WO2019218615A1 - 自主推进型软体机器人主体 - Google Patents

自主推进型软体机器人主体 Download PDF

Info

Publication number
WO2019218615A1
WO2019218615A1 PCT/CN2018/114117 CN2018114117W WO2019218615A1 WO 2019218615 A1 WO2019218615 A1 WO 2019218615A1 CN 2018114117 W CN2018114117 W CN 2018114117W WO 2019218615 A1 WO2019218615 A1 WO 2019218615A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving unit
software robot
propulsion
autonomous
cavity
Prior art date
Application number
PCT/CN2018/114117
Other languages
English (en)
French (fr)
Inventor
廖洪恩
张博语
王鹤翔
张天天
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2019218615A1 publication Critical patent/WO2019218615A1/zh
Priority to US16/742,422 priority Critical patent/US11950763B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/06Programme-controlled manipulators characterised by multi-articulated arms
    • B25J9/065Snake robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/0051Flexible endoscopes with controlled bending of insertion part
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00057Operational features of endoscopes provided with means for testing or calibration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00105Constructional details of the endoscope body characterised by modular construction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00112Connection or coupling means
    • A61B1/00119Tubes or pipes in or with an endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00131Accessories for endoscopes
    • A61B1/00133Drive units for endoscopic tools inserted through or with the endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00147Holding or positioning arrangements
    • A61B1/00156Holding or positioning arrangements using self propulsion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/0051Flexible endoscopes with controlled bending of insertion part
    • A61B1/0055Constructional details of insertion parts, e.g. vertebral elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/0051Flexible endoscopes with controlled bending of insertion part
    • A61B1/0057Constructional details of force transmission elements, e.g. control wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/012Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor
    • A61B1/015Control of fluid supply or evacuation

Definitions

  • the invention relates to the technical field of medical instruments, and in particular relates to a body of an autonomous propulsion type software robot.
  • the insertion portion of the medical endoscope is relatively rigid with respect to human tissue, and the main method of inserting the body cavity is to push the force outside the patient.
  • Patent Document Publication No. CN103006165A provides a flexible endoscope robot having a variable stiffness, having a catheter member, a driving member, a fluid supply member, and a balloon member, one end of the catheter member being coupled to the driving member to complete the catheter member Advancing; the fluid supply member is coupled to the balloon member by a fluid tube, and the support of the catheter member within the lumen is achieved by controlling the degree of expansion of the balloon member.
  • the conduit member has a cord and a rigid fixed joint. The first end of the embedded cord is rigidly fixed and connected, and the second end is connected to the driving component.
  • the drive member controls the pulling of the inner cord to effect the steering of the conduit member.
  • the flexible endoscopic robot realizes the function of changing the propulsion direction of the catheter component according to the bending condition in the cavity, so that the rigidity of the device can be changed, and the self-movement can be performed relatively accurately in the cavity, thereby reducing the difficulty of the operation of the endoscope.
  • the technical problem to be solved by the present invention is to overcome the defects in the prior art which are liable to cause harm to the patient's lumen, thereby providing an autonomously propelled software robot body capable of reducing damage to the cavity.
  • the present invention provides a body of an autonomous propulsion type software robot, comprising a pipe body having a pipe body cavity axially disposed therein, and at least one propulsion structure including an axis along the axial direction of the pipe body relative to the pipe body cavity Uniformly fixing a first driving unit, a second driving unit and a third driving unit disposed on a peripheral wall of the tubular body cavity, wherein the first driving unit, the second driving unit and the third driving unit are respectively The axial elongation or contraction of the tubular body;
  • At least two supporting structures at least one of the advancing structures is disposed between each two adjacent supporting structures, and the supporting structure is fixedly connected to the propelling structure, and is disposed on an outer peripheral wall of the tubular body cavity, It is adapted to fix at least one end of the body of the autonomous propulsion type software robot to the human body cavity, and to provide support for the body of the autonomous propulsion type software robot during movement in the cavity.
  • the first driving unit, the second driving unit and the third driving unit are respectively provided with a first fluid accommodating cavity adapted to receive a fluid, and the first fluid accommodating cavity is supplied and discharged through the first fluid
  • the pipe is in communication with the fluid supply and discharge device and can be axially pressurized or decompressed and contracted under the action of the fluid supply and discharge device.
  • the first fluid accommodating cavity is formed in a peripheral wall of the pipe body, and one end thereof is connected to the first fluid supply and discharge pipe.
  • the first driving unit, the second driving unit, and the third driving unit respectively include at least one first expansion body, and the first fluid accommodation cavity is formed in the first expansion body.
  • the tube body is uniformly opened in the circumferential direction with an expansion chamber, and the first expansion body is disposed in the expansion chamber.
  • the propulsion structure further includes a first constraining layer surrounding the outside of the tubular body along a circumferential direction of the tubular body, adapted to define a first driving unit, the second driving unit, and the The third driving unit is elongated or contracted along the axial direction of the pipe body;
  • the first constraining layer surrounds the first driving unit, the second driving unit, and the first in a circumferential direction of the first driving unit, the second driving unit, and the third driving unit, respectively
  • the third drive unit is externally adapted to define a first drive unit, the second drive unit and the third drive unit to elongate or contract in the axial direction of the tubular body.
  • a second constraining layer circumferentially surrounding the positioning expansion unit along the circumference of the tubular body, is adapted to define expansion or contraction of the positioning expansion unit along a radial direction of the tubular body.
  • the positioning expansion unit has a second fluid accommodating cavity adapted to receive a fluid, and the second fluid accommodating cavity is in communication with the fluid supply and discharge device through a second fluid supply and exhaust conduit; the second fluid accommodating cavity is annular .
  • the support structure further includes a negative pressure positioning device disposed on the tube body and adapted to adsorb the main body of the autonomous propulsion type software robot to the human body cavity by using a negative pressure, the negative pressure positioning device comprising:
  • a negative pressure hole is disposed on the outer peripheral wall of the tube and is connected to the human body cavity;
  • a negative pressure conduit connected to the branch of the body supply and discharge device for providing a negative pressure.
  • an outer cladding disposed over the exterior of the propulsion structure and the support structure, the outer cladding being a flexible material.
  • detection device comprising:
  • a pressure sensor disposed outside the support structure and circumferentially distributed to detect a pressure applied by the support structure to the human body cavity;
  • a tensile sensor disposed outside the propulsion structure and uniformly distributed along the circumference, adapted to detect an extended or contracted state of the propulsion structure
  • the autonomous propulsion type software robot body provided by the present invention is adapted to automatically walk in a human body cavity, including a tube body and at least one propulsion structure with at least two support structures, and the propulsion structure includes an axial direction of the tube body relative to the tube body cavity.
  • the shaft center uniformly fixes the first driving unit, the second driving unit and the third driving unit disposed on the peripheral wall of the tubular body cavity, and the first driving unit, the second driving unit and the third driving unit are respectively along the axis of the tube body Elongating or contracting; when the second driving unit and the third driving unit uniformly distributed in the axial direction in the tube body can respectively expand in the axial direction of the tube body, the expanded side is elongated, and the unexpanded or contracted side is shortened.
  • the propulsion structure is bent toward the unexpanded or contracted side, and the free steering of the main body of the autonomous propulsion type software robot in the human body channel is realized.
  • the hard steering device such as a structure performs steering, and the structure of the propulsion device in the main body of the autonomous propulsion type soft robot provided by the present invention does not have a hard object, and the human body comfort and operational safety are improved.
  • the support structure is located at two ends of the propulsion structure, and at least one propulsion structure is disposed between each two adjacent support structures, and the support structure is fixedly connected with the propulsion structure, and is disposed on the outer peripheral wall of the pipe body cavity, and is suitable for autonomous propulsion type software.
  • At least one end of the robot body is fixed to the human body cavity, and provides support for the autonomous propulsion type software robot body to move in the cavity. Through the coordinated movement of the supporting structure and the propulsion structure at both ends, it can provide support for the telescopic and steering movement of the propulsion structure, realize the worm-like autonomous propulsion of the main body of the autonomous propulsion type software robot in the human body cavity, and reduce the operation difficulty of the main body of the software robot.
  • the robot body does not contain a rigid member and a ferromagnetic member, the robot body has the advantage of magnetic compatibility, and can realize intraoperative real-time navigation under magnetic resonance imaging.
  • the invention provides an autonomous propulsion type software robot main body, wherein a first fluid accommodating cavity adapted to receive a fluid, a first fluid accommodating cavity is respectively disposed in the first driving unit, the second driving unit and the third driving unit
  • the first fluid supply and discharge conduit is in communication with the fluid supply and discharge device, and can be axially pressurized or decompressed and contracted under the action of the fluid supply and discharge device.
  • the first fluid accommodating cavity is formed in the peripheral wall of the pipe body, and one end thereof is connected to the first fluid supply and discharge pipe.
  • the axial elongation or contraction of the drive unit can be achieved by injecting or withdrawing fluid into the first fluid containing chamber.
  • the first fluid accommodating chamber is connected with the external fluid supply and discharge device, and the combination of the respective driving units or the independent axial elongation or contraction can be controlled, thereby realizing precise control of various walking postures of the main body of the autonomous propulsion type software robot.
  • the present invention provides an autonomous propulsion type software robot body, the propulsion structure comprising more than three of the drive units uniformly distributed along the circumference of the pipe body.
  • the propulsion mechanism can only extend the shortening technical solution.
  • the software robot main body is The movement direction is adjusted in the three-dimensional space, so that more movements can be made in the cavity to achieve free movement in the multi-branch channel and the curved channel to adapt to the complex environment of the channel.
  • the invention provides an autonomous propulsion type software robot main body, wherein two propulsion structures are arranged along the axial direction of the pipe body, and three support structures are respectively disposed at two ends and the middle of the propulsion structure.
  • the main body of the autonomous propulsion type software robot can provide more freedom of movement in the human body cavity, so that it can adapt to the complicated bending change of the cavity.
  • the three support structures can provide more support points for the propulsion structure, reduce the force on the channel wall, and reduce the operational risk.
  • the main body of the self-propelled software robot of this structure realizes the modular arrangement of the propulsion structure and the support structure, and can also combine more support structures and propulsion structures, so that the propulsion mode of the main body of the autonomous propulsion type software robot is more diversified.
  • the movement is more flexible and the simulation effect is obvious. Adapt to the complex environment of the cavity while reducing risk.
  • the present invention provides a body of an autonomous propulsion type software robot.
  • the propulsion structure further includes a first constraining layer.
  • the first constraining layer surrounds the outside of the pipe body along the circumferential direction of the pipe body, and is adapted to define the first driving unit and the second driving.
  • the unit and the third drive unit are elongated or contracted in the axial direction of the tubular body. Restricting the expansion direction of the driving unit on the propulsion structure by using the first constraining layer, the surface of the propulsion structure wrapped by the first constraining layer in the invention is more flat than the prior art using the spring or the collapsible tube to limit the deformation direction Smooth, less damage to the wall of the human body.
  • the first constraining layer is a fiber fabric, and the texture is soft, and the risk is low.
  • the present invention provides an autonomous propulsion type software robot main body, the first constraining layer surrounding the first driving unit, the second driving unit, and the first in the circumferential direction of the first driving unit, the second driving unit, and the third driving unit, respectively
  • the outside of the three driving unit is adapted to define an axial elongation and contraction of the first driving unit, the second driving unit and the third driving unit along the tubular body.
  • the first constraining layer is respectively wrapped on the outside of the driving unit, and the limiting effect on each driving unit is more precise.
  • the first constraining layer of different winding modes can be configured for each driving unit, thereby shortening the elongation of the propulsion structure. Or a combination of various actions such as twisting can be realized.
  • the present invention provides a body of an autonomous propulsion type software robot, the support structure comprising: a positioning expansion unit fixedly disposed on an outer peripheral wall of the pipe body, adapted to expand or contract along a radial direction of the pipe body, and can be expanded during expansion
  • the human body cavity is fixed and separated from the human body cavity when contracted;
  • the second constraining layer is circumferentially surrounded by the positioning expansion unit along the circumferential direction of the tubular body, and is adapted to define a radial expansion or contraction of the positioning expansion unit along the tubular body.
  • one or both ends of the propulsion structure can be fixed at a certain position in the cavity to realize the parking robot detection of the main body of the software robot, or provide a stop point for the expansion and contraction of the propulsion structure, so that the autonomous propulsion The body of the software robot can automatically walk in the tunnel.
  • the present invention provides a body of an autonomous propulsion type software robot.
  • the support structure further includes a negative pressure disposed on the tube body and adapted to adsorb the main body of the autonomous propulsion type software robot to the body cavity by using a negative pressure.
  • a positioning device the negative pressure positioning device includes: a negative pressure hole disposed on the outer peripheral wall of the tube and uniformly connected to the human body cavity; a negative pressure conduit connecting the negative pressure hole and the body supply and exhaust The device provides a branch of negative pressure.
  • the negative pressure positioning device can use the negative pressure to adsorb the negative pressure hole on the wall of the cavity, thereby achieving a good fixing effect.
  • the negative pressure positioning device can be used to assist the fixing when the cavity diameter is large and the positioning expansion unit cannot be fixed.
  • the present invention provides an autonomous propulsion type software robot body, further comprising an outer cladding layer disposed on the outside of the propulsion structure and the support structure.
  • an outer layer of flexible material can reduce the stimulation of the human body cavity, prevent fluid leakage in the fluid cavity and contaminate the human body cavity, and protect and maintain a sterile environment.
  • the present invention provides a body of an autonomous propulsion type software robot, comprising: a detecting device comprising: a tension sensor disposed on the propulsion structure and capable of detecting an extended state of the propulsion structure; the pressure sensor being disposed on the support structure and The pressure applied by the support structure to the human body channel can be detected; the data in the cavity and the state of the body and the channel force of the autonomous propulsion type software robot can be obtained in time by using the above-mentioned sensor, and the acquired data can be fed back to the processing department. After the processing, it is converted into a mechanical control signal and sent to various execution departments, thereby timely adjusting the motion state of the main body of the autonomous propulsion type software robot, and realizing the intelligent movement of the main body of the autonomous propulsion type software robot.
  • FIG. 1 is a perspective view showing a main body of an autonomous propulsion type soft body robot according to Embodiment 1 of the present invention
  • Embodiment 2 is an exploded view of the main body of the autonomous propulsion type software robot in Embodiment 1;
  • Figure 3 is a longitudinal sectional view showing the first constraining layer in the propulsion structure of Embodiment 1;
  • FIG. 4 is a schematic view showing a first winding manner of the first constraining layer in Embodiment 1;
  • FIG. 5 is a schematic view showing a second winding manner of the first constraining layer in Embodiment 1.
  • FIG. 6 is a schematic structural view of a support structure in Embodiment 1;
  • FIG. 7 is a schematic view showing a winding manner of a second constraining layer in Embodiment 1;
  • FIG. 8 is a schematic view showing the steering of the main body of the autonomous propulsion type software robot in the tunnel in the first embodiment
  • FIG. 9 is a schematic view showing the walking process of the main body of the autonomous propulsion type software robot in the first embodiment
  • Figure 10 is a perspective view of the spherical end in the first embodiment.
  • 11 is a schematic view showing the connection between the control system and the main body of the autonomous propulsion type software robot in the first embodiment
  • Figure 12 is a cross-sectional view of the propulsion structure of Embodiment 2;
  • Figure 13 is a schematic view of the propulsion structure in Embodiment 3.
  • FIG. 14 is a schematic diagram showing the composition of a main body of an autonomous propulsion type software robot in Embodiment 5;
  • Fig. 15 is a view showing the deformation of the main body of the autonomous propulsion type soft body robot in the fifth embodiment.
  • the present embodiment provides a software robot main body, which has a structure as shown in FIG. 1 to FIG. 11 and is suitable for automatic walking in a cavity, which includes a pipe body 2, a propulsion structure 3, a support structure 4, and an internal axis of the pipe body 2
  • the advancing structure 3 includes a first driving unit 31 and a second unit which are uniformly fixed to the peripheral wall of the tubular body cavity 21 along the axial center of the tubular body 21 in the axial direction of the tubular body 2.
  • the drive unit 32 and the third drive unit 33, the first drive unit 31, the second drive unit 32, and the third drive unit 33 are respectively elongated or contracted in the axial direction of the tubular body 2. As shown in FIG.
  • the robot body In the structure of the propulsion device in the main body of the autonomous propulsion type software robot provided in this embodiment, there is no hard object, and the human body comfort and operational safety are improved.
  • the software robot body does not contain a rigid member and a ferromagnetic member, the robot body has the advantage of magnetic compatibility, and can realize intraoperative real-time navigation under magnetic resonance imaging.
  • the support structure 4 is located at two ends of the propulsion structure 3, and a propulsion structure 3 is disposed between each two adjacent support structures 4, and the support structure 4 is fixedly connected with the propulsion structure 3, and is disposed on
  • the outer peripheral wall of the tubular body cavity 21 is adapted to fix at least one end of the body of the autonomous propulsion type software robot to the cavity, and to provide support for the body of the autonomous propulsion type software robot during the movement in the cavity.
  • the specific number of the propulsion structure 3 and the support structure 4 can be various. In the present embodiment, the number of the propulsion structures 3 is one, and the number of the support structures 4 is two.
  • the tube body 2 in this embodiment uses a silica gel material, and may also be other flexible materials having human affinity properties, and the processing method can be performed by using a mold for pouring, or directly performing 3D printing.
  • the first driving unit 31, the second driving unit 32, and the third driving unit 33 in the embodiment are respectively provided with a first fluid accommodating cavity 37 adapted to receive a fluid, first
  • the fluid accommodating chamber 37 communicates with the fluid supply and discharge device 6 through the first fluid supply and discharge conduit 38, and can be axially pressurized or decompressed and contracted under the action of the fluid supply and discharge device 6.
  • the first fluid accommodating chamber 37 in this embodiment is formed in the peripheral wall of the tubular body 2, and one end thereof is connected to the first fluid supply and exhaust conduit 38.
  • the expansion and contraction of the drive unit can be achieved by injecting or discharging fluid into the first fluid containing chamber 37.
  • the first fluid accommodating chamber 37 is connected to the external fluid supply and discharge device 6 to control the combination or individual elongation or contraction of the respective driving units, thereby realizing precise control of various walking postures of the main body of the autonomous propulsion type software robot.
  • a gas is used as a filling substance, that is, the fluid in the present embodiment is a gas.
  • the fluid supply and discharge device 6 is a gas pressure pump.
  • the fluid can also be a liquid.
  • the propulsion structure 3 in this embodiment further includes a first constraining layer 34, which surrounds the outside of the pipe body 2 in the circumferential direction of the pipe body 2, and is adapted to define the first driving unit 31,
  • the second drive unit 32 and the third drive unit 33 are elongated or contracted in the axial direction of the tubular body 2.
  • the first constraining layer 34 is used to limit the expansion direction of the driving unit on the propulsion structure 3, and the propulsion structure wrapped by the first constraining layer 34 in this embodiment is compared with the prior art in which the deformation direction is restricted by a spring or a foldable tube. 3
  • the surface is smoother and smoother, and the damage to the wall of the cavity is smaller.
  • the first constraining layer 34 is a fiber fabric, and the texture is soft, and the risk is low.
  • the first constraining layer 34 in this embodiment adopts a winding manner as shown in FIG. 4, and the fibers are wound clockwise and reversely, and the inclination angle ⁇ of the fiber winding is in the range of 0° to 40°.
  • the driving unit or the tube body under the coating is restricted to be elongated only in the axial direction, and the gas pressure pump is provided with different air pressures to each driving unit, thereby realizing the effect of bending and elongation of the propulsion structure 3.
  • the air pressure in each drive unit is the same, the effect of overall elongation is achieved.
  • the first constraining layer 34 in this embodiment may also adopt a winding manner as shown in FIG. 5, and the fiber is unidirectionally wound clockwise or counterclockwise, and the inclination angle of the fiber winding is 0° to 40. ° range.
  • the gas pressure pump supplies air pressure to the driving unit
  • the driving unit or the tube body covered by the first constraining layer 34 of the winding form is axially elongated and twisted around the axis, so that the tube body is axially twisted. Elongated walking style.
  • the support structure 4 in this embodiment includes: the support structure 4 includes a positioning expansion unit 41 and a second constraining layer 42.
  • the positioning expansion unit 41 is fixedly disposed on the peripheral wall of the pipe body 2, and is adapted to be along the pipe body. 2 radially expands or contracts, and can be fixed to the lumen when inflated, and separated from the lumen when contracted.
  • the second constraining layer 42 surrounds the outside of the positioning expansion unit 41 in the circumferential direction of the tubular body 2, and is adapted to define the expansion or contraction of the positioning expansion unit 41 in the radial direction of the tubular body 2.
  • the positioning expansion unit 41 has an annular second fluid accommodating chamber 45 adapted to receive a fluid, and the second fluid accommodating chamber 45 is in communication with the gas pressure pump through the second fluid supply and exhaust conduit 44. Pressurizing the second fluid-receiving chamber 45 by the gas pressure pump, so that the positioning and expanding unit 41 is radially expanded and clamped in the cavity, and one or both ends of the propulsion structure 3 are fixed at a certain position in the cavity to realize the software robot.
  • the main station's parking detection, or providing a stop point for the expansion and contraction of the propulsion structure 3, enables the worm-like autonomous propulsion of the software robot body in the tunnel.
  • the second constraining layer 42 in this embodiment adopts a soft-woven woven fiber yarn, and the winding manner is as shown in FIG. 7.
  • the fiber is wound clockwise and reversely, and the angle ⁇ of the winding is in the range of 60-90°,
  • the positioning expansion unit 41 under the coating is restricted from being radially expandable only along the shaft, thereby realizing the nip of the positioning expansion unit 41.
  • the support structure 4 in this embodiment further includes a negative pressure positioning device 43 disposed on the pipe body 2 and adapted to adsorb the main body of the autonomous propulsion type software robot to the cavity by using a negative pressure, and the negative pressure positioning device.
  • 43 includes: a negative pressure hole 431 disposed on the outer peripheral wall of the pipe body 2 and communicating with the cavity, and a negative pressure pipe 432 connected to the negative pressure hole 431 and a branch of the gas pressure pump providing a negative pressure.
  • the negative pressure positioning device 43 can adsorb the negative pressure hole 431 to the wall of the tunnel by the negative pressure, thereby achieving a good fixing effect.
  • the negative pressure positioning device 43 can be used to assist the fixing when the cavity diameter is large and the positioning and expanding unit 41 cannot be fixed.
  • the negative pressure hole 431 in the present embodiment is disposed on the outer wall of the tubular body 2 where the positioning expansion unit 41 is located, and is evenly distributed along the tubular body 2.
  • the support structure 4 can only be provided with the negative pressure positioning device 43 to position one end of the soft body of the robot, which is suitable for use in a thinner cavity to prevent the positioning of the expansion unit 41 from expanding to the wall of the channel. The interaction is dangerous.
  • the support structure 4 that first enters one end of the tunnel is set to the positioning A end, and the rear one end is set to the positioning B end.
  • the movement process of the soft robot main body in the cavity in this embodiment is as follows: :
  • stage 1 the positioning B end is fixed by inflation or negative pressure adsorption and the wall of the cavity, and the propulsion structure 3 and the positioning A end are both maintained in a natural state;
  • stage 2 the positioning B end is kept clamped, the positioning A end is kept in a natural state, the inflation structure 3 is inflated and extended forward or turned, and the positioning A end is moved forward;
  • stage 3 the positioning B end and the propulsion structure 3 are respectively maintained in a clamped state and an extended state, and the positioning expansion A end is fixed by inflation or negative pressure adsorption and the cavity wall;
  • stage 4 the B-end pressure is released from the channel wall, and the propulsion structure 3 and the positioning A end are respectively maintained in a clamped state and an extended state;
  • stage 5 the positioning B end maintains the natural state, the positioning A end maintains the clamping state, the propulsion structure 3 pressure relief forward contraction, and the positioning B end moves forward;
  • stage 6 the positioning B end is fixed by inflation or negative pressure adsorption and the wall of the cavity, the propulsion structure 3 maintains the natural state, and the positioning end A is kept clamped;
  • the software robot main body in this embodiment has a detecting end 12 that first enters the tunnel and a connecting end 11 that connects the connecting line portion 5 opposite to the detecting end 12.
  • the detecting end 12 is provided with a spherical end 121, and the spherical end 121 is connected to the line portion 5.
  • the line portion 5 passes through the tube body chamber 21 and passes through the device such as a gas pressure pump that extends to the outside from the connection end 11.
  • the tube body 2 at the portion where the support structure 4 of the probe end 12 is located is fixedly connected to the inner line portion 5, and the remaining tube body 2 portion is only sleeved outside the line portion 5 and slidable relative to the line portion 5.
  • the pipeline portion 5 includes a working passage through which the surgical instrument can be accommodated, and a driving passage connecting the propulsion structure 3 and the supporting structure 4, the first fluid supply and exhaust conduit 38, and the second fluid supply and exhaust conduit. 44 and a vacuum conduit 432 are connected to the propulsion structure 3, the support structure 4, and the negative pressure positioning device 43 through the drive passages.
  • the working channel includes a plurality of pipes disposed in the pipeline portion, and the pipes are adapted to be placed in a sensor, a camera, a gas supply water supply, and an operating device.
  • the spherical end 121 of the detecting end 12 is provided with a protruding integrated illumination function micro CCD camera 124, a device connection port 122 communicating with the working channel, a delivery tube interface 123, and the like, in the working channel.
  • a plurality of medical instruments such as a biopsy forceps, an electrosurgical knife, and a saline syringe can be used to enter the tunnel through the instrument connection port 122 for operation.
  • the delivery tube interface 123 is connected to a delivery tube disposed in the working channel to effect delivery or injection of the relevant drug.
  • the CCD camera 124 in this embodiment is installed in a pipe opening formed in the spherical end of the working channel (such as a cylindrical protruding portion as shown in FIG. 10), and each of the left and right symmetrically arranged to form a double.
  • the camera is connected to an external control system 8 via a data connection line provided in the working channel. Thereby, a stereoscopic image of the front part of the body of the software robot is generated, which is convenient for the operator to judge the environment of the cavity.
  • the software robot body of the present embodiment further includes an outer covering layer that is disposed on the outside of the propulsion structure 3 and the support structure 4.
  • an outer covering layer that is disposed on the outside of the propulsion structure 3 and the support structure 4.
  • the body of the software robot in this embodiment is further provided with a detecting device 7, which is disposed outside the supporting structure 4 and uniformly distributed along the circumference, and can detect the pressure applied by the supporting structure 4 to the channel.
  • the tension sensor 72 which is disposed outside the propulsion structure 3 and is circumferentially uniform, is adapted to detect an extended or contracted state of the propulsion structure 3.
  • the above-mentioned sensor can be used to know the condition in the front channel of the detecting end 12 and the state of the body and the channel force of the software robot, and then the obtained data can be fed back to the processing department for processing, and then converted into a mechanical control signal and sent to each.
  • the executive department adjusts the motion state of the software robot body in time to realize the intelligent movement of the software robot body.
  • the present embodiment further includes a control system 8 connected to the software robot body and the gas pressure pump for processing various data information sent by the detecting device 7. It is also possible to automatically identify the channel environment based on the image data collected by the CCD camera 124 and adjust the direction of motion of the software robot.
  • the air pressure applied by the gas pressure pump is automatically adjusted according to the pressure data obtained by the pressure sensor 71 to prevent the damage caused to the tunnel by excessive expansion. And determining the current elongation or bending state of the software robot body according to the data obtained by the tension sensor 72, and then sending mechanical control data to the gas pressure pump to adjust the air pressure in the propulsion structure 3, thereby realizing the bending direction of the software robot body.
  • the embodiment provides an autonomous propulsion type software robot main body, which is different from the first embodiment in that the first constraining layer 34 in the embodiment is along the first driving unit 31, the second driving unit 32 and the third driving unit, respectively.
  • the circumferential direction of 33 surrounds the first driving unit 31, the second driving unit 32, and the third driving unit 33, and is adapted to define the first driving unit 31, the second driving unit 32, and the third driving unit 33 along the tube body 2.
  • the first constraining layer 34 is respectively wrapped on the outer side of the driving unit, and the limiting effect on each driving unit is more precise, and the first constraining layer 34 in different winding manners may also be configured for each driving unit. Thereby, a combination of various actions such as shortening or twisting of the advancing structure 3 is realized.
  • the present embodiment provides an autonomous propulsion type software robot main body, which differs from the main propulsion type software robot main body in Embodiment 1 in that the first driving unit 31, the second driving unit 32, and the third driving are different.
  • the unit 33 has a first expansion body 35, respectively, and the first fluid accommodation chamber 37 is formed in the first expansion body 35.
  • three expansion chambers 36 are uniformly opened in the circumferential direction on the peripheral wall of the tubular body 2, and three first expansion bodies 35 are respectively placed in each of the expansion chambers 36 and each of the first expansion bodies 35
  • the shape matches the expansion chamber 36, thereby forming the first drive unit 31, the second drive unit 32, and the third drive unit 33.
  • Each of the first expansion bodies 35 is internally provided with a first fluid accommodating chamber 37, and one end of the first fluid accommodating chamber 37 is connected to the first fluid supply and exhaust conduit 38 formed inside the first expansion body.
  • the first expansion body 35 expands, so that the expansion chamber 36 also deforms, thereby causing the tube body 2 at the position where the expansion chamber 36 is located to be deformed.
  • the drive unit of such a structure realizes the replacement of the expansion body to prevent the entire tube body 2 from being scrapped due to damage of the single drive unit.
  • the first constraining layer 34 in the present embodiment is wound in the outer wall of the first expansion body 35 for limiting the expansion direction of the first expansion body 35.
  • the first constraining layer 34 can also be wound around the outside of the tubular body 2 where the propulsion structure 3 is located.
  • the expansion chambers of the first driving unit 31, the second driving unit 32, and the third driving unit 33 in this embodiment may also be respectively provided with a plurality of expansion bodies, which are cooperatively expanded by using a plurality of expansion bodies. Achieve more angles of a single drive unit, its flexibility has been improved, and the motion posture is rich.
  • the present embodiment provides an autonomous propulsion type software robot main body, which differs from Embodiment 1 in that the propulsion structure 3 includes more than three of the drive units uniformly distributed along the circumferential direction of the pipe body 2.
  • the propulsion mechanism can only shorten the axial linear elongation, and by providing a plurality of driving units uniformly distributed, more posture changes can be provided for the propulsion structure 3, and the angle change of the propulsion structure 3 can be realized.
  • the software robot body adjusts the moving direction in the three-dimensional space, so that more actions can be made in the cavity to realize free movement in the multi-branch channel and the curved channel to adapt to the complex environment of the channel.
  • the present embodiment provides an autonomous propulsion type software robot main body, which is different from the software robot main body in Embodiment 1 in the structure shown in FIG. 14 in that the software robot main body in the present embodiment is arranged along the axial direction of the pipe body 2.
  • the two-stage propulsion structure 3 and the three support structures 4 are alternately fixed on the pipe body 2 in sequence, so that the software robot body can provide more freedom of movement in the cavity, so that it can adapt to the complicated bending variation of the cavity.
  • the three support structures 4 can provide more support points for the propulsion structure 3, reduce the concentrated force of the one-side support structure 4 on the channel wall, and reduce the risk of channel perforation.
  • the soft body of the structure realizes the modular arrangement of the propulsion structure 3 and the support structure 4, and can also combine more support structures 4 and the propulsion structure 3, so that the propulsion mode of the software robot main body is more diverse, and the movement More flexible, the simulation effect is obvious. It can adapt to the complex environment of the channel while reducing the risk.
  • the propulsion structure 3 and the support structure 4 in this embodiment may also use "propulsion structure 3 + support structure 4 + propulsion structure 3 + support structure 4" or "support structure 4 +” as shown in FIG. Combination mode of propulsion structure 3+ propulsion structure 3+ support structure 4”.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

本发明提供一种自主推进型软体机器人主体,包括管体,其内部沿轴向设有管体腔及:至少一个推进结构,包括沿管体轴向相对于管体腔的轴心均匀地固定设置于管体腔的周壁上的第一驱动单元、第二驱动单元和第三驱动单元,第一驱动单元,第二驱动单元和第三驱动单元,可分别沿管体的轴向伸长或收缩;至少两个支撑结构,每两个相邻的支撑结构之间设有至少一个推进结构,支撑结构与推进结构固定连接,设置于管体腔的外周壁上,适于将自主推进型软体机器人主体的至少一端固定于腔道,并为自主推进型软体机器人主体提供支撑。本发明中的自主推进型软体机器人主体能够减小对人体腔道的伤害,降低操作的风险性。

Description

自主推进型软体机器人主体 技术领域
本发明涉及医疗器械技术领域,具体涉及一种自主推进型软体机器人主体。
背景技术
目前,医用内窥镜的插入部分相对人体组织较为坚硬,插入体腔的主要方法为在患者体外施力推进。
公开号为CN103006165A的专利文献提供了一种刚度可变的柔性内窥镜机器人,其具有导管部件、驱动部件、流体供给部件以及球囊部件,导管部件的一端与驱动部件相连接,完成导管部件的推进;流体供给部件通过流体用管与球囊部件相连接,通过控制球囊部件的膨胀程度实现在腔道内对导管部件的支撑。导管部件内嵌线绳以及硬质固定节,内嵌线绳的第一端硬质固定节相连接、第二端与驱动部件相连接。驱动部件控制内嵌线绳的拉拽实现导管部件的转向。该柔性内窥镜机器人实现了根据腔道内弯曲状况自行改变导管部件推进方向的功能,使得装置的刚度可以改变,可以较为精确的在腔道内自行运动,降低了内窥镜操作的难度。
但是上述内嵌线绳、刚性的固定节会给手术过程增加许多安全隐患,若由于操作不当这将对患者腔道造成十分严重的划伤、穿孔等伤害。
发明内容
因此,本发明要解决的技术问题在于克服现有技术中易对患者腔道造成危害的缺陷,从而提供一种能够降低对腔道伤害的自主推进型软体机器 人主体。
本发明提供一种自主推进型软体机器人主体,包括管体,其内部沿轴向设有管体腔,及:至少一个推进结构,包括沿所述管体轴向相对于所述管体腔的轴心均匀地固定设置于所述管体腔的周壁上的第一驱动单元、第二驱动单元和第三驱动单元,所述第一驱动单元,第二驱动单元和所述第三驱动单元,可分别沿所述管体的轴向伸长或收缩;
至少两个支撑结构,每两个相邻的所述支撑结构之间设有至少一个所述推进结构,所述支撑结构与所述推进结构固定连接,设置于所述管体腔的外周壁上,适于将所述自主推进型软体机器人主体的至少一端固定于所述人体腔道,并为所述自主推进型软体机器人主体在腔道内运动过程中提供支撑。
所述第一驱动单元、所述第二驱动单元和所述第三驱动单元内分别设有适于容纳流体的第一流体容置腔,所述第一流体容置腔通过第一流体供排管道与流体供排装置连通,并可在所述流体供排装置的作用下沿轴向增压伸长或减压收缩。
所述第一流体容置腔成型于所述管体的周壁中,其一端与所述第一流体供排管道相连接。
所述第一驱动单元、所述第二驱动单元和所述第三驱动单元分别包括至少一个第一膨胀体,所述第一流体容置腔成型于所述第一膨胀体中。
所述管体沿周向均匀开设有膨胀腔,所述第一膨胀体设置于所述膨胀腔内。
所述推进结构还包括第一约束层,所述第一约束层沿所述管体的周向 环绕在所述管体外部,适于限定第一驱动单元、所述第二驱动单元和所述第三驱动单元沿所述管体的轴向伸长或收缩;
所述第一约束层分别沿所述第一驱动单元、所述第二驱动单元和所述第三驱动单元的周向环绕在所述第一驱动单元、所述第二驱动单元和所述第三驱动单元外部,适于限定第一驱动单元、所述第二驱动单元和所述第三驱动单元沿所述管体的轴向伸长或收缩。
所述支撑结构包括:定位膨胀单元,固定设置于所述管体的周壁上,适于沿所述管体的径向膨胀或收缩,并可在膨胀时与所述人体腔道固定,收缩时与所述人体腔道分离;
第二约束层,沿所述管体的周向环绕在所述定位膨胀单元的外部,适于限定所述定位膨胀单元沿所述管体的径向膨胀或收缩。
所述定位膨胀单元具有适于容纳流体的第二流体容置腔,所述第二流体容置腔通过第二流体供排管道与流体供排装置连通;所述第二流体容置腔为环形。
所述支撑结构还包括设置于所述管体上、适于利用负压将所述自主推进型软体机器人主体吸附于所述人体腔道上的负压定位装置,所述负压定位装置包括:
负压孔,设于所述管体外周壁均匀布置上并与所述人体腔道连通;
负压导管,连接所述负压孔与所述体供排装置提供负压的支路相连。
还包括外包层,包覆设置于所述推进结构和所述支撑结构的外部,所述外包层为柔性材料。
还包括检测装置,所述检测装置包括:
压力传感器,设于所述支撑结构外侧并沿圆周均布,可检测所述支撑结构对所述人体腔道的施加的压力;
拉伸传感器,设于所述推进结构外侧并沿圆周均布,适于检测所述推进结构的伸长或收缩状态;
本发明技术方案,具有如下优点:
1.本发明提供的自主推进型软体机器人主体,适于在人体腔道内自动行走,包括管体以及至少一个推进结构以至少两个支撑结构,推进结构包括沿管体轴向相对于管体腔的轴心均匀地固定设置于管体腔的周壁上的第一驱动单元、第二驱动单元和第三驱动单元,第一驱动单元,第二驱动单元和第三驱动单元,可分别沿管体的轴向伸长或收缩;在管体中沿轴向均匀分布的第二驱动单元和第三驱动单元可以分别沿管体轴向膨胀时,膨胀的一侧伸长,未膨胀或收缩一侧缩短,推进结构向未膨胀或收缩一侧弯曲,实现了自主推进型软体机器人主体在人体腔道内的自由转向。通过控制三个驱动单元的轴向伸长或收缩,实现推进机构的整体伸长、扭转伸长、减压收缩以及任意方向的弯曲,相比于现有技术中在内窥镜中设置线驱动结构等硬质转向装置进行转向,本发明提供的自主推进型软体机器人主体中的推进装置结构中不存在硬质物体,其人体舒适度和操作安全性得到了提高。支撑结构位于推进结构的两端,每两个相邻的支撑结构之间设有至少一个推进结构,支撑结构与推进结构固定连接,设置于管体腔的外周壁上,适于将自主推进型软体机器人主体的至少一端固定于人体腔道,并为自主推进型软体机器人主体在腔道内运动过程中提供支撑。通过两端的支撑结构与推进结构的协调运动,可以为推进结构的伸缩及转向运动提供支撑, 实现自主推进型软体机器人主体在人体腔道内蠕虫式自主推进,降低了软体机器人主体的操作难度。此外,该机器人主体由于不含有刚性部件以及铁磁性部件,因此该机器人主体具有磁兼容的优点,可以实现在磁共振影像下的术中实时导航。
2.本发明提供一种自主推进型软体机器人主体,第一驱动单元、第二驱动单元和第三驱动单元内分别设有适于容纳流体的第一流体容置腔,第一流体容置腔通过第一流体供排管道与流体供排装置连通,并可在流体供排装置的作用下沿轴向增压伸长或减压收缩。第一流体容置腔成型于管体的周壁中,其一端与第一流体供排管道相连接。通过向第一流体容置腔内压入或抽出流体,可以实现驱动单元的轴向伸长或收缩。将第一流体容置腔与外部的流体供排装置控制相连,可以控制各个驱动单元的组合或单独轴向伸长或收缩,实现了自主推进型软体机器人主体的各种行走姿态的精准控制。
3.本发明提供一种自主推进型软体机器人主体,推进结构包括沿管体周向均匀分布的大于3个所述驱动单元。相比于现有技术中推进机构仅能伸长缩短的技术方案,通过设置均匀分布的多个驱动单元,可以为推进结构提供更多的姿态变化,实现推进结构的角度变化,使得软体机器人主体在三维空间内调整运动方向,从而能在腔道内做出更多的动作,实现在多分支的腔道和弯曲腔道中自由运动,以适应腔道的复杂环境。
4.本发明提供一种自主推进型软体机器人主体,沿管体轴向布置有两个推进结构,三个支撑结构分别设置于推进结构的两端及中间。使用两端推进结构和三个支撑结构依次交替固定在管体上,可以为自主推进型软体 机器人主体在人体腔道内提供更多的运动自由度,使其能够适应腔道复杂的弯曲变化。而三个支撑结构可以为推进结构提供更多支撑点,减小了对腔道壁的作用力,降低了操作风险。同时此结构的自主推进型软体机器人主体实现了推进结构和支撑结构的模块化设置,亦可使更多的支撑结构和推进结构相组合,使得自主推进型软体机器人主体的推进方式更为多样化,运动更为灵活,仿真效果明显。在降低风险的同时适应腔道的复杂环境。
5.本发明提供一种自主推进型软体机器人主体,推进结构还包括第一约束层,第一约束层沿管体的周向环绕在管体外部,适于限定第一驱动单元、第二驱动单元和第三驱动单元沿管体的轴向伸长或收缩。利用第一约束层限制推进结构上的驱动单元的膨胀方向,相比于现有技术中利用弹簧或者可折叠管限制形变方向,本发明中的第一约束层包裹下的推进结构表面更为平整顺滑,对人体腔道壁的损伤较小。并且第一约束层为纤维织物,质地较为柔软,其危险性较低。
6.本发明提供一种自主推进型软体机器人主体,第一约束层分别沿第一驱动单元、第二驱动单元和第三驱动单元的周向环绕在第一驱动单元、第二驱动单元和第三驱动单元外部,适于限定第一驱动单元、第二驱动单元和第三驱动单元沿管体的轴向伸长收缩。将第一约束层分别包覆在驱动单元外侧,对每个驱动单元的限制效果更为精确,同时也可以为各个驱动单元配置不同缠绕方式的第一约束层,从而将推进结构的伸长缩短或者扭转等多种动作的组合得以实现。
7.本发明提供一种自主推进型软体机器人主体,支撑结构包括:定位膨胀单元,固定设置于管体的外周壁上,适于沿管体的径向膨胀或收缩, 并可在膨胀时与人体腔道固定,收缩时与人体腔道分离;第二约束层,沿管体的周向环绕在定位膨胀单元的外部,适于限定定位膨胀单元沿管体的径向膨胀或收缩。利用定位膨胀单元膨胀卡在腔道内可以将推进结构的一端或两端固定于腔道内某一位置,实现软体机器人主体的驻停探测,或者为推进结构的伸缩以及转向提供驻足点,使得自主推进型软体机器人主体可以自动行走在腔道内。
8.本发明提供一种自主推进型软体机器人主体,支撑结构还包括设置于所述管体上、适于利用负压将所述自主推进型软体机器人主体吸附于所述人体腔道上的负压定位装置,所述负压定位装置包括:负压孔,设于所述管体外周壁均匀布置上并与所述人体腔道连通;负压导管,连接所述负压孔与所述体供排装置提供负压的支路相连。负压定位装置能利用负压将负压孔吸附于腔道壁上,实现了良好的固定效果。当配合定位膨胀单元使用时,可以在腔道孔径较大,定位膨胀单元无法固定时可以利用负压定位装置辅助固定。
9.本发明提供一种自主推进型软体机器人主体,还包括外包层,包覆设置于推进结构和支撑结构的外部。使用柔性材料的外包层能够降低对人体腔道的刺激,防止流体腔内的流体泄露从而污染人体腔道,起到保护和维持无菌的环境。
10.本发明提供一种自主推进型软体机器人主体,包括检测装置,检测装置包括:拉伸传感器,设于推进结构上并可检测推进结构的伸长状态;压力传感器,设于支撑结构上并可检测支撑结构对人体腔道的施加的压力;以利用上述的传感器可以及时获得腔道内的数据和自主推进型软体机器人 主体与腔道作用力的状态,进而可以将获取的数据反馈至处理部门处理后,转化为机械控制信号,发送至各个执行部门,从而及时调整自主推进型软体机器人主体的运动状态,实现自主推进型软体机器人主体的智能化运动。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的实施例1中提供自主推进型软体机器人主体的立体图;
图2为实施例1中自主推进型软体机器人主体的爆炸图;
图3为实施例1中推进结构中第一约束层设置纵剖图;
图4为实施例1中第一约束层的第一种缠绕方式示意图;
图5为实施例1中第一约束层的第二种缠绕方式示意图
图6为实施例1中支撑结构的结构示意图;
图7为实施例1中第二约束层的缠绕方式示意图;
图8为实施例1中自主推进型软体机器人主体在腔道内的转向示意图;
图9为实施例1中的自主推进型软体机器人主体行走过程示意图;
图10为实施例1中球面端头的立体图。
图11为实施例1中控制系统与自主推进型软体机器人主体连接示意图;
图12为实施例2中推进结构的横剖图;
图13为实施例3中的推进结构的示意图;
图14为实施例5中的自主推进型软体机器人主体组成示意图;
图15为实施例5中自主推进型软体机器人主体变形示意图。
附图标记说明:
2-管体;3-推进结构;4-支撑结构;5-管线部;6-流体供排装置;7-检测装置;8-控制系统;11-连接端;12-探测端;21-管体腔;31-第一驱动单元;32-第二驱动单元;33-第三驱动单元;34-第一约束层;35-第一膨胀体;36-膨胀腔;37-第一流体容置腔;38-第一流体供排管道;41-定位膨胀单元;42-第二约束层;43-负压定位装置;44-第二流体供排管道;45-第二流体容置腔;71-压力传感器;72-拉伸传感器;121-球面端头;122-器械连接口;123-输送管接口;124-CCD摄像头;431-负压孔;432-负压导管。
具体实施方式
下面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
实施例1
本实施例提供一种软体机器人主体,其结构如图1至图11所示,适于在腔道内自动行走,其包括管体2、推进结构3、支撑结构4,管体2的内部沿轴向设有管体腔21,如图2所示推进结构3包括沿管体2轴向相对于管体腔21的轴心均匀地固定设置于管体腔21的周壁上的第一驱动单元31、第二驱动单元32和第三驱动单元33,第一驱动单元31,第二驱动单元32和第三驱动单元33,可分别沿管体2的轴向伸长或收缩。如图8所示,在 管体2中沿轴向均匀分布的第二驱动单元32和第三驱动单元33分别沿管体2轴向膨胀时,膨胀的一侧伸长,未膨胀或收缩一侧缩短,推进结构3向未膨胀或收缩一侧弯曲,实现了自主推进型软体机器人主体在腔道内的自由转向。通过控制三个驱动单元的轴向伸长或收缩,实现推进机构的整体伸长、扭转伸长、减压收缩以及任意方向的弯曲,相比于现有技术中在软体机器人主体中设置绳驱动结构等硬质转向装置进行转向,本实施例提供的自主推进型软体机器人主体中的推进装置结构中不存在硬质物体,其人体舒适度和操作安全性得到了提高。此外,该软体机器人主体由于不含有刚性部件以及铁磁性部件,因此该机器人主体具有磁兼容的优点,可以实现在磁共振影像下的术中实时导航。
如图1和图2所示,支撑结构4位于推进结构3的两端,每两个相邻的支撑结构4之间设有一个推进结构3,支撑结构4与推进结构3固定连接,设置于管体腔21的外周壁上,适于将自主推进型软体机器人主体的至少一端固定于腔道,并为自主推进型软体机器人主体在腔道内运动过程中提供支撑。通过两端的支撑结构4与推进结构3的协调运动,可以为推进结构3的伸缩运动提供支撑,实现自主推进型软体机器人主体在腔道内蠕虫式自主推进,降低了软体机器人主体的操作难度。
推进结构3和支撑结构4的具体数量可以有多种情况,在本实施例中,推进结构3的数量为一个,支撑结构4的数量为两个。
具体的,本实施例中的管体2使用硅胶材料,也可以是其他具有人体亲和性能的柔性材料,其加工制作方式可以使用模具进行灌注,也可以直接进行3D打印。
如图2和图3所示,本实施例中的第一驱动单元31、第二驱动单元32和第三驱动单元33内分别设有适于容纳流体的第一流体容置腔37,第一流体容置腔37通过第一流体供排管道38与流体供排装置6连通,并可在流体供排装置6的作用下沿轴向增压伸长或减压收缩。
如图3所示,本实施例中的第一流体容置腔37成型于管体2的周壁中,其一端与第一流体供排管道38相连接。通过向第一流体容置腔37内压入或排出流体,可以实现驱动单元的膨胀与收缩。将第一流体容置腔37与外部的流体供排装置6控制相连,可以控制各个驱动单元的组合或单独伸长或收缩,实现了自主推进型软体机器人主体的各种行走姿态的精准控制。
本实施例中使用气体作为填充物质,(即本实施例中的流体为气体)流体供排装置6为气体压力泵。作为可替换的实施方式,流体也可以为液体。
如图3所示,本实施例中的推进结构3还包括第一约束层34,第一约束层34沿管体2的周向环绕在管体2外部,适于限定第一驱动单元31、第二驱动单元32和第三驱动单元33沿管体2的轴向伸长或收缩。利用第一约束层34限制推进结构3上的驱动单元的膨胀方向,相比于现有技术中利用弹簧或者可折叠管限制形变方向,本实施例中的第一约束层34包裹下的推进结构3表面更为平整顺滑,对腔道壁的损伤较小。并且第一约束层34为纤维织物,质地较为柔软,其危险性较低。
具体的,本实施例中的第一约束层34采用如图4所示的缠绕方式,纤维顺时针和逆时针对称缠绕,纤维缠绕的倾斜角α在0°到40°范围内。在其包覆下的驱动单元或管体被限制只能沿轴向伸长,配合气体压力泵向每个驱动单元提供不同的气压,实现了推进结构3的弯曲加伸长的效果。 而当每个驱动单元内的气压相同时,则实现了整体伸长的效果。
作为可替换的实施方式,本实施例中的第一约束层34也可以采用如图5所示的缠绕方式,将纤维顺时针或逆时针单向缠绕,纤维缠绕的倾斜角在0°到40°范围内。当气体压力泵向驱动单元的提供气压时,在该种缠绕形式的第一约束层34包覆下的驱动单元或管体沿轴向伸长并绕轴线产生扭转,使得管体产生轴向扭转伸长的行走方式。
如图6所示,本实施例中的支撑结构4包括:支撑结构4包括定位膨胀单元41和第二约束层42,定位膨胀单元41固定设置于管体2的周壁上,适于沿管体2的径向膨胀或收缩,并可在膨胀时与腔道固定,收缩时与腔道分离。第二约束层42,沿管体2的周向环绕在定位膨胀单元41的外部,适于限定定位膨胀单元41沿管体2的径向膨胀或收缩。定位膨胀单元41具有适于容纳流体的环形的第二流体容置腔45,第二流体容置腔45通过第二流体供排管道44与气体压力泵连通。通过气体压力泵向第二流体容置腔45内加压,使得定位膨胀单元41向径向膨胀钳制在腔道内,将推进结构3的一端或两端固定于腔道内某一位置,实现软体机器人主体的驻停探测,或者为推进结构3的伸缩提供驻足点,实现了软体机器人主体可以在腔道内的蠕虫式自主推进。
本实施例中的第二约束层42采用质地柔软的编织纤维丝,其缠绕方式如图7所示,纤维顺时针和逆时针对称缠绕,缠绕的夹角α在60-90°范围内,使得其包覆下的定位膨胀单元41被限制只能沿轴径向膨胀,从而实现了定位膨胀单元41的钳制作用。
如图6所示,本实施例中的支撑结构4还包括设置于管体2上、适于 利用负压将自主推进型软体机器人主体吸附于腔道上的负压定位装置43,负压定位装置43包括:设于管体2外周壁均匀布置上并与腔道连通的负压孔431,以及连接负压孔431与气体压力泵提供负压的支路相连的负压导管432。负压定位装置43能利用负压将负压孔431吸附于腔道壁上,实现了良好的固定效果。当配合定位膨胀单元41使用时,可以在腔道孔径较大,定位膨胀单元41无法固定时可以利用负压定位装置43辅助固定。
具体的,如图6所示,本实施例中的负压孔431设置于定位膨胀单元41所处的管体2外壁上,并沿管体2均匀分布有3个。
作为可替换的实施方式,支撑结构4可以仅设置负压定位装置43对软体机器人主体的一端进行定位,适合在较细的腔道中使用,防止定位膨胀单元41膨胀时对腔道壁产生较大的交互力,造成危险。
具体的,将先进入腔道的一端的支撑结构4设为定位A端,后进入一端设为定位B端,如图9所示,本实施例中的软体机器人主体在腔道内的运动过程如下:
阶段1,定位B端采用充气膨胀或者负压吸附与腔道壁固定,推进结构3与定位A端均保持自然状态;
阶段2,定位B端保持钳制状态,定位A端保持自然状态,推进结构3充气膨胀向前延伸或转向,并推动定位A端向前移动;
阶段3,定位B端和推进结构3分别保持钳制状态和伸长状态,定位膨胀A端采用充气膨胀或者负压吸附与腔道壁固定;
阶段4,定位B端泄压脱离腔道壁,推进结构3和定位A端分别保持钳制状态和伸长状态;
阶段5,定位B端保持自然状态,定位A端保持钳制状态,推进结构3泄压向前收缩,带动定位B端向前运动;
阶段6,定位B端采用充气膨胀或者负压吸附与腔道壁固定,推进结构3保持自然状态,定位A端保持钳制状态;
至此重复执行此循环过程,使得软体机器人主体连续向前运动,反之也可以向反方向运动。
如图1和图2所示,本实施例中的软体机器人主体具有先进入腔道的探测端12和与探测端12相对的连接管线部5的连接端11。探测端12上设有球面端头121,球面端头121与管线部5相连。管线部5从管体腔21中穿过,并从连接端11处穿出延伸到外部的气体压力泵等设备上。位于探测端12的支撑结构4所在部分的管体2与内部的管线部5固定连接,其余的管体2部分仅套设在管线部5外侧,可相对管线部5滑动。当管体2上的推进结构3和支撑结构4在运动时,带动内部的管线部5在腔道内行走。
如图2所示,本实施例中管线部5中包括可容纳手术器械通过的工作通道以及连接推进结构3和支撑结构4的驱动通道,第一流体供排管道38、第二流体供排管道44以及负压导管432穿过驱动通道分别与推进结构3、支撑结构4、负压定位装置43连接。
其中,工作通道包含多个设置在管线部中的管道,这些管道适于置入传感器、摄像头、供气供水和操作器械等。从而实现前端压力的测量和管道内物质成分的采集和检测、影像的采集、管道内供气供水、伸入操作器械实现夹取和管道清理等操作。如图10所示,探测端12的球面端头121上安装有突出的集成照明功能的微型CCD摄像头124、以及与工作通道相连 通的器械连接口122、输送管接口123等装置,工作通道中可使用活检钳、电刀、生理盐水注射器等多种医疗器械通过器械连接口122进入腔道内进行操作。输送管接口123与设在工作通道内的输送管连接,实现相关药物的传递或者注射。具体的,如图10所示,本实施例中的CCD摄像头124安装于工作通道在球面端头成型的管道口中(如图10中所示圆柱形突出部分),并且左右对称布置各一个形成双目摄像头,通过设置于工作通道内的数据连接线与外部的控制系统8连接。由此生成软体机器人主体前部的立体图像,便于操作人员判断腔道环境。
本实施例的软体机器人主体还包括外包层,包覆设置于推进结构3和支撑结构4的外部。使用柔性材料的外包层能够降低对腔道的刺激,防止流体腔内的流体泄露从而污染人体腔道,起到保护和维持无菌的环境。
如图11所示,本实施例中的软体机器人主体上还设有检测装置7,压力传感器71,设于支撑结构4外侧并沿圆周均布,可检测支撑结构4对腔道的施加的压力;拉伸传感器72,设于推进结构3外侧并沿圆周均布,适于检测推进结构3的伸长或收缩状态。利用上述的传感器可以及时获知探测端12前部腔道内的情况以及软体机器人主体与腔道作用力的状态,进而可以将获取的数据反馈至处理部门处理后,转化为机械控制信号,发送至各个执行部门,从而及时调整软体机器人主体的运动状态,实现软体机器人主体的智能化运动。
本实施例中还包括与软体机器人主体以及气体压力泵相连的控制系统8,用于处理检测装置7发出的各种数据信息。也可以根据CCD摄像头124采集的图像数据自动识别腔道环境,对软体机器人的运动方向做出调整。 根据压力传感器71获得的压力数据自动调整气体压力泵所施加的气压,防止过度膨胀对腔道造成的伤害。以及根据拉伸传感器72获得的数据及时判断软体机器人主体当前的伸长或弯曲状态,进而向气体压力泵发出机械控制数据,调整推进结构3中的气压,实现了软体机器人主体的弯曲变向。
实施例2
本实施例提供一种自主推进型软体机器人主体,其与实施例1的区别在于,本实施例中的第一约束层34分别沿第一驱动单元31、第二驱动单元32和第三驱动单元33的周向环绕在第一驱动单元31、第二驱动单元32和第三驱动单元33外部,适于限定第一驱动单元31、第二驱动单元32和第三驱动单元33沿管体2的轴向伸长或收缩。如图11所示,将第一约束层34分别包覆在驱动单元外侧,对每个驱动单元的限制效果更为精确,同时也可以为各个驱动单元配置不同缠绕方式的第一约束层34,从而将推进结构3的伸长缩短或者扭转等多种动作的组合得以实现。
实施例3
如图13所示,本实施例提供一种自主推进型软体机器人主体,与实施例1中的主推进型软体机器人主体的区别在于,第一驱动单元31、第二驱动单元32和第三驱动单元33中分别具有第一膨胀体35,且第一流体容置腔37成型于第一膨胀体35中。具体的,如图12所示,管体2的周壁上沿周向均匀开有三个膨胀腔36,三个第一膨胀体35分别放置于每个膨胀腔36内且每个第一膨胀体35的形状与膨胀腔36相匹配,从而形成了第一驱动单元31、第二驱动单元32和第三驱动单元33。每个第一膨胀体35内部均开设有一个第一流体容置腔37,第一流体容置腔37的一端连接成型于第 一膨胀体内部的第一流体供排管道38。当流体进入第一流体容置腔37中时,第一膨胀体35发生膨胀,使得膨胀腔36也发生形变,进而带动膨胀腔36所在位置的管体2发生形变。此种结构的驱动单元实现了膨胀体的更换,防止因为单个驱动单元的损坏导致整个管体2的报废。
相应的,如图13所示,本实施例中的第一约束层34缠绕在第一膨胀体35的外壁中,用以限制第一膨胀体35的膨胀方向。当然,第一约束层34也可以缠绕在推进结构3所在的管体2的外部。
作为可替换的实施方式,本实施例中的第一驱动单元31、第二驱动单元32和第三驱动单元33的膨胀腔内也可以分别设有多个膨胀体,利用多个膨胀体协同膨胀实现了单个驱动单元的更多角度的变向,其灵活性得到了提高,运动姿态较为丰富。
实施例4
本实施例提供一种自主推进型软体机器人主体,其与实施例1的区别在于,推进结构3包括沿管体2周向均匀分布的大于3个所述驱动单元。相比于现有技术中推进机构仅能轴向直线伸长缩短的技术方案,通过设置均匀分布的多个驱动单元,可以为推进结构3提供更多的姿态变化,实现推进结构3的角度变化,使得软体机器人主体在三维空间内调整运动方向,从而能在腔道内做出更多的动作,实现在多分支的腔道和弯曲腔道中自由运动,以适应腔道的复杂环境。
实施例5
本实施例提供一种自主推进型软体机器人主体,其如图14所示,其结构与实施例1中的软体机器人主体的区别在于,本实施例中的软体机器人 主体沿管体2轴向布置有两个推进结构3和三个支撑结构4,三个支撑结构4分别设置于两个推进结构3的两端及中间。使用两段推进结构3和三个支撑结构4依次交替固定在管体2上,可以为软体机器人主体在腔道内提供更多的运动自由度,使其能够适应腔道复杂的弯曲变化。而三个支撑结构4可以为推进结构3提供更多支撑点,减小了单侧支撑结构4对腔道壁的集中作用力,降低了腔道穿孔的风险。同时此结构的软体机器人主体实现了推进结构3和支撑结构4的模块化设置,亦可使更多的支撑结构4和推进结构3相组合,使得软体机器人主体的推进方式更为多样化,运动更为灵活,仿真效果明显。在降低风险的同时能够适应腔道的复杂环境。
作为替换实施方式,本实施例中的推进结构3和支撑结构4也可以使用如图15中所示的“推进结构3+支撑结构4+推进结构3+支撑结构4”或者“支撑结构4+推进结构3+推进结构3+支撑结构4”等组合方式。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (13)

  1. 一种自主推进型软体机器人主体,适于在腔道内自动行走,其特征在于,包括管体(2),其内部沿轴向设有管体腔(21)及:至少一个推进结构(3),包括沿所述管体(2)轴向相对于所述管体腔(21)的轴心均匀地固定设置于所述管体腔(21)的周壁上的第一驱动单元(31)、第二驱动单元(32)和第三驱动单元(33),所述第一驱动单元(31),第二驱动单元(32)和所述第三驱动单元(33),可分别沿所述管体(2)的轴向伸长或收缩;
    至少两个支撑结构(4),每两个相邻的所述支撑结构(4)之间设有至少一个所述推进结构(3),所述支撑结构(4)与所述推进结构(3)固定连接,设置于所述管体腔(21)的外周壁上,适于将所述自主推进型软体机器人主体的至少一端固定于所述腔道,并为所述自主推进型软体机器人主体在腔道内运动过程中提供支撑。
  2. 根据权利要求1所述的自主推进型软体机器人主体,其特征在于,所述第一驱动单元(31)、所述第二驱动单元(32)和所述第三驱动单元(33)内分别设有适于容纳流体的第一流体容置腔(37),所述第一流体容置腔(37)通过第一流体供排管道(38)与流体供排装置(6)连通,并可在所述流体供排装置(6)的作用下沿轴向增压伸长或减压收缩。
  3. 根据权利要求2所述的自主推进型软体机器人主体,所述第一流体容置腔(37)成型于所述管体(2)的周壁中,其一端与所述第一流体供排管道(38)相连接。
  4. 根据权利要求1或2所述的自主推进型软体机器人主体,其特征在于, 所述第一驱动单元(31)、所述第二驱动单元(32)和所述第三驱动单元(33)分别包括至少一个第一膨胀体(35),所述第一流体容置腔(37)成型于所述第一膨胀体(35)中。
  5. 根据权利要求4所述的自主推进型软体机器人主体,其特征在于,所述管体(2)沿周向均匀开设有膨胀腔(36),所述第一膨胀体(35)设置于所述膨胀腔(36)内。
  6. 根据权利要求1-5任意一项所述的自主推进型软体机器人主体,其特征在于,所述推进结构(3)包括沿所述管体(2)周向均匀分布的大于3个驱动单元。
  7. 根据权利要求1-6中任一项所述的自主推进型软体机器人主体,其特征在于,所述推进结构(3)还包括第一约束层(34),所述第一约束层(34)沿所述管体(2)的周向环绕在所述管体(2)外部,适于限定第一驱动单元(31)、所述第二驱动单元(32)和所述第三驱动单元(33)沿所述管体(2)的轴向伸长或收缩。
  8. 根据权利要求1-7中任一项所述的自主推进型软体机器人主体,其特征在于,所述第一约束层(34)分别沿所述第一驱动单元(31)、所述第二驱动单元(32)和所述第三驱动单元(33)的周向环绕在所述第一驱动单元(31)、所述第二驱动单元(32)和所述第三驱动单元(33)外部,适于限定第一驱动单元(31)、所述第二驱动单元(32)和所述第三驱动单元(33)沿所述管体(2)的轴向伸长或收缩。
  9. 根据权利要求1-8中任一项所述的自主推进型软体机器人主体,其特征在于,所述支撑结构(4)包括:
    定位膨胀单元(41),固定设置于所述管体(2)的周壁上,适于沿所述管体(2)的径向膨胀或收缩,并可在膨胀时与所述腔道固定,收缩时与所述腔道分离;
    第二约束层(42),沿所述管体(2)的周向环绕在所述定位膨胀单元(41)的外部,适于限定所述定位膨胀单元(41)沿所述管体(2)的径向膨胀或收缩。
  10. 根据权利要求9所述的自主推进型软体机器人主体,其特征在于,所述定位膨胀单元(41)具有适于容纳流体的第二流体容置腔(45),所述第二流体容置腔(45)通过第二流体供排管道(44)与流体供排装置(6)连通;所述第二流体容置腔(45)为环形。
  11. 根据权利要求9或10所述的自主推进型软体机器人主体,其特征在于,所述支撑结构(4)还包括设置于所述管体(2)上、适于利用负压将所述自主推进型软体机器人主体吸附于所述腔道上的负压定位装置(43),所述负压定位装置(43)包括:
    负压孔(431),设于所述管体(2)外周壁均匀布置上并与所述腔道连通;
    负压导管(432),连接所述负压孔(431)与所述流体供排装置(6)提供负压的支路相连。
  12. 根据权利要求1-11中任一项所述的自主推进型软体机器人主体,其特征在于,还包括外包层,包覆设置于所述推进结构(3)和所述支撑结构(4)的外部,所述外包层为柔性材料。
  13. 根据权利要求1-12中任一项所述的自主推进型软体机器人主体,其 特征在于,还包括检测装置(7),所述检测装置(7)包括:
    压力传感器(71),设于所述支撑结构(4)外侧并沿圆周均布,可检测所述支撑结构(4)对所述腔道的施加的压力;
    拉伸传感器(72),设于所述推进结构(3)外侧并沿圆周均布,适于检测所述推进结构(3)的伸长或收缩状态。
PCT/CN2018/114117 2018-05-18 2018-11-06 自主推进型软体机器人主体 WO2019218615A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/742,422 US11950763B2 (en) 2018-05-18 2020-01-14 Self-propelled soft robot body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810480355.3 2018-05-18
CN201810480355.3A CN108652570B (zh) 2018-05-18 2018-05-18 自主推进型软体机器人主体

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/742,422 Continuation US11950763B2 (en) 2018-05-18 2020-01-14 Self-propelled soft robot body

Publications (1)

Publication Number Publication Date
WO2019218615A1 true WO2019218615A1 (zh) 2019-11-21

Family

ID=63776393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/114117 WO2019218615A1 (zh) 2018-05-18 2018-11-06 自主推进型软体机器人主体

Country Status (3)

Country Link
US (1) US11950763B2 (zh)
CN (1) CN108652570B (zh)
WO (1) WO2019218615A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111331586A (zh) * 2019-12-26 2020-06-26 北京理工大学 一种流体控制的逻辑软体驱动器
CN113927624A (zh) * 2021-10-18 2022-01-14 九江学院 一种基于可卷薄壁管的可伸展四足机器人
CN115194729A (zh) * 2022-03-08 2022-10-18 厦门大学嘉庚学院 一种蛇形机器人橡胶气囊驱动装置及工作方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108652570B (zh) * 2018-05-18 2023-06-09 清华大学 自主推进型软体机器人主体
CN109159109B (zh) * 2018-10-19 2021-04-09 哈尔滨工业大学 一种单气源驱动的可重构软体机器人模块及机器人
CN109262591B (zh) * 2018-10-19 2021-07-27 哈尔滨工业大学 一种具有自重构功能的软体模块机器人
CN109514545A (zh) * 2018-11-15 2019-03-26 詹子勋 一种多功能柔性机械手
CN109770840A (zh) * 2019-01-24 2019-05-21 浙江工业大学 一种可变刚度的柔性胃镜
CN110900653A (zh) * 2019-12-04 2020-03-24 贵州理工学院 一种基于流体多通道结构的柔性机械臂
CN111498404B (zh) * 2020-04-20 2022-01-11 深圳市筋斗云大数据技术服务有限公司 一种物料分拣分流盘、物料分拣分流系统和方法
CN112428298B (zh) * 2020-11-17 2022-03-15 中国科学院宁波材料技术与工程研究所 一种软体机器人臂及其控制系统
CN112998860A (zh) * 2020-12-11 2021-06-22 北京信息科技大学 一种用于微创外科手术单节软体操作器
CN112692822B (zh) * 2021-01-05 2022-08-02 威海星空软体机器人科技有限公司 可实现缠绕运动的线驱动软体机械臂
CN112890956B (zh) * 2021-02-08 2022-05-13 清华大学 柔性驱动器及驱动系统
CN113357482A (zh) * 2021-07-30 2021-09-07 天津科技大学 一种柔性驱动的主动转向型管道机器人
CN114081421A (zh) * 2021-11-19 2022-02-25 湖南省华芯医疗器械有限公司 一种插入部、内窥镜及驱动方法
CN114227708B (zh) * 2021-12-16 2024-04-12 燕山大学 基于可变刚度的模块化仿生装置及其控制方法
DE102022117389A1 (de) * 2022-07-12 2024-01-18 Andreas Karguth Mikrorobotische Einheit zur Fortbewegung und Positionierung in organischen Hohlräumen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101622107A (zh) * 2006-10-13 2010-01-06 机扑工程技术利得股份有限公司 蠕虫状机构
CN101669809A (zh) * 2009-09-24 2010-03-17 上海交通大学 主动可控式胶囊内镜机器人系统
CN104523215A (zh) * 2015-01-15 2015-04-22 黄明 一种管腔蠕动摄影检测器及检测装置
CN108652570A (zh) * 2018-05-18 2018-10-16 清华大学 自主推进型软体机器人主体

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4176662A (en) * 1977-06-17 1979-12-04 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Apparatus for endoscopic examination
US4676228A (en) * 1985-10-25 1987-06-30 Krasner Jerome L Medical apparatus having inflatable cuffs and a middle expandable section
IT1285533B1 (it) * 1996-10-22 1998-06-08 Scuola Superiore Di Studi Universitari E Di Perfezionamento Sant Anna Robot endoscopico
US6699179B2 (en) * 2000-01-27 2004-03-02 Scimed Life Systems, Inc. Catheter introducer system for exploration of body cavities
JP4080887B2 (ja) * 2001-02-28 2008-04-23 コリア インスティテュート オブ サイエンス アンド テクノロジー 内視鏡装置
CN100346942C (zh) * 2003-06-27 2007-11-07 松下电器产业株式会社 层积型多关节部驱动机构及其制造方法、设置有该机构的抓握手和机器人臂
CA2555314C (en) * 2004-02-09 2016-02-02 Smart Medical Systems Ltd. Endoscope assembly
JP3770902B1 (ja) 2005-02-24 2006-04-26 了司 服部 大腸内視鏡検査補助具
CN101179978A (zh) * 2005-02-24 2008-05-14 日本欧斯蒂克株式会社 大肠内窥镜检查辅助用具
CN103006165B (zh) 2012-12-14 2014-12-10 上海交通大学 刚度可变的柔性内窥镜机器人

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101622107A (zh) * 2006-10-13 2010-01-06 机扑工程技术利得股份有限公司 蠕虫状机构
CN101669809A (zh) * 2009-09-24 2010-03-17 上海交通大学 主动可控式胶囊内镜机器人系统
CN104523215A (zh) * 2015-01-15 2015-04-22 黄明 一种管腔蠕动摄影检测器及检测装置
CN108652570A (zh) * 2018-05-18 2018-10-16 清华大学 自主推进型软体机器人主体

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111331586A (zh) * 2019-12-26 2020-06-26 北京理工大学 一种流体控制的逻辑软体驱动器
CN111331586B (zh) * 2019-12-26 2023-07-04 北京理工大学 一种流体控制的逻辑软体驱动器
CN113927624A (zh) * 2021-10-18 2022-01-14 九江学院 一种基于可卷薄壁管的可伸展四足机器人
CN113927624B (zh) * 2021-10-18 2023-04-07 九江学院 一种基于可卷薄壁管的可伸展四足机器人
CN115194729A (zh) * 2022-03-08 2022-10-18 厦门大学嘉庚学院 一种蛇形机器人橡胶气囊驱动装置及工作方法

Also Published As

Publication number Publication date
CN108652570A (zh) 2018-10-16
US20200221938A1 (en) 2020-07-16
CN108652570B (zh) 2023-06-09
US11950763B2 (en) 2024-04-09

Similar Documents

Publication Publication Date Title
WO2019218615A1 (zh) 自主推进型软体机器人主体
US6699179B2 (en) Catheter introducer system for exploration of body cavities
US8602973B2 (en) Catheter introducer system for exploration of body cavities
US10058235B2 (en) Steerable catheter
US7963911B2 (en) Locomotive endoscope assembly for fluid supply
US8684911B2 (en) Self-propelled endoscopic device
US20080091063A1 (en) Endoscope assembly
US20080091073A1 (en) Inflatable actuation device
US20140088547A1 (en) Methods of using an adjustable variable stiffness medical device
WO2009067544A2 (en) Inflatable artificial muscle for elongated instrument
JP2012081130A (ja) 内視鏡推進装置及び内視鏡用カバー並びに内視鏡用の摩擦材
JP2012081129A (ja) 内視鏡推進装置
US20210205581A1 (en) System, device and method for advancing an article along a path
JPH0564627A (ja) 管内検査装置
CN114007487A (zh) 用于内窥镜检查的机器人
JPH07113755A (ja) 管内自走装置
JP2011041749A (ja) 管内移動体用アクチュエータ、内視鏡、及び管内移動体用アクチュエータの製造方法
CN115844319A (zh) 一种用于宫腔诊疗的软体驱动器系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18919214

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18919214

Country of ref document: EP

Kind code of ref document: A1