよいし、複数であってもよい。次に、演算部29は、基準値記憶部28に格納されている基準値を読み出し、その基準値と、時間データメモリ部27に格納された反射音波の検出対象となる周波数における振幅値及び位相とに基づいて、タイヤTの粘弾性特性を算出する。 When the measurement sensor 11 measures the tire T and the time waveform data of the reflected sound wave is stored in the time data memory unit 27, the calculation unit 29 reads the data. The calculation unit 29 performs waveform analysis processing in a frequency domain such as FFT (Fast Fourier Transformation) processing, for example, and acquires an amplitude value and a phase at a frequency to be detected. In addition, the frequency used as a detection object may be one, and plural may be sufficient as it. Next, the calculation unit 29 reads the reference value stored in the reference value storage unit 28, and the reference value and the amplitude value and phase at the frequency that is the detection target of the reflected sound wave stored in the time data memory unit 27. Based on the above, viscoelastic characteristics of the tire T are calculated.
 <粘弾性特性の算出方法>
 次に、測定センサ11及び粘弾性特性算出部12がタイヤTの高周波粘弾性特性を算出する場合について説明する。具体的には、測定センサ11が入射音波をタイヤTへ放射すると、その入射音波がタイヤTのトレッドの内側表面で反射されて反射音波が生じる。なお、トレッドの内側表面とは、地面に接するトレッドの外側表面と反対側の表面である。この反射音波に基づいて、粘弾性特性算出部12は、トレッドの音響特性である複素音響インピーダンスから、トレッドの内側表面における粘弾性特性(特に損失正接)を算出する。この算出方法を、表面反射法という(例えば、特許文献2参照)。
<Calculation method of viscoelastic properties>
Next, the case where the measurement sensor 11 and the viscoelastic property calculation unit 12 calculate the high frequency viscoelastic property of the tire T will be described. Specifically, when the measurement sensor 11 radiates an incident sound wave to the tire T, the incident sound wave is reflected by the inner surface of the tread of the tire T to generate a reflected sound wave. The inner surface of the tread is a surface opposite to the outer surface of the tread that is in contact with the ground. Based on the reflected sound wave, the viscoelastic characteristic calculation unit 12 calculates the viscoelastic characteristic (particularly loss tangent) on the inner surface of the tread from the complex acoustic impedance that is the acoustic characteristic of the tread. This calculation method is referred to as a surface reflection method (see, for example, Patent Document 2).
 図4A及び図4Bは、この表面反射法を用いて粘弾性特性を算出する方法を説明した図である。図4Aは、基準値を取得する際の入射音波の反射状況を示した図面であり、図4Bは、タイヤTの粘弾性特性を算出する際の入射音波の反射状況を示した図面である。なお、以下の説明では、測定センサ11のトランスデューサ25から放射される入射音波の伝搬特性を表す音響インピーダンスを用いる。 4A and 4B are diagrams illustrating a method for calculating viscoelastic characteristics using this surface reflection method. FIG. 4A is a diagram illustrating a reflection state of an incident sound wave when obtaining a reference value, and FIG. 4B is a diagram illustrating a reflection state of the incident sound wave when calculating a viscoelastic characteristic of the tire T. In the following description, acoustic impedance representing the propagation characteristics of incident sound waves radiated from the transducer 25 of the measurement sensor 11 is used.
 まず、図4Aを参照して、基準値について説明する。基準値は、遅延材26において、トランスデューサ25が接触している面と反対側の面がタイヤTと接触していない場合の、測定対象となる周波数における位相及び振幅値である。このとき、入射音波は、遅延材26の端と空気との境界面で反射される。入射音波及び反射音波の周波数をfとすると、遅延材26の音響インピーダンスは、周波数fの関数であるZ(f)と表すことができる。同様に、空気中の音響インピーダンスも、周波数fの関数であるZ(f)と表すことができる。ここで、音響インピーダンスZ(f)とZ(f)は複素数の値である。 First, the reference value will be described with reference to FIG. 4A. The reference values are the phase and amplitude values at the frequency to be measured when the surface of the retarder 26 opposite to the surface on which the transducer 25 is in contact is not in contact with the tire T. At this time, the incident sound wave is reflected at the boundary surface between the end of the delay member 26 and the air. When the frequency of the incident sound wave and the reflected sound wave is f, the acoustic impedance of the delay material 26 can be expressed as Z R (f) that is a function of the frequency f. Similarly, the acoustic impedance in the air can also be expressed as Z A (f) that is a function of the frequency f. Here, the acoustic impedances Z R (f) and Z A (f) are complex values.
 遅延材26と空気中との境界面における入射音波の反射率RAR(f)は
AR(f)=(Z(f)-Z(f))/(Z(f)+Z(f))・・・(1)
となる。このとき、任意の周波数fにおいてZ(f)はZ(f)に比較して十分小さいため、式(1)から、反射率RAR(f)=-1となる。つまり、遅延材26と空気中との境界面においては、入射音波が全反射する。
The reflectance R AR (f) of the incident sound wave at the interface between the retarder 26 and the air is R AR (f) = (Z A (f) −Z R (f)) / (Z A (f) + Z R (F)) ... (1)
It becomes. At this time, since Z A (f) is sufficiently smaller than Z R (f) at an arbitrary frequency f, the reflectance R AR (f) = − 1 from Equation (1). That is, the incident sound wave is totally reflected at the boundary surface between the delay member 26 and the air.
 以下の説明においては、トランスデューサ25に入射する反射音波の式をa(f)exp(iθ(f))と表す。iは虚数単位、a(f)は対象とする周波数における実数の振幅値であり、θ(f)は0以上の実数であって各周波数における位相を表す。測定センサ11からタイヤTに放射される入射音波の式は、
(f)exp(iθ(f))×RAR(f)=-a(f)exp(iθ(f))・・・(2)
となる。従って、図4Aでは、式(2)に示す入射音波がタイヤTに放射されるとみなすことができる。基準値記憶部28には、基準値として、式(2)における振幅a(f)及び位相θ(f)が予め格納されている。この基準値a(f)は、予め測定をすることで取得される。
In the following description, the expression of the reflected sound wave incident on the transducer 25 is represented as a 0 (f) exp (iθ 0 (f)). i is an imaginary unit, a 0 (f) is a real amplitude value at a target frequency, and θ 0 (f) is a real number of 0 or more, and represents a phase at each frequency. The formula of the incident sound wave radiated from the measurement sensor 11 to the tire T is
a 0 (f) exp (iθ 0 (f)) × R AR (f) = − a 0 (f) exp (iθ 0 (f)) (2)
It becomes. Therefore, in FIG. 4A, it can be considered that the incident sound wave shown to Formula (2) is radiated | emitted to the tire T. FIG. In the reference value storage unit 28, the amplitude a 0 (f) and the phase θ 0 (f) in Expression (2) are stored in advance as reference values. This reference value a 0 (f) is acquired by measuring in advance.
 次に、図4Bを参照して、タイヤTの粘弾性特性を算出する場合について説明する。タイヤTの粘弾性特性を算出する場合には、遅延材26がタイヤTと密着した状態で、駆動波形発生器22から電気信号が出力されることで、トランスデューサ25から図4Aと同一の入射音波が放射される。トランスデューサ25は、遅延材26とタイヤTとの境界面において反射される反射音波を受信し、高周波増幅器24は、その反射音波の電気信号における高周波成分を増幅する。 Next, the case where the viscoelastic characteristics of the tire T are calculated will be described with reference to FIG. 4B. When calculating the viscoelastic characteristics of the tire T, an electric signal is output from the drive waveform generator 22 in a state where the delay member 26 is in close contact with the tire T, so that the same incident sound wave as in FIG. Is emitted. The transducer 25 receives the reflected sound wave reflected at the interface between the delay member 26 and the tire T, and the high frequency amplifier 24 amplifies the high frequency component in the electric signal of the reflected sound wave.
 ここで、周波数fの関数であるタイヤTのバルクの音響インピーダンスをZ(f)とすると、遅延材26とタイヤTとの境界面における入射音波の反射率RRT(f)は、
RT(f)=(Z(f)-Z(f))/(Z(f)+Z(f))・・・(3)
となる。式(3)から、Z(f)は次のように表される。
(f)=Z(f)×(1+RRT(f))/(1-RRT(f))・・・(4)
Here, when the acoustic impedance of the bulk of the tire T that is a function of the frequency f is Z T (f), the reflectance R RT (f) of the incident sound wave at the boundary surface between the delay member 26 and the tire T is
R RT (f) = (Z T (f) −Z R (f)) / (Z T (f) + Z R (f)) (3)
It becomes. From Expression (3), Z T (f) is expressed as follows.
Z T (f) = Z R (f) × (1 + R RT (f)) / (1−R RT (f)) (4)
 以下の説明においては、トランスデューサ25に入射する反射音波の式をa(f)exp(iθ(f))と表す。iは虚数単位、a(f)は対象とする周波数における実数の振幅値であり、θ(f)は0以上の実数であって各周波数における位相を表す。式(2)における基準値を用いると、反射音波の式は
a(f)exp(iθ(f))=-a(f)exp(iθ(f))×RRT(f)・・・(5)
と表される。式(5)から、入射音波の反射率RRT(f)は
RT(f)=-(a(f)/a(f))×exp(i(θ(f)-θ(f))・・・(6)
と表される。ここで、式(4)に式(6)を代入することで、Z(f)は以下のように得られる。
(f)=Z(f)×(1-(a(f)/a(f))×exp(i(θ(f)-θ(f)))/(1+(a(f)/a(f))×exp(i(θ(f)-θ(f)))・・・(7)
In the following description, the expression of the reflected sound wave incident on the transducer 25 is represented as a (f) exp (iθ (f)). i is an imaginary unit, a (f) is a real amplitude value at a target frequency, and θ (f) is a real number equal to or greater than 0 and represents a phase at each frequency. Using the reference value in equation (2), the equation of the reflected sound wave is a (f) exp (iθ (f)) = − a 0 (f) exp (iθ 0 (f)) × R RT (f).・ (5)
It is expressed. From the equation (5), the reflectance R RT (f) of the incident sound wave is R RT (f) = − (a (f) / a 0 (f)) × exp (i (θ (f) −θ 0 (f )) ... (6)
It is expressed. Here, Z T (f) is obtained as follows by substituting Equation (6) into Equation (4).
Z T (f) = Z R (f) × (1− (a (f) / a 0 (f)) × exp (i (θ (f) −θ 0 (f)))) / (1+ (a ( f) / a 0 (f)) × exp (i (θ (f) −θ 0 (f))) (7)
 ここで、周波数fの関数であるタイヤTの貯蔵弾性率をE’(f)、タイヤTの損失弾性率をE”(f)とする。このとき、E’(f)及びE”(f)と、タイヤTの音響インピーダンスZ(f)及び密度ρとの間には、次の関係が成り立つ。
E’(f)+iE”(f)=Z(f)/ρ・・・(8)
Here, the storage elastic modulus of the tire T as a function of the frequency f is E ′ (f), and the loss elastic modulus of the tire T is E ″ (f). At this time, E ′ (f) and E ″ (f ) And the acoustic impedance Z T (f) and density ρ T of the tire T, the following relationship holds.
E ′ (f) + iE ″ (f) = Z T (f) 2 / ρ T (8)
 式(7)を式(8)に代入し、実数成分と虚数成分とを分離することで、損失正接tanδ(f)は、次のように算出される。
tanδ(f)=E”(f)/E’(f)={4×(a(f)/a(f))×(1-(a(f)/a(f)))×sin(θ(f)-θ(f))}/{(1-(a(f)/a(f))-4×(a(f)/a(f))×sin(θ(f)-θ(f))}・・・(9)
By substituting equation (7) into equation (8) and separating the real and imaginary components, the loss tangent tan δ (f) is calculated as follows.
tan δ (f) = E ″ (f) / E ′ (f) = {4 × (a (f) / a 0 (f)) × (1− (a (f) / a 0 (f)) 2 ) × sin (θ (f) −θ 0 (f))} / {(1− (a (f) / a 0 (f)) 2 ) 2 −4 × (a (f) / a 0 (f)) 2 × sin 2 (θ (f) −θ 0 (f))} (9)
 なお、貯蔵弾性率E’(f)及び損失弾性率E”(f)は、それぞれ次のように算出される。
E’(f)=Re[Z(f)/ρ]=(Z(f)/ρ)×{(1-(a(f)/a(f))-4(a(f)/a(f))×sin(θ(f)-θ(f))}/{1+2(a(f)/a(f))cos(θ(f)-θ(f))+(a(f)/a(f))・・・(10)
E”(f)=Im[Z(f)/ρ]=(Z(f)/ρ)×{4(a(f)/a(f))×(1-(a(f)/a(f)))sin(θ(f)-θ(f))}/{1+2(a(f)/a(f))cos(θ(f)-θ(f))+(a(f)/a(f))・・・(11)
ここで、Re[Z(f)/ρ]はZ(f)/ρの実数成分であり、Im[Z(f)/ρ]はZ(f)/ρの虚数成分である。
The storage elastic modulus E ′ (f) and the loss elastic modulus E ″ (f) are calculated as follows.
E ′ (f) = Re [Z T (f) 2 / ρ T ] = (Z R (f) 2 / ρ T ) × {(1− (a (f) / a 0 (f)) 2 ) 2 −4 (a (f) / a 0 (f)) 2 × sin 2 (θ (f) −θ 0 (f))} / {1 + 2 (a (f) / a 0 (f)) cos (θ ( f) −θ 0 (f)) + (a (f) / a 0 (f)) 2 } 2 (10)
E ″ (f) = Im [Z T (f) 2 / ρ T ] = (Z R (f) 2 / ρ T ) × {4 (a (f) / a 0 (f)) × (1- ( a (f) / a 0 (f)) 2 ) sin (θ (f) −θ 0 (f))} / {1 + 2 (a (f) / a 0 (f)) cos (θ (f) −θ 0 (f)) + (a (f) / a 0 (f)) 2 } 2 (11)
Here, Re [Z T (f) 2 / ρ T ] is a real component of Z T (f) 2 / ρ T , and Im [Z T (f) 2 / ρ T ] is Z T (f) 2. / Ρ is an imaginary component of T.
 式(9)~(11)の通り、貯蔵弾性率E’(f)、損失弾性率E”(f)及び損失正接tanδ(f)は、いずれもa(f)、θ(f)を基準とする{a(f)/a(f)}(入射音波の振幅と反射音波の振幅との比)、{θ(f)-θ(f)}(入射音波の位相と反射音波の位相との位相差)で定義される。そのため、振幅a(f)及び位相特性θ(f)を基準値として、タイヤTの測定時において取得される反射音波の電気信号のデータと比較することで、タイヤTの粘弾性特性(特に損失正接)を測定できる。また、上述の通り、タイヤTの損失正接は周波数に依存する。そのため、演算部29は、複数の周波数成分毎に損失正接を導出してもよい。また、高い周波数における損失正接を算出する必要がある場合には、入射音波として、超音波がトランスデューサ25から供給されてもよい。 As represented by the equations (9) to (11), the storage elastic modulus E ′ (f), the loss elastic modulus E ″ (f), and the loss tangent tan δ (f) are all a 0 (f), θ 0 (f) {A (f) / a 0 (f)} (ratio of incident sound wave amplitude to reflected sound wave amplitude), {θ (f) −θ 0 (f)} (incident sound wave phase and reflection) Therefore, the data of the electric signal of the reflected sound wave acquired at the time of measurement of the tire T with the amplitude a 0 (f) and the phase characteristic θ 0 (f) as reference values. The loss tangent of the tire T depends on the frequency as described above, so that the calculation unit 29 is provided for each of a plurality of frequency components. The loss tangent may be derived at the same time, or when it is necessary to calculate the loss tangent at a high frequency. , As an incident sound wave, ultrasound may be supplied from the transducer 25.
 以下、図1に戻って、運転制御装置10の説明を続ける。摩擦係数算出部13は、粘弾性特性算出部12が算出したタイヤTの粘弾性特性を用いて、タイヤTの摩擦係数を算出する。例えば、周波数fの関数であるタイヤTの摩擦係数μ(f)は、上述の損失正接tanδ(f)及び貯蔵弾性率E’(f)を用いて、
μ(f)=α×E’(f)×tanδ(f)+β・・・(12)
と表される。α(>0)及びβはタイヤの種類(例えばタイヤの材質)に応じて変化する固有の定数であり、nは所定の実数である(例えばn=-1/3)。なお、摩擦係数μ(f)を求める数式は、式(12)ではない、tanδ(f)を用いた他の多項式や高次式であってもよい。この摩擦係数μ(f)を求めることで、タイヤの劣化を測定することができる。なお、定数α及びβは、予め実験等を行うことで取得される値である。特に、定数α及びtanδ(f)は、降雨時(wet時)において、摩擦係数との相関が大きい。wet時の摩擦係数の大小が事故率と密接な関係があることは言うまでもない。
Hereinafter, returning to FIG. 1, the description of the operation control device 10 will be continued. The friction coefficient calculation unit 13 calculates the friction coefficient of the tire T using the viscoelastic characteristic of the tire T calculated by the viscoelastic characteristic calculation unit 12. For example, the friction coefficient μ (f) of the tire T, which is a function of the frequency f, is obtained by using the above loss tangent tan δ (f) and the storage elastic modulus E ′ (f).
μ (f) = α × E ′ (f) n × tan δ (f) + β (12)
It is expressed. α (> 0) and β are inherent constants that change according to the type of tire (for example, the material of the tire), and n is a predetermined real number (for example, n = −1 / 3). Note that the mathematical formula for obtaining the friction coefficient μ (f) may be other polynomials or higher order formulas using tan δ (f), not the formula (12). By determining the friction coefficient μ (f), tire deterioration can be measured. Note that the constants α and β are values obtained by conducting an experiment or the like in advance. In particular, the constants α and tan δ (f) have a large correlation with the friction coefficient during rain (wet). Needless to say, the magnitude of the friction coefficient at the time of wet is closely related to the accident rate.
 図5は、摩擦係数算出部13の構成例を示したブロック図である。摩擦係数算出部13は、詳細には、定数記憶部31と算出部32を有する。定数記憶部31には、上述のα及びβが格納されている。算出部32は、定数記憶部31に格納された定数α及びβを用いて、粘弾性特性算出部12が算出した損失正接tanδ(f)及び貯蔵弾性率E’(f)に基づき、式(12)からタイヤTの摩擦係数μ(f)を算出する。 FIG. 5 is a block diagram illustrating a configuration example of the friction coefficient calculation unit 13. The friction coefficient calculation unit 13 includes a constant storage unit 31 and a calculation unit 32 in detail. The constant storage unit 31 stores the above α and β. The calculation unit 32 uses the constants α and β stored in the constant storage unit 31, based on the loss tangent tan δ (f) and the storage elastic modulus E ′ (f) calculated by the viscoelastic property calculation unit 12. The friction coefficient μ (f) of the tire T is calculated from 12).
 以下、図1に戻って説明を続ける。測定センサ11がタイヤの測定量を測定すると、粘弾性特性算出部12は測定されたデータに基づいてタイヤTの粘弾性特性を算出する。摩擦係数算出部13は、粘弾性特性算出部12が算出した粘弾性特性に基づいてタイヤTの摩擦係数を算出する。運転制御部14は、摩擦係数算出部13が算出したタイヤTの摩擦係数に基づいて、自動車の運転を制御し、ユーザの操作なしで自動車1の自動運転を行う(以下、運転制御部14がユーザの操作なしで自動車1を自動運転するモードを自動運転モードと記載する。)。自動運転モードでは、運転制御部14は、駆動部16-表示部19を制御して自動運転を行う。なお、運転制御部14は、通常時には自動車1の自動運転を行わず(ユーザが自動車の運転を行い)、所定の場合において、運転制御部14がユーザの操作なしで自動車1を自動運転してもよい(以下、このモードを運転アシストモードと記載する。)。なお、所定の場合とは、例えば自動車1の進行方向に障害物を検出した場合や、自動車1が加速を行う場合等である。運転制御部14の運転の制御の具体例については、後述の[制御例1]-[制御例4]において示す。粘弾性特性算出部12、摩擦係数算出部13及び運転制御部14は、例えばECU(Electronic Control Unit)に設けられている。 Hereinafter, returning to FIG. When the measurement sensor 11 measures the measurement amount of the tire, the viscoelastic property calculation unit 12 calculates the viscoelastic property of the tire T based on the measured data. The friction coefficient calculation unit 13 calculates the friction coefficient of the tire T based on the viscoelastic characteristics calculated by the viscoelastic characteristic calculation unit 12. The driving control unit 14 controls the driving of the vehicle based on the friction coefficient of the tire T calculated by the friction coefficient calculating unit 13, and performs the automatic driving of the vehicle 1 without user operation (hereinafter, the driving control unit 14 is referred to as the driving control unit 14). A mode in which the automobile 1 is automatically driven without user operation is referred to as an automatic driving mode). In the automatic operation mode, the operation control unit 14 controls the drive unit 16-display unit 19 to perform automatic operation. The operation control unit 14 does not automatically operate the vehicle 1 during normal operation (the user operates the vehicle). In a predetermined case, the operation control unit 14 automatically operates the vehicle 1 without any user operation. (This mode is hereinafter referred to as a driving assist mode.) The predetermined case is, for example, a case where an obstacle is detected in the traveling direction of the automobile 1 or a case where the automobile 1 accelerates. Specific examples of operation control of the operation control unit 14 will be described in [Control Example 1]-[Control Example 4] described later. The viscoelastic characteristic calculation unit 12, the friction coefficient calculation unit 13, and the operation control unit 14 are provided in, for example, an ECU (Electronic Control Unit).
 レーダーセンサ15は、自動車1の走行の際に、自動車1の周辺にある物体を検出し、検出結果を運転制御部14に出力する。特にレーダーセンサ15は、自動車1の進行方向(以下、前方とも記載)にある物体(障害物)を検出することができる。レーダーセンサ15は、電波を照射し、照射された電波が前方の物体に反射されて生じた反射波を検出する。これにより、レーダーセンサ15は、物体と自動車1との距離や物体の位置等を検出することができる。レーダーセンサ15は、例えばミリ波レーダーである。 The radar sensor 15 detects an object around the automobile 1 when the automobile 1 travels, and outputs a detection result to the operation control unit 14. In particular, the radar sensor 15 can detect an object (obstacle) in the traveling direction of the automobile 1 (hereinafter also referred to as the front). The radar sensor 15 emits radio waves, and detects a reflected wave generated by the reflected radio waves being reflected by a front object. Thereby, the radar sensor 15 can detect the distance between the object and the automobile 1, the position of the object, and the like. The radar sensor 15 is, for example, a millimeter wave radar.
 駆動部16は、運転制御部14の制御に応じて、自動車1の車輪に駆動力を与えて車輪を駆動させる。駆動部16が車輪に与える駆動力を増加又は減少させることで、駆動部16は自動車1の走行の加速又は減速を行う。駆動部16は、例えばエンジンであってもよいし、モータであってもよい。あるいは、駆動部16は、エンジン及びモータの両方で構成されていてもよい(即ち、自動車1はハイブリッド車であってもよい)。 The driving unit 16 drives the wheels by applying a driving force to the wheels of the automobile 1 according to the control of the operation control unit 14. The drive unit 16 accelerates or decelerates the travel of the automobile 1 by increasing or decreasing the drive force applied to the wheels by the drive unit 16. The drive unit 16 may be, for example, an engine or a motor. Or the drive part 16 may be comprised with both the engine and the motor (namely, the motor vehicle 1 may be a hybrid vehicle).
 ブレーキ部17は、運転制御部14の制御に応じて、自動車1の車輪の回転を減速させる。これにより、ブレーキ部17は自動車1の速度を減速させる。ブレーキ部17は、例えば、ブレーキアクチュエータや、車輪に設けられたブレーキパッドで構成される。 The brake unit 17 decelerates the rotation of the wheels of the automobile 1 according to the control of the operation control unit 14. Thereby, the brake unit 17 decelerates the speed of the automobile 1. The brake part 17 is comprised by the brake pad provided in the brake actuator and the wheel, for example.
 ステアリング部18は、運転制御部14の制御に応じて、自動車1の車輪の操舵(ステアリング)を行う。例えば、ステアリング部18は、運転制御部14の制御に応じて、現在の自動車1の進行方向を変更するように、自動車1の車輪を左右方向に旋回させる。ステアリング部18は、例えばハンドル、デファレンシャルギア、ステアリングシャフト等から構成され、運転制御部14の制御に応じて、駆動部16が車輪に与える駆動力を分配する。 The steering unit 18 steers the wheels of the automobile 1 in accordance with the control of the operation control unit 14. For example, the steering unit 18 turns the wheels of the automobile 1 in the left-right direction so as to change the current traveling direction of the automobile 1 according to the control of the operation control unit 14. The steering unit 18 includes, for example, a steering wheel, a differential gear, a steering shaft, and the like, and distributes the driving force that the driving unit 16 applies to the wheels according to the control of the operation control unit 14.
 表示部19は、運転制御部14の制御に応じて、自動車の運転に関する情報を表示する。表示部19は、例えばスピードメータやディスプレイで構成される。 The display unit 19 displays information related to the driving of the vehicle in accordance with the control of the operation control unit 14. The display unit 19 includes a speedometer or a display, for example.
 図6は、運転制御装置10の処理の一例を示したフローチャートである。以下、図1、図2及び図6を用いて、運転制御装置10の全体処理について説明する。 FIG. 6 is a flowchart showing an example of processing of the operation control device 10. Hereinafter, the overall processing of the operation control apparatus 10 will be described with reference to FIGS. 1, 2, and 6.
 まず、演算部29は、駆動波形発生器22に音波の放射指示を出力する。一例として、演算部29は、運転制御部14からの測定指示に応じて、駆動波形発生器22に音波の放射指示を出力してもよい。駆動波形発生器22は、その指示に応じて、入射音波の電気信号を生成し、方向整合器23に出力する。方向整合器23は、その入射音波の電気信号をトランスデューサ25に出力する。トランスデューサ25は、供給された電気信号を入射音波に変換し、タイヤTに放射する(図6のステップS1)。 First, the calculation unit 29 outputs a sound wave emission instruction to the drive waveform generator 22. As an example, the calculation unit 29 may output a sound wave emission instruction to the drive waveform generator 22 in accordance with a measurement instruction from the operation control unit 14. In response to the instruction, the drive waveform generator 22 generates an electric signal of an incident sound wave and outputs it to the direction matching unit 23. The direction aligner 23 outputs an electric signal of the incident sound wave to the transducer 25. The transducer 25 converts the supplied electric signal into an incident sound wave and radiates it to the tire T (step S1 in FIG. 6).
 トランスデューサ25は、タイヤTからの反射音波を受信すると、その反射音波を電気信号に変換し、変換後の電気信号を方向整合器23に出力する(図6のステップS2)。方向整合器23は、反射音波の電気信号を高周波増幅器24に出力する。高周波増幅器24は、供給された電気信号に含まれる高周波成分を増幅し、増幅した電気信号を時間データメモリ部27に出力する。 When receiving the reflected sound wave from the tire T, the transducer 25 converts the reflected sound wave into an electric signal, and outputs the converted electric signal to the direction matching unit 23 (step S2 in FIG. 6). The direction matching unit 23 outputs an electric signal of the reflected sound wave to the high frequency amplifier 24. The high frequency amplifier 24 amplifies the high frequency component included in the supplied electric signal and outputs the amplified electric signal to the time data memory unit 27.
 演算部29は時間データメモリ部27に格納されたデータを読み出し、周波数領域における波形解析処理を行ない、検出対象となる周波数における振幅値及び位相を取得する(図6のステップS3)。次に、演算部29は、基準値記憶部28に格納されている基準値を読み出す。演算部29は、その基準値と、時間データメモリ部27に格納された反射音波の振幅値及び位相とに基づいて、タイヤTの粘弾性特性を算出する(図6のステップS4)。この算出方法の詳細は上述の通りである。 The calculation unit 29 reads the data stored in the time data memory unit 27, performs waveform analysis processing in the frequency domain, and acquires the amplitude value and phase at the frequency to be detected (step S3 in FIG. 6). Next, the calculation unit 29 reads the reference value stored in the reference value storage unit 28. The calculation unit 29 calculates the viscoelastic characteristics of the tire T based on the reference value and the amplitude value and phase of the reflected sound wave stored in the time data memory unit 27 (step S4 in FIG. 6). The details of this calculation method are as described above.
 摩擦係数算出部13は、粘弾性特性算出部12が算出したタイヤTの粘弾性特性を用いて、タイヤTの摩擦係数を算出する(ステップS5)。運転制御部14は、摩擦係数算出部13が算出したタイヤTの摩擦係数に基づいて、自動車の運転を制御する(図6のステップS6)。 The friction coefficient calculation unit 13 calculates the friction coefficient of the tire T using the viscoelastic property of the tire T calculated by the viscoelastic property calculation unit 12 (step S5). The driving control unit 14 controls driving of the automobile based on the friction coefficient of the tire T calculated by the friction coefficient calculating unit 13 (step S6 in FIG. 6).
 このように、本発明では、自動車の運転を制御するために、測定した自動車のタイヤの粘弾性特性に基づいてタイヤの摩擦係数を算出している。タイヤの摩擦係数の低下は安全性の低下に直結し、事故の確率を高めるとともに損害を大きくするものと考えられるため、本発明を利用することで、自動車の運転をより安全に制御することができる。例えば、運転中に不意の危険が生じた場合に、ブレーキを使用した自動車の停止が危険回避に間に合うように、自動車の運転を制御することができる。また、タイヤの摩擦係数が低下した(タイヤの特性が劣化した)ことが判定された場合には、自動車のユーザはタイヤを交換する(特に、タイヤを買い替える)ことが想定される。そのため、本発明では、自動車の安全性の向上を図ることができるほか、ユーザにタイヤの劣化を通知することで、タイヤの交換を促すことができる。 Thus, in the present invention, in order to control the driving of the automobile, the friction coefficient of the tire is calculated based on the measured viscoelastic characteristics of the tire of the automobile. A decrease in the coefficient of friction of the tire is directly linked to a decrease in safety, which increases the probability of an accident and increases the damage.By using the present invention, it is possible to control the driving of a car more safely. it can. For example, when an unexpected danger occurs during driving, the driving of the automobile can be controlled so that stopping the automobile using the brake is in time for avoiding the danger. In addition, when it is determined that the friction coefficient of the tire has decreased (the tire characteristics have deteriorated), it is assumed that the user of the automobile replaces the tire (particularly, replaces the tire). Therefore, in the present invention, it is possible to improve the safety of the automobile and to prompt the user to replace the tire by notifying the user of the deterioration of the tire.
 以下、図1を参照しつつ、運転制御部14の制御の具体例について説明する。なお、以下の説明の前提として、運転制御部14は自動運転モードにおいて制御を行うものとする。 Hereinafter, a specific example of the control of the operation control unit 14 will be described with reference to FIG. As a premise for the following description, it is assumed that the operation control unit 14 performs control in the automatic operation mode.
[制御例1]
 運転制御部14は、レーダーセンサ15が自動車1の前方に障害物を検出した際には、自動車1と障害物との衝突を回避するために、ブレーキ部17を制御して自動車1の減速(特に停止)を行う。ここで、運転制御部14は、測定したタイヤの摩擦係数が所定の閾値未満である場合(タイヤが劣化している場合)には、タイヤの摩擦係数が所定の閾値以上である場合(タイヤが劣化していない場合)と比較して、自動車1の減速をより早いタイミングで実行させる。
[Control Example 1]
When the radar sensor 15 detects an obstacle in front of the automobile 1, the operation control unit 14 controls the brake unit 17 to decelerate the automobile 1 (in order to avoid a collision between the automobile 1 and the obstacle). (Especially stop). Here, when the measured tire friction coefficient is less than a predetermined threshold value (when the tire is deteriorated), the operation control unit 14 determines that the tire friction coefficient is equal to or greater than the predetermined threshold value (when the tire is The vehicle 1 is decelerated at an earlier timing as compared with the case where it is not deteriorated.
 一例として、運転制御部14は、自動車1が60km/hで走行している際に、タイヤの摩擦係数が所定の閾値以上である場合、障害物と自動車1との距離が20m以下になった時点で自動車1を停止させる。しかし、運転制御部14は、自動車1が60km/hで走行している際に、タイヤの摩擦係数が所定の閾値未満である場合、障害物と自動車1との距離が25m以下になった時点で自動車1を停止させる。このように、運転制御部14は、自動車1が同じ走行速度で走行していても、タイヤの摩擦係数が所定の閾値未満である場合には、タイヤの摩擦係数が所定の閾値以上である場合と比較して、自動車1の停止を実行させる自動車1と障害物との距離を長く設定する。つまり、運転制御部14は、走行中に、より早いタイミングで自動車1の減速を実行させる。以上より、運転制御部14は、タイヤが劣化している際にも、自動車1と障害物との衝突を確実に回避することができる。 As an example, when the automobile 1 is traveling at 60 km / h, the driving control unit 14 has a distance between the obstacle and the automobile 1 of 20 m or less when the tire friction coefficient is equal to or greater than a predetermined threshold. At the time, the automobile 1 is stopped. However, when the vehicle 1 is traveling at 60 km / h and the friction coefficient of the tire is less than a predetermined threshold value, the operation control unit 14 determines when the distance between the obstacle and the vehicle 1 is 25 m or less. Then, the car 1 is stopped. As described above, the driving control unit 14 determines that the tire friction coefficient is equal to or greater than the predetermined threshold when the friction coefficient of the tire is less than the predetermined threshold even when the automobile 1 is traveling at the same traveling speed. The distance between the vehicle 1 that causes the vehicle 1 to stop and the obstacle is set longer. That is, the operation control unit 14 causes the automobile 1 to decelerate at an earlier timing during traveling. As described above, the operation control unit 14 can reliably avoid the collision between the automobile 1 and the obstacle even when the tire is deteriorated.
 なお、運転制御部14は、レーダーセンサ15が自動車1の前方に障害物を検出した際には、自動車1の減速に代えて(又は自動車1の減速と同時に)、ステアリング部18を制御して自動車の進行方向を変更する操舵を実行させてもよい。つまり、運転制御部14は、障害物との衝突を回避するために、左右いずれかに自動車1の進路を変更する。このとき、タイヤの摩擦係数が所定の閾値未満である場合には、タイヤの摩擦係数が所定の閾値以上である場合と比較して、自動車1の進行方向の変更をより早いタイミングで実行させる。 When the radar sensor 15 detects an obstacle in front of the vehicle 1, the operation control unit 14 controls the steering unit 18 instead of the deceleration of the vehicle 1 (or simultaneously with the deceleration of the vehicle 1). Steering for changing the traveling direction of the automobile may be executed. That is, the driving control unit 14 changes the course of the automobile 1 to the left or right in order to avoid a collision with an obstacle. At this time, when the tire friction coefficient is less than the predetermined threshold, the traveling direction of the automobile 1 is changed at an earlier timing than when the tire friction coefficient is greater than or equal to the predetermined threshold.
[制御例2]
 運転制御部14は、自動車1を加速させる際、タイヤの摩擦係数が所定の閾値未満である場合には、タイヤの摩擦係数が所定の閾値以上である場合と比較して、自動車1の加速度を小さく設定してもよい。一例として、自動車1が停止している状態から動きだす場合に、駆動部16が車輪に駆動力を与える。このとき、運転制御部14は、タイヤの摩擦係数が所定の閾値未満である場合には、タイヤの摩擦係数が所定の閾値以上である場合と比較して、車輪に与える駆動力が小さくなるように駆動部16を制御する。自動車1が一定の速度で走行している状態から加速する場合にも、運転制御部14は同様の制御が可能である。以上より、運転制御部14は、タイヤが劣化している際に自動車1の急加速を防止し、事故の可能性を減少させることができる。
[Control Example 2]
When accelerating the automobile 1, the operation control unit 14 increases the acceleration of the automobile 1 when the tire friction coefficient is less than a predetermined threshold, compared to the case where the tire friction coefficient is greater than or equal to the predetermined threshold. You may set small. As an example, when the automobile 1 starts to move from a stopped state, the drive unit 16 applies driving force to the wheels. At this time, when the friction coefficient of the tire is less than the predetermined threshold, the driving control unit 14 reduces the driving force applied to the wheel as compared with the case where the tire friction coefficient is equal to or greater than the predetermined threshold. The drive unit 16 is controlled. The driving control unit 14 can perform the same control even when the vehicle 1 is accelerated from a state where the vehicle 1 is traveling at a constant speed. From the above, the operation control unit 14 can prevent sudden acceleration of the automobile 1 when the tire is deteriorated, and can reduce the possibility of an accident.
[制御例3]
 運転制御部14は、タイヤの摩擦係数が所定の閾値未満である場合には、タイヤの摩擦係数が所定の閾値以上である場合と比較して、自動車1の最高速度を低く設定してもよい。例えば、運転制御部14は、タイヤの摩擦係数が所定の閾値未満である場合には、駆動部16を制御して、車輪に与える駆動力を所定値未満に制限させる。このように、運転制御部14は、タイヤが劣化している場合に自動車1の最高速度を制限する。そのため、運転制御部14は、タイヤが劣化している際に、自動車1が引き起こす事故の可能性を減少させることができる。なお、タイヤの摩擦係数が所定の閾値以上である場合には、運転制御部14は、駆動部16が所定値以上の駆動力を車輪に与えるように制御することができる。
[Control Example 3]
When the tire friction coefficient is less than the predetermined threshold, the operation control unit 14 may set the maximum speed of the automobile 1 lower than when the tire friction coefficient is greater than or equal to the predetermined threshold. . For example, when the friction coefficient of the tire is less than a predetermined threshold, the operation control unit 14 controls the driving unit 16 to limit the driving force applied to the wheels to less than a predetermined value. Thus, the driving control unit 14 limits the maximum speed of the automobile 1 when the tire is deteriorated. Therefore, the driving control unit 14 can reduce the possibility of an accident caused by the automobile 1 when the tire is deteriorated. In addition, when the friction coefficient of a tire is more than a predetermined threshold value, the driving control unit 14 can perform control so that the driving unit 16 applies a driving force of a predetermined value or more to the wheels.
[制御例4]
 制御例1-3において、運転制御部14は、タイヤの摩擦係数を用いて、自動車1の運転の制御を行った。しかしながら、運転制御部14は、制御例1-3において、タイヤの摩擦係数だけでなくタイヤの制動距離のデータも用いて、自動車1の運転を制御してもよい。このように、運転制御部14は、タイヤの摩擦係数以外のタイヤの情報も用いて自動車1の運転を制御するため、タイヤの安全性をより確実に反映して自動車1の運転を制御することができる。
[Control Example 4]
In Control Example 1-3, the operation control unit 14 controlled the operation of the automobile 1 using the tire friction coefficient. However, in the control example 1-3, the operation control unit 14 may control the operation of the automobile 1 using not only the tire friction coefficient but also the tire braking distance data. Thus, since the driving control unit 14 controls the driving of the automobile 1 using tire information other than the friction coefficient of the tire, the driving control unit 14 more reliably reflects the safety of the tire to control the driving of the automobile 1. Can do.
 自動車1において、ABSが作動している状態(つまり、自動車が急制動を行う状態)の制動距離が所定の値より大きい場合は、タイヤの特性が劣化していると推定できる。自動車1が加速する際に、ブレーキをかけてタイヤの空転を抑制するTCSが作動している場合にも、同様の推定が可能である。ABS又はTCS機能の作動頻度が所定の値より大きい場合にも、タイヤの特性が劣化していると推定できる。このため、運転制御部14は、ABS又はTCS機能が作動している際のタイヤの制動距離、自動車がABS又はTCS機能を有している際のABS又はTCS機能の作動頻度のデータの少なくともいずれか1つを、測定したタイヤの摩擦係数と共に用いることで、自動車1の運転を制御してもよい。なお、ABS又はTCS機能を有さない自動車1でも、運転制御部14は、ユーザがブレーキをかけた際のタイヤの制動距離のデータと、測定したタイヤの摩擦係数とを共に用いて、自動車1の運転を制御することができる。 In the automobile 1, when the braking distance in a state where the ABS is operating (that is, a state where the automobile performs sudden braking) is larger than a predetermined value, it can be estimated that the tire characteristics are deteriorated. When the automobile 1 is accelerated, the same estimation is possible even when the TCS that applies brakes and suppresses the idling of the tire is operating. Even when the operation frequency of the ABS or TCS function is larger than a predetermined value, it can be estimated that the characteristics of the tire are deteriorated. For this reason, the driving control unit 14 is at least one of the data of the braking distance of the tire when the ABS or TCS function is operating, and the operation frequency of the ABS or TCS function when the automobile has the ABS or TCS function. The driving of the automobile 1 may be controlled by using one of them together with the measured tire friction coefficient. Note that even in the automobile 1 that does not have the ABS or TCS function, the operation control unit 14 uses both the braking distance data of the tire when the user applies the brake and the measured friction coefficient of the tire, and uses the automobile 1 Can be controlled.
 さらに、旋回時の舵角や横滑り、車体に発生した横加速度Gに応じた自動車のスピード制御、ユーザが手動でブレーキをかけた際のタイヤロックの度合いにおいても、同様にタイヤ劣化の影響が生じる。このため、運転制御部14は、自動車1の旋回時の舵角、自動車1の旋回時の横滑り、横加速度に応じたスピード制御又はユーザが手動でブレーキをかけた際のタイヤロックの度合いのデータの少なくともいずれか1つを、測定したタイヤの摩擦係数と共に用いることで、自動車1の運転を制御してもよい。これにより、タイヤの劣化具合を、自動車の運転制御にさらに正確に反映させることができる。 In addition, the effect of tire deterioration also occurs on the steering angle and side slip when turning, the speed control of the vehicle according to the lateral acceleration G generated on the vehicle body, and the degree of tire lock when the user manually brakes. . For this reason, the driving control part 14 is the data of the steering angle at the time of the turn of the motor vehicle 1, the side slip at the time of the motor vehicle 1 turning, the speed control according to the lateral acceleration, or the degree of the tire lock when the user manually applies the brake. The driving of the automobile 1 may be controlled by using at least one of these together with the measured tire friction coefficient. As a result, the deterioration of the tire can be more accurately reflected in the driving control of the automobile.
 さらに、自動車1に搭載された加速度センサと車重センサの計測値(加速度及び車重の値)からタイヤに働く制動力や横加速度Gが計算できる。このため、運転制御部14は、計算した制動力や横加速度Gを用いて、制動距離や、旋回の際の横滑りを正規化することで、タイヤの基準状態からの劣化具合を精度高く判定できる。また、自動車群のこれらの計測値を援用して統計処理することで、ABS又はTCS機能が作動している際の制動距離、ABS又はTCS機能の作動頻度、及び旋回の際の横滑りの正規化がより実情を反映して行われる。これにより、的確な自動車の運転制御ができる。 Furthermore, the braking force acting on the tire and the lateral acceleration G can be calculated from the measured values (acceleration and vehicle weight values) of the acceleration sensor and the vehicle weight sensor mounted on the automobile 1. For this reason, the operation control unit 14 can accurately determine the degree of deterioration from the reference state of the tire by normalizing the braking distance and the side slip at the time of turning using the calculated braking force and lateral acceleration G. . In addition, by statistical processing with the aid of these measured values of the car group, the braking distance when the ABS or TCS function is operating, the frequency of operation of the ABS or TCS function, and the normalization of the skid when turning Is more reflective of the actual situation. Thereby, it is possible to accurately control the operation of the automobile.
 一例として、自動車1には、ABS又はTCS機能を使用した時に制動距離を測定するセンサが車載装置として設けられ、そのセンサが運転制御部14に制動距離のデータを出力する。そして、運転制御部14は、取得したタイヤの制動距離のデータとタイヤの摩擦係数のデータとに基づいて、自動車1の運転を制御する。運転制御部14が制御例1に示した制御を行う際には、摩擦係数算出部13が算出したタイヤの摩擦係数が同じ場合、タイヤの制動距離が長くなるほど、自動車1の減速又は進行方向の変更をより早いタイミングで実行させる。運転制御部14は、制御例2-3の場合でも同様の制御が可能である。 As an example, the vehicle 1 is provided with a sensor for measuring a braking distance when the ABS or TCS function is used as an in-vehicle device, and the sensor outputs braking distance data to the operation control unit 14. The operation control unit 14 controls the operation of the automobile 1 based on the acquired tire braking distance data and tire friction coefficient data. When the operation control unit 14 performs the control shown in Control Example 1, if the tire friction coefficient calculated by the friction coefficient calculation unit 13 is the same, the longer the braking distance of the tire, the longer the vehicle 1 decelerates or travels. Make changes happen earlier. The operation control unit 14 can perform the same control even in the case of the control example 2-3.
 なお、運転制御部14は、タイヤの摩擦係数が所定の閾値未満である場合に、表示部19にタイヤが劣化した旨を表示させてもよい。同様に、ABS又はTCS機能が作動している際の制動距離、ABS又はTCS機能の作動頻度、又は旋回の際の横滑りのデータも、自動車の運転制御に用いられるだけでなく、表示部19に表示させてユーザに告知してもよい。 The operation control unit 14 may display that the tire has deteriorated on the display unit 19 when the friction coefficient of the tire is less than a predetermined threshold. Similarly, the braking distance when the ABS or TCS function is operating, the frequency of operation of the ABS or TCS function, or the data of the skid during the turn is not only used for driving control of the car, but also displayed on the display unit 19. It may be displayed and notified to the user.
[実施の形態2]
 実施の形態2では、タイヤTにおけるトレッドの内側表面の粘弾性特性ではなく、タイヤTにおけるバルクの粘弾性特性を算出する例について説明する。
[Embodiment 2]
In the second embodiment, an example in which the viscoelastic characteristics of the bulk in the tire T are calculated instead of the viscoelastic characteristics of the inner surface of the tread in the tire T will be described.
 演算部29は、実施の形態1における表面反射法によって計算したタイヤTのトレッドの内側表面における粘弾性特性に基づいて、タイヤTにおけるバルクの(全体の)音響特性及び粘弾性特性を推定することができる。摩擦係数算出部13は、推定したバルクの粘弾性特性を用いて、タイヤTにおけるバルクの摩擦係数μを算出する。運転制御部14は、摩擦係数算出部13が算出したバルクの摩擦係数μが所定の閾値未満か否かに基づいて、上述の自動車1の運転制御を行うことができる。 The calculation unit 29 estimates the bulk (overall) acoustic characteristics and viscoelastic characteristics of the tire T based on the viscoelastic characteristics of the inner surface of the tread of the tire T calculated by the surface reflection method in the first embodiment. Can do. The friction coefficient calculation unit 13 calculates a bulk friction coefficient μ in the tire T using the estimated bulk viscoelastic characteristics. The driving control unit 14 can control the driving of the automobile 1 based on whether or not the bulk friction coefficient μ calculated by the friction coefficient calculating unit 13 is less than a predetermined threshold value.
 また、演算部29は、底面反射法を用いて、タイヤのバルクの粘弾性特性を直接算出してもよい。ここで、底面反射法は、入射音波がタイヤに入射しようとする際に内側表面で反射されて生じる反射音波(以下、第1の反射音波と記載)と、タイヤの内側表面を透過した入射音波が、その内側表面と反対側の外側表面で反射されて生じる反射音波(以下、第2の反射音波と記載)とに基づいて、タイヤのバルクの粘弾性特性を測定する方法である(例えば、特許文献1参照)。 Further, the calculation unit 29 may directly calculate the viscoelastic characteristics of the bulk of the tire by using the bottom surface reflection method. Here, the bottom surface reflection method includes a reflected sound wave (hereinafter referred to as a first reflected sound wave) generated when an incident sound wave is incident on the tire and reflected by the inner surface, and an incident sound wave transmitted through the inner surface of the tire. Is a method for measuring viscoelastic characteristics of a bulk of a tire based on a reflected sound wave (hereinafter referred to as a second reflected sound wave) generated by being reflected on an outer surface opposite to the inner surface (for example, Patent Document 1).
 底面反射法において、上述の第1の反射音波及び第2の反射音波とも遅延材26を透過するため、第1の反射音波及び第2の反射音波の伝搬時間に基づいて、タイヤ内部(トレッドゴム)の音波の伝搬時間を算出することができる。演算部29は、このタイヤ内部の伝搬時間と、音波の基準音速(特にタイヤが新品時の音速)とに基づいて、トレッドゴムの厚みを計算する。ここで、音波の基準音速の代わりに、タイヤ内部における実際の音速を用いてもよい。この実際の音速は、タイヤのトレッドゴム内に反射板を設置し、その反射板に音波を放射して音波が反射するまでの時間を測定することで算出できる(なお、トランスデューサ25から反射板までの距離及び遅延材26の厚さは既知であるとする)。また、タイヤの溝部に音波を放射することにより、音波が反射するまでの時間を測定して音速を測定してもよい。 In the bottom surface reflection method, since both the first reflected sound wave and the second reflected sound wave are transmitted through the delay member 26, the tire interior (tread rubber) is based on the propagation time of the first reflected sound wave and the second reflected sound wave. ) Sound wave propagation time can be calculated. The computing unit 29 calculates the thickness of the tread rubber based on the propagation time inside the tire and the reference sound speed of the sound wave (especially the sound speed when the tire is new). Here, an actual sound speed inside the tire may be used instead of the reference sound speed of the sound wave. This actual speed of sound can be calculated by installing a reflector in the tire tread rubber, and measuring the time until the sound wave is reflected by radiating sound waves to the reflector (from the transducer 25 to the reflector). And the thickness of the retarder 26 are known). Further, the sound speed may be measured by measuring the time until the sound wave is reflected by radiating the sound wave to the groove portion of the tire.
 演算部29は、音速の値と、以上の通り算出したトレッドゴムの厚みとに基づいて、タイヤのバルクの貯蔵弾性率E’(f)を算出する。さらに演算部29は、音波の減衰係数α(f)を算出することで、タイヤのバルクの損失弾性率E”(f)を算出する。演算部29は、算出したE’(f)とE”(f)との比率を算出することで、タイヤのバルクの損失正接tanδ(f)を算出する。 The calculation unit 29 calculates the bulk storage elastic modulus E ′ (f) of the tire based on the value of the sound velocity and the thickness of the tread rubber calculated as described above. Further, the calculation unit 29 calculates a loss elastic modulus E ″ (f) of the tire bulk by calculating a sound wave attenuation coefficient α (f). The calculation unit 29 calculates the calculated E ′ (f) and E ′. The loss tangent tan δ (f) of the bulk of the tire is calculated by calculating the ratio with “(f)”.
[実施の形態3]
 以下、図面を参照して本発明の実施の形態3について説明する。実施の形態3では、タイヤTにおけるトレッドの内側表面の粘弾性特性ではなく、タイヤTにおけるトレッドの外側表面の粘弾性特性を算出する例について説明する。さらにいえば、実施の形態3では、第1のタイミングでのタイヤTの外側表面で反射した反射音波の測定値と、第1のタイミングから所定の時間が経過した第2のタイミングでのタイヤTの外側表面で反射した反射音波の測定値とを比較する。これにより、トレッドの外側表面における粘弾性特性(特に損失正接)を算出する。以降では、この算出方法を、底面反射比較法と記載する。また、一般に、長時間時間が経過するような際に、同一のタイヤTにおける粘弾性特性は劣化する。以降では、このような場合を想定し、「第1のタイミング」を劣化前、「第2のタイミング」を劣化後と記載する。
[Embodiment 3]
The third embodiment of the present invention will be described below with reference to the drawings. In the third embodiment, an example in which the viscoelastic characteristics of the outer surface of the tread in the tire T are calculated instead of the viscoelastic characteristics of the inner surface of the tread in the tire T will be described. Furthermore, in Embodiment 3, the measured value of the reflected sound wave reflected from the outer surface of the tire T at the first timing and the tire T at the second timing after a predetermined time has elapsed from the first timing. The measured value of the reflected sound wave reflected from the outer surface of the is compared. Thereby, the viscoelastic characteristic (especially loss tangent) in the outer surface of the tread is calculated. Hereinafter, this calculation method is referred to as a bottom surface reflection comparison method. In general, the viscoelastic characteristics of the same tire T deteriorate when a long time elapses. In the following, assuming such a case, the “first timing” is described as before deterioration, and the “second timing” is described as after deterioration.
 図7A及び図7Bは、この底面反射比較法を用いて粘弾性特性を算出する方法を説明した図である。図7Aは、基準値を取得する際の入射音波の反射状況を示した図面であり、図7Bは、劣化後のタイヤTの粘弾性特性を算出する際の入射音波の反射状況を示した図面である。なお、以下の説明では、測定センサ11のトランスデューサ25から放射される入射音波の伝搬特性を表す音響インピーダンスを用いる。 FIG. 7A and FIG. 7B are diagrams illustrating a method for calculating viscoelastic properties using this bottom surface reflection comparison method. FIG. 7A is a diagram showing a reflection state of an incident sound wave when obtaining a reference value, and FIG. 7B is a diagram showing a reflection state of the incident sound wave when calculating a viscoelastic characteristic of the tire T after deterioration. It is. In the following description, acoustic impedance representing the propagation characteristics of incident sound waves radiated from the transducer 25 of the measurement sensor 11 is used.
 まず、図7Aを参照して、基準値について説明する。基準値は、タイヤTが劣化していない場合の、測定対象となる周波数における反射音波の位相及び振幅値である。このとき、入射音波は、劣化していないタイヤTの外側表面と空気との境界面で反射される。入射音波及び反射音波の周波数をfとすると、劣化していないタイヤTの外側表面の音響インピーダンスは、周波数fの関数であるZTO(f)と表すことができる。同様に、空気中の音響インピーダンスも、周波数fの関数であるZ(f)と表すことができる。ここで、音響インピーダンスZTO(f)とZ(f)は複素数の値である。 First, the reference value will be described with reference to FIG. 7A. The reference value is the phase and amplitude value of the reflected sound wave at the frequency to be measured when the tire T is not deteriorated. At this time, the incident sound wave is reflected by the boundary surface between the outer surface of the tire T which has not deteriorated and the air. If the frequency of the incident sound wave and the reflected sound wave is f, the acoustic impedance of the outer surface of the tire T that has not deteriorated can be expressed as Z TO (f) that is a function of the frequency f. Similarly, the acoustic impedance in the air can also be expressed as Z A (f) that is a function of the frequency f. Here, the acoustic impedances Z TO (f) and Z A (f) are complex values.
 タイヤTの外部表面と空気中との境界面における反射音波の反射率RTO(f)は
TO(f)=(Z(f)-ZTO(f))/(Z(f)+ZTO(f))・・・(13)
となる。このとき、任意の周波数fにおいてZ(f)はZTO(f)に比較して十分小さいため、式(13)から、一般的には、RTO(f)=-1とみなすことができる。
The reflectance R TO (f) of the reflected sound wave at the interface between the outer surface of the tire T and the air is R TO (f) = (Z A (f) −Z TO (f)) / (Z A (f) + Z TO (f)) (13)
It becomes. At this time, since Z A (f) is sufficiently smaller than Z TO (f) at an arbitrary frequency f, it can be generally assumed that R TO (f) = − 1 from Equation (13). it can.
 一例として、Z(f)=428.6(Pa・s/m)、ZTO(f)=1.5×10(Pa・s/m)という値である場合、式(13)から、RTO(f)はRTO(f)=-0.9994となり、-1にかなり近い値となる。なお、ZTO(f)は、1.5×10~2.4×10(Pa・s/m)の範囲の値であってもよい。 As an example, when the values of Z A (f) = 428.6 (Pa · s / m), Z TO (f) = 1.5 × 10 6 (Pa · s / m), , R TO (f) is R TO (f) = − 0.99994, which is a value very close to −1. Z TO (f) may be a value in the range of 1.5 × 10 6 to 2.4 × 10 6 (Pa · s / m).
 以下の説明においては、トランスデューサ25に入射する反射音波の式をbT0(f)exp(iθT0(f))と表す。iは虚数単位、bT0(f)は対象とする周波数における実数の振幅値であり、θT0(f)は0以上の実数であって各周波数における位相を表す。測定センサ11から、遅延材26及びタイヤT内部を介してタイヤTの外部表面に放射される入射音波の式は、
T0(f)exp(iθT0(f))×RTO(f)・・・(14)
となる。従って、図7Aでは、式(13)に示す入射音波がタイヤTの外部表面に放射されるとみなすことができる。基準値記憶部28には、基準値として、式(14)における振幅bT0(f)及び位相θT0(f)が予め格納されている。この基準値bT0(f)は、予め測定をすることで取得される。
In the following description, the expression of the reflected sound wave incident on the transducer 25 is expressed as b T0 (f) exp (iθ T0 (f)). i is an imaginary unit, b T0 (f) is a real amplitude value at a target frequency, and θ T0 (f) is a real number greater than or equal to 0 and represents a phase at each frequency. The equation of the incident sound wave radiated from the measurement sensor 11 to the outer surface of the tire T through the delay member 26 and the inside of the tire T is:
b T0 (f) exp (iθ T0 (f)) × R TO (f) (14)
It becomes. Therefore, in FIG. 7A, it can be considered that the incident sound wave shown in Formula (13) is radiated to the outer surface of the tire T. In the reference value storage unit 28, the amplitude b T0 (f) and the phase θ T0 (f) in Expression (14) are stored in advance as reference values. This reference value b T0 (f) is acquired by measuring in advance.
 次に、図7Bを参照して、タイヤTの外部表面における粘弾性特性の変化を算出する場合について説明する。タイヤTの粘弾性特性の変化を算出する場合には、劣化したタイヤTの外部表面へ、図7Aに示した入射音波が放射される。トランスデューサ25は、タイヤTの外部表面と空気との境界面において反射される反射音波を受信し、高周波増幅器24は、その反射音波の電気信号における高周波成分を増幅する。 Next, with reference to FIG. 7B, a case where the change in viscoelastic characteristics on the outer surface of the tire T is calculated will be described. When calculating the change in viscoelastic characteristics of the tire T, the incident sound wave shown in FIG. 7A is radiated to the outer surface of the deteriorated tire T. The transducer 25 receives the reflected sound wave reflected at the boundary surface between the outer surface of the tire T and the air, and the high frequency amplifier 24 amplifies the high frequency component in the electric signal of the reflected sound wave.
 ここで、劣化したタイヤTの外部表面の音響インピーダンスをZTOG(f)とする。なお、音響インピーダンスZTOG(f)は周波数fの関数である。劣化したタイヤTの外部表面と空気との境界面における入射音波の反射率RTOG(f)は、
TOG(f)=(Z(f)-ZTOG(f))/(Z(f)+ZTOG(f))・・・(15)
となる。式(15)から、ZTOG(f)は次のように表される。
TOG(f)=Z(f)×(1-RTOG(f))/(1+RTOG(f))・・・(16)
Here, let Z TOG (f) be the acoustic impedance of the outer surface of the deteriorated tire T. The acoustic impedance Z TOG (f) is a function of the frequency f. The reflectance R TOG (f) of the incident sound wave at the interface between the outer surface of the deteriorated tire T and the air is
R TOG (f) = (Z A (f) −Z TOG (f)) / (Z A (f) + Z TOG (f)) (15)
It becomes. From equation (15), Z TOG (f) is expressed as follows.
Z TOG (f) = Z A (f) × (1−R TOG (f)) / (1 + R TOG (f)) (16)
 図8は、タイヤTの2つのケースにおける音響インピーダンス及び反射率について例示した表である。ケース1は、劣化していないタイヤTの外側表面の音響インピーダンスZTOが1.5×10(Pa・s/m)、劣化したタイヤTの外側表面の音響インピーダンスZTOが2.4×10(Pa・s/m)である例を示している。また、ケース2は、劣化していないタイヤTの外側表面の音響インピーダンスZTOが2.4×10(Pa・s/m)、劣化したタイヤTの外側表面の音響インピーダンスZTOが1.5×10(Pa・s/m)である例を示している。なお、Zは428.6(Pa・s/m)の共通の値である。このとき、ケース1においてRTO=-0.9994、RTOG=-0.9996となる。ケース2では、RTO=-0.9996、RTOG=-0.9994となる。以上、ケース1及びケース2において、RTO及びRTOGは-1の値に近いものの、厳密に同じ値ではない。RTO及びRTOGは、-1の値とは僅かながら差がある。 FIG. 8 is a table illustrating the acoustic impedance and the reflectance in the two cases of the tire T. Case 1 is the acoustic impedance Z TO is 1.5 × 10 6 (Pa · s / m) of the outer surface of the tire T which is not degraded, the acoustic impedance Z TO is 2.4 × the outer surface of the degraded tire T An example of 10 6 (Pa · s / m) is shown. The case 2 is, the acoustic impedance Z TO is 2.4 × 10 6 of the outer surface of the tire T which is not deteriorated (Pa · s / m), the acoustic impedance Z TO of the outer surface of the degraded tire T 1. An example of 5 × 10 6 (Pa · s / m) is shown. Note that Z A is a common value of 428.6 (Pa · s / m) . At this time, in case 1, R TO = −0.9994 and R TOG = −0.9996. In Case 2, R TO = −0.9996 and R TOG = −0.9994. Above, in Cases 1 and 2, although R TO and R TOG is close to a value of -1, not exactly the same value. R TO and R TOG are slightly different from the value of -1.
 以下の説明においては、トランスデューサ25に入射する反射音波の式をbT0G(f)exp(iθT0G(f))と表す。iは虚数単位、bT0G(f)は対象とする周波数における実数の振幅値であり、θT0G(f)は0以上の実数であって各周波数における位相を表す。式(14)における基準値を用いると、表面反射法と同様に、入射音波の反射率RTOG(f)が
TOG(f)=-|RTOG(f)|×exp(-i(θ(f))・・・(17)
と表される。なお、
|RTOG(f)|=|bT0G(f)/bT0(f)|・・・(18)
θ(f)=θT0(f)-θT0G(f)・・・(19)
である。ここで、式(16)に式(17)を代入することで、ZT0G(f)は以下のように得られる。
T0G(f)=Z(f)×(1+|RTOG(f)|×exp(-iθ(f))/(1-|RTOG(f)|×exp(-iθ(f))・・・(20)
In the following description, the expression of the reflected sound wave incident on the transducer 25 is expressed as b T0G (f) exp (iθ T0G (f)). i is an imaginary unit, b T0G (f) is a real amplitude value at a target frequency, and θ T0G (f) is a real number greater than or equal to 0 and represents a phase at each frequency. Using the reference value in the equation (14), the reflectance R TOG (f) of the incident sound wave is R TOG (f) = − | R TOG (f) | × exp (−i (θ), as in the surface reflection method. G (f)) (17)
It is expressed. In addition,
| R TOG (f) | = | b T0G (f) / b T0 (f) | (18)
θ G (f) = θ T0 (f) −θ T0G (f) (19)
It is. Here, Z T0G (f) is obtained as follows by substituting Equation (17) into Equation (16).
Z T0G (f) = Z A (f) × (1+ | R TOG (f) | × exp (−iθ G (f)) / (1− | R TOG (f) | × exp (−iθ G (f )) ... (20)
 ここで、周波数fの関数であるタイヤTの貯蔵弾性率をL’(f)、タイヤTの損失弾性率をL”(f)とする。このとき、L’(f)及びL”(f)と、劣化したタイヤTの音響インピーダンスZTOG(f)及び密度ρとの間には、次の関係が成り立つ。
L’(f)+iL”(f)=ZTOG(f)/ρ・・・(21)
Here, the storage elastic modulus of the tire T as a function of the frequency f is L ′ (f), and the loss elastic modulus of the tire T is L ″ (f). At this time, L ′ (f) and L ″ (f ) And the acoustic impedance Z TOG (f) and density ρ T of the deteriorated tire T, the following relationship is established.
L ′ (f) + iL ″ (f) = Z TOG (f) 2 / ρ T (21)
 式(20)を式(21)に代入し、実数成分と虚数成分とを分離することで、損失正接tanδ(f)は、次のように算出される。
tanδ(f)=L”(f)/L’(f)=-4|RTOG(f)|×(1-|RTOG(f)|)×sinθ(f)/((1-|RTOG(f)|-4×|RTOG(f)|×sinθ(f))・・・(22)
By substituting equation (20) into equation (21) and separating the real and imaginary components, the loss tangent tan δ (f) is calculated as follows.
tan δ (f) = L ″ (f) / L ′ (f) = − 4 | R TOG (f) | × (1− | R TOG (f) | 2 ) × sin θ G (f) / ((1- | R TOG (f) | 2 ) 2 -4 × | R TOG (f) | 2 × sin 2 θ G (f)) (22)
 なお、貯蔵弾性率L’(f)及び損失弾性率L”(f)は、それぞれ次のように算出される。
L’(f)=Re[ZTOG(f)/ρ]=(Z(f)/ρ)×(1-|RTOG(f)|-4|RTOG(f)|×sinθ(f)/{1-2|RTOG(f)|cosθ(f)+|RTOG(f)|・・・(23)
L”(f)=Im[ZTOG(f)/ρ]=-(Z(f)/ρ)×4|RTOG(f)|(1-|RTOG(f)|)×sinθ(f)/{1-2|RTOG(f)|×cosθ(f)+|RTOG(f)|・・・(24)
The storage elastic modulus L ′ (f) and the loss elastic modulus L ″ (f) are calculated as follows.
L ′ (f) = Re [Z TOG (f) 2 / ρ T ] = (Z A (f) 2 / ρ T ) × (1− | R TOG (f) | 2 ) 2 −4 | R TOG ( f) | 2 × sin 2 θ G (f) / {1-2 | R TOG (f) | cos θ G (f) + | R TOG (f) | 2 } 2 (23)
L ″ (f) = Im [Z TOG (f) 2 / ρ T ] = − (Z A (f) 2 / ρ T ) × 4 | R TOG (f) | (1- | R TOG (f) | 2 ) × sin θ G (f) / {1-2 | R TOG (f) | × cos θ G (f) + | R TOG (f) | 2 } 2 (24)
 式(21)~(24)の通り、貯蔵弾性率L’(f)、損失弾性率L”(f)及び損失正接tanδ(f)は、いずれもbT0(f)、θT0(f)を基準とするRTOG(f)=bT0G(f)/bT0(f)(劣化前の反射音波の振幅と劣化後の反射音波の振幅との比)、θ(f)=θT0(f)-θT0G(f)(劣化前の反射音波の位相と劣化後の反射音波の位相との位相差)で定義される。そのため、劣化前の振幅bT0(f)及び位相特性θT0(f)を基準値として、劣化したタイヤTの外部表面の測定時において取得される反射音波の電気信号のデータと比較することで、劣化したタイヤTの外部表面の粘弾性特性(特に損失正接)を測定できる。また、上述の通り、タイヤTの外部表面の損失正接は周波数に依存する。そのため、演算部29は、複数の周波数成分毎に損失正接を導出してもよい。また、高い周波数における損失正接を算出する必要がある場合には、入射音波として、超音波がトランスデューサ25から供給されてもよい。 As shown in the equations (21) to (24), the storage elastic modulus L ′ (f), the loss elastic modulus L ″ (f), and the loss tangent tan δ (f) are all b T0 (f), θ T0 (f). R TOG (f) = b T0G (f) / b T0 (f) (ratio of the amplitude of the reflected sound wave before deterioration and the amplitude of the reflected sound wave after deterioration), θ G (f) = θ T0 (F) −θ T0G (f) (phase difference between the phase of the reflected sound wave before deterioration and the phase of the reflected sound wave after deterioration) Therefore, the amplitude b T0 (f) before deterioration and the phase characteristic θ By using T0 (f) as a reference value and comparing it with the data of the electric signal of the reflected sound wave obtained at the time of measuring the outer surface of the deteriorated tire T, the viscoelastic characteristics (especially loss) of the outer surface of the deteriorated tire T are obtained. In addition, as described above, the loss tangent of the outer surface of the tire T depends on the frequency. For this reason, the calculation unit 29 may derive a loss tangent for each of a plurality of frequency components, and when it is necessary to calculate a loss tangent at a high frequency, an ultrasonic wave is used as the incident sound wave. May be supplied from
 なお、計算に用いる各周波数の位相値は、タイヤの摩耗によって音波の伝搬距離が変わることで変化する。そのため、演算部29は、各周波数の位相値を、上述のトレッドゴム厚みの計算値を援用して補正してもよい。 It should be noted that the phase value of each frequency used in the calculation changes as the propagation distance of the sound wave changes due to tire wear. Therefore, the calculating part 29 may correct | amend the phase value of each frequency using the above-mentioned calculated value of tread rubber thickness.
 まとめると、測定センサ11及び粘弾性特性算出部12がタイヤ外側表面の反射波を計測する場合、演算部29は、タイヤのトレッドゴムを実施の形態1における遅延材26とみなし、空気の音響インピーダンスを基準とした表面反射法の計算を行う。このようにして、演算部29は、損失正接等の粘弾性特性を算出する。摩擦係数算出部13は、算出したタイヤ外側表面の粘弾性特性を用いて、タイヤ外側表面の摩擦係数μを算出する。運転制御部14は、摩擦係数算出部13が算出したタイヤ外側表面の摩擦係数μが所定の閾値未満か否かに基づいて、上述の自動車1の運転制御を行うことができる。運転制御部14タイヤ外側表面の摩擦係数μが所定の閾値未満である場合には、タイヤTの外側表面が熱、オゾン、紫外線、くりかえし応力等により劣化していると判断する。 In summary, when the measurement sensor 11 and the viscoelastic property calculation unit 12 measure the reflected wave on the outer surface of the tire, the calculation unit 29 regards the tire tread rubber as the delay member 26 in the first embodiment, and the acoustic impedance of the air The surface reflection method is calculated based on. In this way, the calculation unit 29 calculates viscoelastic characteristics such as loss tangent. The friction coefficient calculation unit 13 calculates the friction coefficient μ of the tire outer surface using the calculated viscoelastic characteristic of the tire outer surface. The driving control unit 14 can control the driving of the automobile 1 based on whether or not the friction coefficient μ of the tire outer surface calculated by the friction coefficient calculating unit 13 is less than a predetermined threshold value. Operation control unit 14 When the friction coefficient μ of the tire outer surface is less than a predetermined threshold value, it is determined that the outer surface of the tire T has deteriorated due to heat, ozone, ultraviolet rays, repeated stress, or the like.
 なお、以上に示したタイヤの外側表面の粘弾性特性測定では、タイヤ外側表面に水膜や泥が付着することで測定誤差が生じうる。そのため、例えば、タイヤの溝部における粘弾性特性を測定する場合には、タイヤ外側表面に水膜が付着している状態で測定を行うことで(同じ環境で測定を行うことで)、誤差の影響を補正できる。一例として、自動車の洗車後にタイヤ劣化の測定を行ってもよい。例えば、自動車に測定ボタンが設けられ、ボタンが押下されることで自動車1はタイヤの状況に応じた劣化測定モードとなり、演算部29が上述の処理を実行する。 In the viscoelastic property measurement of the outer surface of the tire described above, a measurement error may occur due to water film or mud adhering to the outer surface of the tire. Therefore, for example, when measuring viscoelastic properties in the groove of a tire, the measurement is performed with the water film attached to the outer surface of the tire (by measuring in the same environment), and the influence of errors. Can be corrected. As an example, tire deterioration may be measured after the car is washed. For example, a measurement button is provided on an automobile, and when the button is pressed, the automobile 1 enters a deterioration measurement mode according to the tire condition, and the calculation unit 29 executes the above-described processing.
 なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。例えば、測定センサ11は、タイヤの粘弾性特性に関する測定量を測定可能であれば、図2で図示した構造に限定されない。 Note that the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the spirit of the present invention. For example, the measurement sensor 11 is not limited to the structure illustrated in FIG. 2 as long as it can measure a measurement amount related to the viscoelastic characteristics of the tire.
 自動車1が前輪駆動車である場合には、前輪タイヤ(フロントタイヤ)に制動力や駆動力が集中してかかるため、前輪タイヤは後輪タイヤ(リアタイヤ)に比較して摩耗しやすい。従って、摩耗しやすい前輪タイヤに測定センサ11を設置し、粘弾性特性の測定を行うことで、タイヤの劣化度をより正確に反映させて運転が制御できると考えられる。逆に、自動車1が後輪駆動車である場合には、後輪タイヤが前輪タイヤに比較して摩耗しやすい。そのため、摩耗しやすい後輪タイヤに測定センサ11を設置し、粘弾性特性の測定を行うことで、タイヤの劣化度をより正確に反映させて運転が制御できると考えられる。 When the automobile 1 is a front wheel drive vehicle, braking force and driving force are concentrated on the front wheel tire (front tire), and therefore the front wheel tire is more easily worn than the rear wheel tire (rear tire). Therefore, it is considered that the operation can be controlled by more accurately reflecting the degree of deterioration of the tire by installing the measurement sensor 11 on the front tire that is easily worn and measuring the viscoelastic characteristics. Conversely, when the automobile 1 is a rear wheel drive vehicle, the rear wheel tire is more easily worn than the front wheel tire. For this reason, it is considered that the operation can be controlled by more accurately reflecting the degree of deterioration of the tire by installing the measurement sensor 11 on the rear wheel tire that is easily worn and measuring the viscoelastic characteristics.
 さらに、前輪タイヤにおいては、ショルダー部(タイヤにおけるトレッドパターンの両端部)が摩耗しやすく、後輪タイヤにおいては、トレッドパターンのセンター部が摩耗しやすい。このため、そのため、摩耗しやすいそれらの箇所に測定センサ11を設置し、粘弾性特性の測定を行うことで、上述と同様、タイヤの劣化度をより正確に反映させて運転が制御できると考えられる。 Further, in the front wheel tire, the shoulder portions (both ends of the tread pattern in the tire) are easily worn, and in the rear wheel tire, the center portion of the tread pattern is easily worn. For this reason, it is considered that the operation can be controlled by more accurately reflecting the degree of deterioration of the tire, as described above, by installing the measurement sensors 11 at those places where they are easily worn and measuring the viscoelastic characteristics. It is done.
 測定センサ11が複数のタイヤについて測定量を測定する場合には、測定センサ11は、測定量が測定されるタイヤ毎に設けられる。タイヤ毎の測定センサ11の設け方は、例えば図3に示した通りである。このように、複数のタイヤの粘弾性特性に関する測定量を測定した場合には、粘弾性特性算出部12は、測定した測定量を用いて、各タイヤの粘弾性特性を算出する。摩擦係数算出部13は、算出した各タイヤの粘弾性特性を用いて、各タイヤの摩擦係数を算出する。ここで、運転制御部14は、算出した各タイヤの摩擦係数の平均値が所定の閾値未満であるか否かを判定し、その判定結果に基づいて上述の制御例1-3の制御を実行してもよい。また、運転制御部14は、所定の数(1つ以上)のタイヤにおいて、摩擦係数が所定の閾値未満であるか否かを判定し、その判定結果に基づいて上述の制御例1-3の制御を実行してもよい。 When the measurement sensor 11 measures a measurement amount for a plurality of tires, the measurement sensor 11 is provided for each tire whose measurement amount is measured. The method of providing the measurement sensor 11 for each tire is, for example, as shown in FIG. Thus, when the measurement amount regarding the viscoelastic property of a plurality of tires is measured, the viscoelastic property calculation unit 12 calculates the viscoelastic property of each tire using the measured measurement amount. The friction coefficient calculation unit 13 calculates the friction coefficient of each tire using the calculated viscoelastic characteristics of each tire. Here, the operation control unit 14 determines whether or not the calculated average value of the friction coefficient of each tire is less than a predetermined threshold value, and executes the control of the above-described control example 1-3 based on the determination result. May be. Further, the operation control unit 14 determines whether or not the friction coefficient is less than a predetermined threshold value for a predetermined number (one or more) of tires, and based on the determination result, the operation control unit 1-3 described above. Control may be performed.
 運転制御部14がタイヤの劣化を判定するための閾値は、1つに限られず、2つ以上あってもよい。例えば、制御例1において、運転制御部14は第1の閾値A1と第2の閾値A2(A1>A2)を用いて、自動車1の減速又は進行方向の変更のタイミングを設定してもよい。具体的には、タイヤの摩擦係数が第1の閾値A1以上であった場合に、運転制御部14は、自動車1の減速又は進行方向の変更のタイミングを所定のタイミング(タイミングt1)で実行させる。そして、タイヤの摩擦係数が第1の閾値A1未満であって第2の閾値A2以上であった場合に、運転制御部14は、自動車1の減速又は進行方向の変更のタイミングを、タイミングt1よりも早い所定のタイミング(タイミングt2)で実行させる。さらに、タイヤの摩擦係数が第2の閾値A2未満であった場合に、運転制御部14は、自動車1の減速又は進行方向の変更のタイミングを、タイミングt2よりも早いタイミングで実行させる。このようにして、運転制御部14は、タイヤの劣化度合いに応じて、より細かい運転制御を行うことができる。 The threshold for the operation control unit 14 to determine tire deterioration is not limited to one, and may be two or more. For example, in the control example 1, the driving control unit 14 may set the timing of deceleration of the automobile 1 or change in the traveling direction using the first threshold value A1 and the second threshold value A2 (A1> A2). Specifically, when the tire friction coefficient is equal to or greater than the first threshold value A1, the operation control unit 14 causes the vehicle 1 to decelerate or change the traveling direction at a predetermined timing (timing t1). . When the tire friction coefficient is less than the first threshold value A1 and greater than or equal to the second threshold value A2, the operation control unit 14 determines the timing of deceleration of the automobile 1 or change in the traveling direction from the timing t1. It is executed at a predetermined timing (timing t2) as soon as possible. Furthermore, when the friction coefficient of the tire is less than the second threshold A2, the operation control unit 14 causes the vehicle 1 to decelerate or change the traveling direction at a timing earlier than the timing t2. In this way, the operation control unit 14 can perform more detailed operation control according to the degree of deterioration of the tire.
 運転制御部14は、摩擦係数算出部13が算出したタイヤの摩擦係数が所定の閾値未満である場合に、自動車1の運転を制御するだけでなく、タイヤの摩擦係数が所定の閾値未満であることを周囲に通知する報知信号を出力してもよい。 The driving control unit 14 not only controls the driving of the automobile 1 when the tire friction coefficient calculated by the friction coefficient calculating unit 13 is less than a predetermined threshold, but also the tire friction coefficient is less than the predetermined threshold. You may output the alerting signal which notifies the circumference | surroundings of this.
 例えば、運転制御部14は、電波の信号を他の自動車に照射する。信号を受信した他の自動車は、信号を照射した自動車1があることを、画面、音声等で自動車のユーザに通知する。あるいは、他の自動車が自動制御を行っている場合には、他の自動車は自動車1を回避するように運転を制御してもよい。例えば、上述で説明した、自動車の減速又はその進行方向を変更するステアリング等を行うことができる。 For example, the operation control unit 14 irradiates other automobiles with radio wave signals. Another vehicle that has received the signal notifies the user of the vehicle by a screen, voice, or the like that there is the vehicle 1 that has emitted the signal. Alternatively, when another vehicle is performing automatic control, the other vehicle may control driving so as to avoid the vehicle 1. For example, it is possible to perform the above-described deceleration of the automobile or steering to change the traveling direction thereof.
 運転制御部14は、歩行者等が有している端末(スマートフォン等)に信号を出力してもよい。信号を受信した端末は、信号を発信した自動車1が近くにいることを表示部に表示する。端末のユーザは、この表示を見ることにより、自動車1が近くにいることを認識する。その結果、ユーザは、例えば自動車1を回避するように歩行することができる。このように、例えば自動車1のタイヤが劣化している場合に、周囲の自動車や歩行者に対して報知信号が通知される。このため、周囲の自動車や歩行者は、事故を未然に防止できる可能性が高くなる。 The driving control unit 14 may output a signal to a terminal (smartphone or the like) possessed by a pedestrian or the like. The terminal that has received the signal displays on the display section that the automobile 1 that has transmitted the signal is nearby. The user of the terminal recognizes that the automobile 1 is nearby by looking at this display. As a result, the user can walk so as to avoid the automobile 1, for example. Thus, for example, when the tire of the automobile 1 is deteriorated, a notification signal is notified to surrounding cars and pedestrians. Therefore, there is a high possibility that surrounding cars and pedestrians can prevent accidents.
 なお、自動車1に設けられているレーダーセンサ15は、1つに限られず、異なる波長の電波を照射する複数のレーダーセンサが設けられてもよい。また、自動車1には、自動運転に必要な構成要素として、レーダーセンサ15の代わりにステレオカメラが設けられてもよい。このカメラは、自動車1の周辺環境を撮影し、その撮影データに基づいて、自動車1の前方の障害物を検出する。さらに、レーダーセンサ15とステレオカメラは両方とも自動車1に設けられてもよい。 The radar sensor 15 provided in the automobile 1 is not limited to one, and a plurality of radar sensors that radiate radio waves having different wavelengths may be provided. Further, the automobile 1 may be provided with a stereo camera instead of the radar sensor 15 as a component necessary for automatic driving. This camera photographs the surrounding environment of the automobile 1 and detects an obstacle in front of the automobile 1 based on the photographed data. Furthermore, both the radar sensor 15 and the stereo camera may be provided in the automobile 1.
 自動車1が電気自動車又はハイブリッド車であって、駆動部16であるモータが左右の車輪にそれぞれ設けられている場合には、運転制御部14の制御に応じて、左右の車輪に設けられたモータは異なる駆動力を各車輪に与えることができる。これにより、自動車1は進行方向を変更することができる。この場合には、ステアリング部18は設けられなくてもよい。 When the vehicle 1 is an electric vehicle or a hybrid vehicle, and the motors that are the drive units 16 are provided on the left and right wheels, respectively, the motors provided on the left and right wheels according to the control of the operation control unit 14 Can apply different driving forces to each wheel. Thereby, the automobile 1 can change the traveling direction. In this case, the steering unit 18 may not be provided.
 実施の形態1においては、自動運転モードにおける運転制御部14の制御例について説明した。しかし、同様の制御は、運転アシストモードであっても実行できる。この場合、レーダーセンサ15は自動車1に設けられなくてもよい。 In Embodiment 1, the control example of the operation control unit 14 in the automatic operation mode has been described. However, similar control can be executed even in the driving assist mode. In this case, the radar sensor 15 may not be provided in the automobile 1.
 この出願は、2014年7月10日に出願された日本出願特願2014-142267を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2014-142267 filed on July 10, 2014, the entire disclosure of which is incorporated herein.
1 自動車
10 運転制御装置
11 測定センサ
12 粘弾性特性算出部
13 摩擦係数算出部
14 運転制御部
15 レーダーセンサ
16 駆動部
17 ブレーキ部
18 ステアリング部
19 表示部
20 音波信号発生部
21 接触部
22 駆動波形発生器
23 方向整合器
24 高周波増幅器
25 トランスデューサ
26 遅延材
27 時間データメモリ部
28 基準値記憶部
29 演算部
30 定数記憶部
31 算出部
DESCRIPTION OF SYMBOLS 1 Car 10 Operation control apparatus 11 Measurement sensor 12 Viscoelastic property calculation part 13 Friction coefficient calculation part 14 Operation control part 15 Radar sensor 16 Drive part 17 Brake part 18 Steering part 19 Display part 20 Sound wave signal generation part 21 Contact part 22 Drive waveform Generator 23 Direction matching unit 24 High frequency amplifier 25 Transducer 26 Delay material 27 Time data memory unit 28 Reference value storage unit 29 Calculation unit 30 Constant storage unit 31 Calculation unit

Claims (11)

  1.  自動車のタイヤの粘弾性特性に関する測定量を測定する測定センサと、
     前記測定センサが測定した前記測定量を用いて前記タイヤの粘弾性特性を算出する粘弾性特性算出部と、
     前記粘弾性特性算出部が算出した前記粘弾性特性を用いてタイヤの摩擦係数を算出する摩擦係数算出部と、
     前記摩擦係数算出部が算出した前記タイヤの前記摩擦係数に基づいて前記自動車の運転を制御する運転制御部と、
     を備える自動車の運転制御装置。
    A measurement sensor for measuring a measurement amount relating to viscoelastic characteristics of an automobile tire;
    A viscoelastic property calculation unit that calculates the viscoelastic property of the tire using the measurement amount measured by the measurement sensor;
    A friction coefficient calculation unit that calculates a friction coefficient of a tire using the viscoelastic property calculated by the viscoelastic property calculation unit;
    A driving control unit that controls the driving of the automobile based on the friction coefficient of the tire calculated by the friction coefficient calculating unit;
    An automobile driving control device comprising:
  2.  前記運転制御部は、前記自動車の進行方向に障害物が検出された際、前記自動車の減速又は前記自動車の進行方向を変更するステアリングを実行し、
     前記タイヤの前記摩擦係数が所定の閾値未満である場合には、前記タイヤの前記摩擦係数が所定の閾値以上である場合と比較して、前記自動車の減速又は前記自動車の進行方向を変更するステアリングをより早いタイミングで実行させる、
     請求項1に記載の運転制御装置。
    The driving control unit executes steering for decelerating the automobile or changing the advancing direction of the automobile when an obstacle is detected in the advancing direction of the automobile,
    When the friction coefficient of the tire is less than a predetermined threshold, the vehicle decelerates or changes the traveling direction of the automobile as compared with the case where the friction coefficient of the tire is greater than or equal to a predetermined threshold. To be executed at an earlier timing,
    The operation control apparatus according to claim 1.
  3.  前記運転制御部は、前記自動車を加速させる際、前記タイヤの前記摩擦係数が所定の閾値未満である場合には、前記タイヤの前記摩擦係数が所定の閾値以上である場合と比較して、前記自動車の加速度を小さく設定する、
     請求項1又は2に記載の運転制御装置。
    The driving control unit, when accelerating the automobile, when the friction coefficient of the tire is less than a predetermined threshold, compared with the case where the friction coefficient of the tire is greater than or equal to a predetermined threshold, Set the acceleration of the car small,
    The operation control apparatus according to claim 1 or 2.
  4.  前記運転制御部は、前記タイヤの前記摩擦係数が所定の閾値未満である場合には、前記タイヤの前記摩擦係数が所定の閾値以上である場合と比較して、前記自動車の最高速度を低く設定する、
     請求項1ないし3のいずれか一項に記載の運転制御装置。
    When the friction coefficient of the tire is less than a predetermined threshold, the operation control unit sets the maximum speed of the automobile lower than that when the friction coefficient of the tire is equal to or greater than a predetermined threshold. To
    The operation control apparatus according to any one of claims 1 to 3.
  5.  前記運転制御部は、前記タイヤの制動距離、前記自動車の旋回時の舵角、前記自動車の旋回時の横滑り、前記自動車の横加速度に応じたスピード制御、又は前記自動車においてブレーキをかけた際のタイヤのロック度合いの少なくともいずれか1つのデータを、前記タイヤの前記摩擦係数と共に用いて前記自動車の運転を制御する、
     請求項1ないし4のいずれか一項に記載の運転制御装置。
    The driving control unit is configured to control the braking distance of the tire, the rudder angle at the time of turning of the automobile, the side slip at the time of turning of the automobile, the speed control according to the lateral acceleration of the automobile, or when the brake is applied in the automobile. Using at least one data of the degree of locking of the tire together with the coefficient of friction of the tire to control the driving of the vehicle;
    The operation control apparatus according to any one of claims 1 to 4.
  6.  前記運転制御部は、
     前記自動車でABS又はTCS機能が作動している際の前記自動車の制動距離、又は前記自動車の前記ABS又はTCS機能の作動頻度の少なくともいずれか1つのデータを、前記タイヤの前記摩擦係数と共に用いて前記自動車の運転を制御する、
     請求項1ないし4のいずれか一項に記載の運転制御装置。
    The operation controller is
    Using at least one data of the braking distance of the vehicle when the ABS or TCS function is operating in the vehicle, or the frequency of operation of the ABS or TCS function of the vehicle, together with the friction coefficient of the tire Controlling the driving of the car,
    The operation control apparatus according to any one of claims 1 to 4.
  7.  前記測定センサは、
     前記タイヤに入射音波を放射する放射部と、
     前記放射部が放射した前記入射音波が前記タイヤで反射されて生じる反射音波を受信する受信部と、を有し、
     前記粘弾性特性算出部は、前記受信部が受信した前記反射音波に基づいて前記タイヤの粘弾性特性を算出する、
     請求項1ないし6のいずれか一項に記載の運転制御装置。
    The measurement sensor is
    A radiating portion for emitting incident sound waves to the tire;
    A receiving unit that receives a reflected sound wave generated by the incident sound wave radiated from the radiation unit being reflected by the tire; and
    The viscoelastic property calculating unit calculates the viscoelastic property of the tire based on the reflected sound wave received by the receiving unit.
    The operation control apparatus according to any one of claims 1 to 6.
  8.  前記放射部は、第1のタイミングで前記タイヤに入射音波を放射するとともに、前記第1のタイミングから所定の時間が経過した第2のタイミングで前記タイヤに前記入射音波を放射し、
     前記受信部は、前記第1のタイミングでの前記タイヤにおいて、前記入射音波が放射された面と反対側の面で前記入射音波が反射されて生じる第1の反射音波を受信するともに、前記第2のタイミングでの前記タイヤにおいて、前記反対側の面で前記入射音波が反射されて生じる第2の反射音波を受信し、
     前記粘弾性特性算出部は、前記受信部が受信した前記第1の反射音波の振幅及び前記第2の反射音波の振幅と、前記第1の反射音波の位相及び前記第2の反射音波の位相とに基づいて、前記第2のタイミングでの前記タイヤにおける粘弾性特性を算出する、
     請求項7に記載の運転制御装置。
    The radiating unit radiates an incident sound wave to the tire at a first timing, and radiates the incident sound wave to the tire at a second timing after a predetermined time has elapsed from the first timing.
    The receiving unit receives, in the tire at the first timing, a first reflected sound wave that is generated by reflecting the incident sound wave on a surface opposite to a surface on which the incident sound wave is radiated. In the tire at the timing of 2, the second reflected sound wave generated by reflecting the incident sound wave on the opposite surface is received,
    The viscoelastic characteristic calculation unit includes an amplitude of the first reflected sound wave and an amplitude of the second reflected sound wave received by the receiving unit, a phase of the first reflected sound wave, and a phase of the second reflected sound wave. Based on the above, viscoelastic characteristics in the tire at the second timing is calculated,
    The operation control apparatus according to claim 7.
  9.  前記運転制御部は、前記タイヤの前記摩擦係数が所定の閾値未満である場合に、前記タイヤの摩擦係数が前記所定の閾値未満であることを周囲に通知する報知信号を出力する、
     請求項1ないし8のいずれか一項に記載の運転制御装置。
    When the friction coefficient of the tire is less than a predetermined threshold, the operation control unit outputs a notification signal that notifies the surroundings that the tire friction coefficient is less than the predetermined threshold.
    The operation control device according to any one of claims 1 to 8.
  10.  請求項1ないし9のいずれか一項に記載の前記運転制御装置を搭載した自動車。 An automobile equipped with the operation control device according to any one of claims 1 to 9.
  11.  自動車のタイヤの粘弾性特性に関する測定量を測定する測定ステップと、
     測定した前記測定量を用いて前記タイヤの粘弾性特性を算出する粘弾性特性算出ステップと、
     算出した前記粘弾性特性を用いてタイヤの摩擦係数を算出する摩擦係数算出ステップと、
     算出した前記タイヤの前記摩擦係数に基づいて前記自動車の運転を制御する運転制御ステップと、
     を備える自動車の運転制御方法。
    A measurement step for measuring a measurement amount relating to viscoelastic properties of an automobile tire;
    Viscoelastic property calculation step of calculating the viscoelastic property of the tire using the measured amount measured,
    A friction coefficient calculating step of calculating a friction coefficient of the tire using the calculated viscoelastic characteristics;
    An operation control step for controlling the operation of the automobile based on the calculated friction coefficient of the tire;
    An automobile driving control method comprising:
PCT/JP2015/003428 2014-07-10 2015-07-08 Drive control system, automobile, and drive control method WO2016006233A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014142267A JP2016016812A (en) 2014-07-10 2014-07-10 Operation control device, automobile, and operation control method
JP2014-142267 2014-07-10

Publications (1)

Publication Number Publication Date
WO2016006233A1 true WO2016006233A1 (en) 2016-01-14

Family

ID=55063885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003428 WO2016006233A1 (en) 2014-07-10 2015-07-08 Drive control system, automobile, and drive control method

Country Status (2)

Country Link
JP (1) JP2016016812A (en)
WO (1) WO2016006233A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017202363A1 (en) 2017-02-15 2018-08-16 Robert Bosch Gmbh Method and device for determining a maximum speed for a vehicle and automated driving system
DE102017203171A1 (en) * 2017-02-27 2018-08-30 Zf Friedrichshafen Ag Determination of a maximum traction coefficient
JP6790960B2 (en) * 2017-03-29 2020-11-25 株式会社デンソー Automatic operation control device
WO2021030508A1 (en) * 2019-08-13 2021-02-18 Zoox, Inc. Modifying limits on vehicle dynamics for trajectories
US11914368B2 (en) 2019-08-13 2024-02-27 Zoox, Inc. Modifying limits on vehicle dynamics for trajectories
JP7452494B2 (en) 2021-05-28 2024-03-19 株式会社デンソー Traveling position determining device, traveling position determining method, and traveling position determining program

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09249050A (en) * 1996-03-15 1997-09-22 Honda Motor Co Ltd Vehicle driving force controller
JPH112317A (en) * 1997-06-13 1999-01-06 Fuji Heavy Ind Ltd Automatic transmission control device for vehicle with anti-lock brake device
JPH11248438A (en) * 1998-02-26 1999-09-17 Omron Corp Device for measuring road-surface friction factor, and car braking control system using the same
WO2001098123A1 (en) * 2000-06-23 2001-12-27 Kabushiki Kaisha Bridgestone Method for estimating vehicular running state, vehicular running state estimating device, vehicle control device, and tire wheel
JP2006281935A (en) * 2005-03-31 2006-10-19 Nissan Motor Co Ltd Turning traveling controller for vehicle
JP2007015606A (en) * 2005-07-08 2007-01-25 Nissan Motor Co Ltd Speed controller for vehicle
JP2007047130A (en) * 2005-08-12 2007-02-22 Omron Corp Device for measuring frictional characteristic, and tire turned to it
JP2014039449A (en) * 2012-08-17 2014-02-27 Aihara Masahiko Driving device for electric car

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09249050A (en) * 1996-03-15 1997-09-22 Honda Motor Co Ltd Vehicle driving force controller
JPH112317A (en) * 1997-06-13 1999-01-06 Fuji Heavy Ind Ltd Automatic transmission control device for vehicle with anti-lock brake device
JPH11248438A (en) * 1998-02-26 1999-09-17 Omron Corp Device for measuring road-surface friction factor, and car braking control system using the same
WO2001098123A1 (en) * 2000-06-23 2001-12-27 Kabushiki Kaisha Bridgestone Method for estimating vehicular running state, vehicular running state estimating device, vehicle control device, and tire wheel
JP2006281935A (en) * 2005-03-31 2006-10-19 Nissan Motor Co Ltd Turning traveling controller for vehicle
JP2007015606A (en) * 2005-07-08 2007-01-25 Nissan Motor Co Ltd Speed controller for vehicle
JP2007047130A (en) * 2005-08-12 2007-02-22 Omron Corp Device for measuring frictional characteristic, and tire turned to it
JP2014039449A (en) * 2012-08-17 2014-02-27 Aihara Masahiko Driving device for electric car

Also Published As

Publication number Publication date
JP2016016812A (en) 2016-02-01

Similar Documents

Publication Publication Date Title
WO2016006233A1 (en) Drive control system, automobile, and drive control method
US9751528B2 (en) In-vehicle control device
US9633565B2 (en) Active safety system and method for operating the same
US9174615B2 (en) Drive support apparatus
US9714032B2 (en) Driving assistance apparatus
JP6003854B2 (en) Driving assistance device
US9630599B2 (en) Driving assistance apparatus
JP6412469B2 (en) Driving support device and driving support method
JP4979544B2 (en) Vehicle speed detection device
JP2014519599A (en) Monitoring apparatus and method
KR20160122202A (en) A vehicle braking arrangement
JP5950262B2 (en) Auto insurance premium determination system and control program
Sairam et al. Intelligent mechatronic braking system
JP5895783B2 (en) Vehicle approach notification device
JP4980969B2 (en) Vehicle object detection device
JP2004083009A (en) Method and device for detecting inclination in motorcycle
JPH04212086A (en) Apparatus for detecting ground speed of car body
JP5070151B2 (en) Vehicle travel safety device
JP5613457B2 (en) Object detection device
JP2022122196A (en) Object detection device and movable body control unit
JP2022122197A (en) Object detection device and movable body control unit
JPH02236451A (en) Detector for frictional coefficient of road surface
JP2007528995A (en) A device that measures the speed of the car itself
JP2020168948A (en) Obstacle detection device for vehicle
JPH06281539A (en) Road surface condition detection device of steering support system of motor vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15818881

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15818881

Country of ref document: EP

Kind code of ref document: A1