WO2019218128A1 - 小尺寸金属氧化物及其复合材料和制备方法 - Google Patents

小尺寸金属氧化物及其复合材料和制备方法 Download PDF

Info

Publication number
WO2019218128A1
WO2019218128A1 PCT/CN2018/086773 CN2018086773W WO2019218128A1 WO 2019218128 A1 WO2019218128 A1 WO 2019218128A1 CN 2018086773 W CN2018086773 W CN 2018086773W WO 2019218128 A1 WO2019218128 A1 WO 2019218128A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal oxide
metal
nickel
alloy
cobalt
Prior art date
Application number
PCT/CN2018/086773
Other languages
English (en)
French (fr)
Inventor
喻学锋
高明
康翼鸿
黄逸凡
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Priority to PCT/CN2018/086773 priority Critical patent/WO2019218128A1/zh
Publication of WO2019218128A1 publication Critical patent/WO2019218128A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/04Oxides; Hydroxides

Definitions

  • the invention relates to the field of nano materials, in particular to a small-sized metal oxide and a composite material thereof and a preparation method thereof.
  • metal oxide nanosheets have been rapidly developed and have wide applications in photoelectric conversion, photochromism, and photocatalysis.
  • methods such as grinding, hydrothermal, chemical reduction, and ball milling have been developed, such as CN101402463A, CN104310486A, and the like.
  • these methods mainly use metal salts as raw materials, the prepared metal oxides have poor purity, and there are problems in that various chemical reagents are required.
  • the strategy of preparing metal oxide nanosheets using metal or metal oxide as a raw material has also been developed.
  • CN105118685A discloses a method of preparing a cobalt oxide nanosheet supercapacitor electrode material in situ.
  • the method comprises the following steps: pretreating the cobalt sheet substrate to remove grease and oxide on the surface; then, the cobalt sheet is placed in absolute ethanol for ultrasonic vibration soaking, taken out, dried, and stored in vacuum; and then the cobalt sheet is oxidized.
  • the cobalt oxide supercapacitor electrode material can be obtained.
  • CN105905870A discloses a method for preparing a metal oxide two-dimensional nano material by using a non-layered metal oxide as a raw material, which is a high-energy ball milling of a non-layered metal oxide powder for 140-160 hours to obtain a ball-milling powder; subsequently, a ball-milling powder and a base
  • the solution is mixed and heated at a constant temperature of 110 to 130 ° C; the heated sample is subjected to solid-liquid separation and drying to obtain a metal oxide nanosheet having an average thickness of 2 to 10 nm and a width of 0.5 to 2 ⁇ m.
  • CN103088386A discloses a method for preparing a metal oxide semiconductor nanomaterial, which uses a metal electrode as a raw material to form a metal oxide nanomaterial by plasma induction between electrodes in water. Since a high-energy plasma is generated between the two metal electrodes, it is possible to obtain a bundled copper oxide or a tufted zinc oxide nanomaterial.
  • CN106892407A discloses a two-dimensional ultra-thin double-metal hydroxide nanosheet and a preparation method thereof, which use a bulk layered double metal hydroxide as a raw material to etch a bulk layered double metal hydroxide by plasma.
  • the anion causes the balance between the plies to be destroyed, causing the layered hydroxide to be stripped into an ultra-thin double hydroxide.
  • an ultrathin double hydroxide can be prepared by using a bulk layered double hydroxide as a raw material and can be stripped by an aqueous dielectric barrier discharge plasma (Adv. Mater. 2017, 29, 1701546).
  • the metal oxide nanosheets prepared by the prior art have a large size, and it is not possible to easily and efficiently prepare a product having a size of less than 100 nm.
  • metal oxide nanosheets In order to expand the application of metal oxide nanosheets, especially in the field of catalysis, it is urgent to develop a new technical strategy, which is simple and efficient to prepare small sizes without using chemical reagents.
  • Metal oxide nanosheets In order to expand the application of metal oxide nanosheets, especially in the field of catalysis, it is urgent to develop a new technical strategy, which is simple and efficient to prepare small sizes without using chemical reagents. Metal oxide nanosheets.
  • metal oxide nanostructures By compounding metal oxide nanostructures onto other matrix materials, materials with special properties can be obtained, or the properties of the matrix materials can be improved.
  • the metal oxide nanostructure itself is relatively fragile and difficult to be effectively compounded on the matrix material.
  • CN104134788A discloses a method for preparing a three-dimensional gradient metal hydroxide/oxide electrode material by electrodeposition, mainly by using metal current deposition in a current guiding solution to form a metal hydroxide/oxide nanostructure on a working electrode.
  • CN107705999A discloses a preparation method of a metal oxide core-shell nanosheet array electrode material obtained by using a nickel foam as a base, a metal salt and various chemical reagents as raw materials, and a hydrothermal method combined with subsequent calcination to obtain Co 3 O 4 @NiO.
  • CN105118685A discloses a method of preparing a cobalt oxide nanosheet supercapacitor electrode material in situ.
  • the method comprises the following steps: pretreating the cobalt sheet substrate to remove grease and oxide on the surface; then, the cobalt sheet is placed in absolute ethanol for ultrasonic vibration soaking, taken out, dried, and stored in vacuum; and then the cobalt sheet is oxidized.
  • the cobalt oxide supercapacitor electrode material can be obtained.
  • CN105905870A discloses a method for preparing a metal oxide two-dimensional nano material by using a non-layered metal oxide as a raw material, which is a high-energy ball milling of a non-layered metal oxide powder for 140-160 hours to obtain a ball-milling powder; subsequently, a ball-milling powder and a base
  • the solution is mixed and heated at a constant temperature of 110 to 130 ° C; the heated sample is subjected to solid-liquid separation and drying to obtain a metal oxide nanosheet having an average thickness of 2 to 10 nm and a width of 0.5 to 2 ⁇ m.
  • the nanomaterials prepared by this method are difficult to be composited onto other materials.
  • CN103088386A discloses a method for preparing a metal oxide semiconductor nanomaterial, which uses a metal electrode as a raw material to form a metal oxide nanomaterial by plasma induction between electrodes in water. Since a high-energy plasma is generated between the two metal electrodes, it is possible to obtain a bundled copper oxide or a tufted zinc oxide nanomaterial.
  • Liu et al. proposed a method of using plasma as an electrode, copper foil as a counter electrode, and sodium chloride/glucose as an electrolyte to oxidize copper foil to cuprous oxide nanoparticles (J. Phys. D: Appl. Phys .49 (2016) 275201). Velusanmy et al.
  • a plasma as a cathode and an ethanol solution as an electrolyte to oxidize the copper foil of the anode to copper oxide nanoparticles
  • Another solution is to use atmospheric pressure microplasma as the anode, copper sulfate as the solution, and ITO as the cathode. Under the discharge treatment, copper and cuprous oxide nanocrystals can be deposited on the ITO (RSC Adv., 2015, 5). , 62619). Similarly, this method cannot composite metal oxide nanostructures into other materials, and the application of the prepared products is limited.
  • Fiber materials are widely used. As a representative of fiber materials, carbon fiber has become aerospace, military equipment, transportation, chemical energy and energy because of its high specific strength, high specific modulus, high temperature resistance and ablation resistance. An important fiber material in the biomedical and other industries. By combining fibrous materials with other functional materials, fibrous materials with unique properties can be obtained.
  • the coating structure on the surface of the fibers can change the mechanical properties of the fibers and impart new optical, electrical, magnetic, catalytic and biological activities to the fibers.
  • CN101250735A discloses an apparatus and method for continuously composite electroplating metals and nanoparticles on a carbon fiber surface by plating the fibers in an acidic nickel sulfate solution comprising metal and nanoparticles by electrodeposition.
  • CN101680129A discloses a silica-based composite oxide fiber, a catalyst fiber using the same, and a method for producing the same, which are a silica-based composite fiber containing a metal oxide by calcination.
  • CN103503078A discloses a conductive fibrous material which deposits a metal or metal oxide on the surface of a base fibrous material by means of electrostatic adsorption.
  • CN104576079A discloses a metal oxide nanowire/activated carbon fiber composite electrode material and a preparation thereof, which is prepared by immersing activated carbon fiber in a solution containing cobalt ions and nickel ions for 0.5 to 5 hours, and then transferring into a hydrothermal reactor to add ammonium. The salt is further reacted.
  • CN104869852A discloses the surface attachment of particles to cellulose ester fibers by contacting the cellulose ester fibers with a mixture comprising metal oxide particles dispersed in a protic liquid such that the metal oxide particles adhere to the surface of the fibers.
  • CN105097302A discloses activated carbon fiber for supercapacitor and preparation method thereof, which comprises mixing manganese acetate solution, ammonium acetate solution and dimethyl sulfoxide solution as a precursor solution, and depositing manganese dioxide nano material on carbon fiber surface by electrochemical deposition method. .
  • CN104392847A discloses a method for preparing a metal oxide/activated carbon fiber composite electrode material with controllable morphology, which comprises polyacrylonitrile and different mass ratio nitrate as raw materials, and electrospinning metal ion doped polyacrylonitrile. The fiber is preoxidized and carbonized to form a metal oxide/polyacrylonitrile-based activated carbon fiber.
  • CN104766963A discloses a method for preparing metal oxide-carbon fiber nanocomposites, which uses cotton wool as a raw material for forming carbon fibers, firstly carrying corresponding metal oxide nanoparticles on a cotton wool fiber by liquid phase reaction, and then placing them in a nitrogen atmosphere furnace. Calcination, carbonization of the fibers.
  • the object of the present invention is to overcome the deficiencies of the prior art and provide an efficient, green and environmentally friendly small-sized metal oxide nanosheet, a composite material thereof and a preparation method thereof.
  • a method for preparing a small-sized metal oxide nanosheet comprises the following steps:
  • the volume mixing ratio of the metal powder to water is 1: (5 to 50).
  • the atmospheric pressure plasma treatment time is from 10 min to 60 min.
  • the discharge gas of the atmospheric pressure plasma is at least one selected from the group consisting of argon gas, nitrogen gas, helium gas, oxygen gas, and air.
  • the metal is an alloy formed of a transition metal or a transition metal. Further, it is at least one selected from the group consisting of cobalt, nickel, copper, iron, zinc, manganese, and molybdenum, and the alloy includes a nickel-cobalt alloy, a nickel-iron alloy, a copper-nickel alloy, an iron-cobalt-nickel alloy, and a cobalt-zinc alloy.
  • the solution is grounded through the conductor when the atmospheric pressure plasma is introduced.
  • the mixed liquid is stirred while being passed through an atmospheric pressure plasma at a rate of 50 to 500 rpm.
  • the drying temperature does not exceed 80 °C.
  • a method for preparing a metal oxide nanostructure composite material comprising the following steps:
  • the volume mixing ratio of the metal powder to water is 1: (5 to 50).
  • the nanostructure is selected from the group consisting of nanoparticles, nano mesopores, and nanosheets.
  • the nanostructure unit has a thickness of 10 nm to 1 ⁇ m.
  • the metal is an alloy formed of a transition metal or a transition metal.
  • the transition metal is selected from at least one of cobalt, nickel, copper, iron, zinc, manganese, and molybdenum
  • the alloy includes nickel-cobalt alloy, nickel-iron alloy, copper-nickel alloy, iron-cobalt-nickel alloy, cobalt. Zinc alloy.
  • the atmospheric pressure plasma discharge treatment time is not less than 5 minutes.
  • the conductive base material is selected from the group consisting of carbon cloth, carbon fiber paper, nickel foam, copper foam, metal sheet, conductive film, conductive fiber, and conductive glass.
  • the carrier gas of the atmospheric pressure plasma is at least one of argon gas, nitrogen gas, helium gas, oxygen gas or air.
  • the obtained metal oxide nanostructure composite material was prepared as described above.
  • a fiber material having a metal oxide nanostructure the metal oxide is uniformly distributed on the surface of the conductive fiber in a nanostructure form, and the volume of the metal oxide does not exceed 30% of the volume of the conductive fiber.
  • the nanostructure is selected from the group consisting of nanoparticles, nanomesons, and nanosheets.
  • the nanostructure unit has a thickness of 10 nm to 1 ⁇ m.
  • the electrical resistivity of the electrically conductive fiber is not higher than 10 7 ⁇ cm.
  • the electrically conductive fibers are selected from the group consisting of carbon fibers, metal fibers or fibers having a conductive layer.
  • the carbon fiber is selected from at least one of viscose-based carbon fibers, polyacrylonitrile-based carbon fibers, pitch-based carbon fibers, and the like.
  • the metal is an alloy formed of a transition metal or a transition metal.
  • the transition metal is at least one selected from the group consisting of cobalt, nickel, copper, iron, zinc, manganese, and molybdenum, and the alloy includes a nickel-cobalt alloy, a nickel-iron alloy, a copper-nickel alloy, an iron-cobalt-nickel alloy, and a cobalt-zinc alloy.
  • a method for preparing a fiber material having a metal oxide nanostructure comprising the following steps:
  • the mixed solution is subjected to a discharge plasma treatment and dried to obtain a fiber material having a metal oxide nanostructure.
  • the volume mixing ratio of the metal powder to water is 1: (5 to 50).
  • the drying temperature is not higher than 80 °C.
  • the electrical resistivity of the electrically conductive fiber is not higher than 10 7 ⁇ cm.
  • the discharge plasma treatment time is 5 to 30 min.
  • the metal is an alloy formed of a transition metal or a transition metal.
  • the transition metal is selected from at least one of cobalt, nickel, copper, iron, zinc, manganese, and molybdenum
  • the alloy includes nickel-cobalt alloy, nickel-iron alloy, copper-nickel alloy, iron-cobalt-nickel alloy, cobalt. Zinc alloy.
  • the carrier gas of the atmospheric pressure plasma is at least one of argon gas, nitrogen gas, helium gas, oxygen gas or air.
  • the electrically conductive fibers are selected from the group consisting of carbon fibers, metal fibers or fibers having a conductive layer.
  • the carbon fiber is selected from at least one of viscose-based carbon fibers, polyacrylonitrile-based carbon fibers, pitch-based carbon fibers, and the like.
  • the metal fiber may be a common stainless steel fiber, silver fiber, gold fiber or the like.
  • the small-sized metal oxide nanosheet prepared by the method of the invention is formed by corrosion oxidation of micron-sized metal particles with plasma and water, and the nanosheet has an average size of 10 to 80 nm, and has a high specific surface area and a stable structure. It combines the excellent physicochemical properties of metal oxides with the small size effect of nanosheets.
  • the technical scheme of the invention is novel, simple, green and environmentally friendly, and breaks through the limitation of using a large amount of chemical reagents and high-pressure heating when preparing nanosheets, using only metal powder as raw material, utilizing plasma and The characteristics of water enable the preparation of small-sized metal oxides.
  • the method of the invention realizes the preparation of the metal oxide nanostructure composite material by using the synergistic action of the atmospheric pressure plasma and water without using a metal salt solution or a chemical reagent, and the preparation method is green and environmentally friendly.
  • the method of the invention can conveniently compound gold oxide nanostructures on various conductive materials to obtain composite materials with new characteristics.
  • the metal oxide nanostructure composite material of the invention is formed based on corrosion oxidation of micron-scale metal particles with plasma and water, has high specific surface area and stable structure, and combines good conductivity of the substrate, metal oxide Excellent physicochemical properties and small size effects of nanostructures.
  • the fiber material with metal oxide nanostructure of the invention has a relatively uniform surface supported with a metal oxide nanostructure, which can effectively improve the performance of the fiber or impart new properties to the fiber.
  • the invention adopts a transition metal or an alloy powder thereof as a raw material, water as a solvent, and under the action of an atmospheric pressure plasma, the micro-scale metal and its alloy are oxidized into nanometer by the double corrosion oxidation reaction of the plasma and water on the metal. Scale metal oxides. Since the whole system constitutes a closed loop, in the process of plasma acting on water, the positive particles and electrons in the solution separate the nano metal oxide from the unoxidized metal surface and deposit the conductive fibers on the counter electrode by the action of current. The surface, and self-assembled into a uniform ordered nanostructure under the action of surface energy, finally prepares a metal oxide/composite fiber material. The prepared fiber not only maintains the original properties, but also has a good surface interface and capacitor performance.
  • the preparation method of the invention is simple, easy to operate, green and environmentally friendly, and does not require any chemical reagents.
  • the nanometer metal oxide is accelerated by utilizing the large specific surface area of the metal particles at a micro scale, the synergistic oxidation corrosion of plasma and water. Formation.
  • the size of the nano-metal oxide is well controlled by this oxidation and separation mechanism. Too small a size cannot be separated, and oxidation continues. When the size reaches an order of magnitude, it can be separated from the original metal. As the nanometal oxide is separated, the primary metal particles continue to undergo corrosion oxidation, thereby forming a continuous growth process.
  • Example 1 is a transmission electron micrograph of a cobalt oxide nanosheet prepared in Example 1;
  • Example 2 is a transmission electron micrograph of the nickel oxide nanosheet prepared in Example 2;
  • Example 3 is a transmission electron micrograph of a nickel-cobalt alloy oxide nanosheet prepared in Example 3;
  • Example 4 is a transmission electron micrograph of a nickel-iron alloy oxide nanosheet prepared in Example 4.
  • Example 5 is a transmission electron micrograph of an iron-cobalt-nickel alloy oxide nanosheet prepared in Example 5.
  • Example 6 is a Raman spectrum of a cobalt oxide nanosheet carbon cloth composite prepared in Example 6;
  • Example 7 is a scanning electron microscope image of a cobalt oxide nanosheet carbon cloth composite prepared in Example 6;
  • Example 8 is a scanning electron microscope image of a cobalt oxide nanosheet nickel composite prepared in Example 7;
  • Example 9 is a scanning electron micrograph of a nickel-cobalt nanosheet foamed nickel composite prepared in Example 8.
  • Example 10 is a scanning electron microscope image of a nickel oxide carbon cloth composite prepared in Example 9;
  • Example 11 is a scanning electron micrograph of an iron oxide carbon cloth composite prepared in Example 10.
  • Figure 12 is a scanning electron micrograph of the polyester film of Comparative Example 1;
  • Figure 13 is an original carbon fiber electron micrograph
  • Example 14 is a scanning electron micrograph of a carbon fiber material having a ferroferric oxide nanostructure prepared in Example 1;
  • Example 15 is a scanning electron micrograph of a carbon fiber material having a cobalt oxide nanostructure prepared in Example 2;
  • Example 16 is a scanning electron micrograph of a stainless steel fiber material having a nickel-cobalt alloy nanostructure obtained in Example 3;
  • Example 17 is a scanning electron micrograph of a silver fiber material having nickel oxide nanostructures prepared in Example 4.
  • Figure 18 is a scanning electron micrograph of the manganese dioxide/carbon composite fiber material prepared in Example 5.
  • Figure 19 is a scanning electron micrograph of the polyacrylonitrile fiber after the treatment of Comparative Example 2.
  • a method for preparing a small-sized metal oxide nanosheet comprises the following steps:
  • the volume mixing ratio of the metal powder to water is 1: (5 to 50).
  • the atmospheric pressure plasma treatment time is from 10 min to 60 min.
  • the processing time can be adjusted depending on the type of metal or alloy.
  • the discharge gas of the atmospheric pressure plasma is at least one selected from the group consisting of argon gas, nitrogen gas, helium gas, oxygen gas, and air.
  • the metal is an alloy formed of a transition metal or a transition metal.
  • the transition metal is selected from at least one of cobalt, nickel, copper, iron, zinc, manganese, and molybdenum
  • the alloy includes nickel-cobalt alloy, nickel-iron alloy, copper-nickel alloy, iron-cobalt-nickel alloy, cobalt. Zinc alloy.
  • the solution is grounded through the conductor when the atmospheric pressure plasma is introduced.
  • the mixed liquid is stirred while being passed through an atmospheric pressure plasma at a rate of 50 to 500 rpm.
  • the drying temperature does not exceed 80 °C.
  • the invention only uses the transition metal or its alloy powder as a raw material, water as a solvent, and under the action of atmospheric pressure plasma, the double-etched metal oxide nanosheet can be prepared by the double corrosion oxidation reaction of the plasma and water on the metal. .
  • the preparation method is simple, easy to operate, green and environmentally friendly, and does not require any chemical reagents. Based on the principle of metal corrosion oxidation, the large specific surface area of the metal particles at a micro scale, the synergistic oxidative corrosion of plasma and water accelerates the formation of metal oxides. And forming nanosheets on the surface of the particles.
  • the high curvature of the micron-sized metal particles increases the stress between the metal oxide product and the original metal particles, thereby ensuring that the metal oxide nanosheets produced by the corrosion oxidation can be separated from the metal surface.
  • the presence of a grounding conductor causes the loop to form, and the positive particles and electrons in the solution separate the metal oxide nanosheet from the metal surface.
  • the size of the nanosheets is well controlled, the size is too small to be separated, and oxidation continues. When the size reaches a certain order of magnitude, it can be separated from the original metal. With the separation of the metal oxide nanosheets, the original metal particles continue to undergo corrosion oxidation, thereby forming a process of continuously growing the nanosheets, and finally preparing small-sized metal oxide nanosheets.
  • a method for preparing a metal oxide nanostructure composite material comprising the following steps:
  • Different metal oxides can impart different properties to the composite material.
  • cobalt and nickel oxide can improve the capacitance performance of the material, while nano-CuO and nano-ZnO have certain antibacterial properties, which can make the material have good antibacterial properties.
  • the drying temperature does not exceed 80 °C.
  • the drying method can be various common drying methods.
  • the volume mixing ratio of the metal powder to water is 1: (5 to 50).
  • the nanostructure is selected from the group consisting of nanoparticles, nano mesopores, and nanosheets.
  • the nanostructure unit has a thickness of 10 nm to 1 ⁇ m.
  • a structural unit refers to a basic unit constituting a nanostructure, such as a nanoparticle or a nanosheet.
  • the metal is an alloy formed of a transition metal or a transition metal.
  • the transition metal is selected from at least one of cobalt, nickel, copper, iron, zinc, manganese, and molybdenum
  • the alloy includes, but not limited to, nickel-cobalt alloy, nickel-iron alloy, copper-nickel alloy, iron-cobalt-nickel alloy. Alloy, cobalt-zinc alloy.
  • the atmospheric pressure plasma discharge treatment time is not less than 5 minutes.
  • the treatment time can be adjusted according to the type of metal or alloy, the thickness of the nanostructure, etc., but the treatment time is required to be 5 min or more to ensure oxidation of the metal. In general, the treatment time is 5 to 60 minutes, 5 to 30 minutes.
  • the conductive base material is selected from the group consisting of carbon cloth, carbon fiber paper, nickel foam, copper foam, metal sheet, conductive film, conductive fiber, and conductive glass.
  • the carrier gas of the atmospheric pressure plasma is at least one of argon gas, nitrogen gas, helium gas, oxygen gas or air.
  • the choice of the carrier is as long as a stable low-temperature plasma is formed, and an inert gas is mainly used under atmospheric pressure.
  • other chemical components may also be added to the above carrier gas.
  • the chemical component added to the carrier gas may be a chemical component that is a gas at atmospheric pressure plasma generation temperature, including but not limited to ammonia gas, hydrogen peroxide, fluorocarbon, and the like.
  • the obtained metal oxide nanostructure composite material was prepared as described above.
  • a fiber material having a metal oxide nanostructure the metal oxide is uniformly distributed on the surface of the conductive fiber in a nanostructure form, and the volume of the metal oxide does not exceed 30% of the volume of the conductive fiber.
  • the metal oxide has a strong rigidity, and the volume ratio of the metal oxide needs to be controlled in order to ensure that the shape and properties of the original base fiber are not affected.
  • the volume of the metal oxide does not exceed 30% of the volume of the electrically conductive fiber.
  • Different metal oxides have different characteristics. By introducing different metal oxide nanostructures on the surface of the fiber, different fiber properties can be obtained, such as: ferroferric oxide has good magnetic properties, and has ferroferric oxide nanometer.
  • the structural fiber material can also have magnetic properties; nickel oxide has good electrochemical properties, and the fiber material with nickel oxide nanostructure can also be applied in the field of electrochemical energy storage; cobalt oxide has good catalytic performance and has cobalt oxide nanostructure.
  • Fiber materials can have more excellent catalytic properties; for example, nano-CuO and nano-ZnO have certain antibacterial properties, which can make fibers have good antibacterial properties.
  • the nanostructure is selected from the group consisting of nanoparticles, nanomesons, and nanosheets.
  • the nanostructure unit has a thickness of 10 nm to 1 ⁇ m.
  • the electric resistance of the conductive fiber affects the discharge of the plasma. If the resistivity is high, the circuit cannot be turned on, and a stable discharge plasma cannot be obtained.
  • the electrical resistivity of the electrically conductive fiber is not higher than 10 7 ⁇ cm.
  • the electrically conductive fibers are selected from the group consisting of carbon fibers, metal fibers or fibers having a conductive layer.
  • the carbon fiber is selected from at least one of viscose-based carbon fibers, polyacrylonitrile-based carbon fibers, pitch-based carbon fibers, and the like.
  • the metal fiber may be a common stainless steel fiber, silver fiber, gold fiber or the like.
  • the metal is an alloy formed of a transition metal or a transition metal.
  • the transition metal is at least one selected from the group consisting of cobalt, nickel, copper, iron, zinc, manganese, and molybdenum, and the alloy includes a nickel-cobalt alloy, a nickel-iron alloy, a copper-nickel alloy, an iron-cobalt-nickel alloy, and a cobalt-zinc alloy.
  • a method for preparing a fiber material having a metal oxide nanostructure comprising the following steps:
  • the mixed solution is subjected to a discharge plasma treatment and dried to obtain a fiber material having a metal oxide nanostructure.
  • the volume mixing ratio of the metal powder to water is 1: (5 to 50).
  • the drying temperature does not exceed 80 °C.
  • the drying method can be various common drying methods.
  • the electric resistance of the conductive fiber affects the discharge of the plasma. If the resistivity is high, the circuit cannot be turned on, and a stable discharge plasma cannot be obtained.
  • the electrical resistivity of the electrically conductive fiber is not higher than 10 7 ⁇ cm.
  • the electrically conductive fibers are selected from the group consisting of carbon fibers, metal fibers or fibers having a conductive layer.
  • the carbon fiber is selected from at least one of viscose-based carbon fibers, polyacrylonitrile-based carbon fibers, pitch-based carbon fibers, and the like.
  • the specific form of the fiber is not limited and may be a single fiber, a yarn, a fabric or the like.
  • the treatment time can be adjusted according to the type of metal or alloy, the thickness of the nanostructure, and the fiber material, but the treatment time is preferably controlled to 5 to 30 minutes, because the metal cannot be oxidized in a short time, and the time is too long. It has an adverse effect on the initial morphology and properties of the fiber. If the comprehensive properties of the fiber material are superior, the processing time can be appropriately extended in the case where the shape and performance of the fiber material are acceptable, and the treatment time can exceed 30 minutes.
  • the metal is an alloy formed of a transition metal or a transition metal.
  • the transition metal is selected from at least one of cobalt, nickel, copper, iron, zinc, manganese, and molybdenum
  • the alloy includes nickel-cobalt alloy, nickel-iron alloy, copper-nickel alloy, iron-cobalt-nickel alloy, cobalt. Zinc alloy.
  • the carrier gas of the atmospheric pressure plasma is at least one of argon gas, nitrogen gas, helium gas, oxygen gas or air.
  • the choice of the carrier is as long as a stable low-temperature plasma is formed, and an inert gas is mainly used under atmospheric pressure.
  • other chemical components may also be added to the above carrier gas.
  • the chemical component added to the carrier gas may be a chemical component that is a gas at atmospheric pressure plasma generation temperature, including but not limited to ammonia gas, hydrogen peroxide, fluorocarbon, and the like.
  • Figure 1 is a transmission electron micrograph of a cobalt oxide nanosheet prepared in this example. It can be seen that the cobalt oxide nanosheets prepared by the method of the present invention are uniform in size, have an average size of 45 nm, and are generally well formed.
  • nickel oxide nanosheets prepared in the present example are uniform in size, have an average size of 22 nm, and are generally well formed.
  • FIG. 3 is a transmission electron micrograph of a nickel-cobalt alloy oxide nanosheet prepared in the present example. It can be seen that the nickel-cobalt alloy oxide prepared by the method of the present invention has a uniform size, an average size of 36 nm, and is generally well formed.
  • nickel-iron alloy oxide nanosheets prepared in the present example are uniform in size, have an average size of 52 nm, and are generally well formed.
  • Fig. 5 is a transmission electron micrograph of the cobalt oxide nanosheet prepared in the present example. It can be seen that the iron-cobalt-nickel alloy oxide nanosheets prepared by the method of the present invention have uniform size, an average size of 78 nm, and are generally well formed.
  • Figure 6 is a Raman spectrum of a cobalt oxide nanosheet carbon cloth composite prepared in this example. It can be seen that there is a cobalt oxide component on the surface of the carbon cloth, and cobalt oxide is mainly present in the form of Co 3 O 4 .
  • Fig. 7 is a scanning electron micrograph of a cobalt oxide nanosheet carbon cloth composite prepared in the present embodiment. It can be seen that the cobalt oxide nanosheets prepared by the method of the present invention are uniformly grown on the carbon cloth, and the overall shape is good.
  • Figure 8 is a scanning electron micrograph of a cobalt oxide nanosheet nickel composite prepared in this example. It can be seen that the nickel oxide nanosheets prepared by the method of the present invention are uniform in size, have an average thickness of less than 10 nm, and are generally well formed.
  • the nickel-cobalt oxide nano-sheet foam nickel structure composite material can be obtained.
  • Figure 9 is a scanning electron micrograph of a nickel-cobalt oxide nanosheet foamed nickel composite prepared in this example. It can be seen that the nickel-cobalt oxide prepared by the method of the present invention has a uniform size, an average thickness of less than 10 nm, and is generally well formed.
  • Fig. 10 is a scanning electron micrograph of the nickel oxide carbon cloth composite material prepared in the present embodiment. It can be seen that the nickel oxide prepared by the method of the present invention has a nanoporous (mesoporous) structure and is generally well formed.
  • Figure 11 is a scanning electron micrograph of the iron oxide carbon cloth composite material prepared in this example. It can be seen that the iron oxide prepared by the method of the present invention has a nanoparticle structure and is generally well formed.
  • the thickness of the nanostructure unit is 10 nm to 1 ⁇ m, and the morphology is relatively uniform and complete.
  • the prepared nanosheets have excellent morphology.
  • the technical solution is the same as that of Embodiment 6, except that an insulating polyester film is used as the cathode.
  • the use of insulating materials significantly affected the discharge state of atmospheric plasma. This is because the plasma and the substrate material are two electrodes and constitute a conductive loop. If one of the electrodes is an insulating material, it will affect the electrical properties of the entire circuit, thereby affecting the generation and stability of the plasma.
  • the above polyester film is subjected to scanning electron microscope observation and analysis, and the results are shown in FIG. It can be seen that the polyester film still exhibits a smooth surface without the formation of nanostructures.
  • the preparation method of the invention is simple, the controllability is high, and the prepared metal oxide composite material has a good morphology. It is foreseeable to have a wide range of uses.
  • the polyacrylonitrile-based carbon fiber with a fineness of 12 ⁇ m is immersed in the mixed liquid as a cathode, and the atmospheric pressure argon plasma is used as an anode, and the excitation voltage is adjusted to 2 kV to generate a plasma and a mixed solution. Processing for 5 minutes;
  • Figure 13 is an original electron micrograph of a carbon fiber used in the present embodiment. It can be seen that the surface of the initial carbon fiber is relatively smooth, only the grooves generated during the spinning process.
  • Figure 14 is a scanning electron micrograph of a carbon fiber material having a ferroferric oxide nanostructure prepared in this example. It can be seen that the surface of the carbon fiber prepared by the method of the invention uniformly covers a layer of nanosheets, and the size of the nanosheet is about 5 nm, and the overall shape is good.
  • the polyacrylonitrile-based carbon fiber fabric having a grammage of 120 g/m 2 is immersed in the mixed liquid as a cathode, and the atmospheric pressure air plasma is used as an anode, and the excitation voltage is adjusted to 2.5 kV to generate a plasma. And the mixture was treated for 11 minutes;
  • Figure 15 is a scanning electron micrograph of a carbon fiber material having a cobalt oxide nanostructure prepared in this example. It can be seen that the surface of the carbon fiber prepared by the method of the invention is uniformly covered with a nano-clustered nano-cluster, and the size is about 20 nm, and the overall shape is good.
  • the stainless steel fiber having a fineness of 15 ⁇ m is immersed in the mixed liquid as an anode, and the atmospheric pressure nitrogen plasma is used as a cathode, and the excitation voltage is adjusted to 2.8 kV, plasma is generated and the mixture is treated for 20 minutes. ;
  • Figure 16 is a scanning electron micrograph of a stainless steel fiber material having a nickel-cobalt alloy nanostructure prepared in the present example. It can be seen that the surface of the stainless steel fiber prepared by the method of the invention uniformly covers a layer of nano-cluster particles assembled by nanosheets, and the size is about 200 nm, and the overall shape is good.
  • the silver fiber fabric with a gram weight of 140 g/m 2 is immersed in the mixed liquid as an anode, and the atmospheric pressure helium/oxygen plasma is used as a cathode, and the excitation voltage is adjusted to 1.8 kV to generate a plasma. And the mixture was treated for 25 minutes;
  • Figure 17 is a scanning electron micrograph of a silver fiber material having nickel oxide nanostructures prepared in this example. It can be seen that the surface of the silver fiber prepared by the method of the invention uniformly covers a layer of nano-mesh network structure, and the nano-sheet has a vertical shape with the surface of the fiber, and the single-piece size is about 35 nm, and the overall shape is good.
  • the pitch-based carbon fiber with a fineness of 16 ⁇ m is immersed in the mixed liquid as a cathode, and the atmospheric pressure argon/oxygen plasma is used as an anode, the excitation voltage is adjusted to 3 kV, plasma is generated, and the mixture is mixed. Processing for 30 minutes;
  • Figure 18 is a scanning electron micrograph of a carbon fiber material having a manganese dioxide nanostructure prepared in the present example. It can be seen that the surface of the carbon fiber prepared by the method of the invention uniformly covers a layer of nano-cluster particles assembled by nanosheets, and the size is about 160 nm, and the overall shape is good.
  • the surface of the fiber material of the present invention is uniformly distributed with a metal oxide in the form of a nanostructure, and the thickness of the nanostructure unit is 10 nm to 1 ⁇ m, and the morphology is relatively uniform and complete.
  • the prepared nanosheets have excellent morphology.
  • Example 11 Same as Example 11, except that the fibers used were non-conductive conventional polyacrylonitrile fibers and used as a cathode.
  • the discharge state of the atmospheric pressure plasma was significantly affected due to the poor conductivity of the polyacrylonitrile fiber material. This is because the plasma and the substrate material are two electrodes and constitute a conductive loop. If one of the electrodes has a high resistivity, it will affect the electrical performance of the entire circuit, thereby affecting plasma generation and stability.
  • the metal oxide nanostructured fiber material In order to further analyze whether or not the metal oxide nanostructured fiber material can be prepared under the above conditions, the above fibers are subjected to scanning electron microscope observation and analysis, and the results are shown in FIG. It can be seen that the fibers still exhibit a smooth surface without the formation of nanostructures.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

提供一种小尺寸金属氧化物纳米片、其复合材料和它们的制备方法,其中纳米片的平均尺寸为10~80nm;复合材料表面负载有金属氧化物纳米结构。通过常压等离子体和水相互作用,可以得到小尺寸金属氧化物纳米片,也可以在导电材料表面负载金属氧化物纳米结构。该方法新颖简单、绿色环保,突破了现有制备纳米片时需使用大量化学试剂和高压加热的限制。

Description

小尺寸金属氧化物及其复合材料和制备方法 技术领域
本发明涉及纳米材料领域,具体涉及一种小尺寸金属氧化物及其复合材料和制备方法。
背景技术
近年来,金属氧化物纳米片得到迅速发展,在光电转换、光致变色、光电催化等方面具有广泛应用。为了制备出金属氧化物纳米片,人们开发出研磨法、水热法、化学还原法、球磨法等方法,如CN101402463A、CN104310486A等。然而,不可忽略的是,这些方法主要是以金属盐为原料,所制备的金属氧化物纯度不佳,且存在需要使用多种化学试剂等问题。鉴于此,采用金属或金属氧化物为原料制备金属氧化物纳米片的策略也不断发展起来。
CN105118685A公开了一种原位生长制备氧化钴纳米片超级电容电极材料的方法。包括:对钴片基体进行预处理,去除其表面的油脂和氧化物;随后,钴片置于无水乙醇中进行超声震荡浸泡,取出后烘干,真空保存;再将钴片进行氧化处理,即可得到氧化钴超电容电极材料。CN105905870A公开了一种以非层状金属氧化物为原料制备金属氧化物二维纳米材料方法,是将非层状金属氧化物粉末进行高能球磨140~160h,得到球磨粉;随后,球磨粉与碱性溶液混合,在110~130℃的温度下恒温加热;加热后的样品进行固液分离和干燥,得到平均厚度为2~10nm,宽度为0.5~2μm金属氧化物纳米片。
众所周知,低温等离子体技术是一种物理和化学的交叉技术,利用低温等离子体来制备金属氧化物或金属氢氧化物是一种新型方案。CN103088386A公开了一种金属氧化物半导体纳米材料的制备方法,以金属电极为原材料,通过在水中电极之间等离子体诱导形成金属氧化物纳米材料。由于两个金属电极之间产生高能量等离子体,因此可以获得具有束状氧化铜或花簇状氧化锌纳米材料。CN106892407A公开了一种二维超薄双金属氢氧化物纳米片及其制备方法,是以体相层状双金属氢氧化物为原料,利用等离子体刻蚀体相层状双金属氢氧化物的阴离子,导致板层之间的平衡遭到破坏,从而导致层状氢氧化物被剥离为超薄的双金属氢氧化物。采用同样的原理,以体相层状双金属氢氧化物为原料,通过水介质阻挡放电等离子体也可以剥离制备出超薄的双金属氢氧化物(Adv.Mater.2017,29,1701546)。
然而,现有技术方案所制备的金属氧化物纳米片的尺寸较大,无法简单高效的制备出尺寸小于100nm的产品。为拓展金属氧化物纳米片的应用,尤其是在催化领域中的应用,急需发展一种新的技术策略,仅仅以金属为原料,在不需要化学试剂的条件下,简单高效地制备出小尺寸金属氧化物纳米片。
将金属氧化物纳米结构复合到其他基体材料上,可以获得具有特殊性能的材料,或提高基体材料的性能。然而,金属氧化物纳米结构本身较为脆弱,难以有效复合在基体材料上。
以导电材料为基底制备金属氧化物的纳米结构复合材料主要方法为电沉积法和水热法。如CN104134788A公开了一种电沉积制备三维梯度金属氢氧化物/氧化物电极材料的方法,主要是利用电流引导溶液中的金属离子沉积在工作电极上形成金属氢氧化物/氧化物纳米结构。CN107705999A公开了一种以泡沫镍为基底,金属盐和各种化学试剂为原料的水热法配合后续煅烧得到Co 3O 4@NiO的金属氧化物核壳纳米片阵列电极材料的制备方法。然而,不可忽略的是,这些方法都是以金属盐为原料,所制备的金属氧化物纯度不佳,且存在需要使用多种化学试剂等问题。鉴于此,采用金属为原料制备金属氧化物纳米结构的策略也不断发展起来。
CN105118685A公开了一种原位生长制备氧化钴纳米片超级电容电极材料的方法。包括:对钴片基体进行预处理,去除其表面的油脂和氧化物;随后,钴片置于无水乙醇中进行超声震荡浸泡,取出后烘干,真空保存;再将钴片进行氧化处理,即可得到氧化钴超电容电极材料。CN105905870A公开了一种以非层状金属氧化物为原料制备金属氧化物二维纳米材料方 法,是将非层状金属氧化物粉末进行高能球磨140~160h,得到球磨粉;随后,球磨粉与碱性溶液混合,在110~130℃的温度下恒温加热;加热后的样品进行固液分离和干燥,得到平均厚度为2~10nm,宽度为0.5~2μm金属氧化物纳米片。这种方法制备得到的纳米材料,难以复合至其他材料上,
CN103088386A公开了一种金属氧化物半导体纳米材料的制备方法,以金属电极为原材料,通过在水中电极之间等离子体诱导形成金属氧化物纳米材料。由于两个金属电极之间产生高能量等离子体,因此可以获得具有束状氧化铜或花簇状氧化锌纳米材料。Liu等人提出了一种利用等离子体作为一个电极,铜箔作为对电极,氯化钠/葡萄糖作为电解质的方法,将铜箔氧化成氧化亚铜纳米颗粒(J.Phys.D:Appl.Phys.49(2016)275201)。Velusanmy等人进一步利用等离子体作为阴极,乙醇溶液作为电解质,将阳极的铜箔氧化成氧化铜纳米颗粒(Plasma Process Polym.2017;14:e1600224)。还有一种方案是利用常压微等离子体作为阳极,硫酸铜作为溶液,ITO作为阴极,在放电的处理下,可以在ITO上沉积上铜和氧化亚铜纳米晶(RSC Adv.,2015,5,62619)。同样的,该方法无法将金属氧化物纳米结构复合到其他材料中,制备得到的产品应用受到限制。
纤维材料用途广泛,作为纤维材料的代表,碳纤维更是因其具有高比强度、高比模量、耐高温、耐烧蚀等优异性能,已成为航空航天、军事装备、交通运输、化工能源以及生物医疗等行业领域中一种重要的纤维材料。将纤维材料与其他功能性材料相结合,可以获得具有独特性能的纤维材料,纤维表面的包覆结构可以改变纤维的力学性能,并赋予纤维新的光、电、磁、催化及生物活性等。
随着可穿戴电子技术和纤维增强材料的发展,在纤维表面沉积或生长金属氧化物则成为纤维材料的一个重要技术方向,这种纤维材料具有一定的表面粗糙度,可以增加纤维表面的极性,同时还可以赋予纤维的良好的电化学电容器性能等。目前较为常见制备方法有电化学沉积法、水热法、溶胶-凝胶法、静电吸附法等。CN101250735A公开了碳纤维表面连续复合电镀金属和纳米颗粒的装置和方法,是将纤维浸在包括有金属和纳米颗粒的酸性硫酸镍溶液中利用电沉积的方法进行镀覆。CN101680129A公开了一种二氧化硅基复合氧化物纤维、使用其的触媒纤维及其制造方法,是通过煅烧方式形成含有金属氧化物的二氧化硅基复合纤维。CN103503078A公开了一种导电纤维材料,是利用静电吸附的方式将金属或金属氧化物沉积在基底纤维材料表面。CN104576079A公开了金属氧化物纳米线团/活性碳纤维复合电极材料及其制备,是将活性碳纤维浸渍于含有钴离子和镍离子的溶液中0.5~5小时,再转入水热反应器中,加入铵盐再进行反应制成。CN104869852A公开了颗粒至纤维素酯纤维的表面附着,是使纤维素酯纤维与包含分散在质子液体中的金属氧化物颗粒的混合物接触,以使金属氧化物颗粒附着到纤维的表面上。CN105097302A公开了用于超级电容器的活性碳纤维及其制备方法,将醋酸锰溶液、醋酸铵溶液与二甲亚砜溶液混合作为前驱体溶液,利用电化学沉积法将二氧化锰纳米材料沉积在碳纤维表面。CN104392847A公开了一种形貌可控的金属氧化物/活性碳纤维复合电极材料的制备方法,是以聚丙烯腈和不同质量比硝酸盐为原料,采用静电纺丝制金属离子掺杂的聚丙烯腈纤维,经预氧化、碳化制成金属氧化物/聚丙烯腈基活性碳纤维。CN104766963A公开了一种制备金属氧化物-碳纤维纳米复合材料的方法,选用脱脂棉作为形成碳纤维的原料,首先在脱脂棉纤维上通过液相反应负载相应的金属氧化物纳米粒子,然后置于氮气气氛炉中煅烧,将纤维进行炭化。
以上方法均取得了较好的产品效果,但仍存在一些问题:如制备过程需要含有复杂的金属盐化学溶液、制备方法只能实现单纯金属的负载、制备步骤仍较为繁琐和复杂。因此,如何在保持原有基底纤维形态和性能的同时,快速高效地制备出一种具有金属氧化物纳米结构的纤维材料,依然是一项需要解决的技术问题。
发明内容
本发明的目的在于克服现有技术的不足,提供一种高效、绿色环保的小尺寸金属氧化物纳米片及其复合材料和制备方法。
本发明所采取的技术方案是:
一种小尺寸金属氧化物纳米片的制备方法,包括如下步骤:
1)将平均尺寸为0.1~100μm的金属粉末置于水中,得到混合液;
2)向上述混合液通入常压等离子体,对金属进行原位氧化并使其分离成小尺寸金属氧化物纳米片,干燥后得到纳米片尺寸不大于100nm的小尺寸金属氧化物纳米片。
作为上述制备方法的进一步改进,金属粉末与水的体积混合比为1∶(5~50)。
作为上述制备方法的进一步改进,常压等离子体处理的时间为10min~60min。
作为上述制备方法的进一步改进,常压等离子体的放电气体选自氩气、氮气、氦气、氧气、空气中的至少一种。
作为上述制备方法的进一步改进,金属为过渡金属或过渡金属形成的合金。进一步选自钴、镍、铜、铁、锌、锰、钼中的至少一种,合金包括镍钴合金、镍铁合金、铜镍合金、铁钴镍合金、钴锌合金。
作为上述制备方法的进一步改进,通入常压等离子体时,溶液通过导体接地。
作为上述制备方法的进一步改进,通入常压等离子体的同时对混合液进行搅拌,搅拌的速率为50~500rpm。
作为上述制备方法的进一步改进,干燥的温度不超过80℃。
一种小尺寸金属氧化物纳米片,纳米片的平均尺寸为10~80nm。
更进一步的,其制备方法如上所述。
一种金属氧化物纳米结构复合材料的制备方法,包括如下步骤:
1)将颗粒尺寸为1~100μm的金属粉末置于水中;
2)将导电基体材料作为电极浸入上述溶液中;
3)使用常压等离子体作为导电基体材料的对电极,对溶液进行放电处理,干燥得到金属氧化物纳米结构的复合材料。
作为上述制备方法的进一步改进,金属粉末与水的体积混合比为1∶(5~50)。
作为上述制备方法的进一步改进,纳米结构选自纳米颗粒、纳米介孔、纳米片。
作为上述制备方法的进一步改进,纳米结构单元的厚度为10nm~1μm。
作为上述制备方法的进一步改进,金属为过渡金属或过渡金属形成的合金。
作为上述制备方法的进一步改进,过渡金属选自钴、镍、铜、铁、锌、锰、钼中的至少一种,合金包括镍钴合金、镍铁合金、铜镍合金、铁钴镍合金、钴锌合金。
作为上述制备方法的进一步改进,常压等离子体放电处理的时间为不少于5min。
作为上述制备方法的进一步改进,导电基体材料选自碳布、碳纤维纸、泡沫镍、泡沫铜、金属片、导电薄膜、导电纤维、导电玻璃中的一种。
作为上述制备方法的进一步改进,常压等离子体的载气为氩气、氮气、氦气、氧气或空气中的至少一种。
按上述方法制备得到的金属氧化物纳米结构复合材料。
一种具有金属氧化物纳米结构的纤维材料,金属氧化物以纳米结构形式有序均匀分布在导电纤维表面,金属氧化物的体积不超过导电纤维体积的30%。
作为上述纤维材料的进一步改进,纳米结构选自纳米颗粒、纳米介孔、纳米片。
作为上述纤维材料的进一步改进,纳米结构单元的厚度为10nm~1μm。
作为上述纤维材料的进一步改进,导电纤维的电阻率不高于10 7Ω·cm。
作为上述纤维材料的进一步改进,导电纤维选自碳纤维、金属纤维或具有导电层的纤维。碳纤维选自粘胶基碳纤维、聚丙烯腈基碳纤维、沥青基碳纤维等中的至少一种。
作为上述纤维材料的进一步改进,金属为过渡金属或过渡金属形成的合金。更进一步的,过渡金属选自钴、镍、铜、铁、锌、锰、钼中的至少一种,合金包括镍钴合金、镍铁合金、铜镍合金、铁钴镍合金、钴锌合金。
一种具有金属氧化物纳米结构的纤维材料的制备方法,包括如下步骤:
1)将颗粒尺寸为1~100μm的金属粉末置于水中,得到混合液;
2)将导电纤维材料浸入至上述混合液中,并以导电纤维为电极、常压等离子体为对电极构成闭合回路;
3)对混合液进行放电等离子体处理,干燥得到具有金属氧化物纳米结构的纤维材料。
作为上述制备方法的进一步改进,金属粉末与水的体积混合比为1∶(5~50)。
作为上述制备方法的进一步改进,干燥的温度不高于80℃。
作为上述制备方法的进一步改进,导电纤维的电阻率不高于10 7Ω·cm。
作为上述制备方法的进一步改进,放电等离子体处理的时间为5~30min。
作为上述制备方法的进一步改进,金属为过渡金属或过渡金属形成的合金。
作为上述制备方法的进一步改进,过渡金属选自钴、镍、铜、铁、锌、锰、钼中的至少一种,合金包括镍钴合金、镍铁合金、铜镍合金、铁钴镍合金、钴锌合金。
作为上述制备方法的进一步改进,常压等离子体的载气为氩气、氮气、氦气、氧气或空气中的至少一种。
作为上述制备方法的进一步改进,导电纤维选自碳纤维、金属纤维或具有导电层的纤维。碳纤维选自粘胶基碳纤维、聚丙烯腈基碳纤维、沥青基碳纤维等中的至少一种。金属纤维可以是常见的不锈钢纤维、银纤维、金纤维等。
本发明的有益效果是:
本发明方法制备的小尺寸金属氧化物纳米片是基于微米尺度金属颗粒与等离子体以及水的腐蚀氧化形成的,纳米片的平均尺寸为10~80nm,具有较高的比表面积和稳定的结构,其结合了金属氧化物优异的物理化学性能和纳米片的小尺寸效应。
与现有技术相比,本发明的技术方案新颖简单、绿色环保,其突破了现有制备纳米片时需使用大量化学试剂和高压加温的限制,仅以金属粉末为原料,利用等离子体和水的特性,实现了小尺寸金属氧化物的制备。
本发明的方法,无需使用金属盐溶液或化学试剂,利用常压等离子体和水的协同作用,实现金属氧化物纳米结构复合材料的制备,制备方法绿色环保。本发明方法可以方便地在各种导电材料上复合金氧化物纳米结构,得到具有新特性的复合材料。
本发明金属氧化物纳米结构复合材料,是基于微米尺度金属颗粒与等离子体以及水的腐蚀氧化形成的,具有较高的比表面积和稳定的结构,其结合了基底良好的导电性,金属氧化物优异的物理化学性能以及纳米结构的小尺寸效应。
本发明的具有金属氧化物纳米结构的纤维材料,表面较为均匀的负载有金属氧化物纳米结构,可以有效改善纤维的性能或赋予纤维新的性能。
本发明是采用过渡金属或其合金粉末为原料,水为溶剂,在常压等离子体的作用下,利用等离子体和水对金属的双重腐蚀氧化反应,将微米尺度的金属及其合金氧化成纳米尺度的金属氧化物。由于整个体系构成闭合回路,在等离子体作用于水的过程中,溶液中的阳粒子和电子会使纳米金属氧化物与未氧化的金属表面分离,并通过电流的作用沉积在对电极的导电纤维表面,并在表面能的作用下自组装成均匀有序的纳米结构,最终制备出金属氧化物/复合纤维材料。所制备的纤维既保持原有性能,又具备较好的表界面和电容器性能。
本发明的制备方法简单易操作、绿色环保,无需使用任何化学试剂,基于金属腐蚀氧化原理,利用微尺度下金属颗粒的大比表面积、等离子体和水协同氧化腐蚀作用,加速了纳米金属氧化物的形成。同时,在此氧化和分离机制的作用下,纳米金属氧化物的尺寸得到了较好的控制。过小的尺寸无法分离,仍然继续氧化,当尺寸达到一定数量级时,才能与原金属分离。随着纳米金属氧化物的分离,原金属颗粒继续进行腐蚀氧化,从而形成一个持续生长的生产过程。
附图说明
图1为实施例1所制备的氧化钴纳米片的透射电子显微镜图片;
图2为实施例2所制备的氧化镍纳米片的透射电子显微镜图片;
图3为实施例3所制备的镍钴合金氧化物纳米片的透射电子显微镜照片;
图4为实施例4所制备的镍铁合金氧化物纳米片的透射电子显微镜照片;
图5为实施例5所制备的铁钴镍合金氧化物纳米片的透射电子显微镜照片。
图6为实施例6所制备的氧化钴纳米片碳布复合材料的拉曼图谱;
图7为实施例6所制备的氧化钴纳米片碳布复合材料的扫描电子显微镜图片;
图8为实施例7所制备的氧化钴纳米片镍复合材料的扫描电子显微镜图片;
图9为实施例8所制备的氧化镍钴纳米片泡沫镍复合材料的扫描电子显微镜图片;
图10为实施例9所制备的氧化镍碳布复合材料的扫描电子显微镜图片;
图11为实施例10所制备的氧化铁碳布复合材料的扫描电子显微镜图片;
图12为对比例1的聚酯薄膜的扫描电子显微镜照片;
图13是原始的碳纤维电子显微镜照片;
图14是实施例1制备得到的具有四氧化三铁纳米结构的碳纤维材料的扫描电子显微镜照片;
图15是实施例2制备得到的具有氧化钴纳米结构的碳纤维材料的扫描电子显微镜照片;
图16是实施例3制备得到的具有氧化镍钴合金纳米结构的不锈钢纤维材料的扫描电子显微镜照片;
图17是实施例4制备得到的具有氧化镍纳米结构的银纤维材料的扫描电子显微镜照片;
图18是实施例5制备得到的二氧化锰/碳复合纤维材料的扫描电子显微镜照片;;
图19是对比例2处理后聚丙烯腈纤维的扫描电子显微镜照片。
具体实施方式
一种小尺寸金属氧化物纳米片的制备方法,包括如下步骤:
1)将平均尺寸为0.1~100μm的金属粉末置于水中,得到混合液;
2)向上述混合液通入常压等离子体,对金属进行原位氧化并使其分离成小尺寸金属氧化物纳米片,干燥后得到纳米片尺寸不大于100nm的小尺寸金属氧化物纳米片。
作为上述制备方法的进一步改进,金属粉末与水的体积混合比为1∶(5~50)。
作为上述制备方法的进一步改进,常压等离子体处理的时间为10min~60min。处理的时间可以根据金属或合金的种类进行调整。
作为上述制备方法的进一步改进,常压等离子体的放电气体选自氩气、氮气、氦气、氧气、空气中的至少一种。
作为上述制备方法的进一步改进,金属为过渡金属或过渡金属形成的合金。
作为上述制备方法的进一步改进,过渡金属选自钴、镍、铜、铁、锌、锰、钼中的至少一种,合金包括镍钴合金、镍铁合金、铜镍合金、铁钴镍合金、钴锌合金。
作为上述制备方法的进一步改进,通入常压等离子体时,溶液通过导体接地。
作为上述制备方法的进一步改进,通入常压等离子体的同时对混合液进行搅拌,搅拌的速率为50~500rpm。
为避免高温干燥破坏材料表面的纳米结构,作为上述制备方法的进一步改进,干燥的温度不超过80℃。
一种小尺寸金属氧化物纳米片,纳米片的平均尺寸为10~80nm。
更进一步的,其制备方法如上所述。
本发明仅仅采用过渡金属或其合金粉末为原料,水为溶剂,在常压等离子体的作用下,利用等离子体和水对金属的双重腐蚀氧化反应,即可制备出小尺寸金属氧化物纳米片。该制备方法简单易操作、绿色环保,无需使用任何化学试剂,基于金属腐蚀氧化原理,利用微尺度下金属颗粒的大比表面积、等离子体和水协同氧化腐蚀作用,加速了金属氧化物的形成,并在颗粒表面形成纳米片。
同时,微米尺度金属颗粒的高曲率,提高了金属氧化产物与原金属颗粒之间的应力,从而保证了由腐蚀氧化产生的金属氧化物纳米片可以与金属表面分离。在等离子体作用于水的 过程中,接地导线的存在,使得构成回路,溶液中的阳粒子和电子会将金属氧化物纳米片与金属表面分离。在此氧化和分离机制的作用下,纳米片的尺寸得到了较好的控制,过小的尺寸无法分离,仍然继续氧化,当尺寸达到一定数量级时,才能与原金属分离。随着金属氧化物纳米片的分离,原金属颗粒继续进行腐蚀氧化,从而形成一个持续生长纳米片的过程,最终制备出小尺寸金属氧化物纳米片。
一种金属氧化物纳米结构复合材料的制备方法,包括如下步骤:
1)将颗粒尺寸为1~100μm的金属粉末置于水中;
2)将导电基体材料作为电极浸入上述溶液中;
3)使用常压等离子体作为导电基体材料的对电极,对溶液进行放电处理,干燥得到金属氧化物纳米结构的复合材料。
不同的金属氧化物可以赋予复合材料不同的特性,如钴、镍氧化物可以提高材料的电容性能,而纳米CuO和纳米ZnO具有一定的抗菌性能,可以使材料具有良好的抗菌性能。
为避免高温干燥破坏材料表面的纳米结构,作为上述制备方法的进一步改进,干燥的温度不超过80℃。干燥的方式可以是各种常见的干燥方法。
作为上述制备方法的进一步改进,金属粉末与水的体积混合比为1∶(5~50)。
作为上述制备方法的进一步改进,纳米结构选自纳米颗粒、纳米介孔、纳米片。
作为上述制备方法的进一步改进,纳米结构单元的厚度为10nm~1μm。结构单元指构成纳米结构的基本单元,如纳米颗粒、纳米片。
作为上述制备方法的进一步改进,金属为过渡金属或过渡金属形成的合金。
作为上述制备方法的进一步改进,过渡金属选自钴、镍、铜、铁、锌、锰、钼中的至少一种,合金包括但不限于镍钴合金、镍铁合金、铜镍合金、铁钴镍合金、钴锌合金。
作为上述制备方法的进一步改进,常压等离子体放电处理的时间为不少于5min。处理的时间可以根据金属或合金的种类、纳米结构的厚度等进行调整,但需要处理时间在5min以上,以保证金属得到氧化。一般而言,处理时间为5~60min,5~30min。
作为上述制备方法的进一步改进,导电基体材料选自碳布、碳纤维纸、泡沫镍、泡沫铜、金属片、导电薄膜、导电纤维、导电玻璃中的一种。
作为上述制备方法的进一步改进,常压等离子体的载气为氩气、氮气、氦气、氧气或空气中的至少一种。载体的选择只要保证形成稳定的低温等离子体即可,在大气压条件下以惰性气体为主。此外,为了丰富复合材料的元素和组成,以提升复合材料的功能性,也可以在上述载气中添加其他化学组分。在载气中添加的化学组分可以是在常压等离子体发生温度下为气体的化学组分,包括但不限于氨气、过氧化氢、氟碳等。
按上述方法制备得到的金属氧化物纳米结构复合材料。
一种具有金属氧化物纳米结构的纤维材料,金属氧化物以纳米结构形式有序均匀分布在导电纤维表面,金属氧化物的体积不超过导电纤维体积的30%。
金属氧化物的刚性较强,为保证原有基底纤维形态和性能不受影响,需控制金属氧化物的体积比例。优选金属氧化物的体积不超过导电纤维体积的30%。
不同的金属氧化物的具有不同的特性,通过在纤维表面引入不同的金属氧化物纳米结构,可以获得差异化性能的纤维材料,如:四氧化三铁具有良好的磁性,具有四氧化三铁纳米结构的纤维材料也可以具有磁性;氧化镍具有良好的电化学性能,具有氧化镍纳米结构的纤维材料也可以应用于电化学储能领域;氧化钴具有良好的催化性能,具有氧化钴纳米结构的纤维材料可以具有更为优异的催化性能;如纳米CuO和纳米ZnO具有一定的抗菌性能,可以使纤维具有良好的抗菌性能。
作为上述纤维材料的进一步改进,纳米结构选自纳米颗粒、纳米介孔、纳米片。
作为上述纤维材料的进一步改进,纳米结构单元的厚度为10nm~1μm。
导电纤维的电阻会对等离子体的放电产生影响,若电阻率较高,则使得电路无法导通,无法得到稳定放电等离子体。作为上述纤维材料的进一步改进,导电纤维的电阻率不高于 10 7Ω·cm。
作为上述纤维材料的进一步改进,导电纤维选自碳纤维、金属纤维或具有导电层的纤维。碳纤维选自粘胶基碳纤维、聚丙烯腈基碳纤维、沥青基碳纤维等中的至少一种。金属纤维可以是常见的不锈钢纤维、银纤维、金纤维等。
作为上述纤维材料的进一步改进,金属为过渡金属或过渡金属形成的合金。更进一步的,过渡金属选自钴、镍、铜、铁、锌、锰、钼中的至少一种,合金包括镍钴合金、镍铁合金、铜镍合金、铁钴镍合金、钴锌合金。
一种具有金属氧化物纳米结构的纤维材料的制备方法,包括如下步骤:
1)将颗粒尺寸为1~100μm的金属粉末置于水中,得到混合液;
2)将导电纤维材料浸入至上述混合液中,并以导电纤维为电极、常压等离子体为对电极构成闭合回路;
3)对混合液进行放电等离子体处理,干燥得到具有金属氧化物纳米结构的纤维材料。
作为上述制备方法的进一步改进,金属粉末与水的体积混合比为1∶(5~50)。
为避免高温干燥破坏材料表面的纳米结构,作为上述制备方法的进一步改进,干燥的温度不超过80℃。干燥的方式可以是各种常见的干燥方法。
导电纤维的电阻会对等离子体的放电产生影响,若电阻率较高,则使得电路无法导通,无法得到稳定放电等离子体。作为上述制备方法的进一步改进,导电纤维的电阻率不高于10 7Ω·cm。
作为上述制备方法的进一步改进,导电纤维选自碳纤维、金属纤维或具有导电层的纤维。碳纤维选自粘胶基碳纤维、聚丙烯腈基碳纤维、沥青基碳纤维等中的至少一种。纤维的具体形式不限,可以是单纤维、纱线、织物等。
处理的时间可以根据金属或合金的种类、纳米结构的厚度以及纤维材料等进行调整,但需要处理时间优选控制在5~30min,因为过短的时间无法将金属氧化,而过长的时间则容易对纤维初始形态和性能产生不利影响。若纤维材料的综合性能较为优异,在纤维材料形态和性能变化程度可接受的情况下,也可以适当延长处理时间,处理的时间可以超过30min。
作为上述制备方法的进一步改进,金属为过渡金属或过渡金属形成的合金。
作为上述制备方法的进一步改进,过渡金属选自钴、镍、铜、铁、锌、锰、钼中的至少一种,合金包括镍钴合金、镍铁合金、铜镍合金、铁钴镍合金、钴锌合金。
作为上述制备方法的进一步改进,常压等离子体的载气为氩气、氮气、氦气、氧气或空气中的至少一种。载体的选择只要保证形成稳定的低温等离子体即可,在大气压条件下以惰性气体为主。此外,为了丰富复合材料的元素和组成,以提升复合材料的功能性,也可以在上述载气中添加其他化学组分。在载气中添加的化学组分可以是在常压等离子体发生温度下为气体的化学组分,包括但不限于氨气、过氧化氢、氟碳等。
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解到,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
1)将5g平均尺寸为10μm的钴粉和10mL水混合,搅拌速率为100转/分钟;
2)向常压等离子体发生装置通入氩气,启动高压电源,调节电压为2kV,激发产生微等离子体,对含有金属粉的混合液进行处理,处理时间为30分钟;
3)随后,关闭电源,将产物过滤,并用去离子水洗涤、在50℃下干燥3小时,即可得到小尺寸金属氧化物纳米片。
图1是本实施例所制备的氧化钴纳米片的透射电子显微镜图片。可以看出,经本发明方法制备的氧化钴纳米片尺寸均匀,平均尺寸为45nm,总体成型良好。
实施例2:
1)将5g平均尺寸为0.1μm的镍粉和15mL水混合,搅拌速率为200转/分钟;
2)向常压等离子体发生装置通入空气,启动高压电源,调节电压为3kV,激发产生等离子体射流,对含有金属粉的混合液进行处理,处理时间为60分钟;
3)关闭电源,将产物过滤,并用去离子水洗涤、在60℃下干燥4小时,即可得到小尺寸金属氧化物纳米片。
图2是本实施例所制备的氧化镍纳米片的透射电子显微镜图片。可以看出,经本发明方法制备的氧化镍纳米片尺寸均匀,平均尺寸为22nm,总体成型良好。
实施例3:
1)将8g平均尺寸为1μm的镍钴合金粉和20mL水混合,搅拌速率为300转/分钟;
2)向常压等离子体发生装置通入氦气,启动高压电源,调节电压为4kV,激发产生等离子体射流,对含有金属粉的混合液进行处理,处理时间为40分钟;
3)关闭电源,将产物过滤,并用去离子水洗涤、在25℃下干燥5小时,即可得到小尺寸金属氧化物纳米片。
图3是本实施例所制备的镍钴合金氧化物纳米片的透射电子显微镜图片。可以看出,经本发明方法制备的镍钴合金氧化物尺寸均匀,平均尺寸为36nm,总体成型良好。
实施例4:
1)将6g平均尺寸为2μm的镍铁合金粉和30mL水混合,搅拌速率为150转/分钟;
2)向常压等离子体发生装置通入氮气,启动高压电源,调节电压为2.5kV,激发产生微等离子体,对含有金属粉的混合液进行处理,处理时间为40分钟;
3)关闭电源,将产物过滤,并用去离子水洗涤、在80℃下干燥2小时,即可得到小尺寸金属氧化物纳米片。
图4是本实施例所制备的镍铁合金氧化物纳米片的透射电子显微镜图片。可以看出,经本发明方法制备的镍铁合金氧化物纳米片尺寸均匀,平均尺寸为52nm,总体成型良好。
实施例5:
1)将10g平均尺寸为5μm的铁钴镍合金粉和35mL水混合,搅拌速率为500转/分钟;
2)向常压等离子体发生装置通入氦气和氧气混合气,启动高压电源,调节电压为5kV,激发产生等离子体射流,对含有金属粉的混合液进行处理,处理时间为30分钟;
3)关闭电源,将产物过滤,并用去离子水洗涤、在30℃下干燥6小时,即可得到小尺寸金属氧化物纳米片。
图5是本实施例所制备的氧化钴纳米片的透射电子显微镜图片。可以看出,经本发明方法制备的铁钴镍合金氧化物纳米片尺寸均匀,平均尺寸为78nm,总体成型良好。
实施例6
1)将10g平均尺寸为50μm的钴粉和50mL水混合后静置;
2)待金属粉末沉降后,将1cm*2cm的碳布浸没入溶液中作为阴极,以常压氩气等离子体作为阳极,调节激发电压为2kV,产生等离子体并对溶液处理10分钟;
3)关闭电源,不高于80℃干燥后即可得到氧化钴纳米片碳布结构复合材料。
图6是本实施例所制备的氧化钴纳米片碳布复合材料的拉曼图谱。可以看出,碳布表面存在氧化钴成分,氧化钴主要以Co 3O 4的形式存在。
图7是本实施例所制备的氧化钴纳米片碳布复合材料的扫描电子显微镜图片。可以看出,经本发明方法制备的氧化钴纳米片均匀生长在碳布上,总体成型良好。
实施例7:
1)将5g平均尺寸为1μm的钴粉和15mL水混合后静置;
2)待金属粉末沉降后,将1cm*2cm的镍片浸没入溶液中作为阴极,以常压空气等离子体作为阳极,调节激发电压为3kV,产生等离子体并对溶液处理12分钟;
3)关闭电源,不高于80℃干燥后即可得到氧化钴纳米片镍结构复合材料。
图8是本实施例所制备的氧化钴纳米片镍复合材料的扫描电子显微镜图片。可以看出, 经本发明方法制备的氧化镍纳米片尺寸均匀,平均厚度小于10nm,总体成型良好。
实施例8:
1)将8g平均尺寸为100μm的镍钴合金粉(镍质量百分比为25%)和20mL水混合后静置;
2)待金属粉末沉降后,将1cm*2cm的泡沫镍浸没入溶液中作为阳极,以常压氮气等离子体作为阴极,调节激发电压为2.5kV,产生等离子体并对溶液处理20分钟;
3)关闭电源,不高于80℃干燥后即可得到镍钴氧化物纳米片泡沫镍结构复合材料。
图9是本实施例所制备的镍钴氧化物纳米片泡沫镍复合材料的扫描电子显微镜图片。可以看出,经本发明方法制备的镍钴氧化物尺寸均匀,平均厚度小于10nm,总体成型良好。
实施例9:
1)将10g平均尺寸为10μm的镍粉和20mL水混合后静置;
2)待金属粉末沉降后,将1cm*2cm的碳布浸没入溶液中作为阳极,以常压氦气等离子体作为阴极,调节激发电压为1.8kV,产生等离子体并对溶液处理25分钟;
3)关闭电源,不高于80℃干燥后即可得到氧化镍碳布复合材料。
图10是本实施例所制备的氧化镍碳布复合材料的扫描电子显微镜图片。可以看出,经本发明方法制备的镍氧化物为纳米多孔(介孔)结构,总体成型良好。
实施例10:
1)将10g平均尺寸为10μm的铁粉和20mL水混合后静置;
2)待金属粉末沉降后,将1cm*2cm的碳布浸没入溶液中作为阴极,以常压氧气等离子体作为阴极,调节激发电压为3.5kV,产生等离子体并对溶液处理8分钟;
3)关闭电源,不高于80℃干燥后即可得到氧化铁碳布复合材料。
图11是本实施例所制备的氧化铁碳布复合材料的扫描电子显微镜图片。可以看出,经本发明方法制备的铁氧化物为纳米颗粒结构,总体成型良好。
从图7~11可以看出,纳米结构单元的厚度为10nm~1μm,形貌相对均匀,完整。特别是制备得到的纳米片,具有极佳的形貌。
对比例1:
技术方案同实施例6,不同之处在于使用绝缘的聚酯薄膜作为阴极。制备过程中发现,绝缘材料的使用,明显影响了常压等离子体的放电状态。这是由于等离子体和基体材料为两个电极,并构成导电回路。若其中一个电极为绝缘材料,则会影响整个回路的电学性能,从而影响等离子体的产生和稳定。为进一步分析是否在此条件下,也能制备出金属氧化物纳米结构复合材料,对上述聚酯薄膜进行扫描电子显微镜观察分析,结果如图12所示。可以看到,聚酯薄膜仍呈现出光滑的表面,并无纳米结构的形成。
与现有技术相比,本发明的制备方法简便,可控性高,制备得到的金属氧化物复合材料具有很好的形态。可以预见可具有广泛的用途。
实施例11
1)将5g平均尺寸为10μm的铁粉和50mL水混合后静置;
2)待金属粉末沉降后,将细度为12μm的聚丙烯腈基碳纤维浸没入混合液中作为阴极,以常压氩气等离子体作为阳极,调节激发电压为2kV,产生等离子体并对混合液处理5分钟;
3)关闭电源,取出纤维在24℃下干燥25分钟,即可得到具有四氧化三铁纳米结构的碳纤维材料。
图13是本实施例所采用的碳纤维原始电子显微镜照片。可以看到,初始碳纤维的表面较为光滑,仅有纺丝过程中产生的沟槽。图14是本实施例所制备具有四氧化三铁纳米结构的碳纤维材料的扫描电子显微镜图片。可以看出,经本发明方法制备的碳纤维表面均匀的覆盖一层纳米片,纳米片的尺寸在5nm左右,总体成型良好。
实施例12:
1)将10g平均尺寸为80μm的钴粉和50mL水混合后静置;
2)待金属粉末沉降后,将克重为120g/m 2的聚丙烯腈基碳纤维织物浸没入混合液中作为阴极,以常压空气等离子体作为阳极,调节激发电压为2.5kV,产生等离子体并对混合液处理11分钟;
3)关闭电源,取出织物在60℃下干燥15分钟,即可得到具有氧化钴纳米结构的碳纤维材料。
图15是本实施例所制备的具有氧化钴纳米结构的碳纤维材料的扫描电子显微镜图片。可以看出,经本发明方法制备的碳纤维表面均匀的覆盖一层由纳米片组装成的纳米团簇,尺寸在20nm左右,总体成型良好。
实施例13:
1)将8g平均尺寸为100μm的镍钴合金粉和100mL水混合后静置;
2)待金属粉末沉降后,将细度为15μm的不锈钢纤维浸没入混合液中作为阳极,以常压氮气等离子体作为阴极,调节激发电压为2.8kV,产生等离子体并对混合液处理20分钟;
3)关闭电源,取出纤维在80℃下干燥10分钟,即可得到具有氧化镍钴合金纳米结构的不锈钢纤维材料。
图16是本实施例所制备的具有氧化镍钴合金纳米结构的不锈钢纤维材料的扫描电子显微镜图片。可以看出,经本发明方法制备的不锈钢纤维表面均匀的覆盖一层由纳米片组装成的纳米团簇颗粒,尺寸在200nm左右,总体成型良好。
实施例14:
1)将10g平均尺寸为10μm的镍粉和80mL水混合后静置;
2)待金属粉末沉降后,将克重为140g/m 2的银纤维织物浸没入混合液中作为阳极,以常压氦气/氧气等离子体作为阴极,调节激发电压为1.8kV,产生等离子体并对混合液处理25分钟;
3)关闭电源,取出织物在30℃下干燥20分钟,即可得即可得到具有氧化镍纳米结构的银纤维材料。
图17是本实施例所制备的具有氧化镍纳米结构的银纤维材料的扫描电子显微镜图片。可以看出,经本发明方法制备的银纤维表面均匀的覆盖一层纳米片网状结构,纳米片与纤维表面呈垂直状,其单片尺寸在35nm左右,总体成型良好。
实施例15:
1)将10g平均尺寸为10μm的锰粉和120mL水混合后静置;
2)待金属粉末沉降后,将细度为16μm的沥青基碳纤维浸没入混合液中作为阴极,以常压氩气/氧气等离子体作为阳极,调节激发电压为3kV,产生等离子体并对混合液处理30分钟;
3)关闭电源,取出织物在40℃下干燥15分钟,即可得到具有二氧化锰纳米结构的碳纤维材料。
图18是本实施例所制备的具有二氧化锰纳米结构的碳纤维材料的扫描电子显微镜图片。可以看出,经本发明方法制备的碳纤维表面均匀的覆盖一层由纳米片组装成的纳米团簇颗粒,尺寸在160nm左右,总体成型良好。
从图14~18可以看出,本发明纤维材料表面有序均匀分布有以纳米结构形式存在的金属氧化物,纳米结构单元的厚度为10nm~1μm,形貌相对均匀,完整。特别是制备得到的纳米片,具有极佳的形貌。
对比例2:
同实施例11,不同之处在于使用的纤维为不导电的常规聚丙烯腈纤维,并将其作为阴极。制备过程中发现,由于聚丙烯腈纤维材料的导电性较差,明显影响了常压等离子体的放电状态。这是由于等离子体和基体材料为两个电极,并构成导电回路。若其中一个电极的电阻率 较大,则会影响整个回路的电学性能,从而影响等离子体的产生和稳定。为进一步分析是否在此条件下,也能制备出金属氧化物纳米结构纤维材料,对上述纤维进行扫描电子显微镜观察分析,结果如图19所示。可以看到,纤维仍呈现出光滑的表面,并无纳米结构的形成。

Claims (18)

  1. 一种小尺寸金属氧化物纳米片的制备方法,包括如下步骤:
    1)将平均尺寸为0.1~100μm的金属粉末置于水中,得到混合液;
    2)向上述混合液通入常压等离子体,对金属进行原位氧化并使其分离成小尺寸金属氧化物纳米片,干燥后得到纳米片尺寸不大于100nm的小尺寸金属氧化物纳米片。
  2. 一种金属氧化物纳米结构复合材料的制备方法,包括如下步骤:
    1)将颗粒尺寸为1~100μm的金属粉末置于水中;
    2)将导电基体材料作为电极浸入上述溶液中;
    3)使用常压等离子体作为导电基体材料的对电极,对溶液进行放电处理,干燥得到金属氧化物纳米结构的复合材料。
  3. 根据权利要求1或2所述的制备方法,其特征在于:金属粉末与水的体积混合比为1∶(5~50)。
  4. 根据权利要求1~3所述的制备方法,其特征在于:常压等离子体处理的时间不少于5min,或为5min~60min,5~30min,10~60min。
  5. 根据权利要求1~4任一项所述的制备方法,其特征在于:金属为过渡金属或过渡金属形成的合金,进一步选自钴、镍、铜、铁、锌、锰、钼中的至少一种,合金包括镍钴合金、镍铁合金、铜镍合金、铁钴镍合金、钴锌合金。
  6. 根据权利要求1~5任一项所述的制备方法,其特征在于:常压等离子体的放电气体选自氩气、氮气、氦气、氧气、空气中的至少一种。
  7. 根据权利要求1~6任一项所述的制备方法,其特征在于:干燥的温度不超过80℃。
  8. 根据权利要求2~7任一项所述的制备方法,其特征在于:导电基体材料选自碳布、碳纤维纸、泡沫镍、泡沫铜、金属片、导电薄膜、导电纤维、导电玻璃中的一种。
  9. 根据权利要求2~9任一项所述的制备方法,其特征在于:纳米结构选自纳米颗粒、纳米介孔、纳米片。
  10. 根据权利要求1所述的制备方法,其特征在于:通入常压等离子体时,溶液通过导体接地。
  11. 根据权利要求1或10所述的制备方法,其特征在于:通入常压等离子体的同时对水溶液进行搅拌,搅拌的速率为50~500rpm。
  12. 根据权利要求8所述的制备方法,其特征在于:导电纤维的电阻率不高于10 7Ω·cm。
  13. 根据权利要求2~9、12任一项所述的制备方法,其特征在于:纳米结构单元的厚度为10nm~1μm。
  14. 一种小尺寸金属氧化物纳米片,其特征在于:纳米片的平均尺寸为10~80nm。
  15. 根据权利要求14所述的小尺寸金属氧化物纳米片,其特征在于:按权利要求1~7、9或10任一项所述的方法制备得到。
  16. 一种金属氧化物纳米结构复合材料,其特征在于:其按权利要求2~9、12或13任一项所述的方法制备得到。
  17. 一种具有金属氧化物纳米结构的复合纤维材料,其特征在于:金属氧化物以纳米结构形式有序均匀分布在导电纤维表面,金属氧化物的体积不超过导电纤维体积的30%。
  18. 根据权利要求17所述的具有金属氧化物纳米结构的复合纤维材料,其特征在于:其按权利要求2~9、12或13任一项所述的方法制备得到。
PCT/CN2018/086773 2018-05-15 2018-05-15 小尺寸金属氧化物及其复合材料和制备方法 WO2019218128A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/086773 WO2019218128A1 (zh) 2018-05-15 2018-05-15 小尺寸金属氧化物及其复合材料和制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/086773 WO2019218128A1 (zh) 2018-05-15 2018-05-15 小尺寸金属氧化物及其复合材料和制备方法

Publications (1)

Publication Number Publication Date
WO2019218128A1 true WO2019218128A1 (zh) 2019-11-21

Family

ID=68539219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086773 WO2019218128A1 (zh) 2018-05-15 2018-05-15 小尺寸金属氧化物及其复合材料和制备方法

Country Status (1)

Country Link
WO (1) WO2019218128A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120127001A (ko) * 2011-05-13 2012-11-21 강원대학교산학협력단 산화아연 나노시트 생성방법
CN102936033A (zh) * 2012-12-04 2013-02-20 九江学院 一种单分散氧化锌超薄纳米片的制备方法
CN106892407A (zh) * 2017-01-23 2017-06-27 湖南大学 一种二维超薄双金属氢氧化物纳米片及其制备方法
CN107720740A (zh) * 2017-11-14 2018-02-23 郴州国盛新材科技有限公司 一种基于鳞片石墨制备石墨烯纳米片的制备方法
CN107777674A (zh) * 2017-09-26 2018-03-09 深圳先进技术研究院 一种利用常压等离子体制备二维材料的方法
CN108545784A (zh) * 2018-05-15 2018-09-18 中国科学院深圳先进技术研究院 一种小尺寸金属氧化物纳米片及其制备方法
CN108640165A (zh) * 2018-05-15 2018-10-12 中国科学院深圳先进技术研究院 一种金属氧化物纳米结构复合材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120127001A (ko) * 2011-05-13 2012-11-21 강원대학교산학협력단 산화아연 나노시트 생성방법
CN102936033A (zh) * 2012-12-04 2013-02-20 九江学院 一种单分散氧化锌超薄纳米片的制备方法
CN106892407A (zh) * 2017-01-23 2017-06-27 湖南大学 一种二维超薄双金属氢氧化物纳米片及其制备方法
CN107777674A (zh) * 2017-09-26 2018-03-09 深圳先进技术研究院 一种利用常压等离子体制备二维材料的方法
CN107720740A (zh) * 2017-11-14 2018-02-23 郴州国盛新材科技有限公司 一种基于鳞片石墨制备石墨烯纳米片的制备方法
CN108545784A (zh) * 2018-05-15 2018-09-18 中国科学院深圳先进技术研究院 一种小尺寸金属氧化物纳米片及其制备方法
CN108640165A (zh) * 2018-05-15 2018-10-12 中国科学院深圳先进技术研究院 一种金属氧化物纳米结构复合材料及其制备方法

Similar Documents

Publication Publication Date Title
Poudel et al. Confinement of Zn-Mg-Al-layered double hydroxide and α-Fe2O3 nanorods on hollow porous carbon nanofibers: A free-standing electrode for solid-state symmetric supercapacitors
Lu et al. Carbon nanotube based fiber supercapacitor as wearable energy storage
Liu et al. Facile synthesis of Fe2O3 nano-dots@ nitrogen-doped graphene for supercapacitor electrode with ultralong cycle life in KOH electrolyte
Li et al. Sulfur and nitrogen Co-doped activated CoFe2O4@ C nanotubes as an efficient material for supercapacitor applications
Jeong et al. Metal oxide/graphene composites for supercapacitive electrode materials
Chen et al. Electrospun carbon nanofibers coated with urchin-like ZnCo 2 O 4 nanosheets as a flexible electrode material
Xu et al. Iron oxide-based nanomaterials for supercapacitors
Ashraf et al. A comprehensive review on the synthesis and energy applications of nano-structured metal nitrides
Wang et al. A microwave-assisted bubble bursting strategy to grow Co8FeS8/CoS heterostructure on rearranged carbon nanotubes as efficient electrocatalyst for oxygen evolution reaction
Adusei et al. A scalable nano-engineering method to synthesize 3D-graphene-carbon nanotube hybrid fibers for supercapacitor applications
Lai et al. Multilayered nickel oxide/carbon nanotube composite paper electrodes for asymmetric supercapacitors
Wang et al. A review of helical carbon materials structure, synthesis and applications
WO2011005375A2 (en) Fabrication of biscrolled fiber using carbon nanotube sheet
Yang et al. In situ synthesis of Mn3O4 on Ni foam/graphene substrate as a newly self-supported electrode for high supercapacitive performance
KR101888743B1 (ko) 다공성 그래핀 및 탄소질을 포함하는 복합체
Zhang et al. One-dimensional, space-confined, solid-phase growth of the Cu9S5@ MoS2 core–shell heterostructure for electrocatalytic hydrogen evolution
Lai et al. Effect of temperature on morphology and electrochemical capacitive properties of electrospun carbon nanofibers and nickel hydroxide composites
Liu et al. Cobalt disulfide nanosphere dispersed on multi-walled carbon nanotubes: an efficient and stable electrocatalyst for hydrogen evolution reaction
Li et al. CuS/polyaniline nanoarray electrodes for application in high-performance flexible supercapacitors
Lu et al. Facile synthesis of electrochemically active Pt nanoparticle decorated carbon nano onions
Pathak et al. Integrating V-doped CoP on Ti3C2Tx MXene-incorporated hollow carbon nanofibers as a freestanding positrode and MOF-derived carbon nanotube negatrode for flexible supercapacitors
El-Shafei et al. Controlled-synthesis of hierarchical NiCo2O4 anchored on carbon nanofibers mat for free-standing and highly-performance supercapacitors
Chen et al. Graphitic carbon nitride nanomaterials for high‐performance supercapacitors
CN108640165B (zh) 一种金属氧化物纳米结构复合材料及其制备方法
WO2019218128A1 (zh) 小尺寸金属氧化物及其复合材料和制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18919121

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12-05-2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18919121

Country of ref document: EP

Kind code of ref document: A1