WO2019219096A1 - 一种区域化透皮离子电渗给药系统 - Google Patents

一种区域化透皮离子电渗给药系统 Download PDF

Info

Publication number
WO2019219096A1
WO2019219096A1 PCT/CN2019/095881 CN2019095881W WO2019219096A1 WO 2019219096 A1 WO2019219096 A1 WO 2019219096A1 CN 2019095881 W CN2019095881 W CN 2019095881W WO 2019219096 A1 WO2019219096 A1 WO 2019219096A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode assembly
electrode
array
pair
sub
Prior art date
Application number
PCT/CN2019/095881
Other languages
English (en)
French (fr)
Inventor
邱骅轩
Original Assignee
上海敬巽信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海敬巽信息科技有限公司 filed Critical 上海敬巽信息科技有限公司
Priority to EP19804518.9A priority Critical patent/EP3795210A1/en
Priority to AU2019270870A priority patent/AU2019270870B2/en
Priority to SG11202011379XA priority patent/SG11202011379XA/en
Priority to US17/055,208 priority patent/US20210113829A1/en
Priority to JP2020564663A priority patent/JP2022534457A/ja
Publication of WO2019219096A1 publication Critical patent/WO2019219096A1/zh
Priority to ZA2020/07757A priority patent/ZA202007757B/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0408Use-related aspects
    • A61N1/0428Specially adapted for iontophoresis, e.g. AC, DC or including drug reservoirs
    • A61N1/0432Anode and cathode
    • A61N1/044Shape of the electrode
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/20Applying electric currents by contact electrodes continuous direct currents
    • A61N1/30Apparatus for iontophoresis, i.e. transfer of media in ionic state by an electromotoric force into the body, or cataphoresis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0408Use-related aspects
    • A61N1/0428Specially adapted for iontophoresis, e.g. AC, DC or including drug reservoirs
    • A61N1/0448Drug reservoir
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0472Structure-related aspects
    • A61N1/0484Garment electrodes worn by the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/20Applying electric currents by contact electrodes continuous direct currents
    • A61N1/30Apparatus for iontophoresis, i.e. transfer of media in ionic state by an electromotoric force into the body, or cataphoresis
    • A61N1/303Constructional details
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/325Applying electric currents by contact electrodes alternating or intermittent currents for iontophoresis, i.e. transfer of media in ionic state by an electromotoric force into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/328Applying electric currents by contact electrodes alternating or intermittent currents for improving the appearance of the skin, e.g. facial toning or wrinkle treatment

Definitions

  • the invention relates to the field of medical instruments, in particular to a regionalized transdermal iontophoretic drug delivery system.
  • Amy is a common problem of human beings, especially women. As the economic level increases year by year, more and more women pay more attention to their appearance. Among them, skin care, as an important part of the beauty of beauty, occupies more than half of the women's beauty consumption. Skin care has become a science in modern times.
  • transdermal iontophoretic administration technique The main purpose of the traditional transdermal iontophoretic administration technique is to deliver the drug through the skin to the blood, and there is no particular requirement for the passage of the drug through the skin.
  • conventional transdermal drug delivery systems have two electrodes of larger area and use the voltage between the two electrodes to cause current flow to introduce the drug.
  • the doping current is likely to concentrate only on some small areas of the large electrode. Therefore, current techniques cannot guarantee the uniformity of transdermal administration.
  • the T-shaped part (forehead, nose) of a general user will be relatively greasy and the pores will be coarse.
  • the dosing current selectively avoids areas of higher electrical resistance, resulting in a very uneven distribution of drug delivery.
  • the current can be concentrated at the wound, which not only stimulates the wound, but also reduces the ability to be administered to other areas.
  • transdermal administration in order to solve the problem that the difference in facial skin texture mentioned above leads to uneven administration, there is an urgent need in the art to develop a regionally controlled amount of transdermal administration, transdermal delivery depth, and transdermal.
  • a regionalized transdermal iontophoretic delivery system for drug delivery rate in order to solve the problem that the difference in facial skin texture mentioned above leads to uneven administration, there is an urgent need in the art to develop a regionally controlled amount of transdermal administration, transdermal delivery depth, and transdermal.
  • a regionalized transdermal iontophoretic delivery system comprising:
  • each electrode assembly comprising an electrode
  • M power supplies for supplying current to respective electrodes or pairs of electrodes, where M is a positive integer from 1 to C (N, 2), where C(N, 2) represents "N selected a combination of 2";
  • At least two electrodes in the array of electrode assemblies are provided with a medium carrying a charged active agent, and the current pushes the active agent during a period in which the current is the same polarity as the active agent Repelled to the skin layer.
  • the number N of electrodes is an even number
  • the number M of power sources is a positive integer of 2 to N/2.
  • the array of electrode assemblies is powered by the M power sources in the following manner:
  • One or more power supplies are One or more power supplies
  • the array of electrode assemblies is powered by the M power sources in the following manner:
  • One or more power supplies are One or more power supplies
  • a switch matrix or multiplexer is A switch matrix or multiplexer.
  • the array of electrode assemblies is powered by the M power sources in the following manner:
  • One or more power sources are One or more power sources.
  • One or more current drive components One or more current drive components
  • a switch matrix or multiplexer is A switch matrix or multiplexer.
  • the power source will simultaneously supply current to its respective electrode or pair of electrodes.
  • the power source will in turn supply current to its respective electrode or pair of electrodes.
  • the power supply can provide current to its respective electrode or pair of electrodes for different periods of time.
  • each of the electrode assemblies includes a respective contact layer; wherein the contact layer is for storing the active agent-containing medium and is in fluid communication with the electrode.
  • each of the electrodes is independently provided with a separate contact layer.
  • the plurality of electrodes share a contact layer.
  • each of the electrode assemblies in the array of electrode assemblies includes a connector that connects the electrode assembly to its respective power source.
  • the connector connects the electrode assembly to its respective current drive assembly.
  • the connector connects the electrode assembly to its respective switch matrix or multiplexer.
  • the current is a direct current.
  • the current is an alternating current.
  • the alternating current has one or more characteristics selected from the group consisting of:
  • the period is from 1 second to 30 minutes, preferably from 1 second to 15 minutes, more preferably from 1 second to 10 minutes, most preferably from 1 second to 5 minutes.
  • the waveform is a basic waveform between a large value and a minimum value, including a climbing period during which the current increases from a minimum value to a maximum value, or from a maximum value to a minimum value.
  • the duty ratio is 5% to 95%, preferably 10 to 80%, more preferably 20 to 70%.
  • the current between any one of the working electrode pairs is 0.014 mA during operation.
  • the array of electrode assemblies comprises:
  • the first electrode assembly pair is in a non-array form.
  • the first electrode assembly sub-array includes ⁇ 3 electrode assemblies.
  • the pair of II electrode assemblies is in a non-array form.
  • the second electrode assembly sub-array comprises ⁇ 3 electrode assemblies.
  • the array of electrode assemblies comprises:
  • the first electrode assembly pair is in a non-array form.
  • the first electrode assembly sub-array includes ⁇ 3 electrode assemblies.
  • the pair of II electrode assemblies is in a non-array form.
  • the second electrode assembly sub-array comprises ⁇ 3 electrode assemblies.
  • the third electrode assembly pair is in a non-array form.
  • the III electrode assembly sub-array comprises ⁇ 3 electrode assemblies.
  • the array of electrode assemblies comprises:
  • the fourth electrode assembly pair or the fourth electrode assembly sub-array corresponds to the chin area of the face.
  • the first electrode assembly pair is in a non-array form.
  • the first electrode assembly sub-array includes ⁇ 3 electrode assemblies.
  • the pair of II electrode assemblies is in a non-array form.
  • the second electrode assembly sub-array comprises ⁇ 3 electrode assemblies.
  • the third electrode assembly pair is in a non-array form.
  • the III electrode assembly sub-array comprises ⁇ 3 electrode assemblies.
  • the fourth electrode assembly pair is in the form of a non-array.
  • the fourth electrode assembly sub-array comprises ⁇ 3 electrode assemblies.
  • the array of electrode assemblies comprises:
  • a third electrode assembly or a third sub-electrode assembly sub-array corresponding to the left cheek region and the left chin region of the face;
  • IIIb electrode assembly pair or the IIIb electrode assembly sub-array corresponds to the right cheek region and the right chin region of the face.
  • the first electrode assembly pair is in a non-array form.
  • the first electrode assembly sub-array includes ⁇ 3 electrode assemblies.
  • the pair of II electrode assemblies is in a non-array form.
  • the second electrode assembly sub-array comprises ⁇ 3 electrode assemblies.
  • the IIIa electrode assembly pair is in the form of a non-array.
  • the IIIa electrode assembly sub-array comprises ⁇ 3 electrode assemblies.
  • the IIIb electrode assembly pair is in a non-array form (eg, including only 2 electrode assemblies).
  • the IIIb electrode assembly sub-array comprises ⁇ 3 electrode assemblies.
  • the array of electrode assemblies comprises:
  • the fourth electrode assembly pair or the fourth electrode assembly sub-array corresponds to the chin area of the face.
  • the first electrode assembly pair is in a non-array form.
  • the first electrode assembly sub-array includes ⁇ 3 electrode assemblies.
  • the pair of II electrode assemblies is in a non-array form.
  • the second electrode assembly sub-array comprises ⁇ 3 electrode assemblies.
  • the IIIa electrode assembly pair is in the form of a non-array.
  • the IIIa electrode assembly sub-array comprises ⁇ 3 electrode assemblies.
  • the IIIb electrode assembly pair is in the form of a non-array.
  • the IIIb electrode assembly sub-array comprises ⁇ 3 electrode assemblies.
  • the fourth electrode assembly pair is in the form of a non-array.
  • the fourth electrode assembly sub-array comprises ⁇ 3 electrode assemblies.
  • ⁇ 50% of the N electrodes are reconfigurable and their respective electrode and power pairings can be changed during operation.
  • N electrodes preferably ⁇ 70%, more preferably ⁇ 90%, and most preferably ⁇ 95% (e.g., 100%) of the electrodes are reconfigurable.
  • any one of the electrode arrays is coupled to and driven by a half bridge drive circuit (HBD).
  • HBD half bridge drive circuit
  • the half bridge drive circuit includes at least two transistors.
  • the half bridge driving circuit further includes: a current sensor disposed on a high voltage side; and/or a current sensor disposed on a low voltage side.
  • system further includes a controller for controlling power supply to the array of electrode assemblies.
  • controlling the power supply to the array of electrode assemblies includes controlling the voltage of the power supply, the current supplied, the waveform of the power supply, the time of power supply, or a combination thereof.
  • system further includes a switch matrix or multiplexer disposed between the power source and the array of electrode assemblies.
  • the shape of the electrode is selected from the group consisting of a cylinder, a cuboid, or a combination thereof.
  • the electrodes have the same or different external surface areas.
  • the respective surface areas of the electrodes are: 0.5 to 50 cm 2 , preferably 1 to 40 cm 2 ; more preferably 5 to 30 cm 2 .
  • the distance between two adjacent electrodes and the electrode is from 0.01 to 5 cm, preferably from 0.1 to 1 cm.
  • the electrode has a material selected from the group consisting of a metal, an alloy, or a conductive carbon material.
  • the system is an electronic mask.
  • the contact surface formed by the contact layer of the electrode in the matrix of the electrode assembly is conformal to the outer surface of the face.
  • the system configures the operating state of the electrodes of the electrode assembly matrix and/or the control electrodes based on the acquired data of the face.
  • the data is selected from the group consisting of skin moisture content, skin pH, sebum secretion content, skin damage, skin aging, skin roughness, skin bio-resistance analysis, or a combination thereof.
  • a method of regionalized transdermal iontophoretic administration comprising the steps of: transdermal ionization using a regionalized transdermal iontophoretic delivery system as described in the first aspect of the invention Electroosmotic administration.
  • the transdermal iontophoretic administration is a site selected from the group consisting of a face, a neck, a hand, a hand, a leg, a foot, or a combination thereof.
  • the method is a cosmetic method.
  • the method is a non-therapeutic method.
  • the transdermal iontophoretic administration is performed on an inanimate object or body.
  • Figure 1 shows a schematic diagram of an independent current drive assembly; this example can simultaneously drive all electrode assembly pairs and/or electrode assembly sub-arrays.
  • Figure 2 shows a schematic diagram of sharing a power or current drive assembly with a switch matrix or multiplexer; this example can only drive one electrode assembly pair or a set of electrode assembly sub-arrays at any one time.
  • Figure 3 shows a schematic diagram of sharing K power supply or current drive components using a switch matrix or multiplexer; this example can only drive K pairs of active electrode assemblies at any one time, where the active electrode pair can be an electrode assembly pair or an electrode assembly Subarray.
  • Figure 4 shows a conventional mask for skin care with a pair of electrodes.
  • Fig. 5 is a schematic view showing the distribution of transdermal administration after using a conventional electronic mask having only one pair of electrodes covering the entire face; the application current selectively avoids a region with a high resistance due to different skin conditions, resulting in no Controlled and uneven distribution of drug delivery.
  • Figure 6a shows a mask of one example of the present invention divided into a nose region, and a forehead + cheek + chin region.
  • the electrode assembly pair (1, 1') is for the nose area and the electrode assembly pair (2, 2') is for the forehead + cheek + chin area.
  • Fig. 6b shows that the mask of one example of the present invention is divided into a nose area, a forehead area, and a cheek + chin area.
  • the electrode assembly pair (1, 1') is for the nose region
  • the electrode assembly pair (2, 2') is for the forehead region
  • the electrode assembly pair (3, 3') is for the cheek + chin region.
  • Fig. 6c shows that the mask of one example of the present invention is divided into a nose region, a forehead region, a cheek region, and a chin region.
  • the electrode assembly pair (1, 1') is for the nose area
  • the electrode assembly pair (2, 2') is for the forehead area
  • the electrode assembly pair (3, 3') is for the cheek area
  • the electrode assembly pair (4, 4' ) for the chin area.
  • Fig. 6d shows that the mask of one example of the present invention is divided into a nose region, a forehead region, a left cheek + a left chin region, and a right cheek + right chin region.
  • the electrode assembly pair (1, 1') is for the nose region
  • the electrode assembly pair (2, 2') is for the forehead region
  • the electrode assembly pair (3a, 3a') is for the left cheek + left chin region
  • the electrode assembly pair ( 3b, 3b') for the right cheek + right chin area.
  • Fig. 6e shows the mask of one example of the present invention divided into a nose region, a forehead region, a left cheek region, a right cheek region, and a chin region.
  • the electrode assembly pair (1, 1') is for the nose region
  • the electrode assembly pair (2, 2') is for the forehead region
  • the electrode assembly pair (3a, 3a') is for the left cheek region
  • the electrode assembly pair (3b, 3b) ') For the right cheek area
  • the electrode assembly pair (4, 4') is for the chin area.
  • Fig. 7 is a schematic view showing the distribution of uniform administration on the face using the present invention to achieve regionalized transdermal administration control.
  • Figure 8a shows a mask of an example of the invention in which the electrode array consists of a matrix of sub-electrodes.
  • Figure 8b shows a schematic view of a mask forming four pairs of active electrodes from a sub-electrode matrix in one embodiment of the invention.
  • the electrode assembly sub-array (1, 1 ') is for the nose region
  • the electrode assembly sub-array (2, 2') is for the forehead region
  • the electrode assembly sub-array (3a, 3a') is for the left cheek + left chin region
  • the electrode assembly The array (3b, 3b') is for the right cheek + right chin area.
  • Figure 8c shows a schematic view of a mask forming four pairs of active electrodes from a sub-electrode matrix in one embodiment of the invention.
  • the electrode assembly pair (1, 1 ') is for the nose region
  • the electrode assembly pair (2, 2') is for the forehead region
  • the electrode assembly pair (3a, 3a') is for the left cheek + left chin region
  • the electrode assembly pair (3b, 3b') for the right cheek + right chin area.
  • the electrode indicated by "x" is an area which is unsuitable for administration, such as a wound, and the electrode is set to "not working".
  • FIG. 9 shows a schematic view of a mask comprising a portion consisting of a sub-electrode matrix, in which an electrode assembly sub-array (1, 1 ') is directed to the nose region; an electrode assembly pair (2, 2') is directed to the forehead region;
  • the component sub-array (3a, 3a') is for the left cheek + left chin region and the electrode assembly sub-array (3b, 3b') is for the right cheek + right chin region.
  • FIG. 10 shows that in one embodiment of the invention, each of the electrodes in the electrode assembly is independently provided with a separate contact layer.
  • Figure 11 shows that in one embodiment of the invention, a plurality of electrodes in an electrode assembly share a contact layer.
  • the present inventors have for the first time developed a regionalized transdermal iontophoretic drug delivery system which can regionally control (or regulate) the amount of transdermal administration, transdermal drug delivery depth, and penetration.
  • the regionalized transdermal iontophoretic delivery system of the present invention utilizes a specific array of electrode assemblies (the array having multiple electrodes) that can be based on factors such as moisture content, skin pH, and sebum secretion levels of the user's skin.
  • the amount of transdermal administration, the depth of transdermal administration, and the speed of transdermal administration are precisely and efficiently controlled to achieve precise or personalized transdermal administration or cosmetic treatment.
  • the present invention has been completed on this basis.
  • electrode assembly refers to an assembly of electrodes and their respective skin contact layers.
  • electrode assembly pair refers to a pair of components that are comprised of two electrode assemblies.
  • electrode assembly array refers to an array of at least three electrode assemblies, or more than a pair of electrode assemblies.
  • electrode assembly sub-array refers to a sub-array of at least three electrode assemblies, or more than a pair of electrode assemblies.
  • One or more sub-arrays can form a large array.
  • C(N, 2) refers to the total number of combinations of 2 elements selected from N elements, namely (N!) / (2!*(N-2)!).
  • the present invention provides a regionalized transdermal iontophoretic delivery system comprising:
  • each electrode assembly comprising an electrode
  • M power supplies for supplying current to respective electrodes or pairs of electrodes, where M is a positive integer from 1 to C (N, 2), where C(N, 2) represents "N selected a combination of 2";
  • At least two electrodes in the array of electrode assemblies are provided with a medium carrying a charged active agent, and the current pushes the active agent during a period in which the current is the same polarity as the active agent Repelled to the skin layer.
  • the number of electrodes N is an even number
  • the number of power sources M may be a positive integer of 2 to N/2
  • the shape of the electrode is selected from the group consisting of a cylinder, a rectangular parallelepiped or a combination thereof.
  • the electrodes have the same or different external surface areas.
  • the one or more or all of the electrodes have an outer surface area of from 0.5 to 50 cm 2 , preferably from 1 to 40 cm 2 ; more preferably from 5 to 30 cm 2 ;
  • the separation distance between the two adjacent electrodes and the electrode is not particularly limited and is usually from 0.01 to 5 cm, preferably from 0.1 to 1 cm.
  • the electrode may be made of a conventional electrode material.
  • Representative electrode materials include, but are not limited to, metals, alloys, conductive carbon materials, or combinations thereof.
  • the system of the present invention also includes a controller for controlling the supply of power to the array of electrode assemblies.
  • the "controlling the power supply to the array of electrode assemblies” includes controlling the voltage of the power supply, the current supplied by the power, the waveform of the power supply, the time of the power supply, or a combination thereof.
  • system of the present invention may further comprise: one or more switch matrices or multiplexers disposed between the power source and the array of electrode assemblies.
  • ⁇ 50% of the N electrodes are reconfigurable, and their respective electrode and power pairings can be changed during operation; preferably ⁇ 70%, more preferably ⁇ 90%, most Electrodes ⁇ 95% (eg 100%) are reconfigurable.
  • the system of the present invention can be made in different forms depending on the application.
  • a typical form is the form of a mask, an electronic mask.
  • the electronic mask may cover all, most, or a portion of the face area.
  • the face area mainly includes the following sub-areas, such as the nose area, the forehead area, the cheek area, and the chin area.
  • Each sub-region can be further divided into a left sub-region and a right sub-region.
  • powering the electrode assembly array with a power source can be implemented in a variety of ways.
  • the array of electrode assemblies is powered by the M power sources in the following manner:
  • Method 1 one or more power sources; and a plurality of current driving components;
  • Method 2 one or more power supplies; and a switch matrix or multiplexer;
  • Mode 3 one or more power supplies; one or more current drive components; and a switch matrix or multiplexer.
  • the power source will simultaneously supply current to its respective electrode or pair of electrodes.
  • the power supply will in turn supply current to its respective electrode or pair of electrodes.
  • the power supply can provide current to its respective electrode or pair of electrodes for different periods of time.
  • the current used in the system of the present invention is a direct current or an alternating current, or a combination thereof.
  • the parameters such as appropriate voltage, current, and energization time can be set as needed to achieve transdermal or cosmetic purposes safely, effectively, and accurately.
  • the alternating current it is preferred for the alternating current to have one or more features selected from the group consisting of:
  • the waveform is a basic waveform between a large value and a minimum value, including a climbing period during which the current increases from a minimum value to a maximum value, or from a maximum value to a minimum value.
  • the duty ratio is 5% to 95%, preferably 10 to 80%, more preferably 20 to 70%.
  • the current between any one of the working electrode pairs is preferably from 0.01 to 4 mA.
  • Each of the electrode assemblies includes a respective contact layer; the contact layer is for storing a medium comprising an active agent and is in fluid communication with the electrode.
  • each of the electrodes may be provided with a separate contact layer; or as shown in Fig. 11, a plurality of electrodes may be used to share one contact layer.
  • Each of the electrode assemblies in the array of electrode assemblies includes a connector that connects the electrode assembly to its respective power source.
  • the connector connects the electrode assembly to its respective current drive assembly, the connector connecting the electrode assembly to its respective switch matrix or multiplexer.
  • the array of electrode assemblies may include:
  • first electrode assembly pair is in a non-array form
  • first electrode assembly sub-array comprises ⁇ 3 electrode assemblies
  • the pair of II electrode assemblies is in a non-array form.
  • the second electrode assembly sub-array includes ⁇ 3 electrode assemblies.
  • the array of electrode assemblies can include:
  • first electrode assembly pair is in a non-array form
  • first electrode assembly sub-array comprises ⁇ 3 electrode assemblies
  • the second electrode assembly pair is in a non-array form, and the second electrode assembly sub-array includes ⁇ 3 electrode assemblies.
  • the third electrode assembly pair is in a non-array form, and the third electrode assembly sub-array includes ⁇ 3 electrode assemblies.
  • the array of electrode assemblies may further include:
  • the fourth electrode assembly pair or the fourth electrode assembly sub-array corresponds to the chin area of the face.
  • first electrode assembly pair is in a non-array form
  • first electrode assembly sub-array comprises ⁇ 3 electrode assemblies
  • the second electrode assembly pair is in a non-array form, and the second electrode assembly sub-array includes ⁇ 3 electrode assemblies.
  • the third electrode assembly pair is in a non-array form, and the third electrode assembly sub-array includes ⁇ 3 electrode assemblies.
  • the fourth electrode assembly pair is in a non-array form, and the fourth electrode assembly sub-array includes ⁇ 3 electrode assemblies.
  • the array of electrode assemblies may also include:
  • a third electrode assembly or a third sub-electrode assembly sub-array corresponding to the left cheek region and the left chin region of the face;
  • IIIb electrode assembly pair or the IIIb electrode assembly sub-array corresponds to the right cheek region and the right chin region of the face.
  • first electrode assembly pair is in a non-array form, and the first electrode assembly sub-array comprises ⁇ 3 electrode assemblies;
  • the second electrode assembly pair is in a non-array form, and the second electrode assembly sub-array includes ⁇ 3 electrode assemblies.
  • the IIIa electrode assembly pair is in a non-array form, and the IIIa electrode assembly sub-array includes ⁇ 3 electrode assemblies.
  • the IIIb electrode assembly pair is in a non-array form, and the IIIb electrode assembly sub-array includes ⁇ 3 electrode assemblies.
  • the electrode assembly array further includes:
  • the fourth electrode assembly pair or the fourth electrode assembly sub-array corresponds to the chin area of the face.
  • first electrode assembly pair is in a non-array form
  • first electrode assembly sub-array comprises ⁇ 3 electrode assemblies
  • the second electrode assembly pair is in a non-array form, and the second electrode assembly sub-array includes ⁇ 3 electrode assemblies.
  • the IIIa electrode assembly sub-array comprises ⁇ 3 electrode assemblies.
  • the IIIb electrode assembly pair is in a non-array form, and the IIIb electrode assembly sub-array includes ⁇ 3 electrode assemblies.
  • the fourth electrode assembly pair is in a non-array form, and the fourth electrode assembly sub-array includes ⁇ 3 electrode assemblies.
  • any one of the electrode arrays is coupled to and driven by a half bridge drive circuit (HBD).
  • HBD half bridge drive circuit
  • the half bridge drive circuit includes at least two transistors.
  • the half bridge driving circuit further includes: a current sensor disposed on a high voltage side; and/or a current sensor disposed on a low voltage side.
  • the system of the present invention is an electronic mask, and the contact surface formed by the contact layer of the electrodes in the matrix of the electrode assembly is conformal to the outer surface of the face.
  • the system configures the operating state of the electrodes of the electrode assembly matrix and/or the control electrodes based on the acquired data of the face.
  • the data is selected from the group consisting of skin moisture content, skin pH, sebum secretion content, skin damage, skin aging, skin roughness, skin bio-resistance analysis, or a combination thereof.
  • the existing mask is as shown in FIG. 4, and it can not be controlled to be transdermally administered in a regionalized manner; when the user uses the existing mask, the application current selectively avoids the region with high resistance due to the difference in skin condition, resulting in Uncontrolled and uneven distribution of the agent, the distribution of the active agent on the face is shown in Figure 5.
  • the optimized mask of the present invention can be customized for individual or user groups, and regionalized transdermal drug delivery control can achieve a uniform distribution profile as shown in FIG.
  • Electrode assembly distribution in the mask is divided into: electrode assembly pair (1, 1 ') for the nose region, electrode assembly pair (2, 2') for the forehead + cheek + chin region .
  • Electro assembly distribution in the mask is divided into: electrode assembly pair (1, 1') for the nose region, electrode assembly pair (2, 2') for the forehead region, and electrode assembly pair. (3,3') for the cheek + chin area.
  • Electro assembly distribution in the mask is divided into: electrode assembly pair (1, 1 ') for the nose region, electrode assembly pair (2, 2') for the forehead region, and electrode assembly pair. (3, 3') For the cheek area, the electrode assembly pair (4, 4') is for the chin area.
  • Electro assembly distribution in the mask is divided into: electrode assembly pair (1, 1 ') for the nose region, electrode assembly pair (2, 2') for the forehead region, and electrode assembly pair. (3a, 3a') For the left cheek + left chin region, the electrode assembly pair (3b, 3b') is for the right cheek + right chin region.
  • Electrode assembly distribution in the mask is divided into: electrode assembly pair (1, 1') for the nose region, electrode assembly pair (2, 2') for the forehead region, and electrode assembly pair (3a, 3a') For the left cheek region, the electrode assembly pair (3b, 3b') is for the right cheek region and the electrode assembly pair (4, 4') is for the chin region.
  • FIG. 8a An example mask of the present invention is shown in Figure 8a.
  • the array of electrode assemblies in the mask consists of a matrix of sub-electrode assemblies.
  • the predetermined area can be precisely controlled for transdermal administration, transdermal administration depth, and/or transdermal delivery rate, etc., to achieve precise and uniform administration (or administration of a cosmetic active ingredient).
  • the regionalized transdermal iontophoretic delivery system comprises an array of electrode assembly arrays, the array of electrode assemblies, as shown in Figure 8a, comprising 56 electrode assemblies, each electrode assembly Includes an electrode, skin contact layer, and connector.
  • any one of the electrode arrays is connected to an HBD (FIG. 1 mode) and is driven by the half bridge drive circuit.
  • HBD FIG. 1 mode
  • This example controls the current between any two electrodes and can synthesize up to 1540 (56 select 2) different current sources.
  • the transdermal iontophoretic drug delivery system adopts the mask structure as shown in Fig. 8a, and can be used according to the skin condition of different regions of the user (the skin moisture content, skin pH, sebum secretion content, skin of the skin collected in different regions of the face) Damaged skin aging, skin roughness, skin bio-resistance analysis data) to form different pairs of effective electrode assemblies.
  • the skin condition of different regions of the user the skin moisture content, skin pH, sebum secretion content, skin of the skin collected in different regions of the face
  • Damaged skin aging, skin roughness, skin bio-resistance analysis data to form different pairs of effective electrode assemblies.
  • a common effective electrode assembly is distributed: an effective electrode assembly pair (1, 1 ') for a nose region; an effective electrode assembly pair (2, 2') for a forehead region; and an effective electrode assembly pair (3a, 3a') for the left cheek + left chin region; the effective electrode assembly pair (3b, 3b') for the right cheek + right chin region.
  • the transdermal iontophoretic administration system using the regionalization control can overcome the uncontrollable and uneven administration caused by the difference in skin condition and the characteristic that the current is selectively avoided from the region with high resistance. Distribute and achieve a uniform active agent distribution as shown in FIG. Regionalized control can also achieve different levels of dosing for different areas, ie optimizing the distribution of the user's facial active dose.
  • an independently controlled array of electrodes can also selectively avoid the wound.
  • the electrode indicated by “x” is an area which is unsuitable for administration such as a wound, and the electrode indicated by “x” is set to "not working" when other electrodes are operated.
  • the regionalized transdermal iontophoretic delivery system comprises an array of electrode assemblies, the array of electrode assemblies, as shown in Figure 6d, comprising eight electrode assemblies, each electrode assembly comprising An electrode, skin contact layer, and connector.
  • the electrodes in the electrode array are connected by two (4:1) multiplexers (Fig. 2 mode) and shared to a power supply.
  • the electrode assemblies 1, 2, 3a, and 3b will be connected to the first (4:1) multiplexer, and the electrode assemblies 1', 2', 3a', and 3b' will be connected to the second ( 4:1) Multiplexer.
  • This example is one of the main design goals to reduce the number of circuit components.
  • the active electrode assembly pair (1, 1 ') is for the nose area; the active electrode assembly pair (2, 2') is for the forehead area; the active electrode assembly pair (3a, 3a') is for the left cheek + left chin Area; effective electrode assembly pair (3b, 3b') for the right cheek + right chin area.
  • the transdermal iontophoretic drug delivery system employs a mask structure as shown in Fig. 6d, and the contact faces formed by the contact layers of the electrodes in the matrix of the mask electrode assembly are conformal to the outer surface of the face.
  • the data on skin moisture content, skin pH, sebum secretion, skin damage, skin aging, skin bio-resistance analysis collected in different areas of the face effectively control the penetration of skin in different areas.
  • the electrode assembly distribution of this example is effective to achieve a uniform active agent distribution as shown in FIG. Regionalized control can also achieve different levels of dosing for different areas, ie optimizing the distribution of the user's facial active dose.
  • the conventional transdermal mask is shown in Fig. 4.
  • the mask uses a pair of electrodes, which cannot achieve transdermal administration control in a regional manner, and the transdermal administration is not targeted when the user uses the existing mask.
  • the distribution of the active agent as shown in Fig. 5 can be achieved by the existing system, and the application current selectively avoids the region of higher resistance due to the difference in skin condition, resulting in an uncontrollable and uneven distribution of administration.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Plastic & Reconstructive Surgery (AREA)
  • Electrotherapy Devices (AREA)

Abstract

一种区域化透皮离子电渗给药系统,以实现区域化的透皮给药量、透皮给药深度、和透皮给药速度的控制。具体地,所述的系统包括电源、电流驱动组件、可选的开关矩阵或多路复用器、电极组件(1,1',2,2',3a,3a',3b,3b',4,4')或电极组件阵列。该区域化透皮离子电渗给药系统可精准控制任何电极组合之间的给药电流分配,以区域化地控制透皮给药量、透皮给药深度、透皮给药速度,能够针对用户皮肤实现精确给药。

Description

一种区域化透皮离子电渗给药系统 技术领域
本发明涉及一种医疗器械领域,具体涉及一种区域化透皮离子电渗给药系统。
背景技术
爱美是人类,尤其是广大女性的通病,随着经济水平的逐年提升,越来越多的女性对于自身的外貌显得分外重视。而其中,护肤作为爱美的重要组成部分,占据着女性美容消费的多半壁江山。护肤在现代已经成为一门学问。
随着人们对健康的追求日益高涨和皮肤医学的高速发展,带有更高安全性和有效性的医学护肤品已经成为不可阻挡的一股潮流。
传统的透皮离子电渗给药技术的主要目的是把药物穿过皮肤传递到血液里,对于药物透过皮肤的途径则没有特别的要求。因此,传统的透皮给药系统具有两个面积较大的电极,并使用两个电极间的电压来引起电流流动以导入药物。但是考虑到电流总是以电阻最小的路径流动的特性,给药电流非常可能只集中在大电极的某些小面积里。因此,目前的技术无法保证透皮给药的均匀度。
在美容领域,均匀地给皮肤补充营养和滋润至关重要。以面部皮肤为例,一般用户的T字部位(额头,鼻子)会相对比较油腻,毛孔粗大。如使用大电极覆盖整个脸部以实现透皮给药面膜,给药电流则会选择性避开电阻较高的区域,造成非常不均匀的给药分布。此外,当用户皮肤有伤口,给药电流则可能集中在伤口处,不但刺激伤口,也同时减少了给药到其他区域的能力。
综上,为解决以上所提到面部皮肤肤质差异较大导致给药不均匀的问题,本领域迫切需要开发一种可区域性控制透皮给药量、透皮给药深度、和透皮给药速度的区域化透皮离子电渗给药系统。
发明内容
本发明的目的是提供一种可区域性控制透皮给药量、透皮给药深度、和透皮给药速度的区域化透皮离子电渗给药系统。
在本发明的第一方面,提供了一种区域化透皮离子电渗给药系统包括:
(a)电极组件阵列,所述的电极组件阵列包括N个电极组件,且N≥3;每个电极组件包括一个电极;以及
(b)M个电源,所述的电源用于向相应的电极或电极对提供电流,其中,M为1~C(N,2)的正整数,其中C(N,2)代表“N选取2”的组合;
其中,所述电极组件阵列中至少2个电极设有载有带电荷的活性剂的介质,在所述电流与所述活性剂极性相同的时间段上,所述电流将所述活性剂推斥到皮肤层。
在另一优选例中,所述的电极数量N为偶数,所述的电源数量M为2~N/2的正整数。
在另一优选例中,用所述的M个电源给所述电极组件阵列供电采用以下方式:
一个或多个电源;以及
多个电流驱动组件。
在另一优选例中,用所述的M个电源给所述电极组件阵列供电采用以下方式:
一个或多个电源;以及
一个开关矩阵或多路复用器。
在另一优选例中,用所述的M个电源给所述电极组件阵列供电采用以下方式:
一个或多个电源;
一个或多个电流驱动组件;
一个开关矩阵或多路复用器。
在另一优选例中,所述的电源将同时向其相应的电极或电极对提供电流。
在另一优选例中,所述的电源将依次向其相应的电极或电极对提供电流。
在另一优选例中,所述的电源可在不同的时间段向其相应的电极或电极对提供电流。
在另一优选例中,其中所述的每个电极组件包括一个相应的接触层;其中,所述接触层用于储存所述包含活性剂的介质并与电极流体连通。
在另一优选例中,每个电极各自独立地设有单独的接触层。
在另一优选例中,多个电极共享一个接触层。
在另一优选例中,所述的电极组件阵列中的每个电极组件包括一个连接器,所述连接器将所述电极组件连接到其相应电源。
在另一优选例中,所述连接器将所述电极组件连接到其相应的电流驱动组件。
在另一优选例中,所述连接器将所述电极组件连接到其相应的开关矩阵或多路复用器。
在另一优选例中,所述电流为直流电流。
在另一优选例中,所述电流为交流电流。
在另一优选例中,所述交流电流具有一个或多个选自下组的特征:
(i))周期为1秒-30分钟,较佳地1秒-15分钟,更佳地1秒-10分钟,最佳地1秒-5分钟。
(ii)波形为介于大值和最小值之间的基本波形,包括攀升时间段,在此时间段中所述电流从最小值增大到最大值,或从最大值降低到最小值。
(iii)占空比为5%-95%,较佳地为10-80%,更佳地20-70%。
在另一优选例中,在工作时,在任何一个工作电极对之间的电流为0.01-4mA。
在另一优选例中,所述电极组件阵列包括:
第I电极组件对或第I电极组件子阵列,其对应于脸部的鼻子区域;和
第II电极组件对或第II电极组件子阵列,其对应于脸部的额头区域,脸颊区域和下巴区域。
在另一优选例中,所述的第I电极组件对是非阵列形式。
在另一优选例中,所述的第I电极组件子阵列包括≥3个电极组件。
在另一优选例中,所述的第II电极组件对是非阵列形式。
在另一优选例中,所述的第II电极组件子阵列包括≥3个电极组件。
在另一优选例中,所述电极组件阵列包括:
第I电极组件对或第I电极组件子阵列,其对应于脸部的鼻子区域;
第II电极组件对或第II电极组件子阵列,其对应于脸部的额头区域;和
第III电极组件对或第III电极组件子阵列,其对应于脸部的脸颊区域和下巴区域。
在另一优选例中,所述的第I电极组件对是非阵列形式。
在另一优选例中,所述的第I电极组件子阵列包括≥3个电极组件。
在另一优选例中,所述的第II电极组件对是非阵列形式。
在另一优选例中,所述的第II电极组件子阵列包括≥3个电极组件。
在另一优选例中,所述的第III电极组件对是非阵列形式。
在另一优选例中,所述的第III电极组件子阵列包括≥3个电极组件。
在另一优选例中,所述电极组件阵列包括:
第I电极组件对或第I电极组件子阵列,其对应于脸部的鼻子区域;
第II电极组件对或第II电极组件子阵列,其对应于脸部的额头区域;
第III电极组件对或第III电极组件子阵列,其对应于脸部的脸颊区域;和
第IV电极组件对或第IV电极组件子阵列,其对应于脸部的下巴区域。
在另一优选例中,所述的第I电极组件对是非阵列形式。
在另一优选例中,所述的第I电极组件子阵列包括≥3个电极组件。
在另一优选例中,所述的第II电极组件对是非阵列形式。
在另一优选例中,所述的第II电极组件子阵列包括≥3个电极组件。
在另一优选例中,所述的第III电极组件对是非阵列形式。
在另一优选例中,所述的第III电极组件子阵列包括≥3个电极组件。
在另一优选例中,所述的第IV电极组件对是非阵列形式。
在另一优选例中,所述的第IV电极组件子阵列包括≥3个电极组件。
在另一优选例中,所述电极组件阵列包括:
第I电极组件对或第I电极组件子阵列,其对应于脸部的鼻子区域;
第II电极组件对或第II电极组件子阵列,其对应于脸部的额头区域;
第IIIa电极组件对或第IIIa电极组件子阵列,其对应于脸部的左脸颊区域和左下巴区域;和
第IIIb电极组件对或第IIIb电极组件子阵列,其对应于脸部的右脸颊区域和右下巴区域。
在另一优选例中,所述的第I电极组件对是非阵列形式。
在另一优选例中,所述的第I电极组件子阵列包括≥3个电极组件。
在另一优选例中,所述的第II电极组件对是非阵列形式。
在另一优选例中,所述的第II电极组件子阵列包括≥3个电极组件。
在另一优选例中,所述的第IIIa电极组件对是非阵列形式。
在另一优选例中,所述的第IIIa电极组件子阵列包括≥3个电极组件。
在另一优选例中,所述的第IIIb电极组件对是非阵列形式(如仅包括2个电极组件)。
在另一优选例中,所述的第IIIb电极组件子阵列包括≥3个电极组件。
在另一优选例中,所述电极组件阵列包括:
第I电极组件对或第I电极组件子阵列,其对应于脸部的鼻子区域;
第II电极组件对或第II电极组件子阵列,其对应于脸部的额头区域;
第IIIa电极组件对或第IIIa电极组件子阵列,其对应于脸部的左脸颊区域;
第IIIb电极组件对或第IIIb电极组件子阵列,其对应于脸部的右脸颊区域;和
第IV电极组件对或第IV电极组件子阵列,其相应于脸部的下巴区域。
在另一优选例中,所述的第I电极组件对是非阵列形式。
在另一优选例中,所述的第I电极组件子阵列包括≥3个电极组件。
在另一优选例中,所述的第II电极组件对是非阵列形式。
在另一优选例中,所述的第II电极组件子阵列包括≥3个电极组件。
在另一优选例中,所述的第IIIa电极组件对是非阵列形式。
在另一优选例中,所述的第IIIa电极组件子阵列包括≥3个电极组件。
在另一优选例中,所述的第IIIb电极组件对是非阵列形式。
在另一优选例中,所述的第IIIb电极组件子阵列包括≥3个电极组件。
在另一优选例中,所述的第IV电极组件对是非阵列形式。
在另一优选例中,所述的第IV电极组件子阵列包括≥3个电极组件。
在另一优选例中,在所述N个电极中,≥50%电极是可重新配置的,可在运行时改变其相应的电极和电源配对。
在所述N个电极中,较佳地≥70%,更佳地≥90%,最佳地≥95%(如100%)的电极是可重新配置的。
在另一优选例中,所述的电极阵列中的任何一个电极均连接于一个半桥驱动电路(HBD)并受所述半桥驱动电路的驱动。这样,可以实现多个可独立控制的电源以及电极可重新配置的特性。
在另一优选例中,所述的半桥驱动电路包括至少两个晶体管。
在另一优选例中,所述的半桥驱动电路还包括:设置于高电压侧的电流传感器;和/或设置于低电压侧的电流传感器。
在另一优选例中,所述的系统还包括一控制器,所述控制器用于控制所述电源向所述电极组件阵列的供电。
在另一优选例中,所述的“控制所述电源向所述电极组件阵列的供电”包括控制供电的电压、供电的电流、供电的波形、供电的时间、或其组合。
在另一优选例中,所述的系统还包括:开关矩阵或多路复用器,其设置于电源与电极组件阵列之间。
在另一优选例中,所述的电极的形状选自下组:圆柱体、长方体或其组合。
在另一优选例中,所述的电极具有相同或不同的外表面积。
在另一优选例中,所述的各电极的外表面积为:0.5-50cm 2,较佳地1-40cm 2;更佳地5-30cm 2
在另一优选例中,两个相邻的电极与电极之间的隔开距离为0.01-5cm,较佳地0.1-1cm。
在另一优选例中,所述的电极具有选自下组的材料:金属、合金、或导电碳材料。
在另一优选例中,所述的系统为电子面膜。
在另一优选例中,所述的电极组件矩阵中的电极的接触层构成的接触面与脸部外表面是适形的。
在另一优选例中,所述的系统基于脸部的采集数据,配置电极组件矩阵的电极和/或控制电极的工作状态。
在另一优选例中,所述的数据选自下组:皮肤水分含量、皮肤酸碱度、皮脂分泌含量、皮肤的受损情况、皮肤老化程度、皮肤粗糙程度、皮肤生物抗阻分析或其组合。
在本发明的第二方面,提供了一种区域化透皮离子电渗给药方法,包括步骤:采用本发明第一方面中所述的区域化透皮离子电渗给药系统进行透皮离子电渗给药。
在另一优选例中,所述的透皮离子电渗给药是对选自下组的部位:脸部、颈 部、手部、手部、腿部、脚部、或其组合。
在另一优选例中,所述方法为美容方法。
在另一优选例中,所述方法是非治疗性方法。
在另一优选例中,所述的透皮离子电渗给药是对无生命的物体或身体进行。
应理解,在本发明范围内中,本发明的上述各技术特征和在下文(如实施例)中具体描述的各技术特征之间都可以互相组合,从而构成新的或优选的技术方案。限于篇幅,在此不再一一累述。
附图说明
图1显示了独立电流驱动组件示意图;此实例能同时驱动所有电极组件对和/或电极组件子阵列。
图2显示了用开关矩阵或多路复用器共享一个电源或电流驱动组件示意图;此实例在任一时段仅能驱动一个电极组件对或一组电极组件子阵列。
图3显示了用开关矩阵或多路复用器共享K个电源或电流驱动组件示意图;此实例在任一时段仅能驱动K个有效电极组件对,其中有效电极对可为电极组件对或电极组件子阵列。
图4显示了采用一对电极进行护肤的传统面膜。
图5显示为使用现有仅有一对电极覆盖整个脸部的传统电子面膜后的透皮给药分布示意图;因皮肤状况的不同,给药电流会选择性避开电阻较高的区域,造成不可控制且不均匀的给药分布。
图6a显示了本发明一个实例的面膜划分为:鼻子区域、以及额头+脸颊+下巴区域。图中,电极组件对(1,1')针对鼻子区域,电极组件对(2,2')针对额头+脸颊+下巴区域。
图6b显示了本发明一个实例的面膜划分为:鼻子区域、额头区域、以及脸颊+下巴区域。图中,电极组件对(1,1')针对鼻子区域,电极组件对(2,2')针对额头区域,电极组件对(3,3')针对脸颊+下巴区域。
图6c显示了本发明一个实例的面膜划分为:鼻子区域、额头区域、脸颊区域以及下巴区域。图中,电极组件对(1,1')针对鼻子区域,电极组件对 (2,2')针对额头区域,电极组件对(3,3')针对脸颊区域,电极组件对(4,4')针对下巴区域。
图6d显示了本发明一个实例的面膜划分为:鼻子区域、额头区域,左脸颊+左下巴区域、以及右脸颊+右下巴区域。图中,电极组件对(1,1')针对鼻子区域,电极组件对(2,2')针对额头区域,电极组件对(3a,3a')针对左脸颊+左下巴区域,电极组件对(3b,3b')针对右脸颊+右下巴区域。
图6e显示了本发明一个实例的面膜划分为:鼻子区域、额头区域,左脸颊区域、右脸颊区域以及下巴区域。图中,电极组件对(1,1')针对鼻子区域,电极组件对(2,2')针对额头区域,电极组件对(3a,3a')针对左脸颊区域,电极组件对(3b,3b')针对右脸颊区域,电极组件对(4,4')针对下巴区域。
图7显示了使用本发明实现区域化透皮给药控制,实现在面部均匀的给药分布示意图。
图8a显示了本发明一个实例的面膜,其中的电极阵列由子电极矩阵组成。
图8b显示本发明一个实例中,由子电极矩阵形成四对有效电极的面膜示意图。其中电极组件子阵列(1,1')针对鼻子区域,电极组件子阵列(2,2')针对额头区域,电极组件子阵列(3a,3a')针对左脸颊+左下巴区域,电极组件子阵列(3b,3b')针对右脸颊+右下巴区域。
图8c显示本发明一个实例中,由子电极矩阵形成四对有效电极的面膜示意图。其中电极组件对(1,1')针对鼻子区域,电极组件对(2,2')针对额头区域,电极组件对(3a,3a')针对左脸颊+左下巴区域,电极组件对(3b,3b')针对右脸颊+右下巴区域。此外,用“x”标示的电极,是对应于伤口等不宜给药的区域,其电极被设置为“不工作”。
图9显示了本发明一个实例中包括部分由子电极矩阵组成的面膜示意图,其中包括,电极组件子阵列(1,1')针对鼻子区域;电极组件对(2,2')针对额头区域;电极组件子阵列(3a,3a')针对左脸颊+左下巴区域,电极组件子阵列(3b,3b')针对右脸颊+右下巴区域。
图10显示了在本发明一个实例中,电极组件中的每个电极各自独立地设有单独的接触层。
图11显示了在本发明一个实例中,电极组件中的多个电极共享一个接触层。
具体实施方式
本发明人经过广泛而深入的研究,首次开发了一种区域化透皮离子电渗给药系统,该系统可区域性控制(或调控)透皮给药量、透皮给药深度、和透皮给药速度等众多不同参数。在结构上,本发明的区域化透皮离子电渗给药系统通过特殊特定的电极组件阵列(该阵列具有多个电极),可根据用户皮肤的水分含量、皮肤酸碱度、和皮脂分泌含量的因素,精确而高效地控制透皮给药量、透皮给药深度、透皮给药速度,从而实现精确或个性化透皮给药或美容。在此基础上完成了本发明。
术语
如本文所用,术语“电极组件”指由电极和其相应的皮肤接触层构成的一个组件。
如本文所用,术语“电极组件对”指由两个电极组件构成的一对组件对。
如本文所用,术语“电极组件阵列”指由至少3个电极组件,或超过一对电极组件所构成的阵列。
如本文所用,术语“电极组件子阵列”指由至少3个电极组件,或超过一对电极组件所构成的子阵列。一个或多个子阵列可以构成一个大的阵列。
如本文所用,“C(N,2)”指从N个元素中选取2个元素的总组合数为,即(N!)/(2!*(N-2)!)。
区域化透皮离子电渗给药系统
本发明提供了一种区域化透皮离子电渗给药系统,它包括:
(a)电极组件阵列,所述的电极组件阵列包括N个电极组件,且N≥3;每个电极组件包括一个电极;以及
(b)M个电源,所述的电源用于向相应的电极或电极对提供电流,其中,M为1~C(N,2)的正整数,其中C(N,2)代表“N选取2”的组合;
其中,所述电极组件阵列中至少2个电极设有载有带电荷的活性剂的介质,在所述电流与所述活性剂极性相同的时间段上,所述电流将所述活性剂推斥到皮肤层。
其中,如所述的电极数量N为偶数,所述的电源数量M可为2~N/2的正整数,所述的电极的形状选自下组:圆柱体、长方体或其组合。
在本发明中,所述的电极具有相同或不同的外表面积。典型地,所述的一个或多个或全部的电极的外表面积为:0.5-50cm 2,较佳地1-40cm 2;更佳地5-30cm 2
在本发明中,两个相邻电极与电极之间的隔开距离没有特别限制,通常为0.01-5cm,较佳地0.1-1cm。
在本发明中,所述的电极可采用常规的电极材料制成。代表性的电极材料包括(但并不限于):金属、合金、导电碳材料、或其组合。
本发明的系统还包括一控制器,所述控制器用于控制所述电源向所述电极组件阵列的供电。所述的“控制所述电源向所述电极组件阵列的供电”包括控制供电的电压、供电的电流、供电的波形、供电的时间、或其组合。
此外,本发明系统还可包括:一个或多个开关矩阵或多路复用器,其被设置于电源与所述电极组件阵列之间。
优选地,在所述N个电极中,≥50%的电极是可重新配置的,可在运行时改变其相应的电极和电源配对;较佳地≥70%,更佳地≥90%,最佳地≥95%(如100%)的电极是可重新配置的。
本发明的系统可以根据应用场合,制成不同的形式。一类典型的形式是面膜形式,即电子面膜形式。在本发明中,电子面膜可以覆盖全部、绝大部分、或一部分脸部区域。
以人为例,脸部区域主要包括以下子区域,例如鼻子区域、额头区域、脸颊区域和下巴区域。其中,每个子区域还可进一步分为左侧子区域和右侧子区域。
电源实现方式
在本发明中,用电源给电极组件阵列供电可采用多种方式实现,
典型地,用所述的M个电源给所述电极组件阵列供电采用以下方式:
方式一:一个或多个电源;以及多个电流驱动组件;
方式二:一个或多个电源;以及一个开关矩阵或多路复用器;
方式三:一个或多个电源;一个或多个电流驱动组件;以及一个开关矩阵或多路复用器。
其中,所述的电源将同时向其相应的电极或电极对提供电流。
所述的电源将依次向其相应的电极或电极对提供电流。
所述的电源可在不同的时间段向其相应的电极或电极对提供电流。
在本发明中,用于本发明系统的电流为直流电流或交流电流、或兼而有之。
在本发明中,无论是直流电还是交流电,均可根据需要,通过设置合适的电压、电流、和通电时间等参数,从而安全、有效、精准地实现透皮给药或美容目的。
在本发明中,对于交流电流而言,宜具有一个或多个选自下组的特征:
(i)周期为1秒-30分钟,较佳地1秒-15分钟,更佳地1秒-10分钟,最佳地1秒-5分钟;
(ii)波形为介于大值和最小值之间的基本波形,包括攀升时间段,在此时间段中所述电流从最小值增大到最大值,或从最大值降低到最小值。
(iii)占空比为5%-95%,较佳地为10-80%,更佳地20-70%。
优选地,当本发明系统工作时,任何一个工作电极对之间的电流宜为0.01-4mA。
电极组件
所述的每个电极组件包括一个相应的接触层;所述接触层用于储存包含活性剂的介质并与电极流体连通。
在本发明中,如图10所示,每个电极均可设有独立的接触层;或如图11所示,采用多个电极共享一个接触层。
电极组件阵列
所述的电极组件阵列中的每个电极组件包括一个连接器,所述连接器将所述电极组件连接到其相应电源。其中,所述连接器将所述电极组件连接到其相应的电流驱动组件,所述连接器将所述电极组件连接到其相应的开关矩阵或多路复用器。
在本发明的一个实例中,以图6a为代表,所述电极组件阵列可包括:
第I电极组件对或第I电极组件子阵列,其对应于脸部的鼻子区域;和
第II电极组件对或第II电极组件子阵列,其对应于脸部的额头区域,脸颊区域和下巴区域。
其中,所述的第I电极组件对是非阵列形式,所述的第I电极组件子阵列包括≥3个电极组件。
所述的第II电极组件对是非阵列形式。,所述的第II电极组件子阵列包括≥3个电极组件。
在本发明的一个实例中,以图6b代表,所述电极组件阵列可包括:
第I电极组件对或第I电极组件子阵列,其对应于脸部的鼻子区域;
第II电极组件对或第II电极组件子阵列,其对应于脸部的额头区域;和
第III电极组件对或第III电极组件子阵列,其对应于脸部的脸颊区域和下巴区域。
其中,所述的第I电极组件对是非阵列形式,所述的第I电极组件子阵列包括≥3个电极组件。
所述的第II电极组件对是非阵列形式,所述的第II电极组件子阵列包括≥3个电极组件。
所述的第III电极组件对是非阵列形式,所述的第III电极组件子阵列包括≥3个电极组件。
在本发明的一个实例中,以图6c为代表,所述电极组件阵列还可包括:
第I电极组件对或第I电极组件子阵列,其对应于脸部的鼻子区域;
第II电极组件对或第II电极组件子阵列,其对应于脸部的额头区域;
第III电极组件对或第III电极组件子阵列,其对应于脸部的脸颊区域;和
第IV电极组件对或第IV电极组件子阵列,其对应于脸部的下巴区域。
其中,所述的第I电极组件对是非阵列形式,所述的第I电极组件子阵列包括≥3个电极组件。
所述的第II电极组件对是非阵列形式,所述的第II电极组件子阵列包括≥3个电极组件。
所述的第III电极组件对是非阵列形式,所述的第III电极组件子阵列包括≥3个电极组件。
所述的第IV电极组件对是非阵列形式,所述的第IV电极组件子阵列包括≥3个电极组件。
在本发明的一个实例中,以图6d为代表,所述电极组件阵列也可以包括:
第I电极组件对或第I电极组件子阵列,其对应于脸部的鼻子区域;
第II电极组件对或第II电极组件子阵列,其对应于脸部的额头区域;
第IIIa电极组件对或第IIIa电极组件子阵列,其对应于脸部的左脸颊区域和左下巴区域;和
第IIIb电极组件对或第IIIb电极组件子阵列,其对应于脸部的右脸颊区域和右下巴区域。
其中,所述的第I电极组件对是非阵列形式,所述的第I电极组件子阵列包括≥3个电极组件;
所述的第II电极组件对是非阵列形式,所述的第II电极组件子阵列包括≥3个电极组件。
所述的第IIIa电极组件对是非阵列形式,所述的第IIIa电极组件子阵列包括≥3个电极组件。
所述的第IIIb电极组件对是非阵列形式,所述的第IIIb电极组件子阵列包括≥3个电极组件。
在本发明的一个实例中,以图6e为代表,所述电极组件阵列还包括:
第I电极组件对或第I电极组件子阵列,其对应于脸部的鼻子区域;
第II电极组件对或第II电极组件子阵列,其对应于脸部的额头区域;
第IIIa电极组件对或第IIIa电极组件子阵列,其对应于脸部的左脸颊区域;
第IIIb电极组件对或第IIIb电极组件子阵列,其对应于脸部的右脸颊区域;和
第IV电极组件对或第IV电极组件子阵列,其相应于脸部的下巴区域。
其中,所述的第I电极组件对是非阵列形式,所述的第I电极组件子阵列包括≥3个电极组件。
所述的第II电极组件对是非阵列形式,所述的第II电极组件子阵列包括≥3个电极组件。
在所述的第IIIa电极组件对是非阵列形式,所述的第IIIa电极组件子阵列包括≥3个电极组件。
所述的第IIIb电极组件对是非阵列形式,所述的第IIIb电极组件子阵列包括≥3个电极组件。
所述的第IV电极组件对是非阵列形式,所述的第IV电极组件子阵列包括≥3个电极组件。
半桥驱动电路(HBD)
在本发明的一个实例中,以图1位代表,所述的电极阵列中的任何一个电极均连接于一个半桥驱动电路(HBD)并受所述半桥驱动电路的驱动。这样,可以实现多个可独立控制的电源以及电极可重新配置的特性。
在另一优选例中,所述的半桥驱动电路包括至少两个晶体管。
在另一优选例中,所述的半桥驱动电路还包括:设置于高电压侧的电流传感器;和/或设置于低电压侧的电流传感器。
面膜
本发明所述的系统为电子面膜,且所述的电极组件矩阵中的电极的接触层构成的接触面与脸部外表面是适形的。
在本发明中,所述的系统基于脸部的采集数据,配置电极组件矩阵的电极和/或控制电极的工作状态。且所述的数据选自下组:皮肤水分含量、皮肤酸碱度、皮脂分泌含量、皮肤的受损情况皮肤老化程度、皮肤粗糙程度、皮肤生物抗阻分析或其组合。
为了便于描述,以下结合附图进一步描述本发明。应理解,这些附图并不用于限定本发明范围。
现有的面膜如图4所示,其不能区域化的控制透皮给药;用户在使用现有面膜时,因皮肤状况的不同,给药电流会选择性避开电阻较高的区域,造成不可控制且不均匀的给药分布,活性剂在面部的分布如图5所示。
本发明的优化面膜能够针对个人或用户群体定制,区域化的透皮给药控制, 即可实现如图7所示的均匀给药分布示意图。
本发明的一个实例面膜如图6a所示,面膜中的电极组件分布划分为:电极组件对(1,1')针对鼻子区域,电极组件对(2,2')针对额头+脸颊+下巴区域。
本发明的一个实例面膜如图6b所示,面膜中的电极组件分布划分为:电极组件对(1,1')针对鼻子区域,电极组件对(2,2')针对额头区域,电极组件对(3,3')针对脸颊+下巴区域。
本发明的一个实例面膜如图6c所示,面膜中的电极组件分布划分为:电极组件对(1,1')针对鼻子区域,电极组件对(2,2')针对额头区域,电极组件对(3,3')针对脸颊区域,电极组件对(4,4')针对下巴区域。
本发明的一个实例面膜如图6d所示,面膜中的电极组件分布划分为:电极组件对(1,1')针对鼻子区域,电极组件对(2,2')针对额头区域,电极组件对(3a,3a')针对左脸颊+左下巴区域,电极组件对(3b,3b')针对右脸颊+右下巴区域。
本发明的一个实例面膜如图6e所示,面膜中的电极组件分布划分为:电极组件对(1,1')针对鼻子区域,电极组件对(2,2')针对额头区域,电极组件对(3a,3a')针对左脸颊区域,电极组件对(3b,3b')针对右脸颊区域,电极组件对(4,4')针对下巴区域。
本发明的一个实例面膜如图8a所示,面膜中的电极组件阵列由子电极组件矩阵组成。
本发明的主要优点包括:
(a)可对预定区域进行透皮给药量、透皮给药深度、和/或透皮给药速度等进行精确控制,从而实现精确而均匀的给药(或给予美容活性成分)。
(b)当用户的面部存在不适合给药的区域(如伤口)时,仍可对其他区域进行给药,并可最大程度地避免对用户不适合给药区域造成不利影响。
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件,或按照制造厂商所建议的条件。除非另外说明,否则 百分比和份数按重量计算。
实施例1
区域化透皮离子电渗给药系统No.1
在本实施例中,区域化透皮离子电渗给药系统包括一个电极组件阵列矩阵,所述的电极组件阵列,如图8a所示的电极组件分布,包括56个电极组件,每个电极组件包括一个电极,皮肤接触层,和连接器。
此外,所述的电极阵列中的任何一个电极均连接于一个HBD(图1方式)并受所述半桥驱动电路的驱动。这样,可以实现多个可独立控制的电源以及电极可重新配置的特性。本实例可控制任何两个电极之间的电流,最多可合成1540(56选取2)个不同的电流源。
透皮离子电渗给药系统采用如图8a所示的面膜结构,使用时,可依照用户不同区域的皮肤状况(针对脸部不同区域采集的皮肤水分含量、皮肤酸碱度、皮脂分泌含量、皮肤的受损情况皮肤老化程度、皮肤粗糙程度、皮肤生物抗阻分析的数据)来形成不同的有效电极组件对。其中,如图8b所示,一种常见的有效电极组件分布为:有效电极组件对(1,1')针对鼻子区域;有效电极组件对(2,2')针对额头区域;有效电极组件对(3a,3a')针对左脸颊+左下巴区域;有效电极组件对(3b,3b')针对右脸颊+右下巴区域。
采用该区域化控制的透皮离子电渗给药系统能够克服因皮肤状况的不同,和给要电流会选择性避开电阻较高的区域的特性,所造成的不可控制且不均匀的给药分布,并实现如图7所示的均匀活性剂分布。区域化控制还能针对不同区域实现不同程度的给药,即优化用户脸部活性剂量的分布。
此外,如果用户皮肤上有伤口,独立控制的电极阵列也可以选择性避开伤口。如图8c所示,用“x”标示的电极,是对应于伤口等不宜给药的区域,并且在其他电极工作时该用“x”标示的电极被设置为“不工作”。
实施例2
区域化透皮离子电渗给药系统No.2
在本实施例中,区域化透皮离子电渗给药系统包括一个电极组件阵列,所 述的电极组件阵列,如图6d所示的电极组件分布,包括8个电极组件,每个电极组件包括一个电极,皮肤接触层,和连接器。
此外,所述的电极阵列中的电极通过两个(4:1)的多路复用器连接(图2方式),并共享到一个电源。其中,电极组件1、2、3a、和3b将连接到第一个(4:1)多路复用器,电极组件1',2',3a',和3b'将连接到第二个(4:1)多路复用器。本实例以减少电路元件的数量为主要的设计目标之一。
如图6d所示,有效电极组件对(1,1')针对鼻子区域;有效电极组件对(2,2')针对额头区域;有效电极组件对(3a,3a')针对左脸颊+左下巴区域;有效电极组件对(3b,3b')针对右脸颊+右下巴区域。
透皮离子电渗给药系统采用如图6d所示的面膜结构,面膜电极组件矩阵中的电极的接触层构成的接触面与脸部外表面是适形的。在美容时,针对脸部不同区域采集的皮肤水分含量、皮肤酸碱度、皮脂分泌含量、皮肤的受损情况皮肤老化程度、皮肤粗糙程度、皮肤生物抗阻分析的数据有效地控制不同区域皮肤的透皮给药量、透皮给药深度、透皮给药速度。本实例的电极组件分布能有效地实现如图7所示的均匀活性剂分布。区域化控制还能针对不同区域实现不同程度的给药,即优化用户脸部活性剂量的分布。
对比例1
现有的透皮面膜如图4所示,该面膜使用一对电极,其不能有区域性地实现透皮给药控制,用户在使用现有面膜时,透皮给药不具有针对性。
在美容时,无法针对脸部不同区域的不同肤质进行个性化地控制。采用现有系统能够实现如图5所示的活性剂分布,因皮肤状况的不同,给药电流会选择性避开电阻较高的区域,造成不可控制且不均匀的给药分布。
在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (10)

  1. 一种区域化透皮离子电渗给药系统,其特征在于,所述的系统包括:
    (a)电极组件阵列,所述的电极组件阵列包括N个电极组件,且N≥3;每个电极组件包括一个电极;以及
    (b)M个电源,所述的电源用于向相应的电极或电极对提供电流,其中,M为1~C(N,2)的正整数,其中C(N,2)代表“N选取2”的组合;
    其中,所述电极组件阵列中至少2个电极设有载有带电荷的活性剂的介质,在所述电流与所述活性剂极性相同的时间段上,所述电流将所述活性剂推斥到皮肤层。
  2. 如权利要求1所述的系统,其特征在于,用所述的M个电源给所述电极组件阵列供电采用以下方式:
    一个或多个电源;以及
    多个电流驱动组件。
  3. 如权利要求1所述的系统,其特征在于,所述的电源将同时向其相应的电极或电极对提供电流。
  4. 如权利要求1所述的系统,其特征在于,所述的电源可在不同的时间段向其相应的电极或电极对提供电流。
  5. 如权利要求1所述的系统,其特征在于,所述的每个电极组件包括一个相应的接触层;其中,所述接触层用于储存所述包含活性剂的介质并与电极流体连通。
  6. 如权利要求5所述的系统,其特征在于,多个电极可共享一个接触层。
  7. 如权利要求1所述的系统,其特征在于,所述电极组件阵列包括:
    第I电极组件对或第I电极组件子阵列,其对应于脸部的鼻子区域;
    第II电极组件对或第II电极组件子阵列,其对应于脸部的额头区域;
    第IIIa电极组件对或第IIIa电极组件子阵列,其对应于脸部的左脸颊区域和左下巴区域;和
    第IIIb电极组件对或第IIIb电极组件子阵列,其对应于脸部的右脸颊区域和右下巴区域。
  8. 如权利要求1-7中任一所述的系统,其特征在于,所述的电极阵列中的任 何一个电极均连接于一个半桥驱动电路(HBD)并受所述半桥驱动电路的驱动。
  9. 如权利要求1所述的系统,其特征在于,所述的系统还包括:开关矩阵或多路复用器,其设置于电源与电极组件阵列之间。
  10. 如权利要求1所述的系统,其特征在于,所述的系统为电子面膜。
PCT/CN2019/095881 2018-05-14 2019-07-12 一种区域化透皮离子电渗给药系统 WO2019219096A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP19804518.9A EP3795210A1 (en) 2018-05-14 2019-07-12 Localised transdermal iontophoretic drug delivery system
AU2019270870A AU2019270870B2 (en) 2018-05-14 2019-07-12 Localised transdermal iontophoretic drug delivery system
SG11202011379XA SG11202011379XA (en) 2018-05-14 2019-07-12 Localised transdermal iontophoretic drug delivery system
US17/055,208 US20210113829A1 (en) 2018-05-14 2019-07-12 Localised transdermal iontophoretic drug delivery system
JP2020564663A JP2022534457A (ja) 2018-05-14 2019-07-12 ローカライズされた経皮イオン電気浸透薬物送達システム
ZA2020/07757A ZA202007757B (en) 2018-05-14 2020-12-11 Localised transdermal iontophoretic drug delivery system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810456482.XA CN108379734B (zh) 2018-05-14 2018-05-14 一种区域化透皮离子电渗给药系统
CN201810456482.X 2018-05-14

Publications (1)

Publication Number Publication Date
WO2019219096A1 true WO2019219096A1 (zh) 2019-11-21

Family

ID=63071593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/095881 WO2019219096A1 (zh) 2018-05-14 2019-07-12 一种区域化透皮离子电渗给药系统

Country Status (8)

Country Link
US (1) US20210113829A1 (zh)
EP (1) EP3795210A1 (zh)
JP (1) JP2022534457A (zh)
CN (1) CN108379734B (zh)
AU (1) AU2019270870B2 (zh)
SG (1) SG11202011379XA (zh)
WO (1) WO2019219096A1 (zh)
ZA (1) ZA202007757B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022532129A (ja) * 2019-05-06 2022-07-13 上海▲フ▼泰科技有限公司 イオントフォレーシス投与装置
TWI822947B (zh) * 2020-01-15 2023-11-21 大陸商北京富納特創新科技有限公司 面膜式美容儀的使用方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108379734B (zh) * 2018-05-14 2022-04-01 上海肤泰科技有限公司 一种区域化透皮离子电渗给药系统
WO2020143633A1 (zh) * 2019-01-08 2020-07-16 上海肤泰科技有限公司 一种用于透皮离子电渗给药的皮肤贴膜
CN115282486A (zh) * 2022-08-17 2022-11-04 妮贝(上海)科技有限公司 一种全脸覆盖式的家用射频美容面罩

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101541374A (zh) * 2006-11-24 2009-09-23 皇家飞利浦电子股份有限公司 离子电渗设备
CN105435367A (zh) * 2014-09-18 2016-03-30 仁星情报株式会社 用于离子电渗片的状面膜和利用该面膜的面膜组件
CN108379734A (zh) * 2018-05-14 2018-08-10 邱骅轩 一种区域化透皮离子电渗给药系统

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6792306B2 (en) * 2000-03-10 2004-09-14 Biophoretic Therapeutic Systems, Llc Finger-mounted electrokinetic delivery system for self-administration of medicaments and methods therefor
WO2004105865A1 (en) * 2003-06-02 2004-12-09 Power Paper Ltd. Kit, device and method for controlled delivery of oxidizing agent into the skin
US7480530B2 (en) * 2003-06-30 2009-01-20 Johnson & Johnson Consumer Companies, Inc. Device for treatment of barrier membranes
JP2007244699A (ja) * 2006-03-16 2007-09-27 Transcutaneous Technologies Inc イオントフォレーシス装置
JP2007244700A (ja) * 2006-03-16 2007-09-27 Transcutaneous Technologies Inc イオントフォレーシス装置
EP2073893A2 (en) * 2006-09-29 2009-07-01 Koninklijke Philips Electronics N.V. Electrically activated gel array for transdermal drug delivery
GB0801264D0 (en) * 2008-01-24 2008-02-27 Univ Ulster Electrically enhances wound healing system and method
US8961492B2 (en) * 2009-02-12 2015-02-24 Incube Labs, Llc System and method for controlling the iontophoretic delivery of therapeutic agents based on user inhalation
RU2548824C2 (ru) * 2009-11-13 2015-04-20 Джонсон Энд Джонсон Конзьюмер Компаниз, Инк. Гальваническое устройство для лечения кожи
US9517331B2 (en) * 2010-02-12 2016-12-13 Terumo Kabushiki Kaisha Iontophoresis patch
CN202478400U (zh) * 2011-12-16 2012-10-10 焦作市银达生物制品有限公司 离子导入透皮给药装置
US20170095660A1 (en) * 2014-04-29 2017-04-06 K-Healthwear Co., Ltd. Iontophoresis injection device and injection method
FR3024369A1 (fr) * 2014-07-29 2016-02-05 Oreal Masque electrique souple multielectrodes
US20160089308A1 (en) * 2014-09-29 2016-03-31 Elc Management Llc Targeted And Individualized Delivery Of Skincare Treatments With Micro-Current In A Mask Or Patch Form
CN104368084B (zh) * 2014-10-31 2016-11-30 厦门微科格瑞生物科技有限公司 可佩戴智能药物导入系统
KR101578810B1 (ko) * 2014-12-29 2015-12-18 우먼스캐어 주식회사 이온토포레시스를 이용한 마스크부와 케이블을 연결하기 위한 클립 및 이를 이용하는 마스크 어셈블리
AU2017278959A1 (en) * 2016-06-09 2018-12-20 The Board Of Trustees Of The Leland Stanford Junlor University Devices for delivery of electrical current to the body and related methods for therapy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101541374A (zh) * 2006-11-24 2009-09-23 皇家飞利浦电子股份有限公司 离子电渗设备
CN105435367A (zh) * 2014-09-18 2016-03-30 仁星情报株式会社 用于离子电渗片的状面膜和利用该面膜的面膜组件
CN108379734A (zh) * 2018-05-14 2018-08-10 邱骅轩 一种区域化透皮离子电渗给药系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022532129A (ja) * 2019-05-06 2022-07-13 上海▲フ▼泰科技有限公司 イオントフォレーシス投与装置
JP7255921B2 (ja) 2019-05-06 2023-04-11 上海▲フ▼泰科技有限公司 イオントフォレーシス投与装置
TWI822947B (zh) * 2020-01-15 2023-11-21 大陸商北京富納特創新科技有限公司 面膜式美容儀的使用方法

Also Published As

Publication number Publication date
AU2019270870B2 (en) 2022-02-03
SG11202011379XA (en) 2020-12-30
CN108379734A (zh) 2018-08-10
EP3795210A1 (en) 2021-03-24
CN108379734B (zh) 2022-04-01
US20210113829A1 (en) 2021-04-22
JP2022534457A (ja) 2022-08-01
ZA202007757B (en) 2022-04-28
AU2019270870A1 (en) 2021-01-14

Similar Documents

Publication Publication Date Title
WO2019219096A1 (zh) 一种区域化透皮离子电渗给药系统
US11052251B2 (en) Device for the transcutaneous electrical stimulation of the trigeminal nerve
US6157858A (en) Device for the delivery of a substance to a subject and improved electrode assembly
US5443441A (en) Apparatus and method for transdermal delivery of cosmetic compositions
KR200467410Y1 (ko) 안면 마사지기
US20070276318A1 (en) Iontosonic-microneedle applicator apparatus and methods
US20160129273A1 (en) Pulsed electromagnetic therapy device with combined energy delivery
US5795321A (en) Iontophoretic drug delivery system, including removable controller
JP2010533023A (ja) 神経刺激システム
WO2019219097A2 (zh) 一种用于美容领域的自适应透皮离子电渗法导入系统
US20160228177A1 (en) A system for periodontal treatment
JP6972008B2 (ja) 動電学的な経皮及び経粘膜送達の促進装置
EP0600914A1 (en) Method and apparatus for treating tissue
JPH10508526A (ja) 医薬品の経皮吸収投与のためのイオン浸透療法装置及びこのような装置の一部分を形成する廃棄可能なアセンブリ
KR20210037780A (ko) 전기 자극 마스크 시트 장치 및 그 제어방법과, 이에 이용되는 멀티 마스크 시트
RU2786488C2 (ru) Система трансдермальной локализованной ионтофорезной доставки лекарственного вещества
KR101293992B1 (ko) 다한증 전기치료기
KR102208601B1 (ko) 두피 마사지 전용 자기장 전동 머리빗
EP0964722A2 (en) Device for the delivery of a substance to a subject and improved electrode assembly
AU2020369800B2 (en) Iontophoresis administration device
NL1021021C2 (nl) Massage-inrichting.
US20210290954A1 (en) Wrinkle Repair System
CN115814272B (zh) 一种电场治疗系统
KR20230091270A (ko) 미세전류를 활용해 피부세포를 자극함으로써 안티에이징 효과를 극대화한 콜라겐 생성 휴대용 미용기기
KR20190119494A (ko) 피부 치료용 마우스 피스 및 전기 에너지를 이용한 피부 치료 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19804518

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020564663

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019804518

Country of ref document: EP

Effective date: 20201214

ENP Entry into the national phase

Ref document number: 2019270870

Country of ref document: AU

Date of ref document: 20190712

Kind code of ref document: A