WO2019220246A1 - 表示装置、表示モジュール、電子機器、及び、表示装置の作製方法 - Google Patents

表示装置、表示モジュール、電子機器、及び、表示装置の作製方法 Download PDF

Info

Publication number
WO2019220246A1
WO2019220246A1 PCT/IB2019/053436 IB2019053436W WO2019220246A1 WO 2019220246 A1 WO2019220246 A1 WO 2019220246A1 IB 2019053436 W IB2019053436 W IB 2019053436W WO 2019220246 A1 WO2019220246 A1 WO 2019220246A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
light emitting
layer
transistors
display device
Prior art date
Application number
PCT/IB2019/053436
Other languages
English (en)
French (fr)
Inventor
楠紘慈
江口晋吾
塚本洋介
渡邉一徳
豊高耕平
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to JP2020519201A priority Critical patent/JP7289294B2/ja
Priority to CN202310609397.3A priority patent/CN116544261A/zh
Priority to CN201980031381.0A priority patent/CN112136170B/zh
Priority to US17/055,383 priority patent/US11961871B2/en
Priority to KR1020207035878A priority patent/KR20210010520A/ko
Publication of WO2019220246A1 publication Critical patent/WO2019220246A1/ja
Priority to JP2023088466A priority patent/JP7441362B2/ja
Priority to JP2024021725A priority patent/JP2024050928A/ja
Priority to US18/624,562 priority patent/US20240250112A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C3/00Assembling of devices or systems from individually processed components
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/7806Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices involving the separation of the active layers from a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1262Multistep manufacturing methods with a particular formation, treatment or coating of the substrate
    • H01L27/1266Multistep manufacturing methods with a particular formation, treatment or coating of the substrate the substrate on which the devices are formed not being the final device substrate, e.g. using a temporary substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • One embodiment of the present invention relates to a display device, a display module, an electronic device, and manufacturing methods thereof.
  • one embodiment of the present invention is not limited to the above technical field.
  • a semiconductor device e.g., a display device, a light-emitting device, a power storage device, a memory device, an electronic device, a lighting device, an input device (eg, a touch sensor), an input / output device (eg, a touch panel) ), A driving method thereof, or a manufacturing method thereof can be given as an example.
  • a display device using a micro light-emitting diode (micro LED (Light Emitting Diode)) as a display element has been proposed (for example, Patent Document 1).
  • a display device using a micro LED as a display element has advantages such as high brightness, high contrast, and long life, and research and development are actively conducted as a next-generation display device.
  • a display device using a micro LED as a display element has a very long time for mounting an LED chip, and a reduction in manufacturing cost is an issue.
  • red (R), green (G), and blue (B) LEDs are produced on different wafers, and the LEDs are cut out one by one and mounted on a circuit board. Therefore, as the number of pixels of the display device increases, the number of LEDs to be mounted increases and the time required for mounting becomes longer. Moreover, the higher the definition of the display device, the higher the difficulty of mounting the LED.
  • An object of one embodiment of the present invention is to provide a display device with high definition.
  • An object of one embodiment of the present invention is to provide a display device with high display quality.
  • An object of one embodiment of the present invention is to reduce the thickness and weight of a display device.
  • An object of one embodiment of the present invention is to reduce manufacturing cost of a display device using a micro LED as a display element.
  • An object of one embodiment of the present invention is to manufacture a display device using a micro LED as a display element with high yield.
  • the display device of one embodiment of the present invention includes a substrate, a plurality of transistors, and a plurality of light-emitting diodes.
  • the plurality of light emitting diodes are provided in a matrix on the substrate.
  • Each of the plurality of transistors is electrically connected to at least one of the plurality of light emitting diodes.
  • the plurality of light emitting diodes are located closer to the substrate than the plurality of transistors.
  • the plurality of light emitting diodes emit light on the side opposite to the substrate.
  • At least one of the plurality of light emitting diodes is preferably a micro light emitting diode.
  • At least one of the plurality of transistors preferably includes a metal oxide in a channel formation region.
  • the plurality of light emitting diodes include a first light emitting diode and a second light emitting diode that exhibit light of different colors.
  • the plurality of light emitting diodes preferably exhibit white light.
  • At least one of the plurality of transistors preferably includes a semiconductor layer that transmits visible light.
  • the semiconductor layer has a channel formation region and a pair of low resistance regions.
  • the pair of low resistance regions has lower resistance than the channel formation region. Light emitted from the light emitting diode passes through at least one of the pair of low resistance regions and is emitted to the substrate side.
  • One embodiment of the present invention includes a display device having the above structure, a module to which a connector such as a flexible printed circuit board (hereinafter referred to as FPC) or a TCP (Tape Carrier Package) is attached, or a COG A module such as a module in which an integrated circuit (IC) is mounted by a (Chip On Glass) method or a COF (Chip On Film) method.
  • a connector such as a flexible printed circuit board (hereinafter referred to as FPC) or a TCP (Tape Carrier Package) is attached
  • a COG A module such as a module in which an integrated circuit (IC) is mounted by a (Chip On Glass) method or a COF (Chip On Film) method.
  • One embodiment of the present invention is an electronic device including the above module and at least one of an antenna, a battery, a housing, a camera, a speaker, a microphone, and an operation button.
  • a plurality of transistors are formed in a matrix over a first substrate, a plurality of light-emitting diodes are formed in a matrix over the second substrate, and the first substrate or the second substrate A first conductor that is electrically connected to at least one of the plurality of transistors or at least one of the plurality of light emitting diodes is formed over the substrate, and at least one of the plurality of transistors is interposed through the first conductor. And a first substrate and a second substrate are bonded to each other so that at least one of the plurality of light emitting diodes is electrically connected.
  • the first conductor and at least one of the plurality of transistors are electrically connected, and at least one of the plurality of light-emitting diodes is formed on the second substrate.
  • a second conductor that is electrically connected to one is formed, and the first substrate and the second substrate are preferably bonded to each other so that the first conductor and the second conductor are in contact with each other.
  • the first substrate After bonding the first substrate and the second substrate, the first substrate may be peeled off.
  • a peeling layer is formed over a first substrate, an insulating layer is formed over the peeling layer, a part of the insulating layer is opened, and a plurality of transistors are matrixed over the insulating layer.
  • the conductive layer is formed over the release layer so as to overlap with the opening of the insulating layer, the plurality of transistors are sealed, the first substrate is peeled off using the release layer, and the release layer side The conductive layer is exposed, a plurality of light emitting diodes are formed in a matrix on the second substrate, and at least one of the plurality of transistors and at least one of the plurality of light emitting diodes are electrically connected through the conductive layer.
  • the plurality of transistors are transferred onto the second substrate, and the conductive layer is electrically connected to at least one of the plurality of transistors, or functions as at least one source or drain of the plurality of transistors. It is a method for manufacturing a display device.
  • a peeling layer is formed over a first substrate, an insulating layer is formed over the peeling layer, a part of the insulating layer is opened, and a plurality of transistors are matrixed over the insulating layer.
  • the semiconductor layers of the plurality of transistors each have a channel formation region and a pair of low-resistance regions, and the channel formation region is formed over the insulating layer.
  • One of the pair of low resistance regions is formed on the release layer so as to overlap with the opening of the insulating layer, and the first substrate is peeled off using the release layer, and one of the pair of low resistance regions is removed from the release layer side.
  • a plurality of light emitting diodes are formed in a matrix on the second substrate so that at least one of the plurality of transistors and at least one of the plurality of light emitting diodes are electrically connected to each other through one of the pair of low resistance regions. Connected to the second base Reproduction a plurality of transistors on a method for manufacturing a display device.
  • a display device with high definition can be provided. According to one embodiment of the present invention, a display device with high display quality can be provided. According to one embodiment of the present invention, a display device can be reduced in thickness and weight.
  • manufacturing cost of a display device using a micro LED as a display element can be reduced.
  • a display device using a micro LED as a display element can be manufactured with high yield.
  • FIG. 1A is a cross-sectional view illustrating a structure example of a display device.
  • FIG. 1B is a cross-sectional view illustrating a configuration example of an LED substrate.
  • FIG. 1C is a cross-sectional view illustrating a structure example of a circuit board.
  • 2A is a cross-sectional view illustrating a structure example of a display device.
  • 2B, 2C, and 2D are cross-sectional views illustrating an example of a method for manufacturing the display device.
  • FIG. 3A is a cross-sectional view illustrating a structure example of a display device.
  • FIG. 3B is a cross-sectional view illustrating a configuration example of an LED substrate.
  • FIG. 3C is a cross-sectional view illustrating a structure example of a circuit board.
  • 4A is a cross-sectional view illustrating a structure example of a display device.
  • 4B is a cross-sectional view illustrating a structure example of an LED substrate.
  • 5A and 5B are cross-sectional views illustrating an example of a method for manufacturing a circuit array.
  • FIG. 14 is a cross-sectional view illustrating a structure example of a display device.
  • FIG. 14 is a cross-sectional view illustrating a structure example of a display device.
  • FIGS. 8A and 8B are cross-sectional views illustrating an example of a transistor.
  • FIGS. 9A to 9D each illustrate an example of an electronic device.
  • FIGS. 10A to 10E each illustrate an example of an electronic device.
  • FIGS. 11A to 11F each illustrate an example of an electronic device.
  • film and “layer” can be interchanged with each other depending on circumstances or circumstances.
  • conductive layer can be changed to the term “conductive film”.
  • insulating film can be changed to the term “insulating layer”.
  • the display device in this embodiment includes a plurality of light-emitting diodes that are display elements and transistors that drive the display elements.
  • the plurality of light emitting diodes are provided in a matrix on the substrate.
  • Each of the plurality of transistors is electrically connected to at least one of the plurality of light emitting diodes.
  • the plurality of light emitting diodes are located closer to the substrate than the plurality of transistors.
  • the plurality of light emitting diodes emit light on the side opposite to the substrate.
  • the display device in this embodiment is formed by bonding a plurality of transistors and a plurality of light-emitting diodes which are formed over different substrates.
  • a plurality of light-emitting diodes and a plurality of transistors are bonded together, so that even when a display device with a large number of pixels or a high-definition display device is manufactured, light emission can be performed.
  • the manufacturing time of the display device can be shortened, and the manufacturing difficulty can be reduced.
  • the display device in this embodiment has a function of displaying an image using a light-emitting diode.
  • a micro LED is used as a light emitting diode
  • a micro LED having a double heterojunction will be described.
  • the light emitting diode is not particularly limited, and for example, a micro LED having a quantum well junction, an LED using a nanocolumn, or the like may be used.
  • the micro LED as the display element
  • the power consumption of the display device can be reduced.
  • the display device can be reduced in thickness and weight.
  • a display device using a micro LED as a display element has high contrast and a wide viewing angle, so that display quality can be improved.
  • Area of the region that emits light emitting diode is preferably 1 mm 2 or less, more preferably 10000 2 or less, more preferably 3000 .mu.m 2 or less, more preferably 700 .mu.m 2 or less. Note that in this specification and the like, a light-emitting diode having an area where light is emitted having an area of 10,000 ⁇ m 2 or less may be referred to as a micro LED.
  • the transistor included in the display device preferably includes a metal oxide in a channel formation region.
  • a transistor using a metal oxide can reduce power consumption. Therefore, a display device with extremely reduced power consumption can be realized by combining with a micro LED.
  • FIG. 3 A cross-sectional view of the display device 380A is shown in FIG.
  • the display device 380A is configured by bonding a circuit board 360A and an LED board 370A.
  • FIG. 1B shows a cross-sectional view of the LED substrate 370A.
  • the LED substrate 370A includes a substrate 371, a light emitting diode 302a, a light emitting diode 302b, a conductor 117a, a conductor 117b, a conductor 117c, a conductor 117d, and a protective layer 373.
  • the light emitting diode 302a includes an electrode 112a, a semiconductor layer 113a, a light emitting layer 114a, a semiconductor layer 115a, and an electrode 116a.
  • the light emitting diode 302b includes an electrode 112b, a semiconductor layer 113b, a light emitting layer 114b, a semiconductor layer 115b, and an electrode 116b.
  • the electrode 112a is electrically connected to the semiconductor layer 113a and the conductor 117b.
  • the electrode 116a is electrically connected to the semiconductor layer 115a and the conductor 117a.
  • the electrode 112b is electrically connected to the semiconductor layer 113b and the conductor 117d.
  • the electrode 116b is electrically connected to the semiconductor layer 115b and the conductor 117c.
  • the protective layer 373 is provided so as to cover the substrate 371, the electrodes 112a and 112b, the semiconductor layers 113a and 113b, the light emitting layers 114a and 114b, the semiconductor layers 115a and 115b, and the electrodes 116a and 116b.
  • the protective layer 373 covers the side surfaces of the conductors 117a to 117d and has openings that overlap with the upper surfaces of the conductors 117a to 117d. In the openings, the upper surfaces of the conductors 117a to 117d are exposed.
  • the light emitting layer 114a is sandwiched between the semiconductor layer 113a and the semiconductor layer 115a.
  • the light emitting layer 114b is sandwiched between the semiconductor layer 113b and the semiconductor layer 115b.
  • electrons and holes are combined to emit light.
  • One of the semiconductor layers 113a and 113b and the semiconductor layers 115a and 115b is an n-type semiconductor layer, and the other is a p-type semiconductor layer.
  • the stacked structure including the semiconductor layer 113a, the light-emitting layer 114a, and the semiconductor layer 115a and the stacked structure including the semiconductor layer 113b, the light-emitting layer 114b, and the semiconductor layer 115b each have light such as red, yellow, green, or blue. It is formed to exhibit.
  • the two laminated structures preferably exhibit different colors of light. These laminated structures include, for example, gallium / phosphorus compounds, gallium / arsenic compounds, gallium / aluminum / arsenic compounds, aluminum / gallium / indium / phosphorus compounds, gallium nitride, indium / gallium nitride compounds, selenium / zinc compounds, etc. Can be used.
  • the stacked structure including the semiconductor layer 113a, the light emitting layer 114a, and the semiconductor layer 115a is formed so as to exhibit light such as red, yellow, green, or blue, thereby forming a colored film such as a color filter.
  • the process to do becomes unnecessary. Therefore, the manufacturing cost of the display device can be suppressed.
  • two laminated structures may exhibit the same color light. At this time, the light emitted from the light emitting layers 114a and 114b may be extracted to the outside of the display device through the colored film.
  • a single crystal substrate such as a sapphire (Al 2 O 3 ) substrate, a silicon carbide (SiC) substrate, a silicon (Si) substrate, or a gallium nitride (GaN) substrate can be used.
  • FIG. 1C is a cross-sectional view of the circuit board 360A.
  • the circuit board 360A includes a substrate 361, an insulating layer 367, a transistor 303a, a transistor 303b, an insulating layer 314, a conductive layer 111a, a conductive layer 111b, a conductive layer 111c, and a conductive layer 111d.
  • the transistors 303a and 303b each include a gate, a gate insulating layer 311, a semiconductor layer, a back gate, a source, and a drain.
  • the gate (lower gate) and the semiconductor layer overlap with each other with the gate insulating layer 311 interposed therebetween.
  • the back gate (upper gate) and the semiconductor layer overlap with each other with the insulating layer 312 and the insulating layer 313 interposed therebetween.
  • the semiconductor layer preferably includes an oxide semiconductor.
  • At least one layer of the insulating layer 312, the insulating layer 313, and the insulating layer 314 be formed using a material that does not easily diffuse impurities such as water or hydrogen. It becomes possible to effectively suppress the diffusion of impurities from the outside into the transistor, and the reliability of the display device can be improved.
  • the insulating layer 314 functions as a planarization layer.
  • the insulating layer 367 functions as a base film.
  • the insulating layer 367 is preferably formed using a material that does not easily diffuse impurities such as water or hydrogen.
  • the conductor 117a provided on the LED board 370A is connected to the conductive layer 111a provided on the circuit board 360A. Accordingly, the transistor 303a and the light emitting diode 302a can be electrically connected.
  • the electrode 116a functions as a pixel electrode of the light emitting diode 302a.
  • the conductor 117b provided on the LED board 370A and the conductive layer 111b provided on the circuit board 360A are connected.
  • the electrode 112a functions as a common electrode of the light emitting diode 302a.
  • the conductor 117c provided on the LED board 370A is connected to the conductive layer 111c provided on the circuit board 360A.
  • the transistor 303b and the light emitting diode 302b can be electrically connected.
  • the electrode 116b functions as a pixel electrode of the light emitting diode 302b.
  • the conductor 117d provided on the LED substrate 370A and the conductive layer 111d provided on the circuit substrate 360A are connected.
  • the electrode 112b functions as a common electrode of the light emitting diode 302b.
  • the substrate 361, the insulating layer 367, the gate insulating layer 311, the insulating layers 312, 313, and 314, and the protective layer 373 each transmit the light.
  • light from a light-emitting diode may be extracted to the substrate 371 side when the substrate 371 transmits visible light.
  • a reflective layer that reflects the light from the light emitting diode or a light shielding layer that blocks the light may be provided on the side where the light from the light emitting diode is not extracted.
  • a conductive paste such as silver, carbon, or copper, or a bump such as gold or solder can be suitably used.
  • a conductive material such as silver, carbon, or copper, or a bump such as gold or solder.
  • the electrodes 112a, 112b, 116a, and 116b and the conductive layers 111a to 111d connected to the conductors 117a to 117d it is preferable to use a conductive material having low contact resistance with the conductors 117a to 117d, respectively.
  • the conductive material connected thereto is aluminum, titanium, copper, an alloy of silver (Ag), palladium (Pd), and copper (Cu) (Ag—Pd— Cu (APC)) or the like is preferable because of low contact resistance.
  • the conductors 117a to 117d may be provided on the circuit board 360A instead of the LED board 370A.
  • a display device 380B illustrated in FIG. 2A is different from the display device 380A in that it does not include the substrate 361 but includes the flexible substrate 362 and the adhesive layer 363.
  • a transistor with high electrical characteristics and high reliability can be formed. Then, by peeling the transistor from the substrate and transferring it to a flexible substrate such as a film, the display device can be reduced in thickness and weight.
  • a method for manufacturing the display device 380B is described with reference to FIGS.
  • a separation layer 353 is formed over the substrate 351, and an insulating layer 367 is formed over the separation layer 353. Then, the transistor 303a, the insulating layer 314, and the conductive layers 111a and 111b are formed over the insulating layer 367. Thereby, the circuit board 360B can be formed.
  • the circuit board 360B and the LED board 370A are attached to each other.
  • the substrate 351 is peeled using the peeling layer 353.
  • a flexible substrate 362 is attached to the exposed insulating layer 367 with the use of the adhesive layer 363, whereby the display device 380B illustrated in FIG. 2A can be manufactured.
  • the substrate 351 is rigid to such an extent that it can be easily transported, and has heat resistance against the temperature required for the manufacturing process.
  • Examples of the material that can be used for the substrate 351 include glass, quartz, ceramic, sapphire, resin, semiconductor, metal, and alloy.
  • Examples of the glass include alkali-free glass, barium borosilicate glass, and alumino borosilicate glass.
  • the separation layer 353 can be formed using an organic material or an inorganic material.
  • organic material examples include polyimide resin, acrylic resin, epoxy resin, polyamide resin, polyimide amide resin, siloxane resin, benzocyclobutene resin, and phenol resin.
  • the crystal structure of the layer containing silicon may be any of amorphous, microcrystalline, and polycrystalline.
  • the substrate 351 may be peeled off by irradiating the peeling interface with a laser.
  • a laser an excimer laser, a solid-state laser, or the like can be used.
  • DPSS diode pumped solid state laser
  • the substrate 351 may be peeled off by applying a pulling force in the vertical direction.
  • the separation interface may change depending on the combination of materials of the substrate 351, the separation layer 353, and the insulating layer 367.
  • the interface between the substrate 351 and the separation layer 353, the interface between the separation layer 353 and the insulating layer 367 in the separation layer 353, and the like are separation interfaces.
  • FIG. 3A is a cross-sectional view of the display device 380C.
  • the display device 380C is configured by bonding a circuit board 360C and an LED board 370B.
  • two light-emitting diodes are electrically connected to one transistor.
  • a plurality of light emitting diodes may be electrically connected to one transistor.
  • FIG. 3B shows a cross-sectional view of the LED substrate 370B.
  • the LED substrate 370B includes a substrate 371, a light emitting diode 302c, a light emitting diode 302d, a conductor 117a, a conductor 117b, a conductor 117c, and a protective layer 373.
  • the light-emitting diodes 302c and 302d have the same configuration, and include an electrode 112, a semiconductor layer 113, a light-emitting layer 114, a semiconductor layer 115, and an electrode 116, respectively.
  • the electrode 112 is electrically connected to the semiconductor layer 113 and the conductor 117c.
  • the electrode 116 is electrically connected to the semiconductor layer 115 and the conductor 117a or 117b.
  • the protective layer 373 is provided so as to cover the substrate 371, the electrode 112, the semiconductor layer 113, the light emitting layer 114, the semiconductor layer 115, and the electrode 116.
  • the protective layer 373 covers the side surfaces of the conductors 117a to 117c, and has openings that overlap with the upper surfaces of the conductors 117a to 117c. In the openings, the upper surfaces of the conductors 117a to 117c are exposed.
  • the light-emitting layer 114 is a light-emitting layer, and one of the semiconductor layer 113 and the semiconductor layer 115 is an n-type semiconductor layer and the other is a p-type semiconductor layer.
  • the light emitting diodes 302c and 302d are formed to emit light of the same color.
  • FIG. 3C is a cross-sectional view of the circuit board 360C.
  • the circuit board 360C includes a substrate 361, an insulating layer 367, a transistor 303a, an insulating layer 314, a conductive layer 111a, and a conductive layer 111b.
  • the conductors 117a and 117b provided on the LED board 370B are connected to the conductive layer 111a provided on the circuit board 360C. Accordingly, the transistor 303a and the light emitting diodes 302c and 302d can be electrically connected.
  • the electrode 116 functions as a pixel electrode of the light emitting diodes 302a and 302b. Further, the conductor 117c provided on the LED board 370B and the conductive layer 111b provided on the circuit board 360C are connected.
  • the electrode 112 functions as a common electrode for the light emitting diodes 302c and 302d.
  • a common electrode is provided for each light emitting diode. However, as shown in the LED substrate 370B, a common electrode (electrode 112) may be provided over a plurality of light emitting diodes. Good.
  • FIG. 4A shows a cross-sectional view of the display device 380D.
  • the display device 380D is configured by bonding a circuit array 360D and an LED substrate 370C. As will be described later, the circuit array 360D is formed on a substrate via a release layer. Then, the surface of the circuit array 360D exposed by peeling off the substrate is bonded to the LED substrate 370C.
  • FIG. 4B shows a cross-sectional view of the LED substrate 370C.
  • the LED substrate 370C includes a substrate 371, a light emitting diode 302e, a light emitting diode 302f, a conductor 117a, a conductor 117b, a conductor 117c, and a protective layer 373.
  • the light emitting diode 302e includes an electrode 112, a semiconductor layer 113a, a light emitting layer 114a, a semiconductor layer 115a, and an electrode 116a.
  • the light emitting diode 302f includes an electrode 112, a semiconductor layer 113b, a light emitting layer 114b, a semiconductor layer 115b, and an electrode 116b.
  • the electrode 112 is electrically connected to the semiconductor layers 113a and 113b and the conductor 117c.
  • the electrode 116a is electrically connected to the semiconductor layer 115a and the conductor 117a.
  • the electrode 116b is electrically connected to the semiconductor layer 115b and the conductor 117c.
  • the protective layer 373 is provided so as to cover the substrate 371, the electrode 112, the semiconductor layers 113a and 113b, the light emitting layers 114a and 114b, the semiconductor layers 115a and 115b, and the electrodes 116a and 116b.
  • the protective layer 373 covers the side surfaces of the conductors 117a to 117d and has openings that overlap with the upper surfaces of the conductors 117a to 117d. In the openings, the upper surfaces of the conductors 117a to 117d are exposed.
  • the separation layer 353 is formed over the substrate 351 and the insulating layer 355 is formed over the separation layer 353. Then, a part of the insulating layer 355 is opened. Next, the transistors 303 c and 303 d and the conductive layer 118 c are formed over the insulating layer 355. Then, the transistors 303c and 303d, the conductive layer 118c, and the like are sealed with the sealing layer 318.
  • the transistors 303c and 303d each include a back gate, a gate insulating layer 311, a semiconductor layer, a gate insulating layer, a gate, an insulating layer 315, a source, and a drain.
  • the semiconductor layer has a channel formation region and a pair of low resistance regions.
  • the back gate (lower gate) and the channel formation region overlap with each other with the gate insulating layer 311 interposed therebetween.
  • the gate (upper gate) and the channel formation region overlap with each other through the gate insulating layer.
  • the source and the drain are each electrically connected to the low resistance region through an opening provided in the insulating layer 315.
  • the conductive layers 118 a and 118 b functioning as a source or a drain are in contact with the separation layer 353 through an opening provided in the insulating layer 355. Further, the conductive layer 118c manufactured using the same material and the same process as the conductive layers 118a and 118b is in contact with the separation layer 353 through an opening provided in the insulating layer 355.
  • sealing layer 318 one or both of an inorganic insulating material and an organic insulating material can be used.
  • a resin that can be used for an adhesive layer, an inorganic insulating film with high barrier properties, a flexible resin film, and the like can be given.
  • FIG. 5B illustrates an example in which the conductive layers 118a, 118b, and 118c are exposed by peeling.
  • the peeling layer 353 remains after the substrate 351 is peeled, the conductive layers 118a, 118b, and 118c are exposed by removing the peeling layer 353. Thereby, the circuit array 360D can be formed.
  • the display device 380D illustrated in FIG. 4A can be manufactured by attaching the circuit array 360D and the LED substrate 370C to each other.
  • the conductor 117a provided on the LED substrate 370C is connected to the conductive layer 118a provided on the circuit array 360D.
  • the transistor 303e and the light emitting diode 302e can be electrically connected.
  • the electrode 116a functions as a pixel electrode of the light emitting diode 302e.
  • the conductor 117b provided on the LED substrate 370C is connected to the conductive layer 118b provided on the circuit array 360D.
  • the transistor 303f and the light emitting diode 302f can be electrically connected.
  • the electrode 116b functions as a pixel electrode of the light emitting diode 302f.
  • the conductor 117c provided on the LED substrate 370D and the conductive layer 118c provided on the circuit array 360D are connected.
  • the electrode 112 functions as a common electrode for the light emitting diodes 302e and 302f.
  • the sealing layer 318, the insulating layer 355, the gate insulating layer 311, and the insulating layer 315 each transmit the light.
  • the low-resistance regions 119a and 119b of the semiconductor layer may be connected to the conductors 117a and 117b through openings provided in the insulating layer 355.
  • the low resistance regions 119a and 119b of the semiconductor layer can transmit light emitted from the light emitting diode, so that the light emitting region L2 can be made wider than the light emitting region L1.
  • a display device may be manufactured by attaching 360F.
  • the light emitting diode 302e and the light emitting diode 302f emit light of the same color.
  • Light emitted from the light emitting diode 302e is extracted to the outside of the display device 380F through the colored layer CFA.
  • the light emitted from the light emitting diode 302f is extracted to the outside of the display device 380F through the colored layer CFB having a color different from that of the colored layer CFA.
  • a display device capable of full color display can be manufactured by providing red, green, and blue colored layers in the circuit array 360F.
  • the display devices 380E and 380F are manufactured by changing the circuit array 360D formed over the substrate 351 with the separation layer 353 to the circuit array 360E or the circuit array 360F in the manufacturing method of the display device 380D, respectively. can do.
  • the structure of the transistor included in the display device There is no particular limitation on the structure of the transistor included in the display device. For example, a planar transistor, a staggered transistor, or an inverted staggered transistor may be used. Further, any transistor structure of a top gate structure or a bottom gate structure may be employed. Alternatively, gate electrodes may be provided above and below the channel.
  • the transistor included in the display device for example, a transistor in which a metal oxide is used for a channel formation region can be used. Thus, a transistor with extremely low off-state current can be realized.
  • a transistor including silicon in a channel formation region may be used as a transistor included in the display device.
  • the transistor include a transistor including amorphous silicon, a transistor including crystalline silicon (typically low-temperature polysilicon), and a transistor including single crystal silicon.
  • Each transistor is provided between the insulating layer 141 and the insulating layer 208.
  • the insulating layer 141 preferably has a function as a base film.
  • the insulating layer 208 preferably has a function as a planarization film.
  • a transistor 220 illustrated in FIG. 8A is a bottom-gate transistor in which the semiconductor layer 204 includes a metal oxide.
  • the metal oxide can function as an oxide semiconductor.
  • An oxide semiconductor is preferably used for the semiconductor of the transistor. It is preferable to use a semiconductor material with a wider band gap and lower carrier density than silicon because current in an off state of the transistor can be reduced.
  • the transistor 220 includes a conductive layer 201, an insulating layer 202, a conductive layer 203a, a conductive layer 203b, and a semiconductor layer 204.
  • the conductive layer 201 functions as a gate.
  • the insulating layer 202 functions as a gate insulating layer.
  • the semiconductor layer 204 overlaps with the conductive layer 201 with the insulating layer 202 interposed therebetween.
  • the conductive layer 203a and the conductive layer 203b are electrically connected to the semiconductor layer 204, respectively.
  • the transistor 220 is preferably covered with an insulating layer 211 and an insulating layer 212.
  • Various inorganic insulating films can be used for the insulating layer 211 and the insulating layer 212. In particular, an oxide insulating film is suitable for the insulating layer 211, and a nitride insulating film is suitable for the insulating layer 212.
  • a transistor 230 illustrated in FIG. 8B is a top-gate transistor including polysilicon in a semiconductor layer.
  • the transistor 230 includes a conductive layer 201, an insulating layer 202, a conductive layer 203a, a conductive layer 203b, a semiconductor layer, and an insulating layer 213.
  • the conductive layer 201 functions as a gate.
  • the insulating layer 202 functions as a gate insulating layer.
  • the semiconductor layer includes a channel formation region 214a and a pair of low resistance regions 214b.
  • the semiconductor layer may further have an LDD (Lightly Doped Drain) region.
  • FIG. 8B illustrates an example in which the LDD region 214c is provided between the channel formation region 214a and the low resistance region 214b.
  • the channel formation region 214 a overlaps with the conductive layer 201 with the insulating layer 202 interposed therebetween.
  • the conductive layer 203a is electrically connected to one of the pair of low resistance regions 214b through an opening provided in the insulating layer 202 and the insulating layer 213.
  • the conductive layer 203b is electrically connected to the other of the pair of low resistance regions 214b.
  • Various inorganic insulating films can be used for the insulating layer 213.
  • a nitride insulating film is suitable for the insulating layer 213.
  • Metal oxide A metal oxide that functions as an oxide semiconductor is preferably used for the semiconductor layer. Below, the metal oxide applicable to a semiconductor layer is demonstrated.
  • the metal oxide preferably contains at least indium or zinc.
  • indium and zinc are preferably included.
  • aluminum, gallium, yttrium, tin, or the like is preferably contained.
  • One or more kinds selected from boron, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, and the like may be included.
  • the metal oxide is an In-M-Zn oxide containing indium, an element M, and zinc
  • the element M is aluminum, gallium, yttrium, tin, or the like.
  • elements applicable to the element M include boron, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, and the like.
  • the element M may be a combination of a plurality of the aforementioned elements.
  • metal oxides containing nitrogen may be collectively referred to as metal oxides.
  • a metal oxide containing nitrogen may be referred to as a metal oxynitride.
  • a metal oxide containing nitrogen such as zinc oxynitride (ZnON) may be used for the semiconductor layer.
  • CAAC c-axis aligned crystal
  • CAC Cloud-aligned Composite
  • CAC Cloud-Aligned Composite
  • CAC-OS or CAC-metal oxide has a conductive function in part of a material and an insulating function in part of the material, and the whole material has a function as a semiconductor.
  • the conductive function is a function of flowing electrons (or holes) serving as carriers
  • the insulating function is an electron serving as carriers. It is a function that does not flow.
  • a function of switching (a function of turning on / off) can be imparted to CAC-OS or CAC-metal oxide by causing the conductive function and the insulating function to act complementarily.
  • CAC-OS or CAC-metal oxide by separating each function, both functions can be maximized.
  • the CAC-OS or the CAC-metal oxide has a conductive region and an insulating region.
  • the conductive region has the above-described conductive function
  • the insulating region has the above-described insulating function.
  • the conductive region and the insulating region may be separated at the nanoparticle level.
  • the conductive region and the insulating region may be unevenly distributed in the material, respectively.
  • the conductive region may be observed with the periphery blurred and connected in a cloud shape.
  • the conductive region and the insulating region are dispersed in the material with a size of 0.5 nm to 10 nm, preferably 0.5 nm to 3 nm, respectively. There is.
  • CAC-OS or CAC-metal oxide is composed of components having different band gaps.
  • CAC-OS or CAC-metal oxide includes a component having a wide gap caused by an insulating region and a component having a narrow gap caused by a conductive region.
  • the carrier when the carrier flows, the carrier mainly flows in the component having the narrow gap.
  • the component having a narrow gap acts in a complementary manner to the component having a wide gap, and the carrier flows through the component having the wide gap in conjunction with the component having the narrow gap. Therefore, when the CAC-OS or the CAC-metal oxide is used for a channel formation region of a transistor, high current driving force, that is, high on-state current and high field-effect mobility can be obtained in the on-state of the transistor.
  • CAC-OS or CAC-metal oxide can also be called a matrix composite material (metal matrix composite) or a metal matrix composite material (metal matrix composite).
  • An oxide semiconductor (metal oxide) is classified into a single crystal oxide semiconductor and a non-single crystal oxide semiconductor.
  • the non-single-crystal oxide semiconductor for example, a CAAC-OS (c-axis aligned crystal oxide semiconductor), a polycrystalline oxide semiconductor, an nc-OS (nanocrystalline oxide semiconductor), a pseudo-amorphous oxide semiconductor (a-like oxide semiconductor) OS: amorphous-like oxide semiconductor) and amorphous oxide semiconductor.
  • the CAAC-OS has a c-axis orientation and a crystal structure in which a plurality of nanocrystals are connected in the ab plane direction and have a strain.
  • the strain refers to a portion where the orientation of the lattice arrangement changes between a region where the lattice arrangement is aligned and a region where another lattice arrangement is aligned in a region where a plurality of nanocrystals are connected.
  • Nanocrystals are based on hexagons, but are not limited to regular hexagons and may be non-regular hexagons.
  • a lattice arrangement such as a pentagon and a heptagon in terms of distortion.
  • a clear crystal grain boundary also referred to as a grain boundary
  • the formation of crystal grain boundaries is suppressed by the distortion of the lattice arrangement. This is because the CAAC-OS can tolerate distortion due to the fact that the arrangement of oxygen atoms is not dense in the ab plane direction and the bond distance between atoms changes due to substitution of metal elements. Because.
  • the CAAC-OS is a layered crystal in which a layer containing indium and oxygen (hereinafter referred to as an In layer) and a layer including elements M, zinc, and oxygen (hereinafter referred to as (M, Zn) layers) are stacked.
  • In layer a layer containing indium and oxygen
  • M, Zn elements M, zinc, and oxygen
  • indium and the element M can be replaced with each other, and when the element M in the (M, Zn) layer is replaced with indium, it can also be expressed as an (In, M, Zn) layer. Further, when indium in the In layer is replaced with the element M, it can also be expressed as an (In, M) layer.
  • CAAC-OS is a metal oxide with high crystallinity.
  • CAAC-OS impurities and defects oxygen deficiency (V O:. Oxygen vacancy also referred) etc.) with less metal It can be said that it is an oxide. Therefore, the physical properties of the metal oxide including a CAAC-OS are stable. Therefore, a metal oxide including a CAAC-OS is resistant to heat and has high reliability.
  • the nc-OS has periodicity in atomic arrangement in a minute region (for example, a region of 1 nm to 10 nm, particularly a region of 1 nm to 3 nm).
  • the nc-OS has no regularity in crystal orientation between different nanocrystals. Therefore, orientation is not seen in the whole film. Therefore, the nc-OS may not be distinguished from an a-like OS or an amorphous oxide semiconductor depending on an analysis method.
  • indium-gallium-zinc oxide which is a kind of metal oxide including indium, gallium, and zinc
  • IGZO indium-gallium-zinc oxide
  • a crystal smaller than a large crystal here, a crystal of several millimeters or a crystal of several centimeters
  • it may be structurally stable.
  • the a-like OS is a metal oxide having a structure between the nc-OS and the amorphous oxide semiconductor.
  • the a-like OS has a void or a low density region. That is, the a-like OS has lower crystallinity than the nc-OS and the CAAC-OS.
  • Oxide semiconductors have various structures and have different characteristics.
  • the oxide semiconductor of one embodiment of the present invention may include two or more of an amorphous oxide semiconductor, a polycrystalline oxide semiconductor, an a-like OS, an nc-OS, and a CAAC-OS.
  • the metal oxide film functioning as a semiconductor layer can be formed using one or both of an inert gas and an oxygen gas.
  • an inert gas an oxygen gas
  • oxygen gas an oxygen gas
  • the flow rate ratio of oxygen (oxygen partial pressure) during the formation of the metal oxide film is preferably 0% or more and 30% or less, and 5% or more and 30% or less. Is more preferably 7% or more and 15% or less.
  • the metal oxide preferably has an energy gap of 2 eV or more, more preferably 2.5 eV or more, and further preferably 3 eV or more. In this manner, off-state current of a transistor can be reduced by using a metal oxide having a wide energy gap.
  • the metal oxide film can be formed by a sputtering method.
  • a PLD method a PECVD method, a thermal CVD method, an ALD method, a vacuum evaporation method, or the like may be used.
  • a metal such as aluminum, titanium, chromium, nickel, copper, yttrium, zirconium, molybdenum, silver, tantalum, or tungsten, or a main component thereof is used. And the like. A film containing any of these materials can be used as a single layer or a stacked structure.
  • Two-layer structure to stack, two-layer structure to stack copper film on titanium film, two-layer structure to stack copper film on tungsten film, titanium film or titanium nitride film, and aluminum film or copper film on top of it A three-layer structure for forming a titanium film or a titanium nitride film thereon, a molybdenum film or a molybdenum nitride film, and an aluminum film or a copper film stacked thereon, and a molybdenum film or a There is a three-layer structure for forming a molybdenum nitride film.
  • an oxide such as indium oxide, tin oxide, or zinc oxide may be used. Further, it is
  • materials that can be used for various insulating layers included in the display device include resins such as acrylic, polyimide, epoxy, and silicone, and inorganic insulating materials such as silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, and aluminum oxide. Materials.
  • a plurality of light-emitting diodes and a plurality of transistors can be attached at a time, so that manufacturing costs and yield of the display device can be reduced.
  • a display device with reduced power consumption can be realized by combining a micro LED and a transistor using a metal oxide.
  • the electronic device of this embodiment includes the display device of one embodiment of the present invention in the display portion.
  • the display device of one embodiment of the present invention has high display quality and low power consumption.
  • the display device of one embodiment of the present invention can be easily increased in definition and size. Therefore, it can be used for display portions of various electronic devices.
  • full high vision, 4K2K, 8K4K, 16K8K, or higher resolution video can be displayed on the display portion of the electronic device of this embodiment.
  • Examples of the electronic device include a digital device in addition to an electronic device having a relatively large screen, such as a television device, a desktop or notebook personal computer, a monitor for a computer, a large game machine such as a digital signage or a pachinko machine.
  • Examples include a camera, a digital video camera, a digital photo frame, a mobile phone, a portable game machine, a portable information terminal, and a sound reproducing device.
  • the electronic device of this embodiment can be incorporated along a curved surface of an inner wall or an outer wall of a house or a building, or an interior or exterior of an automobile.
  • the electronic device of this embodiment may include an antenna. By receiving a signal with an antenna, video, information, and the like can be displayed on the display unit.
  • the antenna may be used for non-contact power transmission.
  • the electronic device of this embodiment includes sensors (force, displacement, position, velocity, acceleration, angular velocity, rotation speed, distance, light, liquid, magnetism, temperature, chemical substance, sound, time, hardness, electric field, current, voltage. , Power, radiation, flow rate, humidity, gradient, vibration, smell, or infrared measurement function).
  • the electronic device of this embodiment can have various functions. For example, a function for displaying various information (still images, moving images, text images, etc.) on the display unit, a touch panel function, a function for displaying a calendar, date or time, a function for executing various software (programs), and wireless communication A function, a function of reading a program or data recorded on a recording medium, and the like can be provided.
  • FIG. 9A illustrates an example of a television device.
  • a display portion 7000 is incorporated in a housing 7101.
  • a structure in which the housing 7101 is supported by a stand 7103 is shown.
  • the display device of one embodiment of the present invention can be applied to the display portion 7000.
  • the television device 7100 illustrated in FIG. 9A can be operated with an operation switch included in the housing 7101 or a separate remote controller 7111.
  • the display portion 7000 may be provided with a touch sensor, and the television device 7100 may be operated by touching the display portion 7000 with a finger or the like.
  • the remote controller 7111 may include a display unit that displays information output from the remote controller 7111. Channels and volume can be operated with an operation key or a touch panel included in the remote controller 7111, and an image displayed on the display portion 7000 can be operated.
  • the television device 7100 is provided with a receiver, a modem, and the like.
  • a general television broadcast can be received by the receiver.
  • information communication is performed in one direction (from the sender to the receiver) or in two directions (between the sender and the receiver or between the receivers). It is also possible.
  • FIG. 9B illustrates an example of a laptop personal computer.
  • a laptop personal computer 7200 includes a housing 7211, a keyboard 7212, a pointing device 7213, an external connection port 7214, and the like.
  • a display portion 7000 is incorporated in the housing 7211.
  • the display device of one embodiment of the present invention can be applied to the display portion 7000.
  • 9C and 9D illustrate an example of digital signage.
  • a digital signage 7300 illustrated in FIG. 9C includes a housing 7301, a display portion 7000, a speaker 7303, and the like. Furthermore, an LED lamp, operation keys (including a power switch or an operation switch), a connection terminal, various sensors, a microphone, and the like can be provided.
  • FIG. 9D illustrates a digital signage 7400 attached to a columnar column 7401.
  • the digital signage 7400 includes a display portion 7000 provided along the curved surface of the column 7401.
  • the display device of one embodiment of the present invention can be applied to the display portion 7000.
  • the wider the display unit 7000 the more information can be provided at one time.
  • the wider the display unit 7000 the more easily noticeable to the human eye.
  • the advertising effect can be enhanced.
  • a touch panel By applying a touch panel to the display unit 7000, not only an image or a moving image is displayed on the display unit 7000, but also a user can operate intuitively, which is preferable. In addition, when it is used for providing information such as route information or traffic information, usability can be improved by an intuitive operation.
  • the digital signage 7300 or the digital signage 7400 can be linked by wireless communication with an information terminal 7311 or an information terminal 7411 such as a smartphone possessed by the user.
  • an information terminal 7311 or an information terminal 7411 such as a smartphone possessed by the user.
  • advertisement information displayed on the display unit 7000 can be displayed on the screen of the information terminal 7311 or the information terminal 7411.
  • the display on the display unit 7000 can be switched by operating the information terminal 7311 or the information terminal 7411.
  • the digital signage 7300 or the digital signage 7400 can execute a game using the screen of the information terminal 7311 or the information terminal 7411 as an operation means (controller). Thereby, an unspecified number of users can participate and enjoy the game at the same time.
  • FIG. 10A is a diagram illustrating the appearance of the camera 8000 with the viewfinder 8100 attached.
  • a camera 8000 includes a housing 8001, a display portion 8002, operation buttons 8003, a shutter button 8004, and the like.
  • the camera 8000 is attached with a detachable lens 8006. Note that in the camera 8000, the lens 8006 and the housing may be integrated.
  • the camera 8000 can capture an image by pressing a shutter button 8004 or touching a display portion 8002 that functions as a touch panel.
  • a housing 8001 has a mount having electrodes, and can be connected to a stroboscopic device or the like in addition to the finder 8100.
  • the viewfinder 8100 includes a housing 8101, a display portion 8102, a button 8103, and the like.
  • the housing 8101 is attached to the camera 8000 by a mount that engages with the mount of the camera 8000.
  • the viewfinder 8100 can display a video or the like received from the camera 8000 on the display portion 8102.
  • the button 8103 has a function as a power button or the like.
  • the display device of one embodiment of the present invention can be applied to the display portion 8002 of the camera 8000 and the display portion 8102 of the viewfinder 8100.
  • a camera 8000 with a built-in finder may be used.
  • FIG. 10B is a diagram illustrating the appearance of the head mounted display 8200.
  • the head mounted display 8200 includes a mounting portion 8201, a lens 8202, a main body 8203, a display portion 8204, a cable 8205, and the like.
  • a battery 8206 is built in the mounting portion 8201.
  • a cable 8205 supplies power from the battery 8206 to the main body 8203.
  • a main body 8203 includes a wireless receiver and the like, and can display received video information on a display portion 8204.
  • the main body 8203 includes a camera, and can use information on the movement of the user's eyeballs and eyelids as input means.
  • the mounting portion 8201 may have a function of recognizing the line of sight by providing a plurality of electrodes that can detect a current flowing along with the movement of the user's eyeball at a position where the user touches the user. Moreover, you may have a function which monitors a user's pulse with the electric current which flows into the said electrode.
  • the wearing unit 8201 may include various sensors such as a temperature sensor, a pressure sensor, and an acceleration sensor, and the function of displaying the user's biological information on the display unit 8204 and the movement of the user's head. It may have a function of changing the video displayed on the display portion 8204 in accordance with the above.
  • the display device of one embodiment of the present invention can be applied to the display portion 8204.
  • FIG. 10C, FIG. 10D, and FIG. 10E are diagrams showing the appearance of the head mounted display 8300.
  • the head mounted display 8300 includes a housing 8301, a display portion 8302, a band-shaped fixture 8304, and a pair of lenses 8305.
  • the user can view the display on the display portion 8302 through the lens 8305.
  • the display portion 8302 be provided in a curved shape because the user can feel high presence. Further, by viewing another image displayed in a different area of the display portion 8302 through the lens 8305, three-dimensional display using parallax or the like can be performed.
  • the present invention is not limited to the configuration in which one display unit 8302 is provided, and two display units 8302 may be provided, and one display unit may be arranged for one eye of the user.
  • the display device of one embodiment of the present invention can be applied to the display portion 8302. Since the display device of one embodiment of the present invention has extremely high definition, the pixel is hardly visible to the user even when the display is enlarged using the lens 8305 as illustrated in FIG. In other words, the display portion 8302 can be used to make the user visually recognize a highly realistic image.
  • An electronic device illustrated in FIGS. 11A to 11F includes a housing 9000, a display portion 9001, a speaker 9003, operation keys 9005 (including a power switch or an operation switch), a connection terminal 9006, a sensor 9007 (power) , Displacement, position, velocity, acceleration, angular velocity, rotation speed, distance, light, liquid, magnetism, temperature, chemical, voice, time, hardness, electric field, current, voltage, power, radiation, flow rate, humidity, gradient, vibration , Including a function of measuring odor or infrared light), a microphone 9008, and the like.
  • the electronic devices illustrated in FIGS. 11A to 11F have various functions. For example, a function for displaying various information (still images, moving images, text images, etc.) on the display unit, a touch panel function, a function for displaying a calendar, date or time, a function for controlling processing by various software (programs), A wireless communication function, a function of reading and processing a program or data recorded in a recording medium, and the like can be provided. Note that the functions of the electronic device are not limited to these, and can have various functions.
  • the electronic device may have a plurality of display units.
  • a camera or the like has a function of shooting a still image or a moving image and saving it in a recording medium (externally or built in the camera), a function of displaying the shot image on a display unit, etc. Good.
  • FIGS. 11A to 11F Details of the electronic devices illustrated in FIGS. 11A to 11F are described below.
  • FIG. 11A is a perspective view showing a portable information terminal 9101.
  • the portable information terminal 9101 can be used as a smartphone, for example.
  • the portable information terminal 9101 may include a speaker 9003, a connection terminal 9006, a sensor 9007, and the like.
  • the portable information terminal 9101 can display characters and image information on the plurality of surfaces.
  • FIG. 11A shows an example in which three icons 9050 are displayed. Further, information 9051 indicated by a broken-line rectangle can be displayed on another surface of the display portion 9001.
  • the information 9051 there are notifications of incoming e-mails, SNSs, telephone calls, etc., titles of e-mails, SNSs, etc., sender names, date / time, time, remaining battery level, and antenna reception strength.
  • an icon 9050 or the like may be displayed at a position where the information 9051 is displayed.
  • FIG. 11B is a perspective view showing the portable information terminal 9102.
  • the portable information terminal 9102 has a function of displaying information on three or more surfaces of the display portion 9001.
  • information 9052, information 9053, and information 9054 are displayed on different planes.
  • the user can check the information 9053 displayed at a position where the portable information terminal 9102 can be observed from above with the portable information terminal 9102 stored in a chest pocket of clothes. The user can confirm the display without taking out the portable information terminal 9102 from the pocket, and can determine whether to receive a call, for example.
  • FIG. 11C is a perspective view showing a wristwatch-type portable information terminal 9200.
  • the portable information terminal 9200 can be used as a smart watch, for example.
  • the display portion 9001 is provided with a curved display surface, and can perform display along the curved display surface.
  • the portable information terminal 9200 can make a hands-free call by communicating with a headset capable of wireless communication, for example.
  • the portable information terminal 9200 can perform data transmission and charging with another information terminal through the connection terminal 9006. Note that the charging operation may be performed by wireless power feeding.
  • FIG. 11D, 11E, and 11F are perspective views illustrating a foldable portable information terminal 9201.
  • FIG. 11D shows a state where the portable information terminal 9201 is unfolded
  • FIG. 11F shows a folded state
  • FIG. 11E changes from one of FIGS. 11D and 11F to the other. It is a perspective view of the state in the middle of doing.
  • the portable information terminal 9201 is excellent in portability in the folded state and excellent in display listability due to a seamless wide display area in the expanded state.
  • a display portion 9001 included in the portable information terminal 9201 is supported by three housings 9000 connected by a hinge 9055.
  • the display portion 9001 can be bent with a curvature radius of 0.1 mm to 150 mm.
  • 111a conductive layer, 111b: conductive layer, 111c: conductive layer, 111d: conductive layer, 112: electrode, 112a: electrode, 112b: electrode, 113: semiconductor layer, 113a: semiconductor layer, 113b: semiconductor layer, 114: light emission Layer, 114a: light emitting layer, 114b: light emitting layer, 115: semiconductor layer, 115a: semiconductor layer, 115b: semiconductor layer, 116: electrode, 116a: electrode, 116b: electrode, 117a: conductor, 117b: conductor, 117c : Conductor, 117d: Conductor, 118a: Conductive layer, 118b: Conductive layer, 118c: Conductive layer, 119a: Low resistance region, 119b: Low resistance region, 141: Insulating layer, 201: Conductive layer, 202: Insulating layer , 203a: conductive layer, 203b: conductive layer, 204: semiconductor layer, 208: insulating layer, 211:

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Chemical & Material Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Led Device Packages (AREA)
  • Electroluminescent Light Sources (AREA)
  • Thin Film Transistor (AREA)
  • Micromachines (AREA)

Abstract

精細度が高い表示装置を提供する。マイクロLEDを表示素子に用いた表示装置の製造コストを削減 する。 基板、 複数のトランジスタ、 及び、 複数の発光ダイオードを有する表示装置である。 複数の発光ダイ オードは、 基板にマトリクス状に設けられている。 複数のトランジスタは、 それぞれ、 複数の発光ダ イオードの少なくとも一つと電気的に接続される。 複数の発光ダイオードは、 複数のトランジスタよ りも基板側に位置する。複数の発光ダイオードは、基板とは反対側に光を発する。

Description

表示装置、表示モジュール、電子機器、及び、表示装置の作製方法
本発明の一態様は、表示装置、表示モジュール、電子機器、及びこれらの作製方法に関する。
なお、本発明の一態様は、上記の技術分野に限定されない。本発明の一態様の技術分野としては、半導体装置、表示装置、発光装置、蓄電装置、記憶装置、電子機器、照明装置、入力装置(例えば、タッチセンサなど)、入出力装置(例えば、タッチパネルなど)、それらの駆動方法、又はそれらの製造方法を一例として挙げることができる。
近年、マイクロ発光ダイオード(マイクロLED(Light Emitting Diode))を表示素子に用いた表示装置が提案されている(例えば特許文献1)。マイクロLEDを表示素子に用いた表示装置は、高輝度、高コントラスト、長寿命などの利点があり、次世代の表示装置として研究開発が活発である。
米国特許出願公開第2014/0367705号明細書
マイクロLEDを表示素子に用いた表示装置は、LEDチップの実装にかかる時間が極めて長く、製造コストの削減が課題となっている。例えば、ピック・アンド・プレイス方式では、赤色(R)、緑色(G)、青色(B)のLEDをそれぞれ異なるウエハ上に作製し、LEDを1つずつ切り出して回路基板に実装する。したがって、表示装置の画素数が多いほど、実装するLEDの個数が増え、実装に係る時間が長くなる。また、表示装置の精細度が高いほど、LEDの実装の難易度が高くなる。
本発明の一態様は、精細度が高い表示装置を提供することを課題の一とする。本発明の一態様は、表示品位の高い表示装置を提供することを課題の一とする。本発明の一態様は、表示装置の薄型化及び軽量化を課題の一とする。
本発明の一態様は、マイクロLEDを表示素子に用いた表示装置の製造コストを削減することを課題の一とする。本発明の一態様は、高い歩留まりで、マイクロLEDを表示素子に用いた表示装置を製造することを課題の一とする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。本発明の一態様は、必ずしも、これらの課題の全てを解決する必要はないものとする。明細書、図面、請求項の記載から、これら以外の課題を抽出することが可能である。
本発明の一態様の表示装置は、基板、複数のトランジスタ、及び、複数の発光ダイオードを有する。複数の発光ダイオードは、基板にマトリクス状に設けられている。複数のトランジスタは、それぞれ、複数の発光ダイオードの少なくとも一つと電気的に接続される。複数の発光ダイオードは、複数のトランジスタよりも基板側に位置する。複数の発光ダイオードは、基板とは反対側に光を発する。
複数の発光ダイオードの少なくとも一つは、マイクロ発光ダイオードであることが好ましい。
複数のトランジスタの少なくとも一つは、チャネル形成領域に金属酸化物を有することが好ましい。
複数の発光ダイオードは、互いに異なる色の光を呈する第1の発光ダイオード及び第2の発光ダイオードを有することが好ましい。または、複数の発光ダイオードは、白色の光を呈することが好ましい。
複数のトランジスタの少なくとも一つは、可視光を透過する半導体層を有することが好ましい。半導体層は、チャネル形成領域と、一対の低抵抗領域を有する。一対の低抵抗領域は、チャネル形成領域よりも抵抗が低い。発光ダイオードが発する光は、一対の低抵抗領域の少なくとも一方を透過して、基板側に射出される。
本発明の一態様は、上記の構成の表示装置を有し、フレキシブルプリント回路基板(Flexible printed circuit、以下、FPCと記す)もしくはTCP(Tape Carrier Package)等のコネクタが取り付けられたモジュール、またはCOG(Chip On Glass)方式もしくはCOF(Chip On Film)方式等により集積回路(IC)が実装されたモジュール等のモジュールである。
本発明の一態様は、上記のモジュールと、アンテナ、バッテリ、筐体、カメラ、スピーカ、マイク、及び操作ボタンのうち、少なくとも一つと、を有する電子機器である。
本発明の一態様は、第1の基板上に、複数のトランジスタをマトリクス状に形成し、第2の基板上に、複数の発光ダイオードをマトリクス状に形成し、第1の基板上または第2の基板上に、複数のトランジスタの少なくとも一つまたは複数の発光ダイオードの少なくとも一つと電気的に接続する第1の導電体を形成し、第1の導電体を介して、複数のトランジスタの少なくとも一つと複数の発光ダイオードの少なくとも一つとが電気的に接続されるように、第1の基板と第2の基板とを貼り合わせる、表示装置の作製方法である。
第1の導電体を第1の基板上に形成することで、第1の導電体と複数のトランジスタの少なくとも一つとを電気的に接続させ、第2の基板上に、複数の発光ダイオードの少なくとも一つと電気的に接続する第2の導電体を形成し、第1の導電体と第2の導電体とが接するように、第1の基板と第2の基板とを貼り合わせることが好ましい。
第1の基板と第2の基板とを貼り合わせた後、第1の基板を剥離してもよい。
本発明の一態様は、第1の基板上に、剥離層を形成し、剥離層上に、絶縁層を形成し、絶縁層の一部を開口し、絶縁層上に、複数のトランジスタをマトリクス状に形成し、剥離層上に、絶縁層の開口と重なるように、導電層を形成し、複数のトランジスタを封止し、剥離層を用いて第1の基板を剥離し、剥離層側から導電層を露出させ、第2の基板上に、複数の発光ダイオードをマトリクス状に形成し、導電層を介して、複数のトランジスタの少なくとも一つと複数の発光ダイオードの少なくとも一つとが電気的に接続されるように、第2の基板上に複数のトランジスタを転載し、導電層は、複数のトランジスタの少なくとも一つと電気的に接続する、または、複数のトランジスタの少なくとも一つのソースもしくはドレインとして機能する、表示装置の作製方法である。
本発明の一態様は、第1の基板上に、剥離層を形成し、剥離層上に、絶縁層を形成し、絶縁層の一部を開口し、絶縁層上に、複数のトランジスタをマトリクス状に形成し、複数のトランジスタを封止し、複数のトランジスタの半導体層は、それぞれ、チャネル形成領域と、一対の低抵抗領域と、を有し、チャネル形成領域は、絶縁層上に形成され、一対の低抵抗領域の一方は、剥離層上に絶縁層の開口と重なるように形成され、剥離層を用いて第1の基板を剥離し、剥離層側から一対の低抵抗領域の一方を露出させ、第2の基板上に、複数の発光ダイオードをマトリクス状に形成し、一対の低抵抗領域の一方を介して、複数のトランジスタの少なくとも一つと複数の発光ダイオードの少なくとも一つとが電気的に接続されるように、第2の基板上に複数のトランジスタを転載する、表示装置の作製方法である。
本発明の一態様により、精細度が高い表示装置を提供できる。本発明の一態様により、表示品位の高い表示装置を提供できる。本発明の一態様により、表示装置の薄型化及び軽量化が可能となる。
本発明の一態様により、マイクロLEDを表示素子に用いた表示装置の製造コストを削減できる。本発明の一態様により、高い歩留まりで、マイクロLEDを表示素子に用いた表示装置を製造できる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。明細書、図面、請求項の記載から、これら以外の効果を抽出することが可能である。
図1(A)表示装置の構成例を説明する断面図。図1(B)LED基板の構成例を説明する断面図。図1(C)回路基板の構成例を説明する断面図。 図2(A)表示装置の構成例を説明する断面図。図2(B)、図2(C)、図2(D)表示装置の作製方法の一例を説明する断面図。 図3(A)表示装置の構成例を説明する断面図。図3(B)LED基板の構成例を説明する断面図。図3(C)回路基板の構成例を説明する断面図。 図4(A)表示装置の構成例を説明する断面図。図4(B)LED基板の構成例を説明する断面図。 図5(A)、図5(B)回路アレイの作製方法の一例を説明する断面図。 表示装置の構成例を説明する断面図。 表示装置の構成例を説明する断面図。 図8(A)、図8(B)トランジスタの一例を示す断面図。 図9(A)~図9(D)電子機器の一例を示す図。 図10(A)~図10(E)電子機器の一例を示す図。 図11(A)~図11(F)電子機器の一例を示す図。
実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。
なお、以下に説明する発明の構成において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。また、同様の機能を指す場合には、ハッチパターンを同じくし、特に符号を付さない場合がある。
また、図面において示す各構成の、位置、大きさ、範囲などは、理解の簡単のため、実際の位置、大きさ、範囲などを表していない場合がある。このため、開示する発明は、必ずしも、図面に開示された位置、大きさ、範囲などに限定されない。
なお、「膜」という言葉と、「層」という言葉とは、場合によっては、又は、状況に応じて、互いに入れ替えることが可能である。例えば、「導電層」という用語を、「導電膜」という用語に変更することが可能である。または、例えば、「絶縁膜」という用語を、「絶縁層」という用語に変更することが可能である。
(実施の形態1)
本実施の形態では、本発明の一態様の表示装置について図1~図8を用いて説明する。
[表示装置の概要]
本実施の形態の表示装置は、表示素子である発光ダイオードと、表示素子を駆動するトランジスタと、をそれぞれ複数有する。複数の発光ダイオードは、基板にマトリクス状に設けられている。複数のトランジスタは、それぞれ、複数の発光ダイオードの少なくとも一つと電気的に接続される。複数の発光ダイオードは、複数のトランジスタよりも基板側に位置する。複数の発光ダイオードは、基板とは反対側に光を発する。
本実施の形態の表示装置は、互いに異なる基板上に形成された複数のトランジスタと複数の発光ダイオードと、を貼り合わせることで形成される。
本実施の形態の表示装置の作製方法では、複数の発光ダイオードと複数のトランジスタとを一度に貼り合わせるため、画素数の多い表示装置や高精細な表示装置を作製する場合であっても、発光ダイオードを1つずつ回路基板に実装する方法に比べて、表示装置の製造時間が短縮でき、また、製造の難易度を低くすることができる。
本実施の形態の表示装置は、発光ダイオードを用いて映像を表示する機能を有する。本実施の形態では、特に、発光ダイオードとして、マイクロLEDを用いる場合の例について説明する。なお、本実施の形態では、ダブルヘテロ接合を有するマイクロLEDについて説明する。ただし、発光ダイオードに特に限定はなく、例えば、量子井戸接合を有するマイクロLED、ナノコラムを用いたLEDなどを用いてもよい。
表示素子としてマイクロLEDを用いることで、表示装置の消費電力を低減することができる。また、表示装置の薄型・軽量化が可能である。また、表示素子としてマイクロLEDを用いた表示装置は、コントラストが高く視野角が広いため、表示品位を高めることができる。
発光ダイオードの光を射出する領域の面積は、1mm以下が好ましく、10000μm以下がより好ましく、3000μm以下がより好ましく、700μm以下がさらに好ましい。なお、本明細書等において、光を射出する領域の面積が10000μm以下の発光ダイオードをマイクロLEDと記す場合がある。
表示装置が有するトランジスタは、チャネル形成領域に金属酸化物を有することが好ましい。金属酸化物を用いたトランジスタは、消費電力を低くすることができる。そのため、マイクロLEDと組み合わせることで、極めて消費電力の低減された表示装置を実現することができる。
[表示装置の構成例A]
図1(A)に、表示装置380Aの断面図を示す。
表示装置380Aは、回路基板360Aと、LED基板370Aと、が貼り合わされて構成されている。
図1(B)に、LED基板370Aの断面図を示す。
LED基板370Aは、基板371、発光ダイオード302a、発光ダイオード302b、導電体117a、導電体117b、導電体117c、導電体117d、及び、保護層373を有する。
発光ダイオード302aは、電極112a、半導体層113a、発光層114a、半導体層115a、及び電極116aを有する。発光ダイオード302bは、電極112b、半導体層113b、発光層114b、半導体層115b、及び電極116bを有する。
電極112aは、半導体層113aと導電体117bと電気的に接続されている。電極116aは、半導体層115aと導電体117aと電気的に接続されている。電極112bは、半導体層113bと導電体117dと電気的に接続されている。電極116bは、半導体層115bと導電体117cと電気的に接続されている。保護層373は、基板371、電極112a、112b、半導体層113a、113b、発光層114a、114b、半導体層115a、115b、及び、電極116a、116bを覆うように設けられる。保護層373は、導電体117a~117dの側面を覆っており、導電体117a~117dの上面と重なる開口を有する。当該開口において、導電体117a~117dの上面は露出している。
発光層114aは、半導体層113aと半導体層115aとに挟持されている。発光層114bは、半導体層113bと半導体層115bとに挟持されている。発光層114a、114bでは、電子と正孔が結合して光を発する。半導体層113a、113bと半導体層115a、115bとのうち、一方はn型の半導体層であり、他方はp型の半導体層である。半導体層113a、発光層114a、及び半導体層115aを含む積層構造、及び、半導体層113b、発光層114b、及び半導体層115bを含む積層構造は、それぞれ、赤色、黄色、緑色、または青色などの光を呈するように形成される。2つの積層構造は異なる色の光を呈することが好ましい。これらの積層構造には、例えば、ガリウム・リン化合物、ガリウム・ヒ素化合物、ガリウム・アルミニウム・ヒ素化合物、アルミニウム・ガリウム・インジウム・リン化合物、ガリウム窒化物、インジウム・窒化ガリウム化合物、セレン・亜鉛化合物等を用いることができる。上記のように、半導体層113a、発光層114a、及び半導体層115aを含む積層構造が赤色、黄色、緑色、または青色などの光を呈するように形成することにより、カラーフィルタなどの着色膜を形成する工程が不要となる。したがって、表示装置の製造コストを抑制することができる。また、2つの積層構造が同じ色の光を呈してもよい。このとき、発光層114a、114bから発せられた光は、着色膜を介して、表示装置の外部に取り出されてもよい。
基板371としては、例えば、サファイヤ(Al)基板、炭化ケイ素(SiC)基板、シリコン(Si)基板、窒化ガリウム(GaN)基板などの単結晶基板を用いることができる。
図1(C)に、回路基板360Aの断面図を示す。
回路基板360Aは、基板361、絶縁層367、トランジスタ303a、トランジスタ303b、絶縁層314、導電層111a、導電層111b、導電層111c、及び、導電層111dを有する。
トランジスタ303a、303bは、それぞれ、ゲート、ゲート絶縁層311、半導体層、バックゲート、ソース、及びドレインを有する。ゲート(下側のゲート)と半導体層は、ゲート絶縁層311を介して重なる。バックゲート(上側のゲート)と半導体層は、絶縁層312及び絶縁層313を介して重なる。半導体層は、酸化物半導体を有することが好ましい。
絶縁層312、絶縁層313、及び絶縁層314のうち、少なくとも一層には、水または水素などの不純物が拡散しにくい材料を用いることが好ましい。外部から不純物がトランジスタに拡散することを効果的に抑制することが可能となり、表示装置の信頼性を高めることができる。絶縁層314は、平坦化層としての機能を有する。
絶縁層367は、下地膜としての機能を有する。絶縁層367には、水または水素などの不純物が拡散しにくい材料を用いることが好ましい。
図1(A)に示すように、LED基板370Aに設けられた導電体117aは、回路基板360Aに設けられた導電層111aと接続されている。これにより、トランジスタ303aと発光ダイオード302aとを電気的に接続することができる。電極116aは、発光ダイオード302aの画素電極として機能する。また、LED基板370Aに設けられた導電体117bと、回路基板360Aに設けられた導電層111bと、が接続されている。電極112aは、発光ダイオード302aの共通電極として機能する。
同様に、LED基板370Aに設けられた導電体117cは、回路基板360Aに設けられた導電層111cと接続されている。これにより、トランジスタ303bと発光ダイオード302bとを電気的に接続することができる。電極116bは、発光ダイオード302bの画素電極として機能する。また、LED基板370Aに設けられた導電体117dと、回路基板360Aに設けられた導電層111dと、が接続されている。電極112bは、発光ダイオード302bの共通電極として機能する。
発光ダイオード302a、302bが発する光は、基板361側に取り出される。基板361、絶縁層367、ゲート絶縁層311、絶縁層312、313、314、及び保護層373は、それぞれ、当該光を透過する。
なお、本実施の形態では、発光ダイオードの光を基板371側とは逆側に取り出す例を示すが、基板371が可視光を透過する場合は、基板371側に光を取り出してもよい。また、発光ダイオードの光を取り出さない側には、発光ダイオードの光を反射する反射層、または、当該光を遮る遮光層を設けてもよい。
導電体117a~117dには、例えば、銀、カーボン、銅などの導電性ペーストや、金、はんだなどのバンプを好適に用いることができる。また、導電体117a~117dと接続される電極112a、112b、116a、116b、及び導電層111a~111dには、それぞれ、導電体117a~117dとのコンタクト抵抗の低い導電材料を用いることが好ましい。例えば、導電体117a~117dに銀ペーストを用いる場合、これらと接続される導電材料が、アルミニウム、チタン、銅、銀(Ag)とパラジウム(Pd)と銅(Cu)の合金(Ag−Pd−Cu(APC))などであると、コンタクト抵抗が低く好ましい。
なお、導電体117a~117dは、LED基板370Aでなく、回路基板360Aに設けられていてもよい。
[表示装置の構成例B]
図2(A)に示す表示装置380Bは、基板361を有さず、可撓性を有する基板362及び接着層363を有する点で、表示装置380Aと異なる。
ガラス基板など、耐熱性の高い基板上で、トランジスタを形成することで、電気特性及び信頼性の高いトランジスタを形成することができる。そして、当該基板からトランジスタを剥離し、フィルムなど、可撓性を有する基板に転置することで、表示装置の薄型化及び軽量化が実現できる。
図2(B)~図2(D)を用いて、表示装置380Bの作製方法について説明する。
図2(B)に示すように、基板351上に剥離層353を形成し、剥離層353上に絶縁層367を形成する。そして、絶縁層367上に、トランジスタ303a、絶縁層314、導電層111a、111bを形成する。これにより、回路基板360Bを形成することができる。
次に、図2(C)に示すように、回路基板360Bと、LED基板370Aと、を貼り合わせる。
そして、図2(D)に示すように、剥離層353を用いて、基板351を剥離する。その後、露出した絶縁層367に、接着層363を用いて、可撓性を有する基板362を貼り合わせることで、図2(A)に示す表示装置380Bを作製することができる。
基板351は、搬送が容易となる程度に剛性を有し、かつ作製工程にかかる温度に対して耐熱性を有する。基板351に用いることができる材料としては、例えば、ガラス、石英、セラミック、サファイヤ、樹脂、半導体、金属または合金などが挙げられる。ガラスとしては、例えば、無アルカリガラス、バリウムホウケイ酸ガラス、アルミノホウケイ酸ガラス等が挙げられる。
剥離層353は、有機材料または無機材料を用いて形成することができる。
剥離層353に用いることができる有機材料としては、例えば、ポリイミド樹脂、アクリル樹脂、エポキシ樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、フェノール樹脂等が挙げられる。
剥離層353に用いることができる無機材料としては、タングステン、モリブデン、チタン、タンタル、ニオブ、ニッケル、コバルト、ジルコニウム、亜鉛、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、シリコンから選択された元素を含む金属、該元素を含む合金、または該元素を含む化合物等が挙げられる。シリコンを含む層の結晶構造は、非晶質、微結晶、多結晶のいずれでもよい。
剥離界面にレーザを照射することで、基板351を剥離してもよい。レーザとしては、エキシマレーザ、固体レーザなどを用いることができる。例えば、ダイオード励起固体レーザ(DPSS)を用いてもよい。または、垂直方向に引っ張る力をかけることにより基板351を剥離してもよい。
なお、基板351、剥離層353、絶縁層367の材料の組み合わせによって、剥離界面は変わることがある。例えば、基板351と剥離層353との界面、剥離層353中、剥離層353と絶縁層367との界面などが、剥離界面となる。
[表示装置の構成例C]
図3(A)に、表示装置380Cの断面図を示す。
表示装置380Cは、回路基板360Cと、LED基板370Bと、が貼り合わされて構成されている。表示装置380Cでは、1つのトランジスタに、2つの発光ダイオードが電気的に接続されている。このように、1つのトランジスタに、複数の発光ダイオードが電気的に接続されていてもよい。
図3(B)に、LED基板370Bの断面図を示す。
LED基板370Bは、基板371、発光ダイオード302c、発光ダイオード302d、導電体117a、導電体117b、導電体117c、及び、保護層373を有する。
発光ダイオード302c、302dは、同一の構成であり、それぞれ、電極112、半導体層113、発光層114、半導体層115、及び電極116を有する。
電極112は、半導体層113と導電体117cと電気的に接続されている。電極116は、半導体層115と導電体117aまたは117bと電気的に接続されている。保護層373は、基板371、電極112、半導体層113、発光層114、半導体層115、及び、電極116を覆うように設けられる。保護層373は、導電体117a~117cの側面を覆っており、導電体117a~117cの上面と重なる開口を有する。当該開口において、導電体117a~117cの上面は露出している。
発光層114は発光層であり、半導体層113と半導体層115とのうち、一方はn型の半導体層であり、他方はp型の半導体層である。発光ダイオード302c、302dは、同一の色の光を呈するように形成される。
図3(C)に、回路基板360Cの断面図を示す。
回路基板360Cは、基板361、絶縁層367、トランジスタ303a、絶縁層314、導電層111a、及び導電層111bを有する。
図3(A)に示すように、LED基板370Bに設けられた導電体117a、117bは、回路基板360Cに設けられた導電層111aと接続されている。これにより、トランジスタ303aと発光ダイオード302c、302dとを電気的に接続することができる。電極116は、発光ダイオード302a、302bの画素電極として機能する。また、LED基板370Bに設けられた導電体117cと、回路基板360Cに設けられた導電層111bと、が接続されている。電極112は、発光ダイオード302c、302dの共通電極として機能する。LED基板370A(図1(B))では、共通電極が発光ダイオードごとに設けられているが、LED基板370Bに示すように、複数の発光ダイオードにわたって共通電極(電極112)が設けられていてもよい。
[表示装置の構成例D、E、F]
図4(A)に、表示装置380Dの断面図を示す。
表示装置380Dは、回路アレイ360Dと、LED基板370Cと、が貼り合わされて構成されている。後述するように、回路アレイ360Dは、基板上に剥離層を介して形成される。そして、当該基板を剥離することで露出した回路アレイ360Dの面が、LED基板370Cと貼り合わされている。
図4(B)に、LED基板370Cの断面図を示す。
LED基板370Cは、基板371、発光ダイオード302e、発光ダイオード302f、導電体117a、導電体117b、導電体117c、及び、保護層373を有する。
発光ダイオード302eは、電極112、半導体層113a、発光層114a、半導体層115a、及び電極116aを有する。発光ダイオード302fは、電極112、半導体層113b、発光層114b、半導体層115b、及び電極116bを有する。
電極112は、半導体層113a、113b、及び導電体117cと電気的に接続されている。電極116aは、半導体層115aと導電体117aと電気的に接続されている。電極116bは、半導体層115bと導電体117cと電気的に接続されている。保護層373は、基板371、電極112、半導体層113a、113b、発光層114a、114b、半導体層115a、115b、及び、電極116a、116bを覆うように設けられる。保護層373は、導電体117a~117dの側面を覆っており、導電体117a~117dの上面と重なる開口を有する。当該開口において、導電体117a~117dの上面は露出している。
図5(A)、図5(B)を用いて、回路アレイ360Dの作製方法について説明する。
図5(A)に示すように、基板351上に剥離層353を形成し、剥離層353上に絶縁層355を形成する。そして、絶縁層355の一部を開口する。次に、絶縁層355上に、トランジスタ303c、303d、及び導電層118cを形成する。そして、封止層318により、トランジスタ303c、303d、及び導電層118cなどを封止する。
トランジスタ303c、303dは、それぞれ、バックゲート、ゲート絶縁層311、半導体層、ゲート絶縁層、ゲート、絶縁層315、ソース、及びドレインを有する。半導体層は、チャネル形成領域と一対の低抵抗領域とを有する。バックゲート(下側のゲート)とチャネル形成領域は、ゲート絶縁層311を介して重なる。ゲート(上側のゲート)とチャネル形成領域は、ゲート絶縁層を介して重なる。ソース及びドレインは、それぞれ、絶縁層315に設けられた開口を介して、低抵抗領域と電気的に接続される。ソースまたはドレインとして機能する導電層118a、118bは、絶縁層355に設けられた開口を介して、剥離層353と接する。また、導電層118a、118bと同一の材料、同一の工程で作製された導電層118cは、絶縁層355に設けられた開口を介して、剥離層353と接する。
封止層318としては、無機絶縁材料及び有機絶縁材料の一方または双方を用いることができる。封止層318の材料としては、接着層などに用いることができる樹脂、バリア性の高い無機絶縁膜、可撓性を有する樹脂フィルムなどが挙げられる。
次に、図5(B)に示すように、剥離層353を用いて、基板351を剥離する。図5(B)では、剥離により、導電層118a、118b、118cが露出する例を示す。基板351を剥離した後に剥離層353が残存する場合は、剥離層353を除去することで、導電層118a、118b、118cを露出する。これにより、回路アレイ360Dを形成することができる。
そして、回路アレイ360Dと、LED基板370Cと、を貼り合わせることで、図4(A)に示す表示装置380Dを作製することができる。
図4(A)に示すように、LED基板370Cに設けられた導電体117aは、回路アレイ360Dに設けられた導電層118aと接続されている。これにより、トランジスタ303eと発光ダイオード302eとを電気的に接続することができる。電極116aは、発光ダイオード302eの画素電極として機能する。
同様に、LED基板370Cに設けられた導電体117bは、回路アレイ360Dに設けられた導電層118bと接続されている。これにより、トランジスタ303fと発光ダイオード302fとを電気的に接続することができる。電極116bは、発光ダイオード302fの画素電極として機能する。
また、LED基板370Dに設けられた導電体117cと、回路アレイ360Dに設けられた導電層118cと、が接続されている。電極112は、発光ダイオード302e、302fの共通電極として機能する。
発光ダイオード302e、302fが発する光は、封止層318側に取り出される。封止層318、絶縁層355、ゲート絶縁層311、絶縁層315は、それぞれ、当該光を透過する。また、導電層118a、118bに、可視光を透過する導電材料を用いると、図4(A)に示す発光領域L1よりも、発光領域を広くすることができるため、好ましい。
また、図6に示す表示装置380Eのように、半導体層の低抵抗領域119a、119bが、絶縁層355に設けられた開口を介して、導電体117a、117bと接続されていてもよい。半導体層に酸化物半導体を用いる場合、半導体層の低抵抗領域119a、119bは発光ダイオードの発光を透過することができるため、発光領域L2を、発光領域L1に比べて広くすることができる。
また、図7に示す表示装置380Fのように、同じ色(例えば白色)の光を呈する発光ダイオードがマトリクス状に配置されたLED基板370Dと、着色層(着色層CFA、CFB)を有する回路アレイ360Fと、を貼り合わせることで、表示装置を作製してもよい。発光ダイオード302eと発光ダイオード302fは、同じ色の光を発する。発光ダイオード302eが発する光は、着色層CFAを介して表示装置380Fの外部に取り出される。発光ダイオード302fが発する光は、着色層CFAとは異なる色の着色層CFBを介して表示装置380Fの外部に取り出される。例えば、赤色、緑色、青色の着色層を回路アレイ360Fに設けることで、フルカラー表示が可能な表示装置を作製することができる。
なお、表示装置380E、380Fは、それぞれ、表示装置380Dの作製方法において、基板351上に剥離層353を介して形成する回路アレイ360Dを、回路アレイ360Eまたは回路アレイ360Fに変更することで、作製することができる。
[トランジスタ]
次に、表示装置に用いることができるトランジスタについて、説明する。
表示装置が有するトランジスタの構造は特に限定されない。例えば、プレーナ型のトランジスタとしてもよいし、スタガ型のトランジスタとしてもよいし、逆スタガ型のトランジスタとしてもよい。また、トップゲート構造またはボトムゲート構造のいずれのトランジスタ構造としてもよい。または、チャネルの上下にゲート電極が設けられていてもよい。
表示装置が有するトランジスタには、例えば、金属酸化物をチャネル形成領域に用いたトランジスタを用いることができる。これにより、極めてオフ電流の低いトランジスタを実現することができる。
または、表示装置が有するトランジスタにシリコンをチャネル形成領域に有するトランジスタを適用してもよい。当該トランジスタとしては、例えば、アモルファスシリコンを有するトランジスタ、結晶性のシリコン(代表的には、低温ポリシリコン)を有するトランジスタ、単結晶シリコンを有するトランジスタなどが挙げられる。
図8(A)、図8(B)に、トランジスタの構成例を示す。各トランジスタは、絶縁層141と絶縁層208の間に設けられている。絶縁層141は、下地膜としての機能を有することが好ましい。絶縁層208は、平坦化膜としての機能を有することが好ましい。
図8(A)に示すトランジスタ220は、半導体層204に金属酸化物を有する、ボトムゲート構造のトランジスタである。金属酸化物は、酸化物半導体として機能することができる。
トランジスタの半導体には、酸化物半導体を用いることが好ましい。シリコンよりもバンドギャップが広く、且つキャリア密度の小さい半導体材料を用いると、トランジスタのオフ状態における電流を低減できるため好ましい。
トランジスタ220は、導電層201、絶縁層202、導電層203a、導電層203b、及び半導体層204を有する。導電層201は、ゲートとして機能する。絶縁層202は、ゲート絶縁層として機能する。半導体層204は、絶縁層202を介して、導電層201と重なる。導電層203a及び導電層203bは、それぞれ、半導体層204と電気的に接続される。トランジスタ220は、絶縁層211と絶縁層212によって覆われていることが好ましい。絶縁層211及び絶縁層212には各種無機絶縁膜を用いることができる。特に、絶縁層211には、酸化物絶縁膜が好適であり、絶縁層212には、窒化物絶縁膜が好適である。
図8(B)に示すトランジスタ230は、半導体層にポリシリコンを有する、トップゲート構造のトランジスタである。
トランジスタ230は、導電層201、絶縁層202、導電層203a、導電層203b、半導体層、及び絶縁層213を有する。導電層201は、ゲートとして機能する。絶縁層202は、ゲート絶縁層として機能する。半導体層は、チャネル形成領域214a及び一対の低抵抗領域214bを有する。半導体層はさらにLDD(Lightly Doped Drain)領域を有していてもよい。図8(B)では、チャネル形成領域214aと低抵抗領域214bの間にLDD領域214cを有する例を示す。チャネル形成領域214aは、絶縁層202を介して、導電層201と重なる。導電層203aは、絶縁層202及び絶縁層213に設けられた開口を介して、一対の低抵抗領域214bの一方と電気的に接続される。同様に、導電層203bは、一対の低抵抗領域214bの他方と電気的に接続される。絶縁層213には、各種無機絶縁膜を用いることができる。特に、絶縁層213には窒化物絶縁膜が好適である。
[金属酸化物]
半導体層には、酸化物半導体として機能する金属酸化物を用いることが好ましい。以下では、半導体層に適用可能な金属酸化物について説明する。
金属酸化物は、少なくともインジウムまたは亜鉛を含むことが好ましい。特に、インジウム及び亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウムまたは錫などが含まれていることが好ましい。また、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種が含まれていてもよい。
ここでは、金属酸化物が、インジウム、元素M、及び亜鉛を有するIn−M−Zn酸化物である場合を考える。なお、元素Mは、アルミニウム、ガリウム、イットリウム、または錫などとする。そのほか、元素Mに適用可能な元素としては、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウムなどがある。ただし、元素Mとして、前述の元素を複数組み合わせても構わない場合がある。
なお、本明細書等において、窒素を有する金属酸化物も金属酸化物(metal oxide)と総称する場合がある。また、窒素を有する金属酸化物を、金属酸窒化物(metal oxynitride)と呼称してもよい。例えば、亜鉛酸窒化物(ZnON)などの窒素を有する金属酸化物を、半導体層に用いてもよい。
なお、本明細書等において、CAAC(c−axis aligned crystal)、及びCAC(Cloud−Aligned Composite)と記載する場合がある。なお、CAACは結晶構造の一例を表し、CACは機能、または材料の構成の一例を表す。
例えば、半導体層にはCAC(Cloud−Aligned Composite)−OSを用いることができる。
CAC−OSまたはCAC−metal oxideとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。なお、CAC−OSまたはCAC−metal oxideを、トランジスタの発光層に用いる場合、導電性の機能は、キャリアとなる電子(またはホール)を流す機能であり、絶縁性の機能は、キャリアとなる電子を流さない機能である。導電性の機能と、絶縁性の機能とを、それぞれ相補的に作用させることで、スイッチングさせる機能(On/Offさせる機能)をCAC−OSまたはCAC−metal oxideに付与することができる。CAC−OSまたはCAC−metal oxideにおいて、それぞれの機能を分離させることで、双方の機能を最大限に高めることができる。
また、CAC−OSまたはCAC−metal oxideは、導電性領域、及び絶縁性領域を有する。導電性領域は、上述の導電性の機能を有し、絶縁性領域は、上述の絶縁性の機能を有する。また、材料中において、導電性領域と、絶縁性領域とは、ナノ粒子レベルで分離している場合がある。また、導電性領域と、絶縁性領域とは、それぞれ材料中に偏在する場合がある。また、導電性領域は、周辺がぼけてクラウド状に連結して観察される場合がある。
また、CAC−OSまたはCAC−metal oxideにおいて、導電性領域と、絶縁性領域とは、それぞれ0.5nm以上10nm以下、好ましくは0.5nm以上3nm以下のサイズで材料中に分散している場合がある。
また、CAC−OSまたはCAC−metal oxideは、異なるバンドギャップを有する成分により構成される。例えば、CAC−OSまたはCAC−metal oxideは、絶縁性領域に起因するワイドギャップを有する成分と、導電性領域に起因するナローギャップを有する成分と、により構成される。当該構成の場合、キャリアを流す際に、ナローギャップを有する成分において、主にキャリアが流れる。また、ナローギャップを有する成分が、ワイドギャップを有する成分に相補的に作用し、ナローギャップを有する成分に連動してワイドギャップを有する成分にもキャリアが流れる。このため、上記CAC−OSまたはCAC−metal oxideをトランジスタのチャネル形成領域に用いる場合、トランジスタのオン状態において高い電流駆動力、つまり大きなオン電流、及び高い電界効果移動度を得ることができる。
すなわち、CAC−OSまたはCAC−metal oxideは、マトリックス複合材(matrix composite)、または金属マトリックス複合材(metal matrix composite)と呼称することもできる。
酸化物半導体(金属酸化物)は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、例えば、CAAC−OS(c−axis aligned crystalline oxide semiconductor)、多結晶酸化物半導体、nc−OS(nanocrystalline oxide semiconductor)、擬似非晶質酸化物半導体(a−like OS:amorphous−like oxide semiconductor)、及び非晶質酸化物半導体などがある。
CAAC−OSは、c軸配向性を有し、かつa−b面方向において複数のナノ結晶が連結し、歪みを有した結晶構造となっている。なお、歪みとは、複数のナノ結晶が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。
ナノ結晶は、六角形を基本とするが、正六角形状とは限らず、非正六角形状である場合がある。また、歪みにおいて、五角形及び七角形などの格子配列を有する場合がある。なお、CAAC−OSにおいて、歪み近傍においても、明確な結晶粒界(グレインバウンダリーともいう。)を確認することは難しい。すなわち、格子配列の歪みによって、結晶粒界の形成が抑制されていることがわかる。これは、CAAC−OSが、a−b面方向において酸素原子の配列が稠密でないことや、金属元素が置換することで原子間の結合距離が変化することなどによって、歪みを許容することができるためである。
また、CAAC−OSは、インジウム、及び酸素を有する層(以下、In層)と、元素M、亜鉛、及び酸素を有する層(以下、(M,Zn)層)とが積層した、層状の結晶構造(層状構造ともいう)を有する傾向がある。なお、インジウムと元素Mは、互いに置換可能であり、(M,Zn)層の元素Mがインジウムと置換した場合、(In,M,Zn)層と表すこともできる。また、In層のインジウムが元素Mと置換した場合、(In,M)層と表すこともできる。
CAAC−OSは結晶性の高い金属酸化物である。一方、CAAC−OSは、明確な結晶粒界を確認することが難しいため、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。また、金属酸化物の結晶性は不純物の混入や欠陥の生成などによって低下する場合があるため、CAAC−OSは不純物や欠陥(酸素欠損(V:oxygen vacancyともいう。)など)の少ない金属酸化物ともいえる。したがって、CAAC−OSを有する金属酸化物は、物理的性質が安定する。そのため、CAAC−OSを有する金属酸化物は熱に強く、信頼性が高い。
nc−OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。また、nc−OSは、異なるナノ結晶間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。したがって、nc−OSは、分析方法によっては、a−like OSや非晶質酸化物半導体と区別が付かない場合がある。
なお、インジウムと、ガリウムと、亜鉛と、を有する金属酸化物の一種である、インジウム−ガリウム−亜鉛酸化物(以下、IGZO)は、上述のナノ結晶とすることで安定な構造をとる場合がある。特に、IGZOは、大気中では結晶成長がし難い傾向があるため、大きな結晶(ここでは、数mmの結晶、または数cmの結晶)よりも小さな結晶(例えば、上述のナノ結晶)とする方が、構造的に安定となる場合がある。
a−like OSは、nc−OSと非晶質酸化物半導体との間の構造を有する金属酸化物である。a−like OSは、鬆または低密度領域を有する。すなわち、a−like OSは、nc−OS及びCAAC−OSと比べて、結晶性が低い。
酸化物半導体(金属酸化物)は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a−like OS、nc−OS、CAAC−OSのうち、二種以上を有していてもよい。
半導体層として機能する金属酸化物膜は、不活性ガス及び酸素ガスのいずれか一方または双方を用いて成膜することができる。なお、金属酸化物膜の成膜時における酸素の流量比(酸素分圧)に、特に限定はない。ただし、電界効果移動度が高いトランジスタを得る場合においては、金属酸化物膜の成膜時における酸素の流量比(酸素分圧)は、0%以上30%以下が好ましく、5%以上30%以下がより好ましく、7%以上15%以下がさらに好ましい。
金属酸化物は、エネルギーギャップが2eV以上であることが好ましく、2.5eV以上であることがより好ましく、3eV以上であることがさらに好ましい。このように、エネルギーギャップの広い金属酸化物を用いることで、トランジスタのオフ電流を低減することができる。
金属酸化物膜は、スパッタリング法により形成することができる。そのほか、PLD法、PECVD法、熱CVD法、ALD法、真空蒸着法などを用いてもよい。
なお、表示装置を構成する各種導電層に用いることができる材料としては、アルミニウム、チタン、クロム、ニッケル、銅、イットリウム、ジルコニウム、モリブデン、銀、タンタル、またはタングステンなどの金属、またはこれを主成分とする合金などが挙げられる。またこれらの材料を含む膜を単層で、または積層構造として用いることができる。例えば、シリコンを含むアルミニウム膜の単層構造、チタン膜上にアルミニウム膜を積層する二層構造、タングステン膜上にアルミニウム膜を積層する二層構造、銅−マグネシウム−アルミニウム合金膜上に銅膜を積層する二層構造、チタン膜上に銅膜を積層する二層構造、タングステン膜上に銅膜を積層する二層構造、チタン膜または窒化チタン膜と、その上に重ねてアルミニウム膜または銅膜を積層し、さらにその上にチタン膜または窒化チタン膜を形成する三層構造、モリブデン膜または窒化モリブデン膜と、その上に重ねてアルミニウム膜または銅膜を積層し、さらにその上にモリブデン膜または窒化モリブデン膜を形成する三層構造等がある。なお、酸化インジウム、酸化錫または酸化亜鉛等の酸化物を用いてもよい。また、マンガンを含む銅を用いると、エッチングによる形状の制御性が高まるため好ましい。
なお、表示装置を構成する各種絶縁層に用いることができる材料としては、アクリル、ポリイミド、エポキシ、シリコーンなどの樹脂、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウムなどの無機絶縁材料が挙げられる。
以上のように、本実施の形態の表示装置は、複数の発光ダイオードと複数のトランジスタとを一度に貼り合わせることができるため、表示装置の製造コストの削減及び歩留まりの向上を図ることができる。また、マイクロLEDと、金属酸化物を用いたトランジスタを組み合わせることで、消費電力の低減された表示装置を実現できる。
本実施の形態は、他の実施の形態と適宜組み合わせることができる。また、本明細書において、1つの実施の形態の中に、複数の構成例が示される場合は、構成例を適宜組み合わせることが可能である。
(実施の形態2)
本実施の形態では、本発明の一態様の電子機器について、図9~図11を用いて説明する。
本実施の形態の電子機器は、表示部に本発明の一態様の表示装置を有する。本発明の一態様の表示装置は、表示品位が高く、かつ、消費電力が低い。また、本発明の一態様の表示装置は、高精細化及び大型化が容易である。したがって、様々な電子機器の表示部に用いることができる。
本実施の形態の電子機器の表示部には、例えばフルハイビジョン、4K2K、8K4K、16K8K、またはそれ以上の解像度を有する映像を表示させることができる。
電子機器としては、例えば、テレビジョン装置、デスクトップ型もしくはノート型のパーソナルコンピュータ、コンピュータ用などのモニタ、デジタルサイネージ、パチンコ機などの大型ゲーム機などの比較的大きな画面を備える電子機器の他、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機、携帯型ゲーム機、携帯情報端末、音響再生装置、などが挙げられる。
本実施の形態の電子機器は、家屋もしくはビルの内壁もしくは外壁、または、自動車の内装もしくは外装の曲面に沿って組み込むことができる。
本実施の形態の電子機器は、アンテナを有していてもよい。アンテナで信号を受信することで、表示部で映像や情報等の表示を行うことができる。また、電子機器がアンテナ及び二次電池を有する場合、アンテナを、非接触電力伝送に用いてもよい。
本実施の形態の電子機器は、センサ(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外線を測定する機能を含むもの)を有していてもよい。
本実施の形態の電子機器は、様々な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)を実行する機能、無線通信機能、記録媒体に記録されているプログラムまたはデータを読み出す機能等を有することができる。
図9(A)にテレビジョン装置の一例を示す。テレビジョン装置7100は、筐体7101に表示部7000が組み込まれている。ここでは、スタンド7103により筐体7101を支持した構成を示している。
表示部7000に、本発明の一態様の表示装置を適用することができる。
図9(A)に示すテレビジョン装置7100の操作は、筐体7101が備える操作スイッチや、別体のリモコン操作機7111により行うことができる。または、表示部7000にタッチセンサを備えていてもよく、指等で表示部7000に触れることでテレビジョン装置7100を操作してもよい。リモコン操作機7111は、当該リモコン操作機7111から出力する情報を表示する表示部を有していてもよい。リモコン操作機7111が備える操作キーまたはタッチパネルにより、チャンネル及び音量の操作を行うことができ、表示部7000に表示される映像を操作することができる。
なお、テレビジョン装置7100は、受信機及びモデムなどを備えた構成とする。受信機により一般のテレビ放送の受信を行うことができる。また、モデムを介して有線または無線による通信ネットワークに接続することにより、一方向(送信者から受信者)または双方向(送信者と受信者間、あるいは受信者間同士など)の情報通信を行うことも可能である。
図9(B)に、ノート型パーソナルコンピュータの一例を示す。ノート型パーソナルコンピュータ7200は、筐体7211、キーボード7212、ポインティングデバイス7213、外部接続ポート7214等を有する。筐体7211に、表示部7000が組み込まれている。
表示部7000に、本発明の一態様の表示装置を適用することができる。
図9(C)、図9(D)に、デジタルサイネージの一例を示す。
図9(C)に示すデジタルサイネージ7300は、筐体7301、表示部7000、及びスピーカ7303等を有する。さらに、LEDランプ、操作キー(電源スイッチ、または操作スイッチを含む)、接続端子、各種センサ、マイクロフォン等を有することができる。
図9(D)は円柱状の柱7401に取り付けられたデジタルサイネージ7400である。デジタルサイネージ7400は、柱7401の曲面に沿って設けられた表示部7000を有する。
図9(C)、図9(D)において、表示部7000に、本発明の一態様の表示装置を適用することができる。
表示部7000が広いほど、一度に提供できる情報量を増やすことができる。また、表示部7000が広いほど、人の目につきやすく、例えば、広告の宣伝効果を高めることができる。
表示部7000にタッチパネルを適用することで、表示部7000に画像または動画を表示するだけでなく、使用者が直感的に操作することができ、好ましい。また、路線情報もしくは交通情報などの情報を提供するための用途に用いる場合には、直感的な操作によりユーザビリティを高めることができる。
また、図9(C)、図9(D)に示すように、デジタルサイネージ7300またはデジタルサイネージ7400は、ユーザが所持するスマートフォン等の情報端末機7311または情報端末機7411と無線通信により連携可能であることが好ましい。例えば、表示部7000に表示される広告の情報を、情報端末機7311または情報端末機7411の画面に表示させることができる。また、情報端末機7311または情報端末機7411を操作することで、表示部7000の表示を切り替えることができる。
また、デジタルサイネージ7300またはデジタルサイネージ7400に、情報端末機7311または情報端末機7411の画面を操作手段(コントローラ)としたゲームを実行させることもできる。これにより、不特定多数のユーザが同時にゲームに参加し、楽しむことができる。
図10(A)は、ファインダー8100を取り付けた状態のカメラ8000の外観を示す図である。
カメラ8000は、筐体8001、表示部8002、操作ボタン8003、シャッターボタン8004等を有する。またカメラ8000には、着脱可能なレンズ8006が取り付けられている。なお、カメラ8000は、レンズ8006と筐体とが一体となっていてもよい。
カメラ8000は、シャッターボタン8004を押す、またはタッチパネルとして機能する表示部8002をタッチすることにより撮像することができる。
筐体8001は、電極を有するマウントを有し、ファインダー8100のほか、ストロボ装置等を接続することができる。
ファインダー8100は、筐体8101、表示部8102、ボタン8103等を有する。
筐体8101は、カメラ8000のマウントと係合するマウントにより、カメラ8000に取り付けられている。ファインダー8100はカメラ8000から受信した映像等を表示部8102に表示させることができる。
ボタン8103は、電源ボタン等としての機能を有する。
カメラ8000の表示部8002、及びファインダー8100の表示部8102に、本発明の一態様の表示装置を適用することができる。なお、ファインダーが内蔵されたカメラ8000であってもよい。
図10(B)は、ヘッドマウントディスプレイ8200の外観を示す図である。
ヘッドマウントディスプレイ8200は、装着部8201、レンズ8202、本体8203、表示部8204、ケーブル8205等を有している。また装着部8201には、バッテリ8206が内蔵されている。
ケーブル8205は、バッテリ8206から本体8203に電力を供給する。本体8203は無線受信機等を備え、受信した映像情報を表示部8204に表示させることができる。また、本体8203はカメラを備え、使用者の眼球やまぶたの動きの情報を入力手段として用いることができる。
また、装着部8201には、使用者に触れる位置に、使用者の眼球の動きに伴って流れる電流を検知可能な複数の電極が設けられ、視線を認識する機能を有していてもよい。また、当該電極に流れる電流により、使用者の脈拍をモニタする機能を有していてもよい。また、装着部8201には、温度センサ、圧力センサ、加速度センサ等の各種センサを有していてもよく、使用者の生体情報を表示部8204に表示する機能や、使用者の頭部の動きに合わせて表示部8204に表示する映像を変化させる機能を有していてもよい。
表示部8204に、本発明の一態様の表示装置を適用することができる。
図10(C)、図10(D)、図10(E)は、ヘッドマウントディスプレイ8300の外観を示す図である。ヘッドマウントディスプレイ8300は、筐体8301と、表示部8302と、バンド状の固定具8304と、一対のレンズ8305と、を有する。
使用者は、レンズ8305を通して、表示部8302の表示を視認することができる。なお、表示部8302を湾曲して配置させると、使用者が高い臨場感を感じることができるため好ましい。また、表示部8302の異なる領域に表示された別の画像を、レンズ8305を通して視認することで、視差を用いた3次元表示等を行うこともできる。なお、表示部8302を1つ設ける構成に限られず、表示部8302を2つ設け、使用者の片方の目につき1つの表示部を配置してもよい。
表示部8302に、本発明の一態様の表示装置を適用することができる。本発明の一態様の表示装置は極めて精細度が高いため、図10(E)のようにレンズ8305を用いて表示を拡大して視認される場合でも、使用者に画素が視認されにくい。つまり、表示部8302を用いて、使用者に現実感の高い映像を視認させることができる。
図11(A)乃至図11(F)に示す電子機器は、筐体9000、表示部9001、スピーカ9003、操作キー9005(電源スイッチ、又は操作スイッチを含む)、接続端子9006、センサ9007(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、におい又は赤外線を測定する機能を含むもの)、マイクロフォン9008、等を有する。
図11(A)乃至図11(F)に示す電子機器は、様々な機能を有する。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)によって処理を制御する機能、無線通信機能、記録媒体に記録されているプログラムまたはデータを読み出して処理する機能、等を有することができる。なお、電子機器の機能はこれらに限られず、様々な機能を有することができる。電子機器は、複数の表示部を有していてもよい。また、電子機器にカメラ等を設け、静止画や動画を撮影し、記録媒体(外部またはカメラに内蔵)に保存する機能、撮影した画像を表示部に表示する機能、等を有していてもよい。
図11(A)乃至図11(F)に示す電子機器の詳細について、以下説明を行う。
図11(A)は、携帯情報端末9101を示す斜視図である。携帯情報端末9101は、例えばスマートフォンとして用いることができる。なお、携帯情報端末9101は、スピーカ9003、接続端子9006、センサ9007等を設けてもよい。また、携帯情報端末9101は、文字や画像情報をその複数の面に表示することができる。図11(A)では3つのアイコン9050を表示した例を示している。また、破線の矩形で示す情報9051を表示部9001の他の面に表示することもできる。情報9051の一例としては、電子メール、SNS、電話などの着信の通知、電子メールやSNSなどの題名、送信者名、日時、時刻、バッテリの残量、アンテナ受信の強度などがある。または、情報9051が表示されている位置にはアイコン9050などを表示してもよい。
図11(B)は、携帯情報端末9102を示す斜視図である。携帯情報端末9102は、表示部9001の3面以上に情報を表示する機能を有する。ここでは、情報9052、情報9053、情報9054がそれぞれ異なる面に表示されている例を示す。例えば使用者は、洋服の胸ポケットに携帯情報端末9102を収納した状態で、携帯情報端末9102の上方から観察できる位置に表示された情報9053を確認することもできる。使用者は、携帯情報端末9102をポケットから取り出すことなく表示を確認し、例えば電話を受けるか否かを判断できる。
図11(C)は、腕時計型の携帯情報端末9200を示す斜視図である。携帯情報端末9200は、例えばスマートウォッチとして用いることができる。また、表示部9001はその表示面が湾曲して設けられ、湾曲した表示面に沿って表示を行うことができる。また、携帯情報端末9200は、例えば無線通信可能なヘッドセットと相互通信することによって、ハンズフリーで通話することもできる。また、携帯情報端末9200は、接続端子9006により、他の情報端末と相互にデータ伝送を行うことや、充電を行うこともできる。なお、充電動作は無線給電により行ってもよい。
図11(D)、図11(E)、図11(F)は、折り畳み可能な携帯情報端末9201を示す斜視図である。また、図11(D)は携帯情報端末9201を展開した状態、図11(F)は折り畳んだ状態、図11(E)は図11(D)と図11(F)の一方から他方に変化する途中の状態の斜視図である。携帯情報端末9201は、折り畳んだ状態では可搬性に優れ、展開した状態では継ぎ目のない広い表示領域により表示の一覧性に優れる。携帯情報端末9201が有する表示部9001は、ヒンジ9055によって連結された3つの筐体9000に支持されている。例えば、表示部9001は、曲率半径0.1mm以上150mm以下で曲げることができる。
本実施の形態は、他の実施の形態及び実施例と適宜組み合わせることができる。
111a:導電層、111b:導電層、111c:導電層、111d:導電層、112:電極、112a:電極、112b:電極、113:半導体層、113a:半導体層、113b:半導体層、114:発光層、114a:発光層、114b:発光層、115:半導体層、115a:半導体層、115b:半導体層、116:電極、116a:電極、116b:電極、117a:導電体、117b:導電体、117c:導電体、117d:導電体、118a:導電層、118b:導電層、118c:導電層、119a:低抵抗領域、119b:低抵抗領域、141:絶縁層、201:導電層、202:絶縁層、203a:導電層、203b:導電層、204:半導体層、208:絶縁層、211:絶縁層、212:絶縁層、213:絶縁層、214a:チャネル形成領域、214b:低抵抗領域、214c:LDD領域、220:トランジスタ、230:トランジスタ、302a:発光ダイオード、302b:発光ダイオード、302c:発光ダイオード、302d:発光ダイオード、302e:発光ダイオード、302f:発光ダイオード、303a:トランジスタ、303b:トランジスタ、303c:トランジスタ、303d:トランジスタ、303e:トランジスタ、303f:トランジスタ、311:ゲート絶縁層、312:絶縁層、313:絶縁層、314:絶縁層、315:絶縁層、318:封止層、351:基板、353:剥離層、355:絶縁層、360A:回路基板、360B:回路基板、360C:回路基板、360D:回路アレイ、360E:回路アレイ、360F:回路アレイ、361:基板、362:基板、363:接着層、367:絶縁層、370A:LED基板、370B:LED基板、370C:LED基板、370D:LED基板、371:基板、373:保護層、380A:表示装置、380B:表示装置、380C:表示装置、380D:表示装置、380E:表示装置、380F:表示装置、7000:表示部、7100:テレビジョン装置、7101:筐体、7103:スタンド、7111:リモコン操作機、7200:ノート型パーソナルコンピュータ、7211:筐体、7212:キーボード、7213:ポインティングデバイス、7214:外部接続ポート、7300:デジタルサイネージ、7301:筐体、7303:スピーカ、7311:情報端末機、7400:デジタルサイネージ、7401:柱、7411:情報端末機、8000:カメラ、8001:筐体、8002:表示部、8003:操作ボタン、8004:シャッターボタン、8006:レンズ、8100:ファインダー、8101:筐体、8102:表示部、8103:ボタン、8200:ヘッドマウントディスプレイ、8201:装着部、8202:レンズ、8203:本体、8204:表示部、8205:ケーブル、8206:バッテリ、8300:ヘッドマウントディスプレイ、8301:筐体、8302:表示部、8304:固定具、8305:レンズ、9000:筐体、9001:表示部、9003:スピーカ、9005:操作キー、9006:接続端子、9007:センサ、9008:マイクロフォン、9050:アイコン、9051:情報、9052:情報、9053:情報、9054:情報、9055:ヒンジ、9101:携帯情報端末、9102:携帯情報端末、9200:携帯情報端末、9201:携帯情報端末

Claims (13)

  1.  基板、複数のトランジスタ、及び、複数の発光ダイオードを有し、
     前記複数の発光ダイオードは、前記基板にマトリクス状に設けられており、
     前記複数のトランジスタは、それぞれ、前記複数の発光ダイオードの少なくとも一つと電気的に接続され、
     前記複数の発光ダイオードは、前記複数のトランジスタよりも前記基板側に位置し、
     前記複数の発光ダイオードは、前記基板とは反対側に光を発する、表示装置。
  2.  請求項1において、
     前記複数の発光ダイオードの少なくとも一つは、マイクロ発光ダイオードである、表示装置。
  3.  請求項1または2において、
     前記複数のトランジスタの少なくとも一つは、チャネル形成領域に金属酸化物を有する、表示装置。
  4.  請求項1乃至3のいずれか一において、
     前記複数の発光ダイオードは、第1の発光ダイオード及び第2の発光ダイオードを有し、
     前記第1の発光ダイオードと前記第2の発光ダイオードとは、互いに異なる色の光を呈する、表示装置。
  5.  請求項1乃至4のいずれか一において、
     前記複数の発光ダイオードは、白色の光を呈する発光ダイオードを有する、表示装置。
  6.  請求項1乃至5のいずれか一において、
     前記複数のトランジスタの少なくとも一つは、可視光を透過する半導体層を有し、
     前記半導体層は、チャネル形成領域と、一対の低抵抗領域を有し、
     前記一対の低抵抗領域は、前記チャネル形成領域よりも抵抗が低く、
     前記発光ダイオードが発する光は、前記一対の低抵抗領域の少なくとも一方を透過して、前記基板側に射出される、表示装置。
  7.  請求項1乃至6のいずれか一に記載の表示装置と、コネクタまたは集積回路と、を有する、表示モジュール。
  8.  請求項7に記載の表示モジュールと、
     アンテナ、バッテリ、筐体、カメラ、スピーカ、マイク、及び操作ボタンのうち、少なくとも一つと、を有する、電子機器。
  9.  第1の基板上に、複数のトランジスタをマトリクス状に形成し、
     第2の基板上に、複数の発光ダイオードをマトリクス状に形成し、
     前記第1の基板上または前記第2の基板上に、前記複数のトランジスタの少なくとも一つまたは前記複数の発光ダイオードの少なくとも一つと電気的に接続する第1の導電体を形成し、
     前記第1の導電体を介して、前記複数のトランジスタの少なくとも一つと前記複数の発光ダイオードの少なくとも一つとが電気的に接続されるように、前記第1の基板と前記第2の基板とを貼り合わせる、表示装置の作製方法。
  10.  請求項9において、
     前記第1の導電体を前記第1の基板上に形成することで、前記第1の導電体と前記複数のトランジスタの少なくとも一つとを電気的に接続させ、
     前記第2の基板上に、前記複数の発光ダイオードの少なくとも一つと電気的に接続する第2の導電体を形成し、
     前記第1の導電体と前記第2の導電体とが接するように、前記第1の基板と前記第2の基板とを貼り合わせる、表示装置の作製方法。
  11.  請求項9または10において、
     前記第1の基板と前記第2の基板とを貼り合わせた後、前記第1の基板を剥離する、表示装置の作製方法。
  12.  第1の基板上に、剥離層を形成し、
     前記剥離層上に、絶縁層を形成し、
     前記絶縁層の一部を開口し、
     前記絶縁層上に、複数のトランジスタをマトリクス状に形成し、
     前記剥離層上に、前記絶縁層の開口と重なるように、導電層を形成し、
     前記複数のトランジスタを封止し、
     前記剥離層を用いて前記第1の基板を剥離し、前記剥離層側から前記導電層を露出させ、
     第2の基板上に、複数の発光ダイオードをマトリクス状に形成し、
     前記導電層を介して、前記複数のトランジスタの少なくとも一つと前記複数の発光ダイオードの少なくとも一つとが電気的に接続されるように、前記第2の基板上に前記複数のトランジスタを転載し、
     前記導電層は、前記複数のトランジスタの少なくとも一つと電気的に接続する、または、前記複数のトランジスタの少なくとも一つのソースもしくはドレインとして機能する、表示装置の作製方法。
  13.  第1の基板上に、剥離層を形成し、
     前記剥離層上に、絶縁層を形成し、
     前記絶縁層の一部を開口し、
     前記絶縁層上に、複数のトランジスタをマトリクス状に形成し、
     前記複数のトランジスタを封止し、
     前記複数のトランジスタの半導体層は、それぞれ、チャネル形成領域と、一対の低抵抗領域と、を有し、
     前記チャネル形成領域は、前記絶縁層上に形成され、
     前記一対の低抵抗領域の一方は、前記剥離層上に前記絶縁層の開口と重なるように形成され、
     前記剥離層を用いて前記第1の基板を剥離し、前記剥離層側から前記一対の低抵抗領域の一方を露出させ、
     第2の基板上に、複数の発光ダイオードをマトリクス状に形成し、
     前記一対の低抵抗領域の一方を介して、前記複数のトランジスタの少なくとも一つと前記複数の発光ダイオードの少なくとも一つとが電気的に接続されるように、前記第2の基板上に前記複数のトランジスタを転載する、表示装置の作製方法。
PCT/IB2019/053436 2018-05-18 2019-04-26 表示装置、表示モジュール、電子機器、及び、表示装置の作製方法 WO2019220246A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2020519201A JP7289294B2 (ja) 2018-05-18 2019-04-26 表示装置、表示モジュール、電子機器、及び、表示装置の作製方法
CN202310609397.3A CN116544261A (zh) 2018-05-18 2019-04-26 显示装置、显示模块、电子设备及显示装置的制造方法
CN201980031381.0A CN112136170B (zh) 2018-05-18 2019-04-26 显示装置、显示模块、电子设备及显示装置的制造方法
US17/055,383 US11961871B2 (en) 2018-05-18 2019-04-26 Display device, display module, electronic device, and method for fabricating display device
KR1020207035878A KR20210010520A (ko) 2018-05-18 2019-04-26 표시 장치, 표시 모듈, 전자 기기, 및 표시 장치의 제작 방법
JP2023088466A JP7441362B2 (ja) 2018-05-18 2023-05-30 表示装置、表示モジュールおよび電子機器
JP2024021725A JP2024050928A (ja) 2018-05-18 2024-02-16 表示装置の作製方法
US18/624,562 US20240250112A1 (en) 2018-05-18 2024-04-02 Display device, display module, electronic device, and method for fabricating display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018095872 2018-05-18
JP2018-095872 2018-05-18

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/055,383 A-371-Of-International US11961871B2 (en) 2018-05-18 2019-04-26 Display device, display module, electronic device, and method for fabricating display device
US18/624,562 Division US20240250112A1 (en) 2018-05-18 2024-04-02 Display device, display module, electronic device, and method for fabricating display device

Publications (1)

Publication Number Publication Date
WO2019220246A1 true WO2019220246A1 (ja) 2019-11-21

Family

ID=68539859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2019/053436 WO2019220246A1 (ja) 2018-05-18 2019-04-26 表示装置、表示モジュール、電子機器、及び、表示装置の作製方法

Country Status (5)

Country Link
US (2) US11961871B2 (ja)
JP (3) JP7289294B2 (ja)
KR (1) KR20210010520A (ja)
CN (2) CN112136170B (ja)
WO (1) WO2019220246A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111769048A (zh) * 2020-07-10 2020-10-13 山东傲晟智能科技有限公司 一种显示屏及其制造方法
JP2023552008A (ja) * 2021-11-15 2023-12-14 ティーシーエル チャイナスター オプトエレクトロニクス テクノロジー カンパニー リミテッド 有機発光ダイオード表示パネル及びその製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116759429A (zh) 2018-09-05 2023-09-15 株式会社半导体能源研究所 显示装置、显示模块、电子设备及显示装置的制造方法
US12033987B2 (en) 2018-09-07 2024-07-09 Semiconductor Energy Laboratory Co., Ltd. Display device, display module, and electronic device
US11710760B2 (en) * 2019-06-21 2023-07-25 Semiconductor Energy Laboratory Co., Ltd. Display device, display module, electronic device, and manufacturing method of display device
US12074146B2 (en) * 2021-12-03 2024-08-27 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Display panel and manufacturing method thereof
CN114597229B (zh) * 2022-03-22 2023-06-27 业成科技(成都)有限公司 触控式微型发光二极体显示器及其制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012104566A (ja) * 2010-11-08 2012-05-31 Toshiba Mobile Display Co Ltd 薄膜トランジスタ回路基板及びその製造方法
JP2017111438A (ja) * 2015-12-11 2017-06-22 株式会社半導体エネルギー研究所 表示装置及び分離方法
US20180122836A1 (en) * 2016-10-28 2018-05-03 Lg Display Co., Ltd. Light emitting diode display device

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004361424A (ja) * 2003-03-19 2004-12-24 Semiconductor Energy Lab Co Ltd 素子基板、発光装置及び発光装置の駆動方法
JP4989309B2 (ja) * 2007-05-18 2012-08-01 株式会社半導体エネルギー研究所 液晶表示装置
CN101847646B (zh) 2010-02-02 2012-05-30 孙润光 一种无机发光二极管显示装置
JP5521082B2 (ja) * 2013-04-16 2014-06-11 株式会社半導体エネルギー研究所 液晶表示装置
US8987765B2 (en) 2013-06-17 2015-03-24 LuxVue Technology Corporation Reflective bank structure and method for integrating a light emitting device
CN111028715A (zh) 2015-07-23 2020-04-17 首尔半导体株式会社 显示装置
CN105070729A (zh) * 2015-08-31 2015-11-18 京东方科技集团股份有限公司 一种阵列基板和显示装置
US10600823B2 (en) * 2015-09-02 2020-03-24 Facebook Technologies, Llc Assembly of semiconductor devices
GB2541970B (en) * 2015-09-02 2020-08-19 Facebook Tech Llc Display manufacture
CN106887488B (zh) 2015-12-15 2019-06-11 群创光电股份有限公司 发光二极管及使用此发光二极管所制得的显示装置
US20190081076A1 (en) * 2016-03-04 2019-03-14 Sharp Kabushiki Kaisha Thin film transistor substrate and display panel
TWI704671B (zh) * 2016-06-24 2020-09-11 日商半導體能源研究所股份有限公司 顯示裝置以及其驅動方法
TW201824220A (zh) * 2016-09-30 2018-07-01 半導體能源硏究所股份有限公司 顯示面板、顯示裝置、輸入輸出裝置、資料處理裝置
KR102633079B1 (ko) * 2016-10-28 2024-02-01 엘지디스플레이 주식회사 발광 다이오드 디스플레이 장치
KR102490188B1 (ko) * 2016-11-09 2023-01-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치, 표시 모듈, 전자 기기, 및 표시 장치의 제작 방법
KR20180079081A (ko) * 2016-12-30 2018-07-10 엘지디스플레이 주식회사 액정 표시 장치
US10096656B1 (en) * 2017-05-16 2018-10-09 Wuhan China Star Optoelectronics Technology Co., Ltd. Manufacturing method for complementary TFT device and manufacturing method for OLED display panel
CN107170773B (zh) 2017-05-23 2019-09-17 深圳市华星光电技术有限公司 微发光二极管显示面板及其制作方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012104566A (ja) * 2010-11-08 2012-05-31 Toshiba Mobile Display Co Ltd 薄膜トランジスタ回路基板及びその製造方法
JP2017111438A (ja) * 2015-12-11 2017-06-22 株式会社半導体エネルギー研究所 表示装置及び分離方法
US20180122836A1 (en) * 2016-10-28 2018-05-03 Lg Display Co., Ltd. Light emitting diode display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111769048A (zh) * 2020-07-10 2020-10-13 山东傲晟智能科技有限公司 一种显示屏及其制造方法
CN111769048B (zh) * 2020-07-10 2022-01-04 深圳市双禹盛泰科技有限公司 一种显示屏及其制造方法
JP2023552008A (ja) * 2021-11-15 2023-12-14 ティーシーエル チャイナスター オプトエレクトロニクス テクノロジー カンパニー リミテッド 有機発光ダイオード表示パネル及びその製造方法

Also Published As

Publication number Publication date
US11961871B2 (en) 2024-04-16
CN116544261A (zh) 2023-08-04
JP2023123443A (ja) 2023-09-05
JP7441362B2 (ja) 2024-02-29
US20240250112A1 (en) 2024-07-25
JPWO2019220246A1 (ja) 2021-07-15
JP7289294B2 (ja) 2023-06-09
CN112136170B (zh) 2023-06-20
CN112136170A (zh) 2020-12-25
US20210217805A1 (en) 2021-07-15
KR20210010520A (ko) 2021-01-27
JP2024050928A (ja) 2024-04-10

Similar Documents

Publication Publication Date Title
JP7289294B2 (ja) 表示装置、表示モジュール、電子機器、及び、表示装置の作製方法
TWI829746B (zh) 顯示裝置、顯示模組、電子裝置及顯示裝置的製造方法
TW202105797A (zh) 顯示裝置、顯示模組、電子裝置及顯示裝置之製造方法
TWI846725B (zh) 顯示裝置、顯示模組及電子裝置
JP7534190B2 (ja) 表示装置の作製方法
TW201816837A (zh) 半導體裝置及該半導體裝置的製造方法
WO2021099880A1 (ja) 表示装置、表示モジュール、電子機器、及び表示装置の作製方法
TW202209663A (zh) 顯示裝置以及電子裝置
US20240144879A1 (en) Semiconductor device, display apparatus, and electronic device
TW202437218A (zh) 顯示裝置、顯示模組及電子裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19802784

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020519201

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207035878

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19802784

Country of ref document: EP

Kind code of ref document: A1