WO2019220700A1 - Film for application to living body and cosmetic method in which film for application to living body is applied - Google Patents

Film for application to living body and cosmetic method in which film for application to living body is applied Download PDF

Info

Publication number
WO2019220700A1
WO2019220700A1 PCT/JP2019/004365 JP2019004365W WO2019220700A1 WO 2019220700 A1 WO2019220700 A1 WO 2019220700A1 JP 2019004365 W JP2019004365 W JP 2019004365W WO 2019220700 A1 WO2019220700 A1 WO 2019220700A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
bioadhesive
cellulose
polyoxyethylene
film
Prior art date
Application number
PCT/JP2019/004365
Other languages
French (fr)
Japanese (ja)
Inventor
知子 川島
谷池 優子
佑紀 波潟
貴裕 青木
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201980016937.9A priority Critical patent/CN111801090B/en
Priority to JP2020518973A priority patent/JP7170232B2/en
Publication of WO2019220700A1 publication Critical patent/WO2019220700A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/70Web, sheet or filament bases ; Films; Fibres of the matrix type containing drug
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • A61K47/38Cellulose; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials

Definitions

  • the present disclosure relates to a living body adhesive film and a cosmetic method for attaching the biological adhesive film.
  • Patent Document 1 describes a cosmetic method in which a coloring material such as a pigment is blended in a large amount, cosmetics such as a foundation do not adhere to clothes, etc., and has a so-called secondary adhesion-less effect.
  • the thin film used in is also described.
  • This thin film is composed of a base film and a support, and the base film has a thickness of 10 to 500 nm.
  • a base film is attached to the skin, and the attached thin film support is removed.
  • the material of the base film is a material such as polylactic acid. Components such as hyaluronic acid are supported on the base film.
  • This disclosure Regenerated cellulose, and an accelerator that promotes attachment of the regenerated cellulose to a living tissue, A self-supporting type having a thickness of 20 to 5000 nm, The accelerator has an HLB value of 4 to 18, Provided is a membrane for bioadhesion.
  • the above-mentioned membrane for bioadhesion is advantageous for shortening the time required for attachment to a living tissue while containing regenerated cellulose.
  • FIG. 1 is a cross-sectional view schematically illustrating an example of a laminated body of the present disclosure.
  • FIG. 2A is a diagram illustrating a method of using the membrane for biological sticking of the present disclosure.
  • FIG. 2B is a diagram illustrating a method of using the biomarker membrane of the present disclosure.
  • FIG. 2C is a diagram illustrating a method of using the biomedical adhesive membrane of the present disclosure.
  • FIG. 3 is a cross-sectional view schematically illustrating another example of the laminated body of the present disclosure.
  • polylactic acid is known as a material for a film attached to a living tissue such as skin.
  • polylactic acid exhibits hydrophobicity, problems such as stuffiness may occur, and it is considered that it is not always appropriate to apply a polylactic acid film to a living tissue for a long period of time.
  • a cellulose film tends to have a high water vapor permeability and easily allows moisture such as sweat to pass through. For this reason, when a cellulose film is applied to the skin, discomfort caused by problems such as stuffiness can be reduced.
  • the present inventors have developed a self-supporting membrane for bioadhesive membrane having a thickness of several ⁇ m or less, made of regenerated cellulose, which has not been realized in the past.
  • the inventors of the present invention have further studied the membrane for attaching to a living body, and have found that there is room for shortening the time required for attachment to a living tissue. Accordingly, the present inventors have repeated a great deal of trial and error in order to shorten the time required for mounting the bioadhesive membrane on the biological tissue. As a result, it has been newly found that the time required for attachment to a living tissue can be shortened by including a predetermined component in the bioadhesive membrane containing regenerated cellulose. Based on this new knowledge, the present inventors have devised a biomedical patch membrane according to the present disclosure.
  • Regenerated cellulose and an accelerator that promotes attachment of the regenerated cellulose to a living tissue, A self-supporting type having a thickness of 20 to 5000 nm, The accelerator has an HLB value of 4 to 18, Membrane for living body application.
  • (Item 2) Item 2.
  • Item 3 Item 3.
  • the accelerator is at least one selected from the group consisting of a compound represented by the following formula (A), a compound represented by the following (B), and a compound represented by the following (C). 6.
  • each of a, b, c, d, and e is an integer of 0 or more, and at least one of a and b is an integer of 1 or more, c , D, and e are each an integer of 1 or more, f is an integer of 1 or more, and R 1 and R 2 are each independently an alkyl group, an alkoxy group, (poly) ethylene glycol (alkyl Ether) group or (poly) propylene glycol group.
  • (Item 7) The biomedical adhesive membrane according to any one of items 1 to 6, wherein the content of the promoter in the bioadhesive membrane is 10 to 90% by weight.
  • Examples of the accelerator include bisPEG-18 methyl ether dimethylsilane, polyoxyethylene (4) (6) sorbitan monooleate, polyoxyethylene (4) (6) sorbitan monolaurate, polyoxyethylene (4) (20 ) Sorbitan monolaurate, polyoxyethylene (4) (20) sorbitan monopalmitate, polyoxyethylene (4) (20) sorbitan monostearate, PEG-11 methyl ether dimethicone, PEG-9 dimethicone, PEG-9 methyl
  • the membrane for bioadhesion according to any one of items 1 to 7, which is at least one selected from the group consisting of ether dimethicone and PEG / PPG-20 / 22 butyl ether dimethicone.
  • a cosmetic method for affixing a membrane for bioadhesion includes a regenerated cellulose and a promoter having an HLB value of 4 to 18 that promotes the attachment of the regenerated cellulose to a living tissue, and has a thickness of 20 to 5000 nm. And Attaching a mounting agent containing an oily component to a living tissue and the membrane for attaching a living body, and attaching the membrane for attaching a living body to the living tissue, Beauty method.
  • Item 10 (Item 10) Item 10. The cosmetic method according to Item 9, wherein the oil component is at least one selected from the group consisting of fatty acids, paraffin, naphthene, cycloparaffin, and silicone oil.
  • the oil component is at least one selected from the group consisting of fatty acids, paraffin, naphthene, cycloparaffin, and silicone oil.
  • the membrane 10 for bioadhesive shown in FIG. 1 contains regenerated cellulose and an accelerator.
  • the promoter promotes the attachment of the regenerated cellulose to the living tissue.
  • the regenerated cellulose typically forms the skeleton (base material) of the bioadhesive membrane 10.
  • the bio-adhesive membrane 10 is a self-supporting membrane having a thickness of 20 to 5000 nm.
  • the “self-supporting membrane” means a membrane capable of maintaining the form of the membrane without a support. For example, when a self-supporting membrane is lifted by pinching a part of the self-supporting membrane with fingers or tweezers, the self-supporting membrane is not damaged without damaging the self-supporting membrane. It is possible to lift the whole.
  • Regenerated cellulose has abundant hydroxyl groups.
  • the bioadhesive membrane 10 can be used with a mounting agent containing an oily component interposed between the bioadhesive membrane 10 and the biological tissue.
  • the accelerator has an HLB value of 4 or more, strong interaction such as hydrogen bonding may occur between the hydroxyxyl group of the regenerated cellulose and the accelerator.
  • the accelerator exhibits an appropriate hydrophobicity, and an appropriate amount of hydrophobic interaction or the like is present between the hydrophobic group of the fatty acid or silicone oil contained in the mounting agent and the accelerator. Interaction occurs.
  • the promoter promotes the attachment of the regenerated cellulose to the living tissue, and can shorten the time required for the attachment to the living tissue.
  • this promoter does not easily interact with a membrane having high hydrophobicity such as a polylactic acid membrane, and it is difficult to promote attachment of the membrane having high hydrophobicity to a living tissue.
  • the accelerator is, for example, a compound having an ethylene glycol chain or a polyethylene glycol chain.
  • the ethylene glycol chain or polyethylene glycol chain of the accelerator tends to interact with the hydroxyl group of the regenerated cellulose.
  • the accelerator includes a compound represented by the following formula (A), a compound represented by the following (B), and the following ( It may be at least one selected from the group consisting of compounds represented by C).
  • each of a, b, c, d, and e is an integer of 0 or more
  • at least one of a and b is an integer of 1 or more
  • c , D, and e are each an integer of 1 or more
  • f is an integer of 1 or more
  • R 1 and R 2 are each independently an alkyl group, an alkoxy group, (poly) ethylene glycol (alkyl Ether) group or (poly) propylene glycol group.
  • a and b are integers of 0 or more and at least one of a and b is an integer of 1 or more, the values of a and b are not particularly limited. Each of a and b is 18, for example. In this case, the accelerator has high safety.
  • each of the values of c, d, and e Is not particularly limited.
  • Each of c, d, and e can be, for example, 6-100.
  • the hydrophilicity of the accelerator is high, and the accelerator easily flows. For this reason, it is easy to attach the bioadhesive membrane 10 to a biological tissue.
  • each of c, d, and e is 100 or less, the accelerator is likely to exist in a liquid state at room temperature (15 to 25 ° C.), and the bioadhesive membrane 10 can be easily attached to a living tissue.
  • Each of c, d, and e may be 6-20.
  • the HLB value of the accelerator can be easily adjusted to 4 to 18 by appropriately adjusting the chain length of R 1 .
  • the chain length is not particularly limited as long as R 1 is an alkyl group, an alkoxy group, a (poly) ethylene glycol (alkyl ether) group, or a (poly) propylene glycol group.
  • R 1 is an alkyl group or an alkoxy group
  • R 1 has a molecular chain made of, for example, 8 to 30 carbon atoms.
  • Such molecular chains are often present in the living body as substances such as sebum. For this reason, even if R 1 is desorbed from the accelerator by hydrolysis, the fatty acid formed by the desorption of R 1 is likely to have biocompatibility and hardly cause harm to the living body.
  • R 1 when R 1 is a (poly) ethylene glycol (alkyl ether) group or a (poly) propylene glycol group, R 1 represents a molecular chain made of, for example, 1 to 1000 repeating units of ethylene glycol or propylene glycol. Have. Such molecular chains are safe because they are often used as, for example, cosmetic constituent substances. Therefore, even if R 1 is desorbed from the accelerator by hydrolysis, the (poly) ethylene glycol (alkyl ether) group or (poly) propylene glycol group formed by the desorption of R 1 is biocompatible. It is easy to have, and is hard to cause harm to the living body.
  • f is not particularly limited as long as it is an integer of 1 or more. f may be 1 to 100, for example. When f is 1 or more, the accelerator is easily hydrophobic because the accelerator is somewhat hydrophobic. For this reason, it is easy to attach the bioadhesive membrane 10 to a biological tissue. When f is 100 or less, the accelerator is likely to exist in a liquid state at normal temperature (15 to 25 ° C.), and the bioadhesive membrane 10 can be easily attached to the living tissue.
  • the chain length is not particularly limited as long as R 2 is an alkyl group, an alkoxy group, a (poly) ethylene glycol (alkyl ether) group, or a (poly) propylene glycol group.
  • R 2 is an alkyl group or an alkoxy group
  • R 2 has a molecular chain made of, for example, 8 to 30 carbon atoms.
  • Such molecular chains are often present in the living body as substances such as sebum. For this reason, even if R 2 is desorbed from the accelerator by hydrolysis, the fatty acid formed by the desorption of R 2 is likely to have biocompatibility and hardly cause harm to the living body.
  • R 2 is a (poly) ethylene glycol (alkyl ether) group or a (poly) propylene glycol group
  • R 2 has a molecular chain made of, for example, 1 to 1000 repeating units of ethylene glycol or propylene glycol. .
  • Such molecular chains are safe because they are often used as, for example, cosmetic constituent substances. Therefore, even if R 2 is desorbed from the accelerator by hydrolysis, (poly) ethylene glycol (alkyl ether) or (poly) propylene glycol formed by desorption of R 2 has biocompatibility. Easy to do and less harmful to the body.
  • Examples of the accelerator include bisPEG-18 methyl ether dimethylsilane, polyoxyethylene (4) (6) sorbitan monooleate, polyoxyethylene (4) (6) sorbitan monolaurate, polyoxyethylene (4) ( 20) Sorbitan monolaurate, polyoxyethylene (4) (20) sorbitan monopalmitate, polyoxyethylene (4) (20) sorbitan monostearate, PEG-11 methyl ether dimethicone, PEG-9 dimethicone, PEG-9 It is at least one selected from the group consisting of methyl ether dimethicone and PEG / PPG-20 / 22 butyl ether dimethicone.
  • the interaction between the accelerator, the regenerated cellulose, and the mounting agent is in a favorable state, and the biological patch membrane 10 is easily mounted on the living tissue in a short time.
  • the content of the promoter in the bioadhesive membrane 10 is, for example, 10 to 90% by weight. If the content of the promoter in the bioadhesive membrane 10 is 10% by weight or more, it is advantageous from the viewpoint of promoting the attachment of the bioadhesive membrane 10 to a living tissue. If the content of the promoter in the bioadhesive membrane 10 is 90% by weight or less, stickiness of the bioadhesive membrane 10 is suppressed, which is advantageous from the viewpoint of ease of handling of the bioadhesive membrane 10. The content of the promoter in the bioadhesive membrane 10 may be 15 to 50% by weight.
  • the content of the promoter in the bioadhesive membrane 10 is 15% by weight or more, it is more advantageous from the viewpoint of promoting the attachment of the bioadhesive membrane 10 to a living tissue. If the content of the promoter in the bioadhesive membrane 10 is 50% by weight or less, stickiness of the bioadhesive membrane 10 is further suppressed, which is more advantageous from the viewpoint of ease of handling of the bioadhesive membrane 10.
  • the promoter in the bioadhesive membrane 10 may be uniformly distributed in the thickness direction of the bioadhesive membrane 10.
  • the promoter may be present concentrated on a specific location in the bioadhesive membrane 10.
  • a plurality of regions where the accelerator is present at a high concentration may exist at a predetermined interval.
  • the promoter may be present in a layered manner on the surface of the biological patch membrane 10.
  • the layer of the accelerator may cover the whole base material constituted by regenerated cellulose, or may cover a part of the base material.
  • the promoter may be present on the surface of the bioadhesive membrane 10, or may exist other than the surface of the bioadhesive membrane 10 in the thickness direction.
  • at least a part of the promoter in the bioadhesive membrane 10 is continuously present between the surface of the bioadhesive membrane 10 and the regenerated cellulose in the thickness direction of the bioadhesive membrane 10.
  • the accelerator is more likely to interact, more easily interact with both the regenerated cellulose and the mounting agent, and the mounting of the bioadhesive membrane 10 to the living tissue is more reliably promoted. .
  • coat 10 for biological sticking has high intensity
  • the raw material of regenerated cellulose is not particularly limited.
  • the raw material of the regenerated cellulose can be plant-derived natural cellulose, bio-derived natural cellulose, regenerated cellulose such as cellophane, or processed cellulose such as cellulose nanofiber. It is advantageous that the concentration of impurities in the raw material of regenerated cellulose is 10% by weight or less.
  • Regenerated cellulose is, for example, cellulose substantially represented by the following formula (I).
  • the cellulose substantially represented by the formula (I) means a cellulose in which 90% or more of hydroxyl groups of glucose residues in the cellulose represented by the formula (I) remain.
  • the ratio of the number of hydroxyl groups of glucose residues in cellulose contained in the biomedical membrane 10 to the number of hydroxyl groups of glucose residues in cellulose represented by formula (I) is, for example, X-ray photoelectron spectroscopy (XPS). ) And other known methods.
  • the regenerated cellulose contained in the biological patch membrane 10 may include a branched structure depending on the case.
  • the artificially derivatized cellulose typically does not fall under “substantially the cellulose represented by the formula (I)”.
  • “cellulose substantially represented by the formula (I)” does not exclude cellulose regenerated through derivatization. Even cellulose regenerated through derivatization may fall under “substantially represented by formula (I)”.
  • the bioadhesive membrane 10 is made of regenerated cellulose.
  • the strength of the membrane formed from a suspension of natural cellulose fibers dispersed in water or the like is borne by hydrogen bonds between the nanofibers constituting the cellulose fibers. Therefore, only a brittle cellulose film can be obtained.
  • the nanofibers are loosened up to the molecular chain unit, so the strength of the membrane composed of regenerated cellulose is borne by hydrogen bonds between cellulose molecular chains. . That is, in a film made of regenerated cellulose, hydrogen bonds between units smaller than those of nanofibers are uniformly formed.
  • the “nanofiber” is also called “nanofibril (or microfibril)” and is the most basic unit in which cellulose molecules are assembled, and has a width of about 4 nm to about 100 nm, for example, about 1 ⁇ m. It has the above length.
  • regenerated cellulose means cellulose that does not have the crystal structure I unique to natural cellulose.
  • the crystal structure of cellulose can be confirmed by an XRD pattern.
  • the example of the XRD pattern (CuK ⁇ ray (50 kV, 300 mA)) of natural cellulose is shown.
  • peaks at around 14-17 ° and 23 °, which are peculiar to the crystal structure I appear.
  • Regenerated cellulose often has a crystalline structure II and has peaks around 12 °, 20 ° and 22 °, and no peaks around 14-17 ° and 23 °.
  • the regenerated cellulose contained in the bioadhesive membrane 10 is 90% or more of regenerated cellulose that has not been chemically modified and derivatized.
  • 98% or more of the regenerated cellulose contained in the bioadhesive membrane 10 may be 98% or more of regenerated cellulose that has not been chemically modified or derivatized.
  • the bioadhesive membrane 10 contains a large amount of cellulose that has not been chemically modified and derivatized, and contains more hydroxyl groups per molecular chain of cellulose. For this reason, it is thought that more hydrogen bonds are formed between the molecules of cellulose, and the bioadhesive membrane 10 tends to have high strength.
  • the regenerated cellulose contained in the bio-adhesive membrane 10 may be uncrosslinked.
  • Cellulose contained in the membrane 10 for biological sticking has a crystallinity of 0 to 12%, for example.
  • the amount of hydroxyl groups involved in the formation of the crystal structure is moderately small, and the bioadhesive film 10 tends to have high adhesion to the living body.
  • coat 10 for biological sticking can express various functions by making predetermined
  • the bioadhesive membrane 10 has a thickness of 20 to 5000 nm. If the thickness of the bioadhesive membrane 10 is 20 nm or more, the bioadhesive membrane 10 has high strength and is easy to handle. Therefore, the bioadhesive membrane 10 can function as a self-supporting membrane that can be affixed to a biological tissue. If the thickness of the bioadhesive membrane 10 is 5000 nm or less, the bioadhesive membrane 10 is difficult to peel off when the bioadhesive membrane 10 is attached to a biological tissue.
  • the bioadhesive membrane 10 when the thickness of the bioadhesive membrane 10 is within such a range, for example, the bioadhesive membrane 10 can be easily peeled off from the living tissue by running water.
  • the thickness of the bioadhesive membrane 10 is determined by, for example, measuring the thickness of the bioadhesive membrane 10 at a plurality of locations and averaging them. The thickness at each location can be measured using, for example, a stylus profiling system DEKTAK (registered trademark) manufactured by Bruker Nano Inc.
  • the thickness of the bioadhesive membrane 10 may be 100 nm or more. When the thickness of the bioadhesive film 10 is 100 nm or more, the strength of the bioadhesive film 10 is increased and the bioadhesive film 10 is easy to handle.
  • the thickness of the bioadhesive membrane 10 may be 300 nm or more. When the thickness of the bioadhesive film 10 is 300 nm or more, the strength of the bioadhesive film 10 is further increased, and the bioadhesive film 10 is not easily broken and can be used easily.
  • the thickness of the bioadhesive membrane 10 may be 500 nm or more.
  • the thickness of the bioadhesive membrane 10 may be 2000 nm or less. When the thickness of the bioadhesive membrane 10 is 2000 nm or less, the adhesiveness of the bioadhesive membrane 10 to the biological tissue is high, and the bioadhesive membrane 10 can be stably adhered to the surface of the biological tissue such as skin. it can.
  • the thickness of the bioadhesive membrane 10 may be 1300 nm or less.
  • the bioadhesive membrane 10 When the thickness of the bioadhesive membrane 10 is 1300 nm or less, the bioadhesive membrane 10 has higher adhesion to the biological tissue, and the bioadhesive membrane 10 is stably adhered to the surface of the biological tissue such as skin for a long time. Can be maintained.
  • Regenerated cellulose has a weight average molecular weight of, for example, 30,000 or more. In this case, a sheet having a thickness of 5000 nm or less can be produced.
  • the weight average molecular weight of regenerated cellulose can be determined, for example, by gel permeation chromatography (GPC).
  • the regenerated cellulose may have a weight average molecular weight of 150,000 or more. In this case, even if the thickness of the bioadhesive membrane 10 is adjusted to a thickness of 1300 nm or less, the bioadhesive membrane 10 can be produced as a self-supporting membrane.
  • the shape of the bioadhesive membrane 10 is not particularly limited when the bioadhesive membrane 10 is viewed in plan.
  • the bioadhesive membrane 10 can be circular, elliptical, or polygonal in plan view.
  • the bioadhesive membrane 10 may be indefinite in plan view.
  • the membrane 10 for bioadhesion may be a single-layer membrane or a membrane having a laminated structure in which a plurality of layers are laminated.
  • the active ingredients retained in the plurality of layers may be the same or different for each layer.
  • the bioadhesive membrane 10 may have a laminated structure in which a layer containing regenerated cellulose and a layer formed of a material other than regenerated cellulose are laminated.
  • the bioadhesive membrane 10 is, for example, (i) skin care such as whitening, moisturizing, and wrinkle prevention, (ii) hair care such as hair growth, hair thickening, hair removal, and hair styling, or (iii) foundation, Used for makeup such as face powder and nail art.
  • the biomarker membrane 10 is used for administration of drugs such as analgesic / anti-inflammatory drugs, anti-inflammatory drugs, cardiotonic drugs, antifungal drugs, corticosteroid drugs, and blood circulation promoting drugs to the living body. Also good.
  • the membrane 10 for biological sticking may contain components other than regenerated cellulose and an accelerator.
  • the biomarking membrane 10 can contain a predetermined active ingredient.
  • the active ingredient can be, for example, a cosmetic ingredient or a medicinal ingredient such as a whitening ingredient, an ultraviolet protection ingredient, a moisturizing ingredient, a hair-growth ingredient, and a cosmetic.
  • the beauty ingredients are gum arabic, gum tragacanth, galactan, guar gum, carob gum, caraya gum, carrageenan, pectin, agar, quince seed (malmello), algae colloid (gypsum extract), starch (rice, corn, potato, wheat), saxino glucan, Vitamin A such as casein, albumin, gelatin, mucin, chondroitin sulfate, xylitol, maltose, sodium pyrrolidonecarboxylate, retinol, retinal, and retinoic acid, vitamin B such as thiamine, riboflavin, pyridoxine, pyridoxamine, and folic acid, ascorbic acid ( Vitamin C such as sodium), vitamin D such as ergocalciferol and cholecalciferol, vitamin E such as ⁇ -tocopherol, phylloquinone and Vitamin K such as naquinone, vitamin A derivatives such as t
  • Medicinal ingredients include, for example, cephalanthin, rutin, isosorbide nitrate, indomethacin, diflucortron valerate, acyclovir, ketoconazole, ketoprofen, diclofenac sodium, dexamethasone propionate, ferbinac, clobetasolpropionate, loxoprofen, methyl salicylate, or tacrolimus It is.
  • active ingredients can be contained in the bioadhesive membrane 10 in a solid, solution, dispersion, or emulsion state.
  • At least a part of the bioadhesive membrane 10 may be colored.
  • at least a part of the bioadhesive membrane 10 may be colored in a color close to the color of the skin. In this case, spots, moles, and scars on the skin can be covered with the bio-applied membrane 10 to make them inconspicuous.
  • the bioadhesive membrane 10 is used by being affixed to the skin or nails at sites such as the face and arms, for example. For this reason, the membrane 10 for biological sticking typically has an area of 7 mm 2 or more. Thereby, a wide area
  • the bioadhesive membrane 10 may be affixed to the surface of a biological tissue other than skin such as an organ. By affixing the bioadhesive membrane 10 to the surface of the organ, healing of the organ can be promoted. In addition, adhesion between organs can be prevented.
  • the mounting agent is not particularly limited as long as it contains an oily component.
  • the oily component refers to a substance that can dissolve only in water by 0.1% by mass or less.
  • the oil component is, for example, at least one selected from the group consisting of fatty acids, paraffins, naphthenes, cycloparaffins, and silicone oils.
  • the wearing agent is, for example, at least one selected from the group consisting of a lotion, a milky lotion, a cosmetic liquid, a cream, and an oil containing an oily component.
  • the ratio of the mass of the oil component to the mass of the mounting agent is not particularly limited. This ratio is, for example, 1% or more. In this case, it is easy to wear the bioadhesive membrane 10.
  • the kind of oil component is not particularly limited.
  • the oil component is at least one selected from the group consisting of fatty acid, paraffin, naphthene, cycloparaffin, and silicone oil, for example.
  • the fatty acid may be a (polyvalent) unsaturated fatty acid, a saturated fatty acid, a branched fatty acid, a cyclic fatty acid, or a fatty acid ester. It may be an ether type lipid.
  • Fatty acids include, for example, caprylic acid, pelargonic acid, capric acid, lauric acid, myristic acid, pentadecylic acid, palmitic acid, palmitoleic acid, margaric acid, stearic acid, oleic acid, vaccenic acid, linoleic acid, linolenic acid, eleostearic acid Acid, arachidic acid, mead acid, arachidonic acid, behenic acid, lignoceric acid, nervonic acid, serotic acid, montanic acid, melicic acid, cyclobutanecarboxylic acid, cyclopentanecarboxylic acid, cyclohexanecarboxylic acid, cycloheptanecarboxylic acid, cyclooctane Glycerin fatty acid ester such as carboxylic acid, cyclononanecarboxylic acid, cyclodecanecarboxylic acid, cycloundecan
  • the mounting agent may contain a natural product-derived oil containing a fatty acid.
  • Oils derived from natural products include, for example, argan oil, sukurwan oil, jojoba oil, horse oil, olive oil, camellia oil, rosehip oil, yuzu seed oil, macadamia nut oil, rice bran oil, almond oil, marla oil, apricot kernel Oil, arnica oil, walnut oil, olive skrawan oil, kyolot oil, kukui nut oil, grape seed oil, coconut oil, sunflower oil, sweet almond oil, sesame oil, tamanu oil, passion flower oil, peach kernel oil, hazelnut Oil, hemp seed oil, avocado oil, aloe vera oil, evening primrose oil, wheat germ oil, castor oil, camellia oil , Calendula oil, St.
  • the silicone oil is, for example, methylpolysiloxane, octamethyltrisiloxane, decamethylcyclopentasiloxane, octamethylcyclotetrasiloxane, methylpolysiloxane, dimethicone, dimethiconol, cyclomethicone, or amodimethicone.
  • the wearing agent contains, for example, water, fats and oils, alcohol, or an emulsifier, and may further contain one or more active ingredients as described above.
  • an attachment agent containing an oil component such as fatty acid, paraffin, naphthene, cycloparaffin, or silicone oil is attached to the biological tissue and the bioadhesive membrane 10, thereby The bioadhesive membrane 10 is affixed to.
  • the order of the supply of the mounting agent and the operation of bringing the biological sticking membrane 10 closer to the living tissue is not particularly limited.
  • the wearing agent may be dropped toward the bioadhesive membrane 10 and the biological tissue in a state where the bioadhesive membrane 10 is in contact with the biological tissue.
  • the living body adhesive film 10 may be brought into contact with the mounting agent attached to the living tissue.
  • the bioadhesive membrane 10 is provided in the state of, for example, a laminate 50a.
  • the laminated body 50 a includes the biological sticking film 10 and the first protective layer 21.
  • the bioadhesive membrane 10 has a first main surface 11 and a second main surface 12.
  • the second main surface 12 is located on the opposite side of the first main surface 11 in the bioadhesive film 10.
  • the first protective layer 21 is disposed on the first main surface 11.
  • the first protective layer 21 is a layer removable from the first main surface 11.
  • the first protective layer 21 is in contact with, for example, the first main surface 11.
  • the first protective layer 21 is, for example, (i) polyethylene, polypropylene, polyethylene terephthalate, nylon, acrylic resin, polycarbonate, polyvinyl chloride, acrylonitrile-butadiene-styrene (ABS) resin, polyurethane, synthetic rubber, cellulose, Teflon (registered) (Trademark), aramid, and a sheet of polymer material such as polyimide, woven fabric, nonwoven fabric, or mesh, (ii) sheet-like metal, or (iii) sheet-like glass.
  • ABS acrylonitrile-butadiene-styrene
  • the first protective layer 21 has a shape that is the same as or different from the shape of the bioadhesive membrane 10 in plan view, and has the same or different size as the bioadhesive membrane 10.
  • a plurality of bioadhesive membranes 10 may be disposed on the single first protective layer 21.
  • the biological sticking membrane 10 can maintain its shape without the first protective layer 21. For this reason, even if the 1st protective layer 21 is removed from the 1st main surface 11, the film
  • the laminate 50a is brought close to the second main surface 12 of the bioadhesive membrane 10 toward a specific part (for example, skin) of the living body, and the second main surface 12 of the bioadhesive membrane 10 is placed. Is brought into contact with a specific part of the living body. At this time, the mounting agent is supplied to a specific part of the living body or the bioadhesive membrane 10.
  • the 1st protective layer 21 is peeled from the 1st main surface 11 of the film
  • the laminated body 50a may be changed like a laminated body 50b shown in FIG.
  • the laminated body 50b is configured in the same manner as the laminated body 50a unless otherwise described.
  • Constituent elements of the laminated body 50b that are the same as or correspond to the constituent elements of the laminated body 50a are assigned the same reference numerals, and detailed descriptions thereof are omitted.
  • the description regarding the stacked body 50a also applies to the stacked body 50b unless there is a technical contradiction.
  • the stacked body 50 b further includes a second protective layer 22.
  • the second protective layer 22 is disposed on the second major surface 12.
  • the second main surface 12 can be protected by the second protective layer 22.
  • the second protective layer 22 facilitates handling of the stacked body 50b.
  • the material of the second protective layer 22 may be the same as the material of the first protective layer 21 or may be different from the material of the first protective layer 21.
  • the second protective layer 22 has a shape that is the same as or different from the shape of the bioadhesive membrane 10 in plan view, and has the same or different size as the bioadhesive membrane 10.
  • the second protective layer 22 has the same or different shape as the first protective layer 21 in plan view, and has the same or different size as the first protective layer 21.
  • the second protective layer 22 is typically removable from the second main surface 12.
  • the second protective layer 22 is peeled from the biomedical adhesive film 10. Thereby, the 2nd main surface 12 is exposed. Thereafter, the second main surface 12 is brought close to a specific part of the living body, and the bioadhesive film 10 is attached to the specific part of the living body in the same manner as in the method of using the laminate 50a.
  • polylactic acid has been proposed as a material for a sheet to be attached to the skin.
  • polylactic acid is a hydrophobic material and is unsuitable for long-term use because of concerns about stuffiness. Therefore, it is necessary to consider the irritation that the adhesive gives to the skin and the water vapor permeability of the adhesive in applications such as application to the skin.
  • the thickness of the bioadhesive film 10 when the thickness of the bioadhesive film 10 is 1300 nm or less, it can be applied to the skin without requiring an adhesive.
  • the reason why it can be applied to the skin without an adhesive even if the thickness is 500 nm or more is that the biological adhesive film 10 shows flexibility even when it has a thickness of 500 nm or more, and has unevenness (for example, cheeks, arms, etc.) This is presumably because the influence of the functional group and van der Waals force on the surface of the cellulose film is increased and the adhesion is improved as compared with the polylactic acid film.
  • bioadhesive membrane 10 Since it can be affixed to the skin without an adhesive, it is possible to use the bioadhesive membrane 10 for a long period of time while reducing stuffiness. Furthermore, cellulose has biocompatibility, is less susceptible to physical or chemical stress on the skin, even when applied directly to the skin, and is amphiphilic and hydrophilic. Since it has the property that it does not dissolve in water while it is held, it does not have to worry about being dissolved by moisture such as sweat, and has excellent durability.
  • cellulose is dissolved in a solvent to prepare a cellulose solution.
  • a cellulose solution In order to obtain a regenerated cellulose film having a weight average molecular weight of 30,000 or more, cellulose having a weight average molecular weight of at least 30,000 or more is used. Thereby, the self-supporting type
  • a cellulose solution may be prepared using cellulose having a weight average molecular weight of at least 150,000 or more.
  • a self-supporting biomedical adhesive film having a thickness of 1300 nm or less can be produced.
  • the cellulose used for preparing the cellulose solution is not particularly limited as long as it has a desired weight average molecular weight.
  • the cellulose used for preparing the cellulose solution may be, for example, cellulose derived from plants such as pulp and cotton, or cellulose produced by organisms such as bacteria.
  • the impurity concentration in the cellulose raw material is, for example, 10% by weight or less. If the weight average molecular weight of the regenerated cellulose is 2,000,000 or less, it is useful because it is easy to handle. More desirably, the regenerated cellulose has a weight average molecular weight of 1,000,000 or less.
  • the solvent is, for example, a solvent (first solvent) containing at least an ionic liquid.
  • An ionic liquid is a salt composed of an anion and a cation, and can exhibit a liquid state at a temperature of 150 ° C. or lower.
  • the ionic liquid contained in the first solvent is, for example, an ionic liquid containing an amino acid or an alkyl phosphate ester.
  • the first solvent contains such an ionic liquid, cellulose can be dissolved while suppressing a decrease in the molecular weight of cellulose.
  • an amino acid is a component present in a living body
  • an ionic liquid containing the amino acid is advantageous for forming a safer biofilm 10 for a living body.
  • the cellulose may be dissolved by using an ionic liquid diluted in advance with a solvent that does not precipitate the cellulose.
  • an ionic liquid diluted in advance with a solvent that does not precipitate the cellulose.
  • a mixture of an aprotic polar solvent and an ionic liquid may be used as the first solvent.
  • the aprotic polar solvent hardly forms hydrogen bonds and does not easily precipitate cellulose.
  • the ionic liquid contained in the first solvent is, for example, an ionic liquid represented by the following formula (II).
  • the anion is an amino acid.
  • the anion in this ionic liquid, contains a terminal carboxyl group and a terminal amino group.
  • the cation of the ionic liquid represented by the formula (II) may be a quaternary ammonium cation.
  • R 1 to R 6 independently represent a hydrogen atom or a substituent.
  • the substituent can be an alkyl group, a hydroxyalkyl group, or a phenyl group.
  • the substituent may contain a branch in the carbon chain.
  • the substituent may contain a functional group such as an amino group, a hydroxyl group, or a carboxyl group.
  • n is, for example, 4 or 5.
  • the ionic liquid contained in the first solvent may be an ionic liquid represented by the following formula (III).
  • R 1 , R 2 , R 3 , and R 4 independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • a second solvent may be further added.
  • the second solvent may be further added to a mixture of cellulose having a predetermined weight average molecular weight and the first solvent.
  • the second solvent is, for example, a solvent that does not precipitate cellulose.
  • the second solvent can be an aprotic polar solvent.
  • the concentration of cellulose in the cellulose solution is typically 0.2 to 15% by weight.
  • concentration of cellulose in the cellulose solution is 0.2% by weight or more, the bioadhesive membrane 10 having a strength necessary for maintaining the shape of the bioadhesive membrane 10 while reducing the thickness of the bioadhesive membrane 10 can be obtained.
  • concentration of the cellulose of a cellulose solution is 15 weight% or less, precipitation of the cellulose in a cellulose solution can be suppressed.
  • the cellulose concentration of the cellulose solution may be 1 to 10% by weight.
  • concentration of cellulose in the cellulose solution is 1% by weight or more, the bioadhesive membrane 10 having higher strength can be obtained.
  • concentration of cellulose in the cellulose solution is 10% by weight or less, a stable cellulose solution in which precipitation of cellulose is further reduced can be prepared.
  • a cellulose solution is applied to the surface of the substrate to form a liquid film on the surface of the substrate.
  • substrate is 70 degrees or less, for example.
  • the wettability of the cellulose solution to the substrate is appropriate, and a liquid film that spreads along the surface of the substrate can be stably formed.
  • the material of the substrate is not particularly limited.
  • the substrate typically has a non-porous structure with a smooth surface. In this case, it is possible to prevent the cellulose solution from entering the inside of the substrate, and it is easy to separate the bioadhesive membrane 10 from the substrate in a subsequent process.
  • the substrate may be subjected to chemical or physical surface modification.
  • a polymer material substrate that has been subjected to surface modification treatment such as ultraviolet (UV) irradiation or corona treatment may be used.
  • the method for surface modification is not particularly limited. For example, application of a surface modifier, surface modification, plasma treatment, sputtering, etching, or blasting can be applied.
  • a method for forming a liquid film of a cellulose solution on a substrate includes, for example, gap coating, slot die coating, spin coating, coating using a bar coater (Metering) that forms a predetermined gap with the surface of the substrate by an applicator or the like. rod coating) and gravure coating. Liquid film thickness adjusted by gap thickness or slot die opening size and coating speed, spin coat rotation speed, bar coater or gravure coat groove depth and coating speed, and cellulose solution concentration By adjusting the thickness, it is possible to adjust the thickness of the biomedical film.
  • the method for forming the liquid film of the cellulose solution on the substrate may be a casting method, screen printing using a squeegee, spray coating, or electrostatic spraying.
  • At least one of the cellulose solution and the substrate may be heated. This heating may be performed, for example, in a temperature range (for example, 40 to 100 ° C.) in which the cellulose solution can be kept stable.
  • the liquid film of the cellulose solution formed on the substrate may be heated.
  • the liquid film may be heated, for example, at a temperature lower than the decomposition temperature of the ionic liquid contained in the first solvent (eg, 50 to 200 ° C.).
  • a solvent other than the ionic liquid for example, the second solvent
  • the heating of the liquid film may be performed under a reduced pressure environment. In this case, a solvent other than the ionic liquid can be appropriately removed in a shorter time at a temperature lower than the boiling point of the solvent.
  • the liquid film may be gelled.
  • the liquid film may be gelled.
  • the liquid film by exposing the liquid film to vapor of a liquid that is soluble in an ionic liquid and does not dissolve cellulose, the liquid film can be gelled to obtain a polymer gel sheet.
  • the ionic liquid in the liquid film comes into contact with water, so that the solubility of cellulose in the liquid film decreases. Thereby, a part of cellulose molecule precipitates and a three-dimensional structure is formed. As a result, the liquid film is gelled.
  • the presence or absence of a gel point can be determined by whether or not the gelled film can be lifted.
  • the heating of the liquid film may be performed before gelling of the liquid film, may be performed after gelling of the liquid film, or may be performed before or after gelling of the liquid film. .
  • the substrate and the polymer gel sheet are immersed in a rinsing liquid that does not dissolve cellulose.
  • the ionic liquid is removed from the polymer gel sheet.
  • This step can be understood as a step of washing the polymer gel sheet.
  • a part of the components (for example, the second solvent) other than the cellulose and the ionic liquid may be removed from the components contained in the cellulose solution.
  • the rinse liquid is typically a liquid that can be dissolved in an ionic liquid.
  • liquids examples include water, methanol, ethanol, propanol, butanol, octanol, toluene, xylene, acetone, acetonitrile, dimethylacetamide, dimethylformamide, and dimethyl sulfoxide.
  • the polymer gel sheet is immersed in the accelerator solution.
  • the solution of the accelerator may further contain the above active ingredient.
  • the solvent in the accelerator solution is, for example, a group consisting of water, ethanol, propanol, butanol, acetone, glycerin, propanediol, 1,3-butanediol, 1,4-butanediol, diglycerin, polyethylene glycol, and dimethicone. Is at least one selected from.
  • the accelerator may be attached to the polymer gel sheet by spraying, vapor deposition, or coating.
  • the polymer gel sheet may be immersed in a solution, a dispersion, or an emulsion containing the above active ingredient separately from the immersion of the accelerator in the solution.
  • the polymer gel sheet is dried.
  • drying methods such as natural drying, vacuum drying, heat drying, freeze drying, and supercritical drying can be applied.
  • the polymer gel sheet may be dried by vacuum heating.
  • the conditions for drying the polymer gel sheet are not particularly limited.
  • a condition for drying the polymer gel sheet a time and temperature sufficient for removing the second solvent and the rinsing liquid are selected. By removing the solvent from the polymer gel sheet, the bioadhesive membrane 10 is obtained.
  • a solvent that can be frozen and has a boiling point of about 100 to 200 ° C. is used.
  • lyophilization can be performed using a solvent such as water, tert-butyl alcohol, acetic acid, 1,1,2,2,3,3,4-heptafluorocyclopentane, or dimethyl sulfoxide.
  • the polymer gel sheet is immersed in the accelerator solution prior to drying the polymer gel sheet.
  • the accelerator may be attached after the polymer gel sheet is dried.
  • a polymer sheet obtained by drying a polymer gel sheet may be immersed in a promoter solution.
  • the solution of the accelerator may further contain the above active ingredient.
  • the polymer sheet after immersion is further dried.
  • the accelerator may be attached to the polymer gel sheet by spraying, vapor deposition, or coating.
  • the membrane for bioadhesion of the present disclosure will be described in more detail by way of examples.
  • membrane for biological sticking of this indication is not limited to a following example.
  • Example 1A Cellulose derived from bleached pulp made from wood and having a purity of 90% or more was dissolved in an ionic liquid to prepare a cellulose solution.
  • an ionic liquid in which R 1 is a methyl group, R 2 , R 3 , and R 4 are ethyl groups in the formula (III) was used.
  • a cellulose solution was applied onto the substrate to form a coating film. The thickness of the coating film was adjusted so that the thickness of the bioadhesive film was 400 nm. Thereafter, the coating film of the cellulose solution was gelled to form a polymer gel sheet. Thereafter, the substrate and the polymer gel sheet were washed with a predetermined rinse solution.
  • Example 1A A membrane for biopaste was obtained.
  • the membrane for bioadhesion was removed from the substrate and laminated on the nonwoven fabric to obtain a laminate according to Example 1A.
  • the membrane for bioadhesion was approximately 5 cm square in a plan view and had a transparent appearance.
  • the structure of the biomedical adhesive membrane according to Example 1A was analyzed by X-ray diffraction (XRD). As a result, it was confirmed that the membrane for bioadhesion did not contain natural cellulose and was regenerated cellulose.
  • the weight average molecular weight of the regenerated cellulose of the membrane for biopaste was determined by GPC measurement. The weight average molecular weight of the regenerated cellulose was 224,000.
  • the concentration of polyoxyethylene (4) (6) sorbitan monooleate contained in the biomedical membrane was determined by the method described below.
  • a plurality of polyoxyethylene (4) (6) sorbitans having different polyoxyethylene (4) (6) sorbitan monooleate concentrations previously dissolved in water with polyoxyethylene (4) (6) sorbitan monooleate An aqueous monooleate solution was prepared. Thereafter, the refractive index of each polyoxyethylene (4) (6) sorbitan monooleate aqueous solution was measured with a refractometer (manufactured by Atago Co., Ltd., product name: RX-5000 ⁇ -Plus).
  • a calibration curve was created from the concentration and refractive index of the polyoxyethylene (4) (6) sorbitan monooleate aqueous solution, and the slope a of the calibration curve was determined.
  • the polyoxyethylene (4) (6) sorbitan monooleate contained in the biomedical membrane is extracted by immersing the biomedical membrane according to Example 1A in water for 1 hour and performing ultrasonic treatment. An extract of oxyethylene (4) (6) sorbitan monooleate was obtained.
  • the refractive index n of this extract was measured with the above refractometer. Based on the refractive index n and the slope a of the calibration curve, the mass of polyoxyethylene (4) (6) sorbitan monooleate contained in the extract was determined.
  • the mass of polyoxyethylene (4) (6) sorbitan monooleate contained in the extract was regarded as the mass of polyoxyethylene (4) (6) sorbitan monooleate contained in the biomedical patch membrane.
  • the ratio of the mass of polyoxyethylene (4) (6) sorbitan monooleate contained in the biomedical membrane to the mass of the biomedical membrane was 20%.
  • Example 1B Except for the following points, a biomedical adhesive membrane according to Example 1B and a laminate according to Example 1B were produced in the same manner as Example 1A. Instead of the polyoxyethylene (4) (6) sorbitan monooleate aqueous solution, a polyoxyethylene (4) (6) sorbitan monolaurate (HLB value: 13.3) aqueous solution was used. The dipping conditions were adjusted so that the ratio of the mass of the polyoxyethylene (4) (6) sorbitan monolaurate contained in the biomedical membrane to the mass of the biomedical membrane was 20%. The mass of the polyoxyethylene (4) (6) sorbitan monolaurate contained in the membrane for biological patch was determined according to the method described in Example 1A.
  • Example 1C Except for the following points, a biomedical adhesive membrane according to Example 1C and a laminate according to Example 1C were produced in the same manner as Example 1A. Instead of the polyoxyethylene (4) (6) sorbitan monooleate aqueous solution, a polyoxyethylene (4) (20) sorbitan monolaurate (HLB value: 16.7) aqueous solution was used. The immersion conditions were adjusted such that the ratio of the mass of polyoxyethylene (4) (20) sorbitan monolaurate contained in the biomedical membrane to the mass of the biomedical membrane was 20%. The mass of the polyoxyethylene (4) (20) sorbitan monolaurate contained in the biomedical film was determined according to the method described in Example 1A.
  • Example 1D Except for the following points, a biomedical adhesive membrane according to Example 1D and a laminate according to Example 1D were produced in the same manner as Example 1A. Instead of the polyoxyethylene (4) (6) sorbitan monooleate aqueous solution, a polyoxyethylene (4) (20) sorbitan monopalmitate (HLB value: 15.6) aqueous solution was used. The dipping conditions were adjusted so that the ratio of the mass of the polyoxyethylene (4) (20) sorbitan monopalmitate contained in the bioadhesive membrane to the mass of the bioadhesive membrane was 20%. The mass of the polyoxyethylene (4) (20) sorbitan monopalmitate contained in the biomedical film was determined according to the method described in Example 1A.
  • Example 1E Except for the following points, a biomedical adhesive membrane according to Example 1E and a laminate according to Example 1E were produced in the same manner as Example 1A. Instead of the polyoxyethylene (4) (6) sorbitan monooleate aqueous solution, a polyoxyethylene (4) (20) sorbitan monostearate (HLB value: 14.9) aqueous solution was used. The dipping conditions were adjusted so that the ratio of the mass of the polyoxyethylene (4) (20) sorbitan monostearate contained in the bioadhesive membrane to the mass of the bioadhesive membrane was 20%. The mass of the polyoxyethylene (4) (20) sorbitan monostearate contained in the biomedical membrane was determined according to the method described in Example 1A.
  • Example 1F Except for the following points, a biomedical adhesive membrane according to Example 1F and a laminate according to Example 1F were produced in the same manner as Example 1A. Instead of the polyoxyethylene (4) (6) sorbitan monooleate aqueous solution, a bisPEG-18 methyl ether dimethylsilane (HLB value: 17.8) aqueous solution was used. The immersion conditions were adjusted so that the ratio of the mass of bisPEG-18 methyl ether dimethylsilane contained in the bioadhesive membrane to the mass of the bioadhesive membrane was 20%. The mass of bisPEG-18 methyl ether dimethyl silane contained in the biopaste membrane was determined according to the method described in Example 1A.
  • Example 1G Except for the points described below, a biomedical adhesive membrane according to Example 1G and a laminate according to Example 1G were produced in the same manner as Example 1A. Instead of the polyoxyethylene (4) (6) sorbitan monooleate aqueous solution, a PEG-11 methyl ether dimethicone (HLB value: 14.5) aqueous solution was used. The dipping conditions were adjusted so that the ratio of the mass of PEG-11 methyl ether dimethicone contained in the bioadhesive membrane to the mass of the bioadhesive membrane was 20%. The mass of PEG-11 methyl ether dimethicone contained in the membrane for biopsy was determined according to the method described in Example 1A.
  • Example 1H Except for the following points, a biological adhesive film according to Example 1H and a laminate according to Example 1H were produced in the same manner as Example 1A. Instead of the polyoxyethylene (4) (6) sorbitan monooleate aqueous solution, an aqueous solution of PEG-9 dimethicone (HLB value: 10.0) was used. The immersion conditions were adjusted so that the ratio of the mass of PEG-9 dimethicone contained in the bioadhesive membrane to the mass of the bioadhesive membrane was 20%. The mass of PEG-9 dimethicone contained in the membrane for biopsy was determined according to the method described in Example 1A.
  • Example 1I Except for the following points, a biomedical adhesive membrane according to Example 1I and a laminate according to Example 1I were produced in the same manner as Example 1A. Instead of the polyoxyethylene (4) (6) sorbitan monooleate aqueous solution, a PEG / PPG-20 / 22 butyl ether dimethicone (HLB value: 7.0) aqueous solution was used. The dipping conditions were adjusted so that the ratio of the mass of PEG / PPG-20 / 22 butyl ether dimethicone contained in the bioadhesive membrane to the mass of the bioadhesive membrane was 20%. The mass of PEG / PPG-20 / 22 butyl ether dimethicone contained in the membrane for biopsy was determined according to the method described in Example 1A.
  • Example 1J Except for the following points, a biological adhesive film according to Example 1J and a laminate according to Example 1J were produced in the same manner as Example 1A. Instead of the polyoxyethylene (4) (6) sorbitan monooleate aqueous solution, a PEG-9 methyl ether dimethicone (HLB value: 4.5) aqueous solution was used. The dipping conditions were adjusted so that the ratio of the mass of PEG-9 methyl ether dimethicone contained in the bioadhesive membrane to the mass of the bioadhesive membrane was 20%. The mass of PEG-9 methyl ether dimethicone contained in the biomedical patch membrane was determined according to the method described in Example 1A.
  • Comparative Example 2A Except for the following points, a biological adhesive film according to Comparative Example 2A and a laminate according to Comparative Example 2A were produced in the same manner as Example 1A. Instead of the polyoxyethylene (4) (6) sorbitan monooleate aqueous solution, a sorbitan tristearate (HLB value: 2.1) aqueous solution was used. The dipping conditions were adjusted so that the ratio of the mass of sorbitan tristearate contained in the bioadhesive membrane to the mass of the bioadhesive membrane was 20%. The mass of sorbitan tristearate contained in the membrane for living body application was determined according to the method described in Example 1A.
  • HLB value: 2.1 sorbitan tristearate
  • Comparative Example 2B a biological adhesive film according to Comparative Example 2B and a laminate according to Comparative Example 2B were produced in the same manner as Example 1A.
  • an aqueous solution of polyethylene glycol distearate (140 EO) (HLB value: 18.9) was used. The immersion conditions were adjusted so that the ratio of the mass of polyethylene glycol distearate (140 EO) contained in the bioadhesive membrane to the mass of the bioadhesive membrane was 20%.
  • the mass of the polyethylene glycol distearate (140 EO) contained in the membrane for biomedical application was determined according to the method described in Example 1A.
  • the polylactic acid film was immersed in an aqueous solution of polyoxyethylene (4) (6) sorbitan monolaurate, and then the polylactic acid film was dried to obtain a biopaste film according to Comparative Example 3A.
  • the immersion conditions were adjusted so that the ratio of the mass of polyoxyethylene (4) (6) sorbitan monolaurate contained in the biomedical membrane to the mass of the biomedical membrane was 20%.
  • the bioadhesive film according to Comparative Example 3A was laminated on the nonwoven fabric to obtain a laminate according to Comparative Example 3A.
  • the mass of the polyoxyethylene (4) (6) sorbitan monolaurate contained in the membrane for biopsy was determined according to the method described in Example 1A.
  • Comparative Example 3B a biological adhesive film according to Comparative Example 3B and a laminate according to Comparative Example 3B were produced in the same manner as Comparative Example 3A.
  • a polyoxyethylene (4) (20) sorbitan monolaurate aqueous solution was used instead of the polyoxyethylene (4) (6) sorbitan monolaurate aqueous solution.
  • the immersion conditions were adjusted such that the ratio of the mass of polyoxyethylene (4) (20) sorbitan monolaurate contained in the biomedical membrane to the mass of the biomedical membrane was 20%.
  • the mass of the polyoxyethylene (4) (20) sorbitan monolaurate contained in the biomedical film was determined according to the method described in Example 1A.
  • Comparative Example 3D a biomedical adhesive membrane according to Comparative Example 3D and a laminate according to Comparative Example 3D were produced in the same manner as Comparative Example 3A.
  • a polyoxyethylene (4) (20) sorbitan monostearate aqueous solution was used instead of the polyoxyethylene (4) (6) sorbitan monolaurate aqueous solution.
  • the dipping conditions were adjusted so that the ratio of the mass of the polyoxyethylene (4) (20) sorbitan monostearate contained in the bioadhesive membrane to the mass of the bioadhesive membrane was 20%.
  • the mass of the polyoxyethylene (4) (20) sorbitan monostearate contained in the biomedical membrane was determined according to the method described in Example 1A.
  • Comparative Example 3E a biomedical adhesive film according to Comparative Example 3E and a laminate according to Comparative Example 3E were produced in the same manner as Comparative Example 3A.
  • a bisPEG-18 methyl ether dimethylsilane aqueous solution was used instead of the polyoxyethylene (4) (6) sorbitan monolaurate aqueous solution.
  • the immersion conditions were adjusted so that the ratio of the mass of bisPEG-18 methyl ether dimethylsilane contained in the bioadhesive membrane to the mass of the bioadhesive membrane was 20%.
  • the mass of bisPEG-18 methyl ether dimethyl silane contained in the biopaste membrane was determined according to the method described in Example 1A.
  • Example 2A Except for the points described below, a membrane for biological application according to Example 2A and a laminate according to Example 2A were produced in the same manner as Example 1A. Instead of the polyoxyethylene (4) (6) sorbitan monooleate aqueous solution, a polyoxyethylene (4) (20) sorbitan monostearate aqueous solution was used. The immersion conditions were adjusted such that the ratio of the mass of polyoxyethylene (4) (20) sorbitan monostearate contained in the biomedical membrane to the mass of the biomedical membrane was 15%. The mass of the polyoxyethylene (4) (20) sorbitan monostearate contained in the biomedical membrane was determined according to the method described in Example 1A.
  • Example 2B Except for the following points, a biomedical adhesive membrane according to Example 2B and a laminate according to Example 2B were produced in the same manner as Example 1A. Instead of the polyoxyethylene (4) (6) sorbitan monooleate aqueous solution, a polyoxyethylene (4) (20) sorbitan monostearate aqueous solution was used. The dipping conditions were adjusted so that the ratio of the mass of polyoxyethylene (4) (20) sorbitan monostearate contained in the biomedical membrane to the mass of the biomedical membrane was 10%. The mass of the polyoxyethylene (4) (20) sorbitan monostearate contained in the biomedical membrane was determined according to the method described in Example 1A.
  • Example 3A Except for the following points, a biomedical adhesive membrane according to Example 3A and a laminate according to Example 3A were produced in the same manner as Example 1A. Instead of the polyoxyethylene (4) (6) sorbitan monooleate aqueous solution, a bisPEG-18 methyl ether dimethylsilane aqueous solution was used. The dipping conditions were adjusted so that the ratio of the mass of bisPEG-18 methyl ether dimethylsilane contained in the bioadhesive membrane to the mass of the bioadhesive membrane was 15%. The mass of bisPEG-18 methyl ether dimethyl silane contained in the biopaste membrane was determined according to the method described in Example 1A.
  • Example 3B Except for the following points, a biomedical adhesive membrane according to Example 3A and a laminate according to Example 3A were produced in the same manner as Example 1A. Instead of the polyoxyethylene (4) (6) sorbitan monooleate aqueous solution, a bisPEG-18 methyl ether dimethylsilane aqueous solution was used. The dipping conditions were adjusted so that the ratio of the mass of bisPEG-18 methyl ether dimethylsilane contained in the bioadhesive membrane to the mass of the bioadhesive membrane was 10%. The mass of bisPEG-18 methyl ether dimethyl silane contained in the biopaste membrane was determined according to the method described in Example 1A.
  • Example 4A Except for the following points, a biomedical adhesive membrane according to Example 4A and a laminate according to Example 4A were produced in the same manner as Example 1A. Instead of the polyoxyethylene (4) (6) sorbitan monooleate aqueous solution, a PEG-9 dimethicone aqueous solution was used. The dipping conditions were adjusted so that the ratio of the mass of PEG-9 dimethicone contained in the bioadhesive membrane to the mass of the bioadhesive membrane was 15%. The mass of PEG-9 dimethicone contained in the membrane for biopsy was determined according to the method described in Example 1A.
  • Example 4B Except for the following points, a biomedical adhesive membrane according to Example 4B and a laminate according to Example 4B were produced in the same manner as Example 1A. Instead of the polyoxyethylene (4) (6) sorbitan monooleate aqueous solution, a PEG-9 dimethicone aqueous solution was used. The dipping conditions were adjusted so that the ratio of the mass of PEG-9 dimethicone contained in the bioadhesive membrane to the mass of the bioadhesive membrane was 10%. The mass of PEG-9 dimethicone contained in the membrane for biopsy was determined according to the method described in Example 1A.
  • Comparative Example 2A Even when sorbitan tristearate having an HLB value of 2.1 was included, it was not possible to shorten the wearing time of the bioadhesive membrane. From the result of Comparative Example 2B, even when polyethylene glycol distearate (140 E.O.) having an HLB value of 18.9 was included, the wearing time of the bioadhesive membrane could not be shortened. According to Comparative Examples 3A to 3E, even when using a polylactic acid film containing a component having an HLB value of 13.3, 14.9, 15.6, 16.7, or 17.8, Installation time could not be shortened. From the above, it was shown that the bioadhesive membrane containing the regenerated cellulose and the additive having an HLB value of 4 to 18 can be applied to the skin in a short time.

Abstract

The present disclosure provides a film for application to the living body, which contains a regenerated cellulose and is advantageous for reducing the time required for attachment of regenerated cellulose to living tissues. A film (10) for application to the living body according to the present disclosure contains a regenerated cellulose and an accelerator. The accelerator accelerates attachment of the regenerated cellulose to living tissues. This film (10) for application to the living body is self-supporting, and has a thickness of from 20 nm to 5,000 nm. The accelerator has an HLB value of 4-18. This film (10) for application to the living body is able to maintain the shape without having a supporting body.

Description

生体貼付用膜及び生体貼付用膜を貼り付ける美容方法Membrane for living body application and beauty method for attaching a film for living body attachment
 本開示は、生体貼付用膜及び生体貼付用膜を貼り付ける美容方法に関する。 The present disclosure relates to a living body adhesive film and a cosmetic method for attaching the biological adhesive film.
 従来、皮膚等の生体組織に貼付される生体貼付用膜が知られている。 Conventionally, a membrane for biological application to be applied to biological tissue such as skin is known.
 例えば、特許文献1には、顔料等の色材が多量に配合されている、ファンデーション等の化粧料が衣服等に付着しない、いわゆる二次付着レス効果に優れる美容方法が記載され、この美容方法に用いられる薄膜も記載されている。この薄膜は、基材膜と支持体とからなり、基材膜は10~500nmの厚みを有している。特許文献1に記載の美容方法において、基材膜が皮膚に貼付され、貼付された薄膜の支持体が除去される。基材膜の材料は、ポリ乳酸等の材料である。基材膜には、ヒアルロン酸等の成分が担持されている。 For example, Patent Document 1 describes a cosmetic method in which a coloring material such as a pigment is blended in a large amount, cosmetics such as a foundation do not adhere to clothes, etc., and has a so-called secondary adhesion-less effect. The thin film used in is also described. This thin film is composed of a base film and a support, and the base film has a thickness of 10 to 500 nm. In the cosmetic method described in Patent Document 1, a base film is attached to the skin, and the attached thin film support is removed. The material of the base film is a material such as polylactic acid. Components such as hyaluronic acid are supported on the base film.
国際公開第2014/058060号公報International Publication No. 2014/058060
 特許文献1に記載の技術において、再生セルロースを含む生体貼付用膜については何ら検討されていない。そこで、本開示は、再生セルロースを含むとともに、生体組織への装着に要する時間を短くするのに有利な生体貼付用膜を提供する。 In the technique described in Patent Document 1, no study has been made on a membrane for bioadhesion containing regenerated cellulose. Therefore, the present disclosure provides a biomedical adhesive membrane that contains regenerated cellulose and is advantageous for shortening the time required for attachment to a biological tissue.
 本開示は、
 再生セルロースと、前記再生セルロースの生体組織への装着を促進する促進剤とを含み、
 20~5000nmの厚みを有する自己支持型であり、
 前記促進剤は、4~18のHLB値を有する、
 生体貼付用膜を提供する。
This disclosure
Regenerated cellulose, and an accelerator that promotes attachment of the regenerated cellulose to a living tissue,
A self-supporting type having a thickness of 20 to 5000 nm,
The accelerator has an HLB value of 4 to 18,
Provided is a membrane for bioadhesion.
 開示された実施形態の追加的な効果および利点は、明細書及び図面から明らかになる。効果及び/又は利点は、明細書及び図面に開示された様々な実施形態又は特徴によって個々に提供され、これらの1つ以上を得るために全てを必要とはしない。 Additional effects and advantages of the disclosed embodiments will become apparent from the specification and drawings. The effects and / or advantages are individually provided by the various embodiments or features disclosed in the specification and drawings, and not all are required to obtain one or more of these.
 上記の生体貼付用膜は、再生セルロースを含みつつ、生体組織への装着に要する時間を短くするのに有利である。 The above-mentioned membrane for bioadhesion is advantageous for shortening the time required for attachment to a living tissue while containing regenerated cellulose.
図1は、本開示の積層体の一例を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically illustrating an example of a laminated body of the present disclosure. 図2Aは、本開示の生体貼付用膜の使用方法を示す図である。FIG. 2A is a diagram illustrating a method of using the membrane for biological sticking of the present disclosure. 図2Bは、本開示の生体貼付用膜の使用方法を示す図である。FIG. 2B is a diagram illustrating a method of using the biomarker membrane of the present disclosure. 図2Cは、本開示の生体貼付用膜の使用方法を示す図である。FIG. 2C is a diagram illustrating a method of using the biomedical adhesive membrane of the present disclosure. 図3は、本開示の積層体の別の一例を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically illustrating another example of the laminated body of the present disclosure.
 (本開示の基礎となった知見)
 特許文献1に記載されているように、皮膚等の生体組織に貼り付けられる膜の材料としてポリ乳酸が知られている。しかし、ポリ乳酸は、疎水性を示すので、蒸れ等の問題が生じる可能性があり、ポリ乳酸の膜を生体組織に長期間貼り付けることは必ずしも適切でないと考えられる。一方、セルロースの膜は、高い水蒸気透過度を有しやすく、汗などの水分を通しやすい。このため、セルロースの膜を皮膚に貼りつける場合、蒸れ等の問題に起因する不快感を低減できる。
(Knowledge that became the basis of this disclosure)
As described in Patent Document 1, polylactic acid is known as a material for a film attached to a living tissue such as skin. However, since polylactic acid exhibits hydrophobicity, problems such as stuffiness may occur, and it is considered that it is not always appropriate to apply a polylactic acid film to a living tissue for a long period of time. On the other hand, a cellulose film tends to have a high water vapor permeability and easily allows moisture such as sweat to pass through. For this reason, when a cellulose film is applied to the skin, discomfort caused by problems such as stuffiness can be reduced.
 本発明者らは、従来実現されていなかった、再生セルロースで構成された、数μm以下の厚みの自己支持型の生体貼付用膜を開発した。本発明者らは、この生体貼付用膜についてさらに検討を重ねたところ、生体組織への装着に要する時間を短くする余地があることを突き止めた。そこで、本発明者らは、生体貼付用膜の生体組織への装着に要する時間を短くするために、多大な試行錯誤を繰り返した。その結果、再生セルロースを含む生体貼付用膜に所定の成分を含ませることによって、生体組織への装着に要する時間を短くできることを新たに見出した。本発明者らは、この新たな知見に基づいて本開示に係る生体貼付用膜を案出した。 The present inventors have developed a self-supporting membrane for bioadhesive membrane having a thickness of several μm or less, made of regenerated cellulose, which has not been realized in the past. The inventors of the present invention have further studied the membrane for attaching to a living body, and have found that there is room for shortening the time required for attachment to a living tissue. Accordingly, the present inventors have repeated a great deal of trial and error in order to shorten the time required for mounting the bioadhesive membrane on the biological tissue. As a result, it has been newly found that the time required for attachment to a living tissue can be shortened by including a predetermined component in the bioadhesive membrane containing regenerated cellulose. Based on this new knowledge, the present inventors have devised a biomedical patch membrane according to the present disclosure.
 本開示に係る態様の概要は、以下の通りである。 The outline of the aspect according to the present disclosure is as follows.
 (項目1)
 再生セルロースと、前記再生セルロースの生体組織への装着を促進する促進剤とを含み、
 20~5000nmの厚みを有する自己支持型であり、
 前記促進剤は、4~18のHLB値を有する、
 生体貼付用膜。
(Item 1)
Regenerated cellulose, and an accelerator that promotes attachment of the regenerated cellulose to a living tissue,
A self-supporting type having a thickness of 20 to 5000 nm,
The accelerator has an HLB value of 4 to 18,
Membrane for living body application.
 (項目2)
 前記再生セルロースは、30,000以上の重量平均分子量を有する、項目1に記載の生体貼付用膜。
(Item 2)
Item 2. The bioadhesive membrane according to Item 1, wherein the regenerated cellulose has a weight average molecular weight of 30,000 or more.
 (項目3)
 20~1300nmの厚みを有する、項目1又は2に記載の生体貼付用膜。
(Item 3)
Item 3. The membrane for biological application according to Item 1 or 2, which has a thickness of 20 to 1300 nm.
 (項目4)
 前記再生セルロースは、150,000以上の重量平均分子量を有する、項目1~3のいずれか1つに記載の生体貼付用膜。
(Item 4)
The membrane for bioadhesion according to any one of items 1 to 3, wherein the regenerated cellulose has a weight average molecular weight of 150,000 or more.
 (項目5)
 前記促進剤は、エチレングリコール鎖又はポリエチレングリコール鎖を有する化合物である、項目1~4のいずれか1つに記載の生体貼付用膜。
(Item 5)
Item 5. The biomedical adhesive film according to any one of Items 1 to 4, wherein the accelerator is a compound having an ethylene glycol chain or a polyethylene glycol chain.
 (項目6)
 前記促進剤は、下記式(A)で表される化合物、下記(B)で表される化合物、及び下記(C)で表される化合物からなる群から選ばれる少なくとも1つである、項目1~5のいずれか1項に記載の生体貼付用膜。
Figure JPOXMLDOC01-appb-C000004

Figure JPOXMLDOC01-appb-C000005

Figure JPOXMLDOC01-appb-C000006

 式(A)、(B)、及び(C)において、a、b、c、d、及びeのそれぞれが0以上の整数であり、a及びbの少なくとも1つが1以上の整数であり、c、d、及びeの少なくとも1つが1以上の整数であり、fが1以上の整数であり、R1及びR2は、各々独立して、アルキル基、アルコキシ基、(ポリ)エチレングリコール(アルキルエーテル)基、又は(ポリ)プロピレングリコール基を意味する。
(Item 6)
Item 1. The accelerator is at least one selected from the group consisting of a compound represented by the following formula (A), a compound represented by the following (B), and a compound represented by the following (C). 6. The membrane for biological application according to any one of 1 to 5.
Figure JPOXMLDOC01-appb-C000004

Figure JPOXMLDOC01-appb-C000005

Figure JPOXMLDOC01-appb-C000006

In formulas (A), (B), and (C), each of a, b, c, d, and e is an integer of 0 or more, and at least one of a and b is an integer of 1 or more, c , D, and e are each an integer of 1 or more, f is an integer of 1 or more, and R 1 and R 2 are each independently an alkyl group, an alkoxy group, (poly) ethylene glycol (alkyl Ether) group or (poly) propylene glycol group.
 (項目7)
 当該生体貼付用膜における前記促進剤の含有量が10~90重量%である、項目1~6のいずれか1つに記載の生体貼付用膜。
(Item 7)
7. The biomedical adhesive membrane according to any one of items 1 to 6, wherein the content of the promoter in the bioadhesive membrane is 10 to 90% by weight.
 (項目8)
 前記促進剤は、ビスPEG-18メチルエーテルジメチルシラン、ポリオキシエチレン(4)(6)ソルビタンモノオレエート、ポリオキシエチレン(4)(6)ソルビタンモノラウレート、ポリオキシエチレン(4)(20)ソルビタンモノラウレート、ポリオキシエチレン(4)(20)ソルビタンモノパルミテート、ポリオキシエチレン(4)(20)ソルビタンモノステアレート、PEG-11メチルエーテルジメチコン、PEG-9ジメチコン、PEG-9メチルエーテルジメチコン、及びPEG/PPG-20/22ブチルエーテルジメチコンからなる群から選ばれる少なくとも1つである、項目1~7のいずれか1つに記載の生体貼付用膜。
(Item 8)
Examples of the accelerator include bisPEG-18 methyl ether dimethylsilane, polyoxyethylene (4) (6) sorbitan monooleate, polyoxyethylene (4) (6) sorbitan monolaurate, polyoxyethylene (4) (20 ) Sorbitan monolaurate, polyoxyethylene (4) (20) sorbitan monopalmitate, polyoxyethylene (4) (20) sorbitan monostearate, PEG-11 methyl ether dimethicone, PEG-9 dimethicone, PEG-9 methyl The membrane for bioadhesion according to any one of items 1 to 7, which is at least one selected from the group consisting of ether dimethicone and PEG / PPG-20 / 22 butyl ether dimethicone.
 (項目9)
 生体貼付用膜を貼り付ける美容方法であって、
 前記生体貼付用膜は、再生セルロースと、前記再生セルロースの生体組織への装着を促
進する、4~18のHLB値を有する促進剤とを含み、かつ、20~5000nmの厚みを有する自己支持型であり、
 油性成分を含む装着剤を生体組織及び前記生体貼付用膜に付着させて、前記生体組織に前記生体貼付用膜を貼り付ける、
 美容方法。
(Item 9)
A cosmetic method for affixing a membrane for bioadhesion,
The membrane for bioadhesion includes a regenerated cellulose and a promoter having an HLB value of 4 to 18 that promotes the attachment of the regenerated cellulose to a living tissue, and has a thickness of 20 to 5000 nm. And
Attaching a mounting agent containing an oily component to a living tissue and the membrane for attaching a living body, and attaching the membrane for attaching a living body to the living tissue,
Beauty method.
 (項目10)
 前記油性成分が、脂肪酸、パラフィン、ナフテン、シクロパラフィン、及びシリコーンオイルからなる群から選ばれる少なくとも1つである、項目9に記載の美容方法。
(Item 10)
Item 10. The cosmetic method according to Item 9, wherein the oil component is at least one selected from the group consisting of fatty acids, paraffin, naphthene, cycloparaffin, and silicone oil.
 (実施形態)
 以下、本開示の実施形態について図面を参照しながら説明する。なお、以下の実施形態は例示に過ぎず、本開示の生体貼付用膜及び生体貼付用膜を貼り付ける方法は、以下の実施形態に限定されない。以下の実施形態で示される数値、形状、材料、構成要素、構成要素の配置、及び接続形態、並びに、ステップ及びステップの順序などの事項は、一例であり、本開示を限定する主旨で記載されたものではない。以下の種々の実施形態は、矛盾が生じない限り互いに組み合わせることが可能である。また、以下の実施形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、必須の構成要素と理解されるべきではない。以下の説明において、実質的に同じ機能を有する構成要素は共通の参照符号で示し、説明を省略することがある。また、図面が過度に複雑になることを避けるために、一部の要素の図示を省略することがある。
(Embodiment)
Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In addition, the following embodiment is only an illustration and the method for affixing the bioadhesive film and the bioadhesive film of the present disclosure is not limited to the following embodiment. Items such as numerical values, shapes, materials, components, arrangement of components, connection forms, steps, and order of steps shown in the following embodiments are examples, and are described for the purpose of limiting the present disclosure. Not a thing. The following various embodiments can be combined with each other as long as no contradiction arises. In addition, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims indicating the highest concept are not to be understood as essential constituent elements. In the following description, components having substantially the same function are denoted by common reference numerals, and description thereof may be omitted. In addition, in order to avoid the drawing from becoming excessively complicated, illustration of some elements may be omitted.
 図1に示す生体貼付用膜10は、再生セルロースと、促進剤とを含んでいる。促進剤は、再生セルロースの生体組織への装着を促進する。再生セルロースは、典型的には、生体貼付用膜10の骨格(基材)を形成する。生体貼付用膜10は、20~5000nmの厚みを有する自己支持型の膜である。本明細書において、「自己支持型の膜」とは、支持体なしに膜の形態を維持できる膜を意味する。例えば、指又はピンセットを用いて自己支持型の膜の一部をつまんで自己支持型の膜を持ち上げたときに、自己支持型の膜を破損させることなく、支持体なしに自己支持型の膜の全体を持ち上げることが可能である。促進剤は、4~18のHLB値を有する。本明細書で、HLB値は、グリフィン法によって決定される値を意味する。グリフィン法によれば、HLB値=20×(親水部の式量の総和)/分子量と定義される。 The membrane 10 for bioadhesive shown in FIG. 1 contains regenerated cellulose and an accelerator. The promoter promotes the attachment of the regenerated cellulose to the living tissue. The regenerated cellulose typically forms the skeleton (base material) of the bioadhesive membrane 10. The bio-adhesive membrane 10 is a self-supporting membrane having a thickness of 20 to 5000 nm. In the present specification, the “self-supporting membrane” means a membrane capable of maintaining the form of the membrane without a support. For example, when a self-supporting membrane is lifted by pinching a part of the self-supporting membrane with fingers or tweezers, the self-supporting membrane is not damaged without damaging the self-supporting membrane. It is possible to lift the whole. The accelerator has an HLB value of 4-18. In this specification, the HLB value means a value determined by the Griffin method. According to the Griffin method, it is defined as HLB value = 20 × (sum of formula weight of hydrophilic portion) / molecular weight.
 再生セルロースはヒドロキシル基を豊富に有する。加えて、生体貼付用膜10と生体組織との間に油性成分を含む装着剤を介在させて生体貼付用膜10が使用されうる。促進剤のHLB値が4以上であると、再生セルロースのヒドロキシキシル基と促進剤との間に水素結合等の強い相互作用が生じうる。一方、促進剤のHLB値が18以下であると、促進剤が適度な疎水性を示し、装着剤に含まれる脂肪酸又はシリコーンオイルの疎水基と促進剤との間に疎水相互作用等の適度な相互作用が生じる。このため、促進剤が4~18のHLB値を有することにより、促進剤と再生セルロース及び装着剤との間に適切な相互作用が生じる。その結果、促進剤は、再生セルロースの生体組織への装着を促進し、生体組織への装着に要する時間を短くできる。なお、この促進剤は、その親水部分がポリ乳酸の膜等の高い疎水性を示す膜とは相互作用しにくく、高い疎水性を示す膜の生体組織への装着を促進しにくいと考えられる。 Regenerated cellulose has abundant hydroxyl groups. In addition, the bioadhesive membrane 10 can be used with a mounting agent containing an oily component interposed between the bioadhesive membrane 10 and the biological tissue. When the accelerator has an HLB value of 4 or more, strong interaction such as hydrogen bonding may occur between the hydroxyxyl group of the regenerated cellulose and the accelerator. On the other hand, when the HLB value of the accelerator is 18 or less, the accelerator exhibits an appropriate hydrophobicity, and an appropriate amount of hydrophobic interaction or the like is present between the hydrophobic group of the fatty acid or silicone oil contained in the mounting agent and the accelerator. Interaction occurs. Therefore, when the accelerator has an HLB value of 4 to 18, an appropriate interaction occurs between the accelerator and the regenerated cellulose and the mounting agent. As a result, the promoter promotes the attachment of the regenerated cellulose to the living tissue, and can shorten the time required for the attachment to the living tissue. In addition, it is considered that this promoter does not easily interact with a membrane having high hydrophobicity such as a polylactic acid membrane, and it is difficult to promote attachment of the membrane having high hydrophobicity to a living tissue.
 促進剤は、例えば、エチレングリコール鎖又はポリエチレングリコール鎖を有する化合物である。この場合、促進剤のエチレングリコール鎖又はポリエチレングリコール鎖が、再生セルロースのヒドロキシル基と相互作用しやすい。 The accelerator is, for example, a compound having an ethylene glycol chain or a polyethylene glycol chain. In this case, the ethylene glycol chain or polyethylene glycol chain of the accelerator tends to interact with the hydroxyl group of the regenerated cellulose.
 促進剤は、下記式(A)で表される化合物、下記(B)で表される化合物、及び下記(
C)で表される化合物からなる群から選ばれる少なくとも1つでありうる。式(A)、(B)、及び(C)において、a、b、c、d、及びeのそれぞれは0以上の整数であり、a及びbの少なくとも1つが1以上の整数であり、c、d、及びeの少なくとも1つが1以上の整数であり、fが1以上の整数であり、R1及びR2は、各々独立して、アルキル基、アルコキシ基、(ポリ)エチレングリコール(アルキルエーテル)基、又は(ポリ)プロピレングリコール基を意味する。
Figure JPOXMLDOC01-appb-C000007

Figure JPOXMLDOC01-appb-C000008

Figure JPOXMLDOC01-appb-C000009
The accelerator includes a compound represented by the following formula (A), a compound represented by the following (B), and the following (
It may be at least one selected from the group consisting of compounds represented by C). In the formulas (A), (B), and (C), each of a, b, c, d, and e is an integer of 0 or more, at least one of a and b is an integer of 1 or more, and c , D, and e are each an integer of 1 or more, f is an integer of 1 or more, and R 1 and R 2 are each independently an alkyl group, an alkoxy group, (poly) ethylene glycol (alkyl Ether) group or (poly) propylene glycol group.
Figure JPOXMLDOC01-appb-C000007

Figure JPOXMLDOC01-appb-C000008

Figure JPOXMLDOC01-appb-C000009
 式(A)において、a及びbが0以上の整数であり、かつ、a及びbの少なくとも1つが1以上の整数であれば、a及びbの値は特に制限されない。a及びbのそれぞれは、例えば18である。この場合、促進剤が高い安全性を有する。 In Formula (A), if a and b are integers of 0 or more and at least one of a and b is an integer of 1 or more, the values of a and b are not particularly limited. Each of a and b is 18, for example. In this case, the accelerator has high safety.
 式(B)において、c、d、及びeが0以上の整数であり、かつ、c、d、及びeの少なくとも1つが1以上の整数であれば、c、d、及びeの値のそれぞれは、特に制限されない。c、d、及びeのそれぞれは、例えば、6~100でありうる。c、d、及びeのそれぞれが6以上であると、促進剤の親水性が高く、促進剤が流動しやすい。このため、生体貼付用膜10を生体組織に装着させやすい。c、d、及びeのそれぞれが100以下であると、促進剤が常温(15~25℃)で液体の状態で存在しやすく、生体貼付用膜10を生体組織に装着させやすい。c、d、及びeのそれぞれは、6~20であってもよい。c、d、及びeのそれぞれが20以下であると、R1の鎖長を適切に調整することによ
って、促進剤のHLB値を4~18に調整しやすい。
In the formula (B), when c, d, and e are integers of 0 or more and at least one of c, d, and e is an integer of 1 or more, each of the values of c, d, and e Is not particularly limited. Each of c, d, and e can be, for example, 6-100. When each of c, d, and e is 6 or more, the hydrophilicity of the accelerator is high, and the accelerator easily flows. For this reason, it is easy to attach the bioadhesive membrane 10 to a biological tissue. When each of c, d, and e is 100 or less, the accelerator is likely to exist in a liquid state at room temperature (15 to 25 ° C.), and the bioadhesive membrane 10 can be easily attached to a living tissue. Each of c, d, and e may be 6-20. When each of c, d, and e is 20 or less, the HLB value of the accelerator can be easily adjusted to 4 to 18 by appropriately adjusting the chain length of R 1 .
 式(B)において、R1は、アルキル基、アルコキシ基、(ポリ)エチレングリコール(アルキルエーテル)基、又は(ポリ)プロピレングリコール基であれば、その鎖長は特に制限されない。R1がアルキル基又はアルコキシ基である場合、R1は、例えば、8~30の炭素原子でできた分子鎖を有する。このような分子鎖は、生体において例えば皮脂等の物質としてよく存在する。このため、仮に、加水分解により促進剤からR1が脱離しても、R1の脱離により形成された脂肪酸は、生体適合性を有しやすく、生体にとって害を及ぼしにくい。また、R1が(ポリ)エチレングリコール(アルキルエーテル)基又は(ポリ)プロピレングリコール基である場合、R1は、例えば、1~1000のエチレングリコール又はプロピレングリコールの繰り返し単位でできた分子鎖を有する。このような分子鎖は、例えば化粧品成分物質としてもよく使用されているため安全である。このため、仮に、加水分解により促進剤からR1が脱離しても、R1の脱離により形成された(ポリ)エチレングリコール(アルキルエーテル)基又は(ポリ)プロピレングリコール基は、生体適合性を有しやすく、生体にとって害を及ぼしにくい。 In the formula (B), the chain length is not particularly limited as long as R 1 is an alkyl group, an alkoxy group, a (poly) ethylene glycol (alkyl ether) group, or a (poly) propylene glycol group. When R 1 is an alkyl group or an alkoxy group, R 1 has a molecular chain made of, for example, 8 to 30 carbon atoms. Such molecular chains are often present in the living body as substances such as sebum. For this reason, even if R 1 is desorbed from the accelerator by hydrolysis, the fatty acid formed by the desorption of R 1 is likely to have biocompatibility and hardly cause harm to the living body. In addition, when R 1 is a (poly) ethylene glycol (alkyl ether) group or a (poly) propylene glycol group, R 1 represents a molecular chain made of, for example, 1 to 1000 repeating units of ethylene glycol or propylene glycol. Have. Such molecular chains are safe because they are often used as, for example, cosmetic constituent substances. Therefore, even if R 1 is desorbed from the accelerator by hydrolysis, the (poly) ethylene glycol (alkyl ether) group or (poly) propylene glycol group formed by the desorption of R 1 is biocompatible. It is easy to have, and is hard to cause harm to the living body.
 式(C)において、fは1以上の整数であれば、特に制限されない。fは、例えば、1~100でありうる。fが1以上であると、促進剤の疎水性がある程度高いため、促進剤と装着剤が相互作用しやすい。このため、生体貼付用膜10を生体組織に装着させやすい。fが100以下であると、促進剤が常温(15~25℃)で液体の状態で存在しやすく、生体貼付用膜10を生体組織に装着させやすい。 In the formula (C), f is not particularly limited as long as it is an integer of 1 or more. f may be 1 to 100, for example. When f is 1 or more, the accelerator is easily hydrophobic because the accelerator is somewhat hydrophobic. For this reason, it is easy to attach the bioadhesive membrane 10 to a biological tissue. When f is 100 or less, the accelerator is likely to exist in a liquid state at normal temperature (15 to 25 ° C.), and the bioadhesive membrane 10 can be easily attached to the living tissue.
 式(C)において、R2はアルキル基、アルコキシ基、(ポリ)エチレングリコール(アルキルエーテル)基、又は(ポリ)プロピレングリコール基であれば、その鎖長は特に制限されない。R2がアルキル基又はアルコキシ基の場合、R2は、例えば、8~30の炭素原子でできた分子鎖を有する。このような分子鎖は、生体において例えば皮脂等の物質としてよく存在する。このため、仮に、加水分解により促進剤からR2が脱離しても、R2の脱離により形成された脂肪酸は、生体適合性を有しやすく、生体にとって害を及ぼしにくい。また、R2が(ポリ)エチレングリコール(アルキルエーテル)基又は(ポリ)プロピレングリコール基の場合、R2は、例えば、1~1000のエチレングリコール又はプロピレングリコールの繰り返し単位でできた分子鎖を有する。このような分子鎖は、例えば化粧品成分物質としてもよく使用されているため安全である。このため、仮に、加水分解により促進剤からR2が脱離しても、R2の脱離により形成された(ポリ)エチレングリコール(アルキルエーテル)又は(ポリ)プロピレングリコールは、生体適合性を有しやすく、生体にとって害を及ぼしにくい。 In the formula (C), the chain length is not particularly limited as long as R 2 is an alkyl group, an alkoxy group, a (poly) ethylene glycol (alkyl ether) group, or a (poly) propylene glycol group. When R 2 is an alkyl group or an alkoxy group, R 2 has a molecular chain made of, for example, 8 to 30 carbon atoms. Such molecular chains are often present in the living body as substances such as sebum. For this reason, even if R 2 is desorbed from the accelerator by hydrolysis, the fatty acid formed by the desorption of R 2 is likely to have biocompatibility and hardly cause harm to the living body. When R 2 is a (poly) ethylene glycol (alkyl ether) group or a (poly) propylene glycol group, R 2 has a molecular chain made of, for example, 1 to 1000 repeating units of ethylene glycol or propylene glycol. . Such molecular chains are safe because they are often used as, for example, cosmetic constituent substances. Therefore, even if R 2 is desorbed from the accelerator by hydrolysis, (poly) ethylene glycol (alkyl ether) or (poly) propylene glycol formed by desorption of R 2 has biocompatibility. Easy to do and less harmful to the body.
 促進剤は、例えば、ビスPEG-18メチルエーテルジメチルシラン、ポリオキシエチレン(4)(6)ソルビタンモノオレエート、ポリオキシエチレン(4)(6)ソルビタンモノラウレート、ポリオキシエチレン(4)(20)ソルビタンモノラウレート、ポリオキシエチレン(4)(20)ソルビタンモノパルミテート、ポリオキシエチレン(4)(20)ソルビタンモノステアレート、PEG-11メチルエーテルジメチコン、PEG-9ジメチコン、PEG-9メチルエーテルジメチコン、及びPEG/PPG-20/22ブチルエーテルジメチコンからなる群から選ばれる少なくとも1つである。この場合、促進剤と再生セルロース及び装着剤との相互作用が良好な状態になり、生体貼付用膜10を短時間で生体組織に装着しやすい。 Examples of the accelerator include bisPEG-18 methyl ether dimethylsilane, polyoxyethylene (4) (6) sorbitan monooleate, polyoxyethylene (4) (6) sorbitan monolaurate, polyoxyethylene (4) ( 20) Sorbitan monolaurate, polyoxyethylene (4) (20) sorbitan monopalmitate, polyoxyethylene (4) (20) sorbitan monostearate, PEG-11 methyl ether dimethicone, PEG-9 dimethicone, PEG-9 It is at least one selected from the group consisting of methyl ether dimethicone and PEG / PPG-20 / 22 butyl ether dimethicone. In this case, the interaction between the accelerator, the regenerated cellulose, and the mounting agent is in a favorable state, and the biological patch membrane 10 is easily mounted on the living tissue in a short time.
 生体貼付用膜10における促進剤の含有量は、例えば、10~90重量%である。生体貼付用膜10における促進剤の含有量が10重量%以上であれば、生体貼付用膜10の生体組織への装着の促進の観点から有利である。生体貼付用膜10における促進剤の含有量が90重量%以下であれば、生体貼付用膜10のべたつきが抑制され、生体貼付用膜10の取り扱いやすさの観点から有利である。生体貼付用膜10における促進剤の含有量は、15~50重量%でありうる。生体貼付用膜10における促進剤の含有量が15重量%以上であれば、生体貼付用膜10の生体組織への装着の促進の観点からより有利である。生体貼付用膜10における促進剤の含有量が50%重量以下であれば、生体貼付用膜10の
べたつきがさらに抑制され、生体貼付用膜10の取り扱いやすさの観点からより有利である。
The content of the promoter in the bioadhesive membrane 10 is, for example, 10 to 90% by weight. If the content of the promoter in the bioadhesive membrane 10 is 10% by weight or more, it is advantageous from the viewpoint of promoting the attachment of the bioadhesive membrane 10 to a living tissue. If the content of the promoter in the bioadhesive membrane 10 is 90% by weight or less, stickiness of the bioadhesive membrane 10 is suppressed, which is advantageous from the viewpoint of ease of handling of the bioadhesive membrane 10. The content of the promoter in the bioadhesive membrane 10 may be 15 to 50% by weight. If the content of the promoter in the bioadhesive membrane 10 is 15% by weight or more, it is more advantageous from the viewpoint of promoting the attachment of the bioadhesive membrane 10 to a living tissue. If the content of the promoter in the bioadhesive membrane 10 is 50% by weight or less, stickiness of the bioadhesive membrane 10 is further suppressed, which is more advantageous from the viewpoint of ease of handling of the bioadhesive membrane 10.
 生体貼付用膜10における促進剤は、生体貼付用膜10の厚み方向において、均一に分布していてもよい。促進剤は、生体貼付用膜10において、特定の箇所に集中して存在していてもよい。例えば、生体貼付用膜10において、促進剤が高濃度に存在する複数の領域が、所定の間隔で存在していてもよい。促進剤は、生体貼付用膜10の表面において、層状に存在していてもよい。この場合、促進剤の層は、再生セルロースによって構成された基材の全体を覆っていてもよいし、基材の一部を覆っていてもよい。生体貼付用膜10において、促進剤は、生体貼付用膜10の表面に存在していてもよいし、厚み方向において生体貼付用膜10の表面以外に存在していてもよい。例えば、生体貼付用膜10における促進剤の少なくとも一部は、生体貼付用膜10の厚み方向において、生体貼付用膜10の表面から再生セルロースの間に連続的に存在している。この場合、前述のように、促進剤がより多く相互作用しやすくなり、再生セルロース及び装着剤の双方と相互作用しやすく、生体貼付用膜10の生体組織への装着がより確実に促進される。 The promoter in the bioadhesive membrane 10 may be uniformly distributed in the thickness direction of the bioadhesive membrane 10. The promoter may be present concentrated on a specific location in the bioadhesive membrane 10. For example, in the bioadhesive membrane 10, a plurality of regions where the accelerator is present at a high concentration may exist at a predetermined interval. The promoter may be present in a layered manner on the surface of the biological patch membrane 10. In this case, the layer of the accelerator may cover the whole base material constituted by regenerated cellulose, or may cover a part of the base material. In the bioadhesive membrane 10, the promoter may be present on the surface of the bioadhesive membrane 10, or may exist other than the surface of the bioadhesive membrane 10 in the thickness direction. For example, at least a part of the promoter in the bioadhesive membrane 10 is continuously present between the surface of the bioadhesive membrane 10 and the regenerated cellulose in the thickness direction of the bioadhesive membrane 10. In this case, as described above, the accelerator is more likely to interact, more easily interact with both the regenerated cellulose and the mounting agent, and the mounting of the bioadhesive membrane 10 to the living tissue is more reliably promoted. .
 再生セルロースは分子内又は/及び分子間で水素結合が形成されやすく、生体貼付用膜10は密な構造を有しやすい。このため、生体貼付用膜10は、後述のように、高い強度を有し、かつ、適度な柔軟性を有し、及び破れにくい。セルロースは、両親媒性を示すので、親水性の有効成分及び疎水性の有効成分を適切に担持でき、生体貼付用膜10は高い汎用性を有する。 In the regenerated cellulose, hydrogen bonds are likely to be formed within the molecule and / or between the molecules, and the bioadhesive membrane 10 tends to have a dense structure. For this reason, the membrane | film | coat 10 for biological sticking has high intensity | strength and has moderate softness | flexibility as mentioned later, and it is hard to tear. Since cellulose exhibits amphiphilic properties, it can appropriately carry a hydrophilic active ingredient and a hydrophobic active ingredient, and the membrane 10 for bioadhesion has high versatility.
 再生セルロースの原料は、特に限定されない。例えば、再生セルロースの原料は、植物由来の天然セルロース、生物由来の天然セルロース、セロハン等の再生セルロース、又はセルロースナノファイバー等の加工されたセルロースでありうる。再生セルロースの原料における不純物の濃度が10重量%以下であることが有利である。 The raw material of regenerated cellulose is not particularly limited. For example, the raw material of the regenerated cellulose can be plant-derived natural cellulose, bio-derived natural cellulose, regenerated cellulose such as cellophane, or processed cellulose such as cellulose nanofiber. It is advantageous that the concentration of impurities in the raw material of regenerated cellulose is 10% by weight or less.
 再生セルロースは、例えば、実質的に以下の式(I)で表されるセルロースである。ここで、「実質的に式(I)で表されるセルロース」とは、式(I)で表されるセルロースにおけるグルコース残基のヒドロキシル基が90%以上残っているセルロースを意味する。式(I)で表されるセルロースにおけるグルコース残基のヒドロキシル基の数に対する、生体貼付用膜10に含まれるセルロース中のグルコース残基のヒドロキシル基の数の割合は、例えばX線光電子分光(XPS)等の公知の方法で定量できる。なお、生体貼付用膜10に含まれる再生セルロースは、場合によっては、分岐構造を含んでいてもよい。人工的に誘導体化されたセルロースは、典型的には、「実質的に式(I)で表されるセルロース」には該当しない。一方、「実質的に式(I)で表されるセルロース」からは、誘導体化を経て再生されたセルロースが排除されるわけではない。誘導体化を経て再生されたセルロースであっても、「実質的に式(I)で表されるセルロース」に該当することがある。 Regenerated cellulose is, for example, cellulose substantially represented by the following formula (I). Here, “the cellulose substantially represented by the formula (I)” means a cellulose in which 90% or more of hydroxyl groups of glucose residues in the cellulose represented by the formula (I) remain. The ratio of the number of hydroxyl groups of glucose residues in cellulose contained in the biomedical membrane 10 to the number of hydroxyl groups of glucose residues in cellulose represented by formula (I) is, for example, X-ray photoelectron spectroscopy (XPS). ) And other known methods. In addition, the regenerated cellulose contained in the biological patch membrane 10 may include a branched structure depending on the case. The artificially derivatized cellulose typically does not fall under “substantially the cellulose represented by the formula (I)”. On the other hand, “cellulose substantially represented by the formula (I)” does not exclude cellulose regenerated through derivatization. Even cellulose regenerated through derivatization may fall under “substantially represented by formula (I)”.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 本開示の実施形態では、生体貼付用膜10が再生セルロースで構成されている。天然セルロースのファイバーを水などに分散させた懸濁液から形成された膜の強度は、セルロースのファイバーを構成するナノファイバー間の水素結合が担う。そのため、脆いセルロース膜しか得られない。これに対し、再生セルロースで構成された膜では、ナノファイバーが分子鎖の単位までほぐされているので、再生セルロースで構成された膜の強度は、セルロース分子鎖間の水素結合が担うことになる。すなわち、再生セルロースで構成された膜では、ナノファイバーよりも小さい単位同士の水素結合が均一に形成される。そのため、天然セルロースのファイバーを水などに分散させた懸濁液から膜を形成した場合と比較して、高い強度を有し、かつ、脆さを抑制して、適度な柔軟性を有し、かつ、破れにくいセルロース膜を提供することができる。ここで、「ナノファイバー」は、「ナノフィブリル(またはマイクロフィブリル)」とも呼ばれ、セルロース分子が集合した最も基本となる単位であり、約4nmから約100nm程度の幅を有し、例えば約1μm以上の長さを有する。 In the embodiment of the present disclosure, the bioadhesive membrane 10 is made of regenerated cellulose. The strength of the membrane formed from a suspension of natural cellulose fibers dispersed in water or the like is borne by hydrogen bonds between the nanofibers constituting the cellulose fibers. Therefore, only a brittle cellulose film can be obtained. On the other hand, in the membrane composed of regenerated cellulose, the nanofibers are loosened up to the molecular chain unit, so the strength of the membrane composed of regenerated cellulose is borne by hydrogen bonds between cellulose molecular chains. . That is, in a film made of regenerated cellulose, hydrogen bonds between units smaller than those of nanofibers are uniformly formed. Therefore, compared with the case where a film is formed from a suspension in which natural cellulose fibers are dispersed in water or the like, it has high strength and suppresses brittleness and has appropriate flexibility, And the cellulose membrane which is hard to tear can be provided. Here, the “nanofiber” is also called “nanofibril (or microfibril)” and is the most basic unit in which cellulose molecules are assembled, and has a width of about 4 nm to about 100 nm, for example, about 1 μm. It has the above length.
 本明細書において、「再生セルロース」は、天然セルロースに特有の結晶構造Iを持たないセルロースを意味する。セルロースの結晶構造は、XRDパターンによって確認することが可能である。天然セルロースのXRDパターン(CuKα線(50kV、300mA))の例を示す。XRDパターンでは、結晶構造Iに特有の、14-17°および23°付近のピークが現れている。再生セルロースは、結晶構造IIであることが多く、12°、20°および22°付近にピークを有し、14-17°および23°付近のピークを有しない。 In the present specification, “regenerated cellulose” means cellulose that does not have the crystal structure I unique to natural cellulose. The crystal structure of cellulose can be confirmed by an XRD pattern. The example of the XRD pattern (CuKα ray (50 kV, 300 mA)) of natural cellulose is shown. In the XRD pattern, peaks at around 14-17 ° and 23 °, which are peculiar to the crystal structure I, appear. Regenerated cellulose often has a crystalline structure II and has peaks around 12 °, 20 ° and 22 °, and no peaks around 14-17 ° and 23 °.
 例えば、生体貼付用膜10に含まれる再生セルロースの質量基準で90%以上が、化学修飾及び誘導体化がなされていない再生セルロースである。生体貼付用膜10に含まれる再生セルロースの質量基準で98%以上が、化学修飾又は誘導体化がなされていない再生セルロースでありうる。この場合、生体貼付用膜10には、化学修飾及び誘導体化がなされていないセルロースが多く含まれ、セルロースの1分子鎖あたりにより多くの水酸基が含まれると考えられる。このため、セルロースの分子間により多くの水素結合が形成され、生体貼付用膜10が高い強度を有しやすいと考えられる。生体貼付用膜10に含まれる再生セルロースは、未架橋であってもよい。 For example, 90% or more of the regenerated cellulose contained in the bioadhesive membrane 10 is 90% or more of regenerated cellulose that has not been chemically modified and derivatized. 98% or more of the regenerated cellulose contained in the bioadhesive membrane 10 may be 98% or more of regenerated cellulose that has not been chemically modified or derivatized. In this case, it is considered that the bioadhesive membrane 10 contains a large amount of cellulose that has not been chemically modified and derivatized, and contains more hydroxyl groups per molecular chain of cellulose. For this reason, it is thought that more hydrogen bonds are formed between the molecules of cellulose, and the bioadhesive membrane 10 tends to have high strength. The regenerated cellulose contained in the bio-adhesive membrane 10 may be uncrosslinked.
 生体貼付用膜10に含まれるセルロースは、例えば、0~12%の結晶化度を有する。この場合、結晶構造の形成に関わる水酸基の量が適度に少なく、生体貼付用膜10の生体への密着性が高くなりやすい。なお、水酸基が存在すべきサイトにおいて所定の化学修飾がなされることにより、生体貼付用膜10が様々な機能を発現しうる。 Cellulose contained in the membrane 10 for biological sticking has a crystallinity of 0 to 12%, for example. In this case, the amount of hydroxyl groups involved in the formation of the crystal structure is moderately small, and the bioadhesive film 10 tends to have high adhesion to the living body. In addition, the membrane | film | coat 10 for biological sticking can express various functions by making predetermined | prescribed chemical modification in the site where a hydroxyl group should exist.
 生体貼付用膜10に含まれるセルロースの結晶化度は、例えば、Park et al. "Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance" Biotechnology for Biofuels 2010, 3 10に報告されている13C-NMRを利用した手法によって決定できる。この手法によれば、固体13C-NMR測定により取得されたスペクトルにおける、87~93ppm付近のピークを結晶構造由来とみなし、80~87ppm付近のブロードなピークを非結晶構造由来とみなして、前者のピーク面積をX、後者のピーク面積をYと表すとき、下記の式により結晶化度が決定される。下記の式において、「×」は、乗算を表す。
 (結晶化度)%=(X/(X+Y))×100
The crystallinity of cellulose contained in the biological sticking film 10 is, for example, Park et al. "Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance" Biotechnology for Biofuels 2010, 3 10 have been reported in the 13 C -It can be determined by means of NMR. According to this method, in the spectrum obtained by solid-state 13 C-NMR measurement, a peak around 87 to 93 ppm is regarded as originating from the crystal structure, and a broad peak around 80 to 87 ppm is regarded as originating from the amorphous structure. When the peak area is represented by X and the latter peak area is represented by Y, the crystallinity is determined by the following formula. In the following formula, “x” represents multiplication.
(Crystallinity)% = (X / (X + Y)) × 100
 上記の通り、生体貼付用膜10は、20~5000nmの厚みを有する。生体貼付用膜10の厚みが20nm以上であれば、生体貼付用膜10は、高い強度を有し、取り扱いやすい。このため、生体貼付用膜10が生体組織に貼り付け可能な自己支持型の膜として機能しうる。生体貼付用膜10の厚みが5000nm以下であれば、生体貼付用膜10を生体組織に装着するときに生体貼付用膜10が剥離しにくい。また、生体貼付用膜10の厚みがこのような範囲であると、例えば、流水によって生体貼付用膜10を生体組織から容易に剥離させることができる。生体貼付用膜10の厚みは、例えば、生体貼付用膜10の厚みを複数箇所測定し、平均することによって決定される。各箇所における厚みは、例えば、ブルカー ナノ インコーポレイテッド製 触針式プロファイリングシステムDEKTAK(登録商標)を用いて測定できる。 As described above, the bioadhesive membrane 10 has a thickness of 20 to 5000 nm. If the thickness of the bioadhesive membrane 10 is 20 nm or more, the bioadhesive membrane 10 has high strength and is easy to handle. Therefore, the bioadhesive membrane 10 can function as a self-supporting membrane that can be affixed to a biological tissue. If the thickness of the bioadhesive membrane 10 is 5000 nm or less, the bioadhesive membrane 10 is difficult to peel off when the bioadhesive membrane 10 is attached to a biological tissue. Further, when the thickness of the bioadhesive membrane 10 is within such a range, for example, the bioadhesive membrane 10 can be easily peeled off from the living tissue by running water. The thickness of the bioadhesive membrane 10 is determined by, for example, measuring the thickness of the bioadhesive membrane 10 at a plurality of locations and averaging them. The thickness at each location can be measured using, for example, a stylus profiling system DEKTAK (registered trademark) manufactured by Bruker Nano Inc.
 生体貼付用膜10の厚みは、100nm以上であってもよい。生体貼付用膜10の厚みが100nm以上であると、生体貼付用膜10の強度が高まり、生体貼付用膜10が取り扱いやすい。生体貼付用膜10の厚みは、300nm以上であってもよい。生体貼付用膜10の厚みが300nm以上であると、生体貼付用膜10の強度がより高まり、生体貼付用膜10が破れにくく容易に使用できる。生体貼付用膜10の厚みは、500nm以上であってもよい。生体貼付用膜10の厚みが500nm以上であると、より多くの美容成分等の有効成分を生体貼付用膜10に保持させることができる。生体貼付用膜10の厚みは、2000nm以下であってもよい。生体貼付用膜10の厚みが2000nm以下であると、生体貼付用膜10の生体組織への密着性が高く、皮膚等の生体組織の表面に生体貼付用膜10を安定的に貼り付けることができる。生体貼付用膜10の厚みは、1300nm以下であってもよい。生体貼付用膜10の厚みが1300nm以下であると生体貼付用膜10の生体組織への密着性がより高く、皮膚等の生体組織の表面に生体貼付用膜10を長時間安定的に貼り付けた状態を維持することができる。 The thickness of the bioadhesive membrane 10 may be 100 nm or more. When the thickness of the bioadhesive film 10 is 100 nm or more, the strength of the bioadhesive film 10 is increased and the bioadhesive film 10 is easy to handle. The thickness of the bioadhesive membrane 10 may be 300 nm or more. When the thickness of the bioadhesive film 10 is 300 nm or more, the strength of the bioadhesive film 10 is further increased, and the bioadhesive film 10 is not easily broken and can be used easily. The thickness of the bioadhesive membrane 10 may be 500 nm or more. When the thickness of the bioadhesive film 10 is 500 nm or more, more active ingredients such as cosmetic ingredients can be held in the bioadhesive film 10. The thickness of the bioadhesive membrane 10 may be 2000 nm or less. When the thickness of the bioadhesive membrane 10 is 2000 nm or less, the adhesiveness of the bioadhesive membrane 10 to the biological tissue is high, and the bioadhesive membrane 10 can be stably adhered to the surface of the biological tissue such as skin. it can. The thickness of the bioadhesive membrane 10 may be 1300 nm or less. When the thickness of the bioadhesive membrane 10 is 1300 nm or less, the bioadhesive membrane 10 has higher adhesion to the biological tissue, and the bioadhesive membrane 10 is stably adhered to the surface of the biological tissue such as skin for a long time. Can be maintained.
 再生セルロースは、例えば、30,000以上の重量平均分子量を有する。この場合、生体貼付用膜10の厚みが5000nm以下のシートを作製できる。再生セルロースの重量平均分子量は、例えば、ゲル浸透クロマトグラフィー(GPC)によって決定できる。 Regenerated cellulose has a weight average molecular weight of, for example, 30,000 or more. In this case, a sheet having a thickness of 5000 nm or less can be produced. The weight average molecular weight of regenerated cellulose can be determined, for example, by gel permeation chromatography (GPC).
 再生セルロースは、150,000以上の重量平均分子量を有していてもよい。この場合、生体貼付用膜10の厚みが1300nm以下の厚みに調整されても、生体貼付用膜10を自己支持型の膜として作製できる。 The regenerated cellulose may have a weight average molecular weight of 150,000 or more. In this case, even if the thickness of the bioadhesive membrane 10 is adjusted to a thickness of 1300 nm or less, the bioadhesive membrane 10 can be produced as a self-supporting membrane.
 生体貼付用膜10を平面視したとき生体貼付用膜10の形状は特に限定されない。生体貼付用膜10は、平面視で、円形、楕円形、又は多角形でありうる。生体貼付用膜10は、平面視で、不定形であってもよい。 The shape of the bioadhesive membrane 10 is not particularly limited when the bioadhesive membrane 10 is viewed in plan. The bioadhesive membrane 10 can be circular, elliptical, or polygonal in plan view. The bioadhesive membrane 10 may be indefinite in plan view.
 生体貼付用膜10は、単層膜であってもよいし、複数の層が積層された積層構造を有する膜であってもよい。生体貼付用膜10が積層構造を有する膜である場合、複数の層に保持される有効成分は、同一であってもよいし、層毎に異なっていてもよい。なお、生体貼付用膜10は、再生セルロースを含む層と、再生セルロース以外の材料で形成された層とが積層された積層構造を有していてもよい。 The membrane 10 for bioadhesion may be a single-layer membrane or a membrane having a laminated structure in which a plurality of layers are laminated. When the biological sticking membrane 10 is a membrane having a laminated structure, the active ingredients retained in the plurality of layers may be the same or different for each layer. The bioadhesive membrane 10 may have a laminated structure in which a layer containing regenerated cellulose and a layer formed of a material other than regenerated cellulose are laminated.
 生体貼付用膜10は、美容用途の場合、例えば、(i)美白、保湿、及びシワ対策等のスキンケア、(ii)育毛、増毛、脱毛、及びヘアスタイリング等のヘアケア、又は(iii)ファンデーション、フェイスパウダー、及びネイルアート等のメイクアップに用いられる。生体貼付用膜10は、医薬用途の場合、例えば、鎮痛消炎薬、抗炎症薬、強心薬、抗真菌薬、副腎皮質ホルモン薬、及び血行促進薬等の医薬の生体への投与に利用されてもよい。 In the case of cosmetic use, the bioadhesive membrane 10 is, for example, (i) skin care such as whitening, moisturizing, and wrinkle prevention, (ii) hair care such as hair growth, hair thickening, hair removal, and hair styling, or (iii) foundation, Used for makeup such as face powder and nail art. In the case of pharmaceutical use, the biomarker membrane 10 is used for administration of drugs such as analgesic / anti-inflammatory drugs, anti-inflammatory drugs, cardiotonic drugs, antifungal drugs, corticosteroid drugs, and blood circulation promoting drugs to the living body. Also good.
 生体貼付用膜10は、再生セルロース及び促進剤以外の成分を含んでいてもよい。例えば、生体貼付用膜10は、所定の有効成分を含みうる。有効成分は、例えば、美白成分、紫外線防御成分、保湿成分、育毛成分、及び化粧料等の美容成分又は薬効成分でありうる。美容成分は、アラビアガム、トラガカントガム、ガラクタン、グアガム、キャロブガム、カラヤガム、カラギーナン、ペクチン、カンテン、クインスシード(マルメロ)、アルゲコロイド(カッソウエキス)、デンプン(コメ、トウモロコシ、バレイショ、コムギ)、サクシノグルカン、カゼイン、アルブミン、ゼラチン、ムチン、コンドロイチン硫酸、キシリトール、マルチトース、ピロリドンカルボン酸ナトリウム、レチノール、レチナール、及びレチノイン酸等のビタミンA、チアミン、リボフラビン、ピリドキシン、ピリドキサミン、及び葉酸等のビタミンB、アスコルビン酸(ナトリウム)等のビタミンC、エルゴカルシフェロール及びコレカルシフェロール等のビタミンD、α-トコフェロール等のビタミンE、フィロキノン及びメナキノン等のビタミンK、トレチノイン及びパルミチン酸レチノール等のビタミンA誘導体、フルスルチアミン等のビタミンB誘導体、グリセリルアスコルビン酸及びテトラヘキシルデカン酸アスコルビル等のビタミンC誘導体、ジヒドロタキステロール等のビタミンD誘導体、酢酸α-トコフェロール、α-トコフェリルキノン、及びコハク酸α-トコフェロール等のビタミンE誘導体、ハイドロキノン、4-メトキシサリチル酸カリウム、ルシノール、アントシアニン等のポリフェノール、3-サクシニルオキシグリチルレチン酸二ナトリウム、プラセンタ、ジオキシベンゾン、4-メトキシけい皮酸2-エチルヘキシル、各種アミノ酸、ケラチン、ハイドロキシアパタイト、リン酸三カルシウム、炭酸カルシウム、アルミナ、ジルコニア等のセラミックス、キチン、キトサン、アルブチン、エラグ酸、コウジ酸、トラネキサム酸、グリセロール、乳酸ナトリウム、ヒアルロン酸、セラミド、ミノキシジル、フィナステリド、コラーゲン、エラスチン、各種エキス、クエン酸、レシチン、カルボマー、キサンタンガム、デキストラン、パルミチン酸、ラウリン酸、ワセリン、酸化チタン、酸化鉄、合成色素、染料、フェノキシエタノール、フラーレン、アスタキサンチン、コエンザイム、ヒトオリゴペプチド、グリセリン、ジグリセリン、ソルビトール、ピロリドンカルボン酸、脂肪酸ポリグリセリル、ポリグリセリン、ホホバオイル、トリメチルグリシン、マンニトール、トレハロース、グリコシルトレハロース、プルラン、エリスリトール、エラスチン、ジプロピレングリコール、ブチレングリコール、エチルヘキサン酸エチル、アクリル酸ナトリウム、エデト酸二ナトリウム、ショ糖脂肪酸エステル、スクワラン、ポリエチレングリコール、ポリオキシエチレン硬化ヒマシ油、ステアリン酸グリセリン、エタノール、ポリビニルアルコール、ヒドロキシエチルセルロース、又はエクトインである。薬効成分は、例えば、セファランチン、ルチン、硝酸イソソルビド、インドメタシン、ジフルコルトロン吉草酸エステル、アシクロビル、ケトコナゾール、ケトプロフェン、ジクロフェナクナトリウム、デキサメタゾンプロピオン酸エステル、フェルビナク、クロベタゾールプロピオン酸エステル、ロキソプロフェン、サリチル酸メチル、又はタクロリムスである。これらの有効成分は、固体、溶液、分散液、又はエマルジョンの状態で生体貼付用膜10に含まれうる。 The membrane 10 for biological sticking may contain components other than regenerated cellulose and an accelerator. For example, the biomarking membrane 10 can contain a predetermined active ingredient. The active ingredient can be, for example, a cosmetic ingredient or a medicinal ingredient such as a whitening ingredient, an ultraviolet protection ingredient, a moisturizing ingredient, a hair-growth ingredient, and a cosmetic. The beauty ingredients are gum arabic, gum tragacanth, galactan, guar gum, carob gum, caraya gum, carrageenan, pectin, agar, quince seed (malmello), algae colloid (gypsum extract), starch (rice, corn, potato, wheat), saxino glucan, Vitamin A such as casein, albumin, gelatin, mucin, chondroitin sulfate, xylitol, maltose, sodium pyrrolidonecarboxylate, retinol, retinal, and retinoic acid, vitamin B such as thiamine, riboflavin, pyridoxine, pyridoxamine, and folic acid, ascorbic acid ( Vitamin C such as sodium), vitamin D such as ergocalciferol and cholecalciferol, vitamin E such as α-tocopherol, phylloquinone and Vitamin K such as naquinone, vitamin A derivatives such as tretinoin and retinol palmitate, vitamin B derivatives such as fursultiamine, vitamin C derivatives such as glyceryl ascorbic acid and ascorbyl tetrahexyldecanoate, vitamin D derivatives such as dihydrotaxosterol, acetic acid Vitamin E derivatives such as α-tocopherol, α-tocopherylquinone, and α-tocopherol succinate, hydroquinone, potassium 4-methoxysalicylate, lucinol, anthocyanins and other polyphenols, disodium 3-succinyloxyglycyrrhetinate, placenta, dioxybenzone 2-ethylhexyl 4-methoxycinnamate, various amino acids, keratin, hydroxyapatite, tricalcium phosphate, calcium carbonate, alumina, zirconi Ceramics, chitin, chitosan, arbutin, ellagic acid, kojic acid, tranexamic acid, glycerol, sodium lactate, hyaluronic acid, ceramide, minoxidil, finasteride, collagen, elastin, various extracts, citric acid, lecithin, carbomer, xanthan gum, dextran , Palmitic acid, lauric acid, petrolatum, titanium oxide, iron oxide, synthetic dye, dye, phenoxyethanol, fullerene, astaxanthin, coenzyme, human oligopeptide, glycerin, diglycerin, sorbitol, pyrrolidone carboxylic acid, fatty acid polyglyceryl, polyglycerin, jojoba Oil, trimethylglycine, mannitol, trehalose, glycosyl trehalose, pullulan, erythritol, elastin, dipropylene glyco , Butylene glycol, ethyl ethylhexanoate, sodium acrylate, edetate disodium, sucrose fatty acid ester, squalane, polyethylene glycol, polyoxyethylene hydrogenated castor oil, glyceryl stearate, ethanol, polyvinyl alcohol, hydroxyethyl cellulose, or Ectoin. Medicinal ingredients include, for example, cephalanthin, rutin, isosorbide nitrate, indomethacin, diflucortron valerate, acyclovir, ketoconazole, ketoprofen, diclofenac sodium, dexamethasone propionate, ferbinac, clobetasolpropionate, loxoprofen, methyl salicylate, or tacrolimus It is. These active ingredients can be contained in the bioadhesive membrane 10 in a solid, solution, dispersion, or emulsion state.
 生体貼付用膜10の少なくとも一部は、着色されていてもよい。例えば、生体貼付用膜10の少なくとも一部は、皮膚の色に近い色に着色されていてもよい。この場合、皮膚におけるシミ、ほくろ、及び傷痕を生体貼付用膜10で覆って、これらを目立たなくすることができる。 At least a part of the bioadhesive membrane 10 may be colored. For example, at least a part of the bioadhesive membrane 10 may be colored in a color close to the color of the skin. In this case, spots, moles, and scars on the skin can be covered with the bio-applied membrane 10 to make them inconspicuous.
 生体貼付用膜10は、例えば、顔及び腕等の部位において皮膚又は爪に貼り付けられて使用される。このため、生体貼付用膜10は、典型的には、7mm2以上の面積を有する。これにより、生体貼付用膜10を皮膚に貼り付けるときに広い領域を覆うことができる。なお、生体貼付用膜10は、臓器等の皮膚以外の生体組織の表面に貼り付けられてもよい。生体貼付用膜10を臓器の表面に貼り付けることによって、臓器の治癒を促すことができる。また、臓器同士の癒着を防止できる。 The bioadhesive membrane 10 is used by being affixed to the skin or nails at sites such as the face and arms, for example. For this reason, the membrane 10 for biological sticking typically has an area of 7 mm 2 or more. Thereby, a wide area | region can be covered when the membrane | film | coat 10 for biological sticking is affixed on skin. The bioadhesive membrane 10 may be affixed to the surface of a biological tissue other than skin such as an organ. By affixing the bioadhesive membrane 10 to the surface of the organ, healing of the organ can be promoted. In addition, adhesion between organs can be prevented.
 装着剤は、油性成分を含む限り特に制限されない。本明細書において、油性成分とは単独では水に0.1質量%以下しか溶解できない物質をさす。油性成分は、例えば、脂肪酸、パラフィン、ナフテン、シクロパラフィン、及びシリコーンオイルからなる群から選ばれる少なくとも1つである。装着剤は、例えば、油性成分を含む、化粧水、乳液、美容液、クリーム、及びオイルからなる群から選ばれる少なくとも1つである。装着剤の質量に対する油性成分の質量の比は、特に制限されない。この比は、例えば1%以上である。この場合、生体貼付用膜10を装着しやすい。この比は、望ましくは10%以上である。この場合、生体貼付用膜10をより装着しやすい。油性成分の種類は、特に限定されない。油性成分は、上記の通り、例えば、脂肪酸、パラフィン、ナフテン、シクロパラフィン、及びシリコーンオイルからなる群から選ばれる少なくとも1つである。脂肪酸は、(多価)不飽和脂肪酸であってもよいし、飽和脂肪酸であってもよいし、分岐脂肪酸であってもよいし、環状脂肪酸であってもよいし、脂肪酸エステルであってもよいし、エーテル型脂質であってもよい。脂肪酸は、例えば、カプリル酸、ペラルゴン酸、カプリン酸、ラウリン酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、パルミトレイン酸、マルガリン酸、ステアリン酸、オレイン酸、バクセン酸、リノール酸、リノレン酸、エレオステアリン酸、アラキジン酸、ミード酸、アラキドン酸、べヘン酸、リグノセリン酸、ネルボン酸、セロチン酸、モンタン酸、メリシン酸、シクロブタンカルボン酸、シクロペンタンカルボン酸、シクロヘキサンカルボン酸、シクロヘプタンカルボン酸、シクロオクタンカルボン酸、シクロノナンカルボン酸、シクロデカンカルボン酸、シクロウンデカンカルボン酸、等のグリセリン脂肪酸エステル、シクロブテンカルボン酸、シクロペンテンカルボン酸、シクロヘキセンカルボン酸、シクロヘプテンカルボン酸、シクロオクテンカルボン酸、シクロノネンカルボン酸、シクロデセンカルボン酸、ヤシ脂肪酸メチル、ラウリン酸メチル、ミリスチン酸イソプロピル、パルミチンサンイソプロピル、ステアリン酸メチル、ステアリン酸ブチル、ステアリン酸イソトリデシル、オレイン酸メチル、ミリスチン酸ミリスチル、ステアリン酸ステアリル、オレイン酸イソブチル、フタル酸ジノルマルアルキル、フタル酸ジイソノニル、フタル酸ジデシル、フタル酸ジアルキル、トリメリット酸トリノルマルアルキル、アジピン酸エステル、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタンモノオレエート、ポリエチレングリコールモノラウレート、ポリエチレングリコールモノステアレート、ポリエチレングリコールジステアレート、エチレングリコールジステアレート、プロピレングリコールモノステアレート、ペンタエリスリトールモノオレエート、ペンタエリスリトールモノステアレート、ペンタエリスリトールテトラパルミテート、ステアリン酸モノグリセライド、オレイン酸モノグリセライド、ステアリン酸モノ・ジグリセライド、又はカプリル酸トリグリセライド等である。装着剤は、脂肪酸を含む天然物由来のオイルを含んでいてもよい。天然物由来のオイルは、例えば、アルガンオイル、スクラワンオイル、ホホバオイル、馬油、オリーブオイル、椿オイル、ローズヒップオイル、ユズ種子オイル、マカダミアナッツオイル、米ヌカオイル、アーモンドオイル、マルラオイル、アプリコットカーネルオイル、アルニカオイル、ウオールナッツオイル、オリーブスクラワンオイル、キョロットオイル、ククイナッツオイル、グレープシードオイル、ココナッツオイル、サンフラワーオイル、スイートアーモンドオイル、セサミオイル、タマヌオイル、パッションフラワーオイル、ピーチカーネルオイル、ヘーゼルナッツオイル、ヘンプシードオイル、アボカドオイル、アロエベラオイル、イブニングプリムローズオイル、ウィートジャームオイル、カスターオイル、カメリアオイル、カレンデュラオイル、セントジョーンズワートオイル、ヒッポファエオイル、ブラックシードオイル、ボラジオイル、ミネラルオイル、又はローズヒップオイル等の植物油、動物油脂、又は鉱山油等である。シリコーンオイルは、例えば、メチルポリシロキサン、オクタメチルトリシロキサン、デカメチルシクロペンタシロキサン、オクタメチルシクロテトラシロキサン、メチルポリシロキサン、ジメチコン、ジメチコノール、シクロメチコン、又はアモジメチコンである。また、装着剤は、例えば、水、油脂、アルコール、又は乳化剤などを含有し、前述の、1種以上の有効成分をさらに含有していてもよい。 The mounting agent is not particularly limited as long as it contains an oily component. In the present specification, the oily component refers to a substance that can dissolve only in water by 0.1% by mass or less. The oil component is, for example, at least one selected from the group consisting of fatty acids, paraffins, naphthenes, cycloparaffins, and silicone oils. The wearing agent is, for example, at least one selected from the group consisting of a lotion, a milky lotion, a cosmetic liquid, a cream, and an oil containing an oily component. The ratio of the mass of the oil component to the mass of the mounting agent is not particularly limited. This ratio is, for example, 1% or more. In this case, it is easy to wear the bioadhesive membrane 10. This ratio is desirably 10% or more. In this case, it is easier to wear the bioadhesive membrane 10. The kind of oil component is not particularly limited. As described above, the oil component is at least one selected from the group consisting of fatty acid, paraffin, naphthene, cycloparaffin, and silicone oil, for example. The fatty acid may be a (polyvalent) unsaturated fatty acid, a saturated fatty acid, a branched fatty acid, a cyclic fatty acid, or a fatty acid ester. It may be an ether type lipid. Fatty acids include, for example, caprylic acid, pelargonic acid, capric acid, lauric acid, myristic acid, pentadecylic acid, palmitic acid, palmitoleic acid, margaric acid, stearic acid, oleic acid, vaccenic acid, linoleic acid, linolenic acid, eleostearic acid Acid, arachidic acid, mead acid, arachidonic acid, behenic acid, lignoceric acid, nervonic acid, serotic acid, montanic acid, melicic acid, cyclobutanecarboxylic acid, cyclopentanecarboxylic acid, cyclohexanecarboxylic acid, cycloheptanecarboxylic acid, cyclooctane Glycerin fatty acid ester such as carboxylic acid, cyclononanecarboxylic acid, cyclodecanecarboxylic acid, cycloundecanecarboxylic acid, cyclobutenecarboxylic acid, cyclopentenecarboxylic acid, cyclohexenecarboxylic acid, cycloheptenecar Acid, cyclooctene carboxylic acid, cyclononene carboxylic acid, cyclodecene carboxylic acid, palm fatty acid methyl, lauric acid methyl, isopropyl myristate, palmitic sun isopropyl, methyl stearate, butyl stearate, isotridecyl stearate, methyl oleate, Myristyl myristate, stearyl stearate, isobutyl oleate, dinormal alkyl phthalate, diisononyl phthalate, didecyl phthalate, dialkyl phthalate, trinormal alkyl trimellitic acid, adipic acid ester, sorbitan monolaurate, sorbitan monopalmitate , Sorbitan monostearate, sorbitan monooleate, polyethylene glycol monolaurate, polyethylene glycol monostearate, polyethylene Glycol distearate, ethylene glycol distearate, propylene glycol monostearate, pentaerythritol monooleate, pentaerythritol monostearate, pentaerythritol tetrapalmitate, stearic acid monoglyceride, oleic acid monoglyceride, stearic acid mono-diglyceride, Or caprylic acid triglyceride. The mounting agent may contain a natural product-derived oil containing a fatty acid. Oils derived from natural products include, for example, argan oil, sukurwan oil, jojoba oil, horse oil, olive oil, camellia oil, rosehip oil, yuzu seed oil, macadamia nut oil, rice bran oil, almond oil, marla oil, apricot kernel Oil, arnica oil, walnut oil, olive skrawan oil, kyolot oil, kukui nut oil, grape seed oil, coconut oil, sunflower oil, sweet almond oil, sesame oil, tamanu oil, passion flower oil, peach kernel oil, hazelnut Oil, hemp seed oil, avocado oil, aloe vera oil, evening primrose oil, wheat germ oil, castor oil, camellia oil , Calendula oil, St. John's Wort oil, Hippofae oil, black seed oil, Borajioiru, mineral oil, or vegetable oils such as rose hip oil, an animal fat, or mine oil, and the like. The silicone oil is, for example, methylpolysiloxane, octamethyltrisiloxane, decamethylcyclopentasiloxane, octamethylcyclotetrasiloxane, methylpolysiloxane, dimethicone, dimethiconol, cyclomethicone, or amodimethicone. In addition, the wearing agent contains, for example, water, fats and oils, alcohol, or an emulsifier, and may further contain one or more active ingredients as described above.
 生体貼付用膜10を貼り付ける美容方法の一例において、脂肪酸、パラフィン、ナフテン、シクロパラフィン、又はシリコーンオイル等の油性成分を含む装着剤を生体組織及び生体貼付用膜10に付着させて、生体組織に生体貼付用膜10を貼り付ける。装着剤の供給と、生体貼付用膜10を生体組織に近づける作業との順番は特に限定されない。例えば、生体貼付用膜10を生体組織に接触させた状態で、装着剤を、生体貼付用膜10及び生体組織に向かって滴下してもよい。また、装着剤を生体組織に向かって滴下した後に、生体組織に付着した装着剤に生体貼付用膜10を接触させてもよい。 In an example of a cosmetic method for attaching the bioadhesive membrane 10, an attachment agent containing an oil component such as fatty acid, paraffin, naphthene, cycloparaffin, or silicone oil is attached to the biological tissue and the bioadhesive membrane 10, thereby The bioadhesive membrane 10 is affixed to. The order of the supply of the mounting agent and the operation of bringing the biological sticking membrane 10 closer to the living tissue is not particularly limited. For example, the wearing agent may be dropped toward the bioadhesive membrane 10 and the biological tissue in a state where the bioadhesive membrane 10 is in contact with the biological tissue. Alternatively, after the mounting agent is dropped toward the living tissue, the living body adhesive film 10 may be brought into contact with the mounting agent attached to the living tissue.
 図1に示す通り、生体貼付用膜10は、例えば、積層体50aの状態で提供される。積層体50aは、生体貼付用膜10と、第一保護層21とを備えている。生体貼付用膜10は、第一主面11及び第二主面12を有する。第二主面12は、生体貼付用膜10において第一主面11の反対側に位置する。第一保護層21は、第一主面11上に配置されている。第一保護層21は、第一主面11から取り外し可能な層である。第一保護層21は、例えば第一主面11に接触している。 As shown in FIG. 1, the bioadhesive membrane 10 is provided in the state of, for example, a laminate 50a. The laminated body 50 a includes the biological sticking film 10 and the first protective layer 21. The bioadhesive membrane 10 has a first main surface 11 and a second main surface 12. The second main surface 12 is located on the opposite side of the first main surface 11 in the bioadhesive film 10. The first protective layer 21 is disposed on the first main surface 11. The first protective layer 21 is a layer removable from the first main surface 11. The first protective layer 21 is in contact with, for example, the first main surface 11.
 第一保護層21は、例えば、(i)ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ナイロン、アクリル樹脂、ポリカーボネート、ポリ塩化ビニル、アクリロニトリル・ブタジエン・スチレン(ABS)樹脂、ポリウレタン、合成ゴム、セルロース、テフロン(登録商標)、アラミド、及びポリイミド等の高分子材料のシート、織布、不織布、若しくはメッシュ、(ii)シート状の金属、又は(iii)シート状のガラスでありうる。第一保護層21の表面の全体又は一部には、化学的又は物理的な表面処理が施されていてもよい。なお、第一保護層21は、平面視で、生体貼付用膜10の形状と同一又は異なる形状を有し、生体貼付用膜10の大きさと同一又は異なる大きさを有する。例えば、単一の第一保護層21の上に複数の生体貼付用膜10が配置されていてもよい。なお、生体貼付用膜10は、第一保護層21なしでもその形状を維持できる。このため、第一保護層21が第一主面11から取り外されても、生体貼付用膜10はその形状を維持できる。 The first protective layer 21 is, for example, (i) polyethylene, polypropylene, polyethylene terephthalate, nylon, acrylic resin, polycarbonate, polyvinyl chloride, acrylonitrile-butadiene-styrene (ABS) resin, polyurethane, synthetic rubber, cellulose, Teflon (registered) (Trademark), aramid, and a sheet of polymer material such as polyimide, woven fabric, nonwoven fabric, or mesh, (ii) sheet-like metal, or (iii) sheet-like glass. The whole or a part of the surface of the first protective layer 21 may be subjected to chemical or physical surface treatment. The first protective layer 21 has a shape that is the same as or different from the shape of the bioadhesive membrane 10 in plan view, and has the same or different size as the bioadhesive membrane 10. For example, a plurality of bioadhesive membranes 10 may be disposed on the single first protective layer 21. The biological sticking membrane 10 can maintain its shape without the first protective layer 21. For this reason, even if the 1st protective layer 21 is removed from the 1st main surface 11, the film | membrane 10 for biological sticking can maintain the shape.
 図2Aに示す通り、例えば、生体貼付用膜10の第二主面12を生体の特定の部位(例えば、皮膚)に向けて積層体50aを近づけ、生体貼付用膜10の第二主面12を生体の特定の部位に接触させる。このとき、生体の特定の部位又は生体貼付用膜10に装着剤が供給される。次に、図2Bに示す通り、生体貼付用膜10の第一主面11から第一保護層21を剥離する。このとき、生体貼付用膜10は、生体組織に密着しており、生体貼付用膜10が生体組織に貼り付いた状態が保たれる。第一保護層21が完全に剥離されると、図2Cに示す通り、生体貼付用膜10の第一主面11の全体が露出する。 As shown in FIG. 2A, for example, the laminate 50a is brought close to the second main surface 12 of the bioadhesive membrane 10 toward a specific part (for example, skin) of the living body, and the second main surface 12 of the bioadhesive membrane 10 is placed. Is brought into contact with a specific part of the living body. At this time, the mounting agent is supplied to a specific part of the living body or the bioadhesive membrane 10. Next, as shown to FIG. 2B, the 1st protective layer 21 is peeled from the 1st main surface 11 of the film | membrane 10 for biological sticking. At this time, the bioadhesive membrane 10 is in close contact with the biological tissue, and the state where the bioadhesive membrane 10 is adhered to the biological tissue is maintained. When the first protective layer 21 is completely peeled off, the entire first main surface 11 of the bioadhesive membrane 10 is exposed as shown in FIG. 2C.
 積層体50aは、図3に示す積層体50bのように変更されてもよい。積層体50bは、特に説明する場合を除き、積層体50aと同様に構成されている。積層体50aの構成要素と同一又は対応する積層体50bの構成要素には、同一の符号を付し、詳細な説明を省略する。積層体50aに関する説明は、技術的に矛盾しない限り、積層体50bにも当てはまる。 The laminated body 50a may be changed like a laminated body 50b shown in FIG. The laminated body 50b is configured in the same manner as the laminated body 50a unless otherwise described. Constituent elements of the laminated body 50b that are the same as or correspond to the constituent elements of the laminated body 50a are assigned the same reference numerals, and detailed descriptions thereof are omitted. The description regarding the stacked body 50a also applies to the stacked body 50b unless there is a technical contradiction.
 図3に示す通り、積層体50bは、第二保護層22をさらに備えている。第二保護層22は、第二主面12上に配置されている。第二保護層22によって、第二主面12を保護できる。また、第二保護層22によって、積層体50bのハンドリングが容易になる。 As shown in FIG. 3, the stacked body 50 b further includes a second protective layer 22. The second protective layer 22 is disposed on the second major surface 12. The second main surface 12 can be protected by the second protective layer 22. Further, the second protective layer 22 facilitates handling of the stacked body 50b.
 第二保護層22の材料は、第一保護層21の材料と同一であってもよいし、第一保護層21の材料と異なっていてもよい。第二保護層22は、平面視で、生体貼付用膜10の形状と同一又は異なる形状を有し、生体貼付用膜10の大きさと同一又は異なる大きさを有する。第二保護層22は、平面視で、第一保護層21の形状と同一又は異なる形状を有し、第一保護層21の大きさと同一又は異なる大きさを有する。 The material of the second protective layer 22 may be the same as the material of the first protective layer 21 or may be different from the material of the first protective layer 21. The second protective layer 22 has a shape that is the same as or different from the shape of the bioadhesive membrane 10 in plan view, and has the same or different size as the bioadhesive membrane 10. The second protective layer 22 has the same or different shape as the first protective layer 21 in plan view, and has the same or different size as the first protective layer 21.
 第二保護層22は、典型的には、第二主面12から取り外し可能である。積層体50bを使用するときには、例えば、先ず、第二保護層22が生体貼付用膜10から剥離される。これにより、第二主面12が露出する。その後、第二主面12を生体の特定の部位に近づけ、積層体50aの使用方法と同様にして、生体貼付用膜10が生体の特定の部位に貼り付けられる。 The second protective layer 22 is typically removable from the second main surface 12. When using the laminated body 50b, for example, first, the second protective layer 22 is peeled from the biomedical adhesive film 10. Thereby, the 2nd main surface 12 is exposed. Thereafter, the second main surface 12 is brought close to a specific part of the living body, and the bioadhesive film 10 is attached to the specific part of the living body in the same manner as in the method of using the laminate 50a.
 従来、皮膚に貼付するシートの材料として、ポリ乳酸が提案されている。しかしながら、ポリ乳酸は、疎水性材料であり、ムレなどが懸念されるために、長時間の使用には不適である。したがって、皮膚に貼付するような用途では、接着剤が皮膚に与える刺激及び接着剤の水蒸気透過度を考慮する必要がある。 Conventionally, polylactic acid has been proposed as a material for a sheet to be attached to the skin. However, polylactic acid is a hydrophobic material and is unsuitable for long-term use because of concerns about stuffiness. Therefore, it is necessary to consider the irritation that the adhesive gives to the skin and the water vapor permeability of the adhesive in applications such as application to the skin.
 これに対し、生体貼付用膜10は、例えば、その厚みが1300nm以下である場合、接着剤を要することなく皮膚に貼りつけることが可能である。厚みが500nm以上であっても接着剤なしに皮膚に貼付可能である理由としては、生体貼付用膜10は、500nm以上の厚さを有する場合でもしなやかさを示し、凹凸(例えば頬、腕などの曲面)に追従しやすく、そのため、ポリ乳酸膜と比較して、セルロース膜表面の官能基およびファンデルワールス力の影響が大きくなり、密着性が向上するからであると推測される。接着剤なしに皮膚に貼付可能であるので、ムレなどを軽減して生体貼付用膜10を長時間使用することができる。さらに、セルロースは、生体適合性を有し、直接皮膚に貼付した場合であっても、皮膚に対して物理的または化学的なストレスを与えにくく、また、両親媒性で、親水性の特性を持ちながら水には溶けないという性質を有するので、汗などの水分によって溶解される心配がなく、耐久性に優れている。 On the other hand, for example, when the thickness of the bioadhesive film 10 is 1300 nm or less, it can be applied to the skin without requiring an adhesive. The reason why it can be applied to the skin without an adhesive even if the thickness is 500 nm or more is that the biological adhesive film 10 shows flexibility even when it has a thickness of 500 nm or more, and has unevenness (for example, cheeks, arms, etc.) This is presumably because the influence of the functional group and van der Waals force on the surface of the cellulose film is increased and the adhesion is improved as compared with the polylactic acid film. Since it can be affixed to the skin without an adhesive, it is possible to use the bioadhesive membrane 10 for a long period of time while reducing stuffiness. Furthermore, cellulose has biocompatibility, is less susceptible to physical or chemical stress on the skin, even when applied directly to the skin, and is amphiphilic and hydrophilic. Since it has the property that it does not dissolve in water while it is held, it does not have to worry about being dissolved by moisture such as sweat, and has excellent durability.
 生体貼付用膜10の製造方法の一例を説明する。まず、溶媒にセルロースを溶解させてセルロース溶液を調製する。30,000以上の重量平均分子量の再生セルロース膜を得るために、重量平均分子量が少なくとも30,000以上のセルロースを用いる。これにより、5000nm以下の厚み有する自己支持型の生体貼付用膜を作製できる。150,000以上の重量平均分子量の再生セルロース膜を得るために、重量平均分子量が少なくとも150,000以上のセルロースを用いてセルロース溶液を調製してもよい。この場合、1300nm以下の厚み有する自己支持型の生体貼付用膜を作製できる。このように、セルロース溶液の調製において使用されるセルロースの重量平均分子量を大きくすることにより、1分子鎖において、より多くの水酸基が含まれる。これにより、多くの分子間水素結合を形成することが可能となり、より薄い生体貼付用膜を安定に作製することができる。セルロース溶液の調製に使用するセルロースは、所望の重量平均分子量を有する限り、特に制限されない。セルロース溶液の調製に使用するセルロースは、例えば、パルプ及び綿花等の植物由来のセルロース、又は、バクテリア等の生物が生成したセルロースでありうる。セルロースの原料における不純物濃度は、例えば10重量%以下である。再生セルロースの重量平均分子量は、2,000,000以下であると取り扱いが容易となるため有用である。更に望ましくは再生セルロースの重量平均分子量は1,000,000以下である。 An example of a method for manufacturing the biomedical adhesive membrane 10 will be described. First, cellulose is dissolved in a solvent to prepare a cellulose solution. In order to obtain a regenerated cellulose film having a weight average molecular weight of 30,000 or more, cellulose having a weight average molecular weight of at least 30,000 or more is used. Thereby, the self-supporting type | mold membrane for biological sticking which has thickness of 5000 nm or less is producible. In order to obtain a regenerated cellulose membrane having a weight average molecular weight of 150,000 or more, a cellulose solution may be prepared using cellulose having a weight average molecular weight of at least 150,000 or more. In this case, a self-supporting biomedical adhesive film having a thickness of 1300 nm or less can be produced. Thus, by increasing the weight average molecular weight of cellulose used in the preparation of the cellulose solution, more hydroxyl groups are contained in one molecular chain. Thereby, it becomes possible to form many intermolecular hydrogen bonds, and a thinner membrane for biological application can be stably produced. The cellulose used for preparing the cellulose solution is not particularly limited as long as it has a desired weight average molecular weight. The cellulose used for preparing the cellulose solution may be, for example, cellulose derived from plants such as pulp and cotton, or cellulose produced by organisms such as bacteria. The impurity concentration in the cellulose raw material is, for example, 10% by weight or less. If the weight average molecular weight of the regenerated cellulose is 2,000,000 or less, it is useful because it is easy to handle. More desirably, the regenerated cellulose has a weight average molecular weight of 1,000,000 or less.
 溶媒は、例えば少なくともイオン液体を含有している溶媒(第1溶媒)である。第1溶媒を用いることにより、セルロースを比較的短時間で溶解させることができる。イオン液体は、アニオンとカチオンとから構成される塩であり、150℃以下の温度において液体状態を示しうる。第1溶媒に含まれるイオン液体は、例えば、アミノ酸又はアルキルリン酸エステルを含むイオン液体である。第1溶媒がこのようなイオン液体を含有していることにより、セルロースの分子量の低下を抑制しながらセルロースを溶解させることができる。特に、アミノ酸は、生体内に存在する成分であるので、アミノ酸を含むイオン液体は、生体に対してより安全な生体貼付用膜10を形成するのに有利である。 The solvent is, for example, a solvent (first solvent) containing at least an ionic liquid. By using the first solvent, cellulose can be dissolved in a relatively short time. An ionic liquid is a salt composed of an anion and a cation, and can exhibit a liquid state at a temperature of 150 ° C. or lower. The ionic liquid contained in the first solvent is, for example, an ionic liquid containing an amino acid or an alkyl phosphate ester. When the first solvent contains such an ionic liquid, cellulose can be dissolved while suppressing a decrease in the molecular weight of cellulose. In particular, since an amino acid is a component present in a living body, an ionic liquid containing the amino acid is advantageous for forming a safer biofilm 10 for a living body.
 セルロースを析出させない溶媒によって予め希釈されたイオン液体を用いてセルロースを溶解してもよい。例えば、第1溶媒として、非プロトン性極性溶媒とイオン液体との混合物を用いてもよい。非プロトン性極性溶媒は、水素結合を形成しにくく、セルロースを析出させにくい。 The cellulose may be dissolved by using an ionic liquid diluted in advance with a solvent that does not precipitate the cellulose. For example, a mixture of an aprotic polar solvent and an ionic liquid may be used as the first solvent. The aprotic polar solvent hardly forms hydrogen bonds and does not easily precipitate cellulose.
 第1溶媒に含まれるイオン液体は、例えば、下記の式(II)で表されるイオン液体である。式(II)で表されるイオン液体において、アニオンがアミノ酸である。式(II)に記載の通り、このイオン液体において、アニオンは、末端カルボキシル基及び末端アミノ基を含んでいる。式(II)で表されるイオン液体のカチオンは、第四級アンモニウムカチオンであってもよい。
Figure JPOXMLDOC01-appb-C000011
The ionic liquid contained in the first solvent is, for example, an ionic liquid represented by the following formula (II). In the ionic liquid represented by the formula (II), the anion is an amino acid. As described in Formula (II), in this ionic liquid, the anion contains a terminal carboxyl group and a terminal amino group. The cation of the ionic liquid represented by the formula (II) may be a quaternary ammonium cation.
Figure JPOXMLDOC01-appb-C000011
 式(II)中、R1~R6は、独立して、水素原子又は置換基を表す。置換基は、アルキル基、ヒドロキシアルキル基、又はフェニル基でありうる。置換基は、炭素鎖に分岐を含んでいてもよい。置換基は、アミノ基、ヒドロキシル基、又はカルボキシル基等の官能基を含んでいてもよい。nは、例えば、4又は5である。 In the formula (II), R 1 to R 6 independently represent a hydrogen atom or a substituent. The substituent can be an alkyl group, a hydroxyalkyl group, or a phenyl group. The substituent may contain a branch in the carbon chain. The substituent may contain a functional group such as an amino group, a hydroxyl group, or a carboxyl group. n is, for example, 4 or 5.
 第1溶媒に含まれるイオン液体は、下記の式(III)で表されるイオン液体であってもよい。式(III)中、R1、R2、R3、及びR4は、独立して、水素原子又は1~4個の炭素原子を有するアルキル基を表す。
Figure JPOXMLDOC01-appb-C000012
The ionic liquid contained in the first solvent may be an ionic liquid represented by the following formula (III). In formula (III), R 1 , R 2 , R 3 , and R 4 independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
Figure JPOXMLDOC01-appb-C000012
 セルロース溶液を調製する工程において、第2溶媒をさらに加えてもよい。例えば、所定の重量平均分子量を有するセルロースと第1溶媒との混合物に第2溶媒をさらに加えてもよい。第2溶媒は、例えば、セルロースを析出させない溶媒である。第2溶媒は、非プロトン性極性溶媒でありうる。 In the step of preparing the cellulose solution, a second solvent may be further added. For example, the second solvent may be further added to a mixture of cellulose having a predetermined weight average molecular weight and the first solvent. The second solvent is, for example, a solvent that does not precipitate cellulose. The second solvent can be an aprotic polar solvent.
 セルロース溶液のセルロースの濃度は、典型的には、0.2~15重量%である。セルロース溶液のセルロースの濃度が0.2重量%以上であれば、生体貼付用膜10の厚みを薄くしつつ、その形状を保つのに必要な強度を有する生体貼付用膜10が得られる。また、セルロース溶液のセルロースの濃度が15重量%以下であれば、セルロース溶液におけるセルロースの析出を抑制できる。セルロース溶液のセルロースの濃度は、1~10重量%であってもよい。セルロース溶液のセルロースの濃度が1重量%以上であると、より高い強度を有する生体貼付用膜10が得られる。セルロース溶液のセルロースの濃度が10重量%以下であると、セルロースの析出がより低減された安定したセルロース溶液を調製できる。 The concentration of cellulose in the cellulose solution is typically 0.2 to 15% by weight. When the concentration of cellulose in the cellulose solution is 0.2% by weight or more, the bioadhesive membrane 10 having a strength necessary for maintaining the shape of the bioadhesive membrane 10 while reducing the thickness of the bioadhesive membrane 10 can be obtained. Moreover, if the density | concentration of the cellulose of a cellulose solution is 15 weight% or less, precipitation of the cellulose in a cellulose solution can be suppressed. The cellulose concentration of the cellulose solution may be 1 to 10% by weight. When the concentration of cellulose in the cellulose solution is 1% by weight or more, the bioadhesive membrane 10 having higher strength can be obtained. When the concentration of cellulose in the cellulose solution is 10% by weight or less, a stable cellulose solution in which precipitation of cellulose is further reduced can be prepared.
 次に、基板の表面にセルロース溶液を塗布して、基板の表面上に液膜を形成する。基板の表面の水に対する接触角は、例えば70°以下である。この場合、セルロース溶液の基板に対する濡れ性が適切であり、基板の表面に沿って広がりのある液膜を安定的に形成できる。基板の材料は、特に限定されない。基板は、典型的には、平滑な表面を有する非多孔構造を有する。この場合、基板の内部にセルロース溶液が入り込むことを防止でき、後工程において生体貼付用膜10を基板から分離しやすい。 Next, a cellulose solution is applied to the surface of the substrate to form a liquid film on the surface of the substrate. The contact angle with respect to the water of the surface of a board | substrate is 70 degrees or less, for example. In this case, the wettability of the cellulose solution to the substrate is appropriate, and a liquid film that spreads along the surface of the substrate can be stably formed. The material of the substrate is not particularly limited. The substrate typically has a non-porous structure with a smooth surface. In this case, it is possible to prevent the cellulose solution from entering the inside of the substrate, and it is easy to separate the bioadhesive membrane 10 from the substrate in a subsequent process.
 基板は、化学的又は物理的な表面改質がなされていてもよい。基板として、例えば、紫外線(UV)照射又はコロナ処理等の表面改質処理がなされたポリマー材料の基板を用いてもよい。表面改質の方法は特に限定されない。例えば、表面改質剤の塗布、表面修飾、プラズマ処理、スパッタリング、エッチング、又はブラストが適用されうる。 The substrate may be subjected to chemical or physical surface modification. As the substrate, for example, a polymer material substrate that has been subjected to surface modification treatment such as ultraviolet (UV) irradiation or corona treatment may be used. The method for surface modification is not particularly limited. For example, application of a surface modifier, surface modification, plasma treatment, sputtering, etching, or blasting can be applied.
 基板にセルロース溶液の液膜を形成する方法は、例えば、アプリケータなどにより基板の表面との間に所定のギャップを形成するギャップコーティング、スロットダイコーティング、スピンコーティング、バーコーターを用いたコーティング(Metering rod coating)、及びグラビアコーティング等の方法である。ギャップの厚み又はスロットダイの開口の大きさと塗工スピード、スピンコートの回転数、又はバーコーターやグラビアコートの溝の深さや塗工スピードなどにより調整した液膜の厚みと、セルロース溶液の濃度を調整することによって、生体貼付用膜の厚みを調整可能である。なお、基板にセルロース溶液の液膜を形成する方法は、キャスティング法、スキージを用いたスクリーン印刷、吹付塗装、又は静電噴霧であってもよい。 A method for forming a liquid film of a cellulose solution on a substrate includes, for example, gap coating, slot die coating, spin coating, coating using a bar coater (Metering) that forms a predetermined gap with the surface of the substrate by an applicator or the like. rod coating) and gravure coating. Liquid film thickness adjusted by gap thickness or slot die opening size and coating speed, spin coat rotation speed, bar coater or gravure coat groove depth and coating speed, and cellulose solution concentration By adjusting the thickness, it is possible to adjust the thickness of the biomedical film. The method for forming the liquid film of the cellulose solution on the substrate may be a casting method, screen printing using a squeegee, spray coating, or electrostatic spraying.
 基板にセルロース溶液の液膜を形成するときに、セルロース溶液及び基板の少なくとも一方を加熱してもよい。この加熱は、例えば、セルロース溶液を安定に保つことができる温度範囲(例えば、40~100℃)で実施されてもよい。 When forming a liquid film of the cellulose solution on the substrate, at least one of the cellulose solution and the substrate may be heated. This heating may be performed, for example, in a temperature range (for example, 40 to 100 ° C.) in which the cellulose solution can be kept stable.
 基板に形成されたセルロース溶液の液膜は、加熱されてもよい。液膜の加熱は、例えば、第1溶媒に含まれるイオン液体の分解温度よりも低い温度(例えば、50~200℃)でなされてもよい。このような温度で液膜の加熱を実行することにより、イオン液体以外の溶媒(例えば、第2溶媒など)を適度に除去でき、生体貼付用膜10の強度が高くなりやすい。液膜の加熱は、減圧環境下で実行されてもよい。この場合、溶媒の沸点よりも低い温度でイオン液体以外の溶媒をより短時間で適度に除去できる。 The liquid film of the cellulose solution formed on the substrate may be heated. The liquid film may be heated, for example, at a temperature lower than the decomposition temperature of the ionic liquid contained in the first solvent (eg, 50 to 200 ° C.). By performing the heating of the liquid film at such a temperature, a solvent other than the ionic liquid (for example, the second solvent) can be appropriately removed, and the strength of the biological adhesive film 10 is likely to increase. The heating of the liquid film may be performed under a reduced pressure environment. In this case, a solvent other than the ionic liquid can be appropriately removed in a shorter time at a temperature lower than the boiling point of the solvent.
 基板にセルロース溶液の液膜を形成した後に、液膜はゲル化されてもよい。例えば、イオン液体に溶解可能であり、かつ、セルロースを溶解させない液体の蒸気に液膜を曝すことにより、液膜をゲル化させ、高分子ゲルシートを得ることができる。例えば、30~100%RHの相対湿度の環境下に液膜を放置すると、液膜中のイオン液体が水と接触することにより、液膜におけるセルロースの溶解度が低下する。これにより、セルロース分子の一部が析出し、3次元構造が形成される。その結果、液膜がゲル化する。ゲル化点の有無は、ゲル化した膜を持ち上げることが可能か否かによって判断できる。 After the liquid film of the cellulose solution is formed on the substrate, the liquid film may be gelled. For example, by exposing the liquid film to vapor of a liquid that is soluble in an ionic liquid and does not dissolve cellulose, the liquid film can be gelled to obtain a polymer gel sheet. For example, when a liquid film is left in an environment with a relative humidity of 30 to 100% RH, the ionic liquid in the liquid film comes into contact with water, so that the solubility of cellulose in the liquid film decreases. Thereby, a part of cellulose molecule precipitates and a three-dimensional structure is formed. As a result, the liquid film is gelled. The presence or absence of a gel point can be determined by whether or not the gelled film can be lifted.
 なお、液膜の加熱は、液膜のゲル化の前に行われてもよいし、液膜のゲル化の後に行われてもよいし、液膜のゲル化の前後で行われてもよい。 The heating of the liquid film may be performed before gelling of the liquid film, may be performed after gelling of the liquid film, or may be performed before or after gelling of the liquid film. .
 次に、セルロースを溶解させない液体であるリンス液に、基板及び高分子ゲルシートを浸漬させる。この工程において、高分子ゲルシートからイオン液体が除去される。この工程は、高分子ゲルシートの洗浄の工程と理解されうる。この工程において、イオン液体に加えて、セルロース溶液に含まれていた成分のうち、セルロース及びイオン液体以外の成分(例えば、第2溶媒)の一部が除去されてもよい。リンス液は、典型的には、イオン液体に溶解可能な液体である。このような液体の例は、水、メタノール、エタノール、プロパノール、ブタノール、オクタノール、トルエン、キシレン、アセトン、アセトニトリル、ジメチルアセトアミド、ジメチルホルムアミド、及びジメチルスルホキシドである。 Next, the substrate and the polymer gel sheet are immersed in a rinsing liquid that does not dissolve cellulose. In this step, the ionic liquid is removed from the polymer gel sheet. This step can be understood as a step of washing the polymer gel sheet. In this step, in addition to the ionic liquid, a part of the components (for example, the second solvent) other than the cellulose and the ionic liquid may be removed from the components contained in the cellulose solution. The rinse liquid is typically a liquid that can be dissolved in an ionic liquid. Examples of such liquids are water, methanol, ethanol, propanol, butanol, octanol, toluene, xylene, acetone, acetonitrile, dimethylacetamide, dimethylformamide, and dimethyl sulfoxide.
 次に、高分子ゲルシートを促進剤の溶液に浸漬させる。このとき、促進剤の溶液は、上記の有効成分をさらに含んでいてもよい。促進剤の溶液における溶媒は、例えば、水、エタノール、プロパノール、ブタノール、アセトン、グリセリン、プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ジグリセリン、ポリエチレングリコール、及びジメチコンからなる群から選択される少なくとも1つである。促進剤の溶液への高分子ゲルシートの浸漬に代えて、噴霧法、蒸着、又は塗工によって高分子ゲルシートに促進剤を付着させてもよい。高分子ゲルシートは、促進剤の溶液への浸漬とは別に、上記の有効成分を含む溶液、分散液、又はエマルジョンに浸漬されてもよい。 Next, the polymer gel sheet is immersed in the accelerator solution. At this time, the solution of the accelerator may further contain the above active ingredient. The solvent in the accelerator solution is, for example, a group consisting of water, ethanol, propanol, butanol, acetone, glycerin, propanediol, 1,3-butanediol, 1,4-butanediol, diglycerin, polyethylene glycol, and dimethicone. Is at least one selected from. Instead of immersing the polymer gel sheet in the accelerator solution, the accelerator may be attached to the polymer gel sheet by spraying, vapor deposition, or coating. The polymer gel sheet may be immersed in a solution, a dispersion, or an emulsion containing the above active ingredient separately from the immersion of the accelerator in the solution.
 次に、高分子ゲルシートから溶媒等の不要な成分を除去する。換言すると、高分子ゲルシートを乾燥させる。高分子ゲルシートの乾燥方法として、自然乾燥、真空乾燥、加熱乾燥、凍結乾燥、及び超臨界乾燥等の乾燥方法を適用できる。高分子ゲルシートの乾燥方法は真空加熱であってもよい。高分子ゲルシートの乾燥の条件は、特に限定されない。高分子ゲルシートの乾燥の条件として、第2溶媒及びリンス液の除去に十分な時間及び温度が選択される。高分子ゲルシートから溶媒が除去されることによって、生体貼付用膜10が得られる。 Next, unnecessary components such as a solvent are removed from the polymer gel sheet. In other words, the polymer gel sheet is dried. As a method for drying the polymer gel sheet, drying methods such as natural drying, vacuum drying, heat drying, freeze drying, and supercritical drying can be applied. The polymer gel sheet may be dried by vacuum heating. The conditions for drying the polymer gel sheet are not particularly limited. As a condition for drying the polymer gel sheet, a time and temperature sufficient for removing the second solvent and the rinsing liquid are selected. By removing the solvent from the polymer gel sheet, the bioadhesive membrane 10 is obtained.
 高分子ゲルシートを乾燥させる工程において、例えば、凍結乾燥を適用する場合、凍結可能であり、かつ、100~200℃付近の沸点を有する溶媒が用いられる。例えば、水、tert-ブチルアルコール、酢酸、1,1,2,2,3,3,4-ヘプタフルオロシクロペンタン、又はジメチルスルホキシド等の溶媒を利用して凍結乾燥を行うことができる。 In the step of drying the polymer gel sheet, for example, when lyophilization is applied, a solvent that can be frozen and has a boiling point of about 100 to 200 ° C. is used. For example, lyophilization can be performed using a solvent such as water, tert-butyl alcohol, acetic acid, 1,1,2,2,3,3,4-heptafluorocyclopentane, or dimethyl sulfoxide.
 上記の方法では、高分子ゲルシートの乾燥に先立って、促進剤の溶液への高分子ゲルシートの浸漬が行われているが、高分子ゲルシートの乾燥の後に促進剤を付着させる工程が行われてもよい。例えば、高分子ゲルシートの乾燥により得られた高分子シートを促進剤の溶液に浸漬させてもよい。このとき、促進剤の溶液は、上記の有効成分をさらに含んでいてもよい。その後、浸漬後の高分子シートをさらに乾燥させる。なお、この場合も、噴霧法、蒸着、又は塗工によって高分子ゲルシートに促進剤を付着させてもよい。 In the above method, the polymer gel sheet is immersed in the accelerator solution prior to drying the polymer gel sheet. However, the accelerator may be attached after the polymer gel sheet is dried. Good. For example, a polymer sheet obtained by drying a polymer gel sheet may be immersed in a promoter solution. At this time, the solution of the accelerator may further contain the above active ingredient. Thereafter, the polymer sheet after immersion is further dried. In this case, the accelerator may be attached to the polymer gel sheet by spraying, vapor deposition, or coating.
 実施例により、本開示の生体貼付用膜をより詳細に説明する。なお、本開示の生体貼付用膜は、以下の実施例に限定されない。まず、各実施例及び各比較例に係る生体貼付用膜の評価試験について説明する。 The membrane for bioadhesion of the present disclosure will be described in more detail by way of examples. In addition, the film | membrane for biological sticking of this indication is not limited to a following example. First, the evaluation test of the biomarker film according to each example and each comparative example will be described.
 <装着試験>
 各種の装着剤を前腕の内側の皮膚に滴下した。使用した装着剤の概要を表1及び2に示す。装着剤の滴下の直後に各実施例及び各比較例に係る積層体の生体貼付用膜を滴下した装着剤に接触させ、計時を開始した。計時開始から所定時間経過毎に、生体貼付用膜が皮膚に装着されているかどうかを確認し、生体貼付用膜が皮膚に装着された状態になるまでに要した時間(装着時間)を計測した。なお、生体貼付用膜が皮膚に装着された状態では、生体貼付用膜が皮膚に貼り付いたまま、積層体の不織布を剥がすことができた。
<Mounting test>
Various wearing agents were dropped on the skin inside the forearm. Tables 1 and 2 show the outline of the used mounting agent. Immediately after the mounting agent was dropped, the bioadhesive membrane of the laminate according to each example and each comparative example was brought into contact with the dropped mounting agent, and timing was started. Every time a predetermined time has elapsed since the start of timing, it was checked whether the bioadhesive membrane was attached to the skin, and the time required for the bioadhesive membrane to be attached to the skin (wearing time) was measured. . In addition, in the state where the bioadhesive membrane was attached to the skin, the nonwoven fabric of the laminate could be peeled off while the bioadhesive membrane adhered to the skin.
 (実施例1A)
 90%以上の純度を有する、木材を原料とした漂白パルプ由来のセルロースをイオン液体で溶解させ、セルロース溶液を調製した。イオン液体としては、式(III)においてR1がメチル基、R2、R3、及びR4がエチル基であるイオン液体を用いた。基板上にセルロース溶液を塗布して塗膜を形成した。生体貼付用膜の厚みが400nmとなるように、塗膜の厚みを調整した。その後、セルロース溶液の塗膜をゲル化させて高分子ゲルシートを形成した。その後、基板及び高分子ゲルシートを所定のリンス液を用いて洗浄した。次に、ポリオキシエチレン(4)(6)ソルビタンモノオレエート(HLB値:10.0)の水溶液に洗浄した高分子ゲルシートを浸漬させ、その後高分子ゲルシートを乾燥させて、実施例1Aに係る生体貼付用膜を得た。生体貼付用膜を基板から取り外し、不織布に重ねて、実施例1Aに係る積層体を得た。生体貼付用膜は、平面視で、概ね5cm四方の四角形状であり、透明な外観を有していた。また、実施例1Aに係る生体貼付用膜の構造をX線回折法(XRD)によって解析した。その結果、生体貼付用膜は、天然セルロースを含まず、再生セルロースであることを確認した。GPC測定によって生体貼付用膜の再生セルロースの重量平均分子量を決定した。再生セルロースの重量平均分子量は、224,000であった。
Example 1A
Cellulose derived from bleached pulp made from wood and having a purity of 90% or more was dissolved in an ionic liquid to prepare a cellulose solution. As the ionic liquid, an ionic liquid in which R 1 is a methyl group, R 2 , R 3 , and R 4 are ethyl groups in the formula (III) was used. A cellulose solution was applied onto the substrate to form a coating film. The thickness of the coating film was adjusted so that the thickness of the bioadhesive film was 400 nm. Thereafter, the coating film of the cellulose solution was gelled to form a polymer gel sheet. Thereafter, the substrate and the polymer gel sheet were washed with a predetermined rinse solution. Next, the washed polymer gel sheet was immersed in an aqueous solution of polyoxyethylene (4) (6) sorbitan monooleate (HLB value: 10.0), and then the polymer gel sheet was dried, according to Example 1A. A membrane for biopaste was obtained. The membrane for bioadhesion was removed from the substrate and laminated on the nonwoven fabric to obtain a laminate according to Example 1A. The membrane for bioadhesion was approximately 5 cm square in a plan view and had a transparent appearance. In addition, the structure of the biomedical adhesive membrane according to Example 1A was analyzed by X-ray diffraction (XRD). As a result, it was confirmed that the membrane for bioadhesion did not contain natural cellulose and was regenerated cellulose. The weight average molecular weight of the regenerated cellulose of the membrane for biopaste was determined by GPC measurement. The weight average molecular weight of the regenerated cellulose was 224,000.
 ここで、生体貼付用膜に含まれるポリオキシエチレン(4)(6)ソルビタンモノオレエートの濃度を以下に記載の方法で決定した。予め、ポリオキシエチレン(4)(6)ソルビタンモノオレエートを水に溶解させ、異なるポリオキシエチレン(4)(6)ソルビタンモノオレエート濃度を有する複数のポリオキシエチレン(4)(6)ソルビタンモノオレエート水溶液を調製した。その後、各ポリオキシエチレン(4)(6)ソルビタンモノオレエート水溶液の屈折率を屈折率計(アタゴ社製、製品名:RX-5000α-Plus)で測定した。ポリオキシエチレン(4)(6)ソルビタンモノオレエート水溶液の濃度及び屈折率から検量線を作成し、検量線の傾きaを求めた。実施例1Aに係る生体貼付用膜を、水に1時間浸漬させ超音波処理を行うことで、生体貼付用膜に含まれるポリオキシエチレン(4)(6)ソルビタンモノオレエートを抽出し、ポリオキシエチレン(4)(6)ソルビタンモノオレエートの抽出液を得た。この抽出液の屈折率nを上記の屈折率計で測定した。屈折率n及び検量線の傾きaに基づいて、抽出液に含まれるポリオキシエチレン(4)(6)ソルビタンモノオレエートの質量を決定した。抽出液に含まれるポリオキシエチレン(4)(6)ソルビタンモノオレエートの質量を生体貼付用膜に含まれるポリオキシエチレン(4)(6)ソルビタンモノオレエートの質量とみなした。生体貼付用膜の質量に対する生体貼付用膜に含まれるポリオキシエチレン(4)(6)ソルビタンモノオレエートの質量の比は、20%であった。 Here, the concentration of polyoxyethylene (4) (6) sorbitan monooleate contained in the biomedical membrane was determined by the method described below. A plurality of polyoxyethylene (4) (6) sorbitans having different polyoxyethylene (4) (6) sorbitan monooleate concentrations previously dissolved in water with polyoxyethylene (4) (6) sorbitan monooleate An aqueous monooleate solution was prepared. Thereafter, the refractive index of each polyoxyethylene (4) (6) sorbitan monooleate aqueous solution was measured with a refractometer (manufactured by Atago Co., Ltd., product name: RX-5000α-Plus). A calibration curve was created from the concentration and refractive index of the polyoxyethylene (4) (6) sorbitan monooleate aqueous solution, and the slope a of the calibration curve was determined. The polyoxyethylene (4) (6) sorbitan monooleate contained in the biomedical membrane is extracted by immersing the biomedical membrane according to Example 1A in water for 1 hour and performing ultrasonic treatment. An extract of oxyethylene (4) (6) sorbitan monooleate was obtained. The refractive index n of this extract was measured with the above refractometer. Based on the refractive index n and the slope a of the calibration curve, the mass of polyoxyethylene (4) (6) sorbitan monooleate contained in the extract was determined. The mass of polyoxyethylene (4) (6) sorbitan monooleate contained in the extract was regarded as the mass of polyoxyethylene (4) (6) sorbitan monooleate contained in the biomedical patch membrane. The ratio of the mass of polyoxyethylene (4) (6) sorbitan monooleate contained in the biomedical membrane to the mass of the biomedical membrane was 20%.
 (実施例1B)
 下記の点以外は、実施例1Aと同様にして、実施例1Bに係る生体貼付用膜及び実施例1Bに係る積層体を作製した。ポリオキシエチレン(4)(6)ソルビタンモノオレエート水溶液の代わりに、ポリオキシエチレン(4)(6)ソルビタンモノラウレート(HLB値:13.3)水溶液を用いた。生体貼付用膜の質量に対する生体貼付用膜に含まれるポリオキシエチレン(4)(6)ソルビタンモノラウレートの質量の比が20%となるように浸漬条件を調整した。生体貼付用膜に含まれるポリオキシエチレン(4)(6)ソルビタンモノラウレートの質量は、実施例1Aに記載の方法に準じて決定した。
(Example 1B)
Except for the following points, a biomedical adhesive membrane according to Example 1B and a laminate according to Example 1B were produced in the same manner as Example 1A. Instead of the polyoxyethylene (4) (6) sorbitan monooleate aqueous solution, a polyoxyethylene (4) (6) sorbitan monolaurate (HLB value: 13.3) aqueous solution was used. The dipping conditions were adjusted so that the ratio of the mass of the polyoxyethylene (4) (6) sorbitan monolaurate contained in the biomedical membrane to the mass of the biomedical membrane was 20%. The mass of the polyoxyethylene (4) (6) sorbitan monolaurate contained in the membrane for biological patch was determined according to the method described in Example 1A.
 (実施例1C)
 下記の点以外は、実施例1Aと同様にして、実施例1Cに係る生体貼付用膜及び実施例1Cに係る積層体を作製した。ポリオキシエチレン(4)(6)ソルビタンモノオレエート水溶液の代わりに、ポリオキシエチレン(4)(20)ソルビタンモノラウレート(HLB値:16.7)水溶液を用いた。生体貼付用膜の質量に対する生体貼付用膜に含まれるポリオキシエチレン(4)(20)ソルビタンモノラウレートの質量の比が20%となるように浸漬条件を調整した。生体貼付用膜に含まれるポリオキシエチレン(4)(20)ソルビタンモノラウレートの質量は、実施例1Aに記載の方法に準じて決定した。
(Example 1C)
Except for the following points, a biomedical adhesive membrane according to Example 1C and a laminate according to Example 1C were produced in the same manner as Example 1A. Instead of the polyoxyethylene (4) (6) sorbitan monooleate aqueous solution, a polyoxyethylene (4) (20) sorbitan monolaurate (HLB value: 16.7) aqueous solution was used. The immersion conditions were adjusted such that the ratio of the mass of polyoxyethylene (4) (20) sorbitan monolaurate contained in the biomedical membrane to the mass of the biomedical membrane was 20%. The mass of the polyoxyethylene (4) (20) sorbitan monolaurate contained in the biomedical film was determined according to the method described in Example 1A.
 (実施例1D)
 下記の点以外は、実施例1Aと同様にして、実施例1Dに係る生体貼付用膜及び実施例1Dに係る積層体を作製した。ポリオキシエチレン(4)(6)ソルビタンモノオレエート水溶液の代わりに、ポリオキシエチレン(4)(20)ソルビタンモノパルミテート(HLB値:15.6)水溶液を用いた。生体貼付用膜の質量に対する生体貼付用膜に含まれるポリオキシエチレン(4)(20)ソルビタンモノパルミテートの質量の比が20%となるように浸漬条件を調整した。生体貼付用膜に含まれるポリオキシエチレン(4)(20)ソルビタンモノパルミテートの質量は、実施例1Aに記載の方法に準じて決定した。
(Example 1D)
Except for the following points, a biomedical adhesive membrane according to Example 1D and a laminate according to Example 1D were produced in the same manner as Example 1A. Instead of the polyoxyethylene (4) (6) sorbitan monooleate aqueous solution, a polyoxyethylene (4) (20) sorbitan monopalmitate (HLB value: 15.6) aqueous solution was used. The dipping conditions were adjusted so that the ratio of the mass of the polyoxyethylene (4) (20) sorbitan monopalmitate contained in the bioadhesive membrane to the mass of the bioadhesive membrane was 20%. The mass of the polyoxyethylene (4) (20) sorbitan monopalmitate contained in the biomedical film was determined according to the method described in Example 1A.
 (実施例1E)
 下記の点以外は、実施例1Aと同様にして、実施例1Eに係る生体貼付用膜及び実施例1Eに係る積層体を作製した。ポリオキシエチレン(4)(6)ソルビタンモノオレエート水溶液の代わりに、ポリオキシエチレン(4)(20)ソルビタンモノステアレート(HLB値:14.9)水溶液を用いた。生体貼付用膜の質量に対する生体貼付用膜に含まれるポリオキシエチレン(4)(20)ソルビタンモノステアレートの質量の比が20%となるように浸漬条件を調整した。生体貼付用膜に含まれるポリオキシエチレン(4)(20)ソルビタンモノステアレートの質量は、実施例1Aに記載の方法に準じて決定した。
(Example 1E)
Except for the following points, a biomedical adhesive membrane according to Example 1E and a laminate according to Example 1E were produced in the same manner as Example 1A. Instead of the polyoxyethylene (4) (6) sorbitan monooleate aqueous solution, a polyoxyethylene (4) (20) sorbitan monostearate (HLB value: 14.9) aqueous solution was used. The dipping conditions were adjusted so that the ratio of the mass of the polyoxyethylene (4) (20) sorbitan monostearate contained in the bioadhesive membrane to the mass of the bioadhesive membrane was 20%. The mass of the polyoxyethylene (4) (20) sorbitan monostearate contained in the biomedical membrane was determined according to the method described in Example 1A.
 (実施例1F)
 下記の点以外は、実施例1Aと同様にして、実施例1Fに係る生体貼付用膜及び実施例1Fに係る積層体を作製した。ポリオキシエチレン(4)(6)ソルビタンモノオレエート水溶液の代わりに、ビスPEG-18メチルエーテルジメチルシラン(HLB値:17.8)水溶液を用いた。生体貼付用膜の質量に対する生体貼付用膜に含まれるビスPEG-18メチルエーテルジメチルシランの質量の比が20%となるように浸漬条件を調整した。生体貼付用膜に含まれるビスPEG-18メチルエーテルジメチルシランの質量は、実施例1Aに記載の方法に準じて決定した。
(Example 1F)
Except for the following points, a biomedical adhesive membrane according to Example 1F and a laminate according to Example 1F were produced in the same manner as Example 1A. Instead of the polyoxyethylene (4) (6) sorbitan monooleate aqueous solution, a bisPEG-18 methyl ether dimethylsilane (HLB value: 17.8) aqueous solution was used. The immersion conditions were adjusted so that the ratio of the mass of bisPEG-18 methyl ether dimethylsilane contained in the bioadhesive membrane to the mass of the bioadhesive membrane was 20%. The mass of bisPEG-18 methyl ether dimethyl silane contained in the biopaste membrane was determined according to the method described in Example 1A.
 (実施例1G)
 下記の点以外は、実施例1Aと同様にして、実施例1Gに係る生体貼付用膜及び実施例1Gに係る積層体を作製した。ポリオキシエチレン(4)(6)ソルビタンモノオレエート水溶液の代わりに、PEG-11メチルエーテルジメチコン(HLB値:14.5)水溶液を用いた。生体貼付用膜の質量に対する生体貼付用膜に含まれるPEG-11メチルエーテルジメチコンの質量の比が20%となるように浸漬条件を調整した。生体貼付用膜に含まれるPEG-11メチルエーテルジメチコンの質量は、実施例1Aに記載の方法に準じて決定した。
(Example 1G)
Except for the points described below, a biomedical adhesive membrane according to Example 1G and a laminate according to Example 1G were produced in the same manner as Example 1A. Instead of the polyoxyethylene (4) (6) sorbitan monooleate aqueous solution, a PEG-11 methyl ether dimethicone (HLB value: 14.5) aqueous solution was used. The dipping conditions were adjusted so that the ratio of the mass of PEG-11 methyl ether dimethicone contained in the bioadhesive membrane to the mass of the bioadhesive membrane was 20%. The mass of PEG-11 methyl ether dimethicone contained in the membrane for biopsy was determined according to the method described in Example 1A.
 (実施例1H)
 下記の点以外は、実施例1Aと同様にして、実施例1Hに係る生体貼付用膜及び実施例1Hに係る積層体を作製した。ポリオキシエチレン(4)(6)ソルビタンモノオレエート水溶液の代わりに、PEG-9ジメチコン(HLB値:10.0)水溶液を用いた。生体貼付用膜の質量に対する生体貼付用膜に含まれるPEG-9ジメチコンの質量の比が20%となるように浸漬条件を調整した。生体貼付用膜に含まれるPEG-9ジメチコンの質量は、実施例1Aに記載の方法に準じて決定した。
Example 1H
Except for the following points, a biological adhesive film according to Example 1H and a laminate according to Example 1H were produced in the same manner as Example 1A. Instead of the polyoxyethylene (4) (6) sorbitan monooleate aqueous solution, an aqueous solution of PEG-9 dimethicone (HLB value: 10.0) was used. The immersion conditions were adjusted so that the ratio of the mass of PEG-9 dimethicone contained in the bioadhesive membrane to the mass of the bioadhesive membrane was 20%. The mass of PEG-9 dimethicone contained in the membrane for biopsy was determined according to the method described in Example 1A.
 (実施例1I)
 下記の点以外は、実施例1Aと同様にして、実施例1Iに係る生体貼付用膜及び実施例1Iに係る積層体を作製した。ポリオキシエチレン(4)(6)ソルビタンモノオレエート水溶液の代わりに、PEG/PPG-20/22ブチルエーテルジメチコン(HLB値:7.0)水溶液を用いた。生体貼付用膜の質量に対する生体貼付用膜に含まれるPEG/PPG-20/22ブチルエーテルジメチコンの質量の比が20%となるように浸漬条件を調整した。生体貼付用膜に含まれるPEG/PPG-20/22ブチルエーテルジメチコンの質量は、実施例1Aに記載の方法に準じて決定した。
Example 1I
Except for the following points, a biomedical adhesive membrane according to Example 1I and a laminate according to Example 1I were produced in the same manner as Example 1A. Instead of the polyoxyethylene (4) (6) sorbitan monooleate aqueous solution, a PEG / PPG-20 / 22 butyl ether dimethicone (HLB value: 7.0) aqueous solution was used. The dipping conditions were adjusted so that the ratio of the mass of PEG / PPG-20 / 22 butyl ether dimethicone contained in the bioadhesive membrane to the mass of the bioadhesive membrane was 20%. The mass of PEG / PPG-20 / 22 butyl ether dimethicone contained in the membrane for biopsy was determined according to the method described in Example 1A.
 (実施例1J)
 下記の点以外は、実施例1Aと同様にして、実施例1Jに係る生体貼付用膜及び実施例1Jに係る積層体を作製した。ポリオキシエチレン(4)(6)ソルビタンモノオレエート水溶液の代わりに、PEG-9メチルエーテルジメチコン(HLB値:4.5)水溶液を用いた。生体貼付用膜の質量に対する生体貼付用膜に含まれるPEG-9メチルエーテルジメチコンの質量の比が20%となるように浸漬条件を調整した。生体貼付用膜に含まれるPEG-9メチルエーテルジメチコンの質量は、実施例1Aに記載の方法に準じて決定した。
(Example 1J)
Except for the following points, a biological adhesive film according to Example 1J and a laminate according to Example 1J were produced in the same manner as Example 1A. Instead of the polyoxyethylene (4) (6) sorbitan monooleate aqueous solution, a PEG-9 methyl ether dimethicone (HLB value: 4.5) aqueous solution was used. The dipping conditions were adjusted so that the ratio of the mass of PEG-9 methyl ether dimethicone contained in the bioadhesive membrane to the mass of the bioadhesive membrane was 20%. The mass of PEG-9 methyl ether dimethicone contained in the biomedical patch membrane was determined according to the method described in Example 1A.
 (比較例1A)
 洗浄した高分子ゲルシートをポリオキシエチレン(4)(6)ソルビタンモノオレエート水溶液に浸漬させずにそのまま乾燥させた以外は、実施例1Aと同様にして、比較例1Aに係る生体貼付用膜及び比較例1Aに係る積層体を作製した。
(Comparative Example 1A)
Except that the washed polymer gel sheet was dried as it was without being immersed in the polyoxyethylene (4) (6) sorbitan monooleate aqueous solution, the membrane for bioadhesive according to Comparative Example 1A and A laminate according to Comparative Example 1A was produced.
 (比較例2A)
 下記の点以外は、実施例1Aと同様にして、比較例2Aに係る生体貼付用膜及び比較例2Aに係る積層体を作製した。ポリオキシエチレン(4)(6)ソルビタンモノオレエート水溶液の代わりに、ソルビタントリステアレート(HLB値:2.1)水溶液を用いた。生体貼付用膜の質量に対する生体貼付用膜に含まれるソルビタントリステアレートの質量の比が20%となるように浸漬条件を調整した。生体貼付用膜に含まれるソルビタントリステアレートの質量は、実施例1Aに記載の方法に準じて決定した。
(Comparative Example 2A)
Except for the following points, a biological adhesive film according to Comparative Example 2A and a laminate according to Comparative Example 2A were produced in the same manner as Example 1A. Instead of the polyoxyethylene (4) (6) sorbitan monooleate aqueous solution, a sorbitan tristearate (HLB value: 2.1) aqueous solution was used. The dipping conditions were adjusted so that the ratio of the mass of sorbitan tristearate contained in the bioadhesive membrane to the mass of the bioadhesive membrane was 20%. The mass of sorbitan tristearate contained in the membrane for living body application was determined according to the method described in Example 1A.
 (比較例2B)
 下記の点以外は、実施例1Aと同様にして、比較例2Bに係る生体貼付用膜及び比較例2Bに係る積層体を作製した。ポリオキシエチレン(4)(6)ソルビタンモノオレエート水溶液の代わりに、ジステアリン酸ポリエチレングリコール(140 E.O.)(HLB値:18.9)水溶液を用いた。生体貼付用膜の質量に対する生体貼付用膜に含まれるジステアリン酸ポリエチレングリコール(140 E.O.)の質量の比が20%となるように浸漬条件を調整した。生体貼付用膜に含まれるジステアリン酸ポリエチレングリコール(140 E.O.)の質量は、実施例1Aに記載の方法に準じて決定した。
(Comparative Example 2B)
Except for the following points, a biological adhesive film according to Comparative Example 2B and a laminate according to Comparative Example 2B were produced in the same manner as Example 1A. Instead of the polyoxyethylene (4) (6) sorbitan monooleate aqueous solution, an aqueous solution of polyethylene glycol distearate (140 EO) (HLB value: 18.9) was used. The immersion conditions were adjusted so that the ratio of the mass of polyethylene glycol distearate (140 EO) contained in the bioadhesive membrane to the mass of the bioadhesive membrane was 20%. The mass of the polyethylene glycol distearate (140 EO) contained in the membrane for biomedical application was determined according to the method described in Example 1A.
 (比較例3A)
 250,000の重量平均分子量を有するポリ乳酸をクロロホルムに溶解させ、ポリ乳酸のクロロホルム溶液(ポリ乳酸の濃度:2.4質量%)を調製した。約500の重量平均分子量を有するポリビニルアルコールで形成された表面を有する基板上に、スピンコーティングによって、ポリ乳酸のクロロホルム溶液を塗布し、塗膜を形成した。この塗膜からクロロホルムを揮発させ、ポリ乳酸のシートを形成した。その後、ポリ乳酸のシートを水に浸漬させてポリビニルアルコールを溶解させ、ポリ乳酸のシートに付着した水を乾燥させて、ポリ乳酸膜を作製した。ポリ乳酸膜をポリオキシエチレン(4)(6)ソルビタンモノラウレート水溶液中に浸漬し、その後ポリ乳酸膜を乾燥させて比較例3Aに係る生体貼付用膜を得た。生体貼付用膜の質量に対する生体貼付用膜に含まれるポリオキシエチレン(4)(6)ソルビタンモノラウレートの質量の比が20%となるように浸漬条件を調整した。比較例3Aに係る生体貼付用膜を不織布に重ねて、比較例3Aに係る積層体を得た。生体貼付用膜に含まれるポリオキシエチレン(4)(6)ソルビタンモノラウレートの質量は、実施例1Aに記載の方法に準じて決定した。
(Comparative Example 3A)
Polylactic acid having a weight average molecular weight of 250,000 was dissolved in chloroform to prepare a polylactic acid chloroform solution (polylactic acid concentration: 2.4 mass%). On a substrate having a surface formed of polyvinyl alcohol having a weight average molecular weight of about 500, a chloroform solution of polylactic acid was applied by spin coating to form a coating film. Chloroform was volatilized from this coating film to form a polylactic acid sheet. Thereafter, the polylactic acid sheet was immersed in water to dissolve the polyvinyl alcohol, and the water adhering to the polylactic acid sheet was dried to prepare a polylactic acid film. The polylactic acid film was immersed in an aqueous solution of polyoxyethylene (4) (6) sorbitan monolaurate, and then the polylactic acid film was dried to obtain a biopaste film according to Comparative Example 3A. The immersion conditions were adjusted so that the ratio of the mass of polyoxyethylene (4) (6) sorbitan monolaurate contained in the biomedical membrane to the mass of the biomedical membrane was 20%. The bioadhesive film according to Comparative Example 3A was laminated on the nonwoven fabric to obtain a laminate according to Comparative Example 3A. The mass of the polyoxyethylene (4) (6) sorbitan monolaurate contained in the membrane for biopsy was determined according to the method described in Example 1A.
 (比較例3B)
 下記の点以外は、比較例3Aと同様にして、比較例3Bに係る生体貼付用膜及び比較例3Bに係る積層体を作製した。ポリオキシエチレン(4)(6)ソルビタンモノラウレート水溶液の代わりに、ポリオキシエチレン(4)(20)ソルビタンモノラウレート水溶液を用いた。生体貼付用膜の質量に対する生体貼付用膜に含まれるポリオキシエチレン(4)(20)ソルビタンモノラウレートの質量の比が20%となるように浸漬条件を調整した。生体貼付用膜に含まれるポリオキシエチレン(4)(20)ソルビタンモノラウレートの質量は、実施例1Aに記載の方法に準じて決定した。
(Comparative Example 3B)
Except for the following points, a biological adhesive film according to Comparative Example 3B and a laminate according to Comparative Example 3B were produced in the same manner as Comparative Example 3A. Instead of the polyoxyethylene (4) (6) sorbitan monolaurate aqueous solution, a polyoxyethylene (4) (20) sorbitan monolaurate aqueous solution was used. The immersion conditions were adjusted such that the ratio of the mass of polyoxyethylene (4) (20) sorbitan monolaurate contained in the biomedical membrane to the mass of the biomedical membrane was 20%. The mass of the polyoxyethylene (4) (20) sorbitan monolaurate contained in the biomedical film was determined according to the method described in Example 1A.
 (比較例3C)
 下記の点以外は、比較例3Aと同様にして、比較例3Cに係る生体貼付用膜及び比較例3Cに係る積層体を作製した。ポリオキシエチレン(4)(6)ソルビタンモノラウレート水溶液の代わりに、ポリオキシエチレン(4)(20)ソルビタンモノパルミテート水溶液を用いた。生体貼付用膜の質量に対する生体貼付用膜に含まれるポリオキシエチレン(4)(20)ソルビタンモノパルミテートの質量の比が20%となるように浸漬条件を調整した。生体貼付用膜に含まれるポリオキシエチレン(4)(20)ソルビタンモノパルミテートの質量は、実施例1Aに記載の方法に準じて決定した。
(Comparative Example 3C)
Except for the following points, a biological adhesive film according to Comparative Example 3C and a laminate according to Comparative Example 3C were produced in the same manner as Comparative Example 3A. Instead of the polyoxyethylene (4) (6) sorbitan monolaurate aqueous solution, a polyoxyethylene (4) (20) sorbitan monopalmitate aqueous solution was used. The dipping conditions were adjusted so that the ratio of the mass of the polyoxyethylene (4) (20) sorbitan monopalmitate contained in the bioadhesive membrane to the mass of the bioadhesive membrane was 20%. The mass of the polyoxyethylene (4) (20) sorbitan monopalmitate contained in the biomedical film was determined according to the method described in Example 1A.
 (比較例3D)
 下記の点以外は、比較例3Aと同様にして、比較例3Dに係る生体貼付用膜及び比較例3Dに係る積層体を作製した。ポリオキシエチレン(4)(6)ソルビタンモノラウレート水溶液の代わりに、ポリオキシエチレン(4)(20)ソルビタンモノステアレート水溶液を用いた。生体貼付用膜の質量に対する生体貼付用膜に含まれるポリオキシエチレン(4)(20)ソルビタンモノステアレートの質量の比が20%となるように浸漬条件を調整した。生体貼付用膜に含まれるポリオキシエチレン(4)(20)ソルビタンモノステアレートの質量は、実施例1Aに記載の方法に準じて決定した。
(Comparative Example 3D)
Except for the following points, a biomedical adhesive membrane according to Comparative Example 3D and a laminate according to Comparative Example 3D were produced in the same manner as Comparative Example 3A. Instead of the polyoxyethylene (4) (6) sorbitan monolaurate aqueous solution, a polyoxyethylene (4) (20) sorbitan monostearate aqueous solution was used. The dipping conditions were adjusted so that the ratio of the mass of the polyoxyethylene (4) (20) sorbitan monostearate contained in the bioadhesive membrane to the mass of the bioadhesive membrane was 20%. The mass of the polyoxyethylene (4) (20) sorbitan monostearate contained in the biomedical membrane was determined according to the method described in Example 1A.
 (比較例3E)
 下記の点以外は、比較例3Aと同様にして、比較例3Eに係る生体貼付用膜及び比較例3Eに係る積層体を作製した。ポリオキシエチレン(4)(6)ソルビタンモノラウレート水溶液の代わりに、ビスPEG-18メチルエーテルジメチルシラン水溶液を用いた。生体貼付用膜の質量に対する生体貼付用膜に含まれるビスPEG-18メチルエーテルジメチルシランの質量の比が20%となるように浸漬条件を調整した。生体貼付用膜に含まれるビスPEG-18メチルエーテルジメチルシランの質量は、実施例1Aに記載の方法に準じて決定した。
(Comparative Example 3E)
Except for the following points, a biomedical adhesive film according to Comparative Example 3E and a laminate according to Comparative Example 3E were produced in the same manner as Comparative Example 3A. Instead of the polyoxyethylene (4) (6) sorbitan monolaurate aqueous solution, a bisPEG-18 methyl ether dimethylsilane aqueous solution was used. The immersion conditions were adjusted so that the ratio of the mass of bisPEG-18 methyl ether dimethylsilane contained in the bioadhesive membrane to the mass of the bioadhesive membrane was 20%. The mass of bisPEG-18 methyl ether dimethyl silane contained in the biopaste membrane was determined according to the method described in Example 1A.
 (実施例2A)
 下記の点以外は、実施例1Aと同様にして、実施例2Aに係る生体貼付用膜及び実施例2Aに係る積層体を作製した。ポリオキシエチレン(4)(6)ソルビタンモノオレエート水溶液の代わりに、ポリオキシエチレン(4)(20)ソルビタンモノステアレート水溶液を用いた。生体貼付用膜の質量に対する生体貼付用膜に含まれるポリオキシエチレン(4)(20)ソルビタンモノステアレートの質量の比が15%となるように浸漬条件を調整した。生体貼付用膜に含まれるポリオキシエチレン(4)(20)ソルビタンモノステアレートの質量は、実施例1Aに記載の方法に準じて決定した。
(Example 2A)
Except for the points described below, a membrane for biological application according to Example 2A and a laminate according to Example 2A were produced in the same manner as Example 1A. Instead of the polyoxyethylene (4) (6) sorbitan monooleate aqueous solution, a polyoxyethylene (4) (20) sorbitan monostearate aqueous solution was used. The immersion conditions were adjusted such that the ratio of the mass of polyoxyethylene (4) (20) sorbitan monostearate contained in the biomedical membrane to the mass of the biomedical membrane was 15%. The mass of the polyoxyethylene (4) (20) sorbitan monostearate contained in the biomedical membrane was determined according to the method described in Example 1A.
 (実施例2B)
 下記の点以外は、実施例1Aと同様にして、実施例2Bに係る生体貼付用膜及び実施例2Bに係る積層体を作製した。ポリオキシエチレン(4)(6)ソルビタンモノオレエート水溶液の代わりに、ポリオキシエチレン(4)(20)ソルビタンモノステアレート水溶液を用いた。生体貼付用膜の質量に対する生体貼付用膜に含まれるポリオキシエチレン(4)(20)ソルビタンモノステアレートの質量の比が10%となるように浸漬条件を調整した。生体貼付用膜に含まれるポリオキシエチレン(4)(20)ソルビタンモノステアレートの質量は、実施例1Aに記載の方法に準じて決定した。
(Example 2B)
Except for the following points, a biomedical adhesive membrane according to Example 2B and a laminate according to Example 2B were produced in the same manner as Example 1A. Instead of the polyoxyethylene (4) (6) sorbitan monooleate aqueous solution, a polyoxyethylene (4) (20) sorbitan monostearate aqueous solution was used. The dipping conditions were adjusted so that the ratio of the mass of polyoxyethylene (4) (20) sorbitan monostearate contained in the biomedical membrane to the mass of the biomedical membrane was 10%. The mass of the polyoxyethylene (4) (20) sorbitan monostearate contained in the biomedical membrane was determined according to the method described in Example 1A.
 (実施例3A)
 下記の点以外は、実施例1Aと同様にして、実施例3Aに係る生体貼付用膜及び実施例3Aに係る積層体を作製した。ポリオキシエチレン(4)(6)ソルビタンモノオレエート水溶液の代わりに、ビスPEG-18メチルエーテルジメチルシラン水溶液を用いた。生体貼付用膜の質量に対する生体貼付用膜に含まれるビスPEG-18メチルエーテルジメチルシランの質量の比が15%となるように浸漬条件を調整した。生体貼付用膜に含まれるビスPEG-18メチルエーテルジメチルシランの質量は、実施例1Aに記載の方法に準じて決定した。
(Example 3A)
Except for the following points, a biomedical adhesive membrane according to Example 3A and a laminate according to Example 3A were produced in the same manner as Example 1A. Instead of the polyoxyethylene (4) (6) sorbitan monooleate aqueous solution, a bisPEG-18 methyl ether dimethylsilane aqueous solution was used. The dipping conditions were adjusted so that the ratio of the mass of bisPEG-18 methyl ether dimethylsilane contained in the bioadhesive membrane to the mass of the bioadhesive membrane was 15%. The mass of bisPEG-18 methyl ether dimethyl silane contained in the biopaste membrane was determined according to the method described in Example 1A.
 (実施例3B)
 下記の点以外は、実施例1Aと同様にして、実施例3Aに係る生体貼付用膜及び実施例3Aに係る積層体を作製した。ポリオキシエチレン(4)(6)ソルビタンモノオレエート水溶液の代わりに、ビスPEG-18メチルエーテルジメチルシラン水溶液を用いた。生体貼付用膜の質量に対する生体貼付用膜に含まれるビスPEG-18メチルエーテルジメチルシランの質量の比が10%となるように浸漬条件を調整した。生体貼付用膜に含まれるビスPEG-18メチルエーテルジメチルシランの質量は、実施例1Aに記載の方法に準じて決定した。
(Example 3B)
Except for the following points, a biomedical adhesive membrane according to Example 3A and a laminate according to Example 3A were produced in the same manner as Example 1A. Instead of the polyoxyethylene (4) (6) sorbitan monooleate aqueous solution, a bisPEG-18 methyl ether dimethylsilane aqueous solution was used. The dipping conditions were adjusted so that the ratio of the mass of bisPEG-18 methyl ether dimethylsilane contained in the bioadhesive membrane to the mass of the bioadhesive membrane was 10%. The mass of bisPEG-18 methyl ether dimethyl silane contained in the biopaste membrane was determined according to the method described in Example 1A.
 (実施例4A)
 下記の点以外は、実施例1Aと同様にして、実施例4Aに係る生体貼付用膜及び実施例4Aに係る積層体を作製した。ポリオキシエチレン(4)(6)ソルビタンモノオレエート水溶液の代わりに、PEG-9ジメチコン水溶液を用いた。生体貼付用膜の質量に対する生体貼付用膜に含まれるPEG-9ジメチコンの質量の比が15%となるように浸漬条件を調整した。生体貼付用膜に含まれるPEG-9ジメチコンの質量は、実施例1Aに記載の方法に準じて決定した。
(Example 4A)
Except for the following points, a biomedical adhesive membrane according to Example 4A and a laminate according to Example 4A were produced in the same manner as Example 1A. Instead of the polyoxyethylene (4) (6) sorbitan monooleate aqueous solution, a PEG-9 dimethicone aqueous solution was used. The dipping conditions were adjusted so that the ratio of the mass of PEG-9 dimethicone contained in the bioadhesive membrane to the mass of the bioadhesive membrane was 15%. The mass of PEG-9 dimethicone contained in the membrane for biopsy was determined according to the method described in Example 1A.
 (実施例4B)
 下記の点以外は、実施例1Aと同様にして、実施例4Bに係る生体貼付用膜及び実施例4Bに係る積層体を作製した。ポリオキシエチレン(4)(6)ソルビタンモノオレエート水溶液の代わりに、PEG-9ジメチコン水溶液を用いた。生体貼付用膜の質量に対する生体貼付用膜に含まれるPEG-9ジメチコンの質量の比が10%となるように浸漬条件を調整した。生体貼付用膜に含まれるPEG-9ジメチコンの質量は、実施例1Aに記載の方法に準じて決定した。
(Example 4B)
Except for the following points, a biomedical adhesive membrane according to Example 4B and a laminate according to Example 4B were produced in the same manner as Example 1A. Instead of the polyoxyethylene (4) (6) sorbitan monooleate aqueous solution, a PEG-9 dimethicone aqueous solution was used. The dipping conditions were adjusted so that the ratio of the mass of PEG-9 dimethicone contained in the bioadhesive membrane to the mass of the bioadhesive membrane was 10%. The mass of PEG-9 dimethicone contained in the membrane for biopsy was determined according to the method described in Example 1A.
 表1及び表2に各実施例及び各比較例に係る生体貼付用膜に対する装着試験の結果(装着時間)を示す。なお、全ての実施例において、装着してから少なくとも30分以上継続して装着できることを確認した。実施例1A~1Jと比較例1Aとを比較すると、ポリオキシエチレン(4)(6)ソルビタンモノオレエート、ポリオキシエチレン(4)(6)ソルビタンモノラウレート、ポリオキシエチレン(4)(20)ソルビタンモノラウレート、ポリオキシエチレン(4)(20)ソルビタンモノパルミテート、ポリオキシエチレン(4)(20)ソルビタンモノステアレート、ビスPEG-18メチルエーテルジメチルシラン、PEG-11メチルエーテルジメチコン、PEG-9ジメチコン、PEG/PPG-20/22ブチルエーテルジメチコン、又はPEG-9メチルエーテルジメチコンを含んでいると、生体貼付用膜の装着時間が劇的に短縮されることが示された。比較例2Aの結果から、HLB値が2.1のソルビタントリステアレートを含んでいても、生体貼付用膜の装着時間を短縮できなかった。比較例2Bの結果から、HLB値が18.9のジステアリン酸ポリエチレングリコール(140 E.O.)を含んでいても、生体貼付用膜の装着時間を短縮できなかった。比較例3A~3Eによれば、13.3、14.9、15.6、16.7、又は17.8のHLB値を有する成分を含むポリ乳酸膜を用いても、生体貼付用膜の装着時間を短縮できなかった。以上より、再生セルロース及びHLB値が4~18である添加剤を含む生体貼付用膜は、短時間で皮膚に貼り付け可能であることが示された。 Tables 1 and 2 show the results (wearing time) of the wearing test on the biomedical adhesive membranes according to each example and each comparative example. In all of the examples, it was confirmed that it can be continuously mounted for at least 30 minutes after mounting. When Examples 1A to 1J were compared with Comparative Example 1A, polyoxyethylene (4) (6) sorbitan monooleate, polyoxyethylene (4) (6) sorbitan monolaurate, polyoxyethylene (4) (20 ) Sorbitan monolaurate, polyoxyethylene (4) (20) sorbitan monopalmitate, polyoxyethylene (4) (20) sorbitan monostearate, bisPEG-18 methyl ether dimethylsilane, PEG-11 methyl ether dimethicone, Including PEG-9 dimethicone, PEG / PPG-20 / 22 butyl ether dimethicone, or PEG-9 methyl ether dimethicone has been shown to dramatically reduce the mounting time of the biomedical membrane. From the result of Comparative Example 2A, even when sorbitan tristearate having an HLB value of 2.1 was included, it was not possible to shorten the wearing time of the bioadhesive membrane. From the result of Comparative Example 2B, even when polyethylene glycol distearate (140 E.O.) having an HLB value of 18.9 was included, the wearing time of the bioadhesive membrane could not be shortened. According to Comparative Examples 3A to 3E, even when using a polylactic acid film containing a component having an HLB value of 13.3, 14.9, 15.6, 16.7, or 17.8, Installation time could not be shortened. From the above, it was shown that the bioadhesive membrane containing the regenerated cellulose and the additive having an HLB value of 4 to 18 can be applied to the skin in a short time.
 表2によれば、生体貼付用膜が10質量%以上のポリオキシエチレン(4)(20)ソルビタンモノステアレートを含むと、生体貼付用膜の装着時間を劇的に短縮できることが示された。加えて、生体貼付用膜が10質量%以上のビスPEG-18メチルエーテルジメチルシランを含むと、生体貼付用膜の装着時間を劇的に短縮できることが示された。さらに、生体貼付用膜が10質量%以上のPEG-9ジメチコンを含むと、生体貼付用膜の装着時間を劇的に短縮できることが示された。以上より、生体貼付用膜におけるHLB値が4~18である添加剤の濃度が10質量%以上であると、生体貼付用膜を皮膚に短時間で貼り付け可能であることが示された。 According to Table 2, it was shown that when the biomedical adhesive membrane contains 10% by mass or more of polyoxyethylene (4) (20) sorbitan monostearate, the wearing time of the bioadhesive membrane can be dramatically shortened. . In addition, it has been shown that when the bioadhesive membrane contains 10% by mass or more of bisPEG-18 methyl ether dimethylsilane, the wearing time of the bioadhesive membrane can be dramatically shortened. Furthermore, it was shown that when the bioadhesive membrane contains 10 mass% or more of PEG-9 dimethicone, the wearing time of the bioadhesive membrane can be dramatically shortened. From the above, it was shown that when the concentration of the additive having an HLB value of 4 to 18 in the biomedical adhesive film is 10% by mass or more, the bioadhesive film can be applied to the skin in a short time.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 10      生体貼付用膜
 11      第一主面
 12      第二主面
 21      第一保護層
 22      第二保護層
 50a、50b 積層体
DESCRIPTION OF SYMBOLS 10 Membrane for biological sticking 11 1st main surface 12 2nd main surface 21 1st protective layer 22 2nd protective layer 50a, 50b Laminate

Claims (10)

  1.  再生セルロースと、前記再生セルロースの生体組織への装着を促進する促進剤とを含み、
     20~5000nmの厚みを有する自己支持型であり、
     前記促進剤は、4~18のHLB値を有する、
     生体貼付用膜。
    Regenerated cellulose, and an accelerator that promotes attachment of the regenerated cellulose to a living tissue,
    A self-supporting type having a thickness of 20 to 5000 nm,
    The accelerator has an HLB value of 4 to 18,
    Membrane for living body application.
  2.  前記再生セルロースは、30,000以上の重量平均分子量を有する、請求項1に記載の生体貼付用膜。 The membrane for bioadhesion according to claim 1, wherein the regenerated cellulose has a weight average molecular weight of 30,000 or more.
  3.  20~1300nmの厚みを有する、請求項1又は2に記載の生体貼付用膜。 The membrane for bioadhesion according to claim 1 or 2, having a thickness of 20 to 1300 nm.
  4.  前記再生セルロースは、150,000以上の重量平均分子量を有する、請求項1~3のいずれか1項に記載の生体貼付用膜。 The membrane for bioadhesion according to any one of claims 1 to 3, wherein the regenerated cellulose has a weight average molecular weight of 150,000 or more.
  5.  前記促進剤は、エチレングリコール鎖又はポリエチレングリコール鎖を有する化合物である、請求項1~4のいずれか1項に記載の生体貼付用膜。 The bio-adhesive membrane according to any one of claims 1 to 4, wherein the accelerator is a compound having an ethylene glycol chain or a polyethylene glycol chain.
  6.  前記促進剤は、下記式(A)で表される化合物、下記(B)で表される化合物、及び下記(C)で表される化合物からなる群から選ばれる少なくとも1つである、請求項1~5のいずれか1項に記載の生体貼付用膜。
    Figure JPOXMLDOC01-appb-C000001

    Figure JPOXMLDOC01-appb-C000002

    Figure JPOXMLDOC01-appb-C000003

     式(A)、(B)、及び(C)において、a、b、c、d、及びeのそれぞれが0以上
    の整数であり、a及びbの少なくとも1つが1以上の整数であり、c、d、及びeの少なくとも1つが1以上の整数であり、fが1以上の整数であり、R1及びR2は、各々独立して、アルキル基、アルコキシ基、(ポリ)エチレングリコール(アルキルエーテル)基、又は(ポリ)プロピレングリコール基を意味する。
    The accelerator is at least one selected from the group consisting of a compound represented by the following formula (A), a compound represented by the following (B), and a compound represented by the following (C). 6. The membrane for biological application according to any one of 1 to 5.
    Figure JPOXMLDOC01-appb-C000001

    Figure JPOXMLDOC01-appb-C000002

    Figure JPOXMLDOC01-appb-C000003

    In formulas (A), (B), and (C), each of a, b, c, d, and e is an integer of 0 or more, and at least one of a and b is an integer of 1 or more, c , D, and e are each an integer of 1 or more, f is an integer of 1 or more, and R 1 and R 2 are each independently an alkyl group, an alkoxy group, (poly) ethylene glycol (alkyl Ether) group or (poly) propylene glycol group.
  7.  当該生体貼付用膜における前記促進剤の含有量が10~90重量%である、請求項1~6のいずれか1項に記載の生体貼付用膜。 The membrane for biological application according to any one of claims 1 to 6, wherein the content of the accelerator in the membrane for biological application is 10 to 90% by weight.
  8.  前記促進剤は、ビスPEG-18メチルエーテルジメチルシラン、ポリオキシエチレン(4)(6)ソルビタンモノオレエート、ポリオキシエチレン(4)(6)ソルビタンモノラウレート、ポリオキシエチレン(4)(20)ソルビタンモノラウレート、ポリオキシエチレン(4)(20)ソルビタンモノパルミテート、ポリオキシエチレン(4)(20)ソルビタンモノステアレート、PEG-11メチルエーテルジメチコン、PEG-9ジメチコン、PEG-9メチルエーテルジメチコン、及びPEG/PPG-20/22ブチルエーテルジメチコンからなる群から選ばれる少なくとも1つである、請求項1~7のいずれか1項に記載の生体貼付用膜。 Examples of the accelerator include bisPEG-18 methyl ether dimethylsilane, polyoxyethylene (4) (6) sorbitan monooleate, polyoxyethylene (4) (6) sorbitan monolaurate, polyoxyethylene (4) (20 ) Sorbitan monolaurate, polyoxyethylene (4) (20) sorbitan monopalmitate, polyoxyethylene (4) (20) sorbitan monostearate, PEG-11 methyl ether dimethicone, PEG-9 dimethicone, PEG-9 methyl The membrane for bioadhesion according to any one of claims 1 to 7, which is at least one selected from the group consisting of ether dimethicone and PEG / PPG-20 / 22 butyl ether dimethicone.
  9.  生体貼付用膜を貼り付ける美容方法であって、
     前記生体貼付用膜は、再生セルロースと、前記再生セルロースの生体組織への装着を促進する、4~18のHLB値を有する促進剤とを含み、かつ、20~5000nmの厚みを有する自己支持型であり、
     油性成分を含む装着剤を生体組織及び前記生体貼付用膜に付着させて、前記生体組織に前記生体貼付用膜を貼り付ける、
     美容方法。
    A cosmetic method for affixing a membrane for bioadhesion,
    The membrane for bioadhesion includes a regenerated cellulose and a promoter having an HLB value of 4 to 18 that promotes the attachment of the regenerated cellulose to a living tissue, and has a thickness of 20 to 5000 nm. And
    Attaching a mounting agent containing an oily component to a living tissue and the membrane for attaching a living body, and attaching the membrane for attaching a living body to the living tissue,
    Beauty method.
  10.  前記油性成分が、脂肪酸、パラフィン、ナフテン、シクロパラフィン、及びシリコーンオイルからなる群から選ばれる少なくとも1つである、請求項9に記載の美容方法。 The cosmetic method according to claim 9, wherein the oil component is at least one selected from the group consisting of fatty acids, paraffins, naphthenes, cycloparaffins, and silicone oils.
PCT/JP2019/004365 2018-05-17 2019-02-07 Film for application to living body and cosmetic method in which film for application to living body is applied WO2019220700A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980016937.9A CN111801090B (en) 2018-05-17 2019-02-07 Film for sticking living body and cosmetic method for sticking film for sticking living body
JP2020518973A JP7170232B2 (en) 2018-05-17 2019-02-07 Adhesive film for living body and cosmetic method of sticking the film for living body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-095739 2018-05-17
JP2018095739 2018-05-17

Publications (1)

Publication Number Publication Date
WO2019220700A1 true WO2019220700A1 (en) 2019-11-21

Family

ID=68540128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004365 WO2019220700A1 (en) 2018-05-17 2019-02-07 Film for application to living body and cosmetic method in which film for application to living body is applied

Country Status (3)

Country Link
JP (1) JP7170232B2 (en)
CN (1) CN111801090B (en)
WO (1) WO2019220700A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002226379A (en) * 2001-01-30 2002-08-14 Rohto Pharmaceut Co Ltd Sheetlike external preparation
JP2005343943A (en) * 2004-06-01 2005-12-15 Shiseido Co Ltd Oil-in-water type detergent composition and sheet-like detergent
JP2014227389A (en) * 2013-05-24 2014-12-08 ロレアル Self-supporting cosmetic sheet
JP2015110550A (en) * 2013-10-30 2015-06-18 ロート製薬株式会社 Wiping sheet
JP2015193604A (en) * 2014-03-18 2015-11-05 パナソニックIpマネジメント株式会社 Method of fabricating skin adhesion sheet, cosmetic method, and skin adhesion sheet
WO2016114390A1 (en) * 2015-01-16 2016-07-21 株式会社マンダム Cleansing lotion, sheet cosmetic product, and cosmetic method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1938809A4 (en) * 2005-09-20 2012-05-16 Hisamitsu Pharmaceutical Co Adhesive skin patch
JP2012025704A (en) * 2010-07-26 2012-02-09 Sepa Sigma Inc Porous multilayered regenerated cellulose flat film for cosmetic sheet
WO2012017892A1 (en) * 2010-08-03 2012-02-09 久光製薬株式会社 Transdermal patch and method for augmenting adhesive strength thereof
CN103561737A (en) * 2011-05-31 2014-02-05 久光制药株式会社 Ropinirole-containing adhesive skin patch and packaged product thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002226379A (en) * 2001-01-30 2002-08-14 Rohto Pharmaceut Co Ltd Sheetlike external preparation
JP2005343943A (en) * 2004-06-01 2005-12-15 Shiseido Co Ltd Oil-in-water type detergent composition and sheet-like detergent
JP2014227389A (en) * 2013-05-24 2014-12-08 ロレアル Self-supporting cosmetic sheet
JP2015110550A (en) * 2013-10-30 2015-06-18 ロート製薬株式会社 Wiping sheet
JP2015193604A (en) * 2014-03-18 2015-11-05 パナソニックIpマネジメント株式会社 Method of fabricating skin adhesion sheet, cosmetic method, and skin adhesion sheet
WO2016114390A1 (en) * 2015-01-16 2016-07-21 株式会社マンダム Cleansing lotion, sheet cosmetic product, and cosmetic method

Also Published As

Publication number Publication date
JPWO2019220700A1 (en) 2021-05-27
JP7170232B2 (en) 2022-11-14
CN111801090A (en) 2020-10-20
CN111801090B (en) 2023-03-07

Similar Documents

Publication Publication Date Title
JP5600005B2 (en) Water-soluble electrospun sheet
JP6450945B2 (en) Membrane for living body application
JP6598207B2 (en) Water-soluble hyaluronic acid gel and method for producing the same
WO2012063947A1 (en) Gel sheet comprising lipidic peptide type gelling agent and polymeric compound
CN111818908B (en) Film for attaching living body and cosmetic method for attaching film for attaching living body
KR101858451B1 (en) Cosmetic composition for a dry sheet type mask pack and method for preparing the dry sheet type mask pack
JP7382373B2 (en) Cellulose-containing articles for skin
KR102399486B1 (en) Composition containing biocellulose microfibril network water dispersions for blocking particulate matter
KR20150011260A (en) Beauty kit containing cosmetic composition and patch, and method for beauty
WO2018224099A1 (en) Silicone pad having active ingredients for skin care and against skin aging
WO2019220700A1 (en) Film for application to living body and cosmetic method in which film for application to living body is applied
JP7170231B2 (en) Adhesive film for living body, laminate, and cosmetic method
JP7170286B2 (en) Adhesive film for living body
WO2019220702A1 (en) Biological attachment sheet
JP7170233B2 (en) Adhesive film for biological application, sheet for application to biological application, and cosmetic method for attaching film for biological application
JP7382566B2 (en) Spraying agent, spraying device, method of using the spraying agent, and method of manufacturing the spraying agent
KR102349932B1 (en) Composition containing biocellulose microfibril network water dispersions for Protecting Keratin Structure
Fan et al. Skin Involved Nanotechnology 20
BG4109U1 (en) Compositions of forms for local application on the skin containing ginkgo biloba seed extract or mixture of ginkgo biloba seed extract and individual biologically active polyphenolic compound
CN112618410A (en) Plant-based polysaccharide nanofiber matrices with functional ingredients for skin care products

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19802733

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020518973

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19802733

Country of ref document: EP

Kind code of ref document: A1