WO2019220529A1 - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
WO2019220529A1
WO2019220529A1 PCT/JP2018/018730 JP2018018730W WO2019220529A1 WO 2019220529 A1 WO2019220529 A1 WO 2019220529A1 JP 2018018730 W JP2018018730 W JP 2018018730W WO 2019220529 A1 WO2019220529 A1 WO 2019220529A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
side wall
compressor
drive shaft
separation member
Prior art date
Application number
PCT/JP2018/018730
Other languages
French (fr)
Japanese (ja)
Inventor
下地 美保子
宏樹 長澤
将吾 諸江
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/018730 priority Critical patent/WO2019220529A1/en
Priority to JP2020518847A priority patent/JP6854973B2/en
Publication of WO2019220529A1 publication Critical patent/WO2019220529A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation

Definitions

  • the present invention relates to a compressor provided with an oil separating member for separating lubricating oil from a refrigerant.
  • Patent Document 1 discloses a hermetic compressor in which an oil separation plate that rotates together with a drive shaft having an oil supply passage is attached to an upper space of an electric motor.
  • the oil separation plate is formed with a recess protruding downward in the center.
  • the oil separation plate is configured such that an opening on the lower end side of the discharge pipe is inserted into the recess, the upper side of the insertion hole of the rotor is closed by the recess, and pumping of oil from the oil supply passage to the discharge space is prevented.
  • the oil separation plate is provided with an oil drain hole on the wall surface of the recess so that the lubricating oil staying at the bottom of the recess is not sucked into the discharge pipe.
  • a high-pressure shell type compressor high-pressure refrigerant gas and lubricating oil are discharged from a compression chamber into a sealed container.
  • the refrigerant gas is also called discharge gas.
  • the lubricating oil that has not been separated in the sealed container is finally discharged out of the sealed container from the discharge pipe.
  • the hermetic compressor of Patent Document 1 when the flow rate of the refrigerant gas increases, the pressure loss of the discharge pipe increases, the suction force increases, the oil discharge capacity of the oil discharge hole is overcome, and the oil outflow amount from the discharge pipe May increase. That is, in this hermetic compressor, there is a possibility that the lubricating oil cannot be efficiently separated from the refrigerant gas containing the lubricating oil depending on the flow rate of the refrigerant gas.
  • the present invention has been made to solve the above-described problems, and provides a compressor capable of efficiently separating lubricating oil from refrigerant gas containing lubricating oil regardless of the flow rate of the refrigerant gas.
  • the purpose is to do.
  • the compressor according to the present invention includes a sealed container that forms an outer shell, a compression mechanism section provided below the sealed container, a stator, and a rotor.
  • An upper motor portion a drive shaft that connects the rotor and the compression mechanism portion, an oil separation member that rotates by being connected to an upper end portion of the drive shaft, and an upper portion of the oil separation member
  • the oil separation member is provided on the upper surface of the plate portion that rotates in conjunction with the drive shaft, and faces the discharge pipe together with the upper surface. And a drainage path protruding from the outer peripheral surface of the side wall.
  • the oil separating member rotates, a speed difference is generated between the gas speed around the side wall and the rotational speed of the oil drain outlet, and the relative oil flow causes the oil path to flow.
  • Pressure loss can be generated at the outlet end. That is, since the oil drainage capacity can be increased by the pressure drop at the outlet end of the oil drain passage, the lubricating oil can be efficiently separated regardless of the flow rate of the refrigerant gas.
  • (A) is explanatory drawing which showed the principle of the oil discharge path of the conventional compressor
  • (B) is explanatory drawing which showed the principle of the oil discharge path of the compressor of Embodiment 1 of this invention.
  • FIG. 1 is a longitudinal sectional view showing an overall configuration of a compressor according to Embodiment 1 of the present invention.
  • FIG. 2 is an enlarged view of a main part showing the upper part of the compressor according to Embodiment 1 of the present invention.
  • FIG. 3 is a perspective view showing an oil separation member of the compressor according to Embodiment 1 of the present invention.
  • the compressor 80 includes a sealed container 1 having an oil reservoir 1 a that stores the lubricating oil 4 at the bottom. Inside the hermetic container 1, an electric motor unit 2 and a compression mechanism unit 3 driven by the electric motor unit 2 are installed.
  • the sealed container 1 includes a cylindrical central container 11 and an upper container 12 and a lower container 13 that are fitted in the upper and lower openings of the central container 11 in a sealed state.
  • a suction pipe 6 to which a suction muffler 5 is attached is connected to the central container 11.
  • a discharge pipe 7 is connected to the upper container 12.
  • the suction pipe 6 is a connection pipe for sending low-temperature and low-pressure gas refrigerant flowing through the suction muffler 5 into the compression mechanism unit 3.
  • the discharge pipe 7 is a connection pipe for allowing the high-temperature and high-pressure gas refrigerant in the sealed container 1 compressed by the compression mechanism unit 3 to flow into the refrigerant pipe.
  • the electric motor unit 2 includes a stator 21 provided inside the sealed container 1 and a rotatable rotor 22 disposed inside the stator 21 and connected to a drive shaft 23.
  • the stator 21 is fixed to the inner peripheral surface of the central container 11.
  • the rotor 22 is provided with its outer peripheral surface facing the inner peripheral surface of the stator 21.
  • a preset interval, that is, an air gap 2 a is provided between the outer peripheral surface of the rotor 22 and the inner peripheral surface of the stator 21.
  • a drive shaft 23 that extends downward is connected to the rotor 22.
  • the drive shaft 23 is rotatably supported by the upper bearing 34 and the lower bearing 35 and rotates together with the rotor 22.
  • an oil suction hole 23 a that opens to the bottom side of the sealed container 1 is provided in the shaft center portion of the drive shaft 23.
  • a centrifugal pump 23b having a helical stirring plate is provided in the oil suction hole 23a.
  • the compression mechanism section 3 is fixed to the central container 11 with a lower space A provided in the lower part of the electric motor section 2.
  • the compression mechanism unit 3 is connected to the drive shaft 23 and has a function of compressing the refrigerant.
  • the compression mechanism unit 3 includes a cylindrical cylinder 31, a piston 32, a vane 33, an upper bearing 34, and a lower bearing 35.
  • the upper bearing 34 is provided with an upper muffler 36.
  • the lower bearing 35 is provided with a lower muffler 37.
  • an oil supply pipe 40 that extends downward through the lower muffler 37 is fixed to the lower portion of the compression mechanism unit 3 with a gap between the drive shaft 23 and the oil supply pipe 40.
  • the cylinder 31 has a central axis that is eccentric with respect to the central axis of the drive shaft 23.
  • the cylinder 31 is provided with a suction port 38 to which the suction pipe 6 is connected.
  • the cylinder 31 is provided with a discharge port 34 a provided in the upper bearing 34 and a groove (not shown) that connects the discharge port 35 a provided in the lower bearing 35 and the inside of the cylinder 31.
  • the cylinder 31 is provided with a through hole (not shown) for returning the lubricating oil 4 separated at the upper part of the cylinder 31 to the oil reservoir 1a.
  • the piston 32 is coaxial with the central axis of the drive shaft 23 and is fitted to the drive shaft 23 so as to rotate together with the drive shaft 23.
  • a vane 33 is slidably accommodated in the piston 32.
  • Each of the upper bearing 34 and the lower bearing 35 has a disc portion, and the upper and lower end surfaces of the cylinder 31 are closed by the disc portion.
  • the discharge port 34 a is formed in the disc portion of the upper bearing 34.
  • the discharge port 35 a is formed in the disc portion of the lower bearing 35. That is, the compression mechanism unit 3 is connected to the electric motor unit 2 via the drive shaft 23, and the driving force of the electric motor unit 2 is transmitted to the compression mechanism unit 3 via the drive shaft 23, thereby allowing the gas refrigerant to flow. It is configured to compress.
  • the upper muffler 36 is provided on the upper part of the disk part of the upper bearing 34, that is, on the upper part of the compression mechanism part 3 so as to cover the discharge port 34 a.
  • a muffler discharge hole 36 a is formed in the upper muffler 36.
  • the lower muffler 37 is provided in the lower part of the disk part of the lower bearing 35 so that the discharge outlet 35a may be covered.
  • the lubricating oil 4 stored in the oil storage section 1a in the sealed container 1 is sucked into the oil suction hole 23a through the oil supply pipe 40 by the centrifugal pump 23b that rotates together with the drive shaft 23.
  • the lubricating oil 4 sucked into the oil suction hole 23 a flows between the upper bearing 34 and the drive shaft 23 from the upper oil supply port 23 c and flows between the upper bearing 34 and the upper surface of the piston 32.
  • the lubricating oil 4 flows between the lower bearing 35 and the drive shaft 23 from the lower oil supply port 23 d and flows between the lower bearing 35 and the lower surface of the piston 32.
  • the drive shaft 23 and the piston 32 rotate smoothly by supplying the lubricating oil 4.
  • the lubricating oil 4 is also supplied to the vane 33 side so that the vane 33 slides smoothly.
  • the lubricating oil 4 is separated from the gas mixed with the gas refrigerant and the lubricating oil 4 in the upper space B of the electric motor unit 2 in the sealed container 1.
  • An oil separating member 100 used for returning to the bottom of the oil is provided.
  • the oil separation member 100 is connected to the upper end portion of the drive shaft 23 and rotates.
  • the oil separation member 100 is connected to the protruding portion 23e of the drive shaft 23, and is provided on a disk-shaped plate portion 100a that rotates in conjunction with the drive shaft 23, and an upper surface of the plate portion 100a.
  • a side wall portion 100b forming a recess 8 facing the discharge pipe 7 together with the upper surface.
  • the plate portion 100 a has an outer diameter that is substantially the same as the outer diameter of the rotor 22. That is, the plate portion 100 a covers the upper side of the gas hole 22 a provided in the rotor 22.
  • the side wall part 100b is provided so as to surround the lower part of the discharge pipe 7 along the peripheral edge of the plate part 100a.
  • an oil drainage path 100c protruding in the radial direction from the outer peripheral surface of the side wall part 100b is provided.
  • four oil drain passages 100c are provided at intervals along the circumferential direction of the side wall portion 100b.
  • the oil drainage path 100c is an oil drainage pipe constituted by a pipe line as an example.
  • the gas in which the lubricating oil 4 and the gas refrigerant are mixed passes through a groove communicating with the inside of the cylinder 31 from the discharge port 34a provided in the upper bearing 34 to the internal space of the upper muffler 36. And flows into the inner space of the lower muffler 37 from the discharge port 35 a provided in the lower bearing 35.
  • the gas refrigerant that has flowed into the inner space of the lower muffler 37 is guided to the inner space of the upper muffler 36 through gas holes (not shown) passing through the lower bearing 35, the cylinder 31, and the upper bearing 34.
  • the gas refrigerant is discharged from the muffler discharge hole 36 a into the lower space A between the electric motor unit 2 and the compression mechanism unit 3.
  • the mixed gas discharged into the lower space A is, as indicated by an arrow X in FIG. 2, an air gap 2 a provided between the gas hole 22 a provided in the rotor 22 and the stator 21 and the rotor 22. And flow into the upper space B in the upper part of the sealed container 1.
  • the mixed gas flowing into the upper space B collides with the lower surface of the plate portion 100a of the oil separation member 100. At this time, a part of the lubricating oil 4 contained in the discharge gas is agglomerated and separated by falling downward due to gravity against the gas flow.
  • a swirling flow is generated by the rotation of the oil separating member 100, and the mixed gas colliding with the lower surface of the plate portion 100a flows in the horizontal direction while being attracted by the swirling flow.
  • a density difference between the lubricating oil 4 and the refrigerant gas contained in the mixed gas, and a larger centrifugal force acts as the particle size of the lubricating oil 4 increases. Therefore, the lubricating oil 4 follows a movement trajectory having a turning radius larger than that of the refrigerant gas, and collides with the inner peripheral surface of the sealed container 1 to be separated from the refrigerant gas.
  • FIG. 4 is a graph showing an example of a calculation result showing the relationship between the operating rotational speed of the compressor and the representative diameter of oil droplets flowing out from the compression mechanism.
  • the horizontal axis of FIG. 4 represents the operating rotational speed [rps] of the compressor.
  • the vertical axis in FIG. 4 indicates the representative oil droplet diameter [ ⁇ m] flowing out from the compression mechanism.
  • the graph shown in FIG. 4 is calculated using the equation of Tatterson et al. (Corona “Revised Gas-Liquid Two-Phase Flow Technology Handbook”, P301) under the conditions assuming heating operation. From the graph shown in FIG. 4, it can be seen that the average particle size of the oil droplets becomes smaller as the number of revolutions increases.
  • the discharge pipe 7 is installed in the vicinity of the upper surface of the plate portion 100a.
  • the distance between the opening end of the discharge pipe 7 and the upper surface of the plate portion 100a is set at a position where the outflow amount of the lubricating oil 4 flowing out of the compressor 80 is minimized. That is, there is an optimum point in the distance between the opening end of the discharge pipe 7 and the plate portion 100a.
  • the optimum point has an effect (a) in which the lubricating oil 4 hardly flows out and an effect (b) in which the lubricating oil 4 easily flows out. ).
  • the oil droplet behavior of (a) and (b) will be described below.
  • the lubricating oil 4 is not discharged from the recessed portion 8, the oil layer staying in the recessed portion 8 becomes thick and a lot of oil is sucked into the discharge pipe 7. Therefore, in order to efficiently perform oil separation from the mixed gas at high rotational speed operation, the lubricating oil 4 once flowing into the recess 8 is discharged so as not to stay in the recess 8 and be sucked into the discharge pipe 7. There is a need to.
  • the oil separation member 100 of the compressor 80 according to Embodiment 1 has the oil discharge passage 100c protruding from the outer peripheral surface of the side wall portion 100b, the lubricating oil 4 can be efficiently separated from the mixed gas. it can.
  • FIG. 5A is an explanatory view showing the operation of a conventional oil separation member
  • FIG. 5B is an explanatory view showing the operation of the oil separation member in Embodiment 1 of the present invention
  • FIG. 6A is an explanatory view showing the principle of the oil discharge passage of the conventional compressor
  • FIG. 6B is an explanatory view showing the principle of the oil discharge passage of the compressor according to Embodiment 1 of the present invention. is there.
  • the broken line arrows indicate the gas flow
  • the white arrows indicate the rotation direction of the rotor 22.
  • the arrows shown in FIGS. 6A and 6B indicate the gas flow.
  • symbol W of FIG. 6 (A) and FIG. 6 (B) has shown the liquid stored in the container.
  • swirl flows are generated in the outer periphery of the conventional oil separation member 90 and the outer periphery of the oil separation member 100 according to the first embodiment.
  • the oil drain passage 100c is provided in the side wall portion 100b so as to protrude in the radial direction. It is moving at the rotation speed. Therefore, the moving speed of the outlet end of the oil drain passage 100c is much higher than the speed of the swirl flow in the region several mm away from the side wall 100b, and the pipe of the oil drain passage 100c is relatively in the direction of the arrow Y. A flow of refrigerant gas that bends against the wall is generated.
  • the discharge hole 90c is formed in the side wall portion 90b, so that the flow Y generated in the oil separation member 100 according to the first embodiment is generated. do not do.
  • the principle of the oil drainage passage 100c of the oil separation member 100 in the first embodiment uses the principle used for spraying or spraying.
  • a pipe 90d shown in FIG. 6 (A) corresponds to the discharge hole 90c of the conventional oil separation member 90 shown in FIG. 5 (A).
  • the pipe 100d shown in FIG. 6B corresponds to the oil drain passage 100c of the oil separation member 100 in the first embodiment. As shown in FIG.
  • the compressor 80 applies the above principle, and separates the lubricating oil 4 from the refrigerant by utilizing the difference between the pressure at the outlet end of the pipe 100d and the ambient pressure. .
  • FIG. 7 is a graph showing the relationship between the magnitude of the negative pressure generated in the oil drainage path of the compressor according to Embodiment 1 of the present invention and the gas flow rate.
  • the horizontal axis in FIG. 7 indicates the gas velocity.
  • the vertical axis in FIG. 7 indicates the magnitude of the negative pressure generated.
  • (A) shown in FIG. 7 shows the magnitude of the negative pressure generated in the oil drain passage 100c of the compressor 80.
  • (B) shown in FIG. 7 has shown the magnitude
  • the negative pressure generated in the oil discharge passage 100c increases as the gas flow rate increases.
  • the negative pressure does not increase even if the gas flow rate increases. That is, according to the compressor 80 of the first embodiment, the lubricating oil 4 staying in the recess 8 can be discharged to the outside of the side wall portion 100b by using the negative pressure generated in the oil discharge passage 100c.
  • the compressor 80 includes an oil separation member 100 that is connected to the upper end portion of the drive shaft 23 and rotates, and a discharge pipe 7 provided above the oil separation member 100. Yes.
  • the oil separating member 100 includes a plate portion 100a that rotates in conjunction with the drive shaft 23, a side wall portion 100b that is provided on the upper surface of the plate portion 100a, and that forms a recess 8 that faces the discharge pipe 7 together with the upper surface, and a side wall portion. And an oil drain passage 100c protruding from the outer peripheral surface of 100b.
  • the compressor 80 when the oil separation member 100 rotates, the compressor 80 generates a speed difference between the gas speed around the side wall portion 100b and the rotation speed at the outlet end of the oil drainage passage 100c, and the relative gas flow is reduced.
  • the flow can generate a pressure loss at the outlet end of the oil discharge passage.
  • the compressor 80 can reduce the lubricating oil 4 flowing out from the discharge pipe 7, and there is no shortage of oil supply to the sliding portion, and a highly reliable compressor can be obtained.
  • FIG. 8 is a modification of the compressor according to Embodiment 1 of the present invention, and is an enlarged view of the main part of the oil separation member.
  • the oil drainage passage 100c shown in FIG. 8 is characterized in that the front portion in the rotation direction of the drive shaft 23 protrudes outward from the rear portion in the rotation direction of the drive shaft 23.
  • the end surface on the outlet side of the oil drainage passage 100c is configured as an inclined surface that inclines toward the side wall portion 100b from the front to the rear in the rotation direction of the drive shaft 23.
  • the end surface on the outlet side of the oil drainage passage 100 c is an inclined surface that inclines from the front to the rear in the rotational direction of the drive shaft 23, so that a few mm from the side wall 100 b.
  • the swirling flow in the remote area can be adjusted, and the negative pressure generated at the outlet end of the oil drain passage 100c can be adjusted.
  • the oil drainage path 100c may have a configuration in which, for example, the end surface on the outlet side is a curved surface that descends toward the side wall portion 100b from the front to the rear in the rotation direction of the drive shaft 23, or may have another shape.
  • the configuration of the oil discharge passage 100c is not limited to the compressor of the first embodiment, and can be applied to the compressors of the second to fourth embodiments described below.
  • FIG. 9 is a perspective view showing an oil separation member of the compressor according to Embodiment 2 of the present invention.
  • FIG. 10 is an explanatory view showing constituent members of the oil separation member according to Embodiment 2 of the present invention.
  • symbol is attached
  • the oil separation member 100 of the compressor 80 has a configuration in which a side wall portion 101 b provided on the upper surface of the plate portion 101 a is formed with a concave portion 8 having a square shape in plan view. is there.
  • the side wall portion 101b can generate a swirl flow stronger than the concave portion 8 having a circular shape in plan view described in the first embodiment. This is because the surrounding gas can be stirred by the planar side wall portion 101b.
  • the oil drain passage 101c is provided at one opposing vertex of the side wall 101b.
  • Lubricating oil 4 after colliding with the inner wall of the side wall 101b is agglomerated at the apex. That is, the lubricating oil 4 can be efficiently discharged to the outside of the side wall 101b by providing the side wall 101b at the apex.
  • the oil draining path 101c may be provided also in another vertex part, and a higher oil draining effect can be acquired. .
  • the oil separation member 101 is formed by bending a part of the side wall portion 101b to form an oil drain passage 101c.
  • the processing cost can be reduced.
  • the oil drain passage 101c may be formed as a separate body and then attached to the side wall 101b.
  • illustration is omitted, in the second embodiment, the side wall portion 101b may be formed by bending each edge of the rectangular plate portion 101a.
  • FIG. 11 is a perspective view showing an oil separation member, which is Modification Example 1 of the compressor according to Embodiment 2 of the present invention.
  • 12 is a development view of the oil separating member shown in FIG. In FIG. 12, the solid line indicates the outline or the cut portion, and the broken line indicates the bent portion.
  • the oil separation member 102 shown in FIG. 11 has a configuration in which a concave portion 8 having a hexagonal shape in plan view is formed on a side wall portion 102b provided on the upper surface of the plate portion 102a.
  • This side wall portion 102b can also generate a swirl flow stronger than the concave portion 8 having a circular shape in plan view described in the first embodiment.
  • the oil drainage path 102c is provided at the apex of the side wall 102b.
  • Lubricating oil 4 after colliding with the inner wall of the side wall 102b is agglomerated at the apex. That is, the lubricating oil 4 can be efficiently discharged to the outside of the side wall 102b by providing the side wall 102b at the apex.
  • the oil drain passage 102c may be provided at all the apexes shown in the figure, or may be provided only at some apexes.
  • the oil separation member 102 is formed by bending a single plate material. Specifically, the side wall part 102b is formed in each edge of the hexagonal board part 102a. Oil drain passage pieces 102d constituting part of the oil drain passage 102c are formed at both ends of the side wall portion 102b. The oil drain passage 102c is formed by combining adjacent oil drain passage pieces 102d. Of the adjacent oil drain passage pieces 102d, one has a fitting hole 102e and the other has a fitting claw 102f. The fitting hole 102e and the fitting claw 102f are formed in a portion that becomes the upper surface of the oil drainage passage 102c.
  • the fitting hole 102e and the fitting claw portion 102f are fitted together, and the adjacent oil drain passage pieces 102d are coupled to form the oil drain passage 102c.
  • bonds the adjacent oil draining path piece 102d is not limited to the form shown in FIG.11 and FIG.12. Other forms may be used as long as adjacent oil drain passage pieces 102d can be joined to form the oil drain passage 102c.
  • FIG. 13 is a second variation of the compressor according to the second embodiment of the present invention, and is an exploded view of the oil separation member.
  • the oil separation member 103 shown in FIG. 13 also has a configuration in which the side wall portion 103b provided on the upper surface of the plate portion 103a is a concave portion 8 having a hexagonal shape in plan view.
  • the oil separation member 103 shown in FIG. 13 is formed by combining three constituent members 9 each having a part of the plate portion 103a, the side wall portion 103b, and the oil discharge passage 103c.
  • Each component 9 has the same configuration.
  • the component member 9 is formed by bending a rectangular plate material. An intermediate portion of the plate material corresponds to the plate portion 103a. Side wall portions 103b are formed at both ends in the longitudinal direction of each plate material. An oil drain passage piece 103d constituting a part of the oil drain passage 103c is formed at both left and right ends of the side wall portion 103b.
  • a fitting hole 103e is formed in one of the adjacent oil drain passage pieces 103d, and a fitting claw 103f is formed in the other. The fitting hole 103e and the fitting claw 103f are formed in a portion that becomes the upper surface of the oil drainage passage 103c.
  • a connecting hole 103g is formed in the central portion of each plate material. Since the component member 9 has a simple shape and can be easily molded, the component member 9 can contribute to a reduction in manufacturing cost of the oil separation member 103.
  • the oil separating member 103 in order to form the oil separating member 103, first, the three component members 9 arranged at different angles so that the shape in plan view is a hexagon are overlapped, and the position of the connecting hole 103g is set. Match. And the connection claw part 103h is attached to the connection hole 103g, and the three structural members 9 are joined. Next, the fitting hole 103e and the fitting claw portion 103f are fitted together to connect the adjacent oil drainage passage pieces 103d to form the oil drainage passage 103c.
  • bonds the adjacent oil draining path piece 103d is not limited to the form shown in FIG. Other forms may be used as long as the oil drainage passage 103c can be formed by combining adjacent oil drainage passage pieces 103d.
  • the method of joining the three component members 9 is not limited to the illustrated form, and other forms may be used. Further, the number of the constituent members 9 is not limited to three as illustrated, and may be two or more.
  • the oil separation member 101, 102 or 103 in the second embodiment is a side wall portion 101b, 102b or 103b provided on the upper surface of the plate portion 101a, 102a or 103a, and the shape in plan view is, for example, a triangle or an octagon. A polygonal configuration may be used.
  • the compressor 80 according to the second embodiment is configured such that the side wall portion 101b, 102b, or 103b forms the concave portion 8 having a polygonal shape in plan view.
  • the oil drain passages 101c, 102c, or 103c are provided at at least one vertex among the plurality of polygonal vertexes. Therefore, the compressor 80 according to the second embodiment can efficiently discharge the lubricating oil 4 aggregated at the apex of the polygon to the outside of the side wall portion 101b, 102b or 103b. An effect can be obtained.
  • FIG. 14 is a perspective view showing an oil separation member of a compressor according to Embodiment 3 of the present invention.
  • FIG. 15 is a distribution diagram of pressure acting on the oil separation member of the compressor according to Embodiment 3 of the present invention.
  • the third embodiment only parts different from the configurations described in the first and second embodiments will be described. The same components as those described in the first and second embodiments are denoted by the same reference numerals, and the description thereof is omitted as appropriate.
  • an oil drain passage 104c is formed on the upper surface of the disk-shaped plate portion 104a so as to protrude outward at the center portion of the side wall surface.
  • the four flat side wall portions 104b are provided, and the concave portion 8 having a square shape in plan view is formed.
  • the oil drainage passage 104c has a gate shape and is formed at substantially the same height as the side wall portion 104b.
  • a gap 104d for discharging the lubricating oil 4 to the outside of the side wall part 104b is provided between the adjacent side wall parts 104b. Specifically, the gap 104d is provided at the apex of the rectangle.
  • the oil drain passage 104c is provided in the vicinity of the center of each side wall surface that is closest to the discharge pipe 7. This is because a negative pressure that opposes the suction force of the discharge pipe 7 is generated to prevent the lubricating oil 4 from flowing out of the discharge pipe 7.
  • the oil drainage path 104c is not limited to being provided in the vicinity of the central portion, and may be provided at other locations on the side wall surface. Further, the oil drainage passage 104c is not limited to the illustrated shape, and may be, for example, a circular tube as shown in FIG. 3 or another shape.
  • a negative pressure region (due to flow pressure loss of the discharge pipe 7) is surrounded by a broken line at the center of the oil separation member 104. I) has occurred.
  • a negative pressure region (II) is generated from the center of the side wall portion 104b to the counter-rotation direction side by the rotation of the side wall portion 104b. Due to the influence of the negative pressure regions (I) and (II), a partial stagnation region is formed, and the centrifugal force separation effect of the oil droplets is reduced.
  • the oil discharge passage 104c since the oil discharge passage 104c is provided, the lubricating oil 4 from the stagnation region can be discharged to the outside of the side wall portion 102b, and oil separation can be performed efficiently. Can do.
  • the configuration is shown in which the gap 104d is provided at the apex of the side wall 104b.
  • the oil drainage path 104c may be provided at any or all apexes instead of the gap 104d.
  • a higher separation effect can be obtained by increasing the number of oil drain passages 104c.
  • the oil separation member 104 in Embodiment 3 can be processed by bending a single plate by forming the plate portion 104a into a quadrangular shape, and processing costs can be reduced.
  • the oil separation member 104 may process each component member as a separate member, and may combine finally.
  • the compressor 80 of Embodiment 3 may arrange
  • FIG. 16 is a perspective view showing an oil separation member of a compressor according to Embodiment 4 of the present invention.
  • the fourth embodiment only parts different from the configurations described in the first to third embodiments will be described. The same components as those described in the first to third embodiments are denoted by the same reference numerals, and the description thereof is omitted as appropriate.
  • the oil separation member 105 of the compressor 80 is provided on the disk-shaped plate portion 105a and the upper surface of the plate portion 105a, and faces the discharge pipe 7 together with the upper surface.
  • This is a configuration having an annular side wall portion 105b that forms the recess 8 and an oil drain passage 105c protruding from the outer peripheral surface of the side wall portion 105b.
  • four oil drain passages 105c are provided at intervals along the circumferential direction of the side wall portion 105b.
  • the oil drainage passage 105c has a configuration in which the tip end is bent downward so that the outlet end is located below the upper surface of the plate portion 105a.
  • the compressor 80 according to the fourth embodiment has a swirl generated by the rotation of the oil separation member 105 by bending the front end portion of the oil discharge passage 105c downward and away from the side wall portion 105b.
  • the flow becomes smaller and the velocity of gas flowing around the oil drainage passage 103c becomes relatively larger.
  • the negative pressure generated increases as the gas flow rate increases. Therefore, the compressor 80 according to Embodiment 4 can also increase the negative pressure generated in the oil discharge passage 105c, so that the oil discharge capability can be improved.
  • FIG. 17 is a perspective view showing a modified example of the oil separation member of the compressor according to Embodiment 4 of the present invention.
  • the oil separation member 106 shown in FIG. 17 is provided with a disk-shaped plate portion 106a, an annular side wall portion 106b that is provided on the upper surface of the plate portion 106a and forms a concave portion 8 that faces the discharge pipe 7 together with the upper surface.
  • the oil drain passage 106c protrudes from the outer peripheral surface of the side wall 106b.
  • four oil drain passages 106c are provided at intervals along the circumferential direction of the side wall 106b.
  • the oil drain passage 106c is configured to be inclined downward so that the outlet end is located on the lower side of the sealed container 1 with respect to the upper surface of the plate portion 106a. Even if it is the said structure, the effect similar to the oil separation member 105 shown in FIG. 16 can be acquired.
  • the present invention has been described above based on the embodiment, the present invention is not limited to the configuration of the embodiment described above.
  • the illustrated internal configuration of the compressor 80 is an example, and is not limited to the above-described content, and may include other components.
  • the structure which protruded in the direction different from radial direction from the outer peripheral surface of a side wall part may be sufficient as an oil drainage path.
  • the present invention includes a range of design changes and application variations usually made by those skilled in the art without departing from the technical idea thereof.

Abstract

A compressor (80) comprises an airtight container (1) forming the contour, a compression mechanism part (3) provided in the lower part of the airtight container interior, an electric motor part (2) having a stator (21) and a rotor (22) and provided higher than the compression mechanism part in the airtight container interior, a drive shaft connecting the rotor and the compression mechanism part, a rotating oil-separating member (100) connected to the upper end part of the drive shaft, and a discharge tube (7) provided in the upper part of the oil-separating member. The oil-separating member has a plate part (100a) that rotates in tandem with the drive shaft, a side wall part (100b) that is provided to the upper surface of the plate part and that together with the upper surface forms a recess (8) facing the discharge tube, and oil discharge channels (100c) protruding from the outer peripheral surface of the side wall part.

Description

圧縮機Compressor
 本発明は、冷媒から潤滑油を分離する油分離部材を備えた圧縮機に関するものである。 The present invention relates to a compressor provided with an oil separating member for separating lubricating oil from a refrigerant.
 近年では、回転式圧縮機のインバータ化及び大容量化などにより冷媒の流量が多くなり、これに伴い密閉容器から外への潤滑油の持ち出し量が増加している。潤滑油が密閉容器の外へ持ち出されると、密閉容器内に設けられた摺動部品の潤滑が不十分になって、圧縮機の信頼性が低下したり、空調機の運転効率が低下したりする。このため、回転式圧縮機は、潤滑油が密閉容器の外へ持ち出されないための油分離対策が各種行われている。 In recent years, the flow rate of refrigerant has increased due to the increase in capacity and capacity of rotary compressors, and the amount of lubricating oil taken out from sealed containers has increased accordingly. If the lubricating oil is taken out of the sealed container, the sliding parts provided in the sealed container will be insufficiently lubricated, reducing the reliability of the compressor and reducing the operating efficiency of the air conditioner. To do. For this reason, in the rotary compressor, various oil separation measures are taken to prevent the lubricating oil from being taken out of the sealed container.
 例えば特許文献1には、電動機の上部空間に給油通路を有する駆動軸とともに回転する油分離板が取り付けられた密閉形圧縮機が開示されている。油分離板は、中央部に下方側に向かって突き出す凹部が形成されている。油分離板は、凹部内に吐出管の下端側の開口部が挿入され、凹部でロータの挿嵌孔の上部側を閉鎖し、給油通路から吐出空間への油汲み上げを阻止する構成である。また、油分離板には、凹内部の底部に滞留する潤滑油が、吐出管に吸引されないように、凹部の壁面に排油孔が設けられている。 For example, Patent Document 1 discloses a hermetic compressor in which an oil separation plate that rotates together with a drive shaft having an oil supply passage is attached to an upper space of an electric motor. The oil separation plate is formed with a recess protruding downward in the center. The oil separation plate is configured such that an opening on the lower end side of the discharge pipe is inserted into the recess, the upper side of the insertion hole of the rotor is closed by the recess, and pumping of oil from the oil supply passage to the discharge space is prevented. In addition, the oil separation plate is provided with an oil drain hole on the wall surface of the recess so that the lubricating oil staying at the bottom of the recess is not sucked into the discharge pipe.
実開平2-107783号公報Japanese Utility Model Publication No. 2-107783
 一般的に、高圧シェルタイプの圧縮機では、圧縮室から高圧状態の冷媒ガスと潤滑油が混合した状態で密閉容器内に吐出される。なお、冷媒ガスは、吐出ガスともいう。密閉容器内で分離されなかった潤滑油は、最終的に吐出管から密閉容器の外へ吐出される。特許文献1の密閉形圧縮機では、冷媒ガスの流量が多くなると、吐出管の圧力損失が増大して吸引力が増し、排油孔の排油能力に打ち勝って、吐出管からの油流出量が増加してしまうおそれがある。つまり、この密閉形圧縮機では、冷媒ガスの流量によって、潤滑油を含む冷媒ガスから、潤滑油を効率的に分離することができないおそれがある。 Generally, in a high-pressure shell type compressor, high-pressure refrigerant gas and lubricating oil are discharged from a compression chamber into a sealed container. The refrigerant gas is also called discharge gas. The lubricating oil that has not been separated in the sealed container is finally discharged out of the sealed container from the discharge pipe. In the hermetic compressor of Patent Document 1, when the flow rate of the refrigerant gas increases, the pressure loss of the discharge pipe increases, the suction force increases, the oil discharge capacity of the oil discharge hole is overcome, and the oil outflow amount from the discharge pipe May increase. That is, in this hermetic compressor, there is a possibility that the lubricating oil cannot be efficiently separated from the refrigerant gas containing the lubricating oil depending on the flow rate of the refrigerant gas.
 本発明は、上記のような課題を解決するためになされたもので、冷媒ガスの流量に関わらず、潤滑油を含む冷媒ガスから、潤滑油を効率的に分離することができる圧縮機を提供することを目的とする。 The present invention has been made to solve the above-described problems, and provides a compressor capable of efficiently separating lubricating oil from refrigerant gas containing lubricating oil regardless of the flow rate of the refrigerant gas. The purpose is to do.
 本発明に係る圧縮機は、外郭を形成する密閉容器と、前記密閉容器内の下方に設けられた圧縮機構部と、固定子及び回転子を有し、前記密閉容器内において前記圧縮機構部よりも上方に設けられた電動機部と、前記回転子と前記圧縮機構部とを接続する駆動軸と、前記駆動軸の上端部に接続されて回転する油分離部材と、前記油分離部材の上方に設けられた吐出管と、を備えた圧縮機において、前記油分離部材は、前記駆動軸に連動して回転する板部と、前記板部の上面に設けられ、該上面と共に前記吐出管と対向する凹部を形成する側壁部と、前記側壁部の外周面から突き出す排油路と、を有するものである。 The compressor according to the present invention includes a sealed container that forms an outer shell, a compression mechanism section provided below the sealed container, a stator, and a rotor. An upper motor portion, a drive shaft that connects the rotor and the compression mechanism portion, an oil separation member that rotates by being connected to an upper end portion of the drive shaft, and an upper portion of the oil separation member In the compressor provided with the discharge pipe provided, the oil separation member is provided on the upper surface of the plate portion that rotates in conjunction with the drive shaft, and faces the discharge pipe together with the upper surface. And a drainage path protruding from the outer peripheral surface of the side wall.
 本発明によれば、油分離部材が回転した際に、側壁部の周囲のガス速度と排油路出口の回転速度との間に速度差が生じ、相対的なガスの流れによって排油路の出口端で圧力損失を発生させることができる。つまり、排油路の出口端での圧力降下により排油能力を増大させることができるので、冷媒ガスの流量に関わらず潤滑油を効率的に分離することができる。 According to the present invention, when the oil separating member rotates, a speed difference is generated between the gas speed around the side wall and the rotational speed of the oil drain outlet, and the relative oil flow causes the oil path to flow. Pressure loss can be generated at the outlet end. That is, since the oil drainage capacity can be increased by the pressure drop at the outlet end of the oil drain passage, the lubricating oil can be efficiently separated regardless of the flow rate of the refrigerant gas.
本発明の実施の形態1に係る圧縮機の全体構成を示した縦断面図である。It is the longitudinal cross-sectional view which showed the whole structure of the compressor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る圧縮機の上部を示した要部拡大図である。It is the principal part enlarged view which showed the upper part of the compressor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る圧縮機の油分離部材を示した斜視図である。It is the perspective view which showed the oil separation member of the compressor which concerns on Embodiment 1 of this invention. 圧縮機の運転回転数と圧縮機構から流出する油滴の代表径との関係を示した計算結果の一例を示すグラフである。It is a graph which shows an example of the calculation result which showed the relationship between the driving | operation rotation speed of a compressor, and the representative diameter of the oil droplet which flows out out of a compression mechanism. (A)は従来の油分離部材の動作を示した説明図、(B)は本発明の実施の形態1における油分離部材の動作を示した説明図である。(A) is explanatory drawing which showed operation | movement of the conventional oil separation member, (B) is explanatory drawing which showed operation | movement of the oil separation member in Embodiment 1 of this invention. (A)は従来の圧縮機の排油路の原理を示した説明図、(B)は本発明の実施の形態1の圧縮機の排油路の原理を示した説明図である。(A) is explanatory drawing which showed the principle of the oil discharge path of the conventional compressor, (B) is explanatory drawing which showed the principle of the oil discharge path of the compressor of Embodiment 1 of this invention. 本発明の実施の形態1の圧縮機の排油路に発生する負圧の大きさと、ガス流速との関係を示したグラフである。It is the graph which showed the relationship between the magnitude | size of the negative pressure which generate | occur | produces in the oil discharge path of the compressor of Embodiment 1 of this invention, and a gas flow rate. 本発明の実施の形態1に係る圧縮機の油分離部材の変形例を示した要部拡大図である。It is the principal part enlarged view which showed the modification of the oil separation member of the compressor which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る圧縮機の油分離部材を示した斜視図である。It is the perspective view which showed the oil separation member of the compressor which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る圧縮機の油分離部材の構成部材を示した説明図である。It is explanatory drawing which showed the structural member of the oil separation member of the compressor which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る圧縮機の変形例1であって、油分離部材を示した斜視図である。It is the modification 1 of the compressor which concerns on Embodiment 2 of this invention, Comprising: It is the perspective view which showed the oil separation member. 図11に示した油分離部材の展開図である。It is an expanded view of the oil separation member shown in FIG. 本発明の実施の形態2に係る圧縮機の変形例2であって、油分離部材の展開図である。It is the modification 2 of the compressor which concerns on Embodiment 2 of this invention, Comprising: It is an expanded view of an oil separation member. 本発明の実施の形態3に係る圧縮機の油分離部材を示した斜視図である。It is the perspective view which showed the oil separation member of the compressor which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る圧縮機の油分離部材に作用する圧力の分布図である。It is a distribution map of the pressure which acts on the oil separation member of the compressor concerning Embodiment 3 of the present invention. 本発明の実施の形態4に係る圧縮機の油分離部材を示した斜視図である。It is the perspective view which showed the oil separation member of the compressor which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る圧縮機の油分離部材の変形例を示した斜視図である。It is the perspective view which showed the modification of the oil separation member of the compressor which concerns on Embodiment 4 of this invention.
 以下、図面を参照して、本発明の実施の形態について説明する。なお、各図中、同一又は相当する部分には、同一符号を付して、その説明を適宜省略又は簡略化する。また、各図に記載の構成について、その形状、大きさ、及び配置等は、本発明の範囲内で適宜変更することができる。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and the description thereof is omitted or simplified as appropriate. Moreover, about the structure as described in each figure, the shape, a magnitude | size, arrangement | positioning, etc. can be suitably changed within the scope of the present invention.
 実施の形態1.
 図1は、本発明の実施の形態1に係る圧縮機の全体構成を示した縦断面図である。図2は、本発明の実施の形態1に係る圧縮機の上部を示した要部拡大図である。図3は、本発明の実施の形態1に係る圧縮機の油分離部材を示した斜視図である。
Embodiment 1 FIG.
FIG. 1 is a longitudinal sectional view showing an overall configuration of a compressor according to Embodiment 1 of the present invention. FIG. 2 is an enlarged view of a main part showing the upper part of the compressor according to Embodiment 1 of the present invention. FIG. 3 is a perspective view showing an oil separation member of the compressor according to Embodiment 1 of the present invention.
[構成説明]
 実施の形態1に係る圧縮機80は、図1に示すように、底部に潤滑油4を貯留する油貯留部1aを有する密閉容器1を備えている。この密閉容器1の内部には、電動機部2及び電動機部2に駆動される圧縮機構部3が設置されている。密閉容器1は、円筒形状の中央容器11と、中央容器11の上下の各開口内に密閉状態で嵌入された上容器12及び下容器13と、で構成されている。中央容器11には、サクションマフラ5が取り付けられた吸入管6が接続されている。上容器12には、吐出管7が接続されている。吸入管6は、サクションマフラ5を介して流入する低温低圧のガス冷媒を圧縮機構部3内に送り込むための接続管である。吐出管7は、圧縮機構部3によって圧縮された密閉容器1内の高温高圧のガス冷媒を冷媒配管に流入させるための接続管である。
[Description of configuration]
As shown in FIG. 1, the compressor 80 according to the first embodiment includes a sealed container 1 having an oil reservoir 1 a that stores the lubricating oil 4 at the bottom. Inside the hermetic container 1, an electric motor unit 2 and a compression mechanism unit 3 driven by the electric motor unit 2 are installed. The sealed container 1 includes a cylindrical central container 11 and an upper container 12 and a lower container 13 that are fitted in the upper and lower openings of the central container 11 in a sealed state. A suction pipe 6 to which a suction muffler 5 is attached is connected to the central container 11. A discharge pipe 7 is connected to the upper container 12. The suction pipe 6 is a connection pipe for sending low-temperature and low-pressure gas refrigerant flowing through the suction muffler 5 into the compression mechanism unit 3. The discharge pipe 7 is a connection pipe for allowing the high-temperature and high-pressure gas refrigerant in the sealed container 1 compressed by the compression mechanism unit 3 to flow into the refrigerant pipe.
 電動機部2は、密閉容器1の内部に設けられた固定子21と、固定子21の内側に配置され、駆動軸23が接続された回転自在の回転子22と、を備えている。固定子21は、中央容器11の内周面に固定されている。回転子22は、外周面を固定子21の内周面と対向させて設けられている。回転子22の外周面と固定子21の内周面との間には、予め設定された間隔、すなわちエアギャップ2aが設けられている。回転子22には、下方に延びる駆動軸23が接続されている。駆動軸23は、上部軸受34及び下部軸受35により回転自在に支持され、回転子22と共に回転する。また、駆動軸23の軸心部には、密閉容器1の底部側に開口した油吸込み穴23aが設けられている。油吸込み穴23a内には、螺旋状の撹拌板をもつ遠心ポンプ23bが設けられている。 The electric motor unit 2 includes a stator 21 provided inside the sealed container 1 and a rotatable rotor 22 disposed inside the stator 21 and connected to a drive shaft 23. The stator 21 is fixed to the inner peripheral surface of the central container 11. The rotor 22 is provided with its outer peripheral surface facing the inner peripheral surface of the stator 21. A preset interval, that is, an air gap 2 a is provided between the outer peripheral surface of the rotor 22 and the inner peripheral surface of the stator 21. A drive shaft 23 that extends downward is connected to the rotor 22. The drive shaft 23 is rotatably supported by the upper bearing 34 and the lower bearing 35 and rotates together with the rotor 22. Further, an oil suction hole 23 a that opens to the bottom side of the sealed container 1 is provided in the shaft center portion of the drive shaft 23. A centrifugal pump 23b having a helical stirring plate is provided in the oil suction hole 23a.
 圧縮機構部3は、電動機部2の下部に下空間Aを設けて中央容器11に固定されている。実施の形態1では、圧縮機構部3が、ロータリ式である場合を一例に説明する。圧縮機構部3は、駆動軸23に接続され、冷媒を圧縮する機能を有している。圧縮機構部3は、円筒形状のシリンダー31と、ピストン32と、ベーン33と、上部軸受34と、下部軸受35と、を備えている。また、上部軸受34には、上部マフラ36が設けられている。下部軸受35には、下部マフラ37が設けられている。また、圧縮機構部3の下部には、下部マフラ37を貫通して下方に延びる給油管40が駆動軸23との間に隙間をあけて固定されている。 The compression mechanism section 3 is fixed to the central container 11 with a lower space A provided in the lower part of the electric motor section 2. In the first embodiment, the case where the compression mechanism unit 3 is a rotary type will be described as an example. The compression mechanism unit 3 is connected to the drive shaft 23 and has a function of compressing the refrigerant. The compression mechanism unit 3 includes a cylindrical cylinder 31, a piston 32, a vane 33, an upper bearing 34, and a lower bearing 35. The upper bearing 34 is provided with an upper muffler 36. The lower bearing 35 is provided with a lower muffler 37. In addition, an oil supply pipe 40 that extends downward through the lower muffler 37 is fixed to the lower portion of the compression mechanism unit 3 with a gap between the drive shaft 23 and the oil supply pipe 40.
 シリンダー31は、その中心軸が駆動軸23の中心軸に対して偏心して配置されている。シリンダー31には、吸入管6が接続された吸入口38が設けられている。また、シリンダー31には、上部軸受34に設けられた吐出口34a及び下部軸受35に設けられた吐出口35aとシリンダー31内とを連通する溝(図示は省略)が設けられている。更に、シリンダー31には、シリンダー31の上部で分離された潤滑油4を油貯留部1aに返油するための貫通穴(図示は省略)が設けられている。 The cylinder 31 has a central axis that is eccentric with respect to the central axis of the drive shaft 23. The cylinder 31 is provided with a suction port 38 to which the suction pipe 6 is connected. In addition, the cylinder 31 is provided with a discharge port 34 a provided in the upper bearing 34 and a groove (not shown) that connects the discharge port 35 a provided in the lower bearing 35 and the inside of the cylinder 31. Further, the cylinder 31 is provided with a through hole (not shown) for returning the lubricating oil 4 separated at the upper part of the cylinder 31 to the oil reservoir 1a.
 ピストン32は、駆動軸23の中心軸と同軸線上にあり、駆動軸23と共に回転するように、駆動軸23に嵌合されている。また、ピストン32には、ベーン33が摺動自在に収納されている。上部軸受34及び下部軸受35はそれぞれ円板部を有しており、その円板部でシリンダー31の上下の両端面を閉塞している。吐出口34aは、上部軸受34の円板部に形成されている。吐出口35aは、下部軸受35の円板部に形成されている。つまり、圧縮機構部3は、電動機部2に駆動軸23を介して連結されており、電動機部2の駆動力が駆動軸23を介して圧縮機構部3に伝達されることで、ガス冷媒を圧縮する構成となっている。 The piston 32 is coaxial with the central axis of the drive shaft 23 and is fitted to the drive shaft 23 so as to rotate together with the drive shaft 23. A vane 33 is slidably accommodated in the piston 32. Each of the upper bearing 34 and the lower bearing 35 has a disc portion, and the upper and lower end surfaces of the cylinder 31 are closed by the disc portion. The discharge port 34 a is formed in the disc portion of the upper bearing 34. The discharge port 35 a is formed in the disc portion of the lower bearing 35. That is, the compression mechanism unit 3 is connected to the electric motor unit 2 via the drive shaft 23, and the driving force of the electric motor unit 2 is transmitted to the compression mechanism unit 3 via the drive shaft 23, thereby allowing the gas refrigerant to flow. It is configured to compress.
 上部マフラ36は、吐出口34aを覆うように、上部軸受34の円板部の上部、つまり圧縮機構部3の上部に設けられている。上部マフラ36には、マフラ吐出穴36aが形成されている。下部マフラ37は、吐出口35aを覆うように、下部軸受35の円板部の下部に設けられている。 The upper muffler 36 is provided on the upper part of the disk part of the upper bearing 34, that is, on the upper part of the compression mechanism part 3 so as to cover the discharge port 34 a. A muffler discharge hole 36 a is formed in the upper muffler 36. The lower muffler 37 is provided in the lower part of the disk part of the lower bearing 35 so that the discharge outlet 35a may be covered.
 密閉容器1内の油貯留部1aに貯留された潤滑油4は、駆動軸23と共に回転する遠心ポンプ23bにより、給油管40を介して油吸込み穴23a内へ吸い上げられる。そして、油吸込み穴23a内へ吸い上げられた潤滑油4は、上部給油口23cから上部軸受34と駆動軸23の間に流入すると共に、上部軸受34とピストン32の上面との間に流入する。また、潤滑油4は、下部給油口23dから下部軸受35と駆動軸23との間に流入すると共に、下部軸受35とピストン32の下面との間に流入する。駆動軸23とピストン32は、潤滑油4の供給によって円滑に回転する。また、ベーン33の摺動が円滑に行われるように、ベーン33側にも潤滑油4が供給される。 The lubricating oil 4 stored in the oil storage section 1a in the sealed container 1 is sucked into the oil suction hole 23a through the oil supply pipe 40 by the centrifugal pump 23b that rotates together with the drive shaft 23. The lubricating oil 4 sucked into the oil suction hole 23 a flows between the upper bearing 34 and the drive shaft 23 from the upper oil supply port 23 c and flows between the upper bearing 34 and the upper surface of the piston 32. Further, the lubricating oil 4 flows between the lower bearing 35 and the drive shaft 23 from the lower oil supply port 23 d and flows between the lower bearing 35 and the lower surface of the piston 32. The drive shaft 23 and the piston 32 rotate smoothly by supplying the lubricating oil 4. Further, the lubricating oil 4 is also supplied to the vane 33 side so that the vane 33 slides smoothly.
 また、図2及び図3に示すように、密閉容器1内の電動機部2の上空間Bには、ガス冷媒及び潤滑油4が混合されたガスから潤滑油4を分離して密閉容器1内の底部に戻すために利用される油分離部材100が設けられている。油分離部材100は、駆動軸23の上端部に接続されて回転するものである。具体的には、油分離部材100は、駆動軸23の突出部23eに接続され、駆動軸23に連動して回転する円板状の板部100aと、板部100aの上面に設けられ、該上面と共に吐出管7と対向する凹部8を形成する側壁部100bと、を有している。 As shown in FIGS. 2 and 3, the lubricating oil 4 is separated from the gas mixed with the gas refrigerant and the lubricating oil 4 in the upper space B of the electric motor unit 2 in the sealed container 1. An oil separating member 100 used for returning to the bottom of the oil is provided. The oil separation member 100 is connected to the upper end portion of the drive shaft 23 and rotates. Specifically, the oil separation member 100 is connected to the protruding portion 23e of the drive shaft 23, and is provided on a disk-shaped plate portion 100a that rotates in conjunction with the drive shaft 23, and an upper surface of the plate portion 100a. And a side wall portion 100b forming a recess 8 facing the discharge pipe 7 together with the upper surface.
 図3に示すように、板部100aは、回転子22の外径と略同じ外径を有している。つまり、板部100aは、回転子22に設けられたガス穴22aの上方を覆っている。側壁部100bは、板部100aの周縁に沿って吐出管7の下方を囲むように設けられている。側壁部100bの下部には、側壁部100bの外周面から径方向に向かって突き出す排油路100cが設けられている。排油路100cは、一例として側壁部100bの周方向に沿って間隔をあけて4つ設けられている。排油路100cは、一例として管路で構成した排油管である。 As shown in FIG. 3, the plate portion 100 a has an outer diameter that is substantially the same as the outer diameter of the rotor 22. That is, the plate portion 100 a covers the upper side of the gas hole 22 a provided in the rotor 22. The side wall part 100b is provided so as to surround the lower part of the discharge pipe 7 along the peripheral edge of the plate part 100a. In the lower part of the side wall part 100b, an oil drainage path 100c protruding in the radial direction from the outer peripheral surface of the side wall part 100b is provided. As an example, four oil drain passages 100c are provided at intervals along the circumferential direction of the side wall portion 100b. The oil drainage path 100c is an oil drainage pipe constituted by a pipe line as an example.
[動作説明]
 次に、図1及び図2に基づいて、実施の形態1の圧縮機80の動作を説明する。圧縮機80は、電動機部2の駆動により駆動軸23が回転すると、駆動軸23と共にシリンダー31内のピストン32も回転する。このピストン32の回転により、ピストン32に収納されたベーン33がピストン運動しながら偏心的に回転する。このとき、ガス冷媒は、吸入管6を介して圧縮機構部3の吸入口38から、シリンダー31の内壁、ピストン32及びベーン33により囲まれた圧縮室内に入る。そして、圧縮室内のガス冷媒は、ピストン32の回転に伴って圧縮室内の容積が小さくなるにつれて圧縮されていく。このとき、シリンダー31内に流入した潤滑油4は、ガス冷媒と共に圧縮され、ガス冷媒に混合された状態となる。
[Description of operation]
Next, based on FIG.1 and FIG.2, operation | movement of the compressor 80 of Embodiment 1 is demonstrated. When the drive shaft 23 is rotated by driving the electric motor unit 2, the compressor 80 rotates the piston 32 in the cylinder 31 together with the drive shaft 23. The rotation of the piston 32 causes the vane 33 accommodated in the piston 32 to rotate eccentrically while moving the piston. At this time, the gas refrigerant enters the compression chamber surrounded by the inner wall of the cylinder 31, the piston 32, and the vane 33 from the suction port 38 of the compression mechanism unit 3 through the suction pipe 6. The gas refrigerant in the compression chamber is compressed as the volume in the compression chamber decreases as the piston 32 rotates. At this time, the lubricating oil 4 that has flowed into the cylinder 31 is compressed together with the gas refrigerant and mixed with the gas refrigerant.
 潤滑油4及びガス冷媒が混合しているガス(以下、混合ガスという。)は、シリンダー31内と連通する溝を介して、上部軸受34に設けられた吐出口34aから上部マフラ36の内部空間に流入し、下部軸受35に設けられた吐出口35aから下部マフラ37の内部空間に流入する。下部マフラ37の内部空間に流入したガス冷媒は、下部軸受35、シリンダー31及び上部軸受34を貫通するガス穴(図示は省略)を通って上部マフラ36の内部空間に導かれ、上部マフラ36内のガス冷媒と共にマフラ吐出穴36aから電動機部2と圧縮機構部3の間の下空間Aに吐出される。 The gas in which the lubricating oil 4 and the gas refrigerant are mixed (hereinafter referred to as a mixed gas) passes through a groove communicating with the inside of the cylinder 31 from the discharge port 34a provided in the upper bearing 34 to the internal space of the upper muffler 36. And flows into the inner space of the lower muffler 37 from the discharge port 35 a provided in the lower bearing 35. The gas refrigerant that has flowed into the inner space of the lower muffler 37 is guided to the inner space of the upper muffler 36 through gas holes (not shown) passing through the lower bearing 35, the cylinder 31, and the upper bearing 34. The gas refrigerant is discharged from the muffler discharge hole 36 a into the lower space A between the electric motor unit 2 and the compression mechanism unit 3.
 下空間Aに吐出された混合ガスは、図2の矢印Xで示すように、回転子22に設けられたガス穴22aと、固定子21及び回転子22との間に設けられたエアギャップ2aと、をそれぞれ通って密閉容器1内の上部の上空間Bに流入する。上空間Bに流入した混合ガスは、油分離部材100の板部100aの下面に衝突する。このとき、吐出ガスに含まれる潤滑油4の一部は、凝集され、ガスの流れに逆らって重力によって下方へと落下して、分離される。 The mixed gas discharged into the lower space A is, as indicated by an arrow X in FIG. 2, an air gap 2 a provided between the gas hole 22 a provided in the rotor 22 and the stator 21 and the rotor 22. And flow into the upper space B in the upper part of the sealed container 1. The mixed gas flowing into the upper space B collides with the lower surface of the plate portion 100a of the oil separation member 100. At this time, a part of the lubricating oil 4 contained in the discharge gas is agglomerated and separated by falling downward due to gravity against the gas flow.
 上空間Bでは、油分離部材100の回転により旋回流が発生しており、板部100aの下面に衝突した混合ガスは、旋回流に誘引されながら、水平方向へ流れる。混合ガスに含まれる潤滑油4と冷媒ガスには密度差があり、潤滑油4の粒径の大きいほど大きな遠心力が作用する。そのため、潤滑油4は、冷媒ガスよりも大きな旋回半径の運動軌跡をたどり、密閉容器1の内周面などに衝突して冷媒ガスから分離される。 In the upper space B, a swirling flow is generated by the rotation of the oil separating member 100, and the mixed gas colliding with the lower surface of the plate portion 100a flows in the horizontal direction while being attracted by the swirling flow. There is a density difference between the lubricating oil 4 and the refrigerant gas contained in the mixed gas, and a larger centrifugal force acts as the particle size of the lubricating oil 4 increases. Therefore, the lubricating oil 4 follows a movement trajectory having a turning radius larger than that of the refrigerant gas, and collides with the inner peripheral surface of the sealed container 1 to be separated from the refrigerant gas.
 図4は、圧縮機の運転回転数と圧縮機構から流出する油滴の代表径との関係を示した計算結果の一例を示すグラフである。図4の横軸は、圧縮機の運転回転数[rps]を示している。図4の縦軸は、圧縮機構部から流出する代表油滴径[μm]を示している。図4に示すグラフは、暖房運転を想定した条件で、Tattersonらの式(コロナ社「改訂気液二相流技術ハンドブック」、P301)を用いて計算したものである。図4に示すグラフから、高回転数になるほど、油滴の平均粒径が小さくなることがわかる。 FIG. 4 is a graph showing an example of a calculation result showing the relationship between the operating rotational speed of the compressor and the representative diameter of oil droplets flowing out from the compression mechanism. The horizontal axis of FIG. 4 represents the operating rotational speed [rps] of the compressor. The vertical axis in FIG. 4 indicates the representative oil droplet diameter [μm] flowing out from the compression mechanism. The graph shown in FIG. 4 is calculated using the equation of Tatterson et al. (Corona “Revised Gas-Liquid Two-Phase Flow Technology Handbook”, P301) under the conditions assuming heating operation. From the graph shown in FIG. 4, it can be seen that the average particle size of the oil droplets becomes smaller as the number of revolutions increases.
 図2に示すように、吐出管7は、板部100aの上面の近傍に設置されている。吐出管7の開口端と板部100aの上面との距離は、圧縮機80の外部へ流出する潤滑油4の流出量が最小化する位置に設定されている。すなわち、吐出管7の開口端と板部100aとの距離には最適点があり、その最適点は潤滑油4が流出しにくくなる効果(a)と潤滑油4が流出しやすくなる効果(b)によって定まる。以下に(a)、(b)の油滴挙動を説明する。 As shown in FIG. 2, the discharge pipe 7 is installed in the vicinity of the upper surface of the plate portion 100a. The distance between the opening end of the discharge pipe 7 and the upper surface of the plate portion 100a is set at a position where the outflow amount of the lubricating oil 4 flowing out of the compressor 80 is minimized. That is, there is an optimum point in the distance between the opening end of the discharge pipe 7 and the plate portion 100a. The optimum point has an effect (a) in which the lubricating oil 4 hardly flows out and an effect (b) in which the lubricating oil 4 easily flows out. ). The oil droplet behavior of (a) and (b) will be described below.
(a)の油滴挙動
 吐出管7の開口端と板部100aとの距離を近づけると、側壁部100bによって、ガスに含まれる小さい粒径の油滴が、直接に吐出管7の開口端に入る事態を防ぐことができる。また、側壁部100bで囲まれた凹部8へ侵入しようとする油滴を遮蔽する効果が高まる。
(A) Oil Drop Behavior When the distance between the opening end of the discharge pipe 7 and the plate portion 100a is reduced, the oil droplet having a small particle diameter contained in the gas is directly applied to the opening end of the discharge pipe 7 by the side wall portion 100b. You can prevent entry. Moreover, the effect which shields the oil droplet which tries to penetrate | invade into the recessed part 8 enclosed by the side wall part 100b increases.
(b)の油滴挙動
 吐出管7の開口端と板部100aとの距離を近づけると、図2の矢印で示すように側壁部100bの高さを超えたガス冷媒が、吐出管7の開口端に向かって板部100aの上面に沿って流れる。このとき、側壁部100bで囲まれた凹部8に流れたガス冷媒に含まれる微細な油滴は、吐出管7と対向する側である板部100aの上面又は側壁部100bの内側に衝突するなどして油膜になって凹部8内に滞留し、吐出管7に吸い込まれる。ここで、潤滑油4が凹部8内から排出されないと、凹部8内に滞留する油の層が厚くなって多くの油が吐出管7に吸い込まれてしまう。そこで、高回転数運転で混合ガスから油分離を効率的に行うには、一旦凹部8内に流入した潤滑油4が、凹部8内に滞留して吐出管7に吸い込まれることがないよう排出する必要がある。
(B) Oil droplet behavior When the distance between the opening end of the discharge pipe 7 and the plate portion 100a is reduced, the gas refrigerant exceeding the height of the side wall portion 100b as shown by the arrow in FIG. It flows along the upper surface of the plate part 100a toward the end. At this time, fine oil droplets contained in the gas refrigerant that has flowed into the recess 8 surrounded by the side wall portion 100b collide with the upper surface of the plate portion 100a on the side facing the discharge pipe 7 or the inside of the side wall portion 100b. Then, it becomes an oil film, stays in the recess 8, and is sucked into the discharge pipe 7. Here, if the lubricating oil 4 is not discharged from the recessed portion 8, the oil layer staying in the recessed portion 8 becomes thick and a lot of oil is sucked into the discharge pipe 7. Therefore, in order to efficiently perform oil separation from the mixed gas at high rotational speed operation, the lubricating oil 4 once flowing into the recess 8 is discharged so as not to stay in the recess 8 and be sucked into the discharge pipe 7. There is a need to.
 実施の形態1に係る圧縮機80の油分離部材100では、側壁部100bの外周面から突き出す排油路100cを有しているため、混合ガスから、潤滑油4を効率的に分離することができる。 Since the oil separation member 100 of the compressor 80 according to Embodiment 1 has the oil discharge passage 100c protruding from the outer peripheral surface of the side wall portion 100b, the lubricating oil 4 can be efficiently separated from the mixed gas. it can.
[従来の油分離部材と実施の形態1における油分離部材100の動作の比較]
 次に、図5及び図6に基づいて、実施の形態1に係る油分離部材100の動作を、従来の油分離部材90の動作と比較しながら詳しく説明する。図5(A)は従来の油分離部材の動作を示した説明図、図5(B)は本発明の実施の形態1における油分離部材の動作を示した説明図である。図6(A)は従来の圧縮機の排油路の原理を示した説明図、図6(B)は本発明の実施の形態1の圧縮機の排油路の原理を示した説明図である。図5(A)及び図5(B)において、破線矢印はガスの流れ、白抜き矢印は回転子22の回転方向を示している。また、図6(A)及び図6(B)に示した矢印は、ガスの流れを示している。また、図6(A)及び図6(B)の符号Wは、容器に溜めた液体を示している。
[Comparison of Operation of Conventional Oil Separation Member and Oil Separation Member 100 in Embodiment 1]
Next, based on FIGS. 5 and 6, the operation of the oil separation member 100 according to Embodiment 1 will be described in detail while comparing with the operation of the conventional oil separation member 90. FIG. 5A is an explanatory view showing the operation of a conventional oil separation member, and FIG. 5B is an explanatory view showing the operation of the oil separation member in Embodiment 1 of the present invention. FIG. 6A is an explanatory view showing the principle of the oil discharge passage of the conventional compressor, and FIG. 6B is an explanatory view showing the principle of the oil discharge passage of the compressor according to Embodiment 1 of the present invention. is there. 5A and 5B, the broken line arrows indicate the gas flow, and the white arrows indicate the rotation direction of the rotor 22. In addition, the arrows shown in FIGS. 6A and 6B indicate the gas flow. Moreover, the code | symbol W of FIG. 6 (A) and FIG. 6 (B) has shown the liquid stored in the container.
 図5に示すように、従来の油分離部材90の外周部と、実施の形態1に係る油分離部材100の外周部には、それぞれ旋回流(破線矢印)が発生している。図5(B)に示す実施の形態1の油分離部材100では、側壁部100bに排油路100cを径方向に突出させて設けているため、排油路100cの出口端が電動機部2の回転速度で移動している。そのため、側壁部100bから数mm離れた領域の旋回流の速度に対し、排油路100cの出口端の移動速度の方がはるかに大きく、相対的に矢印Yの向きに排油路100cの管壁に衝突して曲がる冷媒ガスの流れが生じる。このとき、排油路100cの出口端で渦流が発生し、局所的な圧力降下が生じる。一方、図5(A)に示すように、従来の油分離部材90では、側壁部90bに排出孔90cを形成した構成なので、実施の形態1に係る油分離部材100に発生する流れYが発生しない。 As shown in FIG. 5, swirl flows (broken arrows) are generated in the outer periphery of the conventional oil separation member 90 and the outer periphery of the oil separation member 100 according to the first embodiment. In the oil separation member 100 of the first embodiment shown in FIG. 5 (B), the oil drain passage 100c is provided in the side wall portion 100b so as to protrude in the radial direction. It is moving at the rotation speed. Therefore, the moving speed of the outlet end of the oil drain passage 100c is much higher than the speed of the swirl flow in the region several mm away from the side wall 100b, and the pipe of the oil drain passage 100c is relatively in the direction of the arrow Y. A flow of refrigerant gas that bends against the wall is generated. At this time, a vortex is generated at the outlet end of the oil discharge passage 100c, and a local pressure drop occurs. On the other hand, as shown in FIG. 5A, in the conventional oil separation member 90, the discharge hole 90c is formed in the side wall portion 90b, so that the flow Y generated in the oil separation member 100 according to the first embodiment is generated. do not do.
 実施の形態1における油分離部材100の排油路100cの原理は、スプレー又は霧吹きなどに用いられる原理を用いたものである。図6(A)に示した配管90dは、図5(A)に示した従来の油分離部材90の排出孔90cに相当する。図6(A)に示す例では、配管90dの出口端の圧力と周囲の圧力とに差がないため、液体Wが配管90d内において上昇することがなく、配管90dから流出しない。一方、図6(B)に示した配管100dは、実施の形態1における油分離部材100の排油路100cに相当する。図6(B)に示すように、配管100dの出口端の圧力が周囲の圧力より降下するので、液体Wが配管100d内において上昇し、配管100dの上端からガスの流れの影響を受けて流出する。つまり、実施の形態1の圧縮機80は、上記原理を応用したものであり、配管100dの出口端の圧力と周囲の圧力との差を利用して冷媒から潤滑油4を分離するものである。 The principle of the oil drainage passage 100c of the oil separation member 100 in the first embodiment uses the principle used for spraying or spraying. A pipe 90d shown in FIG. 6 (A) corresponds to the discharge hole 90c of the conventional oil separation member 90 shown in FIG. 5 (A). In the example shown in FIG. 6A, since there is no difference between the pressure at the outlet end of the pipe 90d and the surrounding pressure, the liquid W does not rise in the pipe 90d and does not flow out of the pipe 90d. On the other hand, the pipe 100d shown in FIG. 6B corresponds to the oil drain passage 100c of the oil separation member 100 in the first embodiment. As shown in FIG. 6B, since the pressure at the outlet end of the pipe 100d falls below the ambient pressure, the liquid W rises in the pipe 100d and flows out from the upper end of the pipe 100d due to the influence of the gas flow. To do. That is, the compressor 80 according to the first embodiment applies the above principle, and separates the lubricating oil 4 from the refrigerant by utilizing the difference between the pressure at the outlet end of the pipe 100d and the ambient pressure. .
 図7は、本発明の実施の形態1の圧縮機の排油路に発生する負圧の大きさと、ガス流速との関係を示したグラフである。図7の横軸は、ガス速度を示している。図7の縦軸は、発生する負圧の大きさを示している。図7に示した(a)は、圧縮機80の排油路100cに発生する負圧の大きさを示している。図7に示した(b)は、排油路として側壁部の外周面に開口部を形成した油分離部材に発生する負圧の大きさを示している。 FIG. 7 is a graph showing the relationship between the magnitude of the negative pressure generated in the oil drainage path of the compressor according to Embodiment 1 of the present invention and the gas flow rate. The horizontal axis in FIG. 7 indicates the gas velocity. The vertical axis in FIG. 7 indicates the magnitude of the negative pressure generated. (A) shown in FIG. 7 shows the magnitude of the negative pressure generated in the oil drain passage 100c of the compressor 80. (B) shown in FIG. 7 has shown the magnitude | size of the negative pressure generate | occur | produced in the oil separation member which formed the opening part in the outer peripheral surface of a side wall part as an oil drainage path.
 図7(a)に示すように、実施の形態1における油分離部材100では、ガス流速に増加するにしたがって、排油路100cに発生する負圧が増加する。一方、図7(b)に示すように、排油路として側壁部の外周面に開口部を形成しただけの油分離部材では、ガス流速が増加しても負圧が増加することはない。つまり、実施の形態1の圧縮機80によれば、排油路100cに生じる負圧を利用して、凹部8内に滞留する潤滑油4を側壁部100bの外部へ排出させることができる。 As shown in FIG. 7A, in the oil separation member 100 according to the first embodiment, the negative pressure generated in the oil discharge passage 100c increases as the gas flow rate increases. On the other hand, as shown in FIG. 7 (b), in the oil separation member in which an opening is formed on the outer peripheral surface of the side wall as an oil drainage path, the negative pressure does not increase even if the gas flow rate increases. That is, according to the compressor 80 of the first embodiment, the lubricating oil 4 staying in the recess 8 can be discharged to the outside of the side wall portion 100b by using the negative pressure generated in the oil discharge passage 100c.
[実施の形態1に係る圧縮機の効果]
 本発明の実施の形態1に係る圧縮機80は、駆動軸23の上端部に接続されて回転する油分離部材100と、油分離部材100の上方に設けられた吐出管7と、を備えている。油分離部材100は、駆動軸23に連動して回転する板部100aと、板部100aの上面に設けられ、該上面と共に吐出管7と対向する凹部8を形成する側壁部100bと、側壁部100bの外周面から突き出す排油路100cと、を有している。
[Effect of Compressor according to Embodiment 1]
The compressor 80 according to the first embodiment of the present invention includes an oil separation member 100 that is connected to the upper end portion of the drive shaft 23 and rotates, and a discharge pipe 7 provided above the oil separation member 100. Yes. The oil separating member 100 includes a plate portion 100a that rotates in conjunction with the drive shaft 23, a side wall portion 100b that is provided on the upper surface of the plate portion 100a, and that forms a recess 8 that faces the discharge pipe 7 together with the upper surface, and a side wall portion. And an oil drain passage 100c protruding from the outer peripheral surface of 100b.
 したがって、圧縮機80は、油分離部材100が回転した際に、側壁部100bの周囲のガス速度と排油路100cの出口端の回転速度との間に速度差が生じ、相対的なガスの流れによって排油路の出口端で圧力損失を発生させることができる。つまり、排油路100cの出口端での圧力降下により排油能力を増大させることができるので、冷媒ガスの流量に関わらず潤滑油4を側壁部100b内から排出して効率的に分離することができる。よって、圧縮機80は、吐出管7から流出する潤滑油4を低減でき、摺動部への給油不足などが発生せず、信頼性の高い圧縮機を得ることができる。 Therefore, when the oil separation member 100 rotates, the compressor 80 generates a speed difference between the gas speed around the side wall portion 100b and the rotation speed at the outlet end of the oil drainage passage 100c, and the relative gas flow is reduced. The flow can generate a pressure loss at the outlet end of the oil discharge passage. In other words, since the oil drainage capacity can be increased by the pressure drop at the outlet end of the oil drain passage 100c, the lubricating oil 4 is discharged from the side wall portion 100b and efficiently separated regardless of the flow rate of the refrigerant gas. Can do. Therefore, the compressor 80 can reduce the lubricating oil 4 flowing out from the discharge pipe 7, and there is no shortage of oil supply to the sliding portion, and a highly reliable compressor can be obtained.
 次に、図8に基づいて、実施の形態1に係る圧縮機の変形例を説明する。図8は、本発明の実施の形態1に係る圧縮機の変形例であって油分離部材の要部拡大図である。図8に示す排油路100cは、駆動軸23の回転方向における前方部分が、駆動軸23の回転方向における後方部分よりも、外方に向かって突き出している構成を特徴としている。具体的には、排油路100cの出口側の端面を、駆動軸23の回転方向の前方から後方に向かって側壁部100b側に傾斜する傾斜面とした構成である。 Next, a modification of the compressor according to Embodiment 1 will be described based on FIG. FIG. 8 is a modification of the compressor according to Embodiment 1 of the present invention, and is an enlarged view of the main part of the oil separation member. The oil drainage passage 100c shown in FIG. 8 is characterized in that the front portion in the rotation direction of the drive shaft 23 protrudes outward from the rear portion in the rotation direction of the drive shaft 23. Specifically, the end surface on the outlet side of the oil drainage passage 100c is configured as an inclined surface that inclines toward the side wall portion 100b from the front to the rear in the rotation direction of the drive shaft 23.
 図8に示す圧縮機80のように、排油路100cの出口側の端面を、駆動軸23の回転方向の前方から後方に向かって傾斜する傾斜面とすることで、側壁部100bから数mm離れた領域の旋回流を調整することができ、排油路100cの出口端で発生する負圧を調整することができる。 Like the compressor 80 shown in FIG. 8, the end surface on the outlet side of the oil drainage passage 100 c is an inclined surface that inclines from the front to the rear in the rotational direction of the drive shaft 23, so that a few mm from the side wall 100 b. The swirling flow in the remote area can be adjusted, and the negative pressure generated at the outlet end of the oil drain passage 100c can be adjusted.
 なお、排油路100cは、例えば出口側の端面を、駆動軸23の回転方向の前方から後方に向かって側壁部100b側に下る湾曲面とした構成でもよいし、その他の形状でもよい。また、当該排油路100cの構成は、実施の形態1の圧縮機に限定されず、下記する実施の形態2~4の圧縮機においても適用することができる。 In addition, the oil drainage path 100c may have a configuration in which, for example, the end surface on the outlet side is a curved surface that descends toward the side wall portion 100b from the front to the rear in the rotation direction of the drive shaft 23, or may have another shape. Further, the configuration of the oil discharge passage 100c is not limited to the compressor of the first embodiment, and can be applied to the compressors of the second to fourth embodiments described below.
 実施の形態2.
 次に、図9~図13に基づいて、本発明の実施の形態2に係る圧縮機を説明する。図9は、本発明の実施の形態2に係る圧縮機の油分離部材を示した斜視図である。図10は、本発明の実施の形態2に係る油分離部材の構成部材を示した説明図である。なお、実施の形態2では、実施の形態1で説明した構成と異なる部分のみを説明する。また、実施の形態1で説明した圧縮機と同一の構成については、同一の符号を付して、その説明を適宜省略する。
Embodiment 2. FIG.
Next, a compressor according to Embodiment 2 of the present invention will be described with reference to FIGS. FIG. 9 is a perspective view showing an oil separation member of the compressor according to Embodiment 2 of the present invention. FIG. 10 is an explanatory view showing constituent members of the oil separation member according to Embodiment 2 of the present invention. In the second embodiment, only the parts different from the configuration described in the first embodiment will be described. Moreover, about the same structure as the compressor demonstrated in Embodiment 1, the same code | symbol is attached | subjected and the description is abbreviate | omitted suitably.
 図9に示すように、実施の形態2の係る圧縮機80の油分離部材100は、板部101aの上面に設けられた側壁部101bで、平面視形状が四角形の凹部8を形成した構成である。この側壁部101bは、実施の形態1で説明した平面視形状が円形の凹部8よりも強い旋回流れを発生させることができる。平面状の側壁部101bで周囲のガスを撹拌させることができるからである。 As shown in FIG. 9, the oil separation member 100 of the compressor 80 according to the second embodiment has a configuration in which a side wall portion 101 b provided on the upper surface of the plate portion 101 a is formed with a concave portion 8 having a square shape in plan view. is there. The side wall portion 101b can generate a swirl flow stronger than the concave portion 8 having a circular shape in plan view described in the first embodiment. This is because the surrounding gas can be stirred by the planar side wall portion 101b.
 また、排油路101cは、側壁部101bの一方の対向する頂点部に設けられている。頂点部には、側壁部101bの内壁に衝突した後の潤滑油4が凝集している。つまり、側壁部101bを頂点部に設けることで、潤滑油4を側壁部101bの外部へ効率的に排出させることができる。なお、図示例では、排油路101cを頂点部の2箇所に設けた構成を示したが、その他の頂点部にも排油路101cを設けてよく、より高い排油効果を得ることができる。 Further, the oil drain passage 101c is provided at one opposing vertex of the side wall 101b. Lubricating oil 4 after colliding with the inner wall of the side wall 101b is agglomerated at the apex. That is, the lubricating oil 4 can be efficiently discharged to the outside of the side wall 101b by providing the side wall 101b at the apex. In addition, in the example of illustration, although the structure which provided the oil draining path 101c in two places of the vertex part was shown, the oil draining path 101c may be provided also in another vertex part, and a higher oil draining effect can be acquired. .
 図10に示すように、実施の形態2における油分離部材101は、側壁部101bの一部を折り曲げて排油路101cを形成したものである。側壁部101bの一部を折り曲げて排油路101cを形成することで、加工コストを抑えることができる。但し、排油路101cは、別体として成形した後、側壁部101bに取り付けた構成でもよい。なお、図示することは省略したが、実施の形態2では、四角形状とした板部101aの各縁辺を折り曲げて側壁部101bを形成した構成でもよい。 As shown in FIG. 10, the oil separation member 101 according to the second embodiment is formed by bending a part of the side wall portion 101b to form an oil drain passage 101c. By bending a part of the side wall portion 101b to form the oil drain passage 101c, the processing cost can be reduced. However, the oil drain passage 101c may be formed as a separate body and then attached to the side wall 101b. Although illustration is omitted, in the second embodiment, the side wall portion 101b may be formed by bending each edge of the rectangular plate portion 101a.
 次に、図11~図13に基づいて、本発明の実施の形態2に係る圧縮機の変形例について説明する。図11は、本発明の実施の形態2に係る圧縮機の変形例1であって、油分離部材を示した斜視図である。図12は、図11に示した油分離部材の展開図である。図12では、実線が外郭又は切り込み部を示し、破線が折り曲げ部を示している。 Next, a modification of the compressor according to Embodiment 2 of the present invention will be described with reference to FIGS. FIG. 11 is a perspective view showing an oil separation member, which is Modification Example 1 of the compressor according to Embodiment 2 of the present invention. 12 is a development view of the oil separating member shown in FIG. In FIG. 12, the solid line indicates the outline or the cut portion, and the broken line indicates the bent portion.
 図11に示した油分離部材102は、板部102aの上面に設けられた側壁部102bで、平面視形状が六角形の凹部8を形成した構成である。この側壁部102bも、実施の形態1で説明した平面視形状が円形の凹部8よりも強い旋回流れを発生させることができる。 The oil separation member 102 shown in FIG. 11 has a configuration in which a concave portion 8 having a hexagonal shape in plan view is formed on a side wall portion 102b provided on the upper surface of the plate portion 102a. This side wall portion 102b can also generate a swirl flow stronger than the concave portion 8 having a circular shape in plan view described in the first embodiment.
 排油路102cは、側壁部102bの頂点部に設けられている。頂点部には、側壁部102bの内壁に衝突した後の潤滑油4が凝集している。つまり、側壁部102bを頂点部に設けることで、潤滑油4を側壁部102bの外部へ効率的に排出させることができる。なお、排油路102cは、図示したすべての頂点部に設けてもよいし、一部の頂点部にのみ設けてもよい。 The oil drainage path 102c is provided at the apex of the side wall 102b. Lubricating oil 4 after colliding with the inner wall of the side wall 102b is agglomerated at the apex. That is, the lubricating oil 4 can be efficiently discharged to the outside of the side wall 102b by providing the side wall 102b at the apex. It should be noted that the oil drain passage 102c may be provided at all the apexes shown in the figure, or may be provided only at some apexes.
 図12に示すように、油分離部材102は、一枚の板材を折り曲げて形成した構成である。具体的には、六角形の板部102aの各縁辺に側壁部102bが形成されている。側壁部102bの両端部には、排油路102cの一部を構成する排油路片102dが形成されている。排油路102cは、隣接する排油路片102dを組み合わせて形成される。隣接する排油路片102dのうち、一方には嵌合穴102eが形成され、他方には嵌合爪部102fが形成されている。嵌合穴102eと嵌合爪部102fは、排油路102cの上面となる部分に形成されている。嵌合穴102eと嵌合爪部102fとを嵌め合わせて、隣接する排油路片102dが結合され、排油路102cが形成される。なお、隣接する排油路片102dを結合する構成は、図11及び図12に示した形態に限定されない。隣接する排油路片102dを結合して排油路102cを形成することができれば、他の形態でもよい。 As shown in FIG. 12, the oil separation member 102 is formed by bending a single plate material. Specifically, the side wall part 102b is formed in each edge of the hexagonal board part 102a. Oil drain passage pieces 102d constituting part of the oil drain passage 102c are formed at both ends of the side wall portion 102b. The oil drain passage 102c is formed by combining adjacent oil drain passage pieces 102d. Of the adjacent oil drain passage pieces 102d, one has a fitting hole 102e and the other has a fitting claw 102f. The fitting hole 102e and the fitting claw 102f are formed in a portion that becomes the upper surface of the oil drainage passage 102c. The fitting hole 102e and the fitting claw portion 102f are fitted together, and the adjacent oil drain passage pieces 102d are coupled to form the oil drain passage 102c. In addition, the structure which couple | bonds the adjacent oil draining path piece 102d is not limited to the form shown in FIG.11 and FIG.12. Other forms may be used as long as adjacent oil drain passage pieces 102d can be joined to form the oil drain passage 102c.
 図13は、本発明の実施の形態2に係る圧縮機の変形例2であって、油分離部材の展開図である。図13に示した油分離部材103も、板部103aの上面に設けられた側壁部103bで、平面視形状が六角形の凹部8とした構成である。図13に示した油分離部材103は、板部103a、側壁部103b及び排油路103cの一部をそれぞれ有する構成部材9を3つ組み合わせて形成されている。 FIG. 13 is a second variation of the compressor according to the second embodiment of the present invention, and is an exploded view of the oil separation member. The oil separation member 103 shown in FIG. 13 also has a configuration in which the side wall portion 103b provided on the upper surface of the plate portion 103a is a concave portion 8 having a hexagonal shape in plan view. The oil separation member 103 shown in FIG. 13 is formed by combining three constituent members 9 each having a part of the plate portion 103a, the side wall portion 103b, and the oil discharge passage 103c.
 各構成部材9は、同一の構成である。構成部材9は、長方形状の板材を折り曲げて形成されたものである。板材の中間部分が板部103aに相当する。各板材の長手方向の両端部には、側壁部103bが形成されている。そして、側壁部103bの左右の両端部には、排油路103cの一部を構成する排油路片103dが形成されている。隣接する排油路片103dのうち、一方には嵌合穴103eが形成され、他方には嵌合爪部103fが形成されている。嵌合穴103eと嵌合爪部103fは、排油路103cの上面となる部分に形成されている。また、各板材の中央部分には、連結穴103gが形成されている。構成部材9は、簡易な形状であり、容易に成形することができるので、油分離部材103の製造コストの削減に寄与できる。 Each component 9 has the same configuration. The component member 9 is formed by bending a rectangular plate material. An intermediate portion of the plate material corresponds to the plate portion 103a. Side wall portions 103b are formed at both ends in the longitudinal direction of each plate material. An oil drain passage piece 103d constituting a part of the oil drain passage 103c is formed at both left and right ends of the side wall portion 103b. A fitting hole 103e is formed in one of the adjacent oil drain passage pieces 103d, and a fitting claw 103f is formed in the other. The fitting hole 103e and the fitting claw 103f are formed in a portion that becomes the upper surface of the oil drainage passage 103c. In addition, a connecting hole 103g is formed in the central portion of each plate material. Since the component member 9 has a simple shape and can be easily molded, the component member 9 can contribute to a reduction in manufacturing cost of the oil separation member 103.
 図13に示すように、油分離部材103を形成するには、先ず、平面視形状が六角形となるように角度を変えて配置した3つの構成部材9を重ねて、連結穴103gの位置を一致させる。そして、連結穴103gに連結爪部103hを取り付けて、3つの構成部材9を接合する。次に、嵌合穴103eと嵌合爪部103fとを嵌め合わせて、隣接する排油路片103dを結合し、排油路103cを形成する。なお、隣接する排油路片103dを結合する構成は、図13に示した形態に限定されない。隣接する排油路片103dを結合して排油路103cを形成することができれば、他の形態でもよい。また、3つの構成部材9を接合する方法も、図示した形態に限定されず、他の形態でもよい。また、構成部材9の個数は、図示した3つに限定されず、2つ以上あればよい。 As shown in FIG. 13, in order to form the oil separating member 103, first, the three component members 9 arranged at different angles so that the shape in plan view is a hexagon are overlapped, and the position of the connecting hole 103g is set. Match. And the connection claw part 103h is attached to the connection hole 103g, and the three structural members 9 are joined. Next, the fitting hole 103e and the fitting claw portion 103f are fitted together to connect the adjacent oil drainage passage pieces 103d to form the oil drainage passage 103c. In addition, the structure which couple | bonds the adjacent oil draining path piece 103d is not limited to the form shown in FIG. Other forms may be used as long as the oil drainage passage 103c can be formed by combining adjacent oil drainage passage pieces 103d. Moreover, the method of joining the three component members 9 is not limited to the illustrated form, and other forms may be used. Further, the number of the constituent members 9 is not limited to three as illustrated, and may be two or more.
 なお、実施の形態2における油分離部材101、102又は103は、板部101a、102a又は103aの上面に設けられた側壁部101b、102b又は103bで、平面視形状が例えば三角形又は八角形などの多角形とした構成でもよい。 The oil separation member 101, 102 or 103 in the second embodiment is a side wall portion 101b, 102b or 103b provided on the upper surface of the plate portion 101a, 102a or 103a, and the shape in plan view is, for example, a triangle or an octagon. A polygonal configuration may be used.
 上記したように、実施の形態2に係る圧縮機80は、側壁部101b、102b又は103bで、平面視形状が多角形の凹部8を形成する構成である。排油路101c、102c又は103cは、多角形の複数の頂点部のうち、少なくとも1つの頂点部に設けられている。よって、実施の形態2に係る圧縮機80は、多角形の頂点部に凝集させた潤滑油4を側壁部101b、102b又は103bの外部へ効率的に排出させることができるので、より高い排油効果を得ることができる。 As described above, the compressor 80 according to the second embodiment is configured such that the side wall portion 101b, 102b, or 103b forms the concave portion 8 having a polygonal shape in plan view. The oil drain passages 101c, 102c, or 103c are provided at at least one vertex among the plurality of polygonal vertexes. Therefore, the compressor 80 according to the second embodiment can efficiently discharge the lubricating oil 4 aggregated at the apex of the polygon to the outside of the side wall portion 101b, 102b or 103b. An effect can be obtained.
 実施の形態3.
 次に、図14及び図15に基づいて、本発明の実施の形態3に係る圧縮機を説明する。図14は、本発明の実施の形態3に係る圧縮機の油分離部材を示した斜視図である。図15は、本発明の実施の形態3に係る圧縮機の油分離部材に作用する圧力の分布図である。なお、実施の形態3では、実施の形態1及び2で説明した構成と異なる部分のみを説明する。また、実施の形態1及び2で説明した圧縮機と同一の構成については、同一の符号を付して、その説明を適宜省略する。
Embodiment 3 FIG.
Next, based on FIG.14 and FIG.15, the compressor which concerns on Embodiment 3 of this invention is demonstrated. FIG. 14 is a perspective view showing an oil separation member of a compressor according to Embodiment 3 of the present invention. FIG. 15 is a distribution diagram of pressure acting on the oil separation member of the compressor according to Embodiment 3 of the present invention. In the third embodiment, only parts different from the configurations described in the first and second embodiments will be described. The same components as those described in the first and second embodiments are denoted by the same reference numerals, and the description thereof is omitted as appropriate.
 図14に示すように、実施の形態3に係る圧縮機80の油分離部材104は、円板状の板部104aの上面に、側壁面の中央部に外方へ突き出す排油路104cが形成された平板状の側壁部104bを4つ設けて、平面視形状が四角形の凹部8を形成した構成である。排油路104cは、門形状であり、側壁部104bと略同一の高さで形成されている。隣接する側壁部104bの間には、潤滑油4を側壁部104bの外部へ排出させる隙間104dが設けられている。具体的には、隙間104dは、四角形の頂点部に設けられている。頂点部には、側壁部101bの内壁に衝突した後の潤滑油4が凝集するからである。つまり、隙間104dを通じて凝集した潤滑油4を側壁部104bの外部へ効率良く排出させることができる。なお、排油路104cは、図示例の場合、吐出管7との距離が最も近くなる各側壁面の中央部付近に設けている。吐出管7の吸引力に対抗する負圧を発生させて、吐出管7から潤滑油4が流出する事態を抑制するためである。但し、排油路104cは、中央部付近に設けることに限定されず、側壁面の他の箇所に設けてもよい。また、排油路104cは、図示した形状に限定されず、例えば図3に示すような円管状でもよいし、他の形状でもよい。 As shown in FIG. 14, in the oil separation member 104 of the compressor 80 according to the third embodiment, an oil drain passage 104c is formed on the upper surface of the disk-shaped plate portion 104a so as to protrude outward at the center portion of the side wall surface. The four flat side wall portions 104b are provided, and the concave portion 8 having a square shape in plan view is formed. The oil drainage passage 104c has a gate shape and is formed at substantially the same height as the side wall portion 104b. A gap 104d for discharging the lubricating oil 4 to the outside of the side wall part 104b is provided between the adjacent side wall parts 104b. Specifically, the gap 104d is provided at the apex of the rectangle. This is because the lubricating oil 4 after colliding with the inner wall of the side wall portion 101b aggregates at the apex portion. That is, the lubricating oil 4 aggregated through the gap 104d can be efficiently discharged to the outside of the side wall portion 104b. In the illustrated example, the oil drain passage 104c is provided in the vicinity of the center of each side wall surface that is closest to the discharge pipe 7. This is because a negative pressure that opposes the suction force of the discharge pipe 7 is generated to prevent the lubricating oil 4 from flowing out of the discharge pipe 7. However, the oil drainage path 104c is not limited to being provided in the vicinity of the central portion, and may be provided at other locations on the side wall surface. Further, the oil drainage passage 104c is not limited to the illustrated shape, and may be, for example, a circular tube as shown in FIG. 3 or another shape.
 図15に示すように、実施の形態3における側壁部104bで形成された凹部8内では、油分離部材104の中央部の破線で囲まれた部分に吐出管7の流動圧損による負圧領域(I)が発生している。また、側壁部104bで平面視形状が四角形の凹部8を形成した場合には、側壁部104bの回転によって側壁部104bの中央から反回転方向側に負圧領域(II)が発生する。この負圧領域(I)及び(II)の影響によって部分的によどみ域ができ、油滴の遠心力分離効果が低下する。しかし、実施の形態3の圧縮機80では、排油路104cを設けた構成なので、よどみ域からの潤滑油4を側壁部102bの外部へ排出することができ、効率的に油分離を行うことができる。 As shown in FIG. 15, in the recess 8 formed by the side wall portion 104 b in the third embodiment, a negative pressure region (due to flow pressure loss of the discharge pipe 7) is surrounded by a broken line at the center of the oil separation member 104. I) has occurred. When the concave portion 8 having a square shape in plan view is formed in the side wall portion 104b, a negative pressure region (II) is generated from the center of the side wall portion 104b to the counter-rotation direction side by the rotation of the side wall portion 104b. Due to the influence of the negative pressure regions (I) and (II), a partial stagnation region is formed, and the centrifugal force separation effect of the oil droplets is reduced. However, in the compressor 80 according to the third embodiment, since the oil discharge passage 104c is provided, the lubricating oil 4 from the stagnation region can be discharged to the outside of the side wall portion 102b, and oil separation can be performed efficiently. Can do.
 なお、実施の形態3では、側壁部104bの頂点部に隙間104dを設けた構成を示したが、隙間104dに代えて、いずれか又はすべての頂点部に排油路104cを設けてもよい。つまり、排油路104cを増やすことで、一層高い分離効果が得られる。また、実施の形態3における油分離部材104は、板部104aを四角形状とすることで、1枚板を折り曲げて加工することができ、加工コストを抑えることができる。なお、油分離部材104は、各構成部材を別部材として加工し、最終的に組み合わせてもよい。また、実施の形態3の圧縮機80は、例えば平面視形状が六角形又は八角形等の多角形の凹部8となるように側壁部104bを配置してもよい。 In the third embodiment, the configuration is shown in which the gap 104d is provided at the apex of the side wall 104b. However, the oil drainage path 104c may be provided at any or all apexes instead of the gap 104d. In other words, a higher separation effect can be obtained by increasing the number of oil drain passages 104c. Moreover, the oil separation member 104 in Embodiment 3 can be processed by bending a single plate by forming the plate portion 104a into a quadrangular shape, and processing costs can be reduced. In addition, the oil separation member 104 may process each component member as a separate member, and may combine finally. Moreover, the compressor 80 of Embodiment 3 may arrange | position the side wall part 104b so that the planar view shape may become the polygonal recessed part 8, such as a hexagon or an octagon, for example.
 実施の形態4.
 次に、図16及び図17に基づいて、本発明の実施の形態4に係る圧縮機80を説明する。図16は、本発明の実施の形態4に係る圧縮機の油分離部材を示した斜視図である。なお、実施の形態4では、実施の形態1~3で説明した構成と異なる部分のみを説明する。また、実施の形態1~3で説明した圧縮機と同一の構成については、同一の符号を付して、その説明を適宜省略する。
Embodiment 4 FIG.
Next, based on FIG.16 and FIG.17, the compressor 80 which concerns on Embodiment 4 of this invention is demonstrated. FIG. 16 is a perspective view showing an oil separation member of a compressor according to Embodiment 4 of the present invention. In the fourth embodiment, only parts different from the configurations described in the first to third embodiments will be described. The same components as those described in the first to third embodiments are denoted by the same reference numerals, and the description thereof is omitted as appropriate.
 図16に示すように、実施の形態4に係る圧縮機80の油分離部材105は、円板状の板部105aと、板部105aの上面に設けられ、該上面と共に吐出管7と対向する凹部8を形成する円環状の側壁部105bと、側壁部105bの外周面から突き出す排油路105cと、を有した構成である。排油路105cは、一例として、側壁部105bの周方向に沿って間隔をあけて4つ設けられている。排油路105cは、出口端が板部105aの上面よりも密閉容器1の下方側となるように、先端部を下方に向かって屈曲させた構成である。つまり、排油路105cの出口端を下向きとすることで、油分離部材105の凹部8内から排油路105cに吸い込まれた潤滑油4を、自重により下方へ落下させて、油分離部材105の外部へ効率的に排出できる。 As shown in FIG. 16, the oil separation member 105 of the compressor 80 according to the fourth embodiment is provided on the disk-shaped plate portion 105a and the upper surface of the plate portion 105a, and faces the discharge pipe 7 together with the upper surface. This is a configuration having an annular side wall portion 105b that forms the recess 8 and an oil drain passage 105c protruding from the outer peripheral surface of the side wall portion 105b. As an example, four oil drain passages 105c are provided at intervals along the circumferential direction of the side wall portion 105b. The oil drainage passage 105c has a configuration in which the tip end is bent downward so that the outlet end is located below the upper surface of the plate portion 105a. That is, by setting the outlet end of the oil discharge passage 105c downward, the lubricating oil 4 sucked into the oil discharge passage 105c from the inside of the recess 8 of the oil separation member 105 is dropped downward by its own weight, and the oil separation member 105 Can be efficiently discharged to the outside.
 また、実施の形態4に係る圧縮機80は、排油路105cの先端部を下方に向かって屈曲させて側壁部105bから離れた位置とすることで、油分離部材105の回転によって発生する旋回流が小さくなり、排油路103cの周辺を流れるガス速度が相対的に大きくなる。図7に基づいて既に説明したように、ガス流速が大きいほど発生する負圧が大きくなる。よって、実施の形態4に係る圧縮機80も、排油路105cに発生する負圧を大きくすることができるので、排油能力を向上できる。 Further, the compressor 80 according to the fourth embodiment has a swirl generated by the rotation of the oil separation member 105 by bending the front end portion of the oil discharge passage 105c downward and away from the side wall portion 105b. The flow becomes smaller and the velocity of gas flowing around the oil drainage passage 103c becomes relatively larger. As already described with reference to FIG. 7, the negative pressure generated increases as the gas flow rate increases. Therefore, the compressor 80 according to Embodiment 4 can also increase the negative pressure generated in the oil discharge passage 105c, so that the oil discharge capability can be improved.
 図17は、本発明の実施の形態4に係る圧縮機の油分離部材の変形例を示した斜視図である。図17に示す油分離部材106は、円板状の板部106aと、板部106aの上面に設けられ、該上面と共に吐出管7と対向する凹部8を形成する円環状の側壁部106bと、側壁部106bの外周面から突き出す排油路106cと、を有した構成である。排油路106cは、一例として、側壁部106bの周方向に沿って間隔をあけて4つ設けられている。排油路106cは、出口端が板部106aの上面よりも、密閉容器1の下方側となるように、下方に向かって傾けた構成である。当該構成であっても、図16に示した油分離部材105と同様の効果を得ることができる。 FIG. 17 is a perspective view showing a modified example of the oil separation member of the compressor according to Embodiment 4 of the present invention. The oil separation member 106 shown in FIG. 17 is provided with a disk-shaped plate portion 106a, an annular side wall portion 106b that is provided on the upper surface of the plate portion 106a and forms a concave portion 8 that faces the discharge pipe 7 together with the upper surface. The oil drain passage 106c protrudes from the outer peripheral surface of the side wall 106b. As an example, four oil drain passages 106c are provided at intervals along the circumferential direction of the side wall 106b. The oil drain passage 106c is configured to be inclined downward so that the outlet end is located on the lower side of the sealed container 1 with respect to the upper surface of the plate portion 106a. Even if it is the said structure, the effect similar to the oil separation member 105 shown in FIG. 16 can be acquired.
 以上に本発明を実施の形態に基づいて説明したが、本発明は上述した実施の形態の構成に限定されるものではない。例えば、図示した圧縮機80の内部構成は、一例であって、上述した内容に限定されるものではなく、他の構成要素を含んでもよい。また、排油路は、側壁部の外周面から径方向とは異なる向きに突き出した構成でもよい。要するに、本発明は、その技術的思想を逸脱しない範囲において、当業者が通常に行う設計変更及び応用のバリエーションの範囲を含むものである。 Although the present invention has been described above based on the embodiment, the present invention is not limited to the configuration of the embodiment described above. For example, the illustrated internal configuration of the compressor 80 is an example, and is not limited to the above-described content, and may include other components. Moreover, the structure which protruded in the direction different from radial direction from the outer peripheral surface of a side wall part may be sufficient as an oil drainage path. In short, the present invention includes a range of design changes and application variations usually made by those skilled in the art without departing from the technical idea thereof.
 1 密閉容器、1a 油貯留部、2 電動機部、2a エアギャップ、3 圧縮機構部、4 潤滑油、5 サクションマフラ、6 吸入管、7 吐出管、8 凹部、9 構成部材、11 中央容器、12 上容器、13 下容器、21 固定子、22 回転子、22a ガス穴、23 駆動軸、23a 油吸込み穴、23b 遠心ポンプ、23c 上部給油口、23d 下部給油口、23e 突出部、31 シリンダー、32 ピストン、33 ベーン、34 上部軸受、34a 吐出口、35 下部軸受、35a 吐出口、36 上部マフラ、36a マフラ吐出穴、37 下部マフラ、38 吸入口、40 給油管、80 圧縮機、90 油分離部材、90c 排油孔、90d 配管、100、101、102、103、104、105、106 油分離部材、100a、101a、102a、103a、104a、105a 板部、100b、101b、102b、103b、104b、105b、106b 側壁部、100c、101c、102c、103c、104c、105c、106c 排油路、100d 配管、102d、103d 排油路片、102e、103e 嵌合穴、102f、103f 嵌合爪部、103g 連結穴、103h 連結爪部、104d 隙間、A 下空間、B 上空間。 1 sealed container, 1a oil reservoir, 2 motor section, 2a air gap, 3 compression mechanism section, 4 lubricating oil, 5 suction muffler, 6 suction pipe, 7 discharge pipe, 8 recess, 9 components, 11 central container, 12 Upper container, 13 Lower container, 21 Stator, 22 Rotor, 22a Gas hole, 23 Drive shaft, 23a Oil suction hole, 23b Centrifugal pump, 23c Upper oil supply port, 23d Lower oil supply port, 23e Projection, 31 Cylinder, 32 Piston, 33 vane, 34 upper bearing, 34a discharge port, 35 lower bearing, 35a discharge port, 36 upper muffler, 36a muffler discharge hole, 37 lower muffler, 38 suction port, 40 oil supply pipe, 80 compressor, 90 oil separation member , 90c oil drain hole, 90d piping, 100, 101, 102, 103, 104, 10 , 106 Oil separation member, 100a, 101a, 102a, 103a, 104a, 105a Plate part, 100b, 101b, 102b, 103b, 104b, 105b, 106b Side wall part, 100c, 101c, 102c, 103c, 104c, 105c, 106c Oil passage, 100d piping, 102d, 103d oil drain passage piece, 102e, 103e fitting hole, 102f, 103f fitting claw, 103g connecting hole, 103h connecting claw, 104d gap, A lower space, B upper space.

Claims (9)

  1.  外郭を形成する密閉容器と、
     前記密閉容器内の下方に設けられた圧縮機構部と、
     固定子及び回転子を有し、前記密閉容器内において前記圧縮機構部よりも上方に設けられた電動機部と、
     前記回転子と前記圧縮機構部とを接続する駆動軸と、
     前記駆動軸の上端部に接続されて回転する油分離部材と、
     前記油分離部材の上方に設けられた吐出管と、を備えた圧縮機において、
     前記油分離部材は、
     前記駆動軸に連動して回転する板部と、
     前記板部の上面に設けられ、該上面と共に前記吐出管と対向する凹部を形成する側壁部と、
     前記側壁部の外周面から突き出す排油路と、を有する、圧縮機。
    An airtight container forming an outer shell;
    A compression mechanism provided below the sealed container;
    An electric motor section having a stator and a rotor, and provided above the compression mechanism section in the sealed container;
    A drive shaft connecting the rotor and the compression mechanism;
    An oil separation member connected to the upper end of the drive shaft and rotating;
    In a compressor provided with a discharge pipe provided above the oil separation member,
    The oil separating member is
    A plate portion that rotates in conjunction with the drive shaft;
    A side wall portion that is provided on the upper surface of the plate portion and forms a concave portion that faces the discharge pipe together with the upper surface;
    And a drainage passage projecting from the outer peripheral surface of the side wall portion.
  2.  前記排油路は、前記側壁部の外周面から径方向に向かって突き出した構成である、請求項1に記載の圧縮機。 The compressor according to claim 1, wherein the oil drainage path is configured to project radially from the outer peripheral surface of the side wall portion.
  3.  前記排油路は、管路で形成されている、請求項1又は2に記載の圧縮機。 The compressor according to claim 1 or 2, wherein the oil drainage path is formed by a pipe line.
  4.  前記側壁部は、平面視形状が多角形の凹部を形成する構成とされ、
     前記排油路は、多角形の複数の頂点部のうち、少なくとも1つの頂点部に設けられている、請求項1~3のいずれか一項に記載の圧縮機。
    The side wall portion is configured to form a polygonal concave portion in plan view,
    The compressor according to any one of claims 1 to 3, wherein the oil drainage passage is provided at at least one vertex portion among a plurality of vertex portions of a polygon.
  5.  前記側壁部は、平面視形状が多角形の凹部を形成する構成とされ、
     前記排油路は、多角形を構成する複数の側壁面のうち、少なくとも1つの側壁面に設けられている、請求項1~3のいずれか一項に記載の圧縮機。
    The side wall portion is configured to form a polygonal concave portion in plan view,
    The compressor according to any one of claims 1 to 3, wherein the oil drainage path is provided on at least one side wall surface among a plurality of side wall surfaces constituting a polygon.
  6.  前記排油路は、前記駆動軸の回転方向における前方部分が、前記駆動軸の回転方向における後方部分よりも、外方に向かって突き出している、請求項1~5のいずれか一項に記載の圧縮機。 The drainage path according to any one of claims 1 to 5, wherein a front portion in the rotation direction of the drive shaft protrudes outward from a rear portion in the rotation direction of the drive shaft. Compressor.
  7.  前記排油路は、前記側壁部が設けられた前記板部の上面よりも前記密閉容器の下方に、出口側の端部が位置している、請求項1~6のいずれか一項に記載の圧縮機。 The outlet side end portion of the oil drainage path is located below the airtight container with respect to the upper surface of the plate portion on which the side wall portion is provided. Compressor.
  8.  前記側壁部と、前記板部又は前記排油路とは、1枚の板材を折り曲げて成形された構成である、請求項1~7のいずれか一項に記載の圧縮機。 The compressor according to any one of claims 1 to 7, wherein the side wall portion and the plate portion or the oil drainage path are formed by bending a single plate material.
  9.  前記油分離部材は、前記板部、前記側壁部及び前記排油路の一部を有する構成部材を複数組み合わせて形成されている、請求項1~7のいずれか一項に記載の圧縮機。 The compressor according to any one of claims 1 to 7, wherein the oil separation member is formed by combining a plurality of constituent members having the plate portion, the side wall portion, and part of the oil drainage passage.
PCT/JP2018/018730 2018-05-15 2018-05-15 Compressor WO2019220529A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/018730 WO2019220529A1 (en) 2018-05-15 2018-05-15 Compressor
JP2020518847A JP6854973B2 (en) 2018-05-15 2018-05-15 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/018730 WO2019220529A1 (en) 2018-05-15 2018-05-15 Compressor

Publications (1)

Publication Number Publication Date
WO2019220529A1 true WO2019220529A1 (en) 2019-11-21

Family

ID=68539811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018730 WO2019220529A1 (en) 2018-05-15 2018-05-15 Compressor

Country Status (2)

Country Link
JP (1) JP6854973B2 (en)
WO (1) WO2019220529A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56118579A (en) * 1980-02-20 1981-09-17 Toshiba Corp Compressor
JPH02107783U (en) * 1989-02-13 1990-08-28
JPH051683A (en) * 1991-06-27 1993-01-08 Daikin Ind Ltd High pressure dome type compressor
JP2007255214A (en) * 2006-03-20 2007-10-04 Mitsubishi Electric Corp Hermetic motor-driven compressor and refrigerating cycle device
JP2011106348A (en) * 2009-11-18 2011-06-02 Mitsubishi Electric Corp Compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56118579A (en) * 1980-02-20 1981-09-17 Toshiba Corp Compressor
JPH02107783U (en) * 1989-02-13 1990-08-28
JPH051683A (en) * 1991-06-27 1993-01-08 Daikin Ind Ltd High pressure dome type compressor
JP2007255214A (en) * 2006-03-20 2007-10-04 Mitsubishi Electric Corp Hermetic motor-driven compressor and refrigerating cycle device
JP2011106348A (en) * 2009-11-18 2011-06-02 Mitsubishi Electric Corp Compressor

Also Published As

Publication number Publication date
JPWO2019220529A1 (en) 2020-10-22
JP6854973B2 (en) 2021-04-07

Similar Documents

Publication Publication Date Title
EP2993351B1 (en) Scroll compressor
JP5080287B2 (en) Compressor motor
US20150198159A1 (en) Compressor
JP5514737B2 (en) Oil pump for refrigeration compressor
JP2009162168A (en) Sealed motor compressor
US8535029B2 (en) Scroll type compressor having reinforced fixed scroll
JP2005337142A (en) Compressor
JP4979503B2 (en) Scroll compressor
CN1936331B (en) Compressor
WO2019220529A1 (en) Compressor
JP2006132487A (en) Compressor
JP6297168B2 (en) Compressor
US9664190B2 (en) Compressor
JP4690516B2 (en) Scroll type fluid machinery
US7472562B2 (en) Compressor and mechanism for separating lubricating liquid
WO2017221695A1 (en) Compressor and method for separating lubricating oil
JPH0932760A (en) Scroll compressor
CN212389515U (en) Scroll compressor having a plurality of scroll members
JP7337283B2 (en) Scroll compressor and refrigeration cycle device
CN212389528U (en) Scroll compressor's counter weight subassembly and scroll compressor
JP2005163637A (en) Scroll compressor
JP2008215220A (en) Compressor
JP2005054745A (en) Compressor
JP2006214399A (en) Hermetic compressor
CN204344456U (en) Scroll compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18919145

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020518847

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18919145

Country of ref document: EP

Kind code of ref document: A1