WO2019218776A1 - 背光模组及其制作方法和显示装置 - Google Patents

背光模组及其制作方法和显示装置 Download PDF

Info

Publication number
WO2019218776A1
WO2019218776A1 PCT/CN2019/079835 CN2019079835W WO2019218776A1 WO 2019218776 A1 WO2019218776 A1 WO 2019218776A1 CN 2019079835 W CN2019079835 W CN 2019079835W WO 2019218776 A1 WO2019218776 A1 WO 2019218776A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
transparent electrode
backlight module
phase change
transparent
Prior art date
Application number
PCT/CN2019/079835
Other languages
English (en)
French (fr)
Inventor
李文波
季春燕
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/494,978 priority Critical patent/US11099426B2/en
Publication of WO2019218776A1 publication Critical patent/WO2019218776A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0051Diffusing sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0055Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133524Light-guides, e.g. fibre-optic bundles, louvered or jalousie light-guides
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/19Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on variable-reflection or variable-refraction elements not provided for in groups G02F1/015 - G02F1/169
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection

Definitions

  • the present disclosure relates to a backlight module, a method of fabricating the same, and a display device.
  • a backlight module including: a light guide plate, a reflective structure disposed on a side of the light guide plate, and a diffusion disposed on the other side of the light guide plate a structure that is switchable between a reflective state that reflects light and a transmitted state that transmits light; the diffused structure is capable of transmitting a scattering state of light and transmitting light Switch between states.
  • the reflective structure includes a first transparent substrate, a first transparent electrode, an electro-induced phase change layer, and a second transparent electrode disposed in an overlapping manner;
  • the first transparent electrode is The applied voltage is a positive voltage with respect to the voltage applied to the second transparent electrode such that the electro-induced phase change layer is a reflective layer and the reflective structure is switched to a reflective state;
  • the first transparent electrode is applied with a voltage
  • the voltage applied to the second transparent electrode is a negative voltage such that the electro-induced phase change layer is a transparent layer and the reflective structure is switched to a transmissive state.
  • the electro-induced phase change layer includes a metal hydrogen absorbing phase change layer, hydrogen, which are sequentially disposed on a side of the first transparent electrode facing the second transparent electrode. a storage layer, and a hydrogen source layer.
  • the material of the metal hydrogen absorbing phase change layer includes at least one of the following: a rare earth alloy, a Mg-rare earth alloy, or a Mg-transition alloy.
  • the backlight module further includes a catalytic layer on a side of the hydrogen source layer opposite to the hydrogen storage layer.
  • the metal hydrogen absorbing phase change layer is made of a Gd-Mg hydride
  • the hydrogen storage layer is made of tungsten trioxide
  • the hydrogen source layer is made of a material. Hydrated zirconia
  • the catalytic layer is made of palladium metal.
  • the hydrogen storage layer is made of tungsten trioxide.
  • the material of the hydrogen source layer is hydrated zirconia.
  • a catalytic layer on a side of the hydrogen source layer opposite the hydrogen storage layer is also included.
  • the material of the catalytic layer is palladium metal.
  • the diffusion structure includes: a second transparent substrate and a third transparent substrate disposed opposite to each other, and a second surface of the second transparent substrate facing the third transparent substrate a third transparent electrode, a fourth transparent electrode disposed on a side of the third transparent substrate facing the second transparent substrate, and a liquid crystal layer disposed between the third transparent electrode and the fourth transparent electrode; No voltage is applied between the third transparent electrode and the fourth transparent electrode, so that the liquid crystal layer is switched to a scattering state; a preset voltage is applied between the third transparent electrode and the fourth transparent electrode, The liquid crystal layer is switched to a transparent state.
  • the liquid crystal layer includes at least one of polymer dispersed liquid crystal, polymer network liquid crystal, or bistable cholesteric liquid crystal.
  • One or more embodiments of the present disclosure further provide a method for fabricating the backlight module according to an embodiment of the present disclosure, including:
  • a diffusion structure is formed over the light guide plate.
  • the forming the reflective structure includes:
  • a second transparent electrode is formed on a side of the hydrogen source layer opposite to the hydrogen storage layer.
  • forming a metal hydrogen absorbing phase change layer on a side of the first transparent electrode opposite to the first transparent substrate includes: in a mixed gas atmosphere of hydrogen and argon, The atomic ratio of the Gd metal to the Mg metal is 1:1 for co-sputtering.
  • forming a hydrogen storage layer on a side of the metal hydrogen absorbing phase change layer opposite the first transparent electrode includes depositing WO3 with a W target.
  • the hydrogen stored in the hydrogen absorbing layer and the metal phase change layer formed on the side opposite to the hydrogen source layer includes: depositing a target using Zr Z r O 2 H x.
  • forming the catalytic layer on a side of the hydrogen source layer opposite to the hydrogen storage layer includes depositing a Pd layer using a Pd target.
  • One or more embodiments of the present disclosure also provide a display device including the backlight module as described above, wherein the reflective structure is switched to a reflective state and the diffusion structure is switched to a scattering state such that the The display device performs normal display; and the reflective structure is switched to a transmissive state and the diffusion structure is switched to a transmissive state such that the display device performs transparent display.
  • FIG. 1 is a schematic structural diagram of a backlight module according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a display device according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a reflective structure according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a diffusion structure according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of deflection of a liquid crystal layer according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of another liquid crystal layer deflection according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a display device according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a display device according to an embodiment of the present disclosure when transparently displayed
  • FIG. 9 is a schematic diagram of a manufacturing process of a display device according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of a manufacturing process of a reflective structure according to an embodiment of the present disclosure.
  • an embodiment of the present disclosure provides a backlight module including: a light guide plate 2 , a reflective structure 1 disposed on one side of the light guide plate 2 , and a diffusion structure 3 disposed on the other side of the light guide plate 2 . .
  • the reflection structure 1 is switchable between a reflection state in which light is reflected and a transmission state in which light is transmitted; the diffusion structure 3 is capable of being between a scattering state in which light is scattered and a transmission state in which light is transmitted. Switch.
  • an embodiment of the present disclosure provides a display device including a backlight module and a liquid crystal cell 4 according to an embodiment of the present disclosure.
  • the display device performs normal display when the reflective structure 1 is switched to the reflective state and the diffusion structure 3 is switched to the scattering state; and is transparent when the reflective structure 1 is switched to the transmissive state and the diffusing structure 3 is switched to the transmissive state. display.
  • the backlight module provided by the embodiment of the present disclosure includes: a light guide plate, a reflective structure disposed on one side of the light guide plate, and a diffusion structure disposed on one side of the light guide plate.
  • the display device When the reflective structure is switched to the reflective state and the diffusion structure is switched to the scattering state, the display device can realize normal display; when the reflective structure is switched to the transparent state and the diffusion structure is switched to the transparent state, the display device can The transparent display is realized, and thus the display device can be switched between the normal display and the transparent display.
  • the reflective structure 1 may specifically include: a first transparent substrate 11 , a first transparent electrode 12 disposed on the first transparent substrate 11 , and disposed on the first transparent electrode 12 .
  • the electro-transformation layer 13 is disposed on the second transparent electrode 14 above the electro-transformation layer 13; when the voltage applied by the first transparent electrode 12 is a positive voltage with respect to the voltage applied to the second transparent electrode 14, the electro-induced phase The phase change layer 13 is switched to the reflective state; when the applied voltage of the first transparent electrode 12 is a negative voltage with respect to the voltage applied to the second transparent electrode 14, the electro-induced phase change layer 13 is switched to the transmission state.
  • the electro-induced phase change layer 13 may specifically include: a metal hydrogen absorbing phase change layer 131 on the first transparent electrode 12, a hydrogen storage layer 132 on the metal hydrogen absorbing phase change layer 131, and a hydrogen storage layer.
  • the material of the metal hydrogen absorbing phase change layer 131 may specifically include at least one of a rare earth alloy (for example, a Y-La alloy), a Mg-rare earth alloy, or a Mg-transition alloy.
  • the metal hydrogen absorbing phase change layer 131 may be a Gd-Mg hydride
  • the hydrogen storage layer may specifically be tungsten trioxide
  • the hydrogen source layer may be an electrolyte, specifically hydrated zirconia.
  • the electro-induced phase change layer 13 may also include a catalytic layer (not shown) located above the hydrogen source layer 134 to effect a reaction catalysis.
  • the catalytic layer may specifically be Pd.
  • the metal hydrogen absorbing phase change layer 131 is a Gd-Mg hydride
  • the hydrogen storage layer is tungsten trioxide
  • the hydrogen source layer is hydrated zirconia.
  • GdMgH5 releases hydrogen ions to the hydrogen storage layer 132 to generate GdMgH2, which is a metal reflective state, and the reflective structure 1 is switched to a reflective state.
  • a potential of -2V is applied to the first transparent electrode 131 and a potential of 0V is applied to the second transparent electrode 134
  • the GdMgH2 film layer absorbs H ions from the hydrogen storage layer 132 to form GdMgH5, which is in a transparent state, so that the reflective structure 1 is switched to be transparent. Over the state.
  • the voltage applied to the first transparent electrode and the second transparent electrode may also be other voltage values than plus or minus 2V.
  • a potential of 0 V is applied to the second transparent electrode 134, or +1 V is applied to the first transparent electrode 131, and a potential of 0 V is applied to the second transparent electrode 134.
  • the voltage applied to the first transparent electrode 131 and the second transparent electrode 134 may also be -2V to -1V, and other voltage values between +1V and +2V, as long as the reflective structure 1 is required to be reflective.
  • the applied voltage of the first transparent electrode 12 is applied to the voltage of the second transparent electrode 14 to be a positive potential
  • the voltage applied to the first transparent electrode 12 is applied to the second transparent electrode 14 .
  • the applied voltage is a negative potential, all within the scope of the present disclosure.
  • the voltage applied to the first transparent electrode 131 and the second transparent electrode 134 may be between 1-2V. Certainly, the specific voltage value may also vary according to the material of the set film layer, and the disclosure is not limited thereto.
  • the reflective structure 1 may also be other structures that can be switched between a reflective state and a transparent state, and the disclosure is not limited thereto.
  • the diffusion structure 3 includes: a second transparent substrate 31 and a third transparent substrate 32 disposed opposite to each other, and a third transparent electrode disposed on a side of the second transparent substrate 31 facing the third transparent substrate 32. 33.
  • a fourth transparent electrode 34 disposed on a side of the third transparent substrate 32 facing the second transparent substrate 31, and a liquid crystal layer 35 disposed between the third transparent electrode 33 and the fourth transparent electrode 34.
  • the liquid crystal layer 35 may specifically include at least one of a polymer dispersed liquid crystal (PDLC), a polymer network liquid crystal (PNLC), or a bistable cholesteric liquid crystal.
  • PDLC polymer dispersed liquid crystal
  • PNLC polymer network liquid crystal
  • the formal PDLC is a scattering state under normal conditions, and is transparent after an electric field is applied.
  • the refractive index of the polymer matches the effective refractive index of the liquid crystal, it exhibits a transparent state, as shown in the left side of FIG. 5; otherwise, it is a scattering state, as shown in the right side of FIG.
  • the bistable cholesteric liquid crystal structure is randomly arranged under the focal conic texture, and the display device is in a scattering state. Under the planar texture, the liquid crystal molecules are arranged in the horizontal direction, so that the display can be performed. The device is in a transparent state.
  • the display device When the display device needs to perform normal display, as shown in FIG. 7, a voltage of +2 V is applied to the first transparent electrode 12, and a voltage of 0 V is applied to the second transparent electrode 14, that is, the voltage applied to the first transparent electrode 12 is applied.
  • the voltage applied to the second transparent electrode 14 is a positive voltage, and the metal hydrogen absorbing phase change layer 131 releases hydrogen ions to the hydrogen storage layer 132 to generate GdMgH2, which is a metal reflective state, and the reflective structure 1 reflects light;
  • No voltage is applied between the third transparent electrode 33 and the fourth transparent electrode 34, and the liquid crystal layer 35 scatters light, and the display device displays normally.
  • the display device may further include a light source structure 21 on the light incident side of the light guide plate.
  • a voltage of -2 V is applied to the first transparent electrode 12, and a voltage of 0 V is applied to the second transparent electrode 14, that is, the voltage applied to the first transparent electrode 12 is applied.
  • the voltage applied to the second transparent electrode 14 is a negative voltage, and the metal hydrogen absorbing phase change layer 131 absorbs the H ions to form GdMgH5, which is in a transparent state, and the reflective structure 1 transmits light.
  • the third transparent electrode A predetermined voltage is applied between the 33 and the fourth transparent electrode 34, and the liquid crystal layer 35 transmits the light, and the display device realizes transparent display.
  • the liquid crystal cell 4 includes a liquid crystal layer 41, a first polarizing plate 42, and a second polarizing plate 43.
  • the liquid crystal cell 4 can also have other structures known to those skilled in the art.
  • the embodiment of the present disclosure further provides a method for fabricating a backlight module according to an embodiment of the present disclosure.
  • the manufacturing method includes:
  • Step S101 forming a reflective structure.
  • Step S102 forming a light guide plate on the reflective structure.
  • Step S103 forming a diffusion structure over the light guide plate.
  • forming a reflective structure includes:
  • Step S1011 providing a first transparent substrate.
  • Step S1012 forming a first transparent electrode on the first transparent substrate.
  • Step S1013 forming a metal hydrogen absorbing phase change layer on the first transparent electrode.
  • forming a metal hydrogen absorbing phase change layer on the first transparent electrode may specifically include: passing a 1:1 atomic ratio under a H 1 /Ar atmosphere under a vacuum of 10 -1 Pa Co-sputtering forms GdMgH5 on the ITO glass.
  • Step S1014 forming a hydrogen storage layer on the metal hydrogen absorbing phase change layer.
  • W3 can be deposited using a W target.
  • Step S1015 forming a hydrogen source layer on the hydrogen storage layer.
  • DETAILED Zr target deposition Z r O 2 H x can be employed.
  • Step S1016 forming a second transparent electrode over the hydrogen source layer.
  • an ITO film layer can be deposited using an In ⁇ Sn alloy target.
  • step S1015 and step 1016 it may further include forming a catalytic layer over the hydrogen source layer.
  • a Pd layer may be deposited on the hydrogen source layer using a Pd target.
  • the optical module provided by the embodiment of the present disclosure includes: a light guide plate, a reflective structure disposed on one side of the light guide plate, and a diffusion structure disposed on the other side of the light guide plate; wherein the reflective structure is And the diffusion structure is designed such that the reflective structure is switchable between a reflective state that reflects light and a transmitted state that transmits light and the diffused structure is capable of scattering in a scattering state and transmitting light. Switch between the through states.
  • the display device when the reflective structure is switched to a reflective state and the diffusion structure is switched to a scattering state, the display device can achieve normal display; the reflective structure is switched to a transmissive state and the diffusion structure is When switching to the transparent state, the display device can realize transparent display, thereby enabling the display device to switch between normal display and transparent.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)

Abstract

一种背光模组及其制作方法,以及包括背光模组的显示装置,其中背光模组包括:导光板(2)、设置在导光板(2)一侧的反射结构(1)、以及设置在导光板(2)另一侧的扩散结构(3);反射结构(1)能够在对光进行反射的反射状态与对光进行透过的透过状态之间切换;扩散结构(3)能够在对光进行散射的散射状态与对光进行透过的透过状态之间切换,从而实现显示装置在正常显示和透明显示之间进行切换。

Description

背光模组及其制作方法和显示装置
相关申请的交叉引用
本申请要求于2018年05月14日递交的中国专利申请201810454982.X号的优先权。该申请的公开被通过全文引用结合在这里。
技术领域
本公开涉及背光模组及其制作方法和显示装置。
背景技术
显示领域的技术革新,离不开人们对生活各式各样的需求满足以及研发者对产品永不满足的颠覆性创造。产品本身的缺陷,会促使科研工作者对产品的不断改良。
发明内容
本公开的一个或多个实施例提供一种背光模组,所述背光模组包括:导光板、设置在所述导光板一侧的反射结构、以及设置在所述导光板另一侧的扩散结构;所述反射结构能够在对光进行反射的反射状态与对光进行透过的透过状态之间切换;所述扩散结构能够在对光进行散射的散射状态与对光进行透过的透过状态之间切换。
在根据本公开的一个或多个实施例中,所述反射结构包括依次重叠设置的第一透明基板、第一透明电极、电致相变层和第二透明电极;所述第一透明电极被施加的电压相对所述第二透明电极被施加的电压为正电压,使得所述电致相变层为反射层并且所述反射结构被切换为反射状态;所述第一透明电极被施加的电压相对所述第二透明电极被施加的电压为负电压,使得所述电致相变层为透明层并且所述反射结构被切换为透过状态。
在根据本公开的一个或多个实施例中,所述电致相变层包括在所述第一透明电极面向所述第二透明电极一侧上依次重叠设置的金属吸氢相变层、氢存储层、以及氢源层。
在根据本公开的一个或多个实施例中,所述金属吸氢相变层的材质包括以下至少一个:稀土系合金、Mg-稀土系合金、或Mg-过渡系合金。
在根据本公开的一个或多个实施例中,所述背光模组还包括在氢源层的与氢存储层相反的一侧上的催化层。
在根据本公开的一个或多个实施例中,所述金属吸氢相变层的材质为Gd-Mg氢化物,所述氢存储层的材质为三氧化钨,所述氢源层的材质为水合氧化锆,所述催化层的材质为钯金属。
在根据本公开的一个或多个实施例中,所述氢存储层的材质为三氧化钨。
在根据本公开的一个或多个实施例中,所述氢源层的材质为水合氧化锆。
在根据本公开的一个或多个实施例中,还包括在氢源层的与氢存储层相反的一侧上的催化层。
在根据本公开的一个或多个实施例中,所述催化层的材质为钯金属。
在根据本公开的一个或多个实施例中,所述扩散结构包括:相对设置的第二透明基板和第三透明基板、设置在所述第二透明基板面向所述第三透明基板一面的第三透明电极、设置在所述第三透明基板面向所述第二透明基板一面的第四透明电极、以及设置在所述第三透明电极和所述第四透明电极之间的液晶层;所述第三透明电极和所述第四透明电极之间不被施加电压,使得所述液晶层被切换为散射状态;所述第三透明电极和所述第四透明电极之间被施加预设电压,使得所述液晶层被切换为透过状态。
在根据本公开的一个或多个实施例中,所述液晶层包括以下至少一个:聚合物分散液晶、聚合物网络液晶或双稳态胆甾相液晶。
本公开的一个或多个实施例还提供一种如本公开实施例提供的所述背光模组的制作方法,包括:
形成反射结构;
在所述反射结构之上形成导光板;
在所述导光板之上形成扩散结构。
在根据本公开的一个或多个实施例中,所述形成反射结构,包括:
提供第一透明基板,
在第一透明基板一侧形成第一透明电极;
在所述第一透明电极与第一透明基板相反的一侧形成金属吸氢相变层;
在所述金属吸氢相变层与所述第一透明电极相反的一侧形成氢存储层;
在所述氢存储层与所述金属吸氢相变层相反的一侧形成氢源层;
在所述氢源层与所述氢存储层相反的一侧形成第二透明电极。
在根据本公开的一个或多个实施例中,在所述第一透明电极与第一透明基板相反的 一侧形成金属吸氢相变层包括:在氢气与氩气的混合气体氛围下,以Gd金属和Mg金属的原子比为1:1进行共溅射。
在根据本公开的一个或多个实施例中,在所述金属吸氢相变层与所述第一透明电极相反的一侧形成氢存储层包括:采用W靶沉积WO3。
在根据本公开的一个或多个实施例中,在所述氢存储层与所述金属吸氢相变层相反的一侧形成氢源层包括:采用Zr靶沉积Z rO 2H x
在根据本公开的一个或多个实施例中,在形成氢源层之后、形成所述第二透明电极之前还包括:在所述氢源层与所述氢存储层相反的一侧形成催化层。
在根据本公开的一个或多个实施例中,在所述氢源层与所述氢存储层相反的一侧形成催化层包括:采用Pd靶沉积Pd层。
本公开的一个或多个实施例还提供一种显示装置,包括如上所述的背光模组,其中,所述反射结构被切换为反射状态且所述扩散结构被切换为散射状态,使得所述显示装置进行正常显示;以及所述反射结构被切换为透过状态且所述扩散结构被切换为透过状态,使得所述显示装置进行透明显示。
附图说明
图1为本公开实施例提供的一种背光模组的结构示意图;
图2为本公开实施例提供的一种显示装置的结构示意图;
图3为本公开实施例提供的一种反射结构的结构示意图;
图4为本公开实施例提供的一种扩散结构的结构示意图;
图5为本公开实施例提供的一种液晶层偏转的结构示意图;
图6为本公开实施例提供的另一种液晶层偏转的结构示意图;
图7为本公开实施例提供的显示装置在正常显示时的结构示意图;
图8为本公开实施例提供的显示装置在透明显示时的结构示意图;
图9为本公开实施例提供的一种显示装置的制作流程示意图;
图10为本公开实施例提供的一种反射结构的制作流程示意图。
具体实施方式
为了使得本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施 例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
为了保持本公开实施例的以下说明清楚且简明,本公开省略了已知功能和已知部件的详细说明。
参见图1,本公开实施例提供一种背光模组,该背光模组包括:导光板2、设置在导光板2一侧的反射结构1、以及设置在导光板2另一侧的扩散结构3。
反射结构1能够在对光进行反射的反射状态与对光进行透过的透过状态之间切换;扩散结构3能够在对光进行散射的散射状态与对光进行透过的透过状态之间切换。
参见图2,本公开的实施例提供了一种显示装置,包括根据本公开的实施例的背光模组和液晶盒4。显示装置在反射结构1被切换为反射状态且扩散结构3被切换为散射状态时,进行正常显示;在反射结构1被切换为透过状态且扩散结构3被切换为透过状态时,进行透明显示。
本公开实施例提供的背光模组包括:导光板、设置在导光板一侧的反射结构、以及设置在导光板一侧的扩散结构。通过对反射结构和扩散结构进行设计,使反射结构被切换为反射状态时,可以对光进行反射,被切换为透过状态时,可以对光进行透过,使扩散结构被切换为散射状态时,可以对光进行散射,被切换为透过状态时,可以对光进行透过。
在反射结构被切换为反射状态且扩散结构被切换为散射状态时,该显示装置可以实现正常显示;在反射结构被切换为透过状态且扩散结构被切换为透过状态时,该显示装置可以实现透明显示,进而可以实现显示装置在正常显示与透明显示之间进行切换。
在具体实施时,参见图3所示,反射结构1具体可以包括:第一透明基板11,设置在第一透明基板11之上的第一透明电极12,设置在第一透明电极12之上的电致相变层13,设置在电致相变层13之上的第二透明电极14;第一透明电极12被施加的电压相对第二透明电极14被施加的电压为正电压时,电致相变层13被切换为反射状态;第一透明电极12被施加的电压相对第二透明电极14被施加的电压为负电压时,电致相变层13被切换为透过状态。
具体的,电致相变层13具体可以包括:位于第一透明电极12之上的金属吸氢相变层131、位于金属吸氢相变层131之上的氢存储层132、以及位于氢存储层133之上的氢源层134。金属吸氢相变层131的材质具体可以包括以下至少一个:稀土系合金(例如,Y-La合金)、Mg-稀土系合金、或Mg-过渡系合金。进一步的,金属吸氢相变层131可以为Gd-Mg氢化物,氢存储层具体可以为三氧化钨,氢源层为电解液,具体可以为水合氧化锆。电致相变层13还可以包括位于氢源层134之上的催化层(未示出),起到反应催化作用。催化层具体可以为Pd。
以下以金属吸氢相变层131为Gd-Mg氢化物,氢存储层为三氧化钨,氢源层为水合氧化锆为例,对本公开实施例提供的电致相变层的转换原理进行进具体说明如下。
当向第一透明电极131施加+2V电位,向第二透明电极134施加0V电位,GdMgH5释放氢离子给氢存储层132,生成GdMgH2,为金属反射态,使反射结构1被切换为反射状态。当向第一透明电极131施加-2V电位,向第二透明电极134施加0V电位,GdMgH2膜层从氢存储层132吸收H离子反应生成GdMgH5,为透过态,使反射结构1被切换为透过状态。当然,在具体实施时,向第一透明电极和第二透明电极施加的电压也可以为除正负2V以外的其它电压值。例如,也可以是当向第一透明电极131施加-1V,向第二透明电极134施加0V电位,或者,是当向第一透明电极131施加+1V,向第二透明电极134施加0V电位。或者,向第一透明电极131和第二透明电极134施加的电压也可以是-2V~-1V,以及+1V~+2V之间的其它电压值,只要总体在需要使反射结构1实现反射状态时,使第一透明电极12被施加的电压相对第二透明电极14被施加的电压为正电位,在需要实现透过状态时,使第一透明电极12被施加的电压相对第二透明电极14被施加的电压为负电位,均在本公开的保护范围以内。向第一透明电极131和第二透明电极134施加的电压可以在1-2V之间。当然,具体的电压值,还可能根据设置的膜层材质不同进行变化,本公开不以此为限。
在具体实施时,反射结构1也可以为其它可以实现在反射状态与透过状态之间进行切换的结构,本公开不以此为限。
在具体实施时,参见图4所示,扩散结构3包括:相对设置的第二透明基板31和第三透明基板32、设置在第二透明基板31面向第三透明基板32一面的第三透明电极33、设置在第三透明基板32面向第二透明基板31一面的第四透明电极34、以及设置在第三透明电极33和第四透明电极34之间的液晶层35。第三透明电极33和第四透明电极34之间不被施加电压时,液晶层35被切换为散射状态;第三透明电极33和第四透明电极34之间被施加预设电压时,液晶层35被切换为透过状态。液晶层35具体可以包括以下至少一个:聚合物分散液晶(polymer dispersed liquid crystal,PDLC)、聚合物网络液晶(polymer network liquid crystal,PNLC)或双稳态胆甾相液晶。其中,正式PDLC在常规下为散射态,施加电场后为透明态。当聚合物的折射率和液晶的有效折射率匹配时,呈现出透明状态,如图5左侧示图所示;否则为散射状态,如图5右侧示图所示。如图6所示,双稳态胆甾相液晶结构在焦锥织构下,液晶分子随机排列,可使显示装置处于散射状态,在平面织构下,液晶分子沿水平方向排列,可以使显示装置呈透明状态。
以下以液晶层35为聚合物分散液晶为例,结合图7和图8对本公开实施例提供的显示装置的切换过程进行说明如下。
当显示装置需要进行正常显示时,参见图7所示,向第一透明电极12施加+2V的电压,向第二透明电极14施加0V的电压,即,使第一透明电极12被施加的电压相对第二透明电极14被施加的电压为正电压,GdMgH5即金属吸氢相变层131释放氢离子给氢存储层132,生成GdMgH2,为金属反射态,反射结构1对光进行反射;同时,第三透明电极33和第四透明电极34之间不施加电压,液晶层35对光进行散射,显示装置正常显示。显示装置具体还可以在导光板的入光侧设置光源结构21。
当显示装置需要进行透明显示时,参见图8所示,向第一透明电极12施加-2V的电压,向第二透明电极14施加0V的电压,即,使第一透明电极12被施加的电压相对第二透明电极14被施加的电压为负电压,GdMgH2即金属吸氢相变层131吸收H离子反应生成GdMgH5,为透过状态,反射结构1对光进行透过;同时,第三透明电极33和第四透明电极34之间施加预设电压,液晶层35对光进行透过,显示装置实现透明显示。
在图7和图8所示的示例中,液晶盒4包括液晶层41、第一偏振片42和第二偏振片43。液晶盒4也可以具有本领域技术人员已知的其他结构。
基于同一构思,本公开实施例还提供一种制作如本公开实施例提供的背光模组的制作方法,参见图9所示,制作方法包括:
步骤S101、形成反射结构。
步骤S102、在反射结构之上形成导光板。
步骤S103、在导光板之上形成扩散结构。
在具体实施时,关于步骤S101、形成反射结构,参见图10所示,包括:
步骤S1011、提供第一透明基板。
步骤S1012、在第一透明基板之上形成第一透明电极。
步骤S1013、在第一透明电极之上形成金属吸氢相变层。
在具体实施时,关于该步骤S1013、在第一透明电极之上形成金属吸氢相变层,具体可以包括:在10 -1Pa真空下,H 2/Ar气氛下通过1:1的原子比共溅射在ITO玻璃上形成GdMgH5。
步骤S1014、在金属吸氢相变层之上形成氢存储层。具体可以采用W靶沉积WO3。
步骤S1015、在氢存储层之上形成氢源层。具体可以采用Zr靶沉积Z rO 2H x
步骤S1016、在氢源层之上形成第二透明电极。具体可以用In\Sn合金靶沉积ITO膜层。
在步骤S1015与步骤1016之间,还可以包括在氢源层之上形成催化层。具体还可以在氢源层之上,采用Pd靶沉积Pd层。
本公开实施例有益效果如下:本公开实施例提供的光模组包括:导光板、设置在导光板一侧的反射结构、以及设置在导光板另一侧的扩散结构;其中,通过对反射结构和扩散结构进行设计,使反射结构能够在对光进行反射的反射状态与对光进行透过的透过状态之间切换并且扩散结构能够在对光进行散射的散射状态与对光进行透过的透过状态之间切换。对于具有这样的背光模组的显示装置,在反射结构被切换为反射状态且扩散结构被切换为散射状态时,该显示装置可以实现正常显示;在反射结构被切换为透过状态且扩散结构被切换为透过状态时,该显示装置可以实现透明显示,进而可以实现显示装置在正常显示与透明之间进行切换。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (19)

  1. 一种背光模组,所述背光模组包括:导光板、设置在所述导光板一侧的反射结构、以及设置在所述导光板另一侧的扩散结构;
    其中,所述反射结构能够在对光进行反射的反射状态与对光进行透过的透过状态之间切换,所述扩散结构能够在对光进行散射的散射状态与对光进行透过的透过状态之间切换。
  2. 如权利要求1所述的背光模组,其中,
    所述反射结构包括依次重叠设置的第一透明基板、第一透明电极、电致相变层和第二透明电极;
    所述第一透明电极被施加的电压相对所述第二透明电极被施加的电压为正电压,使得所述电致相变层为反射层并且所述反射结构被切换为反射状态;所述第一透明电极被施加的电压相对所述第二透明电极被施加的电压为负电压,使得所述电致相变层为透明层并且所述反射结构被切换为透过状态。
  3. 如权利要求2所述的背光模组,其中,
    所述电致相变层包括在所述第一透明电极面向所述第二透明电极一侧上依次重叠设置的金属吸氢相变层、氢存储层、以及氢源层。
  4. 如权利要求3所述的背光模组,其中,所述金属吸氢相变层的材质包括以下至少一个:稀土系合金、Mg-稀土系合金、或Mg-过渡系合金。
  5. 如权利要求4所述的背光模组,其中,所述金属吸氢相变层的材质为Gd-Mg氢化物。
  6. 如权利要求3所述的背光模组,其中,所述氢存储层的材质为三氧化钨。
  7. 如权利要求3所述的背光模组,其中,所述氢源层的材质为水合氧化锆。
  8. 如权利要求3所述的背光模组,还包括在氢源层的与氢存储层相反的一侧上的催化层。
  9. 如权利要求8所述的背光模组,其中,所述催化层的材质为钯金属。
  10. 如权利要求1所述的背光模组,其中,
    所述扩散结构包括:相对设置的第二透明基板和第三透明基板、设置在所述第二透明基板面向所述第三透明基板一面的第三透明电极、设置在所述第三透明基板面向所述第二透明基板一面的第四透明电极、以及设置在所述第三透明电极和所述第四透明电极之间的液晶层;
    所述第三透明电极和所述第四透明电极之间不施加电压,使得所述液晶层被切换为散射状态;所述第三透明电极和所述第四透明电极之间被施加预设电压,使得所述液晶层被切换为透过状态。
  11. 如权利要求10所述的背光模组,其中,所述液晶层包括以下至少一个:聚合物分散液晶、聚合物网络液晶或双稳态胆甾相液晶。
  12. 一种如权利要求1-11中任一项所述的背光模组的制作方法,包括:
    形成反射结构;
    在所述反射结构之上形成导光板;
    在所述导光板之上形成扩散结构。
  13. 如权利要求12所述的制作方法,其中,所述形成反射结构包括:
    提供第一透明基板,
    在第一透明基板一侧形成第一透明电极;
    在所述第一透明电极与第一透明基板相反的一侧形成金属吸氢相变层;
    在所述金属吸氢相变层与所述第一透明电极相反的一侧形成氢存储层;
    在所述氢存储层与所述金属吸氢相变层相反的一侧形成氢源层;
    在所述氢源层与所述氢存储层相反的一侧形成第二透明电极。
  14. 如权利要求13所述的制作方法,其中,在所述第一透明电极与第一透明基板相反的一侧形成金属吸氢相变层包括:
    在氢气与氩气的混合气体氛围下,以Gd金属和Mg金属的原子比为1:1进行共溅射。
  15. 如权利要求13所述的制作方法,其中,在所述金属吸氢相变层与所述第一透明电极相反的一侧形成氢存储层包括:
    采用W靶沉积WO3。
  16. 如权利要求13所述的制作方法,其中,在所述氢存储层与所述金属吸氢相变层相反的一侧形成氢源层包括:
    采用Zr靶沉积Z rO 2H x
  17. 如权利要求13所述的制作方法,在形成氢源层之后、形成所述第二透明电极之前还包括:
    在所述氢源层与所述氢存储层相反的一侧形成催化层。
  18. 如权利要求17所述的制作方法,其中,在所述氢源层与所述氢存储层相反的一侧形成催化层包括:
    采用Pd靶沉积Pd层。
  19. 一种显示装置,包括如权利要求1-11中任一项所述的背光模组,其中,
    所述反射结构被切换为反射状态且所述扩散结构被切换为散射状态,使得所述显示装置进行正常显示;以及
    所述反射结构被切换为透过状态且所述扩散结构被切换为透过状态,使得所述显示装置进行透明显示。
PCT/CN2019/079835 2018-05-14 2019-03-27 背光模组及其制作方法和显示装置 WO2019218776A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/494,978 US11099426B2 (en) 2018-05-14 2019-03-27 Backlight module, manufacturing method thereof and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810454982.XA CN108628037A (zh) 2018-05-14 2018-05-14 一种显示装置及其制作方法
CN201810454982.X 2018-05-14

Publications (1)

Publication Number Publication Date
WO2019218776A1 true WO2019218776A1 (zh) 2019-11-21

Family

ID=63693044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/079835 WO2019218776A1 (zh) 2018-05-14 2019-03-27 背光模组及其制作方法和显示装置

Country Status (3)

Country Link
US (1) US11099426B2 (zh)
CN (1) CN108628037A (zh)
WO (1) WO2019218776A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108628037A (zh) * 2018-05-14 2018-10-09 京东方科技集团股份有限公司 一种显示装置及其制作方法
CN110767693B (zh) * 2018-12-14 2022-07-19 昆山国显光电有限公司 阵列基板、显示屏及显示终端
CN109597244A (zh) * 2018-12-29 2019-04-09 联想(北京)有限公司 显示设备、显示方法和显示装置
CN110010088B (zh) * 2019-05-20 2022-01-11 京东方科技集团股份有限公司 透明显示模组和透明显示装置
CN116088224B (zh) * 2023-02-27 2023-06-30 惠科股份有限公司 背光模组、显示装置及显示驱动方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101371190A (zh) * 2006-01-20 2009-02-18 日本电气株式会社 便携终端
CN101971278A (zh) * 2008-03-05 2011-02-09 索尼爱立信移动通讯有限公司 高对比度背光
WO2011158569A1 (ja) * 2010-06-15 2011-12-22 シャープ株式会社 調光素子、表示装置、照明装置及び調光素子の製造方法
CN103842900A (zh) * 2011-09-30 2014-06-04 独立行政法人产业技术总合研究所 反射型调光元件、反射型调光部件、及多层玻璃
US20150198856A1 (en) * 2014-01-15 2015-07-16 Samsung Electronics Co., Ltd. Electrochromic device
CN106646987A (zh) * 2017-03-24 2017-05-10 电子科技大学 一种透明显示器
CN108628037A (zh) * 2018-05-14 2018-10-09 京东方科技集团股份有限公司 一种显示装置及其制作方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1215356C (zh) 2002-08-01 2005-08-17 统宝光电股份有限公司 可全透射反射式切换的液晶显示器
KR102022522B1 (ko) * 2013-06-28 2019-09-18 엘지디스플레이 주식회사 투명 액정표시장치
CN103775963A (zh) 2014-02-10 2014-05-07 上海向隆电子科技有限公司 反射式灯杯结构及背光模块
CN103941458B (zh) 2014-02-14 2017-01-04 华映视讯(吴江)有限公司 透明显示装置
CN105807485A (zh) * 2014-12-30 2016-07-27 上海冠显光电科技有限公司 液晶显示模组、装置及控制方法
CN204790254U (zh) * 2015-05-05 2015-11-18 上海冠显光电科技有限公司 可分区域控制可切换防窥液晶显示装置
CN105090820A (zh) 2015-07-27 2015-11-25 武汉华星光电技术有限公司 背光源和显示装置
CN105116610B (zh) 2015-09-22 2018-10-30 深圳市华星光电技术有限公司 一种背光模组
EP3642672A4 (en) * 2017-06-20 2021-03-10 Massachusetts Institute Of Technology VOLTAGE CONTROLLED OPTICAL DEVICES
CN108761910A (zh) 2018-05-28 2018-11-06 京东方科技集团股份有限公司 电子设备、显示装置、背光模组及其光源

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101371190A (zh) * 2006-01-20 2009-02-18 日本电气株式会社 便携终端
CN101971278A (zh) * 2008-03-05 2011-02-09 索尼爱立信移动通讯有限公司 高对比度背光
WO2011158569A1 (ja) * 2010-06-15 2011-12-22 シャープ株式会社 調光素子、表示装置、照明装置及び調光素子の製造方法
CN103842900A (zh) * 2011-09-30 2014-06-04 独立行政法人产业技术总合研究所 反射型调光元件、反射型调光部件、及多层玻璃
US20150198856A1 (en) * 2014-01-15 2015-07-16 Samsung Electronics Co., Ltd. Electrochromic device
CN106646987A (zh) * 2017-03-24 2017-05-10 电子科技大学 一种透明显示器
CN108628037A (zh) * 2018-05-14 2018-10-09 京东方科技集团股份有限公司 一种显示装置及其制作方法

Also Published As

Publication number Publication date
CN108628037A (zh) 2018-10-09
US11099426B2 (en) 2021-08-24
US20200379297A1 (en) 2020-12-03

Similar Documents

Publication Publication Date Title
WO2019218776A1 (zh) 背光模组及其制作方法和显示装置
CN100412669C (zh) 液晶显示装置
CN101038350B (zh) 光控膜、发光设备以及显示设备
JP6245572B2 (ja) 表示パネル及び表示装置
US7830475B1 (en) Double sided liquid crystal display unit and portable electronic apparatus comprising a polarizing element between two liquid crystal display panels
US9423648B2 (en) Transflective display panel, method for fabricating the same and display device
CN101600901A (zh) 集成于显示器的照明设备中的光学损失结构
KR20010054318A (ko) 투과반사형 액정표시장치와 그 제조방법
TW200815874A (en) Liquid crystal display
CN109976061A (zh) 显示面板及显示装置
TW200419255A (en) Transflective liquid crystal display device
TW594128B (en) Liquid crystal display and electronic machine
KR20060086174A (ko) 일체형 액정 표시 장치
US20210333578A1 (en) Electrically controlled viewing angle switching device and display device
CN105278154A (zh) 液晶显示装置及其液晶显示面板
CN110879494A (zh) 一种镜面显示装置
JP2004354645A (ja) 液晶表示パネル及びそれを用いた液晶表示装置
TWI313377B (en) Liquid crystal display device
WO1998057221A1 (fr) Affichage et dispositif electronique
CN112987368B (zh) 一种阵列基板、液晶显示面板及液晶显示装置
CN211123553U (zh) 一种镜面显示装置
CN210666262U (zh) 显示面板及显示装置
JP2010049207A (ja) 半透過型液晶表示装置及びその製造方法
TW574515B (en) Touch panel with a front-light plate function and its manufacturing method
JP4358044B2 (ja) 液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19803839

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19803839

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19803839

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12.05.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19803839

Country of ref document: EP

Kind code of ref document: A1