WO2019218374A1 - 一种天然气水合物固态流化采掘破碎实验装置及实验方法 - Google Patents
一种天然气水合物固态流化采掘破碎实验装置及实验方法 Download PDFInfo
- Publication number
- WO2019218374A1 WO2019218374A1 PCT/CN2018/087651 CN2018087651W WO2019218374A1 WO 2019218374 A1 WO2019218374 A1 WO 2019218374A1 CN 2018087651 W CN2018087651 W CN 2018087651W WO 2019218374 A1 WO2019218374 A1 WO 2019218374A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- module
- experimental
- hydrate
- crushing
- power liquid
- Prior art date
Links
- 238000005065 mining Methods 0.000 title claims abstract description 38
- 238000002474 experimental method Methods 0.000 title claims abstract description 28
- NMJORVOYSJLJGU-UHFFFAOYSA-N methane clathrate Chemical compound C.C.C.C.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O NMJORVOYSJLJGU-UHFFFAOYSA-N 0.000 title claims abstract description 27
- 238000005243 fluidization Methods 0.000 title claims abstract description 22
- 239000007788 liquid Substances 0.000 claims abstract description 54
- 238000012545 processing Methods 0.000 claims abstract description 19
- 239000007921 spray Substances 0.000 claims abstract description 17
- 238000005070 sampling Methods 0.000 claims abstract description 13
- 239000012530 fluid Substances 0.000 claims description 36
- 238000011084 recovery Methods 0.000 claims description 30
- 239000007787 solid Substances 0.000 claims description 14
- 238000000926 separation method Methods 0.000 claims description 13
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 239000003345 natural gas Substances 0.000 claims description 8
- 230000007246 mechanism Effects 0.000 claims description 7
- 230000008859 change Effects 0.000 claims description 4
- 238000006073 displacement reaction Methods 0.000 claims description 3
- 238000005086 pumping Methods 0.000 claims description 3
- 230000001105 regulatory effect Effects 0.000 claims description 3
- 238000012360 testing method Methods 0.000 claims description 3
- 150000004677 hydrates Chemical class 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 32
- 230000008569 process Effects 0.000 abstract description 13
- 230000009286 beneficial effect Effects 0.000 abstract description 3
- 238000001514 detection method Methods 0.000 abstract description 2
- 239000002245 particle Substances 0.000 description 8
- 238000013461 design Methods 0.000 description 6
- 238000000354 decomposition reaction Methods 0.000 description 5
- -1 Natural gas hydrates Chemical class 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 239000013535 sea water Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000036571 hydration Effects 0.000 description 2
- 238000006703 hydration reaction Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 238000009933 burial Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/01—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells specially adapted for obtaining from underwater installations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D21/00—Separation of suspended solid particles from liquids by sedimentation
- B01D21/26—Separation of sediment aided by centrifugal force or centripetal force
- B01D21/267—Separation of sediment aided by centrifugal force or centripetal force by using a cyclone
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C19/00—Other disintegrating devices or methods
- B02C19/06—Jet mills
- B02C19/068—Jet mills of the fluidised-bed type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C23/00—Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
- B02C23/08—Separating or sorting of material, associated with crushing or disintegrating
- B02C23/10—Separating or sorting of material, associated with crushing or disintegrating with separator arranged in discharge path of crushing or disintegrating zone
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B04—CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
- B04C—APPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
- B04C9/00—Combinations with other devices, e.g. fans, expansion chambers, diffusors, water locks
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B41/00—Equipment or details not covered by groups E21B15/00 - E21B40/00
- E21B41/0099—Equipment or details not covered by groups E21B15/00 - E21B40/00 specially adapted for drilling for or production of natural hydrate or clathrate gas reservoirs; Drilling through or monitoring of formations containing gas hydrates or clathrates
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B49/00—Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/286—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N2001/002—Devices for supplying or distributing samples to an analysing apparatus
Definitions
- the invention relates to a natural gas hydrate solid-state fluidized mining and crushing experimental device and an experimental method, in particular to a natural gas hydrate solid-state fluidized mining method suitable for deep sea non-diagenetic natural gas hydrate solid fluidized jet mining, crushing and recovery and separation method. Broken experimental device and experimental method.
- Natural gas hydrates are replacement energy sources with development potential, and their total amount is about twice that of other fossil energy sources. About 85% of natural gas hydrates in the South China Sea are deposited in shallow sediments in the deep seabed in a weakly cemented form (non-diagenetic). At present, the natural gas hydrate has been mined by the injection method, the pressure reduction method, the chemical injection method and the combination of the above methods, but the above existing methods all need to break the inherent phase of the natural gas hydrate to make it on the seabed. The decomposition of natural gas has the potential risk of causing geological and ecological disasters, and the mining efficiency is low, which is currently not commercially applicable. Therefore, exploring an efficient and safe method for mining natural gas hydrates has become a hot topic in the world.
- China has conducted two trials in the South China Sea. From the sampling results, China's natural gas hydrates have the characteristics of shallow burial and poor cementation.
- the concept of solid-state fluidized mining has been developed, that is, the mechanical synthesis method is used to break the hydrate into fine particles without changing the gas hydrate temperature and pressure field equilibrium conditions. Then, it is mixed with seawater and transported to the sea surface through a closed conveying riser. Finally, the hot seawater of the sea surface is used to promote the decomposition of natural gas hydrate particles to generate natural gas.
- the biggest advantage of this mining method is that it does not change the temperature and pressure of the hydrate ore layer, and does not damage the lower voided reservoir hydrate, thereby avoiding a series of engineering geological disasters caused by hydrate decomposition at the seabed, while avoiding a large amount of hydrate overflow.
- the second advantage of this method is that the gas expansion work of hydrate decomposition in the riser can reduce the energy consumption of transportation.
- the third advantage is that the mining efficiency of solid fluidized mining depends on the speed of mechanical mining and hydration. The decomposition rate of the particles is much faster than that of the existing mining method. Therefore, the method has high mining efficiency and has a good application prospect.
- the improved high-pressure jet crushing based on this method is to crush the solid hydrate by injecting a high-pressure jet on the water surface into the seabed, and input a high-pressure jet to the seabed by a pipeline multi-phase pump and use a part of the jet to break the power. The hydrate is then pumped back onto the water surface.
- the technical problem to be solved by the present invention is to provide an experiment for simulating the phase change of natural gas hydrate in the jet crushing process, the mixed transport of seawater particles, the secondary crushing of hydrate particles and the hydrate separation effect for the high pressure jet crushing and mining method.
- the apparatus and method provide a parameter basis for the equipment design, manufacture and production method for the natural gas fluidized solid-state fluidized mining of the submarine non-diagenetic hydrate to provide process parameters and equipment support for the natural gas hydrate solid state fluid jet mining and crushing process.
- a natural gas hydrate solid state fluidized mining and crushing experimental device the experimental device comprises a power liquid supply module, a hydrate suction module, a pipeline conveying module and a hydrate fluidization breaking module, wherein:
- a power liquid supply module that generates a power liquid to power the hydrate suction module and the hydrate fluidization breaker module
- a hydrate suction module for pumping the hydrate of the hydrate fluidized fracture module after being crushed
- a pipeline delivery module comprising an input pipeline and an output pipeline, the input pipeline conveying the power fluid to the hydrate fluidization fracture module, and the output pipeline conveying the fractured hydrate to the hydrate suction module;
- a hydrate fluidization crushing module comprising an experimental tank, a support frame placed above the experimental tank, and a variable speed moving mechanism mounted on the support frame; the moving mechanism comprises a fixed rail and a moving slider, and the moving slider side is vertical Installing a high pressure jumper and a suction jumper; an upper end of the high pressure jumper is connected to an outlet of the input line, an upper end of the suction jumper is connected to an inlet of the output line; and a lower end of the high pressure jumper is mounted on the spray head A jet nozzle is mounted, the lower end of the suction jumper is connected to the recovery head, and the recovery head is provided with a recovery port; the nozzle is fixedly connected to the recovery head.
- the experimental device further includes:
- a secondary processing module comprising a pipeline type secondary crushing device and a pipeline type cyclone separating device, wherein the rear end of the hydrate suction module is sequentially connected to the pipeline type secondary crushing device and the pipeline type swirling separating device; a sampling port is provided at the inlet and or the outlet pipe of the crushing device;
- An experimental data information collection processing module comprising a processor coupled to a pressure and or flow detector mounted at a power liquid outlet of the power fluid supply module, an inlet of the input line, and a fluid output of the hydrate suction module;
- the processor is connected to the controller of the servo motor for obtaining the set speed of the moving slider.
- the hydrate recovery module is a pipeline type multi-phase pump, which includes a power liquid input end, a power liquid output end, a fluid input end and a fluid output end, and the power liquid input end inlet is connected to the power of the power liquid supply module. a liquid outlet, the power liquid output being connected to an inlet of an input line, the fluid input being connected to an outlet of the output line.
- the power liquid outlet of the power liquid supply module and the fluid output end of the hydrate suction module are installed with a flow rate and or pressure regulating device.
- the high pressure jumper and the suction jumper are adjusted in height by a clamp fixed to the moving slider.
- a plurality of jet nozzles are uniformly arranged on one side of the nozzle; the experimental slot is placed with one side close to the nozzle, and the jet nozzle is disposed obliquely below the side of the nozzle away from the experiment slot.
- the side of the nozzle away from the experiment tank is a transparent observation window.
- the experimental tank contains a sample which is a hydrate substitute sample which is similar in mechanical properties to natural gas hydrate and which does not decompose under normal temperature and normal pressure.
- jet nozzle is fixed to the spray head by a screw, and the spray head is fixed to the high pressure jumper by screwing; the recovery head is screwed to the suction jumper.
- the experimental method of the experimental device includes:
- S1 placing the prepared block sample in the experiment tank; injecting water into the experiment tank and flooding the sample; and adjusting the high pressure jumper tube and the suction jumper tube to satisfy the jet nozzle and the sample
- select and install the experimental nozzle, jet nozzle, and recovery head set the moving speed and total displacement of the moving slider, open the experimental data information acquisition module, and start the servo motor to run, check whether the moving slider is stable. No interference, and then check the servo motor speed and torque output on the computer interface connected to the experimental data information acquisition module.
- the servo motor can be turned off and the moving slider can be restored to the beginning of the experiment slot without any sudden change;
- the secondary processing module is turned on, and the fluid obtained by fluidization and crushing sequentially enters the pipeline secondary crushing device and the pipeline type cyclone separating device, adjusts the pressure and flow rate of the fluid output end, and reads the power liquid input end on the experimental data information collecting module. And the pressure and flow detector data of the power liquid output and the fluid output are recorded and recorded;
- the experimental device and its experimental method simulate the process of jet solid-state fluidized mining, including jet injection, crushed hydrate suction, secondary crushing and hydrate separation, and multiple pressure, flow detection points and crushing tests are set. Sample sampling port for convenient parameter collection;
- the parameters of the various components of the experimental device are flexible, including changing the dragging speed of the moving slider, the shape parameter of the jet nozzle, and the pressure and flow of the power fluid;
- the nozzle design of the experimental device simplifies the experimental device, and the dynamic process of jet breaking can be observed from the side of the experimental tank.
- Figure 1 is a schematic view showing the structure of an embodiment of the present invention
- FIG. 2 is a partial schematic view showing the structure of the nozzle of the embodiment
- Figure 3 is a side elevational view showing the mounting of the spray head and the experimental tank of the embodiment
- Figure 4 is a schematic view showing the installation of the high pressure jumper and the suction jumper of the embodiment
- the present invention provides a natural gas hydrate solid state fluidized mining and crushing experimental device, the experimental device comprising: a power liquid supply module 1, a hydrate suction module 2, a pipeline conveying module 3, The hydrate fluidization and crushing module 4, the secondary processing module 5 and the experimental data information collection and processing module 6.
- the power liquid supply module 1 generates a power liquid for supplying the hydrate suction module 2 and the hydrate fluidization breaking module 4; the hydrate suction module 2 is used for sucking the hydrate fluidization breaking module 4 after being broken.
- a hydrate a pipeline delivery module 3 comprising an input line 31 and an output line 32, the input line 31 delivering a power liquid to the hydrate fluidization fracture module 4, the output line 32 conveying the broken hydrate to the hydrate suction module 2;
- hydration a fluidized crushing module 4 comprising an experimental tank 41, a support frame 42 placed above the experimental tank 41, and a variable speed moving mechanism 43 mounted on the support frame 42; the moving mechanism 43 includes a fixed rail 431 and a moving slide
- the upper end of the moving slider 432 is mounted with a servo motor 44 for driving the moving slider 432.
- the moving slider 432 is vertically mounted with a high voltage jumper 45 and a suction jumper 46; the upper end of the high voltage jumper 45 is connected to the input line 31.
- the upper end of the suction jumper 46 is connected to the inlet of the output line 32; the lower end of the high pressure jumper 45 is mounted with a spray head 47 on which the jet nozzle 471 is mounted, the suction
- the lower end of the jumper pipe 46 is connected to the recovery head 48.
- the recovery head 48 is provided with a recovery port 481; the spray head 47 is fixedly connected to the recovery head 48; the secondary processing module 5 includes a pipeline type secondary crushing device 51 and a pipeline type a cyclone separating device 52, the rear end of the hydrate suction module 2 is sequentially connected to the pipeline secondary crushing device 51 and the ducted swirl separating device 52; the inlet and/or outlet pipes of the secondary crushing device 51 are provided with sampling
- the outlet 55 is provided with a recovery sand tank 54 at the lower outlet of the pipeline type cyclone separation device 52, and a recovery water tank 53 is disposed at the upper outlet of the pipeline type cyclone separation device 52; the experimental data information collection processing module 6 includes a processor 61.
- the processor 61 is coupled to a pressure and or flow detector mounted to the power fluid outlet 11 of the power fluid supply module 1, the inlet of the input line 31, and the fluid output 24 of the hydrate suction module 2;
- the controller of the servo motor 44 is used to obtain the set speed of the moving slider 432.
- the hydrate recovery module 2 is a pipeline type multi-phase pump comprising a power liquid input end 21, a power liquid output end 22, a fluid input end 23 and a fluid output end 24, the power liquid input end 21 inlet connecting the power liquid supply
- the power liquid outlet 11 of the module 1 is connected to the inlet of the input line 31, which is connected to the outlet of the output line 32.
- the test tank 41 contains a sample 49 which is a hydrate substitute sample which has mechanical properties similar to that of natural gas hydrate and which does not decompose under normal temperature and normal pressure.
- the experimental method steps of the experimental device are as follows:
- the prepared block sample 49 is placed in the experiment tank 41; water is injected into the experiment tank 41 and the sample 49 is flooded; the high pressure jumper 45 and the suction jumper 46 are adjusted to satisfy the jet.
- the set distance between the nozzle 471 and the sample 49 is selected; the experimental nozzle 47, the jet nozzle 471, and the recovery head 48 are selected and installed, and the moving speed of the moving slider 432 is set to 5 m/min, and the total displacement is 4 m.
- the data information collecting module 6 and the servo motor 44 are put into trial operation to check whether the moving slider 432 is stable or not, and then the servo motor 44 speed and torque output are viewed on the computer interface connected to the experimental data information collecting module 6, and the vibration is unchanged.
- the servo motor 44 can be turned off and the moving slider 432 can be restored to the beginning end of the experiment tank 41;
- the secondary processing module 5 is turned on, and the fluid obtained by fluidization and crushing sequentially enters the pipeline secondary crushing device 51 and the pipeline swirling separator 52, and adjusts the pressure and flow rate of the fluid output terminal 24 on the experimental data information collecting module 6. Reading and recording the pressure and flow detector data of the power liquid input end 21, the power liquid output end 22, and the fluid output end 24;
- the power liquid outlet 11 of the power liquid supply module 1 and the fluid output end 24 of the hydrate suction module 2 are provided with a flow rate and or pressure regulating device.
- the experimental method of the improved experimental apparatus is the same as the experimental method of the first embodiment.
- the improvement of the present embodiment is that the pressure and flow rate of the plurality of points are changed, including the pressure flow of the power liquid outlet 11 and the fluid output end 24, To find the optimal pressure and flow parameters for the experimental setup.
- the high-pressure jumper pipe 45 and the suction jumper pipe 46 are adjusted by the clamp 433 fixed on the moving slider 432. Vertical height.
- the jet nozzle 471 is fixed to the head 47 by screwing, and the head 47 is screwed to the high pressure jumper 45; the recovery head 48 is screwed to the suction jumper 46.
- the experimental method of the improved experimental device is the same as the experimental method of the first embodiment.
- the improvement of the present embodiment is that the high-pressure jumper 45, the suction jumper 46, the spray head 47, the jet nozzle 471 and the recovery head are detachable and realized.
- the adjustment of the plurality of parameters includes adjusting the distance between the jet nozzle 471 and the sample 49, and replacing the jet nozzle 471 and the recovery head 48 of different geometrical parameters.
- a plurality of jet nozzles 471 are uniformly disposed on one side of the nozzle 47; the experimental slot 41 is placed with one side close to the nozzle. 47.
- the jet nozzle 471 is disposed obliquely below the side of the head 47 away from the experiment tank 41.
- the side of the head 47 away from the experimental tank 41 is a transparent observation window 411.
- the experimental method of the improved experimental device is the same as the experimental method of the first embodiment.
- the improvement of the embodiment is that the nozzle 47 is disposed in the entire experimental tank 41 by using the arrangement of the jet nozzle 471 of one quarter of the circumference.
- the breaking of the sample 49 simplifies the experimental apparatus, and the design of the observation window 411 allows the experimenter to see the dynamic scene of the jet breaking sample 49 from the side of the transparent experimental tank 41.
- the experimental device and its experimental method simulate the process of jet solid-state fluidized mining, including jet injection and crushing hydrate suction, and multiple pressure, flow and sampling ports are provided for convenient operation.
- Parameter acquisition; various component parameters of the experimental device are flexible, including changing the dragging speed of the moving slider 432, the shape parameter of the jet nozzle 471, and the pressure and flow of the power liquid, and the design of the nozzle simplifies the experimental device, and The dynamic process of jet crushing can be observed from the side of the experimental tank.
- the significance of the experimental apparatus and experimental method is to use the jet crushing mining method to simulate the most suitable mining equipment and mining method parameters under the field mining conditions.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Chemical & Material Sciences (AREA)
- Food Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Drilling And Exploitation, And Mining Machines And Methods (AREA)
Abstract
一种天然气水合物固态流化采掘破碎实验装置,实验装置包括动力液供应模块(1)、水合物抽吸模块(2)、管道输送模块(3)、水合物流化破碎模块(4)、二次加工模块(5)和实验数据信息采集处理模块(6);实验装置的实验方法包括开启动力液供应模块(1)、水合物抽吸模块(2)、管道输送模块(3)、水合物流化破碎模块(4)和二次加工模块(5),实验数据信息采集处理模块(6)采集多处的压力和流量数据。有益效果是模拟了射流固态流化开采过程,同时设置有多个压力、流量检测点和破碎试样取样口,方便进行参数采集;多个部件参数灵活可变,包括改变移动滑块(432)回拖速度、射流喷嘴(471)的形状参数和动力液压力、流量;喷头(47)设计简化了实验装置,且可从实验槽(41)侧面观察射流破碎的动态过程。
Description
本发明涉及一种天然气水合物固态流化采掘破碎实验装置及实验方法,特别是涉及适用于深海非成岩天然气水合物固态流化射流采掘破碎及回收分离方法的一种天然气水合物固态流化采掘破碎实验装置及实验方法。
天然气水合物是具有开发潜力的接替能源,其总量约为其他化石能源总和的2倍。我国南海约85%的天然气水合物以弱胶结形式(非成岩)赋存于深海海底浅层沉积物中。目前天然气水合物已有开采方法有注入法、降压法、注化学剂法以及上述几种方法的联合应用,但是上述已有的方法均需打破天然气水合物的固有相态,使其在海底分解生成天然气,具有引发地质及生态灾害的潜在风险,并且开采效率低,目前还不能商业应用。因此探索出一种高效安全的海洋天然气水合物的开采方法,已成为当前世界研究热点。
我国目前已在南海进行了两次试采取样,从取样结果看,我国天然气水合物具有埋藏浅、胶结性差的特点。针对这种海底浅层弱胶结的天然气水合物,产生了固态流化开采的概念,即在不改变天然气水合物温度和压力场平衡条件下,直接利用机械采掘的方法将水合物破碎成细小颗粒,然后与海水混合通过密闭的输送立管输送至海面,最后利用海表的热海水促使天然气水合物颗粒分解生成天然气。该开采方法最大优势在于不改变水合物矿层的温度和压力,不破坏下部空隙性储层水合物,从而避免水合物在海底分解带来的一系列工程地质灾害,同时避免了因水合物大量溢出而引起的海面行船威胁和大气温室效应,该方法优势之二是立管内水合物分解的气体膨胀做功能够降低输送能耗,优势之三是固态流化开采的开采效率取决于机械采掘速度和水合物颗粒分解速率,相比与已有开采方法水合物颗粒分解速率快的多,因此该方法开采效率高的多,具有很好的应用前景。但是开采过程中,仍然存在一些装备设计难题、工艺参数和已有装备优化问题,如射流破碎装置的水力参数、破碎后水合物颗粒的粒度分布、水合物颗粒的多相输送设备、水合物颗粒的二次破碎及分离问题。
目前天然气水合物固态流化开采已有采用机械式破碎,但是该方法存在两个问题:一是在海底运行破碎机械需要大量的能量从地面输送到海底,这需要铺设海底输电线,同时还存在后期机械设备的维护问题;二是机械设备破碎水合物后仍需要一套设备将破碎后的水合物混同海水输送到水面,多套设备配合运行结构复杂成本较高。在此方法的基础上进行改进的高压射流破碎则是将水面上的高压射流射入海底对固态水合物进行破碎,利用管道式多相泵完成向海底输入高压射流并且利用射流的一部分动力将破碎后的水合物抽吸回水面上。此方法解决了以上两个问题,即不需要海底输电线,并且简化了设备,但是这个开采过程中的装备还涉及到多个参数的优化问题,比如射流破碎过程的参数,包括高压射流的压力、射流破碎的喷头设计和水面上二次加工设备的参数。
本发明要解决的技术问题是为高压射流破碎开采方法提供一种能够模拟天然气水合物在射流破碎过程中的相态变化、颗粒海水混合输送、水合物颗粒二次破碎和水合物分离效果的实验装置和方法,为海底非成岩水合物固态流化开采提供工艺参数及装备支撑的天然气水合物固态流化射流采掘破碎过程工艺提供装备设计制造和开采方法的参数依据。
本发明采用的技术方案如下:一种天然气水合物固态流化采掘破碎实验装置,所述实验装置包括动力液供应模块、水合物抽吸模块、管道输送模块和水合物流化破碎模块,其中:
动力液供应模块,其产生动力液为水合物抽吸模块和水合物流化破碎模块提供动力;
水合物抽吸模块,其用于抽吸水合物流化破碎模块破碎后的水合物;
管道输送模块,其包括输入管线和输出管线,输入管线输送动力液至水合物流化破碎模块,输出管线输送破碎后的水合物至水合物抽吸模块;
水合物流化破碎模块,其包括实验槽、置于实验槽上方的支撑架和安装在支撑架上的可调速的移动机构;所述移动机构包括固定轨道和移动滑块,移动滑块侧面垂直安装高压跨接管和抽吸跨接管;所述高压跨接管的上端连接输入管线的出口,所述抽吸跨接管的上端连接输出管线的进口;所述高压跨接管下端安装喷头,所述喷头上安装有射流喷嘴,所述抽吸跨接管的下端连接回收头,所述回收头上设置有回收口;所述喷头固定连接回收头。
进一步地,所述实验装置还包括:
二次加工模块,其包括管道式二次破碎装置和管道式旋流分离装置,所述水合物抽吸模块后端依次连接管道式二次破碎装置和管道式旋流分离装置;所述二次破碎装置的入口和或出口管道设有取样口;
实验数据信息采集处理模块,其包括处理器,处理器连接于安装在动力液供应模块的动力液出口、输入管线的进口和或水合物抽吸模块的流体输出端的压力和或流量探测器;所述处理器连接伺服电机的控制器,用于获得移动滑块的设定速度。
进一步地,所述水合物回收模块是管道式多相泵,其包括动力液输入端、动力液输出端、流体输入端和流体输出端,所述动力液输入端进口连接动力液供应模块的动力液出口,所述动力液输出端连接输入管线的进口,所述流体输入端连接输出管线的出口。
进一步地,所述动力液供应模块的动力液出口和或水合物抽吸模块的流体输出端安装流量和或压力调节装置。
进一步地,所述高压跨接管和抽吸跨接管通过固定在移动滑块上的卡箍实现调节其垂直高度。
进一步地,所述喷头的四分之一侧面均布安装有多个射流喷嘴;所述实验槽放置时使其一侧靠近喷头,所述射流喷嘴设置在喷头远离实验槽的一侧斜下方。
进一步地,所述喷头远离实验槽的一侧是透明的观察窗。
进一步地,所述实验槽里盛放试样,所述试样为力学性能与天然气水合物相似并且常温常压下不分解的水合物替代样品。
进一步地,所述射流喷嘴通过螺纹固定在喷头,所述喷头通过螺纹固定在高压跨接管;所述回收头通过螺纹固定在抽吸跨接管。
进一步地,所述实验装置的实验方法,包括:
S1:将制备好的块状试样置于实验槽内;并向实验槽内注入水并使试样被水淹没;调节高压跨接管和抽吸跨接管使其满足射流喷嘴和试样之间为设定距离;选用并安装实验用喷头、射流喷嘴、回收头,设定移动滑块的移动速度和总位移,开启实验数据信息采集模块,伺服电机开机试运行,检查移动滑块运行是否稳定无干涉,再在实验数据信息采集模块连接的计算机界面查看伺服电机转速、扭矩输出情况,平稳无突变即可关闭伺服电机并将移动滑块还原至实验槽的起始端;
S2:开启动力液供应模块,调节动力液输入端压力和流量;再次开启伺服电机,移动滑块带动射流喷嘴沿固定轨道运动,射流喷嘴喷出高压射流对样品进行流化破碎;
S3:开启二次加工模块,流化破碎所得流体依次进入管道式二次破碎装置和管道式旋流分离装置,调节流体输出端的压力和流量,在实验数据信息采集模块上读取动力液输入端、动力液输出端和流体输出端的压力和流量探测器的数据并记录;
S4:通过在管道式二次破碎装置两端的取样口、管道式旋流分离装置出口处取样;流化破碎完成后,停机;
S5:改变射流喷嘴的个数和或射流喷嘴的形状和或射流喷嘴在喷头的布置方式、移动滑块的移动速度、动力液输入端和或流体输出端的压力和或流量,重复以上步骤S2-S4。
本发明的有益效果在于:
1.本实验装置及其实验方法模拟了射流固态流化开采的过程,包括射流注入、破碎水合物抽吸、二次破碎和水合物分离,同时设置有多个压力、流量检测点和破碎试样取样口,方便进行参数采集;
2.本实验装置的多个部件参数灵活可变,包括改变移动滑块的回拖速度、射流喷嘴的形状参数和动力液的压力、流量;
3.本实验装置的喷头设计简化了实验装置,且可从实验槽侧面观察射流破碎的动态过程。
图1为依据本发明的实施例的结构示意图;
图2为实施例的喷头结构局部示意图;
图3为实施例的喷头和实验槽安装侧视示意图;
图4为实施例的高压跨接管和抽吸跨接管的安装示意图;
附图标记说明:1-动力液供应模块;11-动力液出口;2-水合物抽吸模块;21-动力液输入端;22-动力液输出端;23-流体输入端;24-流体输出端;3-管道输送模块;31-输入管线;32-输出管线;4-水合物流化破碎模块;41-实验槽;411-观察窗;42-支撑架;43-移动机构;431-固定轨道;432-移动滑块;433-卡箍;44-伺服电机;45-高压跨接管;46-抽吸跨接管;47-喷头;471-射流喷嘴;48-回收头;481-回收口;49-试样;5-二次加工模块;51-管道式二次破碎装置;52-管道式旋流分离装置;53-回收水罐;54-回收砂罐;55-取样口;6-实验数据信息采集处理模块;61-处理器。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
具体实施例一:
如图1和图2所示,本发明提供了一种天然气水合物固态流化采掘破碎实验装置,所述实验装置包括:动力液供应模块1、水合物抽吸模块2、管道输送模块3、水合物流化破碎模块4、二次加工模块5和实验数据信息采集处理模块6。
其中,动力液供应模块1,其产生动力液为水合物抽吸模块2和水合物流化破碎模块4提供动力;水合物抽吸模块2,其用于抽吸水合物流化破碎模块4破碎后的水合物;管道输送模块3,其包括输入管线31和输出管线32,输入管线31输送动力液至水合物流化破碎模块4,输出管线32输送破碎后的水合物至水合物抽吸模块2;水合物流化破碎模块4,其包括实验槽41、置于实验槽41上方的支撑架42和安装在支撑架42上的可调速的移动机构43;所述移动机构43包括固定轨道431和移动滑块432,移动滑块432上端安装驱动移动滑块432运动的伺服电机44,移动滑块432侧面垂直安装高压跨接管45和抽吸跨接管46;所述高压跨接管45的上端连接输入管线31的出口,所述抽吸跨接管46的上端连接输出管线32的进口;所述高压跨接管45下端安装喷头47,所述喷头47上安装有射流喷嘴471,所述抽吸跨接管46的下端连接回收头48,所述回收头48上设置有回收口481;所述喷头47固定连接回收头48;二次加工模块5,其包括管道式二次破碎装置51和管道式旋流分离装置52,所述水合物抽吸模块2后端依次连接管道式二次破碎装置51和管道式旋流分离装置52;所述二次破碎装置51的入口和或出口管道设有取样口55;所述管道式旋流分离装置52下方出口设置有回收砂罐54,管道式旋流分离装置52上方出口设置有回收水罐53;实验数据信息采集处理模块6,其包括处理器61,处理器61连接于安装在动力液供应模块1的动力液出口11、输入管线31的进口和或水合物抽吸模块2的流体输出端24的压力和或流量探测器;所述处理器连接伺服电机44的控制器,用于获得移动滑块432的设定速度。所述水合物回收模块2是管道式多相泵,其包括动力液输入端21、动力液输出端22、流体输入端23和流体输出端24,所述动力液输入端21进口连接动力液供应模块1的动力液出口11,所述动力液输出端22连接输入管线31的进口,所述流体输入端23连接输出管线32的出口。所述实验槽41里盛放试样49,所述试样49为力学性能与天然气水合物相似并且常温常压下不分解的水合物替代样品。
所述实验装置的实验方法步骤如下:
S1:将制备好的块状试样49置于实验槽41内;并向实验槽41内注入水并使试样49被水淹没;调节高压跨接管45和抽吸跨接管46使其满足射流喷嘴471和试样49之间为设定距离;选用并安装实验用喷头47、射流喷嘴471、回收头48,设定移动滑块432的移动速度为5m/min,总位移为4m,开启实验数据信息采集模块6,伺服电机44开机试运行,检查移动滑块432运行是否稳定无干涉,再在实验数据信息采集模块6连接的计算机界面查看伺服电机44转速、扭矩输出情况,平稳无突变即可关闭伺服电机44并将移动滑块432还原至实验槽41的起始端;
S2:开启动力液供应模块1,调节动力液输入端21的压力为5Mpa,流量为1m3/min;再次开启伺服电机44,移动滑块432带动射流喷嘴471沿固定轨道431运动,射流喷嘴471喷出高压射流对样品进行流化破碎;
S3:开启二次加工模块5,流化破碎所得流体依次进入管道式二次破碎装置51和管道式旋流分离装置52,调节流体输出端24的压力和流量,在实验数据信息采集模块6上读取动力液输入端21、动力液输出端22和流体输出端24的压力和流量探测器的数据并记录;
S4:通过在管道式二次破碎装置51两端的取样口、管道式旋流分离装置52出口处取样,进一步对加工后的水合物进行一次破碎、二次破碎和旋流分离效果分析;流化破碎完成后,停机;
S5:改变射流喷嘴471的个数和或射流喷嘴471的形状和或射流喷嘴471在喷头47的布置方式、移动滑块432的移动速度、动力液输入端21和或流体输出端24的压力和或流量,重复以上S2-S4。
具体实施例二:
如图1所示,可以依据实施例一,进一步改进的是,所述动力液供应模块1的动力液出口11和或水合物抽吸模块2的流体输出端24安装流量和或压力调节装置。
改进后的实验装置的实验方法同具体实施例一的实验方法,本实施例的改进点在于,改变多个点位的压力和流量,包括动力液出口11和或流体输出端24的压力流量,以寻找该实验装置最佳的压力和流量参数。
具体实施例三:
如图1、图2和图4所示,可以依据实施例一,进一步改进的是,所述高压跨接管45和抽吸跨接管46通过固定在移动滑块432上的卡箍433实现调节其垂直高度。所述射流喷嘴471通过螺纹固定在喷头47,所述喷头47通过螺纹固定在高压跨接管45;所述回收头48通过螺纹固定在抽吸跨接管46。
改进后的实验装置的实验方法同具体实施例一的实验方法,本实施例的改进点在于,高压跨接管45、抽吸跨接管46、喷头47、射流喷嘴471和回收头的可拆卸,实现了多个参数的可调,包括调整射流喷嘴471和试样49之间的距离,更换不同几何参数的射流喷嘴471和或回收头48。
具体实施例四:
如图3所示,可以依据实施例一,进一步改进的是,所述喷头47的四分之一侧面均布安装有多个射流喷嘴471;所述实验槽41放置时使其一侧靠近喷头47,所述射流喷嘴471设置在喷头47远离实验槽41的一侧斜下方。所述喷头47远离实验槽41的一侧是透明的观察窗411。
改进后的实验装置的实验方法同具体实施例一的实验方法,本实施例的改进点在于,喷头47采用四分之一周面的射流喷嘴471的布置即可实现对整个实验槽41中的试样49的破碎,精简了实验装置,同时观察窗411的设计可以让实验人员可以从透明的实验槽41侧面看到射流破碎试样49的动态场景。
以上可以得出的是,本实验装置及其实验方法模拟了射流固态流化开采的过程,包括射流的注入和破碎水合物的抽吸,同时设置有多个压力、流量和取样口,方便进行参数采集;本实验装置的多个部件参数灵活可变,包括改变移动滑块432的回拖速度、射流喷嘴471的形状参数和动力液的压力、流量,同时喷头的设计简化了实验装置,且可从实验槽侧面观察射流破碎的动态过程本实验装置及实验方法的意义在于采用射流破碎采掘方法来模拟出现场开采条件下的最适合的开采设备和开采方法参数。
以上揭露的仅为本发明的较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作地等同变化,仍属本发明所涵盖的范围。
Claims (10)
- 一种天然气水合物固态流化采掘破碎实验装置,其特征在于,所述实验装置包括动力液供应模块(1)、水合物抽吸模块(2)、管道输送模块(3)和水合物流化破碎模块(4),其中:动力液供应模块(1),其产生动力液为水合物抽吸模块(2)和水合物流化破碎模块(4)提供动力;水合物抽吸模块(2),其用于抽吸水合物流化破碎模块(4)破碎后的水合物;管道输送模块(3),其包括输入管线(31)和输出管线(32),输入管线(31)输送动力液至水合物流化破碎模块(4),输出管线(32)输送破碎后的水合物至水合物抽吸模块(2);水合物流化破碎模块(4),其包括实验槽(41)、置于实验槽(41)上方的支撑架(42)和安装在支撑架(42)上的可调速的移动机构(43);所述移动机构(43)包括固定轨道(431)和移动滑块(432),移动滑块(432)侧面垂直安装高压跨接管(45)和抽吸跨接管(46);所述高压跨接管(45)的上端连接输入管线(31)的出口,所述抽吸跨接管(46)的上端连接输出管线(32)的进口;所述高压跨接管(45)下端安装喷头(47),所述喷头(47)上安装有射流喷嘴(471),所述抽吸跨接管(46)的下端连接回收头(48),所述回收头(48)上设置有回收口(481);所述喷头(47)固定连接回收头(48)。
- 根据权利要求1所述天然气水合物固态流化采掘破碎实验装置,其特征在于:所述实验装置还包括:二次加工模块(5),其包括管道式二次破碎装置(51)和管道式旋流分离装置(52),所述水合物抽吸模块(2)后端依次连接管道式二次破碎装置(51)和管道式旋流分离装置(52);所述二次破碎装置(51)的入口和或出口管道设有取样口(55);实验数据信息采集处理模块(6),其包括处理器(61),处理器(61)连接于安装在动力液供应模块(1)的动力液出口(11)、输入管线(31)的进口和或水合物抽吸模块(2)的流体输出端(24)的压力和或流量探测器;所述处理器连接伺服电机(44)的控制器,用于获得移动滑块(432)的设定速度。
- 根据权利要求1所述天然气水合物固态流化采掘破碎实验装置,其特征在于:所述水合物回收模块(2)是管道式多相泵,其包括动力液输入端(21)、动力液输出端(22)、流体输入端(23)和流体输出端(24),所述动力液输入端(21)进口连接动力液供应模块(1)的动力液出口(11),所述动力液输出端(22)连接输入管线(31)的进口,所述流体输入端(23)连接输出管线(32)的出口。
- 根据权利要求1所述天然气水合物固态流化采掘破碎实验装置,其特征在于:所述动力液供应模块(1)的动力液出口(11)和或水合物抽吸模块(2)的流体输出端(24)安装流量和或压力调节装置。
- 根据权利要求1所述天然气水合物固态流化采掘破碎实验装置,其特征在于:所述高压跨接管(45)和抽吸跨接管(46)通过固定在移动滑块(432)上的卡箍(433)实现调节其垂直高度。
- 根据权利要求1所述天然气水合物固态流化采掘破碎实验装置,其特征在于:所述喷头(47)的四分之一侧面均布安装有多个射流喷嘴(471);所述实验槽(41)放置时使其一侧靠近喷头(47),所述射流喷嘴(471)设置在喷头(47)远离实验槽(41)的一侧斜下方。
- 根据权利要求6所述的天然气水合物固态流化采掘破碎实验装置,其特征在于:所述喷头(47)远离实验槽(41)的一侧是透明的观察窗(411)。
- 根据权利要求1所述天然气水合物固态流化采掘破碎实验装置,其特征在于:所述实验槽(41)里盛放试样(49),所述试样(49)为力学性能与天然气水合物相似并且常温常压下不分解的水合物替代样品。
- 根据权利要求1所述天然气水合物固态流化采掘破碎实验装置,其特征在于:所述射流喷嘴(471)通过螺纹固定在喷头(47),所述喷头(47)通过螺纹固定在高压跨接管(45);所述回收头(48)通过螺纹固定在抽吸跨接管(46)。
- 基于权利要求1到9之一所述天然气水合物固态流化采掘破碎实验装置的实验方法,其特征在于,包括:S1:将制备好的块状试样(49)置于实验槽(41)内;并向实验槽(41)内注入水并使试样(49)被水淹没;调节高压跨接管(45)和抽吸跨接管(46)使其满足射流喷嘴(471)和试样(49)之间为设定距离;选用并安装实验用喷头(47)、射流喷嘴(471)、回收头(48),设定移动滑块(432)的移动速度和总位移,开启实验数据信息采集模块(6),伺服电机(44)开机试运行,检查移动滑块(432)运行是否稳定无干涉,再在实验数据信息采集模块(6)连接的计算机界面查看伺服电机(44)转速、扭矩输出情况,平稳无突变即可关闭伺服电机(44)并将移动滑块(432)还原至实验槽(41)的起始端;S2:开启动力液供应模块(1),调节动力液输入端(21)压力和流量;再次开启伺服电机(44),移动滑块(432)带动射流喷嘴(471)沿固定轨道(431)运动,射流喷嘴(471)喷出高压射流对样品进行流化破碎;S3:开启二次加工模块(5),流化破碎所得流体依次进入管道式二次破碎装置(51)和管道式旋流分离装置(52),调节流体输出端(24)的压力和流量,在实验数据信息采集模块(6)上读取动力液输入端(21)、动力液输出端(22)和流体输出端(24)的压力和流量探测器的数据并记录;S4:通过在管道式二次破碎装置(51)两端的取样口、管道式旋流分离装置(52)出口处取样;流化破碎完成后,停机;S5:改变射流喷嘴(471)的个数和或射流喷嘴(471)的形状和或射流喷嘴(471)在喷头(47)的布置方式、移动滑块(432)的移动速度、动力液输入端(21)和或流体输出端(24)的压力和或流量,重复以上S2-S4。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/963,715 US11598180B2 (en) | 2018-05-15 | 2018-05-21 | Experimental device and experimental method for natural gas hydrate solid-state fluidized mining and crushing |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810464318.3 | 2018-05-15 | ||
CN201810464318.3A CN108825175B (zh) | 2018-05-15 | 2018-05-15 | 一种天然气水合物固态流化采掘破碎实验装置及实验方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019218374A1 true WO2019218374A1 (zh) | 2019-11-21 |
Family
ID=64148818
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/087651 WO2019218374A1 (zh) | 2018-05-15 | 2018-05-21 | 一种天然气水合物固态流化采掘破碎实验装置及实验方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11598180B2 (zh) |
CN (1) | CN108825175B (zh) |
WO (1) | WO2019218374A1 (zh) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110530730B (zh) * | 2019-08-27 | 2020-08-25 | 中国科学院武汉岩土力学研究所 | 一种用于模拟盐穴储气库夹层破碎的系统及方法 |
CN110847890B (zh) * | 2019-11-18 | 2021-01-26 | 西南石油大学 | 一种应用于海底浅层天然气水合物固态流化开采中的多相流检测装置及方法 |
CN111485866B (zh) * | 2020-04-02 | 2022-05-13 | 中国石油集团渤海钻探工程有限公司 | 旋流油水分离的实验系统及其实验方法 |
CN112761583B (zh) * | 2020-12-31 | 2022-03-29 | 西南石油大学 | 一种井下水力举升原位防砂除砂采油采气系统及方法 |
CN113341101A (zh) * | 2021-05-13 | 2021-09-03 | 中山大学 | 一种浅海环境模拟与动态监测的装置以及方法 |
CN113445966B (zh) * | 2021-08-02 | 2022-07-22 | 西南石油大学 | 一种海洋天然气水合物开采模拟装置 |
CN113622875B (zh) * | 2021-08-16 | 2023-05-05 | 南方海洋科学与工程广东省实验室(湛江) | 天然气水合物固态流化采掘腔流场模拟装置及实验方法 |
CN113818864B (zh) * | 2021-10-14 | 2023-04-07 | 中国石油大学(北京) | Das监测水合物地层水泥环完整性的模拟装置及方法 |
CN114135267B (zh) * | 2021-11-29 | 2023-05-05 | 西南石油大学 | 一种天然气水合物固态流化开采三相分离装置 |
CN113946927B (zh) * | 2021-12-20 | 2022-03-04 | 中国地质大学(北京) | 一种多金属结核采集头流场设计方法 |
CN114166469A (zh) * | 2021-12-27 | 2022-03-11 | 西南石油大学 | 一种固态流化开采射流回收流场检测实验装置及实验方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120234552A1 (en) * | 2011-03-18 | 2012-09-20 | Vaughan Susanne F | Systems and Methods for Harvesting Natural Gas from Underwater Clathrate Hydrate Deposits |
CN105004849A (zh) * | 2015-08-14 | 2015-10-28 | 西南石油大学 | 一种气体水合物固态流化开采采掘室内实验装置及方法 |
CN105064959A (zh) * | 2015-08-14 | 2015-11-18 | 西南石油大学 | 一种海底非成岩天然气水合物的绿色开采方法 |
CN105545257A (zh) * | 2016-01-11 | 2016-05-04 | 西南石油大学 | 一种海底浅层天然气水合物的开采方法及装备 |
CN105587303A (zh) * | 2016-03-08 | 2016-05-18 | 西南石油大学 | 海底浅层非成岩天然气水合物的绿色开采方法及开采装置 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090072545A1 (en) * | 1980-06-05 | 2009-03-19 | Van Michaels Christopher | Process of processes for radical solution of the air pollution and the global warming, based on the discovery of the bezentropic thermomechanics and eco fuels through bezentropic electricity |
JPH06160372A (ja) * | 1992-11-19 | 1994-06-07 | Toppan Printing Co Ltd | 試験片の製造方法 |
DE4316626A1 (de) * | 1993-05-18 | 1994-11-24 | Wacker Chemitronic | Verfahren und Vorrichtung zur Zerkleinerung von Halbleitermaterial |
GB2408800B (en) * | 2003-10-24 | 2007-07-11 | Surface Measurement Systems Lt | Method and apparatus for investigating the properties of a solid material |
US8043579B2 (en) * | 2006-04-05 | 2011-10-25 | Mitsui Engineering & Shipbuilding Co., Ltd. | Gas hydrate production apparatus and dewatering unit |
KR101217994B1 (ko) * | 2010-12-30 | 2013-01-21 | 한국해양과학기술원 | 이산화탄소 해양지중저장을 위한 바이패스형 파이프라인 수송공정 안전해석 모의실험 장치 |
CN104634931B (zh) * | 2014-10-23 | 2016-06-01 | 西南石油大学 | 天然气水合物实验回路装置 |
CN104614149A (zh) * | 2015-01-27 | 2015-05-13 | 西南石油大学 | 天然气水合物保真运移实验装置及实验方法 |
CN105203716B (zh) * | 2015-10-12 | 2017-03-29 | 西南石油大学 | 海洋天然气水合物固态流化开采实验模拟装置 |
CN105258917B (zh) * | 2015-10-22 | 2017-08-04 | 西南石油大学 | 一种模拟可燃冰流化开采立管多相流动的实验装置及方法 |
CN105717271B (zh) * | 2016-03-11 | 2018-01-16 | 西南石油大学 | 一种海洋天然气水合物固态流化开采实验回路系统 |
CN205538950U (zh) * | 2016-03-11 | 2016-08-31 | 西南石油大学 | 一种海洋天然气水合物固态流化开采实验回路系统 |
CN107218034B (zh) * | 2017-06-02 | 2020-10-23 | 西南石油大学 | 一种模拟天然气水合物钻井多种扩径段流动状态变化实验装置 |
CN107656033B (zh) * | 2017-10-12 | 2020-06-30 | 西南石油大学 | 一种天然气水合物流化分解与分离实验装置及实验方法 |
-
2018
- 2018-05-15 CN CN201810464318.3A patent/CN108825175B/zh active Active
- 2018-05-21 US US16/963,715 patent/US11598180B2/en active Active
- 2018-05-21 WO PCT/CN2018/087651 patent/WO2019218374A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120234552A1 (en) * | 2011-03-18 | 2012-09-20 | Vaughan Susanne F | Systems and Methods for Harvesting Natural Gas from Underwater Clathrate Hydrate Deposits |
CN105004849A (zh) * | 2015-08-14 | 2015-10-28 | 西南石油大学 | 一种气体水合物固态流化开采采掘室内实验装置及方法 |
CN105064959A (zh) * | 2015-08-14 | 2015-11-18 | 西南石油大学 | 一种海底非成岩天然气水合物的绿色开采方法 |
CN105545257A (zh) * | 2016-01-11 | 2016-05-04 | 西南石油大学 | 一种海底浅层天然气水合物的开采方法及装备 |
CN105587303A (zh) * | 2016-03-08 | 2016-05-18 | 西南石油大学 | 海底浅层非成岩天然气水合物的绿色开采方法及开采装置 |
Also Published As
Publication number | Publication date |
---|---|
US20210079762A1 (en) | 2021-03-18 |
US11598180B2 (en) | 2023-03-07 |
CN108825175B (zh) | 2020-06-16 |
CN108825175A (zh) | 2018-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019218374A1 (zh) | 一种天然气水合物固态流化采掘破碎实验装置及实验方法 | |
CN105545257B (zh) | 一种海底浅层天然气水合物的开采方法及装备 | |
CN110685660B (zh) | 实现支撑剂输送实验携砂液浓度精确控制的装置及方法 | |
CN113090245B (zh) | 一种天然气水合物井下旋流排序分离装置及方法 | |
CN108894755B (zh) | 一种海底天然气水合物开采系统及方法 | |
CN110006625A (zh) | 一种深海矿石水力输送系统模型实验装置 | |
CN107542431B (zh) | 一种天然气水合物海底气-液-固多相流化分离的方法 | |
CN101392638A (zh) | 一种天然气水合物固态开采实验模拟装置 | |
CN210738540U (zh) | 实现支撑剂输送实验携砂液浓度精确控制的装置 | |
CN110397424A (zh) | 一种基于降压开采的深水天然气水合物生产系统及方法 | |
CN107833502A (zh) | 一种海洋洋流模拟实验装置 | |
CN102168548A (zh) | 一种煤层气井排采测量装置及方法 | |
CN1387600A (zh) | 用于移动海底石块和沉积物的设备和方法 | |
CN103867147A (zh) | 煤层气井平行管不压井排煤粉系统 | |
CN113236192A (zh) | 一种海洋水合物水下开采系统和方法 | |
CN110374557A (zh) | 一种基于流化开采的天然气水合物水下生产系统与方法 | |
GB0112107D0 (en) | Borehole production boosting system | |
CN206111115U (zh) | 一种连续油管欠平衡冲砂装置 | |
CN206554899U (zh) | 一种新型油水井解堵技术装置 | |
CN101956545B (zh) | 一种橇装集成活动注水装置 | |
CN208999253U (zh) | 一种矿产气力输送系统实验装置 | |
CN110295910B (zh) | 泥质粉砂型矿藏开采方法及装置 | |
CN112252978A (zh) | 一种模拟海洋模块钻机分流盒空气搅拌的实验装置 | |
RU2498050C2 (ru) | Способ добычи метана из придонных залежей твердых гидратов | |
TWI597095B (zh) | 將含水下甲烷水合物之沉積物轉換為可銷售產品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18918757 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18918757 Country of ref document: EP Kind code of ref document: A1 |