WO2019218420A1 - 一种有机废弃物快速转化能源的方法 - Google Patents

一种有机废弃物快速转化能源的方法 Download PDF

Info

Publication number
WO2019218420A1
WO2019218420A1 PCT/CN2018/092030 CN2018092030W WO2019218420A1 WO 2019218420 A1 WO2019218420 A1 WO 2019218420A1 CN 2018092030 W CN2018092030 W CN 2018092030W WO 2019218420 A1 WO2019218420 A1 WO 2019218420A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
phase portion
fermentation
fuel cell
liquid phase
Prior art date
Application number
PCT/CN2018/092030
Other languages
English (en)
French (fr)
Inventor
李欢
刘跃岭
景琦
Original Assignee
清华大学深圳研究生院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学深圳研究生院 filed Critical 清华大学深圳研究生院
Publication of WO2019218420A1 publication Critical patent/WO2019218420A1/zh
Priority to US16/736,829 priority Critical patent/US11535542B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/52Propionic acid; Butyric acids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/121Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/005Combined electrochemical biological processes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/56Lactic acid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/121Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering
    • C02F11/122Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering using filter presses
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/121Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering
    • C02F11/127Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering by centrifugation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • C02F2001/46142Catalytic coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46115Electrolytic cell with membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/10Energy recovery
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/18Removal of treatment agents after treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies

Definitions

  • the invention relates to the technical field of organic waste energy, in particular to a method for rapidly converting energy of organic waste.
  • Organic waste includes organic wastewater, sludge, kitchen waste, etc. These wastes contain a lot of water, but they also contain high organic matter content and have the potential to convert energy.
  • the main ways to energyize organic waste include thermochemical methods and biological methods. Thermochemical methods include incineration, co-firing, pyrolysis and the like. These technologies require pre-dehydration and drying of organic waste, which consumes a large amount of energy, and the energy recovery efficiency of the combustion process is low.
  • the biological method mainly converts organic waste into methane and other combustible gas through anaerobic microorganisms.
  • fuel cells are a new type of organic energy conversion energy pathway with high energy efficiency.
  • a liquid catalytic fuel cell can utilize a complex organic matter containing a large amount of water as a fuel under low temperature conditions ( ⁇ 100 ° C).
  • the existing liquid-flow catalytic fuel cell cannot convert lipids, and the catalyst cannot be separated from the treatment residue, so it cannot be practically used for treating organic waste.
  • the present invention proposes a method for rapidly converting energy into organic waste, which can significantly improve the efficiency of converting organic waste into energy.
  • a method for rapidly converting energy from organic waste includes the following steps:
  • the solid phase portion is disposed or reused as a residue, and the liquid phase portion enters the liquid flow to catalyze the fuel cell to convert the organic matter in the liquid phase portion into electrical energy.
  • the above technical solution provided by the invention combines anaerobic fermentation technology and improved liquid flow catalytic fuel cell technology, wherein anaerobic fermentation technology can realize rapid conversion and decomposition of complex organic waste containing lipid components, and liquid catalytic fuel Battery technology can quickly and directly convert fermentation broth into electrical energy, thereby increasing the efficiency of converting organic waste into electrical energy.
  • the treatment cycle of the method of the present invention can be shortened to 3 to 7 days, and the energy efficiency can be improved, compared with the treatment cycle of anaerobic digestion for 15 to 30 days and the energy conversion rate of only 15 to 40%. To 45 to 50%.
  • the liquid catalytic fuel cell uses a proton exchange membrane to separate the anode and the cathode, the anolyte uses phosphomolybdic acid as a catalyst, and air or pure oxygen as a cathode oxidant; when the liquid phase partially enters the liquid stream After catalyzing the fuel cell, the flow-catalyzed fuel cell is operated at 80 to 95 ° C to convert the organic matter in the liquid phase portion into electrical energy.
  • the phosphomolybdic acid is dissolved in an anolyte of the flow catalytic fuel cell. More preferably, after the process of converting the organic matter in the liquid phase portion into electrical energy is completed, an ammonium salt is added to the anolyte to form an ammonium phosphomolybdate precipitate for recovery of phosphomolybdic acid.
  • the phosphomolybdic acid is attached to the anode electrode of the liquid flow catalytic fuel cell, and after the process of converting the organic matter in the liquid phase portion into electrical energy is completed, the residual moisture directly flows out of the liquid flow catalysis The fuel cell.
  • the phosphomolybdic acid is combined with the insoluble particles, and after the process of converting the organic matter in the liquid phase portion into electrical energy, the phosphomolybdic acid is recovered by filtration, centrifugation or magnetic field separation;
  • the insoluble particles include carbon microspheres and/or magnetic particles.
  • step S1 is carried out in a fermentation reactor. More preferably, the fermentation reactor employs butyric acid fermentation, propionic acid fermentation, ethanol fermentation, lactic acid fermentation or alkaline fermentation.
  • step S2 when the solid-liquid separation is carried out in step S2, a filtration method or a centrifugation method is employed.
  • a specific embodiment of the present invention provides a method for rapidly converting energy from organic waste, comprising the following steps S1, S2 and S3:
  • Step S1 performing anaerobic fermentation on the organic waste to convert the macromolecular organic matter in the organic waste into a soluble small molecule organic matter to obtain a fermentation liquid; the anaerobic fermentation may be performed in a fermentation reactor
  • the fermentation type may be a butyric acid fermentation, a propionic acid fermentation, an ethanol fermentation, a lactic acid fermentation or an alkaline fermentation, and the like, and the like.
  • the organic waste is an organic waste containing lipids, and after the anaerobic fermentation, the lipid component is decomposed into small-chain fatty acids such as short-chain fatty acids and glycerin.
  • Step S2 performing solid-liquid separation on the fermentation liquid to obtain a solid phase portion and a liquid phase portion, respectively, and the solid-liquid separation in this step may be carried out by filtration or centrifugation.
  • Step S3 the solid phase portion is disposed or reused as a residue, and the liquid phase portion enters the liquid stream to catalyze the fuel cell to convert the organic matter in the liquid phase portion into electrical energy.
  • the liquid catalytic fuel cell used in the present invention uses a proton exchange membrane to separate the anode and the cathode, the anolyte uses phosphomolybdic acid H 3 PMo 12 O 40 as a catalyst, and the cathode uses air or pure oxygen as a catalyst. Oxidizer.
  • the battery is operated at 80 to 95 ° C to directly convert the organic matter in the liquid phase portion of the fermentation liquid into electrical energy.
  • the phosphomolybdic acid as the anode catalyst may be dissolved in the anolyte of the fuel cell, or may be insoluble or adhered to the anode electrode or may be combined with insoluble particles such as carbon microspheres and/or magnetic particles.
  • an ammonium salt may be added to the anolyte. Recovery of phosphomolybdic acid is carried out by precipitation of ammonium phosphomolybdate.
  • the phosphomolybdic acid is attached to the anode electrode, after the process of converting the organic matter in the liquid phase portion into electrical energy, the remaining moisture directly flows out of the liquid catalytic fuel cell; in the phosphomolybdic acid
  • the recovery of the phosphomolybdic acid is carried out by a filtration method, a centrifugation method or a magnetic field separation method after the completion of the conversion of the organic matter in the liquid phase portion into electric energy.
  • the method of the present invention is used for rapid energy treatment.
  • the kitchen waste is placed in a fermentation reactor, and the residence time is set to 4 days, and the fermentation type is adjusted by butyric acid fermentation;
  • the obtained fermentation broth is discharged from the fermentation reactor, and then centrifuged, and the organic carbon (TOC) in the supernatant (liquid phase portion) accounts for 80% of the total TOC of the kitchen waste; the supernatant enters the liquid flow catalysis.
  • the initial TOC was 4.20 g/L after adjusting the concentration, and after treatment for 24 h, it was reduced to 1.30 g/L, and the conversion rate was about 70%.
  • the entire process took 5 days, the organic matter conversion rate was 56% (in terms of TOC), and the system energy efficiency (output power/input energy) was 45.72%.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Mechanical Engineering (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Fuel Cell (AREA)

Abstract

一种有机废弃物快速转化能源的方法,包括以下步骤:S1、对有机废弃物进行厌氧发酵,已使有机废弃物中的大分子有机质转化为可溶的小分子有机质,得到发酵液;S2、对发酵液进行固液分离,分别获得固相部分和液相部分;S3、所述固相部分作为残渣进行处置或再利用,所述液相部分进入液流催化燃料电池以使所述液相部分中的有机质转化为电能。该有机废弃物快速转化能源的方法能快速、高速地将有机废弃物转化为电能。

Description

一种有机废弃物快速转化能源的方法 技术领域
本发明涉及有机废弃物能源化技术领域,尤其是涉及一种有机废弃物快速转化能源的方法。
背景技术
有机废弃物包括有机废水、污泥、餐厨垃圾等,这些废弃物含有大量水分,但同时也含有较高的有机质含量,具有转化能源的潜力。目前有机废弃物能源化的主要途径包括热化学法和生物法等。热化学法包括焚烧、混烧、热解等技术,这些技术都需要对有机废弃物进行预先脱水、干燥,需要消耗大量能量,同时燃烧过程的能量回收效率较低。生物法主要是通过厌氧微生物将有机废弃物转化为甲烷等可燃气,但这一方法处理周期长,有机质转化率低,甲烷还需要进一步燃烧产热或产电,因此总体能量效率也较低。除上述方法外,燃料电池是一种新型的有机质转化能源途径,具有较高的能源效率。在多种燃料电池中,液流催化燃料电池可以在低温条件下(<100℃)利用含有大量水分的复杂有机质作为燃料。然而,现有的液流催化燃料电池不能转化脂类,催化剂也无法与处理残渣分离,因此还不能实际用于处理有机废弃物。
以上背景技术内容的公开仅用于辅助理解本发明的发明构思及技术方案,其并不必然属于本专利申请的现有技术,在没有明确的证据表明上述内容在本专利申请的申请日前已经公开的情况下,上述背景技术不应当用于评价本申请的新颖性和创造性。
发明内容
为弥补上述现有技术的不足,本发明提出一种有机废弃物快速转化能源的方法,能显著提高有机废弃物转化能源的效率。
本发明为达上述目的提出以下技术方案:
一种有机废弃物快速转化能源的方法,包括以下步骤:
S1、对有机废弃物进行厌氧发酵,以使所述有机废弃物中的大分子有机质转化为可溶的小分子有机质,得到发酵液;
S2、对所述发酵液进行固液分离,分别获得固相部分和液相部分;
S3、所述固相部分作为残渣进行处置或再利用,所述液相部分进入液流催化燃料电池以使所述液相部分中的有机质转化为电能。
本发明提供的上述技术方案,结合了厌氧发酵技术和改进的液流催化燃料电池技术,其中厌氧发酵技术可以实现含有脂类成分的复杂有机废弃物的快速转化和分解,液流催化燃料电池技术可以将发酵液快速、直接转化为电能,从而提高有机废弃物转化电能的效率。以有机废弃物污泥为例,相对于厌氧消化15~30天的处理周期和仅15~40%的能量转化率,本发明的方法处理周期可以缩短为3~7天,能量效率可以提高至45~50%。
优选地,所述液流催化燃料电池采用质子交换膜隔离阴阳两极,阳极电解液采用磷钼酸作为催化剂,以及,采用空气或纯氧作为阴极氧化剂;当所述液相部分进入所述液流催化燃料电池后,使所述液流催化燃料电池于80~95℃运行,以使所述液相部分中的有机质转化为电能。
优选地,所述磷钼酸溶解于所述液流催化燃料电池的阳极电解液中。更优选地,在完成所述液相部分中的有机质转化为电能的过程后,往所述阳极电解液中加入铵盐以形成磷钼酸铵沉淀进行磷钼酸的回收。
优选地,所述磷钼酸附着于所述液流催化燃料电池的阳极电极上,并且,在完成所述液相部分中的有机质转化为电能的过程后,剩余水分直接流出所述液流催化燃料电池。
优选地,所述磷钼酸与不溶性颗粒结合,并且,在完成所述液相部分中的有机质转化为电能的过程后,采用过滤法、离心法或磁场分离法回收所述磷钼酸;其中,所述不溶性颗粒包括碳微球和/或磁性颗粒。
优选地,步骤S1于一发酵反应器中进行。更优选地,所述发酵反应器采用丁酸发酵、丙酸发酵、乙醇发酵、乳酸发酵或碱性发酵。
优选地,步骤S2进行固液分离时,采用过滤法或离心法。
具体实施方式
下面结合具体的实施方式对本发明作进一步说明。
本发明的具体实施方式提供了一种有机废弃物快速转化能源的方法,包括如下步骤S1、S2和S3:
步骤S1、对有机废弃物进行厌氧发酵,以使所述有机废弃物中的大分子有机质转化为可溶的小分子有机质,得到发酵液;所述厌氧发酵可在一发酵反应器中进行,发酵类型可以采用丁酸发酵、丙酸发酵、乙醇发酵、乳酸发酵或碱性发酵等等不限于此。在优选的实施例中,所述有机废弃物是含有脂类的有机废弃物,在进行厌氧发酵后,其中的脂类成分分解为短链脂肪酸和甘油等小分子有机质。
步骤S2、对所述发酵液进行固液分离,分别获得固相部分和液相部分,此步骤中进行所述固液分离可以采用过滤法或离心法。
步骤S3、所述固相部分作为残渣进行处置或再利用,所述液相部分进 入液流催化燃料电池以使所述液相部分中的有机质转化为电能。
在一种优选的实施例中,本发明所用的液流催化燃料电池采用质子交换膜隔离阴阳两极,阳极电解液采用磷钼酸H 3PMo 12O 40作为催化剂,阴极则采用空气或纯氧作为氧化剂。当所述液相部分进入该燃料电池后,使该电池于80~95℃运行,从而使发酵液中的液相部分中的有机质直接转化为电能。其中,作为阳极催化剂的所述磷钼酸可以溶解于该燃料电池的阳极电解液中,也可以不溶而是附着在阳极电极上或与碳微球和/或磁性颗粒等不溶性颗粒结合。
在磷钼酸溶解于所述液流催化燃料电池的阳极电解液的实施例中,当完成所述液相部分中的有机质转化为电能的过程后,可以往所述阳极电解液中加入铵盐以形成磷钼酸铵沉淀进行磷钼酸的回收。而在磷钼酸附着在所述阳极电极上的实施例中,在完成所述液相部分中的有机质转化为电能的过程后,剩余水分直接流出所述液流催化燃料电池;在磷钼酸与所述不溶性颗粒结合的实施例中,磷钼酸的回收是完成所述液相部分中的有机质转化为电能的过程后,采用过滤法、离心法或磁场分离法回收。
以某餐厨垃圾为例,采用本发明的前述方法进行快速能源化处理,首先将该餐厨垃圾置于发酵反应器,设置停留时间4天,通过碱液调控发酵类型为丁酸发酵;到时间则将得到的发酵液从发酵反应器排出,然后进行离心分离,上清液(液相部分)中有机碳(TOC)占该餐厨垃圾总TOC的80%;上清液进入液流催化燃料电池,调控浓度后初始TOC为4.20g/L,经24h处理后,降低至1.30g/L,转化率约70%。整个处理过程耗时5天,有机质转化率56%(以TOC计),系统能量效率(输出电能/输入能量)为45.72%。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说 明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的技术人员来说,在不脱离本发明构思的前提下,还可以做出若干等同替代或明显变型,而且性能或用途相同,都应当视为属于本发明的保护范围。

Claims (9)

  1. 一种有机废弃物快速转化能源的方法,包括以下步骤:
    S1、对有机废弃物进行厌氧发酵,以使所述有机废弃物中的大分子有机质转化为可溶的小分子有机质,得到发酵液;
    S2、对所述发酵液进行固液分离,分别获得固相部分和液相部分;
    S3、所述固相部分作为残渣进行处置或再利用,所述液相部分进入液流催化燃料电池以使所述液相部分中的有机质转化为电能。
  2. 如权利要求1所述的方法,其特征在于:所述液流催化燃料电池采用质子交换膜隔离阴阳两极,阳极电解液采用磷钼酸作为催化剂,以及,采用空气或纯氧作为阴极氧化剂;当所述液相部分进入所述液流催化燃料电池后,使所述液流催化燃料电池于80~95℃运行,以使所述液相部分中的有机质转化为电能。
  3. 如权利要求2所述的方法,其特征在于:所述磷钼酸溶解于所述液流催化燃料电池的阳极电解液中。
  4. 如权利要求3所述的方法,其特征在于:在完成所述液相部分中的有机质转化为电能的过程后,往所述阳极电解液中加入铵盐以形成磷钼酸铵沉淀进行磷钼酸的回收。
  5. 如权利要求2所述的方法,其特征在于:所述磷钼酸附着于所述液流催化燃料电池的阳极电极上,并且,在完成所述液相部分中的有机质转化为电能的过程后,剩余水分直接流出所述液流催化燃料电池。
  6. 如权利要求2所述的方法,其特征在于:所述磷钼酸与不溶性颗粒结合,并且,在完成所述液相部分中的有机质转化为电能的过程后,采用过滤法、离心法或磁场分离法回收所述磷钼酸;其中,所述不溶性颗粒包括碳微球和/或磁性颗粒。
  7. 如权利要求1至6任一项所述的方法,其特征在于:步骤S1于一发酵反应器中进行。
  8. 如权利要求7所述的方法,其特征在于:所述发酵反应器采用丁酸发酵、丙酸发酵、乙醇发酵、乳酸发酵或碱性发酵。
  9. 如权利要求1所述的方法,其特征在于:步骤S2进行固液分离时,采用过滤法或离心法。
PCT/CN2018/092030 2018-05-18 2018-06-20 一种有机废弃物快速转化能源的方法 WO2019218420A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/736,829 US11535542B2 (en) 2018-05-18 2020-01-08 Method for quickly converting organic waste into energy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810482512.4A CN108676818B (zh) 2018-05-18 2018-05-18 一种有机废弃物快速转化能源的方法
CN201810482512.4 2018-05-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/736,829 Continuation US11535542B2 (en) 2018-05-18 2020-01-08 Method for quickly converting organic waste into energy

Publications (1)

Publication Number Publication Date
WO2019218420A1 true WO2019218420A1 (zh) 2019-11-21

Family

ID=63805332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/092030 WO2019218420A1 (zh) 2018-05-18 2018-06-20 一种有机废弃物快速转化能源的方法

Country Status (3)

Country Link
US (1) US11535542B2 (zh)
CN (1) CN108676818B (zh)
WO (1) WO2019218420A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001229955A (ja) * 2000-02-14 2001-08-24 Toto Ltd 発電システム
US20040045885A1 (en) * 2002-09-10 2004-03-11 Sanyo Electric Co., Ltd. Waste treatment system for treatment of organic waste and digested liquid thereof
CN1868933A (zh) * 2006-06-09 2006-11-29 浙江大学 生物质资源化循环利用的方法
CN101560524A (zh) * 2009-05-21 2009-10-21 沈阳化工学院 一种利用生物燃料电池反应器产氢并发电转换的方法
CN102277388A (zh) * 2011-06-20 2011-12-14 中国科学院广州能源研究所 一种有机废弃物联产氢气和电的方法及其装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003242987A (ja) * 2002-02-19 2003-08-29 Matsushita Electric Ind Co Ltd 燃料電池用電極触媒の製造方法および電解質膜/電極接合体とこれを備える高分子電解質形燃料電池
CN102522571A (zh) * 2011-12-31 2012-06-27 中国科学院长春应用化学研究所 一种质子交换膜燃料电池催化剂复合载体的制备方法
CN103022546A (zh) * 2012-12-31 2013-04-03 刘军 以小分子液态有机物为燃料的液流燃料电池的制备方法
CN107342432A (zh) * 2017-07-06 2017-11-10 国电新能源技术研究院 一种农业废弃物燃料电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001229955A (ja) * 2000-02-14 2001-08-24 Toto Ltd 発電システム
US20040045885A1 (en) * 2002-09-10 2004-03-11 Sanyo Electric Co., Ltd. Waste treatment system for treatment of organic waste and digested liquid thereof
CN1868933A (zh) * 2006-06-09 2006-11-29 浙江大学 生物质资源化循环利用的方法
CN101560524A (zh) * 2009-05-21 2009-10-21 沈阳化工学院 一种利用生物燃料电池反应器产氢并发电转换的方法
CN102277388A (zh) * 2011-06-20 2011-12-14 中国科学院广州能源研究所 一种有机废弃物联产氢气和电的方法及其装置

Also Published As

Publication number Publication date
US20200140302A1 (en) 2020-05-07
US11535542B2 (en) 2022-12-27
CN108676818A (zh) 2018-10-19
CN108676818B (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
US5500306A (en) High efficiency energy conversion and treatment of organic waste
KR20160114573A (ko) 열수액화를 통해 바이오매스를 바이오원유로 전환시키기 위한 시스템 및 방법
Beegle et al. An integrated microbial electrolysis-anaerobic digestion process combined with pretreatment of wastewater solids to improve hydrogen production
JP2006348191A (ja) バイオマス循環システム
Wang et al. Anaerobic digestion of sludge filtrate using anaerobic baffled reactor assisted by symbionts of short chain fatty acid-oxidation syntrophs and exoelectrogens: Pilot-scale verification
CN111115842B (zh) 一种高氯酸铵废水的处理方法
Shen et al. Treatment of recalcitrant wastewater and hydrogen production via microbial electrolysis cells
CN114029319A (zh) 一种市政湿垃圾全量资源化利用的处理方法
CN114378105A (zh) 一种餐厨垃圾与纤维素生物质协同的多级处理系统及方法
Zhen et al. Enhanced co-digestion of sewage sludge and food waste using novel electrochemical anaerobic membrane bioreactor (EC-AnMBR)
Wang et al. Anaerobic digestion of sludge filtrate assisted by symbionts of short chain fatty acid-oxidation syntrophs and exoelectrogens: Process performance, methane yield and microbial community
CN104141146A (zh) 利用有机废弃物制氢的方法及装置
CN102583768A (zh) 一种垃圾渗滤液的高效处理新方法
CN106630513A (zh) 一种新型污泥预处理方法
WO2003004423A1 (fr) Procede de traitement anaerobie d&#39;un materiau organique et appareil de traitement anaerobie
CN108033555B (zh) 一种快速启动垃圾焚烧厂渗沥液的厌氧生物处理系统的方法
CN203346383U (zh) 利用有机废弃物制氢的装置
Kadier et al. Hydrogen production through electrolysis
WO2019218420A1 (zh) 一种有机废弃物快速转化能源的方法
CN111606526A (zh) 一种双室微生物燃料电池处理页岩气开发油基泥浆的新方法
CN112939393B (zh) 一种无电子供体实现污泥电发酵产己酸并同步分离的装置
RU2460695C1 (ru) Установка для получения биогаза, электрической, тепловой энергии и удобрений из отходов сельского хозяйства
CN110240258B (zh) 基于人体排泄物的微生物能源转化集成系统及转化方法
Zhang et al. Feasibility of hydrogen recovery and optimization of gas production from protein-rich food waste by bio-electrochemical system
JP4124636B2 (ja) 燃料電池・メタン発酵サイクルシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18919191

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18919191

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18919191

Country of ref document: EP

Kind code of ref document: A1