WO2019218760A1 - 光学影像镜组 - Google Patents

光学影像镜组 Download PDF

Info

Publication number
WO2019218760A1
WO2019218760A1 PCT/CN2019/077286 CN2019077286W WO2019218760A1 WO 2019218760 A1 WO2019218760 A1 WO 2019218760A1 CN 2019077286 W CN2019077286 W CN 2019077286W WO 2019218760 A1 WO2019218760 A1 WO 2019218760A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical image
focal length
effective focal
set according
Prior art date
Application number
PCT/CN2019/077286
Other languages
English (en)
French (fr)
Inventor
张晓辉
吕赛锋
李龙
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Publication of WO2019218760A1 publication Critical patent/WO2019218760A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present application relates to an optical image lens set, and more particularly to an optical image lens set consisting of three to eight lenses.
  • the present application proposes an optical system that is applicable to portable electronic products and has miniaturization, good imaging quality, and low sensitivity characteristics.
  • an optical image lens set which may include a cover lens and a lens group sequentially from an object side to an image side along an optical axis, wherein the cover lens may have a positive focus a degree or a negative power, the object side is a plane; the lens group may include a first lens having a positive power, a second lens having a negative power, and a plurality of subsequent lenses, in order from the object side to the image side, wherein
  • the effective focal length f of the optical image group and the effective focal length f1 of the first lens can satisfy: 0.5 ⁇ f / f1 ⁇ 1.5.
  • the effective focal length f of the optical image lens set and the effective focal length f TP of the cover lens may satisfy:
  • the effective focal length f2 of the second lens and the effective focal length f TP of the cover lens may satisfy: 0 ⁇
  • the effective focal length f of the optical image set and the radius of curvature R TP2 of the image side of the cover lens may satisfy:
  • the effective focal length f of the optical image lens set and the effective focal length f2 of the second lens may satisfy: -1 ⁇ f / f2 ⁇ 0.
  • the effective half-diameter D TP1 of the object side covering the lens and the entrance pupil diameter EPD of the optical image lens can satisfy: 0.5 ⁇ D TP1 /EPD ⁇ 2.5.
  • the radius of curvature R4 of the image side of the second lens and the radius of curvature R4 of the object side of the first lens may satisfy:
  • the air gap T TP of the cover lens and the first lens on the optical axis and the entrance pupil diameter EPD of the optical image group may satisfy: 0 ⁇ T TP /EPD ⁇ 1.6.
  • conditional expression 1 ⁇ f / (CT TP + T TP ) ⁇ 5, where f is the effective focal length of the optical image set; CT TP is the center thickness of the cover lens; and T TP coverage The air separation of the lens and the first lens on the optical axis.
  • the center thickness CT TP of the cover lens and the center thickness CT2 of the second lens may satisfy: 0 ⁇ CT TP /CT2 ⁇ 4.
  • an optical image lens set which may include a cover lens and a lens group sequentially from an object side to an image side along an optical axis, wherein the cover lens may have a positive power or a negative power, the object side is a plane; the lens group may include a first lens having positive power, a second lens having negative power, and a plurality of subsequent lenses from the object side to the image side.
  • the effective focal length f2 of the second lens and the effective focal length f TP of the cover lens may satisfy: 0 ⁇
  • an optical image lens set which may include a cover lens and a lens group sequentially from the object side to the image side along an optical axis, wherein the cover lens may have a positive power or a negative power, the object side is a plane; the lens group may include a first lens having positive power, a second lens having negative power, and a plurality of subsequent lenses from the object side to the image side.
  • the effective half diameter D TP1 of the object covering the lens and the entrance pupil diameter EPD of the optical image lens group can satisfy: 0.5 ⁇ D TP1 /EPD ⁇ 2.5.
  • the optical image lens set configured as described above can have at least one advantageous effect of miniaturization, high image quality, balance aberration, low sensitivity, and low cost.
  • FIG. 1 is a schematic structural view showing an optical image lens group according to Embodiment 1 of the present application.
  • 2A to 2D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical image lens group of Embodiment 1;
  • FIG. 3 is a schematic structural view showing an optical image lens group according to Embodiment 2 of the present application.
  • 4A to 4D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical image lens group of Embodiment 2;
  • FIG. 5 is a schematic structural view showing an optical image lens group according to Embodiment 3 of the present application.
  • 6A to 6D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical image lens group of Embodiment 3.
  • FIG. 7 is a schematic structural view showing an optical image lens group according to Embodiment 4 of the present application.
  • 8A to 8D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical image lens group of Embodiment 4;
  • FIG. 9 is a schematic structural view showing an optical image lens group according to Embodiment 5 of the present application.
  • 10A to 10D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical image lens group of Embodiment 5;
  • FIG. 11 is a schematic structural view showing an optical image lens group according to Embodiment 6 of the present application.
  • 12A to 12D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical image lens group of Embodiment 6;
  • FIG. 13 is a schematic structural view showing an optical image lens group according to Embodiment 7 of the present application.
  • 14A to 14D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical image lens group of Embodiment 7;
  • FIG. 15 is a schematic structural view showing an optical image lens group according to Embodiment 8 of the present application.
  • 16A to 16D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical image lens group of Embodiment 8.
  • first, second, etc. are used to distinguish one feature from another, and do not represent any limitation of the feature.
  • first lens discussed below may also be referred to as a second lens without departing from the teachings of the present application.
  • the thickness, size, and shape of the lens have been somewhat exaggerated for convenience of explanation.
  • the spherical or aspherical shape shown in the drawings is shown by way of example. That is, the shape of the spherical surface or the aspherical surface is not limited to the spherical or aspherical shape shown in the drawings.
  • the drawings are only examples and are not to scale.
  • the paraxial region refers to a region near the optical axis. If the surface of the lens is convex and the position of the convex surface is not defined, it indicates that the surface of the lens is convex at least in the paraxial region; if the surface of the lens is concave and the position of the concave surface is not defined, it indicates that the surface of the lens is at least in the paraxial region. Concave.
  • the surface closest to the object in each lens is referred to as the object side, and the surface of each lens closest to the image plane is referred to as the image side.
  • An optical image lens group includes a cover lens and a lens group, wherein the lens group includes a first lens, a second lens, and a plurality of subsequent lenses.
  • the number of subsequent lenses is an integer greater than or equal to zero.
  • the cover lens and the lens group are sequentially arranged from the object side to the image side along the optical axis.
  • the cover lens may optionally have positive or negative power with the object side being planar; the first lens in the lens group may have positive power; and the second lens in the lens group Can have negative power.
  • the effective focal length f of the optical image lens set and the effective focal length f1 of the first lens may satisfy: 0.5 ⁇ f / f1 ⁇ 1.5, and specifically, 0.92 ⁇ f / f1 ⁇ 1.30 may be further satisfied.
  • the first lens power is positive, and it can bear the function of collecting light in the optical system. Controlling the ratio within a suitable range is beneficial to weakening the spherical aberration contribution of the first lens, and matching the other lenses can better optimize the chromatic aberration.
  • the effective focal length f of the optical image lens set and the effective focal length f TP of the cover lens may satisfy:
  • Controlling the ratio within a reasonable range can define the power distribution of the cover lens in the entire optical system, control the tortuosity of the cover lens, and help to reduce the sensitivity of the cover lens.
  • the flat concave spherical lens can control the power. To constrain the lens thickness ratio, it is beneficial to lens processing and system assembly.
  • the effective focal length f2 of the second lens and the effective focal length f TP of the cover lens may satisfy: 0 ⁇
  • the first lens of the system is a system light collecting lens, which limits the power ratio of the covering lens to the second lens, and constrains it to a suitable range so that the light can be collected smoothly, and the image quality of the optical system is prevented from being abnormally reflected. Impact.
  • the effective half aperture D TP1 of the object side covering the lens and the entrance pupil diameter EPD of the optical image lens group may satisfy: 0.5 ⁇ D TP1 /EPD ⁇ 2.5, specifically, 0.86 ⁇ can be further satisfied.
  • the spherical lens has the same incident angle, the smaller the aperture, the smaller the total length, and satisfying the conditional expression can be advantageous for achieving a compact design of the optical system.
  • the radius of curvature is determined by the spherical lens, the larger the aperture ratio, the larger the thickness ratio, thereby increasing the difficulty of processing, and the constraint can also have the effect of reducing the processing cost.
  • the effective focal length f of the optical image set and the radius of curvature R TP2 of the image side of the cover lens may satisfy:
  • the conditional expression ensures that the ratio of the radius of curvature of the image side of the lens to the focal length of the system is within a certain range, so that the off-axis light has a smaller angle of refraction, which is advantageous for reducing the contribution ratio of the spherical aberration of the covering lens in the entire optical system.
  • the effective focal length f of the optical image lens set and the effective focal length f2 of the second lens may satisfy: -1 ⁇ f/f2 ⁇ 0, specifically, -0.79 ⁇ f/f2 ⁇ may be further satisfied. -0.14.
  • the second lens power is negative, which can facilitate the distribution of the system power and optimize the system spherical aberration. When used with the first lens, it is advantageous for aberration equalization and improved image quality.
  • the radius of curvature R4 of the image side of the second lens and the radius of curvature R1 of the object side of the first lens may satisfy:
  • the air gap T TP of the cover lens and the first lens on the optical axis and the entrance pupil diameter EPD of the optical image group may satisfy: 0 ⁇ T TP /EPD ⁇ 1.6, specifically, Further satisfying 0.11 ⁇ T TP / EPD ⁇ 1.54.
  • T TP is the air gap on the optical axis between the cover lens and the lens group, and is sensitive to the field curvature of the system. Controlling the conditional expression within a suitable range is advantageous for balancing the imaging difference distance between the central field of view and the off-axis field of view, and optimizing the field curvature of the system.
  • conditional expression may be satisfied: 1 ⁇ f/(CT TP +T TP ) ⁇ 5, and specifically, 1.20 ⁇ f/(CT TP +T TP ) ⁇ 4.96 may be further satisfied, where f is The effective focal length of the optical image set; CT TP is the center thickness of the cover lens; and the air separation of the T TP cover lens and the first lens on the optical axis.
  • the sum of CT TP and T TP is the total length of the front cover lens, and controlling the conditional expression within a suitable range can facilitate the miniaturization of the system.
  • 0 ⁇ CT TP /CT2 ⁇ 4 may be satisfied, specifically, 0.26 ⁇ CT TP /CT2 ⁇ 3.57 may be further satisfied.
  • the center thickness of the cover lens has a significant influence on the system curvature.
  • the center thickness of the second lens contributes a lot to the system curvature and coma. Controlling the conditional expression within a suitable ratio can help balance the image quality. Sex.
  • the optical image lens set may also be provided with an aperture STO for limiting the light beam, adjusting the amount of incoming light, and improving the imaging quality.
  • the optical image lens set described above may further include a cover glass for protecting the photosensitive element on the imaging surface.
  • the optical image lens set according to the above embodiment of the present application may employ a plurality of lenses, such as three, four, five, six, seven, and eight as described above.
  • the lens can be miniaturized, the system aberration can be balanced, and the image quality can be improved, thereby making the optical image
  • the mirror set is more advantageous for production processing and can be applied to portable electronic products.
  • At least one of the mirror faces of each lens is an aspherical mirror.
  • Aspherical lenses are characterized by a continuous change in curvature from the center of the lens to the periphery. Unlike a spherical lens having a constant curvature from the center of the lens to the periphery, the aspherical lens has better curvature radius characteristics, has the advantages of improving distortion and improving astigmatic aberration, and makes the field of view larger and more realistic. With an aspherical lens, the aberrations that occur during imaging can be eliminated as much as possible, improving image quality. In addition, the use of aspherical lenses can also effectively reduce the number of lenses in an optical system.
  • the front cover protective glass of the mobile phone is redefined as a cover lens, and the combination of the new lens and the currently mature glass lens processing technology can be used for the lens design and processing field.
  • equipment terminal manufacturers provide a broader product design ideas, providing more room for the diversification of end product functions.
  • the optical image lens set according to the present application has the same or even better application space for high-end camera systems (4, 5, 6 and 7 lenses) in addition to the lower-end camera system.
  • optical imaging system can also include other numbers of lenses if desired.
  • FIG. 1 is a block diagram showing the structure of an optical image lens set according to Embodiment 1 of the present application.
  • the optical image lens group includes a cover lens E1 and a lens group which are sequentially arranged from the object side to the image side along the optical axis.
  • the cover lens E1 has an object side S1 and an image side S2;
  • the lens group includes a first lens E2 and a second lens E3, wherein the first lens E2 has an object side S3 and an image side S4; and the second lens E3 has an object side S5 and Like the side S6.
  • the cover lens E1 has a positive power
  • the object side S1 is a plane
  • the first lens E2 has a positive power
  • the second lens E3 has a negative power
  • an aperture STO provided between the cover lens E1 and the first lens E2 for limiting the light beam is further included.
  • the optical image lens set according to Embodiment 1 may include a filter E4 having an object side S7 and an image side surface S8, and the filter E4 may be used to correct color deviation. Light from the object sequentially passes through the respective surfaces S1 to S8 and is finally imaged on the image plane S9.
  • Table 1 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical image lens group of Example 1.
  • each aspherical surface type x is defined by the following formula:
  • x is the distance of the aspherical surface at height h from the optical axis, and the distance from the aspherical vertex is high;
  • k is the conic coefficient (given in Table 1 above);
  • Ai is the correction coefficient of the a-th order of the aspheric surface.
  • Table 2 shows the high order term coefficients A4, A6, A8, A10, A12, A14, A16, A18 and A20 which can be used for each of the mirror faces S2-S6 in Embodiment 1.
  • Table 3 below shows the effective focal lengths fTP, f1 and f2 of the lenses of Embodiment 1, the effective focal length f of the optical image group, the object side S1 covering the lens E1, and the imaging surface S9 of the optical image group on the optical axis.
  • the distance TTL ie, the total optical length of the optical image group
  • the maximum half angle of view HFOV of the optical image group and the aperture number Fno of the optical image group.
  • the effective focal length f of the optical image lens set and the effective focal length fTP of the cover lens E1 satisfy
  • DTP1/EPD 1.36; in one embodiment, the radius of curvature R4 of the image side surface S6 of the second lens E3 and the radius of curvature R1 of the object side surface S3 of the first lens E2 satisfy
  • ⁇ 2.5 0.65; in one embodiment, the effective focus of the second lens E3 Between f2 and the effective focal length fTP of the cover lens E1,
  • 2A shows an axial chromatic aberration curve of the optical image lens group of Embodiment 1, which shows that the light beams of different wavelengths are deviated from the focus point after passing through the optical image lens group.
  • 2B shows an astigmatism curve of the optical image lens group of Embodiment 1, which shows a meridional field curvature and a sagittal image plane curvature.
  • 2C shows a distortion curve of the optical image lens group of Embodiment 1, which shows distortion magnitude values in the case of different viewing angles.
  • 2D shows a magnification chromatic aberration curve of the optical image lens group of Embodiment 1, which shows the deviation of different image heights on the imaging surface after the light rays pass through the optical image lens group.
  • the optical image lens set given in Embodiment 1 can achieve good image quality.
  • An optical image lens set according to Embodiment 2 of the present application is described below with reference to FIGS. 3 to 4D.
  • the optical image lens group described in the following embodiments is the same as the optical image lens group described in Embodiment 1. For the sake of brevity, a description similar to that of Embodiment 1 will be omitted.
  • FIG. 3 is a schematic structural view of an optical image lens set according to Embodiment 2 of the present application.
  • the optical image lens group according to Embodiment 2 includes a cover lens E1 and a lens group.
  • the cover lens E1 has an object side S1 and an image side S2;
  • the lens group includes a first lens E2 and a second lens E3, wherein the first lens E2 has an object side S3 and an image side S4; and the second lens E3 has an object side S5 and Like the side S6.
  • the cover lens E1 has a negative power
  • the object side S1 is a plane
  • the first lens E2 has a positive power
  • the second lens E3 has a negative power
  • an aperture STO provided between the cover lens E1 and the first lens E2 for limiting the light beam is further included.
  • the optical image lens set according to Embodiment 2 may include a filter E4 having an object side S7 and an image side surface S8, and the filter E4 may be used to correct color deviation. Light from the object sequentially passes through the respective surfaces S1 to S8 and is finally imaged on the image plane S9.
  • Table 4 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical image lens group of Example 2.
  • Table 5 shows the high order term coefficients of the respective aspherical mirrors in Example 2.
  • Table 6 shows the effective focal lengths fTP, f1 and f2 of the lenses of the second embodiment, the effective focal length f of the optical image group, the object side S1 covering the lens E1, and the imaging surface S9 of the optical image group on the optical axis.
  • the distance TTL ie, the total optical length of the optical image group
  • the maximum half angle of view HFOV of the optical image group and the aperture number Fno of the optical image group.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • 4A shows an axial chromatic aberration curve of the optical image lens group of Embodiment 2, which shows that the light beams of different wavelengths are deviated from the focus point after passing through the optical image lens group.
  • 4B shows an astigmatism curve of the optical image lens group of Embodiment 2, which shows a meridional field curvature and a sagittal image plane curvature.
  • Fig. 4C shows a distortion curve of the optical image lens group of Embodiment 2, which shows distortion magnitude values in the case of different viewing angles.
  • 4D shows a magnification chromatic aberration curve of the optical image lens group of Embodiment 2, which shows deviations of different image heights on the imaging surface after the light rays pass through the optical image lens group.
  • the optical image lens set given in Embodiment 2 can achieve good image quality.
  • FIG. 5 is a schematic structural view of an optical image lens group according to Embodiment 3 of the present application.
  • the optical image lens group according to Embodiment 3 includes a cover lens E1 and a lens group.
  • the cover lens E1 has an object side S1 and an image side S2;
  • the lens group includes a first lens E2, a second lens E3, and a third lens E4, wherein the first lens E2 has an object side S3 and an image side S4;
  • the second lens E3 has The object side surface S5 and the image side surface S6;
  • the third lens E4 has an object side surface S7 and an image side surface S8.
  • the cover lens E1 has a positive power
  • the object side S1 is a plane
  • the first lens E2 has a positive power
  • the second lens E3 has a negative power
  • the third lens E4 has a positive power
  • an aperture STO provided between the cover lens E1 and the first lens E2 for limiting the light beam is further included.
  • the optical image lens set according to Embodiment 3 may include a filter E5 having an object side S9 and an image side surface S10, and the filter E5 may be used to correct color deviation. Light from the object sequentially passes through the respective surfaces S1 to S10 and is finally imaged on the imaging plane S11.
  • Table 7 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical image lens group of Example 3.
  • Table 8 shows the high order term coefficients of the respective aspherical mirrors in the third embodiment.
  • Table 9 shows the effective focal lengths fTP, f1 to f3 of the lenses of Embodiment 3, the effective focal length f of the optical image lens group, the object side surface S1 covering the lens E1, and the imaging surface S11 of the optical image group on the optical axis.
  • the distance TTL ie, the total optical length of the optical image group
  • the maximum half angle of view HFOV of the optical image group and the aperture number Fno of the optical image group.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Fig. 6A shows an axial chromatic aberration curve of the optical image lens group of Embodiment 3, which shows that light rays of different wavelengths are deviated from the focus point after passing through the optical image lens group.
  • Fig. 6B shows an astigmatism curve of the optical image lens group of Embodiment 3, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 6C shows a distortion curve of the optical image lens group of Embodiment 3, which shows distortion magnitude values in the case of different viewing angles.
  • 6D shows a magnification chromatic aberration curve of the optical image lens group of Embodiment 3, which shows deviations of different image heights on the imaging surface after the light passes through the optical image lens group.
  • the optical image lens set given in Embodiment 3 can achieve good image quality.
  • FIG. 7 is a block diagram showing the structure of an optical image lens set according to Embodiment 4 of the present application.
  • the optical image lens group according to Embodiment 4 includes a cover lens E1 and a lens group.
  • the cover lens E1 has an object side S1 and an image side S2;
  • the lens group includes a first lens E2, a second lens E3, and a third lens E4, wherein the first lens E2 has an object side S3 and an image side S4;
  • the second lens E3 has The object side surface S5 and the image side surface S6;
  • the third lens E4 has an object side surface S7 and an image side surface S8.
  • the cover lens E1 has a negative power
  • the object side S1 is a plane
  • the first lens E2 has a positive power
  • the second lens E3 has a negative power
  • the third lens E4 has a positive power
  • an aperture STO provided between the cover lens E1 and the first lens E2 for limiting the light beam is further included.
  • the optical image lens set according to Embodiment 4 may include a filter E5 having an object side S9 and an image side surface S10, and the filter E5 may be used to correct color deviation. Light from the object sequentially passes through the respective surfaces S1 to S10 and is finally imaged on the imaging plane S11.
  • Table 10 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical image lens group of Example 4.
  • Table 11 shows the high order term coefficients of the respective aspherical mirrors in Example 4.
  • Table 12 shows the effective focal lengths fTP, f1 to f3 of the lenses of Embodiment 4, the effective focal length f of the optical image lens group, the object side surface S1 covering the lens E1, and the imaging surface S11 of the optical image lens group on the optical axis.
  • the distance TTL ie, the total optical length of the optical image group
  • the maximum half angle of view HFOV of the optical image group and the aperture number Fno of the optical image group.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • FIG. 8A shows an axial chromatic aberration curve of the optical image lens group of Embodiment 4, which shows that the light beams of different wavelengths are deviated from the focus point after passing through the optical image lens group.
  • Fig. 8B shows an astigmatism curve of the optical image lens group of Embodiment 4, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 8C shows a distortion curve of the optical image lens group of Embodiment 4, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 8D shows a magnification chromatic aberration curve of the optical image lens group of Embodiment 4, which shows deviations of different image heights on the imaging plane after the light rays pass through the optical image lens group. 8A to 8D, the optical image lens set given in Embodiment 4 can achieve good image quality.
  • FIG. 9 is a block diagram showing the structure of an optical image lens set according to Embodiment 5 of the present application.
  • the optical image lens group according to Embodiment 5 includes a cover lens E1 and a lens group.
  • the cover lens E1 has an object side S1 and an image side S2;
  • the lens group includes a first lens E2, a second lens E3, a third lens E4 and a fourth lens E5, wherein the first lens E2 has an object side S3 and an image side S4;
  • the second lens E3 has an object side surface S5 and an image side surface S6;
  • the third lens E4 has an object side surface S7 and an image side surface S8; and
  • the fourth lens E5 has an object side surface S9 and an image side surface S10.
  • the cover lens E1 has a negative power
  • the object side S1 is a plane
  • the first lens E2 has a positive power
  • the second lens E3 has a negative power
  • the third lens E4 has a positive power
  • the fourth lens E5 has a negative refractive power
  • an aperture STO provided between the cover lens E1 and the first lens E2 for limiting the light beam is further included.
  • the optical image lens set according to Embodiment 5 may include a filter E6 having an object side S11 and an image side surface S12, and the filter E6 may be used to correct color deviation. Light from the object sequentially passes through the respective surfaces S1 to S12 and is finally imaged on the imaging plane S13.
  • Table 13 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical image lens group of Example 5.
  • Table 14 shows the high order term coefficients of the respective aspherical mirrors in Example 5.
  • Table 15 shows the effective focal lengths fTP, f1 to f4 of the lenses of Embodiment 5, the effective focal length f of the optical image group, the object side S1 covering the lens E1, and the imaging surface S13 of the optical image group on the optical axis.
  • the distance TTL ie, the total optical length of the optical image group
  • the maximum half angle of view HFOV of the optical image group and the aperture number Fno of the optical image group.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • FIG. 10A shows an axial chromatic aberration curve of the optical image lens group of Embodiment 5, which shows that the light beams of different wavelengths are deviated from the focus point after passing through the optical image lens group.
  • Fig. 10B shows an astigmatism curve of the optical image lens group of Embodiment 5, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 10C shows a distortion curve of the optical image lens group of Embodiment 5, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 10D is a graph showing the chromatic aberration of magnification of the optical image lens group of Embodiment 5, which shows the deviation of the different image heights on the imaging plane after the light passes through the optical image lens group. 10A to 10D, the optical image lens set given in Embodiment 5 can achieve good image quality.
  • FIG. 11 is a block diagram showing the structure of an optical image lens set according to Embodiment 6 of the present application.
  • the optical image lens group according to Embodiment 6 includes a cover lens E1 and a lens group.
  • the cover lens E1 has an object side S1 and an image side S2;
  • the lens group includes a first lens E2, a second lens E3, a third lens E4, a fourth lens E5, and a fifth lens E6, wherein the first lens E2 has an object side S3 And the image side S4;
  • the second lens E3 has the object side surface S5 and the image side surface S6;
  • the third lens E4 has the object side surface S7 and the image side surface S8;
  • the fourth lens E5 has the object side surface S9 and the image side surface S10; and
  • the fifth lens E6 has The object side S11 and the image side S12.
  • the cover lens E1 has a negative refractive power
  • the object side surface S1 is a plane
  • the first lens E2 has a positive power
  • the second lens E3 has a negative power
  • the third lens E4 has a negative power
  • the fourth lens E5 has a positive power
  • the fifth lens E6 has a negative power.
  • an aperture STO provided between the cover lens E1 and the first lens E2 for limiting the light beam is further included.
  • the optical image lens set according to Embodiment 6 may include a filter E7 having an object side S13 and an image side surface S14, and the filter E7 may be used to correct color deviation. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • Table 16 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical image lens group of Example 6.
  • Table 17 shows the high order term coefficients of the respective aspherical mirrors in Example 6.
  • Table 18 shows the effective focal lengths fTP, f1 to f5 of the lenses of Embodiment 6, the effective focal length f of the optical image group, the object side S1 covering the lens E1, and the imaging surface S15 of the optical image group on the optical axis.
  • the distance TTL ie, the total optical length of the optical image group
  • the maximum half angle of view HFOV of the optical image group and the aperture number Fno of the optical image group.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Fig. 12A is a view showing an axial chromatic aberration curve of the optical image lens group of Embodiment 6, which shows that the light beams of different wavelengths are deviated from the focus point after passing through the optical image lens group.
  • Fig. 12B shows an astigmatism curve of the optical image lens group of Embodiment 6, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 12C shows a distortion curve of the optical image lens group of Embodiment 6, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 12A is a view showing an axial chromatic aberration curve of the optical image lens group of Embodiment 6, which shows that the light beams of different wavelengths are deviated from the focus point after passing through the optical image lens group.
  • Fig. 12B shows an astigmatism curve of the optical image lens group of Embodiment 6, which shows meridional field curvature and sagittal image plane curvature.
  • 12D is a graph showing the chromatic aberration of magnification of the optical image lens set of Embodiment 6, which shows the deviation of the different image heights on the imaging plane after the light passes through the optical image lens group. 12A to 12D, the optical image lens set given in Embodiment 6 can achieve good image quality.
  • FIG. 13 is a block diagram showing the structure of an optical image lens set according to Embodiment 7 of the present application.
  • the optical image lens group according to Embodiment 7 includes a cover lens E1 and a lens group.
  • the cover lens E1 has an object side S1 and an image side S2;
  • the lens group includes a first lens E2, a second lens E3, a third lens E4, a fourth lens E5, a fifth lens E6, and a sixth lens E7, wherein the first lens E2 has an object side S3 and an image side S4;
  • the second lens E3 has an object side S5 and an image side S6;
  • the third lens E4 has an object side S7 and an image side S8;
  • the fourth lens E5 has an object side S9 and an image side S10;
  • the five lens E6 has an object side surface S11 and an image side surface S12; and the sixth lens E7 has an object side surface S13 and an image side surface S14.
  • the cover lens E1 has a negative power
  • the object side S1 is a plane
  • the first lens E2 has a positive power
  • the second lens E3 has a negative power
  • the third lens E4 has a positive power
  • the fourth lens E5 has a negative power
  • the fifth lens E6 has a positive power
  • the sixth lens E7 has a negative power.
  • an aperture STO provided between the cover lens E1 and the first lens E2 for limiting the light beam is further included.
  • the optical image lens set according to Embodiment 7 may include a filter E8 having an object side surface S15 and an image side surface S16, and the color filter E8 may be used to correct color deviation. Light from the object sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging plane S17.
  • Table 19 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical image lens group of Example 7.
  • Table 20 shows the high order term coefficients of the respective aspherical mirrors in Example 7.
  • Table 21 shows the effective focal lengths fTP, f1 to f6 of the lenses of Embodiment 7, the effective focal length f of the optical image group, the object side S1 covering the lens E1, and the imaging surface S17 of the optical image group on the optical axis.
  • the distance TTL ie, the total optical length of the optical image group
  • the maximum half angle of view HFOV of the optical image group and the aperture number Fno of the optical image group.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Fig. 14A shows an axial chromatic aberration curve of the optical image lens group of Embodiment 7, which shows that the light beams of different wavelengths are deviated from the focus point after passing through the optical image lens group.
  • Fig. 14B shows an astigmatism curve of the optical image lens group of Embodiment 7, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 14C shows a distortion curve of the optical image lens group of Embodiment 7, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 14D shows a magnification chromatic aberration curve of the optical image lens group of Embodiment 7, which shows the deviation of different image heights on the imaging plane after the light rays pass through the optical image lens group. 14A to 14D, the optical image lens set given in Embodiment 7 can achieve good image quality.
  • FIG. 15 is a block diagram showing the structure of an optical image lens set according to Embodiment 8 of the present application.
  • the optical image lens group according to Embodiment 8 includes a cover lens E1 and a lens group.
  • the cover lens E1 has an object side S1 and an image side S2;
  • the lens group includes a first lens E2, a second lens E3, a third lens E4, a fourth lens E5, a fifth lens E6, a sixth lens E7, and a seventh lens E8,
  • the first lens E2 has an object side surface S3 and an image side surface S4;
  • the second lens E3 has an object side surface S5 and an image side surface S6;
  • the third lens E4 has an object side surface S7 and an image side surface S8;
  • the fourth lens E5 has an object side surface S9 and
  • the fifth lens E6 has an object side surface S11 and an image side surface S12;
  • the sixth lens E7 has an object side surface S13 and an image
  • the cover lens E1 has a negative power
  • the object side S1 is a plane
  • the first lens E2 has a positive power
  • the second lens E3 has a negative power
  • the third lens E4 has a positive power
  • the fourth lens E5 has a negative power
  • the fifth lens E6 has a negative power
  • the sixth lens E7 has a positive power
  • the seventh lens E8 has a negative power.
  • an aperture STO provided between the cover lens E1 and the first lens E2 for limiting the light beam is further included.
  • the optical image lens set according to Embodiment 8 may include a filter E9 having an object side surface S17 and an image side surface S18, and the filter sheet E9 may be used to correct color deviation. Light from the object sequentially passes through the respective surfaces S1 to S18 and is finally imaged on the imaging plane S19.
  • Table 22 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical image lens group of Example 8.
  • Table 23 shows the high order term coefficients of the respective aspherical mirrors in Example 8.
  • Table 24 shows the effective focal lengths fTP, f1 to f7 of the lenses of Embodiment 8, the effective focal length f of the optical image group, the object side S1 covering the lens E1, and the imaging surface S19 of the optical image group on the optical axis.
  • the distance TTL ie, the total optical length of the optical image group
  • the maximum half angle of view HFOV of the optical image group and the aperture number Fno of the optical image group.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Fig. 16A shows an axial chromatic aberration curve of the optical image lens group of Embodiment 8, which shows that the light beams of different wavelengths are deviated from the focus point after passing through the optical image lens group.
  • Fig. 16B shows an astigmatism curve of the optical image lens group of Embodiment 8, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 16C shows a distortion curve of the optical image lens group of Embodiment 8, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 16D shows a magnification chromatic aberration curve of the optical image lens group of Embodiment 8, which shows the deviation of the different image heights on the imaging plane after the light rays pass through the optical image lens group. 16A to 16D, the optical image lens set given in Embodiment 8 can achieve good image quality.
  • Embodiments 1 to 8 respectively satisfy the relationships shown in Table 25 below.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

本申请公开了一种光学影像镜组,该光学影像镜组沿着光轴由物侧至像侧依序可包括覆盖透镜和透镜组,其中,覆盖透镜可具有正光焦度或负光焦度,其物侧面为平面;透镜组由物侧至像侧依次可包括具有正光焦度的第一透镜、具有负光焦度的第二透镜以及多个后续透镜,其中,光学影像镜组的有效焦距f与第一透镜的有效焦距f1之间可满足:0.5<f/f1<1.5。

Description

光学影像镜组
相关申请的交叉引用
本申请要求于2018年5月17日提交于中国国家知识产权局(CNIPA)的、专利申请号为201810471683.7的中国专利申请的优先权和权益,该专利申请通过引用整体并入本文。
技术领域
本申请涉及一种光学影像镜组,更具体地,涉及一种由三片至八片镜片组成的光学影像镜组。
背景技术
受手机市场轻薄化小型化发展趋势影响,使得逐渐退出市场的2片和3片镜头结构也得以重新焕发活力。但由于2片和3片镜头受设计限制,其光学性能仍然难有较大的突破。一般的手机镜头都是由镜头第一片镜片进行聚光,镜头前面的保护玻璃仅仅起到保护镜头的作用。为了满足市场发展的需求,影像镜头需要尽可能的采用较少的镜片数量,缩短镜头总长,但由此会难以满足成像质量的需求。
因此,本申请提出了一种可适用于便携式电子产品,具有小型化、良好的成像质量、低敏感度特性的光学系统。
发明内容
本申请提供的技术方案至少部分地解决了以上所述的技术问题。
根据本申请的一个方面,提供了这样一种光学影像镜组,该光学影像镜组沿着光轴由物侧至像侧依序可包括覆盖透镜和透镜组,其中,覆盖透镜可具有正光焦度或负光焦度,其物侧面为平面;透镜组由物侧至像侧依次可包括具有正光焦度的第一透镜、具有负光焦度的第二透镜以及多个后续透镜,其中,光学影像镜组的有效焦距f与第一透镜的有效焦距f1之间可满足:0.5<f/f1<1.5。
在一个实施方式中,光学影像镜组的有效焦距f与覆盖透镜的有效焦距f TP之间可满足:|f/f TP|<0.5。
在一个实施方式中,第二透镜的有效焦距f2与覆盖透镜的有效焦距f TP之间可满足:0<|f2/f TP|<1。
在一个实施方式中,光学影像组的有效焦距f与覆盖透镜的像侧面的曲率半径R TP2之间可满足:|f/R TP2|<1。
在一个实施方式中,光学影像镜组的有效焦距f与第二透镜的有效焦距f2之间可满足: -1<f/f2<0。
在一个实施方式中,覆盖透镜的物侧面的有效半口径D TP1与光学影像镜组的入瞳直径EPD之间可满足:0.5<D TP1/EPD<2.5。
在一个实施方式中,第二透镜的像侧面的曲率半径R4与第一透镜的物侧面的曲率半径R4之间可满足:|(R4-R1)/(R4+R1)|<2.5。
在一个实施方式中,覆盖透镜和第一透镜在光轴上的空气间隔T TP与光学影像镜组的入瞳直径EPD之间可满足:0<T TP/EPD<1.6。
在一个实施方式中,可满足条件式:1<f/(CT TP+T TP)<5,其中,f为光学影像镜组的有效焦距;CT TP为覆盖透镜的中心厚度;以及T TP覆盖透镜和第一透镜在光轴上的空气间隔。
在一个实施方式中,覆盖透镜的中心厚度CT TP与第二透镜的中心厚度CT2之间可满足:0<CT TP/CT2<4。
根据本申请的另一方面,还提供了这样一种光学影像镜组,该光学影像镜组沿着光轴由物侧至像侧依序可包括覆盖透镜和透镜组,其中,覆盖透镜可具有正光焦度或负光焦度,其物侧面为平面;透镜组由物侧至像侧依次可包括具有正光焦度的第一透镜、具有负光焦度的第二透镜以及多个后续透镜,其中,第二透镜的有效焦距f2与覆盖透镜的有效焦距f TP之间可满足:0<|f2/f TP|<1。
根据本申请的又一方面,还提供了这样一种光学影像镜组,该光学影像镜组沿着光轴由物侧至像侧依序可包括覆盖透镜和透镜组,其中,覆盖透镜可具有正光焦度或负光焦度,其物侧面为平面;透镜组由物侧至像侧依次可包括具有正光焦度的第一透镜、具有负光焦度的第二透镜以及多个后续透镜,其中,覆盖透镜的物侧面的有效半口径D TP1与光学影像镜组的入瞳直径EPD之间可满足:0.5<D TP1/EPD<2.5。
通过上述配置的光学影像镜组,可具有小型化、高成像品质、平衡像差、低敏感度、低成本等至少一个有益效果。
附图说明
通过参照以下附图所作出的详细描述,本申请的实施方式的以上及其它优点将变得显而易见,附图旨在示出本申请的示例性实施方式而非对其进行限制。在附图中:
图1为示出根据本申请实施例1的光学影像镜组的结构示意图;
图2A至图2D分别示出了实施例1的光学影像镜组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图3为示出根据本申请实施例2的光学影像镜组的结构示意图;
图4A至图4D分别示出了实施例2的光学影像镜组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图5为示出根据本申请实施例3的光学影像镜组的结构示意图;
图6A至图6D分别示出了实施例3的光学影像镜组的轴上色差曲线、象散曲线、畸变 曲线以及倍率色差曲线;
图7为示出根据本申请实施例4的光学影像镜组的结构示意图;
图8A至图8D分别示出了实施例4的光学影像镜组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图9为示出根据本申请实施例5的光学影像镜组的结构示意图;
图10A至图10D分别示出了实施例5的光学影像镜组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图11为示出根据本申请实施例6的光学影像镜组的结构示意图;
图12A至图12D分别示出了实施例6的光学影像镜组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图13为示出根据本申请实施例7的光学影像镜组的结构示意图;
图14A至图14D分别示出了实施例7的光学影像镜组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图15为示出根据本申请实施例8的光学影像镜组的结构示意图;以及
图16A至图16D分别示出了实施例8的光学影像镜组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、整体、步骤、操作、元件和/或部件,但不排除存在或附加有一个或多个其它特征、整体、步骤、操作、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可以”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
如在本文中使用的,用语“基本上”、“大约”以及类似的用语用作表近似的用语,而不用作 表程度的用语,并且旨在说明将由本领域普通技术人员认识到的、测量值或计算值中的固有偏差。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
此外,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。在本文中,每个透镜中最靠近物体的表面称为物侧面,每个透镜中最靠近成像面的表面称为像侧面。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下结合具体实施例进一步描述本申请。
根据本申请示例性实施方式的光学影像镜组包括一覆盖透镜和一透镜组,其中,所述透镜组包括第一透镜、第二透镜和多个后续透镜。后续透镜的数量为大于等于零的整数。所述覆盖透镜和透镜组沿着光轴从物侧至像侧依序排列。
在示例性实施方式中,覆盖透镜可选地可具有正光焦度或负光焦度,其物侧面为平面;透镜组中的第一透镜可具有正光焦度;以及透镜组中的第二透镜可具有负光焦度。通过合理的控制各个透镜的正负光焦度分配,不仅可有效地平衡控制系统的低阶像差,使得光学影像镜组获得较优的成像品质,而且可实现高像素的特性。
在示例性实施方式中,光学影像镜组的有效焦距f与第一透镜的有效焦距f1之间可满足:0.5<f/f1<1.5,具体地,可进一步满足0.92≤f/f1≤1.30。第一透镜光焦度为正值,可在光学系统中承担收集光线的作用,将该比值控制在合适范围内有利于减弱第一透镜球差贡献,并且配合其他透镜能更好的优化色差。
在示例性实施方式中,光学影像镜组的有效焦距f与覆盖透镜的有效焦距f TP之间可满足:|f/f TP|<0.5,具体地,可进一步满足0.03≤|f/f TP|≤0.29。将该比值控制在合理范围内可以限定覆盖透镜在整个光学系统中的光焦度分配,控制覆盖透镜的曲折力,有利于减弱覆盖透镜的敏感度,另外平凹球面透镜可以通过控制光焦度来约束镜片厚薄比,有利于镜片加工与系统组装。
在示例性实施方式中,第二透镜的有效焦距f2与覆盖透镜的有效焦距f TP之间可满足:0<|f2/f TP|<1,具体地,可进一步满足0.08≤|f2/f TP|≤0.52。系统第一透镜为系统光线收集透镜,该条件式限制覆盖透镜与第二透镜的光焦度配比,将其约束在合适的范围内使得光线可以流畅收集,避免异常反射光线对光学系统成像品质的影响。
在示例性实施方式中,覆盖透镜的物侧面的有效半口径D TP1与光学影像镜组的入瞳直径EPD之间可满足:0.5<D TP1/EPD<2.5,具体地,可进一步满足0.86≤D TP1/EPD≤2.26。球面透镜在相同入射角的情况下,口径越小总长就会越小,满足该条件式可有利于实现光学系 统的小型化设计。球面透镜在曲率半径确定的情况下口径越大厚薄比就会越大,从而增加工艺加工难度,该约束条件也可以具有降低加工成本的功效。
在示例性实施方式中,光学影像组的有效焦距f与覆盖透镜的像侧面的曲率半径R TP2之间可满足:|f/R TP2|<1,具体地,可进一步满足0.06≤|f/R TP2|≤0.55。该条件式可保证覆盖透镜像侧面的曲率半径与系统焦距的比值在一定范围内,使得轴外光线具有较小的折射角度,有利于降低覆盖透镜在整个光学系统中球差的贡献比。
在示例性实施方式中,光学影像镜组的有效焦距f与第二透镜的有效焦距f2之间可满足:-1<f/f2<0,具体地,可进一步满足-0.79≤f/f2≤-0.14。第二透镜光焦度为负值,可有利于系统光焦度的分配,优化系统球差,搭配第一透镜时有利于像差均衡并提升成像质量。
在示例性实施方式中,第二透镜的像侧面的曲率半径R4与第一透镜的物侧面的曲率半径R1之间可满足:|(R4-R1)/(R4+R1)|<2.5,具体地,可进一步满足0.12≤|(R4-R1)/(R4+R1)|≤2.29。将该条件式控制在合适的范围内可使得光线具有较小的发散角,有利于系统小型化设计;并且光线在透镜组间平缓过渡有利于实现成像面像质的均匀性。
在示例性实施方式中,覆盖透镜和第一透镜在光轴上的空气间隔T TP与光学影像镜组的入瞳直径EPD之间可满足:0<T TP/EPD<1.6,具体地,可进一步满足0.11≤T TP/EPD≤1.54。T TP为覆盖透镜与透镜组之间在光轴上的空气间隔,对系统场曲较敏感。将该条件式控制在合适的范围内有利于平衡中心视场与轴外视场的成像差距离,对系统进行场曲优化。
在示例性实施方式中,可满足条件式:1<f/(CT TP+T TP)<5,具体地,可进一步满足1.20≤f/(CT TP+T TP)≤4.96,其中,f为光学影像镜组的有效焦距;CT TP为覆盖透镜的中心厚度;以及T TP覆盖透镜和第一透镜在光轴上的空气间隔。CT TP与T TP之和为前置覆盖透镜总长,将该条件式控制在合适的范围内可有利于系统小型化设计。
在示例性实施方式中,覆盖透镜的中心厚度CT TP与第二透镜的中心厚度CT2之间可满足:0<CT TP/CT2<4,具体地,可进一步满足0.26≤CT TP/CT2≤3.57。覆盖透镜的中心厚度对系统场曲影响显著,第二透镜的中心厚度对系统场曲与慧差有较大贡献,将该条件式控制在合适的比值范围内可有利于平衡像面像质均匀性。
在示例性实施方式中,光学影像镜组还可设置有用于限制光束的光圈STO,调节进光量,提高成像品质。
可选地,上述光学影像镜组还可包括用于保护位于成像面上的感光元件的保护玻璃。
根据本申请的上述实施方式的光学影像镜组可采用多片镜片,例如上文所述的三片、四片、五片、六片、七片和八片。通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,可有效保证镜头的小型化、平衡系统像差并提高成像质量,从而使得光学影像镜组更有利于生产加工并且可适用于便携式电子产品。
在本申请的实施方式中,各透镜的镜面中的至少一个为非球面镜面。非球面透镜的特点是:曲率从透镜中心到周边是连续变化的。与从透镜中心到周边有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点,能够使得 视野变得更大而真实。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。另外,非球面透镜的使用还可有效地减少光学系统中的透镜个数。
因此,根据本申请实施方式的光学影像镜组,将手机前置覆盖保护玻璃重新定义为覆盖透镜,新透镜的加入和目前逐渐成熟的玻璃透镜加工技术间的共同作用,可以为镜头设计加工领域和设备终端厂商提供更加宽广的产品设计思路,为终端产品功能的多样化提供更多发挥空间。根据本申请的光学影像镜组除了应用于较为低端的摄像系统外,对于高端摄像系统(4片、5片、6片、7片镜头)等领域具有同样甚至更好的应用空间。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成镜头的透镜数量,来获得本说明书中描述的各个结果和优点。例如,如果需要,该光学成像系统还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的光学影像镜组的具体实施例。
实施例1
以下参照图1至图2D描述根据本申请实施例1的光学影像镜组。
图1示出了根据本申请实施例1的光学影像镜组的结构示意图。如图1所示,光学影像镜组沿着光轴包括从物侧至成像侧依序排列的覆盖透镜E1和透镜组。覆盖透镜E1具有物侧面S1和像侧面S2;透镜组包括第一透镜E2和第二透镜E3,其中,第一透镜E2具有物侧面S3和像侧面S4;以及第二透镜E3具有物侧面S5和像侧面S6。
在该实施例中,覆盖透镜E1具有正光焦度,其物侧面S1为平面;第一透镜E2具有正光焦度;以及第二透镜E3具有负光焦度。
在本实施例的光学影像镜组中,还包括用于限制光束的、设置在覆盖透镜E1与第一透镜E2之间的光圈STO。根据实施例1的光学影像镜组可包括具有物侧面S7和像侧面S8的滤光片E4,滤光片E4可用于校正色彩偏差。来自物体的光依序穿过各表面S1至S8并最终成像在成像面S9上。
表1示出了实施例1的光学影像镜组的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数。
表1
Figure PCTCN2019077286-appb-000001
Figure PCTCN2019077286-appb-000002
本实施例采用了三片透镜作为示例,通过合理分配各镜片的焦距与面型并选择合适的材料,保证镜头的小型化;同时校正各类像差,降低敏感度,提高了镜头的解析度与成像品质。各非球面面型x由以下公式限定:
Figure PCTCN2019077286-appb-000003
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数(在上表1中已给出);Ai是非球面第i-th阶的修正系数。下表2示出了实施例1中可用于各镜面S2-S6的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。
表2
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S2 -6.5880E-02 1.4377E-01 -1.4879E-01 7.8929E-02 -1.6620E-02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S3 3.5217E-01 -3.3380E-02 -8.8807E-01 1.6631E+01 5.7724E+00 -2.2677E+02 1.5986E+02 -8.5043E+00 -9.8071E-06
S4 3.6969E-01 2.0991E+00 -6.8526E+00 1.4007E+00 1.8152E+02 -2.4653E+02 -5.2312E+02 -9.8000E-07 -9.6790E-07
S5 -3.6673E-01 -3.2022E-01 -6.8698E+00 5.2919E+01 -1.3780E+02 6.3036E+01 1.2149E+02 1.9542E+02 -4.2568E+02
S6 -6.5420E-02 -2.9331E-01 7.5931E-01 -1.3591E+00 1.2956E+00 -4.5824E-01 -1.8036E-01 1.8604E-01 -3.8929E-02
下表3示出了实施例1的各透镜的有效焦距fTP、f1和f2、光学影像镜组的有效焦距f、覆盖透镜E1的物侧面S1至光学影像镜组的成像面S9在光轴上的距离TTL(即,光学影像镜组的光学总长度)、光学影像镜组的最大半视场角HFOV以及光学影像镜组的光圈数Fno。
表3
f TP(mm) 8.03 f(mm) 2.30
f1(mm) 2.45 TTL(mm) 3.66
f2(mm) -4.16 HFOV(°) 30.8
    Fno 2.46
结合上表1、表3,在该实施例中:
光学影像镜组的有效焦距f与覆盖透镜E1的有效焦距fTP之间满足|f/fTP|=0.29;在一个实施方式中,光学影像镜组的有效焦距f与第一透镜E2的有效焦距f1之间满足f/f1=0.94;在一个实施方式中,覆盖透镜E1和第一透镜E2在光轴上的空气间隔TTP与光学影像镜组的入瞳直径EPD之间满足TTP/EPD=1.02;在一个实施方式中,光学影像组的有效焦距f与覆盖透镜E1的像侧面S2的曲率半径RTP2之间满足|f/RTP2|=0.55;在一个实施方式中,光学影像镜组的有效焦距f与第二透镜E3的有效焦距f2之间满足f/f2=-0.55;在一个实施方式中,覆盖透镜E1的物侧面S1的有效半口径DTP1与光学影像镜组的入瞳直径EPD之间满足DTP1/EPD=1.36;在一个实施方式中,第二透镜E3的像侧面S6的曲率半径R4与第一 透镜E2的物侧面S3的曲率半径R1之间满足|(R4-R1)/(R4+R1)|<2.5=0.65;在一个实施方式中,第二透镜E3的有效焦距f2与覆盖透镜E1的有效焦距fTP之间满足|f2/fTP|=0.52;在一个实施方式中,满足f/(CTTP+TTP)=1.78,其中,f为光学影像镜组的有效焦距;CTTP为覆盖透镜E1的中心厚度;以及TTP为覆盖透镜E1和第一透镜E2在光轴上的空气间隔;以及在一个实施方式中,覆盖透镜E1的中心厚度CTTP与第二透镜E3的中心厚度CT2之间满足CTTP/CT2=0.39。
图2A示出了实施例1的光学影像镜组的轴上色差曲线,其表示不同波长的光线经由光学影像镜组后的会聚焦点偏离。图2B示出了实施例1的光学影像镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2C示出了实施例1的光学影像镜组的畸变曲线,其表示不同视角情况下的畸变大小值。图2D示出了实施例1的光学影像镜组的倍率色差曲线,其表示光线经由光学影像镜组后在成像面上的不同的像高的偏差。根据图2A至图2D可知,实施例1所给出的光学影像镜组能够实现良好的成像品质。
实施例2
以下参照图3至图4D描述了根据本申请实施例2的光学影像镜组。除了光学影像镜组的各镜片的参数之外,例如除了各镜片的曲率半径、厚度、圆锥系数、有效焦距、轴上间距、各镜面的高次项系数等之外,在本实施例2及以下各实施例中描述的光学影像镜组与实施例1中描述的光学影像镜组的布置结构相同。为简洁起见,将省略部分与实施例1相似的描述。
图3示出了根据本申请实施例2的光学影像镜组的结构示意图。如图3所示,根据实施例2的光学影像镜组包括覆盖透镜E1和透镜组。覆盖透镜E1具有物侧面S1和像侧面S2;透镜组包括第一透镜E2和第二透镜E3,其中,第一透镜E2具有物侧面S3和像侧面S4;以及第二透镜E3具有物侧面S5和像侧面S6。
在该实施例中,覆盖透镜E1具有负光焦度,其物侧面S1为平面;第一透镜E2具有正光焦度;以及第二透镜E3具有负光焦度。
在本实施例的光学影像镜组中,还包括用于限制光束的、设置在覆盖透镜E1与第一透镜E2之间的光圈STO。根据实施例2的光学影像镜组可包括具有物侧面S7和像侧面S8的滤光片E4,滤光片E4可用于校正色彩偏差。来自物体的光依序穿过各表面S1至S8并最终成像在成像面S9上。
下表4示出了实施例2的光学影像镜组的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数。表5示出了实施例2中各非球面镜面的高次项系数。表6示出了实施例2的各透镜的有效焦距fTP、f1和f2、光学影像镜组的有效焦距f、覆盖透镜E1的物侧面S1至光学影像镜组的成像面S9在光轴上的距离TTL(即,光学影像镜组的光学总长度)、光学影像镜组的最大半视场角HFOV以及光学影像镜组的光圈数Fno。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表4
Figure PCTCN2019077286-appb-000004
Figure PCTCN2019077286-appb-000005
表5
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S2 1.3928E-02 -3.3000E-03 5.1300E-04 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S3 -3.3750E-02 5.0397E+00 -1.2309E+02 1.8296E+03 -1.6936E+04 9.8544E+04 -3.5020E+05 6.9416E+05 -5.8792E+05
S4 -2.7150E-02 3.0851E+00 -5.2671E+01 5.3057E+02 -3.1997E+03 1.1622E+04 -2.4472E+04 2.6952E+04 -1.1743E+04
S5 8.6390E-03 -1.1005E+00 5.5084E+00 -1.9249E+01 4.4377E+01 -6.5523E+01 5.9044E+01 -2.9444E+01 6.1933E+00
S6 2.0840E-01 -8.0005E-01 1.3166E+00 -1.3747E+00 9.4070E-01 -4.2098E-01 1.1846E-01 -1.8990E-02 1.3210E-03
表6
f TP(mm) -96.47 f(mm) 2.82
f1(mm) 2.87 TTL(mm) 5.10
f2(mm) -20.89 HFOV(°) 32.7
    Fno 2.97
图4A示出了实施例2的光学影像镜组的轴上色差曲线,其表示不同波长的光线经由光学影像镜组后的会聚焦点偏离。图4B示出了实施例2的光学影像镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4C示出了实施例2的光学影像镜组的畸变曲线,其表示不同视角情况下的畸变大小值。图4D示出了实施例2的光学影像镜组的倍率色差曲线,其表示光线经由光学影像镜组后在成像面上的不同的像高的偏差。根据图4A至图4D可知,实施例2所给出的光学影像镜组能够实现良好的成像品质。
实施例3
以下参照图5至图6D描述了根据本申请实施例3的光学影像镜组。
图5示出了根据本申请实施例3的光学影像镜组的结构示意图。如图5所示,根据实施例3的光学影像镜组包括覆盖透镜E1和透镜组。覆盖透镜E1具有物侧面S1和像侧面S2;透镜组包括第一透镜E2、第二透镜E3和第三透镜E4,其中,第一透镜E2具有物侧面S3和像侧面S4;第二透镜E3具有物侧面S5和像侧面S6;以及第三透镜E4具有物侧面S7和像侧面S8。
在该实施例中,覆盖透镜E1具有正光焦度,其物侧面S1为平面;第一透镜E2具有正光焦度;第二透镜E3具有负光焦度;以及第三透镜E4具有正光焦度。
在本实施例的光学影像镜组中,还包括用于限制光束的、设置在覆盖透镜E1与第一透镜E2之间的光圈STO。根据实施例3的光学影像镜组可包括具有物侧面S9和像侧面S10的滤光片E5,滤光片E5可用于校正色彩偏差。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
下表7示出了实施例3的光学影像镜组的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数。表8示出了实施例3中各非球面镜面的高次项系数。表9示出了实施例3的各透镜的有效焦距fTP、f1至f3、光学影像镜组的有效焦距f、覆盖透镜E1的物侧面S1至光学影像镜组的成像面S11在光轴上的距离TTL(即,光学影像镜组的光学总长度)、光学影像镜组的最大半视场角HFOV以及光学影像镜组的光圈数Fno。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表7
Figure PCTCN2019077286-appb-000006
表8
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S3 -2.2960E-01 2.7830E-01 2.4014E-01 -1.0790E+01 -6.5900E+01 2.0925E+02 3.1693E+03 -1.1261E+04 2.3800E-13
S4 -3.4989E-01 -3.3380E-01 1.1902E+00 -1.5625E-01 -2.7837E+00 1.8519E-01 8.5567E+00 -8.1757E+00 2.1500E-13
S5 -1.9629E-01 8.4640E-02 -6.3751E-02 5.9336E-02 8.4880E-03 -1.9410E-02 -6.5900E-03 4.9520E-03 3.5300E-05
S6 1.4804E-01 -1.9141E-01 9.8986E-02 -7.6600E-03 -6.2300E-03 -1.3400E-03 4.7740E-03 -3.6400E-03 6.8700E-04
S7 -7.9990E-02 4.7118E-01 -1.8821E-01 -9.1460E-02 3.9592E-02 2.6995E-02 -2.7800E-03 -7.9400E-03 1.7210E-03
S8 -1.1382E-01 1.0280E-01 -6.5168E-02 4.7589E-02 1.3468E-02 -8.1200E-03 -4.8700E-03 5.9000E-04 5.2000E-04
表9
f TP(mm) 29.30 f(mm) 1.81
f1(mm) 1.40 TTL(mm) 5.18
f2(mm) -2.28 HFOV(°) 45.0
f3(mm) 2.07 Fno 2.00
图6A示出了实施例3的光学影像镜组的轴上色差曲线,其表示不同波长的光线经由光 学影像镜组后的会聚焦点偏离。图6B示出了实施例3的光学影像镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6C示出了实施例3的光学影像镜组的畸变曲线,其表示不同视角情况下的畸变大小值。图6D示出了实施例3的光学影像镜组的倍率色差曲线,其表示光线经由光学影像镜组后在成像面上的不同的像高的偏差。根据图6A至图6D可知,实施例3所给出的光学影像镜组能够实现良好的成像品质。
实施例4
以下参照图7至图8D描述了根据本申请实施例4的光学影像镜组。
图7示出了根据本申请实施例4的光学影像镜组的结构示意图。如图7所示,根据实施例4的光学影像镜组包括覆盖透镜E1和透镜组。覆盖透镜E1具有物侧面S1和像侧面S2;透镜组包括第一透镜E2、第二透镜E3和第三透镜E4,其中,第一透镜E2具有物侧面S3和像侧面S4;第二透镜E3具有物侧面S5和像侧面S6;以及第三透镜E4具有物侧面S7和像侧面S8。
在该实施例中,覆盖透镜E1具有负光焦度,其物侧面S1为平面;第一透镜E2具有正光焦度;第二透镜E3具有负光焦度;以及第三透镜E4具有正光焦度。
在本实施例的光学影像镜组中,还包括用于限制光束的、设置在覆盖透镜E1与第一透镜E2之间的光圈STO。根据实施例4的光学影像镜组可包括具有物侧面S9和像侧面S10的滤光片E5,滤光片E5可用于校正色彩偏差。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
下表10示出了实施例4的光学影像镜组的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数。表11示出了实施例4中各非球面镜面的高次项系数。表12示出了实施例4的各透镜的有效焦距fTP、f1至f3、光学影像镜组的有效焦距f、覆盖透镜E1的物侧面S1至光学影像镜组的成像面S11在光轴上的距离TTL(即,光学影像镜组的光学总长度)、光学影像镜组的最大半视场角HFOV以及光学影像镜组的光圈数Fno。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表10
Figure PCTCN2019077286-appb-000007
Figure PCTCN2019077286-appb-000008
表11
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S3 1.2872E-01 -5.7413E-01 -4.2996E-01 2.5411E+00 -1.6974E+00 -1.2860E+01 1.8936E+01 -3.7190E-02 2.3400E-11
S4 -1.7121E-01 -1.4059E-01 1.2124E-01 -3.0815E-01 3.2744E-01 5.3066E-01 -8.5159E-01 -2.2655E+00 3.1285E+00
S5 2.3718E-01 4.7189E-01 -1.7130E-01 -2.0080E-01 -1.9100E-03 1.0270E-01 7.7891E-02 -3.5480E-02 -3.4990E-02
S6 4.0091E-01 2.5497E-01 -1.2783E-01 -1.6500E-02 4.9795E-02 2.4917E-02 -1.9630E-02 -2.5260E-02 3.7456E-02
S7 1.4559E-02 5.5830E-02 -1.2287E-01 5.0050E-02 5.9795E-02 -8.2640E-02 1.7668E-02 2.0148E-02 -9.1000E-03
S8 -4.0150E-02 1.5110E-01 -1.6113E-01 5.7770E-02 8.0380E-03 -1.3850E-02 2.0610E-03 2.1590E-03 -7.9000E-04
表12
f TP(mm) -22.61 f(mm) 2.40
f1(mm) 2.21 TTL(mm) 5.50
f2(mm) -5.95 HFOV(°) 37.0
f3(mm) 4.99 Fno 2.00
图8A示出了实施例4的光学影像镜组的轴上色差曲线,其表示不同波长的光线经由光学影像镜组后的会聚焦点偏离。图8B示出了实施例4的光学影像镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8C示出了实施例4的光学影像镜组的畸变曲线,其表示不同视角情况下的畸变大小值。图8D示出了实施例4的光学影像镜组的倍率色差曲线,其表示光线经由光学影像镜组后在成像面上的不同的像高的偏差。根据图8A至图8D可知,实施例4所给出的光学影像镜组能够实现良好的成像品质。
实施例5
以下参照图9至图10D描述了根据本申请实施例5的光学影像镜组。
图9示出了根据本申请实施例5的光学影像镜组的结构示意图。如图9所示,根据实施例5的光学影像镜组包括覆盖透镜E1和透镜组。覆盖透镜E1具有物侧面S1和像侧面S2;透镜组包括第一透镜E2、第二透镜E3、第三透镜E4和第四透镜E5,其中,第一透镜E2具有物侧面S3和像侧面S4;第二透镜E3具有物侧面S5和像侧面S6;第三透镜E4具有物侧面S7和像侧面S8;以及第四透镜E5具有物侧面S9和像侧面S10。
在该实施例中,覆盖透镜E1具有负光焦度,其物侧面S1为平面;第一透镜E2具有正光焦度;第二透镜E3具有负光焦度;第三透镜E4具有正光焦度;以及第四透镜E5具有负光焦度。
在本实施例的光学影像镜组中,还包括用于限制光束的、设置在覆盖透镜E1与第一透镜E2之间的光圈STO。根据实施例5的光学影像镜组可包括具有物侧面S11和像侧面S12的滤光片E6,滤光片E6可用于校正色彩偏差。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
下表13示出了实施例5的光学影像镜组的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数。表14示出了实施例5中各非球面镜面的高次项系数。表15示出了实施例5 的各透镜的有效焦距fTP、f1至f4、光学影像镜组的有效焦距f、覆盖透镜E1的物侧面S1至光学影像镜组的成像面S13在光轴上的距离TTL(即,光学影像镜组的光学总长度)、光学影像镜组的最大半视场角HFOV以及光学影像镜组的光圈数Fno。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表13
Figure PCTCN2019077286-appb-000009
表14
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S3 3.3320E-01 -4.4907E-01 -8.2884E-01 1.4856E+01 -8.3739E+01 2.6726E+02 -5.0385E+02 5.2198E+02 -2.2970E+02
S4 -1.1506E-01 -5.0522E-01 5.3926E+00 -4.4859E+01 2.1930E+02 -6.6258E+02 1.2030E+03 -1.1973E+03 5.0023E+02
S5 -3.8572E-01 2.7388E-01 -6.1959E+00 4.4425E+01 -2.0700E+02 6.0247E+02 -1.0680E+03 1.0590E+03 -4.4669E+02
S6 -8.6800E-03 -3.0775E-01 9.5836E-01 -2.0939E+00 2.6479E+00 -1.6827E+00 2.4557E-01 2.7064E-01 -8.6100E-02
S7 9.5955E-02 -1.3649E-01 5.0414E-01 -6.2946E-01 -3.2520E-01 1.6846E+00 -1.8648E+00 9.1966E-01 -1.7487E-01
S8 -3.7196E-01 7.3818E-01 -1.6285E+00 3.2617E+00 -4.7224E+00 4.6385E+00 -2.8054E+00 9.2044E-01 -1.2456E-01
S9 -5.2070E-02 -7.1384E-01 1.9808E+00 -3.0649E+00 3.0428E+00 -1.9498E+00 7.7745E-01 -1.7497E-01 1.6913E-02
S10 -1.9369E-01 1.6962E-01 -9.9090E-02 3.1176E-02 -7.7000E-04 -3.2400E-03 1.1790E-03 -1.8000E-04 1.0400E-05
表15
f TP(mm) -64.32 f(mm) 2.83
f1(mm) 3.09 TTL(mm) 5.53
f2(mm) -5.43 HFOV(°) 40.3
f3(mm) 1.49 Fno 2.07
f4(mm) -1.54    
图10A示出了实施例5的光学影像镜组的轴上色差曲线,其表示不同波长的光线经由光学影像镜组后的会聚焦点偏离。图10B示出了实施例5的光学影像镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10C示出了实施例5的光学影像镜组的畸变曲线,其表示不同视角情况下的畸变大小值。图10D示出了实施例5的光学影像镜组的倍率色差 曲线,其表示光线经由光学影像镜组后在成像面上的不同的像高的偏差。根据图10A至图10D可知,实施例5所给出的光学影像镜组能够实现良好的成像品质。
实施例6
以下参照图11至图12D描述了根据本申请实施例6的光学影像镜组。
图11示出了根据本申请实施例6的光学影像镜组的结构示意图。如图11所示,根据实施例6的光学影像镜组包括覆盖透镜E1和透镜组。覆盖透镜E1具有物侧面S1和像侧面S2;透镜组包括第一透镜E2、第二透镜E3、第三透镜E4、第四透镜E5和第五透镜E6,其中,第一透镜E2具有物侧面S3和像侧面S4;第二透镜E3具有物侧面S5和像侧面S6;第三透镜E4具有物侧面S7和像侧面S8;第四透镜E5具有物侧面S9和像侧面S10;以及第五透镜E6具有物侧面S11和像侧面S12。
在该实施例中,覆盖透镜E1具有负光焦度,其物侧面S1为平面;第一透镜E2具有正光焦度;第二透镜E3具有负光焦度;第三透镜E4具有负光焦度;第四透镜E5具有正光焦度;以及第五透镜E6具有负光焦度。
在本实施例的光学影像镜组中,还包括用于限制光束的、设置在覆盖透镜E1与第一透镜E2之间的光圈STO。根据实施例6的光学影像镜组可包括具有物侧面S13和像侧面S14的滤光片E7,滤光片E7可用于校正色彩偏差。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
下表16示出了实施例6的光学影像镜组的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数。表17示出了实施例6中各非球面镜面的高次项系数。表18示出了实施例6的各透镜的有效焦距fTP、f1至f5、光学影像镜组的有效焦距f、覆盖透镜E1的物侧面S1至光学影像镜组的成像面S15在光轴上的距离TTL(即,光学影像镜组的光学总长度)、光学影像镜组的最大半视场角HFOV以及光学影像镜组的光圈数Fno。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表16
Figure PCTCN2019077286-appb-000010
Figure PCTCN2019077286-appb-000011
表17
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S3 7.5590E-03 -4.3390E-02 2.8253E-01 -9.4091E-01 1.7833E+00 -2.0584E+00 1.4180E+00 -5.5247E-01 8.5917E-02
S4 5.3274E-02 1.1366E-02 -3.2313E-01 5.8869E-01 -4.4141E-01 -2.5878E-01 6.7503E-01 -4.3621E-01 9.3704E-02
S5 -1.3000E-04 9.0101E-02 -3.5919E-01 3.9645E-01 9.6354E-02 -8.4050E-01 9.5577E-01 -4.2830E-01 6.3337E-02
S6 -2.0174E-01 3.4691E-01 -8.8821E-01 2.2814E+00 -4.5046E+00 6.0642E+00 -5.1161E+00 2.4763E+00 -5.1332E-01
S7 -2.8896E-01 3.4552E-02 -5.1070E-02 -3.6540E-02 8.3856E-02 5.1400E-04 7.0800E-04 -2.4000E-05 -1.6000E-05
S8 -1.3468E-01 -6.4500E-03 9.2880E-03 1.4604E-02 -4.0200E-03 -4.1000E-06 2.9300E-04 -6.7000E-06 -1.6000E-05
S9 1.1635E-02 -1.0690E-02 2.7429E-02 -1.2360E-02 2.1860E-03 1.7100E-04 -3.6000E-05 -5.4000E-05 1.5600E-05
S10 3.9337E-02 -4.7600E-02 1.2145E-02 8.7760E-03 -2.7100E-03 2.8700E-04 5.3400E-05 -5.6000E-06 -1.4000E-05
S11 -9.0920E-02 1.0986E-02 2.7700E-03 -6.2000E-04 -3.0000E-05 7.4600E-06 1.6600E-06 2.5500E-07 -8.8000E-08
S12 -7.5010E-02 2.3111E-02 -4.8300E-03 4.1800E-04 4.0000E-06 -2.1000E-06 -1.9000E-07 3.7900E-09 4.1400E-09
表18
f TP(mm) -12.75 f(mm) 2.88
f1(mm) 2.41 TTL(mm) 5.45
f2(mm) -6.25 HFOV(°) 42.0
f3(mm) -9.28 Fno 1.70
f4(mm) 1.97    
f5(mm) -2.99    
图12A示出了实施例6的光学影像镜组的轴上色差曲线,其表示不同波长的光线经由光学影像镜组后的会聚焦点偏离。图12B示出了实施例6的光学影像镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12C示出了实施例6的光学影像镜组的畸变曲线,其表示不同视角情况下的畸变大小值。图12D示出了实施例6的光学影像镜组的倍率色差曲线,其表示光线经由光学影像镜组后在成像面上的不同的像高的偏差。根据图12A至图12D可知,实施例6所给出的光学影像镜组能够实现良好的成像品质。
实施例7
以下参照图13至图14D描述了根据本申请实施例7的光学影像镜组。
图13示出了根据本申请实施例7的光学影像镜组的结构示意图。如图13所示,根据实施例7的光学影像镜组包括覆盖透镜E1和透镜组。覆盖透镜E1具有物侧面S1和像侧面S2;透镜组包括第一透镜E2、第二透镜E3、第三透镜E4、第四透镜E5、第五透镜E6和第六透镜E7,其中,第一透镜E2具有物侧面S3和像侧面S4;第二透镜E3具有物侧面S5和像侧面S6;第三透镜E4具有物侧面S7和像侧面S8;第四透镜E5具有物侧面S9和像侧面S10;第五透镜E6具有物侧面S11和像侧面S12;以及第六透镜E7具有物侧面S13和像侧面S14。
在该实施例中,覆盖透镜E1具有负光焦度,其物侧面S1为平面;第一透镜E2具有正 光焦度;第二透镜E3具有负光焦度;第三透镜E4具有正光焦度;第四透镜E5具有负光焦度;第五透镜E6具有正光焦度;以及第六透镜E7具有负光焦度。
在本实施例的光学影像镜组中,还包括用于限制光束的、设置在覆盖透镜E1与第一透镜E2之间的光圈STO。根据实施例7的光学影像镜组可包括具有物侧面S15和像侧面S16的滤光片E8,滤光片E8可用于校正色彩偏差。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
下表19示出了实施例7的光学影像镜组的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数。表20示出了实施例7中各非球面镜面的高次项系数。表21示出了实施例7的各透镜的有效焦距fTP、f1至f6、光学影像镜组的有效焦距f、覆盖透镜E1的物侧面S1至光学影像镜组的成像面S17在光轴上的距离TTL(即,光学影像镜组的光学总长度)、光学影像镜组的最大半视场角HFOV以及光学影像镜组的光圈数Fno。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表19
Figure PCTCN2019077286-appb-000012
表20
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S3 7.8162E-02 -1.7290E-02 6.9907E-02 -1.9298E-01 3.4376E-01 -3.8804E-01 2.6470E-01 -1.0048E-01 1.5456E-02
S4 -1.1917E-01 1.6532E-01 -2.3008E-01 3.3650E-01 -4.5801E-01 4.3071E-01 -2.5213E-01 8.2495E-02 -1.1770E-02
S5 -1.3889E-01 2.0091E-01 -2.2868E-01 5.8530E-01 -1.3899E+00 2.0449E+00 -1.7597E+00 8.3015E-01 -1.6592E-01
S6 -7.5900E-02 1.6987E-01 -1.7660E-01 5.7478E-01 -1.6024E+00 2.6787E+00 -2.4174E+00 1.0427E+00 -1.1503E-01
S7 -8.3000E-02 -8.6970E-02 5.1848E-01 -2.8362E+00 8.5013E+00 -1.5416E+01 1.6673E+01 -9.9157E+00 2.5128E+00
S8 -9.8820E-02 5.2412E-02 -1.5387E-01 8.0187E-02 2.6772E-01 -6.9188E-01 7.4495E-01 -4.0091E-01 8.8991E-02
S9 -1.9849E-01 2.8049E-01 -2.3578E-01 2.6768E-02 5.9147E-01 -1.1144E+00 9.3486E-01 -3.9021E-01 6.5957E-02
S10 -2.6025E-01 2.9932E-01 -2.7140E-01 2.4951E-01 -9.9910E-02 -3.9340E-02 5.2064E-02 -1.8150E-02 2.2380E-03
S11 -1.1975E-01 1.4464E-02 1.7265E-02 -4.7350E-02 5.5509E-02 -3.5990E-02 1.3061E-02 -2.4600E-03 1.8700E-04
S12 -2.9240E-02 5.4480E-03 -2.3420E-02 1.9205E-02 -7.7900E-03 1.6180E-03 -1.3000E-04 -4.4000E-06 9.3900E-07
S13 -3.1848E-01 1.9592E-01 -8.7510E-02 2.2684E-02 -2.0500E-03 -4.2000E-04 1.3200E-04 -1.3000E-05 4.9400E-07
S14 -1.5325E-01 9.9088E-02 -4.7840E-02 1.5969E-02 -3.7000E-03 5.9100E-04 -6.2000E-05 3.7300E-06 -9.8000E-08
表21
f TP(mm) -64.32 f(mm) 4.10
f1(mm) 3.45 TTL(mm) 5.68
f2(mm) -9.39 HFOV(°) 36.0
f3(mm) 13.96 Fno 1.85
f4(mm) -12.73    
f5(mm) 9.91    
f6(mm) -6.07    
图14A示出了实施例7的光学影像镜组的轴上色差曲线,其表示不同波长的光线经由光学影像镜组后的会聚焦点偏离。图14B示出了实施例7的光学影像镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14C示出了实施例7的光学影像镜组的畸变曲线,其表示不同视角情况下的畸变大小值。图14D示出了实施例7的光学影像镜组的倍率色差曲线,其表示光线经由光学影像镜组后在成像面上的不同的像高的偏差。根据图14A至图14D可知,实施例7所给出的光学影像镜组能够实现良好的成像品质。
实施例8
以下参照图15至图16D描述了根据本申请实施例8的光学影像镜组。
图15示出了根据本申请实施例8的光学影像镜组的结构示意图。如图15所示,根据实施例8的光学影像镜组包括覆盖透镜E1和透镜组。覆盖透镜E1具有物侧面S1和像侧面S2;透镜组包括第一透镜E2、第二透镜E3、第三透镜E4、第四透镜E5、第五透镜E6、第六透镜E7和第七透镜E8,其中,第一透镜E2具有物侧面S3和像侧面S4;第二透镜E3具有物侧面S5和像侧面S6;第三透镜E4具有物侧面S7和像侧面S8;第四透镜E5具有物侧面S9和像侧面S10;第五透镜E6具有物侧面S11和像侧面S12;第六透镜E7具有物侧面S13和像侧面S14;以及第七透镜E8具有物侧面S15和像侧面S16。
在该实施例中,覆盖透镜E1具有负光焦度,其物侧面S1为平面;第一透镜E2具有正光焦度;第二透镜E3具有负光焦度;第三透镜E4具有正光焦度;第四透镜E5具有负光焦度;第五透镜E6具有负光焦度;第六透镜E7具有正光焦度;以及第七透镜E8具有负光焦度。
在本实施例的光学影像镜组中,还包括用于限制光束的、设置在覆盖透镜E1与第一透镜E2之间的光圈STO。根据实施例8的光学影像镜组可包括具有物侧面S17和像侧面S18的滤光片E9,滤光片E9可用于校正色彩偏差。来自物体的光依序穿过各表面S1至S18并最终成像在成像面S19上。
下表22示出了实施例8的光学影像镜组的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数。表23示出了实施例8中各非球面镜面的高次项系数。表24示出了实施例8的各透镜的有效焦距fTP、f1至f7、光学影像镜组的有效焦距f、覆盖透镜E1的物侧面S1至光学影像镜组的成像面S19在光轴上的距离TTL(即,光学影像镜组的光学总长度)、光学影像镜组的最大半视场角HFOV以及光学影像镜组的光圈数Fno。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表22
Figure PCTCN2019077286-appb-000013
表23
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S3 7.9409E-02 -1.2930E-02 6.2579E-02 -2.0611E-01 4.2897E-01 -5.4794E-01 4.1435E-01 -1.7139E-01 2.8724E-02
S4 -1.0666E-01 1.4957E-01 -2.3428E-01 4.0780E-01 -6.3048E-01 6.4141E-01 -3.9677E-01 1.3536E-01 -1.9740E-02
S5 -1.2563E-01 1.6652E-01 -2.2463E-01 6.8859E-01 -1.6360E+00 2.3584E+00 -1.9968E+00 9.3076E-01 -1.8432E-01
S6 -6.1750E-02 1.4066E-01 -3.9630E-01 1.8558E+00 -5.3703E+00 9.4661E+00 -9.8234E+00 5.5339E+00 -1.2732E+00
S7 -6.8960E-02 -2.8100E-02 -2.7474E-01 9.3307E-01 -2.0631E+00 3.1240E+00 -3.0484E+00 1.7200E+00 -4.1636E-01
S8 -4.8000E-03 1.5120E-01 -6.7912E-01 9.8277E-01 -8.0860E-02 -1.2631E+00 1.4161E+00 -6.1465E-01 8.8011E-02
S9 -3.5670E-02 2.9575E-01 -1.0321E+00 1.7077E+00 -1.2026E+00 -1.1424E-01 7.2241E-01 -4.3084E-01 8.7682E-02
S10 -1.1727E-01 1.9200E-01 -4.2815E-01 3.8357E-01 -1.8400E-02 -2.5837E-01 2.6836E-01 -1.4590E-01 3.5710E-02
S11 -1.7380E-01 2.4251E-01 -2.5480E-02 -7.3191E-01 1.6266E+00 -1.6349E+00 8.6857E-01 -2.4051E-01 2.7992E-02
S12 -2.4691E-01 2.6261E-01 -7.6650E-02 -2.7612E-01 6.0594E-01 -5.6257E-01 2.7230E-01 -6.7640E-02 6.8510E-03
S13 -1.3645E-01 2.2495E-02 3.8552E-02 -9.7890E-02 1.0801E-01 -6.7190E-02 2.3798E-02 -4.4400E-03 3.3700E-04
S14 -2.4580E-02 -2.1710E-02 1.7597E-02 -1.5770E-02 1.0584E-02 -4.4600E-03 1.0890E-03 -1.4000E-04 7.1800E-06
S15 -3.2344E-01 1.8928E-01 -8.2430E-02 2.0148E-02 -1.2500E-03 -5.5000E-04 1.4200E-04 -1.4000E-05 4.8600E-07
S16 -1.6847E-01 1.1300E-01 -5.7620E-02 2.0480E-02 -5.0700E-03 8.6400E-04 -9.6000E-05 6.1400E-06 -1.7000E-07
表24
f TP(mm) -64.32 f(mm) 4.11
f1(mm) 3.42 TTL(mm) 6.13
f2(mm) -8.86 HFOV(°) 36.0
f3(mm) 8.45 Fno 1.85
f4(mm) -22.44    
f5(mm) -18.17    
f6(mm) 12.89    
f7(mm) -5.96    
图16A示出了实施例8的光学影像镜组的轴上色差曲线,其表示不同波长的光线经由光学影像镜组后的会聚焦点偏离。图16B示出了实施例8的光学影像镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图16C示出了实施例8的光学影像镜组的畸变曲线,其表示不同视角情况下的畸变大小值。图16D示出了实施例8的光学影像镜组的倍率色差曲线,其表示光线经由光学影像镜组后在成像面上的不同的像高的偏差。根据图16A至图16D可知,实施例8所给出的光学影像镜组能够实现良好的成像品质。
综上,实施例1至实施例8分别满足以下表25所示的关系。
表25
条件式/实施例 1 2 3 4 5 6 7 8
|f/f TP| 0.29 0.03 0.06 0.11 0.04 0.23 0.06 0.06
f/f1 0.94 0.98 1.30 1.09 0.92 1.20 1.19 1.20
|f/R TP2| 0.55 0.06 0.12 0.20 0.08 0.44 0.12 0.12
f/f2 -0.55 -0.14 -0.79 -0.40 -0.52 -0.46 -0.44 -0.46
D TP1/EPD 1.36 1.50 2.26 1.41 1.14 0.93 0.86 0.90
|(R4-R1)/(R4+R1)| 0.65 0.45 2.29 1.84 0.51 0.12 0.28 0.28
T TP/EPD 1.02 1.54 1.23 0.83 0.29 0.27 0.25 0.11
|f2/f TP| 0.52 0.22 0.08 0.26 0.08 0.49 0.15 0.14
f/(CT TP+T TP) 1.78 1.64 1.22 1.20 2.03 3.16 4.96 3.31
CT TP/CT2 0.39 0.26 1.13 3.57 2.67 1.80 1.00 3.57
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (30)

  1. 光学影像镜组,沿着光轴由物侧至像侧依序包括覆盖透镜和透镜组,其特征在于,
    所述覆盖透镜具有正光焦度或负光焦度,其物侧面为平面;
    所述透镜组由物侧至像侧依次包括:
    具有正光焦度的第一透镜;
    具有负光焦度的第二透镜;以及
    多个后续透镜
    其中,所述光学影像镜组的有效焦距f与所述第一透镜的有效焦距f1之间满足:0.5<f/f1<1.5。
  2. 根据权利要求1所述的光学影像镜组,其特征在于,所述光学影像镜组的有效焦距f与所述覆盖透镜的有效焦距fTP之间满足:|f/fTP|<0.5。
  3. 根据权利要求1所述的光学影像镜组,其特征在于,所述第二透镜的有效焦距f2与所述覆盖透镜的有效焦距fTP之间满足:0<|f2/fTP|<1。
  4. 根据权利要求1-3中任一项所述的光学影像镜组,其特征在于,所述光学影像组的有效焦距f与所述覆盖透镜的像侧面的曲率半径RTP2之间满足:|f/RTP2|<1。
  5. 根据权利要求1-3中任一项所述的光学影像镜组,其特征在于,所述光学影像镜组的有效焦距f与所述第二透镜的有效焦距f2之间满足:-1<f/f2<0。
  6. 根据权利要求1-3中任一项所述的光学影像镜组,其特征在于,所述覆盖透镜的物侧面的有效半口径DTP1与所述光学影像镜组的入瞳直径EPD之间满足:0.5<DTP1/EPD<2.5。
  7. 根据权利要求1-3中任一项所述的光学影像镜组,其特征在于,所述第二透镜的像侧面的曲率半径R4与所述第一透镜的物侧面的曲率半径R1之间满足:|(R4-R1)/(R4+R1)|<2.5。
  8. 根据权利要求1-3中任一项所述的光学影像镜组,其特征在于,所述覆盖透镜和所述第一透镜在所述光轴上的空气间隔TTP与所述光学影像镜组的入瞳直径EPD之间满足:0<TTP/EPD<1.6。
  9. 根据权利要求1-3中任一项所述的光学影像镜组,其特征在于,满足条件式:1<f/(CTTP+TTP)<5,
    其中,f为所述光学影像镜组的有效焦距;
    CTTP为所述覆盖透镜的中心厚度;以及
    TTP所述覆盖透镜和所述第一透镜在所述光轴上的空气间隔。
  10. 根据权利要求1-3中任一项所述的光学影像镜组,其特征在于,所述覆盖透镜的中心厚度CTTP与所述第二透镜的中心厚度CT2之间满足:0<CTTP/CT2<4。
  11. 光学影像镜组,沿着光轴由物侧至像侧依序包括覆盖透镜和透镜组,其特征在于,
    所述覆盖透镜具有正光焦度或负光焦度,其物侧面为平面;
    所述透镜组由物侧至像侧依次包括:
    具有正光焦度的第一透镜;
    具有负光焦度的第二透镜;以及
    多个后续透镜,
    其中,所述第二透镜的有效焦距f2与所述覆盖透镜的有效焦距fTP之间满足:0<|f2/fTP|<1。
  12. 根据权利要求11所述的光学影像镜组,其特征在于,所述光学影像镜组的有效焦距f与所述覆盖透镜的有效焦距fTP之间满足:|f/fTP|<0.5。
  13. 根据权利要求12所述的光学影像镜组,其特征在于,所述光学影像镜组的有效焦距f与所述第一透镜的有效焦距f1之间满足:0.5<f/f1<1.5。
  14. 根据权利要求11-13中任一项所述的光学影像镜组,其特征在于,所述光学影像组的有效焦距f与所述覆盖透镜的像侧面的曲率半径RTP2之间满足:|f/RTP2|<1。
  15. 根据权利要求11-13中任一项所述的光学影像镜组,其特征在于,所述光学影像镜组的有效焦距f与所述第二透镜的有效焦距f2之间满足:-1<f/f2<0。
  16. 根据权利要求11-13中任一项所述的光学影像镜组,其特征在于,所述覆盖透镜的物侧面的有效半口径DTP1与所述光学影像镜组的入瞳直径EPD之间满足:0.5<DTP1/EPD<2.5。
  17. 根据权利要求11-13中任一项所述的光学影像镜组,其特征在于,所述第二透镜的像侧面的曲率半径R4与所述第一透镜的物侧面的曲率半径R1之间满足:|(R4-R1)/(R4+R1)|<2.5。
  18. 根据权利要求11-13中任一项所述的光学影像镜组,其特征在于,所述覆盖透镜和所述第一透镜在所述光轴上的空气间隔TTP与所述光学影像镜组的入瞳直径EPD之间满足:0<TTP/EPD<1.6。
  19. 根据权利要求11-13中任一项所述的光学影像镜组,其特征在于,满足条件式:1<f/(CTTP+TTP)<5,
    其中,f为所述光学影像镜组的有效焦距;
    CTTP为所述覆盖透镜的中心厚度;以及
    TTP所述覆盖透镜和所述第一透镜在所述光轴上的空气间隔。
  20. 根据权利要求11-13中任一项所述的光学影像镜组,其特征在于,所述覆盖透镜的中心厚度CTTP与所述第二透镜的中心厚度CT2之间满足:0<CTTP/CT2<4。
  21. 光学影像镜组,沿着光轴由物侧至像侧依序包括覆盖透镜和透镜组,其特征在于,
    所述覆盖透镜具有正光焦度或负光焦度,其物侧面为平面;
    所述透镜组由物侧至像侧依次包括:
    具有正光焦度的第一透镜;
    具有负光焦度的第二透镜;以及
    多个后续透镜,
    其中,所述覆盖透镜的物侧面的有效半口径DTP1与所述光学影像镜组的入瞳直径EPD之间满足:0.5<DTP1/EPD<2.5。
  22. 根据权利要求21所述的光学影像镜组,其特征在于,所述光学影像镜组的有效焦距f与所述覆盖透镜的有效焦距fTP之间满足:|f/fTP|<0.5。
  23. 根据权利要求21所述的光学影像镜组,其特征在于,所述第二透镜的有效焦距f2与所述覆盖透镜的有效焦距fTP之间满足:0<|f2/fTP|<1。
  24. 根据权利要求21-23中任一项所述的光学影像镜组,其特征在于,所述光学影像组的有效焦距f与所述覆盖透镜的像侧面的曲率半径RTP2之间满足:|f/RTP2|<1。
  25. 根据权利要求21-23中任一项所述的光学影像镜组,其特征在于,所述光学影像镜组的有效焦距f与所述第二透镜的有效焦距f2之间满足:-1<f/f2<0。
  26. 根据权利要求25所述的光学影像镜组,其特征在于,所述光学影像镜组的有效焦距f与所述第一透镜的有效焦距f1之间满足:0.5<f/f1<1.5。
  27. 根据权利要求21-23中任一项所述的光学影像镜组,其特征在于,所述第二透镜的像侧面的曲率半径R4与所述第一透镜的物侧面的曲率半径R1之间满足:|(R4-R1)/(R4+R1)|<2.5。
  28. 根据权利要求21-23中任一项所述的光学影像镜组,其特征在于,所述覆盖透镜和所述第一透镜在所述光轴上的空气间隔TTP与所述光学影像镜组的入瞳直径EPD之间满足:0<TTP/EPD<1.6。
  29. 根据权利要求21-23中任一项所述的光学影像镜组,其特征在于,满足条件式:1<f/(CTTP+TTP)<5,
    其中,f为所述光学影像镜组的有效焦距;
    CTTP为所述覆盖透镜的中心厚度;以及
    TTP所述覆盖透镜和所述第一透镜在所述光轴上的空气间隔。
  30. 根据权利要求21-23中任一项所述的光学影像镜组,其特征在于,所述覆盖透镜的中心厚度CTTP与所述第二透镜的中心厚度CT2之间满足:0<CTTP/CT2<4。
PCT/CN2019/077286 2018-05-17 2019-03-07 光学影像镜组 WO2019218760A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810471683.7A CN108459398B (zh) 2018-05-17 2018-05-17 光学影像镜组
CN201810471683.7 2018-05-17

Publications (1)

Publication Number Publication Date
WO2019218760A1 true WO2019218760A1 (zh) 2019-11-21

Family

ID=63215387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077286 WO2019218760A1 (zh) 2018-05-17 2019-03-07 光学影像镜组

Country Status (2)

Country Link
CN (1) CN108459398B (zh)
WO (1) WO2019218760A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11940598B2 (en) 2019-11-29 2024-03-26 Largan Precision Co., Ltd. Lens system and electronic device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108802974B (zh) * 2018-09-05 2023-05-09 浙江舜宇光学有限公司 光学影像镜组

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103345043A (zh) * 2013-06-26 2013-10-09 东莞市宇瞳光学科技有限公司 一种日夜两用定焦监控镜头
CN103941380A (zh) * 2014-03-23 2014-07-23 浙江舜宇光学有限公司 一种微型成像镜头
CN104166220A (zh) * 2014-07-15 2014-11-26 浙江舜宇光学有限公司 3d交互式镜头
CN107728288A (zh) * 2016-08-12 2018-02-23 三星电子株式会社 光学透镜组件以及包括该光学透镜组件的电子装置
CN208477186U (zh) * 2018-05-17 2019-02-05 浙江舜宇光学有限公司 光学影像镜组

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004219807A (ja) * 2003-01-16 2004-08-05 Konica Minolta Holdings Inc 撮像レンズ
JP2008020513A (ja) * 2006-07-11 2008-01-31 Matsushita Electric Ind Co Ltd 単焦点撮像レンズ及びそれを備えた撮像装置
TWI475251B (zh) * 2013-10-18 2015-03-01 Largan Precision Co Ltd 影像系統透鏡組、取像裝置及可攜裝置
WO2017068660A1 (ja) * 2015-10-21 2017-04-27 オリンパス株式会社 撮像装置及びそれを備えた光学装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103345043A (zh) * 2013-06-26 2013-10-09 东莞市宇瞳光学科技有限公司 一种日夜两用定焦监控镜头
CN103941380A (zh) * 2014-03-23 2014-07-23 浙江舜宇光学有限公司 一种微型成像镜头
CN104166220A (zh) * 2014-07-15 2014-11-26 浙江舜宇光学有限公司 3d交互式镜头
CN107728288A (zh) * 2016-08-12 2018-02-23 三星电子株式会社 光学透镜组件以及包括该光学透镜组件的电子装置
CN208477186U (zh) * 2018-05-17 2019-02-05 浙江舜宇光学有限公司 光学影像镜组

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11940598B2 (en) 2019-11-29 2024-03-26 Largan Precision Co., Ltd. Lens system and electronic device

Also Published As

Publication number Publication date
CN108459398B (zh) 2023-07-07
CN108459398A (zh) 2018-08-28

Similar Documents

Publication Publication Date Title
WO2020119172A1 (zh) 光学成像镜头
WO2019134602A1 (zh) 光学成像镜头
CN107085285B (zh) 光学成像镜头
WO2019105139A1 (zh) 光学成像镜头
WO2020024634A1 (zh) 光学成像镜片组
WO2019233160A1 (zh) 光学成像镜片组
CN110346919B (zh) 光学成像镜头
WO2019114366A1 (zh) 光学成像镜头
WO2019091170A1 (zh) 摄像透镜组
WO2019210672A1 (zh) 光学成像系统
WO2019210740A1 (zh) 光学成像镜头
WO2019196572A1 (zh) 光学成像系统
WO2020007081A1 (zh) 光学成像镜头
WO2019100768A1 (zh) 光学成像镜头
WO2020186759A1 (zh) 光学成像镜头
WO2019114524A1 (zh) 光学成像镜头
WO2019007030A1 (zh) 光学成像镜头
WO2019169856A1 (zh) 摄像镜头组
CN108572432B (zh) 光学成像系统
WO2020029613A1 (zh) 光学成像镜头
WO2019037466A1 (zh) 摄像镜头
WO2019137055A1 (zh) 摄像透镜系统
WO2019192160A1 (zh) 光学成像镜头
WO2018223651A1 (zh) 摄像镜头
WO2019233159A1 (zh) 光学成像镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19802628

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19802628

Country of ref document: EP

Kind code of ref document: A1