WO2019216718A1 - 영상 부호화 방법 및 장치, 영상 복호화 방법 및 장치 - Google Patents

영상 부호화 방법 및 장치, 영상 복호화 방법 및 장치 Download PDF

Info

Publication number
WO2019216718A1
WO2019216718A1 PCT/KR2019/005673 KR2019005673W WO2019216718A1 WO 2019216718 A1 WO2019216718 A1 WO 2019216718A1 KR 2019005673 W KR2019005673 W KR 2019005673W WO 2019216718 A1 WO2019216718 A1 WO 2019216718A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
current
block
coding unit
chroma
Prior art date
Application number
PCT/KR2019/005673
Other languages
English (en)
French (fr)
Inventor
박민우
박민수
최기호
최나래
최웅일
김찬열
정승수
템즈아니쉬
표인지
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to EP19798875.1A priority Critical patent/EP3793195A4/en
Priority to KR1020227020795A priority patent/KR20220088813A/ko
Priority to US17/053,571 priority patent/US11616963B2/en
Priority to KR1020237039925A priority patent/KR102665187B1/ko
Priority to KR1020207022246A priority patent/KR102412123B1/ko
Priority to CN201980045982.7A priority patent/CN112385219B/zh
Priority to KR1020237013209A priority patent/KR102606290B1/ko
Priority to SG11202010629TA priority patent/SG11202010629TA/en
Publication of WO2019216718A1 publication Critical patent/WO2019216718A1/ko
Priority to US18/160,712 priority patent/US20230232023A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/186Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a colour or a chrominance component
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/119Adaptive subdivision aspects, e.g. subdivision of a picture into rectangular or non-rectangular coding blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/12Selection from among a plurality of transforms or standards, e.g. selection between discrete cosine transform [DCT] and sub-band transform or selection between H.263 and H.264
    • H04N19/122Selection of transform size, e.g. 8x8 or 2x4x8 DCT; Selection of sub-band transforms of varying structure or type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards

Definitions

  • the method and apparatus according to an embodiment may encode or decode an image by using various types of coding units included in the image.
  • the method and apparatus according to an embodiment may hierarchically divide a chroma image to determine at least one coding unit, and encode or decode the chroma image using at least one coding unit.
  • Various data units may be used to compress an image, and there may be an inclusion relationship among these data units.
  • the data unit may be divided by various methods, and the optimized data unit is determined according to the characteristics of the image, thereby encoding or decoding the image.
  • An image decoding method may include determining a plurality of coding units in a luma image by hierarchically dividing the luma image based on a segmentation mode of blocks included in a luma image of a current image; Determining a plurality of coding units in the chroma image by hierarchically dividing the chroma image based on a partition mode mode of blocks in the chroma image of the current image; And decoding the current image based on the determined plurality of coding units in the luma image and the plurality of coding units in the chroma image, wherein the split mode is based on at least one of a split direction and a split type of a block.
  • the determining of the plurality of coding units in the chroma image may include generating one of a plurality of chroma blocks to be generated by dividing a current chroma block in the chroma image based on a split mode mode of the current chroma block in the chroma image. If the size or width of the chroma block is less than or equal to a predetermined size or width, at least one coding unit included in the current chroma block without allowing division of the current chroma block based on the split type mode of the current chroma block. Characterized in that it comprises the step of determining.
  • An image decoding apparatus determines a plurality of coding units in the luma image by hierarchically dividing the luma image based on the partition type mode of blocks included in the luma image of the current image.
  • the plurality of coding units in the chroma image are determined by dividing the chroma image hierarchically based on the partition mode mode of the blocks in the chroma image of the current image, and the plurality of coding units in the determined luma image and the plurality of coding units in the chroma image
  • at least one processor configured to decode the current image based on a coding unit, wherein the split type mode is a mode based on at least one of a split direction and a split type of a block, wherein the at least one processor is further configured to perform an operation in the chroma image.
  • the at least one The processor may determine at least one coding unit included in the current chroma block without allowing division of the current chroma block based on the split type mode of the current chroma block.
  • An image decoding method includes the steps of determining a plurality of coding units in the luma image by hierarchically dividing the luma image based on a segmentation mode of blocks included in the luma image of the current image; Determining a plurality of coding units in the chroma image by hierarchically dividing the chroma image based on a split mode mode of blocks in the chroma image of the current image; And encoding the current image based on the plurality of coding units in the determined luma image and the plurality of coding units in the chroma image.
  • the split mode is a mode based on at least one of a split direction and a split type of a block,
  • a computer program for an image encoding method or a decoding method according to an embodiment of the present disclosure may be recorded on a computer-readable recording medium.
  • FIG. 1A is a block diagram of an image decoding apparatus, according to various embodiments.
  • 1B is a flowchart of a video decoding method according to various embodiments.
  • 1C is a block diagram of an image decoder, according to various embodiments.
  • FIG. 2A is a block diagram of an image encoding apparatus, according to various embodiments.
  • 2B is a flowchart of a video encoding method, according to various embodiments.
  • 2C is a block diagram of an image decoder, according to various embodiments.
  • FIG. 3 is a diagram illustrating a process of determining, by an image decoding apparatus, at least one coding unit by dividing a current coding unit according to an embodiment.
  • FIG. 4 illustrates a process of determining at least one coding unit by dividing a coding unit having a non-square shape by an image decoding apparatus according to an embodiment.
  • FIG. 5 illustrates a process of splitting a coding unit by at least one of block shape information and information about a split shape mode, according to an embodiment.
  • FIG. 6 is a diagram for a method of determining, by an image decoding apparatus, a predetermined coding unit among odd number of coding units according to an embodiment.
  • FIG. 7 illustrates an order in which a plurality of coding units are processed when the image decoding apparatus determines a plurality of coding units by dividing a current coding unit.
  • FIG. 8 illustrates a process of determining that a current coding unit is divided into an odd number of coding units when the image decoding apparatus cannot process the coding units in a predetermined order, according to an embodiment.
  • FIG. 9 illustrates a process of determining at least one coding unit by dividing a first coding unit by an image decoding apparatus according to an embodiment.
  • FIG. 10 is a view illustrating that a shape in which a second coding unit may be split is limited when a non-square type second coding unit determined by splitting a first coding unit according to an embodiment satisfies a predetermined condition. Shows that.
  • FIG. 11 illustrates a process of splitting a coding unit having a square shape by the image decoding apparatus when the information about the split mode may not be divided into four square coding units.
  • FIG. 12 illustrates that a processing order between a plurality of coding units may vary according to a splitting process of coding units, according to an embodiment.
  • FIG. 13 illustrates a process of determining a depth of a coding unit as a shape and a size of a coding unit change when a coding unit is recursively divided to determine a plurality of coding units according to an embodiment.
  • FIG. 14 illustrates a depth and a part index (PID) for distinguishing a coding unit, which may be determined according to the shape and size of coding units, according to an embodiment.
  • PID depth and a part index
  • FIG. 15 illustrates that a plurality of coding units are determined according to a plurality of predetermined data units included in a picture according to an embodiment.
  • 16 is a diagram of a processing block serving as a reference for determining a determination order of a reference coding unit included in a picture, according to an embodiment.
  • 17A to 17B are diagrams for describing a method of not allowing division into chroma blocks having a predetermined size or less when a split tree type is a single tree according to various embodiments.
  • FIG. 18 is a diagram for describing a method of not allowing division into chroma blocks having a predetermined size or less when a split tree type is a dual tree, according to an embodiment.
  • FIG. 19 is a diagram for describing a method of dividing a block placed at a boundary of a picture using a split shape mode based on the direction of the picture boundary, according to an exemplary embodiment.
  • 20A to 20B illustrate a method of dividing a block placed at a boundary of a picture based on whether a block having a minimum size is obtained when binary dividing a block placed at the boundary of a picture by applying a binary division depth that is allowed according to an exemplary embodiment.
  • An image decoding method may include determining a plurality of coding units in a luma image by hierarchically dividing the luma image based on a segmentation mode of blocks included in a luma image of a current image; Determining a plurality of coding units in the chroma image by hierarchically dividing the chroma image based on a partition mode mode of blocks in the chroma image of the current image; And decoding the current image based on the determined plurality of coding units in the luma image and the plurality of coding units in the chroma image, wherein the split mode is based on at least one of a split direction and a split type of a block. Mode,
  • the split type may represent one of binary split, tri split, and quad split.
  • the predetermined size may be one of 4x2 and 2x4 and 2x2.
  • the predetermined width may be one of eight and four.
  • Determining at least one coding unit included in the current chroma block without allowing division of the current chroma block based on the split type mode of the current chroma block may include: size or width of the current chroma block and the current; The size or width of one of the plurality of chroma blocks to be generated by dividing the current chroma block in the chroma image is smaller than a predetermined size or width depending on whether a condition based on the split shape mode of the chroma block is satisfied.
  • the method may include determining at least one coding unit included in the chroma block.
  • a condition based on the size or width of the current chroma block, and the split type mode of the current chroma block indicates that the division type of the current chroma block is quad division, and the width or height of the current chroma block. ) May be less than or equal to four.
  • the condition based on the size or width of the current chroma block, and the split type mode of the current chroma block indicates whether or not the width of the current chroma block is less than or equal to 16 when the partition type of the current chroma block is binary division. May be a related condition.
  • the division type of the current chroma block is tri division, it may be a condition regarding whether the width of the current chroma block is less than or equal to 32.
  • the segmentation mode of the blocks in the chroma image of the current image may be independent of the segmentation mode of the blocks included in the luma image of the current image.
  • the segmentation mode of the blocks in the chroma image of the current image is dependent on the segmentation mode of the corresponding blocks in the luma image of the current image corresponding to the blocks in the chroma image, and the size of the block in the chroma image is the size of the current image. It may be determined based on a chroma sub sampling format and the size of a corresponding block in the luma image.
  • the size of one of the plurality of blocks to be generated by dividing the current chroma block of the chroma image based on the split shape mode of the current chroma block in the chroma image is 2xN (N is an integer greater than or equal to 2) or Nx2.
  • the method may include determining that the division of the current chroma block is not allowed based on the division type mode of the current chroma block, and determining at least one coding unit included in the current chroma block.
  • Determining a plurality of coding units in the luma image by hierarchically dividing the luma image based on a split mode mode of blocks included in the luma image of the current image, wherein the current luma block included in the luma image is a picture When located on the right boundary of the method, obtaining a flag from the bitstream indicating a partition type of one of binary division and quad division; And determining at least one coding unit included in the current luma block based on the obtained flag.
  • An image decoding apparatus determines a plurality of coding units in the luma image by hierarchically dividing the luma image based on the partition type mode of blocks included in the luma image of the current image.
  • the plurality of coding units in the chroma image are determined by dividing the chroma image hierarchically based on the partition mode mode of the blocks in the chroma image of the current image, and the plurality of coding units in the determined luma image and the plurality of coding units in the chroma image
  • at least one processor configured to decode the current image based on a coding unit, wherein the split type mode is a mode based on at least one of a split direction and a split type of a block, wherein the at least one processor is further configured to perform an operation in the chroma image.
  • the at least one The processor may determine at least one coding unit included in the current chroma block without allowing division of the current chroma block based on the split type mode of the current chroma block.
  • An image encoding method includes the steps of determining a plurality of coding units in the luma image by hierarchically dividing the luma image based on a segmentation mode of blocks included in the luma image of the current image; Determining a plurality of coding units in the chroma image by hierarchically dividing the chroma image based on a split mode mode of blocks in the chroma image of the current image; And encoding the current video based on the determined plurality of coding units in the luma image and the plurality of coding units in the chroma image, wherein the split mode is based on at least one of a split direction and a split type of a block.
  • the determining of the plurality of coding units in the chroma image may include generating one of a plurality of chroma blocks to be generated by dividing a current chroma block in the chroma image based on a split mode mode of the current chroma block in the chroma image. If the size or width of the chroma block is less than or equal to a predetermined size or width, at least one coding unit included in the current chroma block without allowing division of the current chroma block based on the split type mode of the current chroma block. Determining may include.
  • a computer program for an image encoding method or a decoding method according to an embodiment of the present disclosure may be recorded on a computer-readable recording medium.
  • the term “part” means a software or hardware component, and “part” plays certain roles. However, “part” is not meant to be limited to software or hardware.
  • the “unit” may be configured to be in an addressable storage medium and may be configured to play one or more processors.
  • a “part” refers to components such as software components, object-oriented software components, class components, and task components, processes, functions, properties, procedures, Subroutines, segments of program code, drivers, firmware, microcode, circuits, data, databases, data structures, tables, arrays and variables.
  • the functionality provided within the components and “parts” may be combined into a smaller number of components and “parts” or further separated into additional components and “parts”.
  • the “unit” may be implemented with a processor and a memory.
  • the term “processor” should be interpreted broadly to include general purpose processors, central processing units (CPUs), microprocessors, digital signal processors (DSPs), controllers, microcontrollers, state machines, and the like.
  • a “processor” may refer to an application specific semiconductor (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), or the like.
  • ASIC application specific semiconductor
  • PLD programmable logic device
  • FPGA field programmable gate array
  • processor refers to a combination of processing devices such as, for example, a combination of a DSP and a microprocessor, a combination of a plurality of microprocessors, a combination of one or more microprocessors in conjunction with a DSP core, or a combination of any other such configuration. May be referred to.
  • memory should be interpreted broadly to include any electronic component capable of storing electronic information.
  • the term memory refers to random access memory (RAM), read-only memory (ROM), non-volatile random access memory (NVRAM), programmable read-only memory (PROM), erase-programmable read-only memory (EPROM), electrical And may refer to various types of processor-readable media, such as erasable PROM (EEPROM), flash memory, magnetic or optical data storage, registers, and the like.
  • RAM random access memory
  • ROM read-only memory
  • NVRAM non-volatile random access memory
  • PROM programmable read-only memory
  • EPROM erase-programmable read-only memory
  • electrical And may refer to various types of processor-readable media, such as erasable PROM (EEPROM), flash memory, magnetic or optical data storage, registers, and the like.
  • EEPROM erasable PROM
  • flash memory magnetic or optical data storage, registers, and the like.
  • the "image” may be a static image such as a still image of a video or may represent a dynamic image such as a video, that is, the video itself.
  • sample means data to be processed as data allocated to a sampling position of an image.
  • pixel values and transform coefficients on a transform region may be samples in an image of a spatial domain.
  • a unit including the at least one sample may be defined as a block.
  • FIGS. 1 to 20 A method of determining a data unit of an image according to various embodiments will be described with reference to FIGS. 3 through 16, and various forms of coding units according to various embodiments will be described with reference to FIGS. 1, 2, and 17 through 20.
  • An image decoding apparatus, an image encoding method, and an image decoding method for encoding or decoding an image based on the following will be described.
  • FIGS. 1 and 2 an encoding / decoding method and apparatus for encoding or decoding an image based on various types of coding units according to an embodiment of the present disclosure will be described with reference to FIGS. 1 and 2.
  • FIG. 1A is a block diagram of an image decoding apparatus, according to various embodiments.
  • the image decoding apparatus 100 may include a coding unit determiner 105 and an image decoder 110.
  • the coding unit determiner 105 and the image decoder 110 may include at least one processor.
  • the coding unit determiner 105 and the image decoder 110 may include a memory that stores instructions to be executed by at least one processor.
  • the image decoder 110 may be implemented in hardware separate from the coding unit determiner 105 or may include the coding unit determiner 105.
  • the coding unit determiner 105 may determine a plurality of coding units in the luma image by hierarchically dividing the luma image based on the partition type mode of the blocks included in the luma image of the current image.
  • the coding unit determiner 105 may determine a plurality of coding units in the chroma image by dividing the chroma image hierarchically based on the split mode mode of the blocks in the chroma image of the current image.
  • the coding unit determiner 105 may have a predetermined size or width of one chroma block among a plurality of chroma blocks that may be generated by dividing the current chroma block in the chroma image based on a split mode mode of the current chroma block in the chroma image. It can be determined whether it is less than or equal to the size or width.
  • the split type mode of the current chroma block may be a mode based on at least one of the split direction and the split type of the block.
  • the coding unit determiner 105 may determine that the division of the current chroma block based on the split type mode of the current chroma block is not allowed according to the result of the determination.
  • the coding unit determiner 105 may determine at least one coding unit included in the current chroma block based on one of the divided form modes of the current block allowed except for the divided form mode determined as not allowed. . If there is no partition type mode of the current block to allow, the coding unit determiner 105 may determine the current chroma block as a coding unit without splitting any more.
  • the coding unit determiner 105 may have a predetermined size or width of one chroma block among a plurality of chroma blocks that may be generated by dividing the current chroma block in the chroma image based on a split mode mode of the current chroma block in the chroma image. If it is determined that it is smaller than or equal to the size or width, it may be determined that the division of the current chroma block based on the split type mode of the current chroma block is not allowed.
  • the predetermined size may be one of 4x2, 2x4, and 2x2. Also, the predetermined width may be one of eight and four.
  • the coding unit determiner 105 may be configured to split the current chroma block in the chroma image based on whether the size or width of the current chroma block and a condition based on the split shape mode of the current chroma block are satisfied. It may be determined whether the size or width of one chroma block is less than or equal to a predetermined size or width. In this case, the condition based on the size or width of the current chroma block and the split mode mode of the current block indicates whether the width or height of the current chroma block is less than or equal to 4 when the split type of the current chroma block is quad split. Can be.
  • the coding unit determiner 105 may determine that division based on the quad division is not allowed if the size or width of the current chroma block is less than or equal to four. That is, when the height or width of the current chroma block is less than or equal to 4, the height or width of one chroma block among the plurality of chroma blocks generated by quad dividing the current chroma block may be less than or equal to two. Accordingly, the size of one chroma block of the plurality of chroma blocks generated by quad dividing the current chroma block may be 2x2, 4x2, 2x4 (or smaller), and the size of the block is encoded as a coding unit. In this case, it may be determined that the current block is not allowed to be quad-divided to improve throughput since the throughput may be reduced.
  • the coding unit determiner 105 may divide the current chroma block based on other division types allowed except for quad division. If there is no split type allowed in the current chroma block, the coding unit determiner 105 may determine the current chroma block as a coding unit without splitting any more.
  • the condition based on the size or width of the current chroma block and the partition type mode of the current block may be a condition on whether the width of the current chroma block is less than or equal to 16 when the partition type of the current chroma block is binary partition.
  • the coding unit determiner 105 may determine that division based on the binary division is not allowed if the width of the current chroma block is less than or equal to 16.
  • the width of the current chroma block is less than or equal to 16 (for example, when the size of the current chroma block is less than or equal to 2x8, 8x2, or 4x4)
  • a plurality of chromas generated by binary division of the current chroma block The size of one chroma block of the blocks may be less than or equal to 2x4, 4x2.
  • the coding unit determiner 105 may divide the current chroma block based on other division types allowed except for binary division. If there is no split type allowed in the current chroma block, the coding unit determiner 105 may determine the current chroma block as a coding unit without splitting any more.
  • the condition based on the size or width of the current chroma block and the partition type mode of the current block indicates that the width of the current chroma block is less than or equal to 32 when the type of division of the current chroma block is tri-division (or triple division). May be a condition for.
  • the coding unit determiner 105 may determine that division based on binary division is not allowed if the width of the current chroma block is less than or equal to 32.
  • the width of the current chroma block is less than or equal to 32 (for example, when the size of the current chroma block is less than or equal to 4x8, 8x4, 2x16, 16x2), a plurality of generated by tri-dividing the current chroma block.
  • the size of one chroma block of the chroma blocks may be less than or equal to 2x4, 4x2.
  • the coding unit determiner 105 may divide the current chroma block based on other division types that are allowed except for tri division. If there is no split type allowed in the current chroma block, the coding unit determiner 105 may determine the current chroma block as a coding unit without splitting any more.
  • the segmentation mode of the blocks in the chroma image of the current image may be independent of the segmentation mode of the blocks included in the luma image of the current image, but is not limited thereto.
  • the segmentation mode of the blocks in the chroma image of the current image is chroma. It may be dependent on the segmentation mode of the corresponding blocks in the luma image of the current image corresponding to the blocks in the image.
  • the coding unit determiner 105 determines a plurality of coding units in the luma image by hierarchically dividing the luma image based on the segmentation mode mode of the blocks included in the luma image of the current image.
  • a plurality of coding units in the chroma image may be determined by hierarchically dividing the chroma image based on the division mode mode of the blocks included in the same chroma image of the blocks.
  • the coding unit determiner 105 may determine the size of the block in the chroma image based on the chroma subsampling method of the current image and the size of the corresponding block of the luma image.
  • the size of the block in the chroma image may be determined to be 8x8.
  • the coding unit determiner 105 determines that the size of one of the plurality of blocks generated by dividing from the current chroma block of the chroma image based on the division type mode of the current chroma block in the chroma image is 2xN (where N is greater than 2). Same integer) or less than or equal to Nx2, it may be determined that the division of the current chroma block based on the split type mode of the current chroma block is not allowed.
  • the coding unit determiner 105 may determine at least one coding unit included in the current chroma block based on the allowable partition type except for the partition type that is not allowed.
  • the image decoder 110 may decode the current image based on the plurality of coding units in the luma image and the plurality of coding units in the chroma image.
  • each luma block divided in each inter slice or picture may have a different prediction mode.
  • each luma block may have an inter or intra prediction mode.
  • the image decoding apparatus 100 may determine the prediction mode of the corresponding chroma block as follows. When the current slice or picture is an inter slice or a picture, the image decoding apparatus 100 may determine the prediction mode of the chroma block if the ratio of the area of the luma block having the intra prediction mode is greater than or equal to a predetermined value. May be determined as an intra prediction mode.
  • the image decoding apparatus 100 may determine the prediction mode of the chroma block if the ratio of the area of the luma block having the inter prediction mode is greater than or equal to a predetermined value. May be determined as the inter prediction mode.
  • the image decoding apparatus 100 may obtain information about a prediction mode of a corresponding chroma block from the bitstream.
  • the image decoding apparatus 100 may determine the prediction mode of the luma corresponding block corresponding to the specific position of the chroma block as the prediction mode of the chroma block.
  • the specific position may be a position such as an upper left position, a center position, a lower left position, an upper position, a lower right position, and the like.
  • the specific position may be a predefined position, but is not limited thereto, and the image decoding apparatus 100 may obtain information about the specific position from a separate bitstream and determine the specific position based on the obtained information. have.
  • the image decoding apparatus 100 may perform the following operations when the size of the current block is smaller than or equal to a specific size or the width of the current block is smaller than or equal to a specific value to improve throughput.
  • the image decoding apparatus 100 may inversely transform the current block by using a transform method other than a transform method such as a discrete cosine transform (DCT). For example, when the size of the current block is smaller than 4 ⁇ 4, the image decoder 105 may inversely transform the current block by using a hamadad transform.
  • DCT discrete cosine transform
  • the image decoding apparatus 100 may always set a value of a transform skip flag for the current block to 1. For example, the image decoding apparatus 100 may obtain a transform skip flag for the current block from the bitstream and set a value of the transform skip flag based on the value of the transform skip flag obtained from the bitstream. If the size of the current block is less than or equal to a certain size, or if the width of the current block is less than or equal to a certain value, the value of the transform skip flag for the current block is obtained without obtaining the transform skip flag from the bitstream. Can be set to
  • the transform skip flag is a flag indicating whether a transform is used.
  • the image decoding apparatus 100 may restore the current block using an inverse quantized block without performing an inverse transform operation.
  • the image decoding apparatus 100 may perform an inverse transform operation on the inverse quantized block, generate an inverse transformed block, and restore the current block by using the inverse transformed block.
  • the image decoding apparatus 100 may determine that the division of the block is not allowed when the size of the block is smaller than or equal to a specific size or width. For example, when the size of the current block is 8x8, the image decoding apparatus 100 may determine that the division of the current block is not allowed. For example, when the width of the current block is 64, the image decoding apparatus 100 may determine that the division of the current block is not allowed.
  • the image decoding apparatus 100 may perform the following operation since the probability of dividing the block may be lower than the probability of skipping the block.
  • the image decoding apparatus 100 may obtain skip information of the current block from the bitstream before split information of the current block.
  • the image decoding apparatus 100 obtains flag information indicating whether the maximum coding unit has residual information at the maximum coding unit level, and if the value of the flag indicates that the maximum coding unit does not have residual information. In this case, the image decoding apparatus 100 may determine not to parse syntax elements related to the residual from the bitstream and skip the decoding process related thereto.
  • the image decoding apparatus 100 may determine that asymmetric binary division is not allowed in the case of an inter slice or a picture.
  • the image decoding apparatus 100 may divide the current block without obtaining additional information from the bitstream. For example, when the current block is located on the boundary of a picture, the image decoding apparatus 100 may quad split the current block without obtaining additional information from the bitstream. In this case, the divided blocks may be quad-recursively recursively until they are not located on the boundary of the picture. However, if there is a predetermined split depth, the block may be split up to the corresponding depth.
  • the image decoding apparatus 100 may divide the current block without obtaining additional information from the bitstream, but divide the current block based on various division types and division directions. can do. In this case, the image decoding apparatus 100 may determine the division type and the division direction of the current block based on the boundary condition of the block.
  • the divided blocks may be recursively divided until they are not located on the boundary of the picture. However, if there is a predetermined split depth, the block may be split up to the corresponding depth.
  • the image decoding apparatus 100 determines the division direction of the current block in the horizontal direction, determines the division type as binary division (or tri division),
  • the current block may be binary-divided (or tri-divided) in the horizontal direction based on the division direction and the division type of the current block.
  • the image decoding apparatus 100 determines the division direction of the current block in the vertical direction, determines the division type of the current block as binary division (or tri-division), and The current block may be binary divided (or tri-divided) in the vertical direction based on the division direction and the division type of the block.
  • the image decoding apparatus 100 may determine the division type of the current block as quad division, and quad divide the current block based on the division type of the current block.
  • the image decoding apparatus 100 limits some partition types or partition directions among various partition types or partition directions to reduce complexity. can do.
  • the image decoding apparatus 100 may limit the division depth of binary division.
  • the image decoding apparatus 100 may limit the ratio of the allowable block or the size of the allowable block.
  • the image decoding apparatus 100 may divide a block without obtaining additional information from the bitstream using only the split mode that satisfies the constraint.
  • the image decoding apparatus 100 may allow only some of the partition types of the plurality of blocks. For example, when the current block is located on the boundary of a picture, the image decoding apparatus 100 may allow only quad division among various division types.
  • the image decoding apparatus 100 may implicitly divide the current block until the divided block has a specific partition type mode that may be used in the block.
  • the image decoding apparatus 100 may determine that the current block is not further divided. In order to enable this, the image decoding apparatus 100 may perform the following operations.
  • the image decoding apparatus 100 may obtain a flag indicating whether implicit split for the current block is allowed from the bitstream. When the value of the flag is equal to 0, the image decoding apparatus 100 may determine that implicit division for the current block is not allowed. In this case, the image decoding apparatus 100 may obtain information about the partition type mode of the current block from the bitstream, and determine the partition type mode of the current block based on the obtained information. When the value of the flag is equal to 1, the image decoding apparatus 100 may determine that implicit division for the current block is allowed. In this case, the image decoding apparatus 100 may perform implicit division on the current block.
  • the image decoding apparatus 100 may obtain a flag indicating that the current block has no residual from the bitstream. If the flag value is equal to 0, the image decoding apparatus 100 may perform implicit division on the current block. When the value of the flag is equal to 1, the image decoding apparatus 100 may determine that the skip mode decoding process is performed on the current block.
  • the image decoding apparatus 100 may obtain a flag of the maximum coding unit level indicating whether the implicit segmentation for the maximum coding unit is allowed from the bitstream.
  • the image decoding apparatus 100 may determine that implicit division of the maximum coding unit is not allowed.
  • the video decoding apparatus 100 may determine that implicit division of the maximum coding unit is not allowed.
  • the value of the flag is 1, it may be determined that implicit splitting for the maximum coding unit is allowed, and the implicit splitting process for the maximum coding unit may be performed.
  • the image decoding apparatus 100 may obtain a flag indicating that the current maximum coding unit does not have a residual from the bitstream. When the value of the flag is equal to 0, the image decoding apparatus 100 may perform implicit division on the current maximum coding unit. When the value of the flag is equal to 1, the image decoding apparatus 100 may determine that the skip mode decoding process is performed on the current maximum coding unit.
  • the image decoding apparatus 100 may implicitly determine the split type mode of the current block. For example, the image decoding apparatus 100 may determine one segmentation mode among a plurality of specific segmentation modes based on a boundary condition. When the current block is located on the right boundary of the picture, the image decoding apparatus 100 may obtain a flag indicating one of a division type of binary division and quad division from the bitstream.
  • the image decoding apparatus 100 may obtain information about a split mode mode used for the current maximum coding unit from the bitstream.
  • the image decoding apparatus 100 may determine the split type mode of the current block based on the ratio of the region within the picture. For example, the image decoding apparatus 100 may determine the split type mode of the current block based on the ratio of the height and the width of the block area in the picture. If the current block is located on the left boundary or the right boundary, and the ratio of the width and height of the current block is greater than N, the image decoding apparatus 100 may determine the division type of the current block as quad division. Otherwise, the video decoding apparatus 100 may determine the partition type of the current block as binary partition.
  • the image decoding apparatus 100 may determine the division type of the current block as quad division or the division type of the current block as binary division.
  • the image decoding apparatus 100 may always obtain information about the split type mode of the current block from the bitstream, regardless of whether the current block is located on the boundary of the picture.
  • the image decoding apparatus 100 performs entropy decoding by allocating a context-adaptive binary arithmetic coding (CABAC) context different from that of blocks not located on the boundary of the picture. You can decide.
  • CABAC context-adaptive binary arithmetic coding
  • the image decoding apparatus 100 may determine that entropy decoding is performed using a CABAC context based on a boundary condition.
  • 1B is a flowchart of a video decoding method according to various embodiments.
  • the image decoding apparatus 100 may determine a plurality of coding units in the luma image by dividing the luma image hierarchically based on the division mode mode of the block included in the luma image of the current image.
  • the split type mode may be a mode based on at least one of the split direction and the split type of the block.
  • the split type may indicate at least one of binary split, tri split, and quad split.
  • the image decoding apparatus 100 may determine a plurality of coding units in the chroma image by hierarchically dividing the chroma image based on the partition type mode of the blocks in the chroma image of the current image.
  • the image decoding apparatus 100 may be smaller than or equal to the size or width of one chroma block among a plurality of chroma blocks that may be generated by dividing the current chroma block in the chroma image based on the split mode mode of the current chroma block in the chroma image.
  • at least one coding unit included in the current chroma block may be determined without allowing division of the current chroma block based on the split type mode of the current chroma block.
  • the image decoding apparatus 100 may decode the current image based on the plurality of coding units in the luma image and the plurality of coding units in the chroma image.
  • 1C is a block diagram of an image decoder 6000 according to various embodiments.
  • the image decoder 6000 performs operations performed by the image decoder 110 of the image decoding apparatus 100 to encode image data.
  • the entropy decoding unit 6150 parses encoded image data to be decoded and encoding information necessary for decoding from the bitstream 6050.
  • the encoded image data is a quantized transform coefficient.
  • the inverse quantizer 6200 and the inverse transform unit 6250 reconstruct residue data from the quantized transform coefficients.
  • the intra predictor 6400 performs intra prediction for each block.
  • the inter prediction unit 6350 performs inter prediction using the reference image acquired in the reconstructed picture buffer 6300 for each block.
  • the deblocking unit ( 6450 and the SAO execution unit 6500 may perform loop filtering on the restored data of the spatial region to output the filtered restored image 6600.
  • the reconstructed images stored in the reconstructed picture buffer 6300 may be output as reference images.
  • step-by-step operations of the image decoder 6000 may be performed for each block.
  • FIG. 2A is a block diagram of an image encoding apparatus, according to various embodiments.
  • the image encoding apparatus 150 may include a coding unit determiner 155 and an image encoder 160.
  • the coding unit determiner 155 and the image encoder 160 may include at least one processor.
  • the coding unit determiner 155 and the image encoder 160 may include a memory that stores instructions to be executed by at least one processor.
  • the image encoder 160 may be implemented in hardware separate from the coding unit determiner 155 or may include the coding unit determiner 155.
  • the coding unit determiner 155 may determine a plurality of coding units in the luma image by hierarchically dividing the luma image based on the partition type mode of the blocks included in the luma image of the current image.
  • the coding unit determiner 155 may determine a plurality of coding units in the chroma image by hierarchically dividing the chroma image based on the split mode mode of the blocks in the chroma image of the current image.
  • the coding unit determiner 155 may determine a size or width of one chroma block among a plurality of chroma blocks that may be generated by dividing the current chroma block in the chroma image based on the split mode mode of the current chroma block in the chroma image. It can be determined whether it is less than or equal to the size or width.
  • the coding unit determiner 155 may determine that the division of the current chroma block based on the split type mode of the current chroma block is not allowed according to the determination result.
  • the coding unit determiner 155 may determine at least one coding unit included in the current chroma block based on one of the divided form modes of the current block allowed except for the divided form mode determined as not allowed. . If there is no partition type mode of the current block to allow, the coding unit determiner 155 may determine the current chroma block as a coding unit without splitting any more.
  • the coding unit determiner 155 may determine a size or width of one chroma block among a plurality of chroma blocks that may be generated by dividing the current chroma block in the chroma image based on the split mode mode of the current chroma block in the chroma image. If it is determined that it is smaller than or equal to the size or width, it may be determined that the division of the current chroma block based on the split type mode of the current chroma block is not allowed.
  • the predetermined size may be one of 4x2, 2x4, and 2x2. Also, the predetermined width may be one of eight and four.
  • the coding unit determiner 155 divides the current chroma block in the chroma image according to whether or not a condition based on the size or width of the current chroma block and the split mode mode of the current chroma block is satisfied. It may be determined whether the size or width of one chroma block is less than or equal to a predetermined size or width. In this case, the condition based on the size or width of the current chroma block and the split mode mode of the current block indicates whether the width or height of the current chroma block is less than or equal to 4 when the split type of the current chroma block is quad split. Can be.
  • the coding unit determiner 155 may determine that division based on the quad division is not allowed if the size or width of the current chroma block is less than or equal to four. That is, when the height or width of the current chroma block is less than or equal to 4, the height or width of one chroma block among the plurality of chroma blocks generated by quad dividing the current chroma block may be less than or equal to two. Accordingly, the size of one chroma block of the plurality of chroma blocks generated by quad-dividing the current chroma block may be 2x2, 4x2, 2x4 (or smaller), and the size of the block may be encoded or encoded.
  • the coding unit determiner 155 may divide the current chroma block based on other division types allowed except for quad division. If there is no split type allowed in the current chroma block, the coding unit determiner 155 may determine the current chroma block as a coding unit without splitting any more.
  • the condition based on the size or width of the current chroma block and the partition type mode of the current block may be a condition on whether the width of the current chroma block is less than or equal to 16 when the partition type of the current chroma block is binary partition.
  • the coding unit determiner 155 may determine that division based on the binary division is not allowed if the width of the current chroma block is less than or equal to 16.
  • the width of the current chroma block is less than or equal to 16 (for example, when the size of the current chroma block is less than or equal to 2x8, 8x2, 4x4)
  • a plurality of chroma blocks generated by binary division of the current chroma block The size of one chroma block may be less than or equal to 2x4, 4x2.
  • the coding unit determiner 155 may divide the current chroma block based on other division types allowed except for binary division. If there is no split type allowed in the current chroma block, the coding unit determiner 155 may determine the current chroma block as a coding unit without splitting any more.
  • the condition based on the size or width of the current chroma block and the split type mode of the current block may be a condition as to whether the width of the current chroma block is less than or equal to 32 when the split type of the current chroma block is tri split.
  • the coding unit determiner 155 may determine that the division based on the binary division is not allowed if the width of the current chroma block is less than or equal to 32.
  • the width of the current chroma block is less than or equal to 32 (for example, when the size of the current chroma block is less than or equal to 4x8, 8x4, 2x16, 16x2), a plurality of generated by tri-dividing the current chroma block.
  • the size of one chroma block of the chroma blocks may be less than or equal to 2x4, 4x2.
  • the coding unit determiner 155 may divide the current chroma block based on other division types allowed except for tri division. If there is no split type allowed in the current chroma block, the coding unit determiner 155 may determine the current chroma block as a coding unit without splitting any more.
  • the segmentation mode of the blocks in the chroma image of the current image may be independent of the segmentation mode of the blocks included in the luma image of the current image, but is not limited thereto.
  • the segmentation mode of the blocks in the chroma image of the current image is chroma. It may be dependent on the segmentation mode of the corresponding blocks in the luma image of the current image corresponding to the blocks in the image.
  • the coding unit determiner 155 determines a plurality of coding units in the luma image by hierarchically dividing the luma image based on the segmentation mode mode of the blocks included in the luma image of the current image.
  • a plurality of coding units in the chroma image may be determined by hierarchically dividing the chroma image based on the division mode mode of the blocks included in the same chroma image of the blocks.
  • the coding unit determiner 155 may determine the size of the block in the chroma image based on the chroma subsampling method of the current image and the size of the corresponding block of the luma image.
  • the size of the block in the chroma image may be determined to be 8x8.
  • the coding unit determiner 155 may have an integer of 2xN (where N is greater than or equal to 2) of the size of one of the plurality of blocks divided from the current chroma block of the chroma image based on the division type mode of the current chroma block in the chroma image. Or less than or equal to Nx2, it may be determined that disallowing division of the current chroma block based on the split type mode of the current chroma block.
  • the coding unit determiner 155 may determine at least one coding unit included in the current chroma block based on the allowable partition type except for the partition type that is not allowed.
  • the image encoder 160 may encode the current image based on the plurality of coding units in the luma image and the plurality of coding units in the chroma image.
  • Each luma block divided in each inter slice or picture may have a different prediction mode.
  • each luma block may have an inter or intra prediction mode.
  • the image encoding apparatus 150 may determine the prediction mode of the corresponding chroma block as follows. When the current slice or picture is an inter slice or a picture, the image encoding apparatus 150 sets the intra prediction mode of the chroma block if the ratio of the area of the luma block having the intra prediction mode is greater than a predetermined value. The prediction mode may be determined.
  • the image encoding apparatus 150 may interleave the prediction mode of the chroma block if the ratio of the area of the luma block having the inter prediction mode is greater than a predetermined value.
  • the prediction mode may be determined.
  • the image encoding apparatus 150 may encode information about a prediction mode of a corresponding chroma block and generate a bitstream including information about a prediction mode of the encoded chroma block. have.
  • the image encoding apparatus 150 may determine the prediction mode of the luma corresponding block corresponding to the specific position of the chroma block as the prediction mode of the chroma block.
  • the specific position may be a position such as an upper left position, a center position, a lower left position, an upper position, a lower right position, and the like.
  • the specific position may be a predefined position, but is not limited thereto, and the image encoding apparatus 150 may encode information about the specific position and generate a bitstream including information about the encoded specific position. have.
  • the image encoding apparatus 150 may perform the following operation when the size of the current block is smaller than or equal to a specific size or the width of the current block is smaller than or equal to a specific value in order to improve throughput.
  • the image encoding apparatus 150 may transform the current block using a transform method other than a transform method such as a discrete cosine transform (DCT). For example, when the size of the current block is smaller than 4x4, the image encoding apparatus 150 may transform the current block by using a hamadad transform.
  • DCT discrete cosine transform
  • the image encoding apparatus 150 may determine to omit the transform for the current block. For example, the image encoding apparatus 150 may encode a transform skip flag for the current block and generate a bitstream including the encoded flag, but if the size of the current block is smaller than or equal to a specific size, When the width of the current block is smaller than or equal to a specific value, it may be determined that the transform for the current block is omitted, and the transform skip flag for the current block may not be encoded.
  • the image encoding apparatus 150 may determine that the division of the block is not allowed when the size of the block is smaller than or equal to a specific size or width. For example, when the size of the current block is 8x8, the image encoding apparatus 150 may determine that the division of the current block is not allowed. For example, when the width of the current block is 64, the image encoding apparatus 150 may determine that the division of the current block is not allowed.
  • the image encoding apparatus 150 may perform the following operation since the probability of dividing the block may be lower than the probability of skipping the block.
  • the image encoding apparatus 150 may encode skip information of the current block before segmentation information of the current block.
  • the image encoding apparatus 150 determines that syntax elements related to the residual are not encoded, and sets a flag indicating that the maximum coding unit does not have residual information.
  • a bitstream including the encoded flag may be generated.
  • the image encoding apparatus 150 may determine that asymmetric binary division is not allowed when the current slice or picture is an inter slice or a picture.
  • the image encoding apparatus 150 may divide the current block when the current block is located on the boundary of the picture. In this case, the image encoding apparatus 150 may not encode information about the partitioned mode of the current block.
  • the image encoding apparatus 150 may quad-split the current block without encoding the split type mode information.
  • the divided blocks may be quad-recursively recursively until they are not located on the boundary of the picture.
  • the block may be split up to the corresponding depth.
  • the image encoding apparatus 150 may split the current block without encoding the split mode mode information for the current block, but based on various partition types and split directions. You can split the current block.
  • the image encoding apparatus 150 may determine the division type and the division direction of the current block based on the boundary condition of the block.
  • the divided blocks may be recursively divided until they are not located on the boundary of the picture. However, if there is a predetermined split depth, the block may be split up to the corresponding depth.
  • the image encoding apparatus 150 determines the division direction of the current block in the horizontal direction, determines the division type as the binary division, and divides the current block in the division direction. And based on the partition type, the current block may be binary divided in the horizontal direction.
  • the image encoding apparatus 150 determines the division direction of the current block in the vertical direction, determines the division type of the current block as the binary division, Based on the partition type, the current block may be binary divided in the vertical direction.
  • the image encoding apparatus 150 may determine the division type of the current block as quad division, and quad divide the current block based on the division type of the current block.
  • partition types or partition directions of the allowable blocks are diversified, complexity increases exponentially, and the image encoding apparatus 150 restricts some partition types or partition directions among various partition types or partition directions to reduce complexity. can do.
  • the image encoding apparatus 150 may limit the division depth of binary division.
  • the image encoding apparatus 150 may limit the ratio of the allowable block or the size of the allowable block.
  • the image encoding apparatus 150 may divide a block by using only a split mode that satisfies the constraint and may not encode information about a separate split mode.
  • the image encoding apparatus 150 may allow only some of the partition types of the plurality of blocks. For example, when the current block is located on a boundary of a picture, the image encoding apparatus 150 may allow only quad division among various division types.
  • the image encoding apparatus 150 may implicitly partition the current block until the divided block has a specific partition type mode that may be used in the block.
  • the image encoding apparatus 150 may determine that the current block is not further divided. To enable this, the image encoding apparatus 150 may perform the following operations.
  • the image encoding apparatus 150 may encode a flag indicating whether implicit split for the current block is allowed. When determining that the implicit segmentation for the current block is not allowed, the image encoding apparatus 150 may encode a flag value as 0. In this case, the image encoding apparatus 150 may encode information about the partitioned mode of the current block and generate a bitstream including information about the encoded partitioned mode of the current block.
  • the image encoding apparatus 150 may encode the flag value as 1.
  • the image encoding apparatus 150 may encode a flag indicating that the current block does not have a residual, and generate a bitstream including the encoded flag.
  • the image encoding apparatus 150 may encode a flag value as 0 when performing implicit division on the current block.
  • the image encoding apparatus 150 may encode the flag value as 1 when performing the skip mode encoding process on the current block.
  • the image encoding apparatus 150 may encode a flag having a maximum coding unit level indicating whether implicit division of the maximum coding unit is allowed.
  • the image encoding apparatus 150 may encode a flag value as 0.
  • the image encoding apparatus 150 may encode the flag value as 1 when performing the implicit splitting process on the maximum coding unit.
  • the image encoding apparatus 150 may encode a flag indicating that the current maximum coding unit does not have a residual.
  • the image encoding apparatus 150 may encode a flag value equal to zero.
  • the image encoding apparatus 150 may encode the flag value equal to one.
  • the image encoding apparatus 150 may implicitly determine the split mode mode of the current block. For example, the image encoding apparatus 150 may determine one segmentation mode among a plurality of specific segmentation modes based on a boundary condition. When the current block is located on the right boundary of the picture, the image encoding apparatus 150 may encode a flag indicating one of a division type of binary division and quad division.
  • the image encoding apparatus 150 encodes information about a split mode mode used for the current maximum coding unit, and includes bits that include information about the encoded split mode. You can create a stream.
  • the image encoding apparatus 150 may determine the split mode mode of the current block based on the ratio of the region within the picture. For example, the split shape mode of the current block may be determined based on a ratio of the height and the width of the block area in the picture. If the current block is located on the left boundary or the right boundary, and the ratio of the width and height of the current block is greater than N, the image encoding apparatus 150 may determine the division type of the current block as quad division. Otherwise, the image encoding apparatus 150 may determine the division type of the current block as binary division.
  • the image encoding apparatus 150 may determine the division type of the current block as quad division or the division type of the current block as binary division.
  • the image encoding apparatus 150 may encode information about the split shape mode of the current block, regardless of whether the current block is located on the boundary of the picture.
  • the image encoding apparatus 150 may assign entropy encoding by assigning a context-adaptive binary arithmetic coding (CABAC) context different from that of blocks not located on the boundary of the picture. .
  • CABAC context-adaptive binary arithmetic coding
  • the image encoding apparatus 150 may entropy encode using a CABAC context based on a boundary condition.
  • 2B is a flowchart of a video encoding method, according to various embodiments.
  • the image encoding apparatus 150 may determine a plurality of coding units in the luma image by hierarchically dividing the luma image based on the segmentation mode of the blocks included in the luma image of the current image.
  • the image encoding apparatus 150 may determine a plurality of coding units in the chroma image by dividing the chroma image hierarchically based on the split mode mode of the blocks in the chroma image of the current image.
  • the image encoding apparatus 150 may have a size or width of one chroma block of a plurality of chroma blocks generated by dividing the current chroma block in the chroma image based on the split mode mode of the current chroma block in the chroma image. If smaller than or equal to, at least one coding unit included in the current chroma block may be determined without allowing division of the current chroma block based on the split type mode of the current chroma block.
  • the image encoding apparatus 150 may encode the current image based on the plurality of coding units in the luma image and the plurality of coding units in the chroma image.
  • 2C is a block diagram of an image encoder, according to various embodiments.
  • the image encoder 7000 performs operations performed by the image encoder 160 of the video encoding apparatus 150 to encode image data.
  • the intra predictor 7200 performs intra prediction for each block of the current image 7050
  • the inter predictor 7150 performs reference to the reference image obtained from the current image 7050 and the reconstructed picture buffer 7100 for each block. Inter prediction is performed.
  • Residual data is generated by subtracting the prediction data for each block output from the intra predictor 7200 or the inter predictor 7150 from the data for the encoded block of the current image 7050, and the transformer 7250.
  • the quantization unit 7300 may perform transform and quantization on the residue data to output quantized transform coefficients for each block.
  • the inverse quantization unit 7450 and the inverse transform unit 7500 may restore the residual data of the spatial domain by performing inverse quantization and inverse transformation on the quantized transform coefficients.
  • Residual data of the reconstructed spatial domain is reconstructed into spatial data of a block of the current image 7050 by adding the prediction data of each block output from the intra predictor 7200 or the inter predictor 7150. .
  • the deblocking unit 7750 and the SAO performer perform in-loop filtering on the data of the reconstructed spatial region to generate a filtered reconstructed image.
  • the generated reconstructed image is stored in the reconstructed picture buffer 7100.
  • the reconstructed images stored in the reconstructed picture buffer 7100 may be used as reference images for inter prediction of another image.
  • the entropy encoder 7350 may entropy-encode the quantized transform coefficients, and the entropy-encoded coefficients may be output as the bitstream 7400.
  • step-by-step operations of the image encoder 7000 according to various embodiments may be performed for each block.
  • the image may be divided into maximum coding units.
  • the size of the largest coding unit may be determined based on information obtained from the bitstream.
  • the shape of the largest coding unit may have a square of the same size. But it is not limited thereto.
  • the maximum coding unit may be hierarchically divided into coding units based on the information about the split shape mode obtained from the bitstream.
  • the information on the partition type mode may include at least one of information indicating whether to split, split direction information, and split type information.
  • Information indicating whether to split indicates whether to split a coding unit.
  • the division direction information indicates division into one of a horizontal direction and a vertical direction.
  • the split type information indicates that a coding unit is split into one of binary split, tri split (or triple split), or quad split.
  • the image decoding apparatus 100 may obtain information about the partition mode from the bitstream as one empty string.
  • the image decoding apparatus 100 may determine whether to split a coding unit, a split direction, and a split type based on one empty string.
  • the coding unit may be smaller than or equal to the maximum coding unit.
  • the coding unit when indicating that the information about the split mode is not split, the coding unit has the same size as the maximum coding unit.
  • the maximum coding unit may be split into coding units of a lower depth.
  • the coding unit of the lower depth may be split into coding units having a smaller size.
  • segmentation of an image is not limited thereto, and a maximum coding unit and a coding unit may not be distinguished. Splitting of coding units will be described in more detail with reference to FIGS. 3 to 16.
  • the coding unit may be divided into a prediction unit for prediction of an image.
  • the prediction unit may be equal to or smaller than the coding unit.
  • the coding unit may be divided into a transformation unit for transformation of an image.
  • the transformation unit may be equal to or smaller than the coding unit.
  • the shape and size of the transform unit and the prediction unit may not be related to each other.
  • the coding unit may be distinguished from the prediction unit and the transformation unit, but the coding unit, the prediction unit, and the transformation unit may be the same.
  • the division of the prediction unit and the transformation unit may be performed in the same manner as the division of the coding unit. Splitting of coding units will be described in more detail with reference to FIGS. 3 to 16.
  • the current block and neighboring blocks of the present disclosure may represent one of a maximum coding unit, a coding unit, a prediction unit, and a transformation unit.
  • the current block or the current coding unit is a block in which decoding or encoding is currently performed or a block in which current division is in progress.
  • the neighboring block may be a block restored before the current block.
  • the neighboring blocks can be spatially or temporally adjacent from the current block.
  • the neighboring block may be located at one of the lower left side, left side, upper left side, upper side, upper right side, right side, and lower side of the current block.
  • FIG. 3 illustrates a process of determining, by the image decoding apparatus 100, at least one coding unit by dividing a current coding unit according to an embodiment.
  • the block type may include 4Nx4N, 4Nx2N, 2Nx4N, 4NxN, Nx4N, 32NxN, Nx32N, 16NxN, Nx16N, 8NxN or Nx8N.
  • N may be a positive integer.
  • the block shape information is information indicating at least one of a shape, a direction, a width, and a ratio or size of a coding unit.
  • the shape of the coding unit may include square and non-square.
  • the image decoding apparatus 100 may determine block shape information of the coding unit as a square.
  • the image decoding apparatus 100 may determine the shape of the coding unit as a non-square.
  • the image decoding device 100 May determine the block shape information of the coding unit as a non-square.
  • the image decoding apparatus 100 may determine a ratio of the width and the height of the block shape information of the coding unit to 1: 2, 2: 1, 1: 4, 4: 1, 1: 8. Or 8: 1.
  • the image decoding apparatus 100 may determine whether the coding unit is a horizontal direction or a vertical direction, based on the length of the width of the coding unit and the length of the height. Also, the image decoding apparatus 100 may determine the size of the coding unit based on at least one of the length, the length, or the width of the coding unit.
  • the image decoding apparatus 100 may determine a shape of a coding unit by using block shape information, and may determine in which form the coding unit is divided by using information on a split shape mode. That is, the method of dividing the coding unit indicated by the information about the partition mode may be determined according to which block shape the block shape information used by the image decoding apparatus 100 indicates.
  • the image decoding apparatus 100 may obtain information about the partition type mode from the bitstream. However, the present invention is not limited thereto, and the image decoding apparatus 100 and the image encoding apparatus 150 may obtain information about a predetermined partition type mode based on the block shape information.
  • the image decoding apparatus 100 may obtain information about a partition type mode that is previously promised with respect to the maximum coding unit or the minimum coding unit. For example, the image decoding apparatus 100 may determine, as a quad split, information about a split mode mode with respect to the maximum coding unit. In addition, the image decoding apparatus 100 may determine that the information about the split type mode is "not divided" with respect to the minimum coding unit. In more detail, the image decoding apparatus 100 may determine the size of the largest coding unit to 256x256.
  • the image decoding apparatus 100 may determine information about a predetermined partition type mode as quad segmentation.
  • Quad division is a division mode mode that bisects both the width and the height of a coding unit.
  • the image decoding apparatus 100 may obtain a 128x128 coding unit from the largest coding unit having a size of 256x256 based on the information about the split mode. Also, the image decoding apparatus 100 may determine the size of the minimum coding unit as 4 ⁇ 4.
  • the image decoding apparatus 100 may obtain information about a split mode mode indicating “not split” with respect to the minimum coding unit.
  • the image decoding apparatus 100 may use block shape information indicating that the current coding unit is square. For example, the image decoding apparatus 100 may determine whether to split a square coding unit, to split vertically, to split horizontally, or to split into four coding units according to the information about the split mode. Referring to FIG. 3, when the block shape information of the current coding unit 300 indicates a square shape, the decoder 120 and the current coding unit 300 are determined according to the information about the split shape mode indicating that the block shape information is not divided. The coding units 310a having the same size may not be divided, or the split coding units 310b, 310c, 310d, and the like may be determined based on the information on the split mode mode indicating a predetermined division method.
  • the image decoding apparatus 100 divides two coding units 310b vertically by dividing the current coding unit 300 based on information about a split mode that indicates division in a vertical direction, according to an exemplary embodiment. ) Can be determined.
  • the image decoding apparatus 100 may determine two coding units 310c that divide the current coding unit 300 in the horizontal direction based on the information about the split mode that indicates the split in the horizontal direction.
  • the image decoding apparatus 100 may determine four coding units 310d that divide the current coding unit 300 in the vertical direction and the horizontal direction based on the information about the split mode mode indicating the division in the vertical direction and the horizontal direction. have.
  • the image decoding apparatus 100 divides three coding units 310e vertically by dividing the current coding unit 300 based on split form mode information indicating tri-or ternary division in a vertical direction. Can be determined.
  • the image decoding apparatus 100 may determine three coding units 310f that divide the current coding unit 300 in the horizontal direction based on split type mode information indicating that the ternary division is performed in the horizontal direction.
  • the divided form in which the square coding unit may be divided should not be interpreted as being limited to the above-described form, but may include various forms in which information about the divided form mode may be represented. Certain division forms in which a square coding unit is divided will be described in detail with reference to various embodiments below.
  • FIG. 4 illustrates a process of determining, by the image decoding apparatus 100, at least one coding unit by dividing a coding unit having a non-square shape according to an embodiment.
  • the image decoding apparatus 100 may use block shape information indicating that a current coding unit is a non-square shape.
  • the image decoding apparatus 100 may determine whether to split the current coding unit of the non-square according to the information about the partition mode or whether to split the current coding unit by a predetermined method. Referring to FIG. 4, when the block shape information of the current coding unit 400 or 450 indicates a non-square shape, the image decoding apparatus 100 may encode the current image according to the information about the split shape mode indicating that the image decoding apparatus 100 is not divided.
  • Coding units 420a, 420b, 430a, and 430b that determine coding units 410 or 460 having the same size as units 400 or 450, or are divided based on information about a split mode mode indicating a predetermined division method. , 430c, 470a, 470b, 480a, 480b, and 480c.
  • a predetermined division method in which a non-square coding unit is divided will be described in detail with reference to various embodiments below.
  • the image decoding apparatus 100 may determine a form in which a coding unit is divided using information on a split mode mode, and in this case, at least one piece of information about the split mode is generated by splitting a coding unit. It may represent the number of coding units.
  • the image decoding apparatus 100 may encode the current code based on the information about the split shape mode. Two coding units 420a, 420b, or 470a, 470b included in the current coding unit may be determined by dividing the unit 400 or 450.
  • the image decoding apparatus 100 when the image decoding apparatus 100 divides the current coding unit 400 or 450 having a non-square shape based on the information about the split shape mode, the image decoding apparatus 100 may have a non-square shape.
  • the current coding unit may be split in consideration of the position of the long side of the current coding unit 400 or 450.
  • the image decoding apparatus 100 divides the current coding unit 400 or 450 in a direction of dividing a long side of the current coding unit 400 or 450 in consideration of the shape of the current coding unit 400 or 450. To determine a plurality of coding units.
  • the image decoding apparatus 100 when the information about the split type mode indicates that the coding unit is split (tri split) into an odd number of blocks, the image decoding apparatus 100 includes the current coding unit 400 or 450.
  • An odd number of coding units may be determined.
  • the image decoding apparatus 100 encodes the current coding unit 400 or 450 by three encodings. It may be divided into units 430a, 430b, 430c, 480a, 480b, and 480c.
  • the ratio of the width and the height of the current coding unit 400 or 450 may be 4: 1 or 1: 4.
  • the ratio of the width and the height is 4: 1
  • the block shape information may be in the horizontal direction.
  • the ratio of the width and the height is 1: 4
  • the length of the width is shorter than the length of the height
  • the block shape information may be in the vertical direction.
  • the image decoding apparatus 100 may determine to divide the current coding unit into odd blocks based on the information about the split mode. Also, the image decoding apparatus 100 may determine a split direction of the current coding unit 400 or 450 based on block shape information of the current coding unit 400 or 450.
  • the image decoding apparatus 100 may determine the coding units 430a, 430b, and 430c by dividing the current coding unit 400 in the horizontal direction. Also, when the current coding unit 450 is in the horizontal direction, the image decoding apparatus 100 may determine the coding units 480a, 480b, and 480c by dividing the current coding unit 450 in the vertical direction.
  • the image decoding apparatus 100 may determine an odd number of coding units included in the current coding unit 400 or 450, and not all sizes of the determined coding units may be the same. For example, the size of a predetermined coding unit 430b or 480b among the determined odd coding units 430a, 430b, 430c, 480a, 480b, and 480c is different from other coding units 430a, 430c, 480a, and 480c.
  • a coding unit that may be determined by dividing the current coding unit 400 or 450 may have a plurality of types, and in some cases, odd number of coding units 430a, 430b, 430c, 480a, 480b, and 480c. Each may have a different size.
  • the image decoding apparatus 100 may determine odd coding units included in the current coding unit 400 or 450. In addition, the image decoding apparatus 100 may set a predetermined limit on at least one coding unit among odd-numbered coding units generated by dividing. Referring to FIG. 4, the image decoding apparatus 100 is a coding unit positioned at the center of three coding units 430a, 430b, 430c, 480a, 480b, and 480c generated by dividing a current coding unit 400 or 450. The decoding process for 430b and 480b may be different from other coding units 430a, 430c, 480a and 480c.
  • the image decoding apparatus 100 may restrict the coding units 430b and 480b positioned in the center from being split no more than the other coding units 430a, 430c, 480a, and 480c, or may only split the predetermined number of times. You can limit it to split.
  • FIG. 5 illustrates a process of splitting a coding unit by the image decoding apparatus 100 based on at least one of block shape information and information about a split shape mode, according to an embodiment.
  • the image decoding apparatus 100 determines that the first coding unit 500 having a square shape is divided or not divided into coding units based on at least one of block shape information and information about a split mode. Can be. According to an embodiment, when the information about the split mode mode indicates dividing the first coding unit 500 in the horizontal direction, the image decoding apparatus 100 divides the first coding unit 500 in the horizontal direction to generate the first coding unit 500.
  • the two coding units 510 may be determined.
  • the first coding unit, the second coding unit, and the third coding unit used according to an embodiment are terms used to understand a before and after relationship between the coding units. For example, when the first coding unit is split, the second coding unit may be determined. When the second coding unit is split, the third coding unit may be determined.
  • the relationship between the first coding unit, the second coding unit, and the third coding unit used is based on the above-described feature.
  • the image decoding apparatus 100 may determine to divide or not split the second coding unit 510 into coding units based on at least one of the block shape information and the information about the split shape mode. .
  • the image decoding apparatus 100 may determine a second coding unit having a non-square shape determined by dividing the first coding unit 500 based on at least one of block shape information and information about a split shape mode.
  • the 510 may be divided into at least one third coding unit 520a, 520b, 520c, 520d, or the like, or the second coding unit 510 may not be divided.
  • the image decoding apparatus 100 may obtain at least one of the block shape information and the information about the split shape mode, and the image decoding apparatus 100 may based on at least one of the obtained block shape information and the information about the split shape mode.
  • the first coding unit 500 may be divided to divide a plurality of second coding units (eg, 510) of various types, and the second coding unit 510 may include information about block shape information and a split shape mode.
  • the first coding unit 500 may be split based on at least one of the following methods. According to an embodiment, when the first coding unit 500 is divided into the second coding unit 510 based on at least one of the block shape information about the first coding unit 500 and the information about the split shape mode.
  • the second coding unit 510 may also use a third coding unit (eg, 520a, 520b, 520c, 520d) based on at least one of block shape information and split mode mode of the second coding unit 510. Etc.). That is, the coding unit may be recursively split based on at least one of the information about the partition mode and the block shape information associated with each coding unit. Therefore, a square coding unit may be determined in a non-square coding unit, and a coding unit of a square shape may be recursively divided to determine a coding unit of a non-square shape.
  • a third coding unit eg, 520a, 520b, 520c, 520d
  • a non-square second coding unit 510 is divided among predetermined odd coding units 520b, 520c, and 520d that are determined by splitting a predetermined coding unit (eg, located in the center of the second coding unit). Coding units or coding units having a square shape) may be recursively divided.
  • the third coding unit 520b having a square shape which is one of odd third coding units 520b, 520c, and 520d, may be divided in a horizontal direction and divided into a plurality of fourth coding units.
  • the fourth coding unit 530b or 530d having a non-square shape which is one of the plurality of fourth coding units 530a, 530b, 530c, and 530d, may be divided into a plurality of coding units.
  • the fourth coding unit 530b or 530d having a non-square shape may be divided into odd coding units.
  • a method that can be used for recursive division of coding units will be described later through various embodiments.
  • the image decoding apparatus 100 may split each of the third coding units 520a, 520b, 520c, 520d, etc. into coding units based on at least one of the block shape information and the split mode mode. Can be. Also, the image decoding apparatus 100 may determine not to split the second coding unit 510 based on at least one of the block shape information and the information about the split shape mode. According to an embodiment, the image decoding apparatus 100 may divide the second coding unit 510 having a non-square shape into an odd number of third coding units 520b, 520c, and 520d.
  • the image decoding apparatus 100 may place a predetermined limit on a predetermined third coding unit among the odd number of third coding units 520b, 520c, and 520d.
  • the image decoding apparatus 100 may be limited to the number of coding units 520c positioned in the middle of the odd number of third coding units 520b, 520c, and 520d, or may be divided by the number of times that can be set. It can be limited to.
  • the image decoding apparatus 100 may include a coding unit positioned at the center among odd-numbered third coding units 520b, 520c, and 520d included in the second coding unit 510 having a non-square shape.
  • 520c is no longer divided, or is limited to being divided into a predetermined division form (for example, divided into only four coding units or divided into a form corresponding to the divided form of the second coding unit 510), or predetermined. It can be limited to dividing only by the number of times (for example, n times only, n> 0).
  • the above limitation on the coding unit 520c located in the center is merely a mere embodiment and thus should not be construed as being limited to the above-described embodiments, and the coding unit 520c located in the center may be different from other coding units 520b and 520d. ), It should be interpreted as including various restrictions that can be decoded.
  • the image decoding apparatus 100 may obtain at least one of block shape information used for dividing a current coding unit and information about a split mode, at a predetermined position in the current coding unit.
  • FIG. 6 illustrates a method for the image decoding apparatus 100 to determine a predetermined coding unit among odd number of coding units, according to an exemplary embodiment.
  • At least one of the block shape information of the current coding units 600 and 650 and the information about the split shape mode may be a sample of a predetermined position among a plurality of samples included in the current coding units 600 and 650. For example, it can be obtained from the sample (640, 690) located in the center.
  • a predetermined position in the current coding unit 600 from which at least one of such block shape information and split mode mode may be obtained should not be interpreted as being limited to the center position shown in FIG. 6, and the current encoding is performed at the predetermined position.
  • various positions eg, top, bottom, left, right, top left, bottom left, top right or bottom right, etc.
  • the image decoding apparatus 100 may determine whether to divide or not divide the current coding unit into coding units having various shapes and sizes by acquiring at least one of block shape information obtained from a predetermined position and information about a split shape mode. .
  • the image decoding apparatus 100 may select one coding unit from among them. Methods for selecting one of a plurality of coding units may vary, which will be described below through various embodiments.
  • the image decoding apparatus 100 may divide a current coding unit into a plurality of coding units and determine a coding unit of a predetermined position.
  • the image decoding apparatus 100 may use information indicating the position of each of the odd coding units to determine a coding unit located in the middle of the odd coding units. Referring to FIG. 6, the image decoding apparatus 100 divides the current coding unit 600 or the current coding unit 650 to find an odd number of coding units 620a, 620b, 620c, or an odd number of coding units 660a, 660b and 660c can be determined. The image decoding apparatus 100 may use the middle coding unit 620b or the middle coding unit by using information about the positions of the odd coding units 620a, 620b, and 620c or the odd coding units 660a, 660b, and 660c. 660b can be determined.
  • the image decoding apparatus 100 determines the positions of the coding units 620a, 620b, and 620c based on information indicating the positions of predetermined samples included in the coding units 620a, 620b, and 620c.
  • the coding unit 620b positioned at may be determined.
  • the image decoding apparatus 100 is based on the information indicating the position of the sample (630a, 630b, 630c) of the upper left of the coding units (620a, 620b, 620c) coding units (620a, 620b, 620c)
  • the coding unit 620b positioned in the center may be determined by determining the position of.
  • the information indicating the position of the upper left samples 630a, 630b, and 630c included in the coding units 620a, 620b, and 620c may be included in the picture of the coding units 620a, 620b, and 620c, respectively. It may include information about the location or coordinates of. According to an embodiment, the information indicating the position of the upper left samples 630a, 630b, and 630c included in the coding units 620a, 620b, and 620c may be included in the current coding unit 600.
  • 620b and 620c may include information indicating a width or a height, and the width or height may correspond to information indicating a difference between coordinates within a picture of the coding units 620a, 620b and 620c. That is, the image decoding apparatus 100 directly uses information about the position or coordinates in the picture of the coding units 620a, 620b, and 620c or information about the width or height of the coding unit corresponding to the difference between the coordinates. By using, the coding unit 620b positioned in the center may be determined.
  • the information indicating the position of the sample 630a at the upper left of the upper coding unit 620a may indicate (xa, ya) coordinates, and the sample 530b at the upper left of the middle coding unit 620b.
  • the information indicating the position of) may indicate the (xb, yb) coordinates, and the information indicating the position of the sample 630c on the upper left of the lower coding unit 620c may indicate the (xc, yc) coordinates.
  • the image decoding apparatus 100 may determine the center coding unit 620b using the coordinates of the samples 630a, 630b, and 630c in the upper left included in the coding units 620a, 620b, and 620c, respectively.
  • the coordinates indicating the positions of the samples 630a, 630b, and 630c in the upper left corner may indicate coordinates representing the absolute positions in the picture, and further, the positions of the samples 630a in the upper left corner of the upper coding unit 620a.
  • the (dxb, dyb) coordinate which is the information indicating the relative position of the upper left sample 630b of the middle coding unit 620b, and the relative position of the upper left sample 630c of the lower coding unit 620c.
  • Information (dxc, dyc) coordinates can also be used.
  • the method of determining the coding unit of a predetermined position by using the coordinates of the sample as information indicating the position of the sample included in the coding unit should not be interpreted to be limited to the above-described method, and various arithmetic operations that can use the coordinates of the sample are available. It should be interpreted in a way.
  • the image decoding apparatus 100 may divide the current coding unit 600 into a plurality of coding units 620a, 620b, and 620c, and may select one of the coding units 620a, 620b, and 620c.
  • the coding unit may be selected according to the standard. For example, the image decoding apparatus 100 may select coding units 620b having different sizes from among coding units 620a, 620b, and 620c.
  • the image decoding apparatus 100 may have (xa, ya) coordinates, which are information indicating a position of a sample 630a on the upper left side of the upper coding unit 620a, and a sample on the upper left side of the center coding unit 620b.
  • 620b, 620c may determine the width or height of each.
  • the image decoding apparatus 100 uses (xa, ya), (xb, yb), and (xc, yc) coordinates indicating the positions of the coding units 620a, 620b, and 620c. , 620c) may determine the size of each. According to an embodiment, the image decoding apparatus 100 may determine the width of the upper coding unit 620a as the width of the current coding unit 600. The image decoding apparatus 100 may determine the height of the upper coding unit 620a as yb-ya. According to an embodiment, the image decoding apparatus 100 may determine the width of the central coding unit 620b as the width of the current coding unit 600.
  • the image decoding apparatus 100 may determine the height of the center coding unit 620b as yc-yb. According to an embodiment, the image decoding apparatus 100 may determine the width or height of the lower coding unit using the width or height of the current coding unit, and the width and height of the upper coding unit 620a and the center coding unit 620b. . The image decoding apparatus 100 may determine a coding unit having a different size from other coding units based on the widths and the heights of the determined coding units 620a, 620b, and 620c. Referring to FIG.
  • the image decoding apparatus 100 may determine a coding unit 620b as a coding unit having a predetermined position while having a size different from that of the upper coding unit 620a and the lower coding unit 620c.
  • the coding unit at a predetermined position may be determined using the size of the coding unit determined based on the sample coordinates.
  • various processes of determining a coding unit at a predetermined position by comparing the sizes of coding units determined according to predetermined sample coordinates may be used.
  • the image decoding apparatus 100 has (xd, yd) coordinates, which is information indicating the position of the upper left sample 670a of the left coding unit 660a, and the position of the upper left sample 670b of the middle coding unit 660b. Coding units 660a, 660b, and 660c using (xe, ye) coordinates indicating information and (xf, yf) coordinates indicating information of the position of the sample 670c on the upper left side of the right coding unit 660c. Each width or height can be determined.
  • the image decoding apparatus 100 uses (xd, yd), (xe, ye), and (xf, yf) coordinates representing the positions of the coding units 660a, 660b, and 660c. , 660c) may determine the size of each.
  • the image decoding apparatus 100 may determine the width of the left coding unit 660a as xe-xd.
  • the image decoding apparatus 100 may determine the height of the left coding unit 660a as the height of the current coding unit 650.
  • the image decoding apparatus 100 may determine the width of the central coding unit 660b as xf-xe.
  • the image decoding apparatus 100 may determine the height of the center coding unit 660b as the height of the current coding unit 600.
  • the image decoding apparatus 100 may include a width or a height of the right coding unit 660c, a width or a height of the current coding unit 650, and a width and a height of the left coding unit 660a and the center coding unit 660b. Can be determined using.
  • the image decoding apparatus 100 may determine a coding unit having a different size from other coding units based on the widths and the heights of the determined coding units 660a, 660b, and 660c. Referring to FIG. 6, the image decoding apparatus 100 may determine a coding unit 660b as a coding unit at a predetermined position while having a size different from that of the left coding unit 660a and the right coding unit 660c.
  • the coding unit at a predetermined position may be determined using the size of the coding unit determined based on the sample coordinates.
  • various processes of determining a coding unit at a predetermined position by comparing the sizes of coding units determined according to predetermined sample coordinates may be used.
  • the position of the sample to be considered for determining the position of the coding unit should not be interpreted as being limited to the upper left side described above, but may be interpreted that information on the position of any sample included in the coding unit may be used.
  • the image decoding apparatus 100 may select a coding unit of a predetermined position among odd-numbered coding units determined by dividing the current coding unit in consideration of the shape of the current coding unit. For example, if the current coding unit has a non-square shape having a width greater than the height, the image decoding apparatus 100 may determine the coding unit at a predetermined position along the horizontal direction. That is, the image decoding apparatus 100 may determine one of the coding units having different positions in the horizontal direction to limit the corresponding coding unit. If the current coding unit has a non-square shape having a height greater than the width, the image decoding apparatus 100 may determine a coding unit of a predetermined position in the vertical direction. That is, the image decoding apparatus 100 may determine one of the coding units having different positions in the vertical direction to limit the corresponding coding unit.
  • the image decoding apparatus 100 may use information indicating the positions of each of the even coding units to determine the coding unit of the predetermined position among the even coding units.
  • the image decoding apparatus 100 may determine an even number of coding units by dividing a current coding unit (binary splitting or binary splitting) and determine a coding unit of a predetermined position by using information about the positions of the even coding units. Can be.
  • a detailed process for this may be a process corresponding to a process of determining a coding unit of a predetermined position (for example, a middle position) among the odd number of coding units described above with reference to FIG. 6.
  • a predetermined value for a coding unit of a predetermined position in the splitting process is determined to determine a coding unit of a predetermined position among the plurality of coding units.
  • Information is available.
  • the image decoding apparatus 100 may determine block shape information and a split shape stored in a sample included in a middle coding unit in a splitting process in order to determine a coding unit located in a center among coding units in which a current coding unit is divided into a plurality. At least one of the information about the mode may be used.
  • the image decoding apparatus 100 may split the current coding unit 600 into a plurality of coding units 620a, 620b, and 620c based on at least one of block shape information and information about a split mode.
  • the coding unit 620b located in the center of the plurality of coding units 620a, 620b, and 620c may be determined.
  • the image decoding apparatus 100 may determine the coding unit 620b positioned in the center in consideration of a position where at least one of the block shape information and the split mode mode is obtained. That is, at least one of the block shape information of the current coding unit 600 and the information about the split mode may be obtained from a sample 640 positioned in the center of the current coding unit 600.
  • predetermined information for identifying a coding unit of a predetermined position may be obtained from a predetermined sample included in the coding unit to be determined.
  • the image decoding apparatus 100 may divide a current coding unit 600 into a plurality of coding units (eg, divided into a plurality of coding units 620a, 620b, and 620c) determined by splitting the current coding unit 600.
  • Block shape information obtained from a sample at a predetermined position for example, a sample located in the center of the current coding unit 600
  • At least one of the information about the split mode may be used.
  • the image decoding apparatus 100 may determine a sample of the predetermined position in consideration of the block shape of the current coding unit 600, and the image decoding apparatus 100 may determine a plurality of pieces in which the current coding unit 600 is divided and determined.
  • a coding unit 620b including a sample from which predetermined information (for example, at least one of block shape information and split shape mode) may be obtained may be obtained. Can be determined to place certain restrictions.
  • the image decoding apparatus 100 may determine a sample 640 positioned in the center of the current coding unit 600 as a sample from which predetermined information may be obtained.
  • the 100 may set a predetermined limit in the decoding process of the coding unit 620b including the sample 640.
  • the position of the sample from which the predetermined information can be obtained should not be interpreted as being limited to the above-described position, but may be interpreted as samples of arbitrary positions included in the coding unit 620b to be determined for the purpose of limitation.
  • a position of a sample from which predetermined information may be obtained may be determined according to the shape of the current coding unit 600.
  • the block shape information may determine whether the shape of the current coding unit is square or non-square, and determine the position of a sample from which the predetermined information may be obtained according to the shape.
  • the image decoding apparatus 100 may be positioned on a boundary that divides at least one of the width and the height of the current coding unit in half using at least one of information about the width and the height of the current coding unit.
  • the sample may be determined as a sample from which predetermined information can be obtained.
  • the image decoding apparatus 100 may select one of samples adjacent to a boundary that divides the long side of the current coding unit in half. May be determined as a sample from which information may be obtained.
  • the image decoding apparatus 100 when the image decoding apparatus 100 divides the current coding unit into a plurality of coding units, in order to determine a coding unit of a predetermined position among the plurality of coding units, the image decoding apparatus 100 may determine the block shape information and the split shape mode. At least one of the information may be used.
  • the image decoding apparatus 100 may obtain at least one of block shape information and information about a split shape mode from a sample at a predetermined position included in a coding unit, and the image decoding apparatus 100 may currently encode A plurality of coding units generated by dividing a unit may be divided by using at least one of information about a split mode and block shape information obtained from a sample at a predetermined position included in each of the plurality of coding units. That is, the coding unit may be recursively split using at least one of the block shape information and the split mode mode obtained from the sample of the predetermined position included in each coding unit. Since the recursive division process of the coding unit has been described above with reference to FIG. 5, a detailed description thereof will be omitted.
  • the image decoding apparatus 100 may determine at least one coding unit by dividing a current coding unit, and determine an order in which the at least one coding unit is decoded in a predetermined block (for example, the current coding unit). Can be determined according to
  • FIG. 7 illustrates an order in which a plurality of coding units are processed when the image decoding apparatus 100 determines a plurality of coding units by dividing a current coding unit.
  • the image decoding apparatus 100 determines the second coding units 710a and 710b by dividing the first coding unit 700 in the vertical direction according to the block shape information and the information about the split shape mode.
  • the first coding unit 700 may be divided in the horizontal direction to determine the second coding units 730a and 730b, or the first coding unit 700 may be divided in the vertical direction and the horizontal direction to determine the second coding units 750a, 750b and 750c. , 750d).
  • the image decoding apparatus 100 may determine an order such that the second coding units 710a and 710b determined by dividing the first coding unit 700 in the vertical direction are processed in the horizontal direction 710c. .
  • the image decoding apparatus 100 may determine a processing order of the second coding units 730a and 730b determined by dividing the first coding unit 700 in the horizontal direction, in the vertical direction 730c.
  • the image decoding apparatus 100 processes the coding units for positioning the second coding units 750a, 750b, 750c, and 750d determined by dividing the first coding unit 700 in the vertical direction and the horizontal direction, in one row.
  • the coding units located in the next row may be determined according to a predetermined order (for example, raster scan order or z scan order 750e).
  • the image decoding apparatus 100 may recursively split coding units. Referring to FIG. 7, the image decoding apparatus 100 may determine a plurality of coding units 710a, 710b, 730a, 730b, 750a, 750b, 750c, and 750d by dividing the first coding unit 700. Each of the plurality of determined coding units 710a, 710b, 730a, 730b, 750a, 750b, 750c, and 750d may be recursively divided.
  • the method of splitting the plurality of coding units 710a, 710b, 730a, 730b, 750a, 750b, 750c, and 750d may be a method corresponding to the method of splitting the first coding unit 700. Accordingly, the plurality of coding units 710a, 710b, 730a, 730b, 750a, 750b, 750c, and 750d may be independently divided into a plurality of coding units. Referring to FIG. 7, the image decoding apparatus 100 may determine the second coding units 710a and 710b by dividing the first coding unit 700 in the vertical direction, and further, respectively, the second coding units 710a and 710b. It can be decided to split independently or not.
  • the image decoding apparatus 100 may divide the second coding unit 710a on the left side into horizontal units and split the second coding unit 710a into third coding units 720a and 720b, and the second coding unit 710b on the right side. ) May not be divided.
  • the processing order of coding units may be determined based on a split process of the coding units.
  • the processing order of the divided coding units may be determined based on the processing order of the coding units immediately before being split.
  • the image decoding apparatus 100 may independently determine the order in which the third coding units 720a and 720b determined by splitting the second coding unit 710a on the left side from the second coding unit 710b on the right side. Since the second coding unit 710a on the left is divided in the horizontal direction to determine the third coding units 720a and 720b, the third coding units 720a and 720b may be processed in the vertical direction 720c.
  • the right coding unit 710b may be processed.
  • FIG. 8 illustrates a process of determining that a current coding unit is divided into an odd number of coding units when the image decoding apparatus 100 may not process the coding units in a predetermined order, according to an embodiment.
  • the image decoding apparatus 100 may determine that the current coding unit is divided into odd coding units based on the obtained block shape information and the information about the split shape mode.
  • a first coding unit 800 having a square shape may be divided into second coding units 810a and 810b having a non-square shape, and each of the second coding units 810a and 810b may be independently formed. It may be divided into three coding units 820a, 820b, 820c, 820d, and 820e.
  • the image decoding apparatus 100 may determine a plurality of third coding units 820a and 820b by dividing the left coding unit 810a in the horizontal direction among the second coding units, and may include the right coding unit 810b. ) May be divided into odd third coding units 820c, 820d, and 820e.
  • the image decoding apparatus 100 determines whether the third coding units 820a, 820b, 820c, 820d, and 820e may be processed in a predetermined order to determine whether there are oddly divided coding units. You can decide. Referring to FIG. 8, the image decoding apparatus 100 may determine the third coding units 820a, 820b, 820c, 820d, and 820e by recursively dividing the first coding unit 800.
  • the image decoding apparatus 100 may include a first coding unit 800, a second coding unit 810a, and 810b, or a third coding unit 820a and 820b based on at least one of block shape information and information about a split mode.
  • coding units positioned on the right side of the second coding units 810a and 810b may be divided into odd third coding units 820c, 820d, and 820e.
  • the order in which the plurality of coding units included in the first coding unit 800 is processed may be a predetermined order (for example, a z-scan order 830). 100 may determine whether the third coding unit 820c, 820d, or 820e determined by splitting the right second coding unit 810b into an odd number satisfies a condition that may be processed according to the predetermined order.
  • the image decoding apparatus 100 may satisfy a condition that the third coding units 820a, 820b, 820c, 820d, and 820e included in the first coding unit 800 may be processed in a predetermined order. And whether the at least one of the width and the height of the second coding unit 810a, 810b is divided in half according to the boundary of the third coding unit 820a, 820b, 820c, 820d, or 820e.
  • the third coding units 820a and 820b determined by dividing the height of the left second coding unit 810a of the non-square shape in half may satisfy the condition.
  • Boundaries of the third coding units 820c, 820d, and 820e determined by dividing the right second coding unit 810b into three coding units may not divide the width or height of the right second coding unit 810b in half. Therefore, it may be determined that the third coding units 820c, 820d, and 820e do not satisfy the condition. In case of such a condition dissatisfaction, the image decoding apparatus 100 may determine that the scan order is disconnected, and determine that the right second coding unit 810b is divided into odd coding units based on the determination result.
  • the image decoding apparatus 100 when the image decoding apparatus 100 is divided into an odd number of coding units, the image decoding apparatus 100 may set a predetermined limit on a coding unit of a predetermined position among the divided coding units. Since the above has been described through the embodiments, a detailed description thereof will be omitted.
  • FIG 9 illustrates a process of determining, by the image decoding apparatus 100, at least one coding unit by dividing the first coding unit 900 according to an embodiment.
  • the image decoding apparatus 100 may divide the first coding unit 900 based on at least one of block shape information obtained through a receiver (not shown) and information on a split shape mode.
  • the first coding unit 900 having a square shape may be divided into coding units having four square shapes, or may be divided into a plurality of coding units having a non-square shape.
  • the image decoding apparatus 100 may include the first.
  • One coding unit 900 may be divided into a plurality of non-square coding units.
  • the image decoding apparatus 100 may encode the first encoding having a square shape.
  • the unit 900 may be divided into second coding units 910a, 910b, and 910c determined by being split in the vertical direction as odd coding units, or second coding units 920a, 920b, and 920c determined by being split in the horizontal direction. .
  • the image decoding apparatus 100 may process the second coding units 910a, 910b, 910c, 920a, 920b, and 920c included in the first coding unit 900 in a predetermined order.
  • the condition is whether the at least one of the width and height of the first coding unit 900 is divided in half according to the boundary of the second coding unit (910a, 910b, 910c, 920a, 920b, 920c). It is related to whether or not. Referring to FIG. 9, the boundary between the second coding units 910a, 910b, and 910c, which is determined by dividing the first coding unit 900 having a square shape in the vertical direction, divides the width of the first coding unit 900 in half.
  • the first coding unit 900 may be determined to not satisfy a condition that may be processed in a predetermined order. Also, since the boundary between the second coding units 920a, 920b, and 920c, which is determined by dividing the first coding unit 900 having a square shape in the horizontal direction, does not divide the width of the first coding unit 900 in half, The one coding unit 900 may be determined as not satisfying a condition that may be processed in a predetermined order. In case of such a condition dissatisfaction, the image decoding apparatus 100 may determine that the scan order is disconnected, and determine that the first coding unit 900 is divided into odd coding units based on the determination result.
  • the image decoding apparatus 100 when the image decoding apparatus 100 is divided into an odd number of coding units, the image decoding apparatus 100 may set a predetermined limit on a coding unit of a predetermined position among the divided coding units. Since the above has been described through the embodiments, a detailed description thereof will be omitted.
  • the image decoding apparatus 100 may determine various coding units by dividing the first coding unit.
  • the image decoding apparatus 100 may split a first coding unit 900 having a square shape and a first coding unit 930 or 950 having a non-square shape into various coding units. .
  • FIG. 10 illustrates that a second coding unit is split when a second coding unit having a non-square shape determined by splitting the first coding unit 1000 according to an embodiment satisfies a predetermined condition. It shows that the form that can be limited.
  • the image decoding apparatus 100 may de-square the first coding unit 1000 having a square shape based on at least one of block shape information obtained through a receiver (not shown) and information on a split shape mode. It may be determined by dividing into second coding units 1010a, 1010b, 1020a, and 1020b having a square shape. The second coding units 1010a, 1010b, 1020a, and 1020b may be independently divided. Accordingly, the image decoding apparatus 100 may not split or split the plurality of coding units into a plurality of coding units based on at least one of the block shape information and the split mode mode associated with each of the second coding units 1010a, 1010b, 1020a, and 1020b.
  • the image decoding apparatus 100 divides the left second coding unit 1010a having a non-square shape in a horizontal direction by splitting the first coding unit 1000 in a vertical direction to form a third coding unit ( 1012a, 1012b) can be determined.
  • the right second coding unit 1010b may have the same horizontal direction as the direction in which the left second coding unit 1010a is divided. It can be limited to not be divided into.
  • the left second coding unit 1010a and the right second coding unit 1010b are each horizontally.
  • the third coding units 1012a, 1012b, 1014a, and 1014b may be determined.
  • the image decoding apparatus 100 sets the first coding unit 1000 in four square second coding units 1030a, 1030b, 1030c, and 1030d based on at least one of the block shape information and the split mode mode. This is the same result as dividing by), which may be inefficient in terms of image decoding.
  • the image decoding apparatus 100 splits a second coding unit 1020a or 1020b of a non-square shape, determined by dividing the first coding unit 1000 in a horizontal direction, into a third coding unit. 1022a, 1022b, 1024a, and 1024b can be determined.
  • the image decoding apparatus 100 divides one of the second coding units (for example, the upper second coding unit 1020a) in the vertical direction
  • another image coding unit for example, the lower end
  • the coding unit 1020b may restrict the upper second coding unit 1020a from being split in the vertical direction in the same direction as the split direction.
  • FIG. 11 is a diagram illustrating a process of splitting a coding unit having a square shape by the image decoding apparatus 100 when the information about the split mode may not be divided into four square coding units according to an embodiment. .
  • the image decoding apparatus 100 divides the first coding unit 1100 based on at least one of the block shape information and the information about the split shape mode, and thus the second coding units 1110a, 1110b, 1120a, and 1120b. Etc.).
  • the information about the split mode may include information about various types in which a coding unit may be split, but the information on various types may not include information for splitting into 4 coding units having a square shape.
  • the image decoding apparatus 100 may not divide the first coding unit 1100 having a square shape into the second coding units 1130a, 1130b, 1130c, and 1130d having four square shapes. .
  • the image decoding apparatus 100 may determine the non-square second coding units 1110a, 1110b, 1120a, 1120b, and the like based on the information about the partitioned mode.
  • the image decoding apparatus 100 may independently split the non-square second coding units 1110a, 1110b, 1120a, 1120b, and the like.
  • Each of the second coding units 1110a, 1110b, 1120a, 1120b, and the like may be split in a predetermined order through a recursive method, which is based on at least one of block shape information and information on a split shape mode. It may be a division method corresponding to the division method of the unit 1100.
  • the image decoding apparatus 100 may divide the left second coding unit 1110a into the horizontal direction to determine the third coding units 1112a and 1112b having a square shape, and the right second coding unit 1110b may The third coding units 1114a and 1114b having a square shape may be determined by being split in the horizontal direction. Furthermore, the image decoding apparatus 100 may divide the left second coding unit 1110a and the right second coding unit 1110b in the horizontal direction to determine the third coding units 1116a, 1116b, 1116c, and 1116d having a square shape. have. In this case, the coding unit may be determined in the same form as that in which the first coding unit 1100 is divided into four second coding units 1130a, 1130b, 1130c, and 1130d.
  • the image decoding apparatus 100 may determine the third coding units 1122a and 1122b having a square shape by dividing the upper second coding unit 1120a in the vertical direction, and the lower second coding unit 1120b. ) May be divided in the vertical direction to determine the third coding units 1124a and 1124b having a square shape. Furthermore, the image decoding apparatus 100 may divide the upper second coding unit 1120a and the lower second coding unit 1120b in the vertical direction to determine the third coding units 1126a, 1126b, 1126a, and 1126b having a square shape. have. In this case, the coding unit may be determined in the same form as that in which the first coding unit 1100 is divided into four second coding units 1130a, 1130b, 1130c, and 1130d.
  • FIG. 12 illustrates that a processing order between a plurality of coding units may vary according to a splitting process of coding units, according to an embodiment.
  • the image decoding apparatus 100 may divide the first coding unit 1200 based on the block shape information and the information about the split shape mode.
  • the image decoding apparatus 100 may perform first encoding.
  • a second coding unit (eg, 1210a, 1210b, 1220a, 1220b, etc.) may be determined by dividing the unit 1200. Referring to FIG.
  • non-square second coding units 1210a, 1210b, 1220a, and 1220b which are determined by dividing the first coding unit 1200 in only the horizontal direction or the vertical direction, respectively, may include block shape information and a split mode mode for each. It can be split independently based on the information about.
  • the image decoding apparatus 100 divides the second coding units 1210a and 1210b generated by splitting the first coding unit 1200 in the vertical direction in the horizontal direction, respectively, to generate the third coding units 1216a and 1216b, 1216c and 1216d, and the second coding units 1220a and 1220b generated by dividing the first coding unit 1200 in the horizontal direction are divided in the horizontal direction, respectively, and the third coding units 1226a, 1226b and 1226c. 1226d). Since the splitting process of the second coding units 1210a, 1210b, 1220a, and 1220b has been described above with reference to FIG. 11, a detailed description thereof will be omitted.
  • the image decoding apparatus 100 may process coding units in a predetermined order. Features of the processing of coding units according to a predetermined order have been described above with reference to FIG. 7, and thus detailed descriptions thereof will be omitted. Referring to FIG. 12, the image decoding apparatus 100 splits a first coding unit 1200 having a square shape to form three square third coding units 1216a, 1216b, 1216c, 1216d, 1226a, 1226b, 1226c, and 1226d. ) Can be determined.
  • the image decoding apparatus 100 performs a processing sequence of the third coding units 1216a, 1216b, 1216c, 1216d, 1226a, 1226b, 1226c, and 1226d according to a form in which the first coding unit 1200 is divided. You can decide.
  • the image decoding apparatus 100 determines the third coding units 1216a, 1216b, 1216c, and 1216d by dividing the second coding units 1210a and 1210b generated by dividing in the vertical direction in the horizontal direction, respectively.
  • the image decoding apparatus 100 may first process the third coding units 1216a and 1216c included in the left second coding unit 1210a in the vertical direction, and then include the right second coding unit 1210b.
  • the third coding units 1216a, 1216b, 1216c, and 1216d may be processed according to an order 1217 of processing the third coding units 1216b and 1216d in the vertical direction.
  • the image decoding apparatus 100 determines the third coding units 1226a, 1226b, 1226c, and 1226d by dividing the second coding units 1220a and 1220b generated by dividing in the horizontal direction in the vertical direction.
  • the image decoding apparatus 100 may first process the third coding units 1226a and 1226b included in the upper second coding unit 1220a in the horizontal direction, and then include the lower coding unit 1220b.
  • the third coding units 1226a, 1226b, 1226c, and 1226d may be processed according to an order 1227 of processing the third coding units 1226c and 1226d in the horizontal direction.
  • second coding units 1210a, 1210b, 1220a, and 1220b may be divided, respectively, and square third coding units 1216a, 1216b, 1216c, 1216d, 1226a, 1226b, 1226c, and 1226d may be determined. have.
  • the second coding units 1210a and 1210b that are determined by being split in the vertical direction and the second coding units 1220a and 1220b that are determined by being split in the horizontal direction are divided into different forms, but are determined afterwards.
  • 1216b, 1216c, 1216d, 1226a, 1226b, 1226c, and 1226d may result in the first coding unit 1200 being split into coding units having the same shape.
  • the apparatus 100 for decoding an image recursively splits a coding unit through a different process based on at least one of block shape information and information on a split shape mode, and thus determines coding units having the same shape.
  • FIG. 13 illustrates a process of determining a depth of a coding unit as a shape and a size of a coding unit change when a coding unit is recursively divided to determine a plurality of coding units according to an embodiment.
  • the image decoding apparatus 100 may determine the depth of a coding unit according to a predetermined criterion.
  • the predetermined criterion may be the length of the long side of the coding unit.
  • the depth of the current coding unit is greater than the depth of the coding unit before the split. It can be determined that the depth is increased by n.
  • a coding unit having an increased depth is expressed as a coding unit of a lower depth.
  • the image decoding apparatus 100 may have a square shape based on block shape information indicating that the shape is square (for example, block shape information may indicate '0: SQUARE').
  • the first coding unit 1300 may be divided to determine a second coding unit 1302, a third coding unit 1304, or the like of a lower depth.
  • the second coding unit 1302 determined by dividing the width and height of the first coding unit 1300 by 1/2 times may have a size of NxN. have.
  • the third coding unit 1304 determined by dividing the width and the height of the second coding unit 1302 into half the size may have a size of N / 2 ⁇ N / 2.
  • the width and height of the third coding unit 1304 correspond to 1/4 times the first coding unit 1300.
  • the depth of the first coding unit 1300 is D
  • the depth of the second coding unit 1302, which is 1/2 the width and height of the first coding unit 1300 may be D + 1
  • the first coding unit may be the first coding unit 1300.
  • the depth of the third coding unit 1304, which is 1/4 of the width and the height of 1300, may be D + 2.
  • block shape information indicating a non-square shape (e.g., block shape information indicates that the height is a non-square longer than the width '1: NS_VER' or the width is a non-square longer than the height).
  • 2: may represent NS_HOR ', the image decoding apparatus 100 may split the first coding unit 1310 or 1320 having a non-square shape to form a second coding unit 1312 or 1322 of a lower depth, The third coding unit 1314 or 1324 may be determined.
  • the image decoding apparatus 100 may determine a second coding unit (eg, 1302, 1312, 1322, etc.) by dividing at least one of a width and a height of the Nx2N size of the first coding unit 1310. That is, the image decoding apparatus 100 may divide the first coding unit 1310 in the horizontal direction to determine a second coding unit 1302 having an NxN size or a second coding unit 1322 having an NxN / 2 size.
  • the second coding unit 1312 having the size of N / 2 ⁇ N may be determined by splitting in the horizontal direction and the vertical direction.
  • the image decoding apparatus 100 determines at least one of a width and a height of a 2N ⁇ N first coding unit 1320 to determine a second coding unit (eg, 1302, 1312, 1322, etc.). It may be. That is, the image decoding apparatus 100 may divide the first coding unit 1320 in the vertical direction to determine a second coding unit 1302 having an NxN size or a second coding unit 1312 having an N / 2xN size.
  • the second coding unit 1322 having the size of NxN / 2 may be determined by splitting in the horizontal direction and the vertical direction.
  • the image decoding apparatus 100 determines at least one of a width and a height of the NxN-sized second coding unit 1302 to determine a third coding unit (eg, 1304, 1314, 1324, etc.). It may be. That is, the image decoding apparatus 100 determines the third coding unit 1304 having the size of N / 2xN / 2 by dividing the second coding unit 1302 in the vertical direction and the horizontal direction, or makes the N / 4xN / 2 sized product. The third coding unit 1314 or the third coding unit 1324 having a size of N / 2 ⁇ N / 4 may be determined.
  • a third coding unit eg, 1304, 1314, 1324, etc.
  • the image decoding apparatus 100 divides at least one of a width and a height of the N / 2 ⁇ N sized second coding unit 1312 to form a third coding unit (eg, 1304, 1314, 1324, etc.). May be determined. That is, the image decoding apparatus 100 divides the second coding unit 1312 in the horizontal direction, so that the third coding unit 1304 having the size of N / 2xN / 2 or the third coding unit 1324 having the size of N / 2xN / 4 is provided. ) May be determined or divided into vertical and horizontal directions to determine the third coding unit 1314 having an N / 4xN / 2 size.
  • the image decoding apparatus 100 splits at least one of a width and a height of the NxN / 2-sized second coding unit 1322 to form a third coding unit (eg, 1304, 1314, 1324, etc.). May be determined. That is, the image decoding apparatus 100 divides the second coding unit 1322 in the vertical direction to form a third coding unit 1304 having an N / 2 ⁇ N / 2 size or a third coding unit 1314 having an N / 4xN / 2 size. ) May be determined or divided into the vertical direction and the horizontal direction to determine the third coding unit 1324 having an N / 2 ⁇ N / 4 size.
  • the image decoding apparatus 100 may divide a square coding unit (for example, 1300, 1302, 1304) into a horizontal direction or a vertical direction.
  • a square coding unit for example, 1300, 1302, 1304
  • the first coding unit 1300 having a size of 2Nx2N is split in the vertical direction to determine the first coding unit 1310 having the size of Nx2N, or the first coding unit 1320 having a size of 2NxN is determined by splitting in the horizontal direction.
  • the depth of the coding unit determined by dividing the first coding unit 1300 having a 2N ⁇ 2N size in the horizontal direction or the vertical direction is determined by the first encoding. It may be equal to the depth of the unit 1300.
  • the width and height of the third coding unit 1314 or 1324 may correspond to 1/4 times the first coding unit 1310 or 1320.
  • the depth of the second coding unit 1312 or 1322 which is 1/2 the width and height of the first coding unit 1310 or 1320, may be D + 1.
  • the depth of the third coding unit 1314 or 1324 which is 1/4 of the width and the height of the first coding unit 1310 or 1320, may be D + 2.
  • FIG. 14 illustrates a depth and a part index (PID) for distinguishing a coding unit, which may be determined according to the shape and size of coding units, according to an embodiment.
  • PID depth and a part index
  • the image decoding apparatus 100 may determine a second coding unit having various forms by dividing the first coding unit 1400 having a square shape. Referring to FIG. 14, the image decoding apparatus 100 divides the first coding unit 1400 in at least one of a vertical direction and a horizontal direction according to the information on the split mode mode, and thus the second coding units 1402a and 1402b. , 1404a, 1404b, 1406a, 1406b, 1406c, 1406d). That is, the image decoding apparatus 100 determines the second coding units 1402a, 1402b, 1404a, 1404b, 1406a, 1406b, 1406c, and 1406d based on the information about the split mode mode for the first coding unit 1400. Can be.
  • the second coding units 1402a, 1402b, 1404a, 1404b, 1406a, 1406b, 1406c, and 1406d that are determined according to the information about the split mode for the first coding unit 1400 having a square shape are long. Depth may be determined based on the length of the sides. For example, since the length of one side of the first coding unit 1400 having a square shape and the length of the long side of the second coding units 1402a, 1402b, 1404a and 1404b of a non-square shape are the same, the first coding unit ( 1400 and the non-square second coding units 1402a, 1402b, 1404a, and 1404b may be regarded as D.
  • the square is square. Since the length of one side of the second coding unit 1406a, 1406b, 1406c, 1406d of the form is 1/2 times the length of one side of the first coding unit 1400, the second coding unit 1406a, 1406b, 1406c, 1406d ) May be a depth of D + 1 that is one depth lower than D, which is the depth of the first coding unit 1400.
  • the image decoding apparatus 100 divides the first coding unit 1410 having a shape whose height is greater than the width in the horizontal direction according to the information about the split mode, and thus, the plurality of second coding units 1412a and 1412b. , 1414a, 1414b, and 1414c).
  • the image decoding apparatus 100 divides the first coding unit 1420 having a shape having a width greater than the height in a vertical direction according to the information about the split mode, and thus, the plurality of second coding units 1422a and 1422b. , 1424a, 1424b, and 1424c).
  • the second coding units 1412a, 1412b, 1414a, 1414b, 1414c, 1422a, 1422b which are determined according to the information about the split mode mode for the first coding unit 1410 or 1420 of the non-square shape
  • Depths 1424a, 1424b, and 1424c may be determined based on the length of the long side. For example, since the length of one side of the second coding units 1412a and 1412b having a square shape is 1/2 times the length of one side of the first coding unit 1410 having a non-square shape having a height greater than the width, the square is square.
  • the depths of the second coding units 1412a and 1412b of the shape are D + 1, which is one depth lower than the depth D of the first coding unit 1410 of the non-square shape.
  • the image decoding apparatus 100 may divide the non-square first coding unit 1410 into odd second coding units 1414a, 1414b, and 1414c based on the information about the split mode.
  • the odd numbered second coding units 1414a, 1414b, and 1414c may include non-square second coding units 1414a and 1414c and square shape second coding units 1414b.
  • the length of the long side of the second coding units 1414a and 1414c of the non-square shape and the length of one side of the second coding unit 1414b of the square shape is 1 / time of the length of one side of the first coding unit 1410.
  • the depths of the second coding units 1414a, 1414b, and 1414c may be a depth of D + 1 that is one depth lower than the depth D of the first coding unit 1410.
  • the image decoding apparatus 100 corresponds to the above-described method of determining depths of coding units associated with the first coding unit 1410 and is related to the first coding unit 1420 having a non-square shape having a width greater than the height. Depth of coding units may be determined.
  • the image decoding apparatus 100 may determine the size ratio between the coding units.
  • the index can be determined based on this. Referring to FIG. 14, a coding unit 1414b positioned at the center of odd-numbered split coding units 1414a, 1414b, and 1414c has the same width as the other coding units 1414a and 1414c but has a different height. It may be twice the height of the fields 1414a, 1414c. That is, in this case, the coding unit 1414b located in the center may include two of the other coding units 1414a and 1414c.
  • the image decoding apparatus 100 may determine whether odd-numbered split coding units are not the same size based on whether there is a discontinuity of an index for distinguishing between the divided coding units.
  • the image decoding apparatus 100 may determine whether the image decoding apparatus 100 is divided into a specific division type based on a value of an index for dividing the plurality of coding units determined by dividing from the current coding unit. Referring to FIG. 14, the image decoding apparatus 100 determines an even number of coding units 1412a and 1412b by dividing a first coding unit 1410 having a rectangular shape having a height greater than a width, or an odd number of coding units 1414a and 1414b. 1414c). The image decoding apparatus 100 may use an index (PID) indicating each coding unit to distinguish each of the plurality of coding units. According to an embodiment, the PID may be obtained from a sample (eg, an upper left sample) at a predetermined position of each coding unit.
  • a sample eg, an upper left sample
  • the image decoding apparatus 100 may determine a coding unit of a predetermined position among coding units determined by splitting by using an index for dividing coding units. According to an embodiment, when the information about the split mode mode of the first coding unit 1410 having a height greater than the width is divided into three coding units, the image decoding apparatus 100 may determine the first coding unit ( 1410 may be divided into three coding units 1414a, 1414b, and 1414c. The image decoding apparatus 100 may allocate an index for each of three coding units 1414a, 1414b, and 1414c. The image decoding apparatus 100 may compare the indices of the respective coding units to determine the coding unit among the oddly divided coding units.
  • the image decoding apparatus 100 encodes a coding unit 1414b having an index corresponding to a center value among the indices based on the indexes of the coding units, and encodes the center position among the coding units determined by splitting the first coding unit 1410. It can be determined as a unit. According to an embodiment, when determining the indexes for distinguishing the divided coding units, the image decoding apparatus 100 may determine the indexes based on the size ratio between the coding units when the coding units are not the same size. . Referring to FIG. 14, the coding unit 1414b generated by dividing the first coding unit 1410 may include the coding units 1414a and 1414c having the same width but different heights as the other coding units 1414a and 1414c.
  • the image decoding apparatus 100 may determine that the image decoding apparatus 100 is divided into a plurality of coding units including coding units having different sizes from other coding units. For example, when the information about the split mode is divided into odd coding units, the image decoding apparatus 100 may have a coding unit (for example, a middle coding unit) having a predetermined position different from that of other odd coding units. The current coding unit may be divided into different sizes.
  • the image decoding apparatus 100 may determine a coding unit having a different size by using an index (PID) for the coding unit.
  • PID index
  • the above-described index, the size or position of the coding unit of the predetermined position to be determined are specific to explain an embodiment and should not be construed as being limited thereto. Various indexes and positions and sizes of the coding unit may be used. Should be interpreted.
  • the image decoding apparatus 100 may use a predetermined data unit at which recursive division of coding units begins.
  • FIG. 15 illustrates that a plurality of coding units are determined according to a plurality of predetermined data units included in a picture according to an embodiment.
  • the predetermined data unit may be defined as a data unit in which a coding unit starts to be recursively divided using at least one of block type information and information about a split type mode. That is, it may correspond to the coding unit of the highest depth used in the process of determining a plurality of coding units for dividing the current picture.
  • a predetermined data unit will be referred to as a reference data unit.
  • the reference data unit may represent a predetermined size and shape.
  • the reference coding unit may include samples of M ⁇ N. M and N may be the same as each other, and may be an integer represented by a multiplier of two. That is, the reference data unit may represent a square or non-square shape, and then may be divided into integer coding units.
  • the image decoding apparatus 100 may divide the current picture into a plurality of reference data units. According to an exemplary embodiment, the image decoding apparatus 100 may divide a plurality of reference data units for dividing a current picture using information on a split mode mode for each reference data unit. The division process of the reference data unit may correspond to the division process using a quad-tree structure.
  • the image decoding apparatus 100 may predetermine the minimum size of the reference data unit included in the current picture. Accordingly, the image decoding apparatus 100 may determine a reference data unit of various sizes having a size greater than or equal to a minimum size, and use at least one of the block shape information and the split mode mode based on the determined reference data unit. Coding units may be determined.
  • the image decoding apparatus 100 may use a reference coding unit 1500 having a square shape, or may use a reference coding unit 1502 having a non-square shape.
  • the shape and size of the reference coding unit may include various data units (eg, a sequence, a picture, a slice, and a slice segment) that may include at least one reference coding unit. slice segment, tile, tile group, maximum coding unit, etc.).
  • the receiver (not shown) of the image decoding apparatus 100 may obtain at least one of information about the shape of a reference coding unit and information about the size of the reference coding unit from the bitstream for each of the various data units. have.
  • the process of determining at least one coding unit included in the reference coding unit 1500 having a square shape is described above by splitting the current coding unit 300 of FIG. 3, and the reference coding unit having a non-square shape 1502. Since the process of determining at least one coding unit included in the above) is described above through the process of splitting the current coding unit 400 or 450 of FIG. 4, a detailed description thereof will be omitted.
  • the image decoding apparatus 100 may determine the size and shape of the reference coding unit in order to determine the size and shape of the reference coding unit according to some data unit predetermined based on a predetermined condition.
  • a receiver (not shown) may determine a predetermined condition among the various data units (eg, sequence, picture, slice, slice segment, tile, tile group, maximum coding unit, etc.) from the bitstream.
  • the size and shape of the reference coding unit may be determined for each slice, slice segment, tile, tile group, and maximum coding unit. Only indexes for identification can be obtained.
  • the image decoding apparatus 100 may determine the size and shape of the reference data unit for each data unit satisfying the predetermined condition by using the index.
  • the use efficiency of the bitstream may not be good, and thus the shape of the reference coding unit
  • only the index may be obtained and used.
  • at least one of the size and shape of the reference coding unit corresponding to the index indicating the size and shape of the reference coding unit may be predetermined.
  • the image decoding apparatus 100 selects at least one of the predetermined size and shape of the reference coding unit according to the index, thereby selecting at least one of the size and shape of the reference coding unit included in the data unit that is the reference for obtaining the index. You can decide.
  • the image decoding apparatus 100 may use at least one reference coding unit included in one maximum coding unit. That is, at least one reference coding unit may be included in the maximum coding unit for dividing an image, and the coding unit may be determined through a recursive division process of each reference coding unit. According to an embodiment, at least one of the width and the height of the maximum coding unit may correspond to an integer multiple of at least one of the width and the height of the reference coding unit. According to an embodiment, the size of the reference coding unit may be a size obtained by dividing the maximum coding unit n times according to a quad tree structure.
  • the image decoding apparatus 100 may determine the reference coding unit by dividing the maximum coding unit n times according to the quad tree structure, and the reference coding unit according to various embodiments may include information about the block shape information and the split shape mode. The division may be performed based on at least one of the following.
  • FIG. 16 is a diagram of a processing block serving as a reference for determining a determination order of a reference coding unit included in a picture 1600, according to an exemplary embodiment.
  • the image decoding apparatus 100 may determine at least one processing block for dividing a picture.
  • the processing block is a data unit including at least one reference coding unit for dividing an image, and the at least one reference coding unit included in the processing block may be determined in a specific order. That is, the determination order of at least one reference coding unit determined in each processing block may correspond to one of various types of order in which the reference coding unit may be determined, and the reference coding unit determination order determined in each processing block. May be different per processing block.
  • the order of determination of the reference coding units determined for each processing block is raster scan, Z-scan, N-scan, up-right diagonal scan, and horizontal scan. It may be one of various orders such as a horizontal scan, a vertical scan, etc., but the order that may be determined should not be construed as being limited to the scan orders.
  • the image decoding apparatus 100 may determine the size of at least one processing block included in the image by obtaining information about the size of the processing block.
  • the image decoding apparatus 100 may determine the size of at least one processing block included in the image by obtaining information about the size of the processing block from the bitstream.
  • the size of such a processing block may be a predetermined size of a data unit indicated by the information about the size of the processing block.
  • the receiver (not shown) of the image decoding apparatus 100 may obtain information about a size of a processing block from a bitstream for each specific data unit.
  • the information about the size of the processing block may be obtained from the bitstream in data units such as an image, a sequence, a picture, a slice, and a slice segment. That is, the receiver (not shown) may obtain information about the size of the processing block from the bitstream for each of the various data units, and the image decoding apparatus 100 may divide the picture using the obtained information about the size of the processing block.
  • the size of at least one processing block may be determined, and the size of the processing block may be an integer multiple of the reference coding unit.
  • the image decoding apparatus 100 may determine the sizes of the processing blocks 1602 and 1612 included in the picture 1600. For example, the image decoding apparatus 100 may determine the size of the processing block based on the information about the size of the processing block obtained from the bitstream. Referring to FIG. 16, according to an embodiment, the image decoding apparatus 100 may have a horizontal size of the processing blocks 1602 and 1612 equal to four times the horizontal size of the reference coding unit and four times the vertical size of the reference coding unit. You can decide. The image decoding apparatus 100 may determine an order in which at least one reference coding unit is determined in at least one processing block.
  • the image decoding apparatus 100 may determine each processing block 1602 and 1612 included in the picture 1600 based on the size of the processing block, and include the processing block 1602 and 1612 in the processing block 1602 and 1612.
  • a determination order of at least one reference coding unit may be determined.
  • the determination of the reference coding unit may include the determination of the size of the reference coding unit.
  • the image decoding apparatus 100 may obtain information about a determination order of at least one reference coding unit included in at least one processing block from a bitstream, and based on the obtained determination order The order in which at least one reference coding unit is determined may be determined.
  • the information about the determination order may be defined in an order or direction in which reference coding units are determined in the processing block. That is, the order in which the reference coding units are determined may be independently determined for each processing block.
  • the image decoding apparatus 100 may obtain information about a determination order of a reference coding unit from a bitstream for each specific data unit.
  • the receiver (not shown) converts information about a determination order of the reference coding unit into data units such as an image, a sequence, a picture, a slice, a slice segment, a tile, a tile group, and a processing block. Can be obtained from the bitstream every time. Since the information about the determination order of the reference coding unit indicates the determination order of the reference coding unit in the processing block, the information about the determination order may be obtained for each specific data unit including an integer number of processing blocks.
  • the image decoding apparatus 100 may determine at least one reference coding unit based on the order determined according to the embodiment.
  • the receiver may obtain information about a reference coding unit determination order from the bitstream as information related to the processing blocks 1602 and 1612, and the image decoding apparatus 100 may process the processing block.
  • An order of determining at least one reference coding unit included in 1602 and 1612 may be determined, and at least one reference coding unit included in the picture 1600 may be determined according to the determination order of the coding unit.
  • the image decoding apparatus 100 may determine determination orders 1604 and 1614 of at least one reference coding unit associated with each processing block 1602 and 1612. For example, when information on the determination order of the reference coding unit is obtained for each processing block, the reference coding unit determination order associated with each processing block 1602 and 1612 may be different for each processing block.
  • the reference coding units included in the processing block 1602 may be determined according to the raster scan order.
  • the reference coding unit determination order 1614 associated with another processing block 1612 is the reverse order of the raster scan order
  • the reference coding units included in the processing block 1612 may be determined according to the reverse order of the raster scan order.
  • the image decoding apparatus 100 may decode at least one determined reference coding unit according to an embodiment.
  • the image decoding apparatus 100 may decode an image based on the reference coding unit determined through the above-described embodiment.
  • the method of decoding the reference coding unit may include various methods of decoding an image.
  • the image decoding apparatus 100 may obtain and use block shape information indicating a shape of a current coding unit or information about a split shape mode indicating a method of dividing a current coding unit from a bitstream.
  • the block type information or the information about the split type mode may be included in a bitstream associated with various data units.
  • the image decoding apparatus 100 may include a sequence parameter set, a picture parameter set, a video parameter set, a slice header, and a slice segment header. Block shape information included in a segment header, a tile header, a tile group header, or information about a split mode may be used.
  • the image decoding apparatus 100 may obtain and use a syntax element corresponding to the block shape information or the information about the split shape mode from the bit stream from each bit coding unit, the reference coding unit, and the processing block.
  • An image encoding apparatus, an image decoding apparatus, an image encoding method, and an image decoding method for encoding or decoding an image based on various types of coding units according to various embodiments will be described with reference to FIGS. 17 to 20.
  • 17 and 18 are diagrams for describing a method of not allowing division into chroma blocks having a predetermined size or less according to a division tree type according to various embodiments.
  • 17A to 17B are diagrams for describing a method of not allowing division into chroma blocks having a predetermined size or less when a split tree type is a single tree according to various embodiments.
  • 17A is a diagram for describing a method of not allowing division of a chroma block having a predetermined size or less when a split tree type is a single tree according to an embodiment.
  • a tree structure of coding units of a luma image and a tree structure of coding units of a chroma image may be determined according to a tree structure of one coding unit.
  • the image decoding apparatus 100 may binary divide the luma block 1705 and the corresponding chroma block 1710 in the vertical direction.
  • the image decoding apparatus 100 may determine the minimum allowable size of the luma block as 4 ⁇ 4, and the size of the block 1715 to be binary-divided in the vertical direction is larger than the minimum allowable size of the luma block. 100 may binary divide the luma block 1705 in the vertical direction.
  • the image decoding apparatus 100 may determine the minimum allowable size of the chroma block as 4 ⁇ 4, and the image decoding apparatus 100 may be binary divided in the vertical direction and thus the size of the block to be generated is smaller than the minimum allowable size of the chroma block. It may be determined that the chroma block 1710 is not divided.
  • the image decoding apparatus 100 may binary divide the luma block 1715 and the corresponding chroma block 1710 in the horizontal direction.
  • the image decoding apparatus 100 may determine the minimum allowable size of the luma block as 4 ⁇ 4, and the size of the block 1720 to be generated by being binary divided in the horizontal direction is the same as the minimum allowable size of the luma block. 100 may binary divide the luma block 1715 in the horizontal direction.
  • the image decoding apparatus 100 may determine the minimum allowable size of the chroma block as 4x4, and the image decoding apparatus 100 may be binary divided in the horizontal direction so that the size of the block to be generated is smaller than the minimum allowable size of the chroma block. It may be determined that the chroma block is no longer divided.
  • 17B is a diagram for describing a method of not allowing division into chroma blocks having a predetermined size or less when a split tree type is a single tree according to an embodiment.
  • 17B is a diagram for describing a method of not allowing division into a chroma block having a predetermined size or less when a split tree type is a single tree according to another embodiment.
  • the image decoding apparatus 100 may tri split the luma block 1755 and the corresponding chroma block 1760 in the vertical direction.
  • the image decoding apparatus 100 may determine the minimum allowable width of the luma block to be 16, and the width of the block 1765 to be tri-divided in the vertical direction to be generated is greater than or equal to the minimum allowable width of the luma block.
  • the decoding apparatus 100 may tri split the luma block 1755 in the vertical direction.
  • the image decoding apparatus 100 may determine the minimum allowable width of the chroma block to be 16, and since the width of the block to be tri-divided in the vertical direction is smaller than the minimum allowable width of the chroma block, the image decoding apparatus 100 May determine not to split the chroma block 1760.
  • FIG. 18 is a diagram for describing a method of not allowing division of a chroma block having a predetermined size or less when a split tree type is a dual tree, according to an embodiment.
  • a tree structure of coding units of a luma image and a tree structure of coding units of a chroma image may be separately determined.
  • the image decoding apparatus 100 may determine a minimum allowable size of a chroma block as 4 ⁇ 4, and may be divided and generated from the chroma blocks 1800, 1810, 1820, and 1825 according to a specific division type. Since the size is smaller than 4x4, the minimum allowable size of the chroma block, it may be determined that the chroma block 1800 is not partitioned according to the specific partition type.
  • the image decoding apparatus 100 may divide the generated block according to quad division from the chroma block 1800, and thus the size of a block to be generated is 2 ⁇ 2, which is smaller than the minimum allowable size of 4 ⁇ 4. It may be determined that the chroma block 1800 is not divided according to quad division. In this case, the image decoding apparatus 100 may determine whether the size of the block to be divided and generated is smaller than 4x4, the minimum allowable size, based on the size of the chroma block 1800.
  • the image decoding apparatus 100 determines whether the height or width of the chroma block 1800 is less than or equal to 4, and according to the determination result, the size of the block to be divided and generated is 4x4, which is the minimum allowable size. You can decide to be smaller.
  • the image decoding apparatus 100 may divide the generated block according to the binary division from the chroma block 1810 and generate a size of 4x2 or 2x4, which is smaller than the minimum allowable size of 4x4. Since it is small, it may be determined that the chroma block 1810 is not divided according to the binary division. In this case, the image decoding apparatus 100 may determine whether the size of the block to be divided and generated is smaller than 4x4, the minimum allowable size, on the basis of the width of the chroma block 1810.
  • the image decoding apparatus 100 determines whether the area of the chroma block 1810 is smaller than or equal to 16, and according to the determination result, the size of the block to be divided and generated is smaller than 4x4, which is the minimum allowable size. You can decide.
  • the image decoding apparatus 100 may divide the chroma blocks 1820 and 1825 according to the tri-segmentation into a block size of 4x2 or 2x4. Since it is smaller than the size 4x4, it may be determined that the chroma blocks 1820 and 1825 are not divided according to tri division.
  • the image decoding apparatus 100 may determine whether the size of the block to be divided and generated is smaller than 4x4, the minimum allowable size, on the basis of the widths of the chroma blocks 1820 and 1825. For example, the image decoding apparatus 100 determines whether the widths of the chroma blocks 1820 and 1825 are smaller than or equal to 32, and the size of the block to be divided and generated according to the determination result is 4x4, which is the minimum allowable size. You can decide to be smaller.
  • the image decoding apparatus 100 may improve throughput at the time of decoding the chroma block by always determining a coding unit of the chroma block to be greater than or equal to the minimum allowable size.
  • 19 and 20 are diagrams for describing a method of dividing a block placed at a picture boundary, according to various embodiments.
  • FIG. 19 is a diagram for describing a method of dividing a block placed at a boundary of a picture using a split shape mode based on a boundary direction, according to an exemplary embodiment.
  • the image decoding apparatus 100 may quadrature block dividing hierarchically by quadrally performing quad segmentation. In this case, a range of the size of a block that may be generated by quad splitting may be determined.
  • the apparatus 100 for decoding an image may quadraturely divide a block by performing quad division recursively within a range of a size of a block that may be quad split.
  • the image decoding apparatus 100 may recursively perform binary division or tri division of blocks generated by quadrature hierarchically.
  • the division depth of the binary division or the tri division may be predetermined.
  • the image decoding apparatus 100 may recursively perform binary division or tri division based on a partition depth of a predetermined binary division or tri division from blocks generated by hierarchically quad division.
  • the image decoding apparatus 100 may divide the image block 1905 from the current block 1905 without obtaining the segmentation mode information from the bitstream.
  • the current block 1905 may be divided according to the shape mode.
  • the image decoding apparatus 100 may binary divide (or tri split) the current block 1905 when the partition type of the allowable current block division type is tri split or binary split.
  • the division direction may be determined in the horizontal direction according to the direction of the picture boundary 1910 of the current block 1905.
  • the video decoding apparatus 100 may quad divide the current block 1910 when the partition type of the allowable partition type mode is not tri-partition or binary-partition.
  • the image decoding apparatus 100 may recursively divide the current block 1905 until the split block is not positioned on the picture boundary 1910.
  • 20A to 20B illustrate a method of dividing a block placed at a boundary of a picture based on whether a minimum block size is obtained when binary dividing a block placed at the boundary of a picture by applying a binary division depth that is allowed according to an exemplary embodiment. It is a figure for demonstrating.
  • the image decoding apparatus when the size of the current block 2000 is 128x128, the allowable partition type of the current block 2000 is binary partitioning, and the allowable partition depth of the current block 2000 is 3, the image decoding apparatus If the current block 2000 is located on the image boundary 2005 of the current picture, the operation 100 performs binary division based on the first division boundary 2010 and performs binary division based on the second division boundary 2015. Partitioning may be performed, and binary partitioning may be performed based on the third partition boundary 2020. Since the binary division is performed by the binary division depth, the image decoding apparatus 100 may no longer perform the binary division. Therefore, the size of the block 2025 inside the image boundary 2005 determined as the coding unit may be 16x128. However, since the size of the block 2025 determined as the coding unit is not small, the decoding efficiency is lowered when various motion information and pixel value information are included therein.
  • the allowable partition type of the current block 2030 is binary partitioning
  • the allowable partition depth of the current block 2030 is 3, the image decoding device If 100 is located on the image boundary 2035 of the current picture, the size of the current block 2030 and the allowable dividing depth of the binary partition of the current block are recursively binary-divided from the current block to determine the size of the block to be generated. If the size is less than or equal to the minimum block size (for example, 4x4), the binary partition is performed, and the size of the block generated by recursively binary partitioning from the current block in consideration of the allowed partition depth of the binary partition is the smallest block. If larger than size, quad division may be performed.
  • the minimum block size for example, 4x4
  • the image decoding apparatus 100 is based on the first partition boundary 2040 because the size of a block generated by recursively binary partitioning from the current block 2030 is larger than the minimum block size in consideration of the allowed partition depth of binary partitioning. As a result, quad splitting may be performed on the current block 2030.
  • the image decoding apparatus 100 may remove the second dividing boundary 2050. Quad division may be performed for the current block 2045 on the basis.
  • the image decoding apparatus 100 may determine the size of the third partition boundary 2060 since the size of the block that is binaryly partitioned from the current block 2055 is smaller than or equal to the minimum block size in consideration of the maximum allowable partition depth of the binary partition. As a basis, binary partitioning may be performed on the current block 2055.
  • the size of the block 2065 inside the image boundary 2035 generated by performing binary division on the current block 2055 based on the third partition boundary 2060 is 16x32, and the image decoding apparatus 100 blocks Binary partitioning may be additionally performed on 2065.
  • a block determined as a coding unit may have a small size and a relatively high decoding efficiency.
  • the image decoding apparatus 100 determines the size of the current blocks 2000 and 2030 as 128x128, and determines the allowable partition type of the current blocks 2000 and 2030 as binary division.
  • the allowable split depth of the current blocks 2000 and 2030 is determined to be 3
  • a method of dividing the current blocks 2000 and 2030 positioned on the picture boundary has been described, but the present invention is not limited thereto.
  • the current block may be divided.
  • the image decoding apparatus 100 conforming to the pseudo code as described above may be recursively divided into binary binary partitions based on a binary value based on a larger value of the height or width of the current block. Based on a binary partition, if the corresponding edge becomes a specific size (or less) (where the specific size may be the size of the smallest block, but may be the size set by the user), The blocks can be recursively split (partition based on binary tree). In other cases, the image decoding apparatus 100 may divide the current block according to quad division.
  • the current block is determined according to the binary partition only when the larger of the height and width of the current block is smaller than or equal to the minimum size (min_bt_size) x2x2x2 (that is, the minimum size x 8). You can split recursively.
  • the image decoding apparatus 100 has described a method of binary division or quad division in consideration of the binary division depth, but the present invention is not limited thereto, and the binary (and tri) division depth is similarly described. It can be easily understood by those skilled in the art that binary division, tri division, or quad division can be performed in consideration of the above.
  • Computer-readable recording media include storage media such as magnetic storage media (eg, ROMs, floppy disks, hard disks, etc.) and optical reading media (eg, CD-ROMs, DVDs, etc.).

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

현재 영상의 크로마 영상 내 블록들의 분할 형태 모드에 기초하여 크로마 영상을 계층적으로 분할하여 크로마 영상 내 복수의 부호화 단위를 결정하고, 크로마 영상 내 복수의 부호화 단위를 기초로 현재 영상을 복호화하는 단계를 포함하는 영상 복호화 방법이 개시된다. 이때, 크로마 영상 내 복수의 부호화 단위를 결정하는 단계는, 크로마 영상 내 현재 크로마 블록의 분할 형태 모드에 기초하여 크로마 영상 내 현재 크로마 블록을 분할하여 생성될 복수의 크로마 블록 중 하나의 크로마 블록의 크기 또는 넓이가 소정의 크기 또는 넓이보다 작거나 같은 경우, 현재 크로마 블록의 분할 형태 모드에 기초한 현재 크로마 블록의 분할을 허용하지 않고, 현재 크로마 블록에 포함된 적어도 하나의 부호화 단위를 결정하는 단계를 포함할 수 있다.

Description

영상 부호화 방법 및 장치, 영상 복호화 방법 및 장치
일 실시예에 따른 방법 및 장치는 영상에 포함되는 다양한 형태의 부호화 단위를 이용하여, 영상을 부호화 또는 복호화 할 수 있다. 일 실시예에 따른 방법 및 장치는 크로마 영상을 계층적으로 분할하여 적어도 하나의 부호화 단위를 결정하고, 적어도 하나의 부호화 단위를 이용하여 크로마 영상을 부호화 또는 복호화할 수 있다.
고해상도 또는 고화질 영상 컨텐트를 재생, 저장할 수 있는 하드웨어의 개발 및 보급에 따라, 고해상도 또는 고화질 영상 컨텐트를 효과적으로 부호화 또는 복호화 하는 코덱(codec)의 필요성이 증대하고 있다. 부호화된 영상 컨텐트는 복호화됨으로써 재생될 수 있다. 최근에는 이러한 고해상도 또는 고화질 영상 컨텐트를 효과적으로 압축하기 위한 방법들이 실시되고 있다. 예를 들면, 부호화 하려는 영상을 임의적 방법으로 처리하는 과정을 통한 효율적 영상 압축 방법이 실시되고 있다.
영상을 압축하기 위하여 다양한 데이터 단위가 이용될 수 있으며 이러한 데이터 단위들 간에 포함관계가 존재할 수 있다. 이러한 영상 압축에 이용되는 데이터 단위의 크기를 결정하기 위해 다양한 방법에 의해 데이터 단위가 분할될 수 있으며 영상의 특성에 따라 최적화된 데이터 단위가 결정됨으로써 영상의 부호화 또는 복호화가 수행될 수 있다.
본 개시의 일 실시예에 따른 영상 복호화 방법은 현재 영상의 루마 영상에 포함된 블록들의 분할 형태 모드에 기초하여 상기 루마 영상을 계층적으로 분할하여 상기 루마 영상 내 복수의 부호화 단위를 결정하는 단계; 상기 현재 영상의 크로마 영상 내 블록들의 분할 형태 모드에 기초하여 상기 크로마 영상을 계층적으로 분할하여 상기 크로마 영상 내 복수의 부호화 단위를 결정하는 단계; 및 상기 결정된 루마 영상 내 복수의 부호화 단위 및 크로마 영상 내 복수의 부호화 단위를 기초로 상기 현재 영상을 복호화하는 단계를 포함하고, 상기 분할 형태 모드는 블록의 분할 방향, 및 분할 타입 중 적어도 하나에 기초한 모드이고, 상기 크로마 영상 내 복수의 부호화 단위를 결정하는 단계는, 상기 크로마 영상 내 현재 크로마 블록의 분할 형태 모드에 기초하여 상기 크로마 영상 내 현재 크로마 블록을 분할하여 생성될 복수의 크로마 블록 중 하나의 크로마 블록의 크기 또는 넓이가 소정의 크기 또는 넓이보다 작거나 같은 경우, 상기 현재 크로마 블록의 분할 형태 모드에 기초한 현재 크로마 블록의 분할을 허용하지 않고, 상기 현재 크로마 블록에 포함된 적어도 하나의 부호화 단위를 결정하는 단계를 포함하는 것을 특징으로 한다.
본 개시의 일 실시예에 따른 영상 복호화 장치는 현재 영상의 루마 영상에 포함된 블록들의 분할 형태 모드에 기초하여 상기 루마 영상을 계층적으로 분할하여 상기 루마 영상 내 복수의 부호화 단위를 결정하고, 상기 현재 영상의 크로마 영상 내 블록들의 분할 형태 모드에 기초하여 상기 크로마 영상을 계층적으로 분할하여 상기 크로마 영상 내 복수의 부호화 단위를 결정하고, 상기 결정된 루마 영상 내 복수의 부호화 단위 및 크로마 영상 내 복수의 부호화 단위를 기초로 상기 현재 영상을 복호화하는 적어도 하나의 프로세서를 포함하고, 상기 분할 형태 모드는 블록의 분할 방향, 및 분할 타입 중 적어도 하나에 기초한 모드이고, 상기 적어도 하나의 프로세서가 상기 크로마 영상 내 복수의 부호화 단위를 결정할 때, 상기 크로마 영상 내 현재 크로마 블록의 분할 형태 모드에 기초하여 상기 크로마 영상 내 현재 크로마 블록을 분할하여 생성될 복수의 크로마 블록 중 하나의 크로마 블록의 크기 또는 넓이가 소정의 크기 또는 넓이보다 작거나 같은 경우, 상기 적어도 하나의 프로세서가 상기 현재 크로마 블록의 분할 형태 모드에 기초한 현재 크로마 블록의 분할을 허용하지 않고, 상기 현재 크로마 블록에 포함된 적어도 하나의 부호화 단위를 결정하는 것을 특징으로 한다.
본 개시의 일 실시예에 따른 영상 복호화 방법은 현재 영상의 루마 영상에 포함된 블록들의 분할 형태 모드에 기초하여 루마 영상을 계층적으로 분할하여 상기 루마 영상 내 복수의 부호화 단위를 결정하는 단계; 상기 현재 영상의 크로마 영상 내 블록들의 분할 형태 모드에 기초하여 크로마 영상을 계층적으로 분할하여 상기 크로마 영상 내 복수의 부호화 단위를 결정하는 단계; 및 상기 결정된 루마 영상 내 복수의 부호화 단위 및 크로마 영상 내 복수의 부호화 단위를 기초로 상기 현재 영상을 부호화하는 단계를 포함하고,
상기 분할 형태 모드는 블록의 분할 방향, 및 분할 타입 중 적어도 하나에 기초한 모드이고,
상기 크로마 영상 내 복수의 부호화 단위를 결정하는 단계는,
상기 크로마 영상 내 현재 크로마 블록의 분할 형태 모드에 기초하여 상기 크로마 영상 내 현재 크로마 블록을 분할하여 생성될 복수의 크로마 블록 중 하나의 크로마 블록의 크기 또는 넓이가 소정의 크기 또는 넓이보다 작거나 같은 경우, 상기 현재 크로마 블록의 분할 형태 모드에 기초한 현재 크로마 블록의 분할을 허용하지 않고, 상기 현재 크로마 블록에 포함된 적어도 하나의 부호화 단위를 결정하는 단계를 포함하는 것을 특징으로 한다.
본 개시의 일 실시예에 따른 영상 부호화 방법 또는 복호화 방법에 대한 컴퓨터 프로그램은 컴퓨터로 판독 가능한 기록매체에 기록될 수 있다.
도 1a는 다양한 실시예에 따른 영상 복호화 장치의 블록도를 도시한다.
도 1b는 다양한 실시예에 따른 영상 복호화 방법의 흐름도를 도시한다.
도 1c는 다양한 실시예에 따른 영상 복호화부의 블록도를 도시한다.
도 2a는 다양한 실시예에 따른 영상 부호화 장치의 블록도를 도시한다.
도 2b는 다양한 실시예에 따른 영상 부호화 방법의 흐름도를 도시한다.
도 2c는 다양한 실시예에 따른 영상 복호화부의 블록도를 도시한다.
도 3은 일 실시예에 따라 영상 복호화 장치가 현재 부호화 단위를 분할하여 적어도 하나의 부호화 단위를 결정하는 과정을 도시한다.
도 4는 일 실시예에 따라 영상 복호화 장치가 비-정사각형의 형태인 부호화 단위를 분할하여 적어도 하나의 부호화 단위를 결정하는 과정을 도시한다.
도 5는 일 실시예에 따라 영상 복호화 장치가 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 부호화 단위를 분할하는 과정을 도시한다.
도 6은 일 실시예에 따라 영상 복호화 장치가 홀수개의 부호화 단위들 중 소정의 부호화 단위를 결정하기 위한 방법을 도시한다.
도 7은 일 실시예에 따라 영상 복호화 장치가 현재 부호화 단위를 분할하여 복수개의 부호화 단위들을 결정하는 경우, 복수개의 부호화 단위들이 처리되는 순서를 도시한다.
도 8은 일 실시예에 따라 영상 복호화 장치가 소정의 순서로 부호화 단위가 처리될 수 없는 경우, 현재 부호화 단위가 홀수개의 부호화 단위로 분할되는 것임을 결정하는 과정을 도시한다.
도 9는 일 실시예에 따라 영상 복호화 장치가 제1 부호화 단위를 분할하여 적어도 하나의 부호화 단위를 결정하는 과정을 도시한다.
도 10은 일 실시예에 따라 영상 복호화 장치가 제1 부호화 단위가 분할되어 결정된 비-정사각형 형태의 제2 부호화 단위가 소정의 조건을 만족하는 경우 제2 부호화 단위가 분할될 수 있는 형태가 제한되는 것을 도시한다.
도 11은 일 실시예에 따라 분할 형태 모드에 대한 정보가 4개의 정사각형 형태의 부호화 단위로 분할하는 것을 나타낼 수 없는 경우, 영상 복호화 장치가 정사각형 형태의 부호화 단위를 분할하는 과정을 도시한다.
도 12는 일 실시예에 따라 복수개의 부호화 단위들 간의 처리 순서가 부호화 단위의 분할 과정에 따라 달라질 수 있음을 도시한 것이다.
도 13은 일 실시예에 따라 부호화 단위가 재귀적으로 분할되어 복수개의 부호화 단위가 결정되는 경우, 부호화 단위의 형태 및 크기가 변함에 따라 부호화 단위의 심도가 결정되는 과정을 도시한다.
도 14은 일 실시예에 따라 부호화 단위들의 형태 및 크기에 따라 결정될 수 있는 심도 및 부호화 단위 구분을 위한 인덱스(part index, 이하 PID)를 도시한다.
도 15는 일 실시예에 따라 픽쳐에 포함되는 복수개의 소정의 데이터 단위에 따라 복수개의 부호화 단위들이 결정된 것을 도시한다.
도 16은 일 실시예에 따라 픽쳐에 포함되는 기준 부호화 단위의 결정 순서를 결정하는 기준이 되는 프로세싱 블록을 도시한다.
도 17a 내지 17b은 다양한 실시예에 따라, 분할 트리 타입이 싱글 트리인 경우, 일정 크기 이하의 크로마 블록으로의 분할을 허용하지 않는 방법을 설명하기 위한 도면이다.
도 18은 일 실시예에 따라, 분할 트리 타입이 듀얼 트리인 경우, 일정 크기 이하의 크로마 블록으로의 분할을 허용하지 않는 방법을 설명하기 위한 도면이다.
도 19는 일 실시예에 따라 픽처의 경계에 놓인 블록을 픽처 경계의 방향에 기초한 분할 형태 모드를 이용하여 분할하는 방법을 설명하기 위한 도면이다.
도 20a 내지 20b는 일 실시예에 따라 허용하는 바이너리 분할 뎁스를 적용하여 픽처의 경계에 놓인 블록을 바이너리 분할하는 경우에 최소 크기의 블록이 나오는지 여부에 기초하여 픽처의 경계에 놓인 블록을 분할하는 방법을 설명하기 위한 도면이다.
본 개시의 일 실시예에 따른 영상 복호화 방법은 현재 영상의 루마 영상에 포함된 블록들의 분할 형태 모드에 기초하여 상기 루마 영상을 계층적으로 분할하여 상기 루마 영상 내 복수의 부호화 단위를 결정하는 단계; 상기 현재 영상의 크로마 영상 내 블록들의 분할 형태 모드에 기초하여 상기 크로마 영상을 계층적으로 분할하여 상기 크로마 영상 내 복수의 부호화 단위를 결정하는 단계; 및 상기 결정된 루마 영상 내 복수의 부호화 단위 및 크로마 영상 내 복수의 부호화 단위를 기초로 상기 현재 영상을 복호화하는 단계를 포함하고, 상기 분할 형태 모드는 블록의 분할 방향, 및 분할 타입 중 적어도 하나에 기초한 모드이고,
상기 크로마 영상 내 복수의 부호화 단위를 결정하는 단계는,
상기 크로마 영상 내 현재 크로마 블록의 분할 형태 모드에 기초하여 상기 크로마 영상 내 현재 크로마 블록을 분할하여 생성될 복수의 크로마 블록 중 하나의 크로마 블록의 크기 또는 넓이가 소정의 크기 또는 넓이보다 작거나 같은 경우, 상기 현재 크로마 블록의 분할 형태 모드에 기초한 현재 크로마 블록의 분할을 허용하지 않고, 상기 현재 크로마 블록에 포함된 적어도 하나의 부호화 단위를 결정하는 단계를 포함하는 것을 특징으로 한다.
상기 분할 타입은 바이너리 분할(binary split), 트라이 분할(tri split), 쿼드 분할(quad split) 중 하나를 나타낼 수 있다.
상기 소정의 크기는 4x2 및 2x4 및 2x2 중 하나일 수 있다.
상기 소정의 넓이는 8 및 4 중 하나일 수 있다.
상기 크로마 영상 내 현재 크로마 블록의 분할 형태 모드에 기초하여 상기 크로마 영상 내 현재 크로마 블록을 분할하여 생성될 복수의 크로마 블록 중 하나의 크로마 블록의 크기 또는 넓이가 소정의 크기 또는 넓이보다 작거나 같은 경우, 상기 현재 크로마 블록의 분할 형태 모드에 기초한 현재 크로마 블록의 분할을 허용하지 않고, 상기 현재 크로마 블록에 포함된 적어도 하나의 부호화 단위를 결정하는 단계는, 상기 현재 크로마 블록의 크기 또는 넓이 및 상기 현재 크로마 블록의 분할 형태 모드에 기초한 조건을 만족하는지 여부에 따라, 상기 크로마 영상 내 현재 크로마 블록을 분할하여 생성될 복수의 크로마 블록 중 하나의 크로마 블록의 크기 또는 넓이가 소정의 크기 또는 넓이보다 작거나 같은지 여부를 결정하는 단계; 및 상기 결정의 결과에 따라, 상기 현재 크로마 블록의 분할 형태 모드에 기초한 상기 현재 크로마 블록의 분할을 허용하지 않는다고 결정하고, 상기 현재 크로마 블록에 포함된 적어도 하나의 부호화 단위를 결정하는 단계를 포함할 수 있다.
상기 현재 크로마 블록의 크기 또는 넓이, 및 상기 현재 크로마 블록의 분할 형태 모드에 기초한 조건은, 상기 현재 크로마 블록의 분할 타입이 쿼드 분할임을 나타내는 경우, 상기 현재 크로마 블록의 너비(width) 또는 높이(height)가 4보다 작거나 같은지에 관한 조건일 수 있다.
상기 현재 크로마 블록의 크기 또는 넓이, 및 상기 현재 크로마 블록의 분할 형태 모드에 기초한 조건은, 상기 현재 크로마 블록의 분할 타입이 바이너리 분할임을 나타내는 경우, 상기 현재 크로마 블록의 넓이가 16보다 작거나 같은지에 관한 조건일 수 있다.
상기 현재 크로마 블록의 크기 또는 넓이, 및 상기 현재 크로마 블록의 분할 형태 모드에 기초한 조건은,
상기 현재 크로마 블록의 분할 타입이 트라이 분할임을 나타내는 경우, 상기 현재 크로마 블록의 넓이가 32보다 작거나 같은지에 관한 조건일 수 있다.
상기 현재 영상의 크로마 영상 내 블록들의 분할 형태 모드는 상기 현재 영상의 루마 영상에 포함된 블록들의 분할 형태 모드와 독립적일 수 있다.
상기 현재 영상의 크로마 영상 내 블록들의 분할 형태 모드는 상기 크로마 영상 내 블록들에 대응하는 현재 영상의 루마 영상 내 대응 블록들의 분할 형태 모드에 종속적이고, 상기 크로마 영상 내 블록의 크기는 상기 현재 영상의 크로마 서브 샘플링 방식(chroma sub sampling format) 및 상기 루마 영상 내 대응 블록의 크기에 기초하여 결정될 수 있다.
상기 크로마 영상 내 현재 크로마 블록의 분할 형태 모드에 기초하여 상기 크로마 영상의 현재 크로마 블록을 분할하여 생성될 복수의 블록 중 하나의 블록의 크기가 2xN(N은 2보다 크거나 같은 정수) 또는 Nx2보다 작거나 같은 경우, 상기 현재 크로마 블록의 분할 형태 모드에 기초한 상기 현재 크로마 블록의 분할을 허용하지 않는다고 결정하고, 상기 현재 크로마 블록에 포함된 적어도 하나의 부호화 단위를 결정하는 단계를 포함할 수 있다.
상기 현재 영상의 루마 영상에 포함된 블록들의 분할 형태 모드에 기초하여 상기 루마 영상을 계층적으로 분할하여 상기 루마 영상 내 복수의 부호화 단위를 결정하는 단계는, 루마 영상에 포함된 현재 루마 블록이 픽처의 오른쪽 경계 상에 위치하는 경우, 바이너리 분할 및 쿼드 분할 중 하나의 분할 타입을 나타내는 플래그를 비트스트림으로부터 획득하는 단계; 및 상기 획득된 플래그를 기초로 상기 현재 루마 블록에 포함된 적어도 하나의 부호화 단위를 결정하는 단계를 포함할 수 있다.
본 개시의 일 실시예에 따른 영상 복호화 장치는 현재 영상의 루마 영상에 포함된 블록들의 분할 형태 모드에 기초하여 상기 루마 영상을 계층적으로 분할하여 상기 루마 영상 내 복수의 부호화 단위를 결정하고, 상기 현재 영상의 크로마 영상 내 블록들의 분할 형태 모드에 기초하여 상기 크로마 영상을 계층적으로 분할하여 상기 크로마 영상 내 복수의 부호화 단위를 결정하고, 상기 결정된 루마 영상 내 복수의 부호화 단위 및 크로마 영상 내 복수의 부호화 단위를 기초로 상기 현재 영상을 복호화하는 적어도 하나의 프로세서를 포함하고, 상기 분할 형태 모드는 블록의 분할 방향, 및 분할 타입 중 적어도 하나에 기초한 모드이고, 상기 적어도 하나의 프로세서가 상기 크로마 영상 내 복수의 부호화 단위를 결정할 때, 상기 크로마 영상 내 현재 크로마 블록의 분할 형태 모드에 기초하여 상기 크로마 영상 내 현재 크로마 블록을 분할하여 생성될 복수의 크로마 블록 중 하나의 크로마 블록의 크기 또는 넓이가 소정의 크기 또는 넓이보다 작거나 같은 경우, 상기 적어도 하나의 프로세서가 상기 현재 크로마 블록의 분할 형태 모드에 기초한 현재 크로마 블록의 분할을 허용하지 않고, 상기 현재 크로마 블록에 포함된 적어도 하나의 부호화 단위를 결정할 수 있다.
본 개시의 일 실시예에 따른 영상 부호화 방법은 현재 영상의 루마 영상에 포함된 블록들의 분할 형태 모드에 기초하여 루마 영상을 계층적으로 분할하여 상기 루마 영상 내 복수의 부호화 단위를 결정하는 단계; 상기 현재 영상의 크로마 영상 내 블록들의 분할 형태 모드에 기초하여 크로마 영상을 계층적으로 분할하여 상기 크로마 영상 내 복수의 부호화 단위를 결정하는 단계; 및 상기 결정된 루마 영상 내 복수의 부호화 단위 및 크로마 영상 내 복수의 부호화 단위를 기초로 상기 현재 영상을 부호화하는 단계를 포함하고, 상기 분할 형태 모드는 블록의 분할 방향, 및 분할 타입 중 적어도 하나에 기초한 모드이고, 상기 크로마 영상 내 복수의 부호화 단위를 결정하는 단계는, 상기 크로마 영상 내 현재 크로마 블록의 분할 형태 모드에 기초하여 상기 크로마 영상 내 현재 크로마 블록을 분할하여 생성될 복수의 크로마 블록 중 하나의 크로마 블록의 크기 또는 넓이가 소정의 크기 또는 넓이보다 작거나 같은 경우, 상기 현재 크로마 블록의 분할 형태 모드에 기초한 현재 크로마 블록의 분할을 허용하지 않고, 상기 현재 크로마 블록에 포함된 적어도 하나의 부호화 단위를 결정하는 단계를 포함할 수 있다.
본 개시의 일 실시예에 따른 영상 부호화 방법 또는 복호화 방법에 대한 컴퓨터 프로그램은 컴퓨터로 판독 가능한 기록매체에 기록될 수 있다.
개시된 실시예의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 개시는 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 개시가 완전하도록 하고, 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것일 뿐이다.
본 명세서에서 사용되는 용어에 대해 간략히 설명하고, 개시된 실시예에 대해 구체적으로 설명하기로 한다.
본 명세서에서 사용되는 용어는 본 개시에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 관련 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서 본 개시에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 개시의 전반에 걸친 내용을 토대로 정의되어야 한다.
본 명세서에서의 단수의 표현은 문맥상 명백하게 단수인 것으로 특정하지 않는 한, 복수의 표현을 포함한다.
명세서 전체에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다.
또한, 명세서에서 사용되는 "부"라는 용어는 소프트웨어 또는 하드웨어 구성요소를 의미하며, "부"는 어떤 역할들을 수행한다. 그렇지만 "부"는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. "부"는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일 예로서 "부"는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로 코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들 및 변수들을 포함한다. 구성요소들과 "부"들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 "부"들로 결합되거나 추가적인 구성요소들과 "부"들로 더 분리될 수 있다.
본 개시의 일 실시예에 따르면 "부"는 프로세서 및 메모리로 구현될 수 있다. 용어 "프로세서" 는 범용 프로세서, 중앙 처리 장치 (CPU), 마이크로프로세서, 디지털 신호 프로세서 (DSP), 제어기, 마이크로제어기, 상태 머신, 및 등을 포함하도록 넓게 해석되어야 한다. 몇몇 환경에서는, "프로세서" 는 주문형 반도체 (ASIC), 프로그램가능 로직 디바이스 (PLD), 필드 프로그램가능 게이트 어레이 (FPGA), 등을 지칭할 수도 있다. 용어 "프로세서" 는, 예를 들어, DSP 와 마이크로프로세서의 조합, 복수의 마이크로프로세서들의 조합, DSP 코어와 결합한 하나 이상의 마이크로프로세서들의 조합, 또는 임의의 다른 그러한 구성들의 조합과 같은 처리 디바이스들의 조합을 지칭할 수도 있다.
용어 "메모리" 는 전자 정보를 저장 가능한 임의의 전자 컴포넌트를 포함하도록 넓게 해석되어야 한다. 용어 메모리는 임의 액세스 메모리 (RAM), 판독-전용 메모리 (ROM), 비-휘발성 임의 액세스 메모리 (NVRAM), 프로그램가능 판독-전용 메모리 (PROM), 소거-프로그램가능 판독 전용 메모리 (EPROM), 전기적으로 소거가능 PROM (EEPROM), 플래쉬 메모리, 자기 또는 광학 데이터 저장장치, 레지스터들, 등과 같은 프로세서-판독가능 매체의 다양한 유형들을 지칭할 수도 있다. 프로세서가 메모리에 메모리로부터 정보를 판독하고/하거나 메모리에 정보를 기록할 수 있다면 메모리는 프로세서와 전자 통신 상태에 있다고 불린다. 프로세서에 집적된 메모리는 프로세서와 전자 통신 상태에 있다.
이하, "영상"은 비디오의 정지영상와 같은 정적 이미지이거나 동영상, 즉 비디오 그 자체와 같은 동적 이미지를 나타낼 수 있다.
이하 "샘플"은, 영상의 샘플링 위치에 할당된 데이터로서 프로세싱 대상이 되는 데이터를 의미한다. 예를 들어, 공간영역의 영상에서 픽셀값, 변환 영역 상의 변환 계수들이 샘플들일 수 있다. 이러한 적어도 하나의 샘플들을 포함하는 단위를 블록이라고 정의할 수 있다.
아래에서는 첨부한 도면을 참고하여 실시예에 대하여 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그리고 도면에서 본 개시를을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략한다.
이하 도 1 내지 도 20을 참조하여 다양한 실시예에 따라 영상 부호화 장치 및 영상 복호화 장치, 영상 부호화 방법 및 영상 복호화 방법이 상술된다. 도 3 내지 도 16을 참조하여 다양한 실시예에 따라 영상의 데이터 단위를 결정하는 방법이 설명되고, 도 1, 도 2 및, 도 17 내지 도 20를 참조하여 다양한 실시예에 따라 다양한 형태의 부호화 단위에 기초하여 영상을 부호화 또는 복호화하기 위한 영상 부호화 장치 영상 복호화 장치, 영상 부호화 방법 및 영상 복호화 방법이 설명된다.
이하 도 1 및 도 2를 참조하여 본 개시의 일 실시예에 따라 다양한 형태의 부호화 단위에 기초하여 영상을 부호화 또는 복호화하기 위한 부호화/복호화 방법 및 장치가 상술된다.
도 1a는 다양한 실시예에 따른 영상 복호화 장치의 블록도를 도시한다.
다양한 실시예에 따른 영상 복호화 장치(100)는 부호화 단위 결정부(105) 및 영상 복호화부(110)를 포함할 수 있다. 부호화 단위 결정부(105) 및 영상 복호화부(110)는 적어도 하나의 프로세서를 포함할 수 있다. 또한, 부호화 단위 결정부(105) 및 영상 복호화부(110)는 적어도 하나의 프로세서가 수행할 명령어들을 저장하는 메모리를 포함할 수 있다. 영상 복호화부(110)는 부호화 단위 결정부(105)와 별도의 하드웨어로 구현되거나, 부호화 단위 결정부(105)를 포함할 수 있다.
부호화 단위 결정부(105)는 현재 영상의 루마 영상에 포함된 블록들의 분할 형태 모드에 기초하여 루마 영상을 계층적으로 분할하여 루마 영상 내 복수의 부호화 단위를 결정할 수 있다.
부호화 단위 결정부(105)는 현재 영상의 크로마 영상 내 블록들의 분할 형태 모드에 기초하여 크로마 영상을 계층적으로 분할하여 크로마 영상 내 복수의 부호화 단위를 결정할 수 있다.
부호화 단위 결정부(105)는 크로마 영상 내 현재 크로마 블록의 분할 형태 모드에 기초하여 크로마 영상 내 현재 크로마 블록을 분할하여 생성될 수 있는 복수의 크로마 블록 중 하나의 크로마 블록의 크기 또는 넓이가 소정의 크기 또는 넓이보다 작거나 같은지 여부를 결정할 수 있다. 현재 크로마 블록의 분할 형태 모드는 블록의 분할 방향, 및 분할 타입 중 적어도 하나에 기초한 모드일 수 있다.
부호화 단위 결정부(105)는 상기 결정의 결과에 따라, 현재 크로마 블록의 분할 형태 모드에 기초한 현재 크로마 블록의 분할을 허용하지 않는다고 결정할 수 있다.
부호화 단위 결정부(105)는 허용하지 않는다고 결정된 분할 형태 모드를 제외한 나머지 허용하는 현재 블록의 분할 형태 모드 중 하나의 분할 형태 모드에 기초하여 현재 크로마 블록에 포함된 적어도 하나의 부호화 단위를 결정할 수 있다. 부호화 단위 결정부(105)는 허용하는 현재 블록의 분할 형태 모드가 존재하지 않는 경우, 더 이상 분할하지 않고, 현재 크로마 블록을 부호화 단위로 결정할 수 있다.
부호화 단위 결정부(105)는 크로마 영상 내 현재 크로마 블록의 분할 형태 모드에 기초하여 크로마 영상 내 현재 크로마 블록을 분할하여 생성될 수 있는 복수의 크로마 블록 중 하나의 크로마 블록의 크기 또는 넓이가 소정의 크기 또는 넓이보다 작거나 같다고 결정한 경우, 현재 크로마 블록의 분할 형태 모드에 기초한 현재 크로마 블록의 분할을 허용하지 않는다고 결정할 수 있다. 이때, 소정의 크기는 4x2, 2x4 및 2x2 중 하나일 수 있다. 또한, 소정의 넓이는 8 및 4 중 하나일 수 있다.
부호화 단위 결정부(105)는 현재 크로마 블록의 크기 또는 넓이 및 현재 크로마 블록의 분할 형태 모드에 기초한 조건을 만족하는지 여부에 따라, 크로마 영상 내 현재 크로마 블록을 분할하여 생성될 수 있는 복수의 블록 중 하나의 크로마 블록의 크기 또는 넓이가 소정의 크기 또는 넓이보다 작거나 같은지 여부를 결정할 수 있다. 이때, 현재 크로마 블록의 크기 또는 넓이 및 현재 블록의 분할 형태 모드에 기초한 조건은 현재 크로마 블록의 분할 타입이 쿼드 분할임을 나타내는 경우, 현재 크로마 블록의 너비 또는 높이가 4보다 작거나 같은지 여부에 대한 조건일 수 있다. 부호화 단위 결정부(105)는 현재 크로마 블록의 분할 타입이 쿼드 분할을 나타내는 경우, 현재 크로마 블록의 크기 또는 너비가 4보다 작거나 같다면, 쿼드 분할에 기초한 분할을 허용하지 않는다고 결정할 수 있다. 즉, 현재 크로마 블록의 높이 또는 너비가 4보다 작거나 같은 경우에 현재 크로마 블록을 쿼드 분할하여 생성된 복수의 크로마 블록 중 하나의 크로마 블록의 높이 또는 너비는 2보다 작거나 같을 수 있다. 따라서, 현재 크로마 블록을 쿼드 분할하여 생성된 복수의 크로마 블록 중 하나의 크로마 블록의 크기는 2x2,4x2,2x4(또는 그보다 작은 크기)일 수 있고, 이러한 블록의 크기를 부호화 단위로 허용하여 부호화하는 경우, 처리량(thoughput)이 감소될 수 있기 때문에 처리량을 향상시키기 위해 현재 블록을 쿼드 분할하는 것을 허용하지 않는다고 결정할 수 있다.
부호화 단위 결정부(105)는 쿼드 분할을 제외한 허용하는 다른 분할 타입에 기초하여 현재 크로마 블록을 분할할 수 있다. 부호화 단위 결정부(105)는 현재 크로마 블록에서 허용하는 분할 타입이 없다면, 더 이상 분할하지 않고 현재 크로마 블록을 부호화 단위로 결정할 수 있다.
현재 크로마 블록의 크기 또는 넓이 및 현재 블록의 분할 형태 모드에 기초한 조건은 현재 크로마 블록의 분할 타입이 바이너리 분할임을 나타내는 경우, 현재 크로마 블록의 넓이가 16보다 작거나 같은지 여부에 대한 조건일 수 있다. 부호화 단위 결정부(105)는 현재 크로마 블록의 분할 타입이 바이너리 분할을 나타내는 경우, 현재 크로마 블록의 넓이가 16보다 작거나 같다면, 바이너리 분할에 기초한 분할을 허용하지 않는다고 결정할 수 있다. 즉, 현재 크로마 블록의 넓이가 16보다 작거나 같은 경우(예를 들어, 현재 크로마 블록의 크기가 2x8, 8x2, 또는 4x4보다 작거나 같은 경우)에 현재 크로마 블록을 바이너리 분할하여 생성된 복수의 크로마 블록 중 하나의 크로마 블록의 크기는 2x4,4x2보다 작거나 같을 수 있다. 이러한 블록의 크기를 부호화 단위로 허용하여 부호화하는 경우, 처리량(thoughput)이 감소될 수 있기 때문에, 처리량을 향상시키기 위해 현재 블록을 바이너리 분할하는 것을 허용하지 않는다고 결정할 수 있다. 부호화 단위 결정부(105)는 바이너리 분할을 제외한 허용하는 다른 분할 타입에 기초하여 현재 크로마 블록을 분할할 수 있다. 부호화 단위 결정부(105)는 현재 크로마 블록에서 허용하는 분할 타입이 없다면, 더 이상 분할하지 않고 현재 크로마 블록을 부호화 단위로 결정할 수 있다.
현재 크로마 블록의 크기 또는 넓이 및 현재 블록의 분할 형태 모드에 기초한 조건은 현재 크로마 블록의 분할 타입이 트라이 분할(혹은 트리플 분할이라 함)임을 나타내는 경우, 현재 크로마 블록의 넓이가 32보다 작거나 같은지 여부에 대한 조건일 수 있다. 부호화 단위 결정부(105)는 현재 크로마 블록의 분할 타입이 트라이 분할을 나타내는 경우, 현재 크로마 블록의 넓이가 32보다 작거나 같다면, 바이너리 분할에 기초한 분할을 허용하지 않는다고 결정할 수 있다. 즉, 현재 크로마 블록의 넓이가 32보다 작거나 같은 경우(예를 들어, 현재 크로마 블록의 크기가 4x8, 8x4, 2x16, 16x2보다 작거나 같은 경우)에 현재 크로마 블록을 트라이 분할하여 생성된 복수의 크로마 블록 중 하나의 크로마 블록의 크기는 2x4,4x2보다 작거나 같을 수 있다. 이러한 블록의 크기를 부호화 단위로 허용하여 부호화하는 경우, 처리량(thoughput)이 감소될 수 있기 때문에 처리량을 향상시키기 위해 현재 블록을 트라이 분할하는 것을 허용하지 않는다고 결정할 수 있다. 부호화 단위 결정부(105)는 트라이 분할을 제외한 허용하는 다른 분할 타입에 기초하여 현재 크로마 블록을 분할할 수 있다. 부호화 단위 결정부(105)는 현재 크로마 블록에서 허용하는 분할 타입이 없다면, 더 이상 분할하지 않고 현재 크로마 블록을 부호화 단위로 결정할 수 있다.
현재 영상의 크로마 영상 내 블록들의 분할 형태 모드는 상기 현재 영상의 루마 영상에 포함된 블록들의 분할 형태 모드와 독립적일 수 있으나, 이에 제한되지 않고, 현재 영상의 크로마 영상 내 블록들의 분할 형태 모드는 크로마 영상 내 블록들에 대응하는 현재 영상의 루마 영상 내 대응 블록들의 분할 형태 모드에 종속적일 수 있다.
즉, 부호화 단위 결정부(105)는 현재 영상의 루마 영상에 포함된 블록들의 분할 형태 모드에 기초하여 루마 영상을 계층적으로 분할하여 루마 영상 내 복수의 부호화 단위를 결정하고, 루마 영상에 포함된 블록들의 분할 형태 모드와 동일한 크로마 영상에 포함된 블록들의 분할 형태 모드에 기초하여 크로마 영상을 계층적으로 분할하여 크로마 영상 내 복수의 부호화 단위를 결정할 수 있다. 이때, 부호화 단위 결정부(105)는 현재 영상의 크로마 서브 샘플링 방식 및 루마 영상의 대응 블록의 크기에 기초하여 크로마 영상 내 블록의 크기를 결정할 수 있다. 예를 들어, 크로마 서브 샘플링 방식이 YUV 4:2:0 이고, 루마 영상의 대응 블록의 크기가 16x16이라면, 크로마 영상 내 블록의 크기는 8x8로 결정될 수 있다.
부호화 단위 결정부(105)는 크로마 영상 내 현재 크로마 블록의 분할 형태 모드에 기초하여 크로마 영상의 현재 크로마 블록으로부터 분할하여 생성된 복수의 블록 중 하나의 블록의 크기가 2xN(N은 2보다 크거나 같은 정수) 또는 Nx2보다 작거나 같은 경우, 현재 크로마 블록의 분할 형태 모드에 기초한 현재 크로마 블록의 분할을 허용하지 않는다고 결정할 수 있다. 부호화 단위 결정부(105)는 허용하지 않는 분할 타입을 제외한 나머지 허용 가능한 분할 타입에 기초하여 현재 크로마 블록에 포함된 적어도 하나의 부호화 단위를 결정할 수 있다.
영상 복호화부(110)는 루마 영상 내 복수의 부호화 단위 및 크로마 영상 내 복수의 부호화 단위를 기초로 현재 영상을 복호화할 수 있다.
한편, 각 인터 슬라이스 또는 픽처에서 분할된 각 루마 블록은 다른 예측 모드를 가질 수 있다. 예를 들어, 각 루마 블록은 인터 또는 인트라 예측 모드를 가질 수 있다. 이 경우, 영상 복호화 장치(100)는 대응하는 크로마 블록의 예측 모드를 다음과 같이 결정할 수 있다. 영상 복호화 장치(100)는 현재 슬라이스 또는 픽처가 인터 슬라이스 또는 픽처인 경우, 루마 블록의 넓이 중 인트라 예측 모드를 가지는 루마 블록의 넓이의 비율이 소정의 값보다 크거나 같다면, 크로마 블록의 예측 모드를 인트라 예측 모드로 결정할 수 있다.
영상 복호화 장치(100)는 현재 슬라이스 또는 픽처가 인터 슬라이스 또는 픽처인 경우, 루마 블록의 넓이 중 인터 예측 모드를 가지는 루마 블록의 넓이의 비율이 소정의 값보다 크거나 같다면, 크로마 블록의 예측 모드를 인터 예측 모드로 결정할 수 있다.
영상 복호화 장치(100)는 특정 크기의 루마 블록이 분할되는 경우, 대응하는 크로마 블록의 예측 모드에 관한 정보를 비트스트림으로부터 획득할 수 있다.
영상 복호화 장치(100)는 크로마 블록의 특정 위치에 대응하는 루마 대응 블록의 예측 모드를 크로마 블록의 예측 모드로 결정할 수 있다. 예를 들어 특정 위치는 좌상측 위치, 중심 위치, 좌하측 위치, 상측 위치, 우하측 위치 등의 위치일 수 있다. 이때, 특정 위치는 미리 정의된 위치일 수 있으나, 이에 제한되지 않고, 영상 복호화 장치(100)는 별도의 비트스트림으로부터 특정 위치에 대한 정보를 획득하고, 획득된 정보를 기초로 특정 위치를 결정할 수 있다.
영상 복호화 장치(100)는 처리량을 향상시키기 위해 현재 블록의 크기가 특정 크기보다 작거나 같은 경우이거나, 현재 블록의 넓이가 특정 값보다 작거나 같은 경우 하기와 같은 동작을 수행할 수 있다.
영상 복호화 장치(100)는 DCT(Discrete Cosine Transform)과 같은 변환 방법이 아닌 다른 변환 방법을 이용하여 현재 블록을 역변환할 수 있다. 예를 들어, 영상 복호화부(105)는 현재 블록의 크기가 4x4보다 작은 경우, 하마다드 변환(hadamard transform)을 이용하여 현재 블록을 역변환할 수 있다.
영상 복호화 장치(100)는 현재 블록에 대한 변환 스킵 플래그(transform skip flag)의 값을 항상 1로 설정할 수 있다. 예를 들어, 영상 복호화 장치(100)는 현재 블록에 대한 변환 스킵 플래그를 비트스트림으로부터 획득할 수 있고, 비트스트림으로부터 획득된 변환 스킵 플래그의 값을 기초로 변환 스킵 플래그의 값을 설정할 수 있으나, 현재 블록의 크기가 특정 크기보다 작거나 같은 경우이거나, 현재 블록의 넓이가 특정 값보다 작거나 같은 경우에는, 비트스트림으로부터의 변환 스킵 플래그를 획득하지 않고 현재 블록에 대한 변환 스킵 플래그의 값을 1로 설정할 수 있다.
변환 스킵 플래그는 변환이 이용되는지를 나타내는 플래그로, 그 값이 0인 경우, 영상 복호화 장치(100)는 역변환 동작을 수행하지 않고, 역양자화된 블록을 이용하여 현재 블록을 복원할 수 있고, 그 값이 1인 경우, 영상 복호화 장치(100)는 역양자화된 블록에 대해 역변환 동작을 수행하여 역변환된 블록을 생성하고, 역변환된 블록을 이용하여 현재 블록을 복원할 수 있다.
또한 영상 복호화 장치(100)는 블록의 크기가 특정 크기 또는 넓이보다 작거나 같은 경우 블록의 분할을 허용하지 않는다고 결정할 수 있다. 예를 들어, 현재 블록의 크기가 8x8인 경우, 영상 복호화 장치(100)는 현재 블록의 분할을 허용하지 않는다고 결정할 수 있다. 또한, 예를 들어, 현재 블록의 넓이가 64인 경우 영상 복호화 장치(100)는 현재 블록의 분할을 허용하지 않는다고 결정할 수 있다.
영상 복호화 장치(100)는 인터 슬라이스 또는 픽처인 경우, 블록을 분할할 확률이 블록을 스킵할 확률보다 낮을 수 있기 대문에, 하기와 같은 동작을 수행할 수 있다.
영상 복호화 장치(100)는 비트스트림으로부터 현재 블록의 스킵 정보(skip information)를 현재 블록의 분할 정보보다 먼저 획득할 수 있다.
또한, 영상 복호화 장치(100)는 최대 부호화 단위 레벨에서 최대 부호화 단위가 레지듀얼 정보를 갖는지 여부를 나타내는 플래그 정보를 획득하고, 만약 이 플래그의 값이 최대 부호화 단위가 레지듀얼 정보를 갖지 않음을 나타내는 경우, 영상 복호화 장치(100)는 레지듀얼과 관련된 신택스 엘리먼트들을 비트스트림으로부터 파싱하지 않고, 이와 관련된 복호화 프로세스를 생략(skip)한다고 결정할 수 있다.
또한, 영상 복호화 장치(100)는 인터 슬라이스 또는 픽처의 경우, 비대칭적 바이너리 분할을 허용하지 않는다고 결정할 수 있다.
영상 복호화 장치(100)는 현재 블록이 픽처의 경계 상에 위치하는 경우, 비트스트림으로부터 별도의 정보 획득 없이 현재 블록을 분할할 수 있다. 예를 들어, 영상 복호화 장치(100)는 현재 블록이 픽처의 경계 상에 위치하는 경우, 비트스트림으로부터 별도의 정보 획득 없이 현재 블록을 쿼드 분할할 수 있다. 이때, 분할된 블록이 픽처의 경계 상에 위치하지 않을 때까지 재귀적(recursive)으로 쿼드 분할될 수 있다. 다만, 미리 정해진 분할 뎁스가 있는 경우, 해당 뎁스까지 블록이 분할될 수 있다.
한편, 영상 복호화 장치(100)는 현재 블록이 픽처의 경계 상에 위치하는 경우, 비트스트림으로부터 별도의 정보 획득 없이 현재 블록을 분할할 수 있으나, 다양한 분할 타입 및 분할 방향에 기초하여 현재 블록을 분할할 수 있다. 이때, 영상 복호화 장치(100)는 블록의 경계 조건에 기초하여 현재 블록의 분할 타입 및 분할 방향을 결정할 수 있다. 여기서, 분할된 블록이 픽처의 경계 상에 위치하지 않을 때까지 재귀적(recursive)으로 분할될 수 있다. 다만, 미리 정해진 분할 뎁스가 있는 경우, 해당 뎁스까지 블록이 분할될 수 있다.
예를 들어, 영상 복호화 장치(100)는 현재 블록이 픽처의 아래쪽 경계 상에 위치하는 경우, 현재 블록의 분할 방향을 수평 방향으로 결정하고, 분할 타입을 바이너리 분할(또는 트라이 분할)로 결정하고, 현재 블록의 분할 방향 및 분할 타입에 기초하여 현재 블록을 수평 방향으로 바이너리 분할(또는 트라이 분할)할 수 있다.
영상 복호화 장치(100)는 현재 블록이 픽처의 우측 경계 상에 위치하는 경우, 현재 블록의 분할 방향을 수직 방향으로 결정하고, 현재 블록의 분할 타입을 바이너리 분할(또는 트라이 분할)로 결정하고, 현재 블록의 분할 방향 및 분할 타입에 기초하여 현재 블록을 수직 방향으로 바이너리 분할(또는 트라이 분할)할 수 있다.
영상 복호화 장치(100)는 현재 블록이 픽처의 우하측 경계 상에 위치하는 경우, 현재 블록의 분할 타입을 쿼드 분할로 결정하고, 현재 블록의 분할 타입에 기초하여 현재 블록을 쿼드 분할할 수 있다.
허용 가능한 블록의 분할 타입 또는 분할 방향이 다양해짐에 따라 복잡도가 기하급수적으로 증가하게 되었고, 영상 복호화 장치(100)는 복잡도를 감소시키기 위해 다양한 분할 타입 또는 분할 방향 중 일부 분할 타입 또는 분할 방향을 제한할 수 있다.
예를 들어, 영상 복호화 장치(100)는 바이너리 분할의 분할 뎁스를 제한할 수 있다. 영상 복호화 장치(100)는 허용가능한 블록의 비율 또는 허용가능한 블록의 크기를 제한할 수 있다.
영상 복호화 장치(100)는 상기 제한 조건을 만족하는 분할 형태 모드만을 이용하여 비트스트림으로부터의 별도의 정보 획득 없이 블록을 분할할 수 있다.
영상 복호화 장치(100)는 현재 블록이 픽처의 경계 상에 위치하는 경우, 다양한 복수의 블록의 분할 타입 중 일부 분할 타입만을 허용할 수 있다. 예를 들어, 영상 복호화 장치(100)는 현재 블록이 픽처의 경계 상에 위치하는 경우, 다양한 분할 타입 중 쿼드 분할만을 허용할 수 있다.
영상 복호화 장치(100)는 현재 블록에 이용될 수 있는 특정 분할 형태 모드가 없는 경우에 분할된 블록이 그 블록에서 이용될 수 있는 특정 분할 형태 모드를 가질 때까지 현재 블록을 암시 분할할 수 있다.
영상 복호화 장치(100)는 픽처의 경계 상에 위치하는 현재 블록이 레지듀얼을 갖지 않는 경우, 현재 블록을 더 분할하지 않는다고 결정할 수 있다. 이를 가능하게 하기 위해 영상 복호화 장치(100)는 하기와 같은 동작을 수행할 수 있다.
영상 복호화 장치(100)는 현재 블록이 픽처의 경계 상에 위치하는 경우, 현재 블록에 대한 암시 분할(implicit split)을 허용하는지를 나타내는 플래그를 비트스트림으로부터 획득할 수 있다. 영상 복호화 장치(100)는 플래그의 값이 0과 동일한 경우, 현재 블록에 대한 암시 분할을 허용하지 않는다고 결정할 수 있다. 이 경우, 영상 복호화 장치(100)는 비트스트림으로부터 현재 블록의 분할 형태 모드에 관한 정보를 획득하고, 획득된 정보를 기초로 현재 블록의 분할 형태 모드를 결정할 수 있다. 영상 복호화 장치(100)는 플래그의 값이 1과 동일한 경우, 현재 블록에 대한 암시 분할을 허용한다고 결정할 수 있다. 이 경우, 영상 복호화 장치(100)는 현재 블록에 대하여 암시 분할을 수행할 수 있다.
영상 복호화 장치(100)는 현재 블록이 픽처 경계 상에 위치하는 경우, 현재 블록이 레지듀얼을 갖지 않음을 나타내는 플래그를 비트스트림으로부터 획득할 수 있다. 영상 복호화 장치(100)는 플래그의 값이 0과 동일한 경우, 현재 블록에 대하여 암시 분할을 수행할 수 있다. 영상 복호화 장치(100)는 플래그의 값이 1과 동일한 경우, 현재 블록에 대하여 스킵 모드 복호화 프로세스를 수행한다고 결정할 수 있다.
영상 복호화 장치(100)는 현재 최대 부호화 단위가 픽처의 경계 상에 위치하는 경우, 최대 부호화 단위에 대한 암시 분할을 허용하는지 여부를 나타내는 최대 부호화 단위 레벨의 플래그를 비트스트림으로부터 획득할 수 있다.
영상 복호화 장치(100)는 플래그의 값이 0인 경우, 최대 부호화 단위에 대한 암시 분할을 허용하지 않는다고 결정할 수 있다. 영상 복호화 장치(100)는
플래그의 값이 1인 경우, 최대부호화 단위에 대한 암시 분할을 허용한다고 결정하고, 최대 부호화 단위에 대한 암시 분할 프로세스를 수행할 수 있다.
영상 복호화 장치(100)는 현재 최대 부호화 단위가 픽처 경계 상에 위치하는 경우, 현재 최대 부호화 단위가 레지듀얼을 갖지 않음을 나타내는 플래그를 비트스트림으로부터 획득할 수 있다. 영상 복호화 장치(100)는 플래그의 값이 0과 동일한 경우, 현재 최대 부호화 단위에 대하여 암시 분할을 수행할 수 있다. 영상 복호화 장치(100)는 플래그의 값이 1과 동일한 경우, 현재 최대 부호화 단위에 대하여 스킵 모드 복호화 프로세스를 수행한다고 결정할 수 있다.
영상 복호화 장치(100)는 현재 블록이 픽처의 경계에 위치하는 경우, 현재 블록의 분할 형태 모드를 암시적으로 결정할 수 있다. 예를 들어, 영상 복호화 장치(100)는 경계 조건에 기초하여 복수의 특정 분할 형태 모드 중 하나의 분할 형태 모드를 결정할 수 있다. 영상 복호화 장치(100)는 현재 블록이 픽처의 오른쪽 경계 상에 위치하는 경우, 바이너리 분할 및 쿼드 분할 중 하나의 분할 타입을 나타내는 플래그를 비트스트림으로부터 획득할 수 있다.
영상 복호화 장치(100)는 현재 최대 부호화 단위가 픽처 경계 상에 위치하는 경우, 비트스트림으로부터 현재 최대 부호화 단위에 대해 이용되는 분할 형태 모드에 관한 정보를 획득할 수 있다.
영상 복호화 장치(100)는 현재 블록이 픽처 경계 상에 위치하는 경우, 픽처 내 영역의 비율에 기초하여 현재 블록의 분할 형태 모드를 결정할 수 있다. 예를 들어, 영상 복호화 장치(100)는 픽처 내 블록 영역의 높이 및 너비의 비율에 기초하여 현재 블록의 분할 형태 모드를 결정할 수 있다. 만약 현재 블록이 왼쪽 경계 또는 오른쪽 경계 상에 위치하고, 현재 블록의 너비 및 높이의 비율이 N보다 큰 경우, 영상 복호화 장치(100)는 현재 블록의 분할 타입을 쿼드 분할로 결정할 수 있다. 그렇지 않은 경우, 영상 복호화 장치(100)는 현재 블록의 분할 타입을 바이너리 분할로 결정할 수 있다.
영상 복호화 장치(100)는 현재 블록의 너비 및 높이의 비율이 정수 값과 동일하지 않은 경우, 현재 블록의 분할 타입을 쿼드 분할로 결정하거나, 현재 블록의 분할 타입을 바이너리 분할로 결정할 수 있다.
또는, 영상 복호화 장치(100)는 현재 블록이 픽처의 경계 상에 위치하는지 여부에 관계없이, 현재 블록의 분할 형태 모드에 관한 정보를 비트스트림으로부터 항상 획득할 수 있다. 영상 복호화 장치(100)는 현재 블록이 픽처의 경계 상에 위치하는 경우, 픽처의 경계 상에 위치하지 않는 블록들의 컨텍스트와 다른 CABAC(Context-adaptive binary arithmetic coding) 컨텍스트를 할당하여 엔트로피 복호화를 수행한다고 결정할 수 있다. 영상 복호화 장치(100)는 경계 조건에 기초한 CABAC 컨텍스트를 이용하여 엔트로피 복호화를 수행한다고 결정할 수 있다.
도 1b는 다양한 실시예에 따른 영상 복호화 방법의 흐름도를 도시한다.
S105 단계에서, 영상 복호화 장치(100)는 현재 영상의 루마 영상에 포함된 블록의 분할 형태 모드에 기초하여 루마 영상을 계층적으로 분할하여 루마 영상 내 복수의 부호화 단위를 결정할 수 있다. 분할 형태 모드는 블록의 분할 방향 및 분할 타입 중 적어도 하나에 기초한 모드일 수 있다. 분할 타입은 바이너리 분할(binary split), 트라이 분할(tri split), 쿼드 분할 중 적어도 하나를 나타낼 수 있다.
S110 단계에서, 영상 복호화 장치(100)는 현재 영상의 크로마 영상 내 블록들의 분할 형태 모드에 기초하여 크로마 영상을 계층적으로 분할하여 크로마 영상 내 복수의 부호화 단위를 결정할 수 있다. 영상 복호화 장치(100)는 크로마 영상 내 현재 크로마 블록의 분할 형태 모드에 기초하여 크로마 영상 내 현재 크로마 블록을 분할하여 생성될 수 있는 복수의 크로마 블록 중 하나의 크로마 블록의 크기 또는 넓이보다 작거나 같은 경우, 현재 크로마 블록의 분할 형태 모드에 기초한 현재 크로마 블록의 분할을 허용하지 않고, 현재 크로마 블록에 포함된 적어도 하나의 부호화 단위를 결정할 수 있다.
S115 단계에서, 영상 복호화 장치(100)는 루마 영상 내 복수의 부호화 단위 및 크로마 영상 내 복수의 부호화 단위를 기초로 현재 영상을 복호화할 수 있다.
도 1c 는 다양한 실시예에 따른 영상 복호화부(6000)의 블록도를 도시한다.
다양한 실시예에 따른 영상 복호화부(6000)는, 영상 복호화 장치(100)의 영상 복호화부(110)에서 영상 데이터를 부호화하는데 거치는 작업들을 수행한다.
도 1c를 참조하면, 엔트로피 복호화부(6150)는 비트스트림(6050)으로부터 복호화 대상인 부호화된 영상 데이터 및 복호화를 위해 필요한 부호화 정보를 파싱한다. 부호화된 영상 데이터는 양자화된 변환계수로서, 역양자화부(6200) 및 역변환부(6250)는 양자화된 변환 계수로부터 레지듀 데이터를 복원한다.
인트라 예측부(6400)는 블록 별로 인트라 예측을 수행한다. 인터 예측부(6350)는 블록 별로 복원 픽처 버퍼(6300)에서 획득된 참조 영상을 이용하여 인터 예측을 수행한다. 인트라 예측부(6400) 또는 인터 예측부(6350)에서 생성된 각 블록에 대한 예측 데이터와 레지듀 데이터가 더해짐으로써 현재 영상(6050)의 블록에 대한 공간 영역의 데이터가 복원되고, 디블로킹부(6450) 및 SAO 수행부(6500)는 복원된 공간 영역의 데이터에 대해 루프 필터링을 수행하여 필터링된 복원 영상(6600)을 출력할 수 있다. 또한, 복원 픽쳐 버퍼(6300)에 저장된 복원 영상들은 참조 영상으로서 출력될 수 있다.
영상 복호화 장치(100)에서 영상 데이터를 복호화하기 위해, 다양한 실시예에 따른 영상 복호화부(6000)의 단계별 작업들이 블록별로 수행될 수 있다.
도 2a는 다양한 실시예에 따른 영상 부호화 장치의 블록도를 도시한다.
다양한 실시예에 따른 영상 부호화 장치(150)는 부호화 단위 결정부(155) 및 영상 부호화부(160)를 포함할 수 있다.
부호화 단위 결정부(155) 및 영상 부호화부(160)는 적어도 하나의 프로세서를 포함할 수 있다. 또한 부호화 단위 결정부(155) 및 영상 부호화부(160)는 적어도 하나의 프로세서가 수행할 명령어들을 저장하는 메모리를 포함할 수 있다. 영상 부호화부(160)는 부호화 단위 결정부(155)와 별도의 하드웨어로 구현되거나, 부호화 단위 결정부(155)를 포함할 수 있다.
부호화 단위 결정부(155)는 현재 영상의 루마 영상에 포함된 블록들의 분할 형태 모드에 기초하여 루마 영상을 계층적으로 분할하여 루마 영상 내 복수의 부호화 단위를 결정할 수 있다.
부호화 단위 결정부(155)는 현재 영상의 크로마 영상 내 블록들의 분할 형태 모드에 기초하여 크로마 영상을 계층적으로 분할하여 크로마 영상 내 복수의 부호화 단위를 결정할 수 있다. 부호화 단위 결정부(155)는 크로마 영상 내 현재 크로마 블록의 분할 형태 모드에 기초하여 크로마 영상 내 현재 크로마 블록을 분할하여 생성될 수 있는 복수의 크로마 블록 중 하나의 크로마 블록의 크기 또는 넓이가 소정의 크기 또는 넓이보다 작거나 같은지 여부를 결정할 수 있다. 부호화 단위 결정부(155)는 상기 결정의 결과에 따라, 현재 크로마 블록의 분할 형태 모드에 기초한 현재 크로마 블록의 분할을 허용하지 않는다고 결정할 수 있다.
부호화 단위 결정부(155)는 허용하지 않는다고 결정된 분할 형태 모드를 제외한 나머지 허용하는 현재 블록의 분할 형태 모드 중 하나의 분할 형태 모드에 기초하여 현재 크로마 블록에 포함된 적어도 하나의 부호화 단위를 결정할 수 있다. 부호화 단위 결정부(155)는 허용하는 현재 블록의 분할 형태 모드가 존재하지 않는 경우, 더 이상 분할하지 않고, 현재 크로마 블록을 부호화 단위로 결정할 수 있다.
부호화 단위 결정부(155)는 크로마 영상 내 현재 크로마 블록의 분할 형태 모드에 기초하여 크로마 영상 내 현재 크로마 블록을 분할하여 생성될 수 있는 복수의 크로마 블록 중 하나의 크로마 블록의 크기 또는 넓이가 소정의 크기 또는 넓이보다 작거나 같다고 결정한 경우, 현재 크로마 블록의 분할 형태 모드에 기초한 현재 크로마 블록의 분할을 허용하지 않는다고 결정할 수 있다. 이때, 소정의 크기는 4x2, 2x4 및 2x2 중 하나일 수 있다. 또한, 소정의 너비는 8 및 4 중 하나일 수 있다.
부호화 단위 결정부(155)는 현재 크로마 블록의 크기 또는 넓이 및 현재 크로마 블록의 분할 형태 모드에 기초한 조건을 만족하는지 여부에 따라, 크로마 영상 내 현재 크로마 블록을 분할하여 생성될 수 있는 복수의 블록 중 하나의 크로마 블록의 크기 또는 넓이가 소정의 크기 또는 넓이보다 작거나 같은지 여부를 결정할 수 있다. 이때, 현재 크로마 블록의 크기 또는 넓이 및 현재 블록의 분할 형태 모드에 기초한 조건은 현재 크로마 블록의 분할 타입이 쿼드 분할임을 나타내는 경우, 현재 크로마 블록의 너비 또는 높이가 4보다 작거나 같은지 여부에 대한 조건일 수 있다. 부호화 단위 결정부(155)는 현재 크로마 블록의 분할 타입이 쿼드 분할을 나타내는 경우, 현재 크로마 블록의 크기 또는 너비가 4보다 작거나 같다면, 쿼드 분할에 기초한 분할을 허용하지 않는다고 결정할 수 있다. 즉, 현재 크로마 블록의 높이 또는 너비가 4보다 작거나 같은 경우에 현재 크로마 블록을 쿼드 분할하여 생성된 복수의 크로마 블록 중 하나의 크로마 블록의 높이 또는 너비는 2보다 작거나 같을 수 있다. 따라서, 현재 크로마 블록을 쿼드 분할하여 생성된 복수의 크로마 블록 중 하나의 크로마 블록의 크기는 2x2,4x2,2x4(또는 그보다 작은 크기)일 수 있고, 이러한 블록의 크기를 부호화 단위로 허용하여 부호화 또는 복호화하는 경우, 처리량(thoughput)이 감소될 수 있기 때문에 처리량을 향상시키기 위해 현재 블록을 쿼드 분할하는 것을 허용하지 않는다고 결정할 수 있다. 부호화 단위 결정부(155)는 쿼드 분할을 제외한 허용하는 다른 분할 타입에 기초하여 현재 크로마 블록을 분할할 수 있다. 부호화 단위 결정부(155)는 현재 크로마 블록에서 허용하는 분할 타입이 없다면, 더 이상 분할하지 않고 현재 크로마 블록을 부호화 단위로 결정할 수 있다.
현재 크로마 블록의 크기 또는 넓이 및 현재 블록의 분할 형태 모드에 기초한 조건은 현재 크로마 블록의 분할 타입이 바이너리 분할임을 나타내는 경우, 현재 크로마 블록의 넓이가 16보다 작거나 같은지 여부에 대한 조건일 수 있다. 부호화 단위 결정부(155)는 현재 크로마 블록의 분할 타입이 바이너리 분할을 나타내는 경우, 현재 크로마 블록의 넓이가 16보다 작거나 같다면, 바이너리 분할에 기초한 분할을 허용하지 않는다고 결정할 수 있다. 즉, 현재 크로마 블록의 넓이가 16보다 작거나 같은 경우(예를 들어, 현재 크로마 블록의 크기가 2x8, 8x2, 4x4보다 작거나 같은 경우)에 현재 크로마 블록을 바이너리 분할하여 생성된 복수의 크로마 블록 중 하나의 크로마 블록의 크기는 2x4,4x2보다 작거나 같을 수 있다. 이러한 블록의 크기를 부호화 단위로 허용하여 부호화 또는 복호화하는 경우, 처리량(thoughput)이 감소될 수 있기 때문에, 처리량을 향상시키기 위해 현재 블록을 바이너리 분할하는 것을 허용하지 않는다고 결정할 수 있다. 부호화 단위 결정부(155)는 바이너리 분할을 제외한 허용하는 다른 분할 타입에 기초하여 현재 크로마 블록을 분할할 수 있다. 부호화 단위 결정부(155)는 현재 크로마 블록에서 허용하는 분할 타입이 없다면, 더 이상 분할하지 않고 현재 크로마 블록을 부호화 단위로 결정할 수 있다.
현재 크로마 블록의 크기 또는 넓이 및 현재 블록의 분할 형태 모드에 기초한 조건은 현재 크로마 블록의 분할 타입이 트라이 분할임을 나타내는 경우, 현재 크로마 블록의 넓이가 32보다 작거나 같은지 여부에 대한 조건일 수 있다. 부호화 단위 결정부(155)는 현재 크로마 블록의 분할 타입이 트라이 분할을 나타내는 경우, 현재 크로마 블록의 넓이가 32보다 작거나 같다면, 바이너리 분할에 기초한 분할을 허용하지 않는다고 결정할 수 있다. 즉, 현재 크로마 블록의 넓이가 32보다 작거나 같은 경우(예를 들어, 현재 크로마 블록의 크기가 4x8, 8x4, 2x16, 16x2보다 작거나 같은 경우)에 현재 크로마 블록을 트라이 분할하여 생성된 복수의 크로마 블록 중 하나의 크로마 블록의 크기는 2x4,4x2보다 작거나 같을 수 있다. 이러한 블록의 크기를 부호화 단위로 허용하여 부호화 또는 복호화하는 경우, 처리량(thoughput)이 감소될 수 있기 때문에 처리량을 향상시키기 위해 현재 블록을 트라이 분할하는 것을 허용하지 않는다고 결정할 수 있다. 부호화 단위 결정부(155)는 트라이 분할을 제외한 허용하는 다른 분할 타입에 기초하여 현재 크로마 블록을 분할할 수 있다. 부호화 단위 결정부(155)는 현재 크로마 블록에서 허용하는 분할 타입이 없다면, 더 이상 분할하지 않고 현재 크로마 블록을 부호화 단위로 결정할 수 있다.
현재 영상의 크로마 영상 내 블록들의 분할 형태 모드는 상기 현재 영상의 루마 영상에 포함된 블록들의 분할 형태 모드와 독립적일 수 있으나, 이에 제한되지 않고, 현재 영상의 크로마 영상 내 블록들의 분할 형태 모드는 크로마 영상 내 블록들에 대응하는 현재 영상의 루마 영상 내 대응 블록들의 분할 형태 모드에 종속적일 수 있다.
즉, 부호화 단위 결정부(155)는 현재 영상의 루마 영상에 포함된 블록들의 분할 형태 모드에 기초하여 루마 영상을 계층적으로 분할하여 루마 영상 내 복수의 부호화 단위를 결정하고, 루마 영상에 포함된 블록들의 분할 형태 모드와 동일한 크로마 영상에 포함된 블록들의 분할 형태 모드에 기초하여 크로마 영상을 계층적으로 분할하여 크로마 영상 내 복수의 부호화 단위를 결정할 수 있다. 이때, 부호화 단위 결정부(155)는 현재 영상의 크로마 서브 샘플링 방식 및 루마 영상의 대응 블록의 크기에 기초하여 크로마 영상 내 블록의 크기를 결정할 수 있다. 예를 들어, 크로마 서브 샘플링 방식이 YUV 4:2:0 이고, 루마 영상의 대응 블록의 크기가 16x16이라면, 크로마 영상 내 블록의 크기는 8x8로 결정될 수 있다.
부호화 단위 결정부(155)는 크로마 영상 내 현재 크로마 블록의 분할 형태 모드에 기초하여 크로마 영상의 현재 크로마 블록으로부터 분할된 복수의 블록 중 하나의 블록의 크기가 2xN(N은 2보다 크거나 같은 정수) 또는 Nx2보다 작거나 같은 경우, 현재 크로마 블록의 분할 형태 모드에 기초한 현재 크로마 블록의 분할을 허용하지 않는다고 결정할 수 있다. 부호화 단위 결정부(155)는 허용하지 않는 분할 타입을 제외한 나머지 허용 가능한 분할 타입에 기초하여 현재 크로마 블록에 포함된 적어도 하나의 부호화 단위를 결정할 수 있다.
영상 부호화부(160)는 루마 영상 내 복수의 부호화 단위 및 크로마 영상 내 복수의 부호화 단위를 기초로 현재 영상을 부호화할 수 있다.
각 인터 슬라이스 또는 픽처에서 분할된 각 루마 블록은 다른 예측 모드를 가질 수 있다. 예를 들어, 각 루마 블록은 인터 또는 인트라 예측 모드를 가질 수 있다. 이 경우, 영상 부호화 장치(150)는 대응하는 크로마 블록의 예측 모드를 다음과 같이 결정할 수 있다. 영상 부호화 장치(150)는 현재 슬라이스 또는 픽처가 인터 슬라이스 또는 픽처인 경우, 루마 블록의 넓이 중 인트라 예측 모드를 가지는 루마 블록의 넓이의 비율이 소정의 값보다 크다면, 크로마 블록의 예측 모드를 인트라 예측 모드로 결정할 수 있다.
영상 부호화 장치(150)는 현재 슬라이스 또는 픽처가 인터 슬라이스 또는 픽처인 경우, 루마 블록의 넓이 중 인터 예측 모드를 가지는 루마 블록의 넓이의 비율이 소정의 값보다 크다면, 크로마 블록의 예측 모드를 인터 예측 모드로 결정할 수 있다.
영상 부호화 장치(150)는 특정 크기의 루마 블록이 분할되는 경우, 대응하는 크로마 블록의 예측 모드에 관한 정보를 부호화하고, 부호화된 크로마 블록의 예측 모드에 관한 정보를 포함하는 비트스트림을 생성할 수 있다.
영상 부호화 장치(150)는 크로마 블록의 특정 위치에 대응하는 루마 대응 블록의 예측 모드를 크로마 블록의 예측 모드로 결정할 수 있다. 예를 들어 특정 위치는 좌상측 위치, 중심 위치, 좌하측 위치, 상측 위치, 우하측 위치 등의 위치일 수 있다. 이때, 특정 위치는 미리 정의된 위치일 수 있으나, 이에 제한되지 않고, 영상 부호화 장치(150)는 특정 위치에 대한 정보를 부호화하고, 부호화된 특정 위치에 대한 정보를 포함하는 비트스트림을 생성할 수 있다.
영상 부호화 장치(150)는 처리량을 향상시키기 위해 현재 블록의 크기가 특정 크기보다 작거나 같은 경우이거나, 현재 블록의 넓이가 특정 값보다 작거나 같은 경우 하기와 같은 동작을 수행할 수 있다.
영상 부호화 장치(150)는 DCT(Discrete Cosine Transform)과 같은 변환 방법이 아닌 다른 변환 방법을 이용하여 현재 블록을 변환할 수 있다. 예를 들어, 영상 부호화 장치(150)는 현재 블록의 크기가 4x4보다 작은 경우, 하마다드 변환(hadamard transform)을 이용하여 현재 블록을 변환할 수 있다.
영상 부호화 장치(150)는 현재 블록에 대한 변환을 생략한다고 결정할 수 있다. 예를 들어, 영상 부호화 장치(150)는 현재 블록에 대한 변환 스킵 플래그를 부호화하고, 부호화된 플래그를 포함하는 비트스트림을 생성할 수 있으나, 현재 블록의 크기가 특정 크기보다 작거나 같은 경우이거나, 현재 블록의 넓이가 특정 값보다 작거나 같은 경우에는, 현재 블록에 대한 변환을 생략한다고 결정하고, 현재 블록에 대한 변환 스킵 플래그를 부호화하지 않을 수 있다.
또한 영상 부호화 장치(150)는 블록의 크기가 특정 크기 또는 넓이보다 작거나 같은 경우 블록의 분할을 허용하지 않는다고 결정할 수 있다. 예를 들어, 현재 블록의 크기가 8x8인 경우, 영상 부호화 장치(150)는 현재 블록의 분할을 허용하지 않는다고 결정할 수 있다. 또한, 예를 들어, 현재 블록의 넓이가 64인 경우 영상 부호화 장치(150)는 현재 블록의 분할을 허용하지 않는다고 결정할 수 있다.
영상 부호화 장치(150)는 현재 슬라이스 또는 픽처가 인터 슬라이스 또는 픽처인 경우, 블록을 분할할 확률이 블록을 스킵할 확률보다 낮을 수 있기 대문에, 하기와 같은 동작을 수행할 수 있다.
영상 부호화 장치(150)는 현재 블록의 스킵 정보를 현재 블록의 분할 정보보다 먼저 부호화할 수 있다.
또한, 영상 부호화 장치(150)는 최대 부호화 단위가 레지듀얼 정보를 갖지 않는다고 결정하는 경우, 레지듀얼과 관련된 신택스 엘리먼트들을 부호화하지 않는다고 결정하고, 최대 부호화 단위가 레지듀얼 정보를 갖지 않음을 나타내는 플래그를 부호화하고, 부호화된 플래그를 포함하는 비트스트림을 생성할 수 있다.
영상 부호화 장치(150)는 현재 슬라이스 또는 픽처가 인터 슬라이스 또는 픽처의 경우, 비대칭적 바이너리 분할을 허용하지 않는다고 결정할 수 있다.
영상 부호화 장치(150)는 현재 블록이 픽처의 경계 상에 위치하는 경우, 현재 블록을 분할할 수 있다. 이때, 영상 부호화 장치(150)는 현재 블록의 분할 형태 모드에 관한 정보를 부호화하지 않을 수 있다.
예를 들어, 영상 부호화 장치(150)는 현재 블록이 픽처의 경계 상에 위치하는 경우, 별도의 분할 형태 모드 정보의 부호화 없이 현재 블록을 쿼드 분할할 수 있다. 이때, 분할된 블록이 픽처의 경계 상에 위치하지 않을 때까지 재귀적(recursive)으로 쿼드 분할될 수 있다. 다만, 미리 정해진 분할 뎁스가 있는 경우, 해당 뎁스까지 블록이 분할될 수 있다.
한편, 영상 부호화 장치(150)는 현재 블록이 픽처의 경계 상에 위치하는 경우, 별도의 현재 블록에 대한 분할 형태 모드 정보 부호화 없이 현재 블록을 분할할 수 있으나, 다양한 분할 타입 및 분할 방향에 기초하여 현재 블록을 분할할 수 있다. 이 경우, 영상 부호화 장치(150)는 블록의 경계 조건에 기초하여 현재 블록의 분할 타입 및 분할 방향을 결정할 수 있다. 이때, 분할된 블록이 픽처의 경계 상에 위치하지 않을 때까지 재귀적(recursive)으로 분할될 수 있다. 다만, 미리 정해진 분할 뎁스가 있는 경우, 해당 뎁스까지 블록이 분할될 수 있다.
예를 들어, 영상 부호화 장치(150)는 현재 블록이 픽처의 아래쪽 경계 상에 위치하는 경우, 현재 블록의 분할 방향을 수평 방향으로 결정하고, 분할 타입을 바이너리 분할로 결정하고, 현재 블록의 분할 방향 및 분할 타입에 기초하여 현재 블록을 수평 방향으로 바이너리 분할할 수 있다.
영상 부호화 장치(150)는 현재 블록이 픽처의 우측 경계 상에 위치하는 경우, 현재 블록의 분할 방향을 수직 방향으로 결정하고, 현재 블록의 분할 타입을 바이너리 분할로 결정하고, 현재 블록의 분할 방향 및 분할 타입에 기초하여 현재 블록을 수직 방향으로 바이너리 분할할 수 있다.
영상 부호화 장치(150)는 현재 블록이 픽처의 우하측 경계 상에 위치하는 경우, 현재 블록의 분할 타입을 쿼드 분할로 결정하고, 현재 블록의 분할 타입에 기초하여 현재 블록을 쿼드 분할할 수 있다.
허용 가능한 블록의 분할 타입 또는 분할 방향이 다양해짐에 따라 복잡도가 기하급수적으로 증가하게 되었고, 영상 부호화 장치(150)는 복잡도를 감소시키기 위해 다양한 분할 타입 또는 분할 방향 중 일부 분할 타입 또는 분할 방향을 제한할 수 있다.
예를 들어, 영상 부호화 장치(150)는 바이너리 분할의 분할 뎁스를 제한할 수 있다. 영상 부호화 장치(150)는 허용가능한 블록의 비율 또는 허용가능한 블록의 크기를 제한할 수 있다.
영상 부호화 장치(150)는 상기 제한 조건을 만족하는 분할 형태 모드만을 이용하여 블록을 분할하고, 별도의 분할 형태 모드에 관한 정보를 부호화하지 않을 수 있다.
영상 부호화 장치(150)는 현재 블록이 픽처의 경계 상에 위치하는 경우, 다양한 복수의 블록의 분할 타입 중 일부 분할 타입만을 허용할 수 있다. 예를 들어, 영상 부호화 장치(150)는 현재 블록이 픽처의 경계 상에 위치하는 경우, 다양한 분할 타입 중 쿼드 분할만을 허용할 수 있다.
영상 부호화 장치(150)는 현재 블록에 이용될 수 있는 특정 분할 형태 모드가 없는 경우에 분할된 블록이 그 블록에서 이용될 수 있는 특정 분할 형태 모드를 가질 때까지 현재 블록을 암시 분할할 수 있다.
영상 부호화 장치(150)는 픽처의 경계 상에 위치하는 현재 블록이 레지듀얼을 갖지 않는 경우, 현재 블록을 더 분할하지 않는다고 결정할 수 있다. 이를 가능하게 하기 위해 영상 부호화 장치(150)는 하기와 같은 동작을 수행할 수 있다.
영상 부호화 장치(150)는 현재 블록이 픽처의 경계 상에 위치하는 경우, 현재 블록에 대한 암시 분할(implicit split)을 허용하는지를 나타내는 플래그를 부호화할 수 있다. 영상 부호화 장치(150)는 현재 블록에 대한 암시 분할을 허용하지 않는다고 결정하는 경우, 플래그의 값을 0으로 부호화할 수 있다. 이 경우, 영상 부호화 장치(150)는 현재 블록의 분할 형태 모드에 관한 정보를 부호화하고, 부호화된 현재 블록의 분할 형태 모드에 관한 정보를 포함하는 비트스트림을 생성할 수 있다.
영상 부호화 장치(150)는 현재 블록에 대한 암시 분할을 허용한다고 결정하는 경우, 플래그의 값을 1로 부호화할 수 있다.
영상 부호화 장치(150)는 픽처 경계 상에 위치하는 경우, 현재 블록이 레지듀얼을 갖지 않음을 나타내는 플래그를 부호화하고, 부호화된 플래그를 포함하는 비트스트림을 생성할 수 있다.
영상 부호화 장치(150)는 현재 블록에 대하여 암시 분할을 수행하는 경우, 플래그의 값을 0으로 부호화할 수 있다. 영상 부호화 장치(150)는 현재 블록에 대하여 스킵 모드 부호화 프로세스를 수행하는 경우, 플래그의 값을 1로 부호화할 수 있다.
영상 부호화 장치(150)는 현재 최대 부호화 단위가 픽처의 경계 상에 위치하는 경우, 최대 부호화 단위에 대한 암시 분할을 허용하는지 여부를 나타내는 최대 부호화 단위 레벨의 플래그를 부호화할 수 있다.
영상 부호화 장치(150)는 최대 부호화 단위에 대한 암시 분할을 허용하지 않는다고 결정하는 경우, 플래그의 값을 0로 부호화할 수 있다.
영상 부호화 장치(150)는 최대부호화 단위에 대한 암시 분할 프로세스를 수행하는 경우, 플래그의 값을 1로 부호화할 수 있다.
영상 부호화 장치(150)는 현재 최대 부호화 단위가 픽처 경계 상에 위치하는 경우, 현재 최대 부호화 단위가 레지듀얼을 갖지 않음을 나타내는 플래그를 부호화할 수 있다. 영상 부호화 장치(150)는 현재 최대 부호화 단위에 대하여 암시 분할을 수행하는 경우, 플래그의 값을 0과 동일하게 부호화할 수 있다. 영상 부호화 장치(150)는 현재 최대 부호화 단위에 대하여 스킵 모드 부호화 프로세스를 수행한다고 결정한 경우, 플래그의 값을 1과 동일하게 부호화할 수 있다.
영상 부호화 장치(150)는 현재 블록이 픽처의 경계에 위치하는 경우, 현재 블록의 분할 형태 모드를 암시적으로 결정할 수 있다. 예를 들어, 영상 부호화 장치(150)는 경계 조건에 기초하여 복수의 특정 분할 형태 모드 중 하나의 분할 형태 모드를 결정할 수 있다. 영상 부호화 장치(150)는 현재 블록이 픽처의 오른쪽 경계 상에 위치하는 경우, 바이너리 분할 및 쿼드 분할 중 하나의 분할 타입을 나타내는 플래그를 부호화할 수 있다.
영상 부호화 장치(150)는 현재 최대 부호화 단위가 픽처 경계 상에 위치하는 경우, 현재 최대 부호화 단위에 대해 이용되는 분할 형태 모드에 관한 정보를 부호화하고, 부호화된 분할 형태 모드에 관한 정보를 포함하는 비트스트림을 생성할 수 있다.
영상 부호화 장치(150)는 현재 블록이 픽처 경계 상에 위치하는 경우, 픽처 내 영역의 비율에 기초하여 현재 블록의 분할 형태 모드를 결정할 수 있다. 예를 들어, 픽처 내 블록 영역의 높이 및 너비의 비율에 기초하여 현재 블록의 분할 형태 모드를 결정할 수 있다. 만약 현재 블록이 왼쪽 경계 또는 오른쪽 경계 상에 위치하고, 현재 블록의 너비 및 높이의 비율이 N보다 큰 경우, 영상 부호화 장치(150)는 현재 블록의 분할 타입을 쿼드 분할로 결정할 수 있다. 그렇지 않은 경우, 영상 부호화 장치(150)는 현재 블록의 분할 타입을 바이너리 분할로 결정할 수 있다.
영상 부호화 장치(150)는 현재 블록의 너비 및 높이의 비율이 정수 값과 동일하지 않은 경우, 현재 블록의 분할 타입을 쿼드 분할로 결정하거나, 현재 블록의 분할 타입을 바이너리 분할로 결정할 수 있다.
또는, 영상 부호화 장치(150)는 현재 블록이 픽처의 경계 상에 위치하는지 여부에 관계없이, 현재 블록의 분할 형태 모드에 관한 정보를 부호화할 수 있다.
영상 부호화 장치(150)는 현재 블록이 픽처의 경계 상에 위치하는 경우, 픽처의 경계 상에 위치하지 않는 블록들의 컨텍스트와 다른 CABAC(Context-adaptive binary arithmetic coding) 컨텍스트를 할당하여 엔트로피 부호화할 수 있다. 영상 부호화 장치(150)는 경계 조건에 기초한 CABAC 컨텍스트를 이용하여 엔트로피 부호화할 수 있다.
도 2b는 다양한 실시예에 따른 영상 부호화 방법의 흐름도를 도시한다.
S155 단계에서, 영상 부호화 장치(150)는 현재 영상의 루마 영상에 포함된 블록들의 분할 형태 모드에 기초하여 루마 영상을 계층적으로 분할하여 루마 영상 내 복수의 부호화 단위를 결정할 수 있다.
S160 단계에서, 영상 부호화 장치(150)는 현재 영상의 크로마 영상 내 블록들의 분할 형태 모드에 기초하여 크로마 영상을 계층적으로 분할하여 크로마 영상 내 복수의 부호화 단위를 결정할 수 있다. 영상 부호화 장치(150)는 크로마 영상 내 현재 크로마 블록의 분할 형태 모드에 기초하여 크로마 영상 내 현재 크로마 블록을 분할하여 생성된 복수의 크로마 블록 중 하나의 크로마 블록의 크기 또는 넓이가 소정의 크기 또는 넓이보다 작거나 같은 경우, 현재 크로마 블록의 분할 형태 모드에 기초한 현재 크로마 블록의 분할을 허용하지 않고, 현재 크로마 블록에 포함된 적어도 하나의 부호화 단위를 결정할 수 있다.
S165 단계에서, 영상 부호화 장치(150)는 루마 영상 내 복수의 부호화 단위 및 크로마 영상 내 복수의 부호화 단위를 기초로 현재 영상을 부호화할 수 있다.
도 2c는 다양한 실시예에 따른 영상 부호화부의 블록도를 도시한다.
다양한 실시예에 따른 영상 부호화부(7000)는, 비디오 부호화 장치(150)의 영상 부호화부(160)에서 영상 데이터를 부호화하는데 거치는 작업들을 수행한다.
즉, 인트라 예측부(7200)는 현재 영상(7050) 중 블록별로 인트라 예측을 수행하고, 인터 예측부(7150)는 블록별로 현재 영상(7050) 및 복원 픽처 버퍼(7100)에서 획득된 참조 영상을 이용하여 인터 예측을 수행한다.
인트라 예측부(7200) 또는 인터 예측부(7150)로부터 출력된 각 블록에 대한 예측 데이터를 현재 영상(7050)의 인코딩되는 블록에 대한 데이터로부터 빼줌으로써 레지듀 데이터를 생성하고, 변환부(7250) 및 양자화부(7300)는 레지듀 데이터에 대해 변환 및 양자화를 수행하여 블록별로 양자화된 변환 계수를 출력할 수 있다. 역양자화부(7450), 역변환부(7500)는 양자화된 변환 계수에 대해 역양자화 및 역변환을 수행하여 공간 영역의 레지듀 데이터를 복원할 수 있다. 복원된 공간 영역의 레지듀 데이터는 인트라 예측부(7200) 또는 인터 예측부(7150)로부터 출력된 각 블록에 대한 예측 데이터와 더해짐으로써 현재 영상(7050)의 블록에 대한 공간 영역의 데이터로 복원된다. 디블로킹부(7550) 및 SAO 수행부는 복원된 공간 영역의 데이터에 대해 인루프 필터링을 수행하여, 필터링된 복원 영상을 생성한다. 생성된 복원 영상은 복원 픽쳐 버퍼(7100)에 저장된다. 복원 픽처 버퍼(7100)에 저장된 복원 영상들은 다른 영상의 인터예측을 위한 참조 영상으로 이용될 수 있다. 엔트로피 부호화부(7350)는 양자화된 변환 계수에 대해 엔트로피 부호화하고, 엔트로피 부호화된 계수가 비트스트림(7400)으로 출력될 수 있다.
다양한 실시예에 따른 영상 부호화부(7000)가 비디오 부호화 장치(150)에 적용되기 위해서, 다양한 실시예에 따른 영상 부호화부(7000)의 단계별 작업들이 블록별로 수행될 수 있다.
이하에서는 본 개시의 일 실시예에 따라 부호화 단위의 분할에 대하여 자세히 설명한다.
영상은 최대 부호화 단위로 분할될 수 있다. 최대 부호화 단위의 크기는 비트스트림으로부터 획득된 정보에 기초하여 결정될 수 있다. 최대 부호화 단위의 모양은 동일 크기의 정사각형을 가질 수 있다. 하지만 이에 한정되는 것은 아니다. 또한 최대 부호화 단위는 비트스트림으로부터 획득된 분할 형태 모드에 대한 정보에 기초하여 부호화 단위로 계층적으로 분할될 수 있다. 분할 형태 모드에 대한 정보는 분할 여부를 나타내는 정보, 분할 방향 정보 및 분할 타입 정보 중 적어도 하나를 포함할 수 있다. 분할 여부를 나타내는 정보는 부호화 단위를 분할할지 여부를 나타낸다. 분할 방향 정보는 수평 방향 또는 수직 방향 중 하나로 분할함을 나타낸다. 분할 타입 정보는 부호화 단위를 바이너리 분할(binary split), 트라이 분할(tri split)(또는 트리플 분할(triple split이라 함) 또는 쿼드 분할(quad split) 중 하나로 분할함을 나타낸다.
설명의 편의를 위하여 본 개시는 분할 형태 모드에 대한 정보를 분할 여부를 나타내는 정보, 분할 방향 정보 및 분할 타입 정보로 구분하여 설명하였으나, 이에 한정되는 것은 아니다. 영상 복호화 장치(100)는 비트스트림으로부터 분할 형태 모드에 대한 정보를 하나의 빈 스트링으로 획득할 수 있다. 영상 복호화 장치(100)는 하나의 빈 스트링에 기초하여, 부호화 단위를 분할할지 여부, 분할 방향 및 분할 타입을 결정할 수 있다.
부호화 단위는 최대 부호화 단위보다 작거나 같을 수 있다. 예를 들어 분할 형태 모드에 대한 정보가 분할되지 않음을 나타내는 경우 부호화 단위는 최대 부호화 단위와 같은 크기를 가진다. 분할 형태 모드에 대한 정보가 분할됨을 나타내는 경우 최대 부호화 단위는 하위 심도의 부호화 단위로 분할 될 수 있다. 또한 하위 심도의 부호화 단위에 대한 분할 형태 모드에 대한 정보가 분할을 나타내는 경우 하위 심도의 부호화 단위는 더 작은 크기의 부호화 단위로 분할 될 수 있다. 다만, 영상의 분할은 이에 한정되는 것은 아니며 최대 부호화 단위 및 부호화 단위는 구별되지 않을 수 있다. 부호화 단위의 분할에 대해서는 도 3 내지 도 16에서 보다 자세히 설명한다.
또한 부호화 단위는 영상의 예측을 위한 예측 단위로 분할될 수 있다. 예측 단위는 부호화 단위와 같거나 작을 수 있다. 또한 부호화 단위는 영상의 변환을 위한 변환 단위로 분할될 수 있다. 변환 단위는 부호화 단위와 같거나 작을 수 있다. 변환 단위와 예측 단위의 모양 및 크기는 서로 관련 없을 수 있다. 부호화 단위는 예측 단위 및 변환 단위와 구별될 수도 있지만, 부호화 단위, 예측 단위 및 변환 단위는 서로 동일할 수 있다. 예측 단위 및 변환 단위의 분할은 부호화 단위의 분할과 동일한 방식으로 수행될 수 있다. 부호화 단위의 분할에 대해서는 도 3 내지 도 16에서 보다 자세히 설명한다. 본 개시의 현재 블록 및 주변 블록은 최대 부호화 단위, 부호화 단위, 예측 단위 및 변환 단위 중 하나를 나타낼 수 있다. 또한, 현재 블록 또는 현재 부호화 단위는 현재 복호화 또는 부호화가 진행되는 블록 또는 현재 분할이 진행되고 있는 블록이다. 주변 블록은 현재 블록 이전에 복원된 블록일 수 있다. 주변 블록은 현재 블록으로부터 공간적 또는 시간적으로 인접할 수 있다. 주변 블록은 현재 블록의 좌하측, 좌측, 좌상측, 상측, 우상측, 우측, 우하측 중 하나에 위치할 수 있다.
도 3은 일 실시예에 따라 영상 복호화 장치(100)가 현재 부호화 단위를 분할하여 적어도 하나의 부호화 단위를 결정하는 과정을 도시한다.
블록 형태는 4Nx4N,4Nx2N, 2Nx4N, 4NxN, Nx4N, 32NxN, Nx32N, 16NxN, Nx16N , 8NxN 또는 Nx8N을 포함할 수 있다. 여기서 N은 양의 정수일 수 있다. 블록 형태 정보는 부호화 단위의 모양, 방향, 너비 및 높이의 비율 또는 크기 중 적어도 하나를 나타내는 정보이다.
부호화 단위의 모양은 정사각형(square) 및 비-정사각형(non-square)을 포함할 수 있다. 부호화 단위의 너비 및 높이의 길이가 같은 경우(즉, 부호화 단위의 블록 형태가 4Nx4N 인 경우), 영상 복호화 장치(100)는 부호화 단위의 블록 형태 정보를 정사각형으로 결정할 수 있다. 영상 복호화 장치(100)는 부호화 단위의 모양을 비-정사각형으로 결정할 수 있다.
부호화 단위의 너비 및 높이의 길이가 다른 경우(즉, 부호화 단위의 블록 형태가 4Nx4N,4Nx2N, 2Nx4N, 4NxN, Nx4N, 32NxN, Nx32N, 16NxN, Nx16N , 8NxN 또는 Nx8N 인 경우), 영상 복호화 장치(100)는 부호화 단위의 블록 형태 정보를 비-정사각형으로 결정할 수 있다. 부호화 단위의 모양이 비-정사각형인 경우, 영상 복호화 장치(100)는 부호화 단위의 블록 형태 정보 중 너비 및 높이의 비율을 1:2, 2:1, 1:4, 4:1, 1:8 또는 8:1 중 적어도 하나로 결정할 수 있다. 또한, 부호화 단위의 너비의 길이 및 높이의 길이에 기초하여, 영상 복호화 장치(100)는 부호화 단위가 수평 방향인지 수직 방향인지 결정할 수 있다. 또한, 부호화 단위의 너비의 길이, 높이의 길이 또는 넓이 중 적어도 하나에 기초하여, 영상 복호화 장치(100)는 부호화 단위의 크기를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 블록 형태 정보를 이용하여 부호화 단위의 형태를 결정할 수 있고, 분할 형태 모드에 대한 정보를 이용하여 부호화 단위가 어떤 형태로 분할되는지를 결정할 수 있다. 즉, 영상 복호화 장치(100)가 이용하는 블록 형태 정보가 어떤 블록 형태를 나타내는지에 따라 분할 형태 모드에 대한 정보가 나타내는 부호화 단위의 분할 방법이 결정될 수 있다.
영상 복호화 장치(100)는 비트스트림으로부터 분할 형태 모드에 대한 정보를 획득할 수 있다. 하지만 이에 한정되는 것은 아니며, 영상 복호화 장치(100) 및 영상 부호화 장치(150)는 블록 형태 정보에 기초하여 미리 약속된 분할 형태 모드에 대한 정보를 획득할 수 있다. 영상 복호화 장치(100)는 최대 부호화 단위 또는 최소 부호화 단위에 대하여 미리 약속된 분할 형태 모드에 대한 정보를 획득할 수 있다. 예를 들어 영상 복호화 장치(100)는 최대 부호화 단위에 대하여 분할 형태 모드에 대한 정보를 쿼드 분할(quad split)로 결정할 수 있다. 또한, 영상 복호화 장치(100)는 최소 부호화 단위에 대하여 분할 형태 모드에 대한 정보를 "분할하지 않음"으로 결정할 수 있다. 구체적으로 영상 복호화 장치(100)는 최대 부호화 단위의 크기를 256x256으로 결정할 수 있다. 영상 복호화 장치(100)는 미리 약속된 분할 형태 모드에 대한 정보를 쿼드 분할로 결정할 수 있다. 쿼드 분할은 부호화 단위의 너비 및 높이를 모두 이등분하는 분할 형태 모드이다. 영상 복호화 장치(100)는 분할 형태 모드에 대한 정보에 기초하여 256x256 크기의 최대 부호화 단위로부터 128x128 크기의 부호화 단위를 획득할 수 있다. 또한 영상 복호화 장치(100)는 최소 부호화 단위의 크기를 4x4로 결정할 수 있다. 영상 복호화 장치(100)는 최소 부호화 단위에 대하여 "분할하지 않음"을 나타내는 분할 형태 모드에 대한 정보를 획득할 수 있다.
일 실시예에 따라, 영상 복호화 장치(100)는 현재 부호화 단위가 정사각형 형태임을 나타내는 블록 형태 정보를 이용할 수 있다. 예를 들어 영상 복호화 장치(100)는 분할 형태 모드에 대한 정보에 따라 정사각형의 부호화 단위를 분할하지 않을지, 수직으로 분할할지, 수평으로 분할할지, 4개의 부호화 단위로 분할할지 등을 결정할 수 있다. 도 3을 참조하면, 현재 부호화 단위(300)의 블록 형태 정보가 정사각형의 형태를 나타내는 경우, 복호화부(120)는 분할되지 않음을 나타내는 분할 형태 모드에 대한 정보에 따라 현재 부호화 단위(300)와 동일한 크기를 가지는 부호화 단위(310a)를 분할하지 않거나, 소정의 분할방법을 나타내는 분할 형태 모드에 대한 정보에 기초하여 분할된 부호화 단위(310b, 310c, 310d 등)를 결정할 수 있다.
도 3을 참조하면 영상 복호화 장치(100)는 일 실시예에 따라 수직방향으로 분할됨을 나타내는 분할 형태 모드에 대한 정보에 기초하여 현재 부호화 단위(300)를 수직방향으로 분할한 두 개의 부호화 단위(310b)를 결정할 수 있다. 영상 복호화 장치(100)는 수평방향으로 분할됨을 나타내는 분할 형태 모드에 대한 정보에 기초하여 현재 부호화 단위(300)를 수평방향으로 분할한 두 개의 부호화 단위(310c)를 결정할 수 있다. 영상 복호화 장치(100)는 수직방향 및 수평방향으로 분할됨을 나타내는 분할 형태 모드에 대한 정보에 기초하여 현재 부호화 단위(300)를 수직방향 및 수평방향으로 분할한 네 개의 부호화 단위(310d)를 결정할 수 있다. 영상 복호화 장치(100)는 일 실시예에 따라 수직방향으로 트라이 (또는 터너리) 분할됨을 나타내는 분할 형태 모드 정보에 기초하여 현재 부호화 단위(300)를 수직방향으로 분할한 세 개의 부호화 단위(310e)를 결정할 수 있다. 영상 복호화 장치(100)는 수평방향으로 터너리 분할됨을 나타내는 분할 형태 모드 정보에 기초하여 현재 부호화 단위(300)를 수평방향으로 분할한 세 개의 부호화 단위(310f)를 결정할 수 있다.
다만 정사각형의 부호화 단위가 분할될 수 있는 분할 형태는 상술한 형태로 한정하여 해석되어서는 안되고, 분할 형태 모드에 대한 정보가 나타낼 수 있는 다양한 형태가 포함될 수 있다. 정사각형의 부호화 단위가 분할되는 소정의 분할 형태들은 이하에서 다양한 실시예를 통해 구체적으로 설명하도록 한다.
도 4는 일 실시예에 따라 영상 복호화 장치(100)가 비-정사각형의 형태인 부호화 단위를 분할하여 적어도 하나의 부호화 단위를 결정하는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위가 비-정사각형 형태임을 나타내는 블록 형태 정보를 이용할 수 있다. 영상 복호화 장치(100)는 분할 형태 모드에 대한 정보에 따라 비-정사각형의 현재 부호화 단위를 분할하지 않을지 소정의 방법으로 분할할지 여부를 결정할 수 있다. 도 4를 참조하면, 현재 부호화 단위(400 또는 450)의 블록 형태 정보가 비-정사각형의 형태를 나타내는 경우, 영상 복호화 장치(100)는 분할되지 않음을 나타내는 분할 형태 모드에 대한 정보에 따라 현재 부호화 단위(400 또는 450)와 동일한 크기를 가지는 부호화 단위(410 또는 460)를 결정하거나, 소정의 분할방법을 나타내는 분할 형태 모드에 대한 정보에 따라 기초하여 분할된 부호화 단위(420a, 420b, 430a, 430b, 430c, 470a, 470b, 480a, 480b, 480c)를 결정할 수 있다. 비-정사각형의 부호화 단위가 분할되는 소정의 분할 방법은 이하에서 다양한 실시예를 통해 구체적으로 설명하도록 한다.
일 실시예에 따라 영상 복호화 장치(100)는 분할 형태 모드에 대한 정보를 이용하여 부호화 단위가 분할되는 형태를 결정할 수 있고, 이 경우 분할 형태 모드에 대한 정보는 부호화 단위가 분할되어 생성되는 적어도 하나의 부호화 단위의 개수를 나타낼 수 있다. 도 4를 참조하면 분할 형태 모드에 대한 정보가 두 개의 부호화 단위로 현재 부호화 단위(400 또는 450)가 분할되는 것을 나타내는 경우, 영상 복호화 장치(100)는 분할 형태 모드에 대한 정보에 기초하여 현재 부호화 단위(400 또는 450)를 분할하여 현재 부호화 단위에 포함되는 두 개의 부호화 단위(420a, 420b, 또는 470a, 470b)를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)가 분할 형태 모드에 대한 정보에 기초하여 비-정사각형의 형태의 현재 부호화 단위(400 또는 450)를 분할하는 경우, 영상 복호화 장치(100)는 비-정사각형의 현재 부호화 단위(400 또는 450)의 긴 변의 위치를 고려하여 현재 부호화 단위를 분할할 수 있다. 예를 들면, 영상 복호화 장치(100)는 현재 부호화 단위(400 또는 450)의 형태를 고려하여 현재 부호화 단위(400 또는 450)의 긴 변을 분할하는 방향으로 현재 부호화 단위(400 또는 450)를 분할하여 복수개의 부호화 단위를 결정할 수 있다.
일 실시예에 따라, 분할 형태 모드에 대한 정보가 홀수개의 블록으로 부호화 단위를 분할(트라이 분할; tri split)하는 것을 나타내는 경우, 영상 복호화 장치(100)는 현재 부호화 단위(400 또는 450)에 포함되는 홀수개의 부호화 단위를 결정할 수 있다. 예를 들면, 분할 형태 모드에 대한 정보가 3개의 부호화 단위로 현재 부호화 단위(400 또는 450)를 분할하는 것을 나타내는 경우, 영상 복호화 장치(100)는 현재 부호화 단위(400 또는 450)를 3개의 부호화 단위(430a, 430b, 430c, 480a, 480b, 480c)로 분할할 수 있다.
일 실시예에 따라, 현재 부호화 단위(400 또는 450)의 너비 및 높이의 비율이 4:1 또는 1:4 일 수 있다. 너비 및 높이의 비율이 4:1 인 경우, 너비의 길이가 높이의 길이보다 길므로 블록 형태 정보는 수평 방향일 수 있다. 너비 및 높이의 비율이 1:4 인 경우, 너비의 길이가 높이의 길이보다 짧으므로 블록 형태 정보는 수직 방향일 수 있다. 영상 복호화 장치(100)는 분할 형태 모드에 대한 정보에 기초하여 현재 부호화 단위를 홀수개의 블록으로 분할할 것을 결정할 수 있다. 또한 영상 복호화 장치(100)는 현재 부호화 단위(400 또는 450)의 블록 형태 정보에 기초하여 현재 부호화 단위(400 또는 450)의 분할 방향을 결정할 수 있다. 예를 들어 현재 부호화 단위(400)가 수직 방향인 경우, 영상 복호화 장치(100)는 현재 부호화 단위(400)를 수평 방향으로 분할 하여 부호화 단위(430a, 430b, 430c)를 결정할 수 있다. 또한 현재 부호화 단위(450)가 수평 방향인 경우, 영상 복호화 장치(100)는 현재 부호화 단위(450)를 수직 방향으로 분할 하여 부호화 단위(480a, 480b, 480c)를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위(400 또는 450)에 포함되는 홀수개의 부호화 단위를 결정할 수 있으며, 결정된 부호화 단위들의 크기 모두가 동일하지는 않을 수 있다. 예를 들면, 결정된 홀수개의 부호화 단위(430a, 430b, 430c, 480a, 480b, 480c) 중 소정의 부호화 단위(430b 또는 480b)의 크기는 다른 부호화 단위(430a, 430c, 480a, 480c)들과는 다른 크기를 가질 수도 있다. 즉, 현재 부호화 단위(400 또는 450)가 분할되어 결정될 수 있는 부호화 단위는 복수의 종류의 크기를 가질 수 있고, 경우에 따라서는 홀수개의 부호화 단위(430a, 430b, 430c, 480a, 480b, 480c)가 각각 서로 다른 크기를 가질 수도 있다.
일 실시예에 따라 분할 형태 모드에 대한 정보가 홀수개의 블록으로 부호화 단위가 분할되는 것을 나타내는 경우, 영상 복호화 장치(100)는 현재 부호화 단위(400 또는 450)에 포함되는 홀수개의 부호화 단위를 결정할 수 있고, 나아가 영상 복호화 장치(100)는 분할하여 생성되는 홀수개의 부호화 단위들 중 적어도 하나의 부호화 단위에 대하여 소정의 제한을 둘 수 있다. 도 4을 참조하면 영상 복호화 장치(100)는 현재 부호화 단위(400 또는 450)가 분할되어 생성된 3개의 부호화 단위(430a, 430b, 430c, 480a, 480b, 480c)들 중 중앙에 위치하는 부호화 단위(430b, 480b)에 대한 복호화 과정을 다른 부호화 단위(430a, 430c, 480a, 480c)와 다르게 할 수 있다. 예를 들면, 영상 복호화 장치(100)는 중앙에 위치하는 부호화 단위(430b, 480b)에 대하여는 다른 부호화 단위(430a, 430c, 480a, 480c)와 달리 더 이상 분할되지 않도록 제한하거나, 소정의 횟수만큼만 분할되도록 제한할 수 있다.
도 5는 일 실시예에 따라 영상 복호화 장치(100)가 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 부호화 단위를 분할하는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 정사각형 형태의 제1 부호화 단위(500)를 부호화 단위들로 분할하거나 분할하지 않는 것으로 결정할 수 있다. 일 실시예에 따라 분할 형태 모드에 대한 정보가 수평 방향으로 제1 부호화 단위(500)를 분할하는 것을 나타내는 경우, 영상 복호화 장치(100)는 제1 부호화 단위(500)를 수평 방향으로 분할하여 제2 부호화 단위(510)를 결정할 수 있다. 일 실시예에 따라 이용되는 제1 부호화 단위, 제2 부호화 단위, 제3 부호화 단위는 부호화 단위 간의 분할 전후 관계를 이해하기 위해 이용된 용어이다. 예를 들면, 제1 부호화 단위를 분할하면 제2 부호화 단위가 결정될 수 있고, 제2 부호화 단위가 분할되면 제3 부호화 단위가 결정될 수 있다. 이하에서는 이용되는 제1 부호화 단위, 제2 부호화 단위 및 제3 부호화 단위의 관계는 상술한 특징에 따르는 것으로 이해될 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 결정된 제2 부호화 단위(510)를 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 부호화 단위들로 분할하거나 분할하지 않는 것으로 결정할 수 있다. 도 5를 참조하면 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 제1 부호화 단위(500)를 분할하여 결정된 비-정사각형의 형태의 제2 부호화 단위(510)를 적어도 하나의 제3 부호화 단위(520a, 520b, 520c, 520d 등)로 분할하거나 제2 부호화 단위(510)를 분할하지 않을 수 있다. 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나를 획득할 수 있고 영상 복호화 장치(100)는 획득한 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 제1 부호화 단위(500)를 분할하여 다양한 형태의 복수개의 제2 부호화 단위(예를 들면, 510)를 분할할 수 있으며, 제2 부호화 단위(510)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 제1 부호화 단위(500)가 분할된 방식에 따라 분할될 수 있다. 일 실시예에 따라, 제1 부호화 단위(500)가 제1 부호화 단위(500)에 대한 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 제2 부호화 단위(510)로 분할된 경우, 제2 부호화 단위(510) 역시 제2 부호화 단위(510)에 대한 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 제3 부호화 단위(예를 들면, 520a, 520b, 520c, 520d 등)으로 분할될 수 있다. 즉, 부호화 단위는 부호화 단위 각각에 관련된 분할 형태 모드에 대한 정보 및 블록 형태 정보 중 적어도 하나에 기초하여 재귀적으로 분할될 수 있다. 따라서 비-정사각형 형태의 부호화 단위에서 정사각형의 부호화 단위가 결정될 수 있고, 이러한 정사각형 형태의 부호화 단위가 재귀적으로 분할되어 비-정사각형 형태의 부호화 단위가 결정될 수도 있다.
도 5를 참조하면, 비-정사각형 형태의 제2 부호화 단위(510)가 분할되어 결정되는 홀수개의 제3 부호화 단위(520b, 520c, 520d) 중 소정의 부호화 단위(예를 들면, 가운데에 위치하는 부호화 단위 또는 정사각형 형태의 부호화 단위)는 재귀적으로 분할될 수 있다. 일 실시예에 따라 홀수개의 제3 부호화 단위(520b, 520c, 520d) 중 하나인 정사각형 형태의 제3 부호화 단위(520b)는 수평 방향으로 분할되어 복수개의 제4 부호화 단위로 분할될 수 있다. 복수개의 제4 부호화 단위(530a, 530b, 530c, 530d) 중 하나인 비-정사각형 형태의 제4 부호화 단위(530b 또는 530d)는 다시 복수개의 부호화 단위들로 분할될 수 있다. 예를 들면, 비-정사각형 형태의 제4 부호화 단위(530b 또는 530d)는 홀수개의 부호화 단위로 다시 분할될 수도 있다. 부호화 단위의 재귀적 분할에 이용될 수 있는 방법에 대하여는 다양한 실시예를 통해 후술하도록 한다.
일 실시예에 따라 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 제3 부호화 단위(520a, 520b, 520c, 520d 등) 각각을 부호화 단위들로 분할할 수 있다. 또한 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 제2 부호화 단위(510)를 분할하지 않는 것으로 결정할 수 있다. 영상 복호화 장치(100)는 일 실시예에 따라 비-정사각형 형태의 제2 부호화 단위(510)를 홀수개의 제3 부호화 단위(520b, 520c, 520d)로 분할할 수 있다. 영상 복호화 장치(100)는 홀수개의 제3 부호화 단위(520b, 520c, 520d) 중 소정의 제3 부호화 단위에 대하여 소정의 제한을 둘 수 있다. 예를 들면 영상 복호화 장치(100)는 홀수개의 제3 부호화 단위(520b, 520c, 520d) 중 가운데에 위치하는 부호화 단위(520c)에 대하여는 더 이상 분할되지 않는 것으로 제한하거나 또는 설정 가능한 횟수로 분할되어야 하는 것으로 제한할 수 있다.
도 5를 참조하면, 영상 복호화 장치(100)는 비-정사각형 형태의 제2 부호화 단위(510)에 포함되는 홀수개의 제3 부호화 단위(520b, 520c, 520d)들 중 가운데에 위치하는 부호화 단위(520c)는 더 이상 분할되지 않거나, 소정의 분할 형태로 분할(예를 들면 4개의 부호화 단위로만 분할하거나 제2 부호화 단위(510)가 분할된 형태에 대응하는 형태로 분할)되는 것으로 제한하거나, 소정의 횟수로만 분할(예를 들면 n회만 분할, n>0)하는 것으로 제한할 수 있다. 다만 가운데에 위치한 부호화 단위(520c)에 대한 상기 제한은 단순한 실시예들에 불과하므로 상술한 실시예들로 제한되어 해석되어서는 안되고, 가운데에 위치한 부호화 단위(520c)가 다른 부호화 단위(520b, 520d)와 다르게 복호화 될 수 있는 다양한 제한들을 포함하는 것으로 해석되어야 한다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위를 분할하기 위해 이용되는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나를 현재 부호화 단위 내의 소정의 위치에서 획득할 수 있다.
도 6은 일 실시예에 따라 영상 복호화 장치(100)가 홀수개의 부호화 단위들 중 소정의 부호화 단위를 결정하기 위한 방법을 도시한다.
도 6을 참조하면, 현재 부호화 단위(600, 650)의 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나는 현재 부호화 단위(600, 650)에 포함되는 복수개의 샘플 중 소정 위치의 샘플(예를 들면, 가운데에 위치하는 샘플(640, 690))에서 획득될 수 있다. 다만 이러한 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나가 획득될 수 있는 현재 부호화 단위(600) 내의 소정 위치가 도 6에서 도시하는 가운데 위치로 한정하여 해석되어서는 안되고, 소정 위치에는 현재 부호화 단위(600)내에 포함될 수 있는 다양한 위치(예를 들면, 최상단, 최하단, 좌측, 우측, 좌측상단, 좌측하단, 우측상단 또는 우측하단 등)가 포함될 수 있는 것으로 해석되어야 한다. 영상 복호화 장치(100)는 소정 위치로부터 획득되는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나를 획득하여 현재 부호화 단위를 다양한 형태 및 크기의 부호화 단위들로 분할하거나 분할하지 않는 것으로 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위가 소정의 개수의 부호화 단위들로 분할된 경우 그 중 하나의 부호화 단위를 선택할 수 있다. 복수개의 부호화 단위들 중 하나를 선택하기 위한 방법은 다양할 수 있으며, 이러한 방법들에 대한 설명은 이하의 다양한 실시예를 통해 후술하도록 한다.
일 실시예에 따라 영상 복호화 장치(100) 는 현재 부호화 단위를 복수개의 부호화 단위들로 분할하고, 소정 위치의 부호화 단위를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 홀수개의 부호화 단위들 중 가운데에 위치하는 부호화 단위를 결정하기 위하여 홀수개의 부호화 단위들 각각의 위치를 나타내는 정보를 이용할 수 있다. 도 6을 참조하면, 영상 복호화 장치(100)는 현재 부호화 단위(600) 또는 현재 부호화 단위(650)를 분할하여 홀수개의 부호화 단위들(620a, 620b, 620c) 또는 홀수개의 부호화 단위들(660a, 660b, 660c)을 결정할 수 있다. 영상 복호화 장치(100)는 홀수개의 부호화 단위들(620a, 620b, 620c) 또는 홀수개의 부호화 단위들(660a, 660b, 660c)의 위치에 대한 정보를 이용하여 가운데 부호화 단위(620b)또는 가운데 부호화 단위(660b)를 결정할 수 있다. 예를 들면 영상 복호화 장치(100)는 부호화 단위들(620a, 620b, 620c)에 포함되는 소정의 샘플의 위치를 나타내는 정보에 기초하여 부호화 단위들(620a, 620b, 620c)의 위치를 결정함으로써 가운데에 위치하는 부호화 단위(620b)를 결정할 수 있다. 구체적으로, 영상 복호화 장치(100)는 부호화 단위들(620a, 620b, 620c)의 좌측 상단의 샘플(630a, 630b, 630c)의 위치를 나타내는 정보에 기초하여 부호화 단위들(620a, 620b, 620c)의 위치를 결정함으로써 가운데에 위치하는 부호화 단위(620b)를 결정할 수 있다.
일 실시예에 따라 부호화 단위들(620a, 620b, 620c)에 각각 포함되는 좌측 상단의 샘플(630a, 630b, 630c)의 위치를 나타내는 정보는 부호화 단위들(620a, 620b, 620c)의 픽쳐 내에서의 위치 또는 좌표에 대한 정보를 포함할 수 있다. 일 실시예에 따라 부호화 단위들(620a, 620b, 620c)에 각각 포함되는 좌측 상단의 샘플(630a, 630b, 630c)의 위치를 나타내는 정보는 현재 부호화 단위(600)에 포함되는 부호화 단위들(620a, 620b, 620c)의 너비 또는 높이를 나타내는 정보를 포함할 수 있고, 이러한 너비 또는 높이는 부호화 단위들(620a, 620b, 620c)의 픽쳐 내에서의 좌표 간의 차이를 나타내는 정보에 해당할 수 있다. 즉, 영상 복호화 장치(100)는 부호화 단위들(620a, 620b, 620c)의 픽쳐 내에서의 위치 또는 좌표에 대한 정보를 직접 이용하거나 좌표간의 차이값에 대응하는 부호화 단위의 너비 또는 높이에 대한 정보를 이용함으로써 가운데에 위치하는 부호화 단위(620b)를 결정할 수 있다.
일 실시예에 따라, 상단 부호화 단위(620a)의 좌측 상단의 샘플(630a)의 위치를 나타내는 정보는 (xa, ya) 좌표를 나타낼 수 있고, 가운데 부호화 단위(620b)의 좌측 상단의 샘플(530b)의 위치를 나타내는 정보는 (xb, yb) 좌표를 나타낼 수 있고, 하단 부호화 단위(620c)의 좌측 상단의 샘플(630c)의 위치를 나타내는 정보는 (xc, yc) 좌표를 나타낼 수 있다. 영상 복호화 장치(100)는 부호화 단위들(620a, 620b, 620c)에 각각 포함되는 좌측 상단의 샘플(630a, 630b, 630c)의 좌표를 이용하여 가운데 부호화 단위(620b)를 결정할 수 있다. 예를 들면, 좌측 상단의 샘플(630a, 630b, 630c)의 좌표를 오름차순 또는 내림차순으로 정렬하였을 때, 가운데에 위치하는 샘플(630b)의 좌표인 (xb, yb)를 포함하는 부호화 단위(620b)를 현재 부호화 단위(600)가 분할되어 결정된 부호화 단위들(620a, 620b, 620c) 중 가운데에 위치하는 부호화 단위로 결정할 수 있다. 다만 좌측 상단의 샘플(630a, 630b, 630c)의 위치를 나타내는 좌표는 픽쳐 내에서의 절대적인 위치를 나타내는 좌표를 나타낼 수 있고, 나아가 상단 부호화 단위(620a)의 좌측 상단의 샘플(630a)의 위치를 기준으로, 가운데 부호화 단위(620b)의 좌측 상단의 샘플(630b)의 상대적 위치를 나타내는 정보인 (dxb, dyb)좌표, 하단 부호화 단위(620c)의 좌측 상단의 샘플(630c)의 상대적 위치를 나타내는 정보인 (dxc, dyc)좌표를 이용할 수도 있다. 또한 부호화 단위에 포함되는 샘플의 위치를 나타내는 정보로서 해당 샘플의 좌표를 이용함으로써 소정 위치의 부호화 단위를 결정하는 방법이 상술한 방법으로 한정하여 해석되어서는 안되고, 샘플의 좌표를 이용할 수 있는 다양한 산술적 방법으로 해석되어야 한다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위(600)를 복수개의 부호화 단위들(620a, 620b, 620c)로 분할할 수 있고, 부호화 단위들(620a, 620b, 620c) 중 소정의 기준에 따라 부호화 단위를 선택할 수 있다. 예를 들면, 영상 복호화 장치(100)는 부호화 단위들(620a, 620b, 620c) 중 크기가 다른 부호화 단위(620b)를 선택할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 상단 부호화 단위(620a)의 좌측 상단의 샘플(630a)의 위치를 나타내는 정보인 (xa, ya) 좌표, 가운데 부호화 단위(620b)의 좌측 상단의 샘플(630b)의 위치를 나타내는 정보인 (xb, yb) 좌표, 하단 부호화 단위(620c)의 좌측 상단의 샘플(630c)의 위치를 나타내는 정보인 (xc, yc) 좌표를 이용하여 부호화 단위들(620a, 620b, 620c) 각각의 너비 또는 높이를 결정할 수 있다. 영상 복호화 장치(100)는 부호화 단위들(620a, 620b, 620c)의 위치를 나타내는 좌표인 (xa, ya), (xb, yb), (xc, yc)를 이용하여 부호화 단위들(620a, 620b, 620c) 각각의 크기를 결정할 수 있다. 일 실시예에 따라, 영상 복호화 장치(100)는 상단 부호화 단위(620a)의 너비를 현재 부호화 단위(600)의 너비로 결정할 수 있다. 영상 복호화 장치(100)는 상단 부호화 단위(620a)의 높이를 yb-ya로 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 가운데 부호화 단위(620b)의 너비를 현재 부호화 단위(600)의 너비로 결정할 수 있다. 영상 복호화 장치(100)는 가운데 부호화 단위(620b)의 높이를 yc-yb로 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 하단 부호화 단위의 너비 또는 높이는 현재 부호화 단위의 너비 또는 높이와 상단 부호화 단위(620a) 및 가운데 부호화 단위(620b)의 너비 및 높이를 이용하여 결정할 수 있다. 영상 복호화 장치(100)는 결정된 부호화 단위들(620a, 620b, 620c)의 너비 및 높이에 기초하여 다른 부호화 단위와 다른 크기를 갖는 부호화 단위를 결정할 수 있다. 도 6을 참조하면, 영상 복호화 장치(100)는 상단 부호화 단위(620a) 및 하단 부호화 단위(620c)의 크기와 다른 크기를 가지는 가운데 부호화 단위(620b)를 소정 위치의 부호화 단위로 결정할 수 있다. 다만 상술한 영상 복호화 장치(100)가 다른 부호화 단위와 다른 크기를 갖는 부호화 단위를 결정하는 과정은 샘플 좌표에 기초하여 결정되는 부호화 단위의 크기를 이용하여 소정 위치의 부호화 단위를 결정하는 일 실시예에 불과하므로, 소정의 샘플 좌표에 따라 결정되는 부호화 단위의 크기를 비교하여 소정 위치의 부호화 단위를 결정하는 다양한 과정이 이용될 수 있다.
영상 복호화 장치(100)는 좌측 부호화 단위(660a)의 좌측 상단의 샘플(670a)의 위치를 나타내는 정보인 (xd, yd) 좌표, 가운데 부호화 단위(660b)의 좌측 상단의 샘플(670b)의 위치를 나타내는 정보인 (xe, ye) 좌표, 우측 부호화 단위(660c)의 좌측 상단의 샘플(670c)의 위치를 나타내는 정보인 (xf, yf) 좌표를 이용하여 부호화 단위들(660a, 660b, 660c) 각각의 너비 또는 높이를 결정할 수 있다. 영상 복호화 장치(100)는 부호화 단위들(660a, 660b, 660c)의 위치를 나타내는 좌표인 (xd, yd), (xe, ye), (xf, yf)를 이용하여 부호화 단위들(660a, 660b, 660c) 각각의 크기를 결정할 수 있다.
일 실시예에 따라, 영상 복호화 장치(100)는 좌측 부호화 단위(660a)의 너비를 xe-xd로 결정할 수 있다. 영상 복호화 장치(100)는 좌측 부호화 단위(660a)의 높이를 현재 부호화 단위(650)의 높이로 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 가운데 부호화 단위(660b)의 너비를 xf-xe로 결정할 수 있다. 영상 복호화 장치(100)는 가운데 부호화 단위(660b)의 높이를 현재 부호화 단위(600)의 높이로 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 우측 부호화 단위(660c)의 너비 또는 높이는 현재 부호화 단위(650)의 너비 또는 높이와 좌측 부호화 단위(660a) 및 가운데 부호화 단위(660b)의 너비 및 높이를 이용하여 결정할 수 있다. 영상 복호화 장치(100)는 결정된 부호화 단위들(660a, 660b, 660c)의 너비 및 높이에 기초하여 다른 부호화 단위와 다른 크기를 갖는 부호화 단위를 결정할 수 있다. 도 6을 참조하면, 영상 복호화 장치(100)는 좌측 부호화 단위(660a) 및 우측 부호화 단위(660c)의 크기와 다른 크기를 가지는 가운데 부호화 단위(660b)를 소정 위치의 부호화 단위로 결정할 수 있다. 다만 상술한 영상 복호화 장치(100)가 다른 부호화 단위와 다른 크기를 갖는 부호화 단위를 결정하는 과정은 샘플 좌표에 기초하여 결정되는 부호화 단위의 크기를 이용하여 소정 위치의 부호화 단위를 결정하는 일 실시예에 불과하므로, 소정의 샘플 좌표에 따라 결정되는 부호화 단위의 크기를 비교하여 소정 위치의 부호화 단위를 결정하는 다양한 과정이 이용될 수 있다.
다만 부호화 단위의 위치를 결정하기 위하여 고려하는 샘플의 위치는 상술한 좌측 상단으로 한정하여 해석되어서는 안되고 부호화 단위에 포함되는 임의의 샘플의 위치에 대한 정보가 이용될 수 있는 것으로 해석될 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위의 형태를 고려하여, 현재 부호화 단위가 분할되어 결정되는 홀수개의 부호화 단위들 중 소정 위치의 부호화 단위를 선택할 수 있다. 예를 들면, 현재 부호화 단위가 너비가 높이보다 긴 비-정사각형 형태라면 영상 복호화 장치(100)는 수평 방향에 따라 소정 위치의 부호화 단위를 결정할 수 있다. 즉, 영상 복호화 장치(100)는 수평 방향으로 위치를 달리 하는 부호화 단위들 중 하나를 결정하여 해당 부호화 단위에 대한 제한을 둘 수 있다. 현재 부호화 단위가 높이가 너비보다 긴 비-정사각형 형태라면 영상 복호화 장치(100)는 수직 방향에 따라 소정 위치의 부호화 단위를 결정할 수 있다. 즉, 영상 복호화 장치(100)는 수직 방향으로 위치를 달리 하는 부호화 단위들 중 하나를 결정하여 해당 부호화 단위에 대한 제한을 둘 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 짝수개의 부호화 단위들 중 소정 위치의 부호화 단위를 결정하기 위하여 짝수개의 부호화 단위들 각각의 위치를 나타내는 정보를 이용할 수 있다. 영상 복호화 장치(100)는 현재 부호화 단위를 분할(바이너리 분할 또는 바이 분할; binary split)하여 짝수개의 부호화 단위들을 결정할 수 있고 짝수개의 부호화 단위들의 위치에 대한 정보를 이용하여 소정 위치의 부호화 단위를 결정할 수 있다. 이에 대한 구체적인 과정은 도 6에서 상술한 홀수개의 부호화 단위들 중 소정 위치(예를 들면, 가운데 위치)의 부호화 단위를 결정하는 과정에 대응하는 과정일 수 있으므로 생략하도록 한다.
일 실시예에 따라, 비-정사각형 형태의 현재 부호화 단위를 복수개의 부호화 단위로 분할한 경우, 복수개의 부호화 단위들 중 소정 위치의 부호화 단위를 결정하기 위하여 분할 과정에서 소정 위치의 부호화 단위에 대한 소정의 정보를 이용할 수 있다. 예를 들면 영상 복호화 장치(100)는 현재 부호화 단위가 복수개로 분할된 부호화 단위들 중 가운데에 위치하는 부호화 단위를 결정하기 위하여 분할 과정에서 가운데 부호화 단위에 포함된 샘플에 저장된 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나를 이용할 수 있다.
도 6을 참조하면 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 현재 부호화 단위(600)를 복수개의 부호화 단위들(620a, 620b, 620c)로 분할할 수 있으며, 복수개의 부호화 단위들(620a, 620b, 620c) 중 가운데에 위치하는 부호화 단위(620b)를 결정할 수 있다. 나아가 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나가 획득되는 위치를 고려하여, 가운데에 위치하는 부호화 단위(620b)를 결정할 수 있다. 즉, 현재 부호화 단위(600)의 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나는 현재 부호화 단위(600)의 가운데에 위치하는 샘플(640)에서 획득될 수 있으며, 상기 블록 형태 정보 및 상기 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 현재 부호화 단위(600)가 복수개의 부호화 단위들(620a, 620b, 620c)로 분할된 경우 상기 샘플(640)을 포함하는 부호화 단위(620b)를 가운데에 위치하는 부호화 단위로 결정할 수 있다. 다만 가운데에 위치하는 부호화 단위로 결정하기 위해 이용되는 정보가 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나로 한정하여 해석되어서는 안되고, 다양한 종류의 정보가 가운데에 위치하는 부호화 단위를 결정하는 과정에서 이용될 수 있다.
일 실시예에 따라 소정 위치의 부호화 단위를 식별하기 위한 소정의 정보는, 결정하려는 부호화 단위에 포함되는 소정의 샘플에서 획득될 수 있다. 도 6을 참조하면, 영상 복호화 장치(100)는 현재 부호화 단위(600)가 분할되어 결정된 복수개의 부호화 단위들(620a, 620b, 620c) 중 소정 위치의 부호화 단위(예를 들면, 복수개로 분할된 부호화 단위 중 가운데에 위치하는 부호화 단위)를 결정하기 위하여 현재 부호화 단위(600) 내의 소정 위치의 샘플(예를 들면, 현재 부호화 단위(600)의 가운데에 위치하는 샘플)에서 획득되는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나를 이용할 수 있다. 즉, 영상 복호화 장치(100)는 현재 부호화 단위(600)의 블록 형태를 고려하여 상기 소정 위치의 샘플을 결정할 수 있고, 영상 복호화 장치(100)는 현재 부호화 단위(600)가 분할되어 결정되는 복수개의 부호화 단위들(620a, 620b, 620c) 중, 소정의 정보(예를 들면, 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나)가 획득될 수 있는 샘플이 포함된 부호화 단위(620b)를 결정하여 소정의 제한을 둘 수 있다. 도 6을 참조하면 일 실시예에 따라 영상 복호화 장치(100)는 소정의 정보가 획득될 수 있는 샘플로서 현재 부호화 단위(600)의 가운데에 위치하는 샘플(640)을 결정할 수 있고, 영상 복호화 장치(100)는 이러한 샘플(640)이 포함되는 부호화 단위(620b)를 복호화 과정에서의 소정의 제한을 둘 수 있다. 다만 소정의 정보가 획득될 수 있는 샘플의 위치는 상술한 위치로 한정하여 해석되어서는 안되고, 제한을 두기 위해 결정하려는 부호화 단위(620b)에 포함되는 임의의 위치의 샘플들로 해석될 수 있다.
일 실시예에 따라 소정의 정보가 획득될 수 있는 샘플의 위치는 현재 부호화 단위(600)의 형태에 따라 결정될 수 있다. 일 실시예에 따라 블록 형태 정보는 현재 부호화 단위의 형태가 정사각형인지 또는 비-정사각형인지 여부를 결정할 수 있고, 형태에 따라 소정의 정보가 획득될 수 있는 샘플의 위치를 결정할 수 있다. 예를 들면, 영상 복호화 장치(100)는 현재 부호화 단위의 너비에 대한 정보 및 높이에 대한 정보 중 적어도 하나를 이용하여 현재 부호화 단위의 너비 및 높이 중 적어도 하나를 반으로 분할하는 경계 상에 위치하는 샘플을 소정의 정보가 획득될 수 있는 샘플로 결정할 수 있다. 또다른 예를 들면, 영상 복호화 장치(100)는 현재 부호화 단위에 관련된 블록 형태 정보가 비-정사각형 형태임을 나타내는 경우, 현재 부호화 단위의 긴 변을 반으로 분할하는 경계에 인접하는 샘플 중 하나를 소정의 정보가 획득될 수 있는 샘플로 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위를 복수개의 부호화 단위로 분할한 경우, 복수개의 부호화 단위들 중 소정 위치의 부호화 단위를 결정하기 위하여, 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나를 이용할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나를 부호화 단위에 포함된 소정 위치의 샘플에서 획득할 수 있고, 영상 복호화 장치(100)는 현재 부호화 단위가 분할되어 생성된 복수개의 부호화 단위들을 복수개의 부호화 단위 각각에 포함된 소정 위치의 샘플로부터 획득되는 분할 형태 모드에 대한 정보 및 블록 형태 정보 중 적어도 하나를 이용하여 분할할 수 있다. 즉, 부호화 단위는 부호화 단위 각각에 포함된 소정 위치의 샘플에서 획득되는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나를 이용하여 재귀적으로 분할될 수 있다. 부호화 단위의 재귀적 분할 과정에 대하여는 도 5를 통해 상술하였으므로 자세한 설명은 생략하도록 한다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위를 분할하여 적어도 하나의 부호화 단위를 결정할 수 있고, 이러한 적어도 하나의 부호화 단위가 복호화되는 순서를 소정의 블록(예를 들면, 현재 부호화 단위)에 따라 결정할 수 있다.
도 7는 일 실시예에 따라 영상 복호화 장치(100)가 현재 부호화 단위를 분할하여 복수개의 부호화 단위들을 결정하는 경우, 복수개의 부호화 단위들이 처리되는 순서를 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보에 따라 제1 부호화 단위(700)를 수직 방향으로 분할하여 제2 부호화 단위(710a, 710b)를 결정하거나 제1 부호화 단위(700)를 수평 방향으로 분할하여 제2 부호화 단위(730a, 730b)를 결정하거나 제1 부호화 단위(700)를 수직 방향 및 수평 방향으로 분할하여 제2 부호화 단위(750a, 750b, 750c, 750d)를 결정할 수 있다.
도 7를 참조하면, 영상 복호화 장치(100)는 제1 부호화 단위(700)를 수직 방향으로 분할하여 결정된 제2 부호화 단위(710a, 710b)를 수평 방향(710c)으로 처리되도록 순서를 결정할 수 있다. 영상 복호화 장치(100)는 제1 부호화 단위(700)를 수평 방향으로 분할하여 결정된 제2 부호화 단위(730a, 730b)의 처리 순서를 수직 방향(730c)으로 결정할 수 있다. 영상 복호화 장치(100)는 제1 부호화 단위(700)를 수직 방향 및 수평 방향으로 분할하여 결정된 제2 부호화 단위(750a, 750b, 750c, 750d)를 하나의 행에 위치하는 부호화 단위들이 처리된 후 다음 행에 위치하는 부호화 단위들이 처리되는 소정의 순서(예를 들면, 래스터 스캔 순서((raster scan order) 또는 z 스캔 순서(z scan order)(750e) 등)에 따라 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 부호화 단위들을 재귀적으로 분할할 수 있다. 도 7를 참조하면, 영상 복호화 장치(100)는 제1 부호화 단위(700)를 분할하여 복수개의 부호화 단위들(710a, 710b, 730a, 730b, 750a, 750b, 750c, 750d)을 결정할 수 있고, 결정된 복수개의 부호화 단위들(710a, 710b, 730a, 730b, 750a, 750b, 750c, 750d) 각각을 재귀적으로 분할할 수 있다. 복수개의 부호화 단위들(710a, 710b, 730a, 730b, 750a, 750b, 750c, 750d)을 분할하는 방법은 제1 부호화 단위(700)를 분할하는 방법에 대응하는 방법이 될 수 있다. 이에 따라 복수개의 부호화 단위들(710a, 710b, 730a, 730b, 750a, 750b, 750c, 750d)은 각각 독립적으로 복수개의 부호화 단위들로 분할될 수 있다. 도 7를 참조하면 영상 복호화 장치(100)는 제1 부호화 단위(700)를 수직 방향으로 분할하여 제2 부호화 단위(710a, 710b)를 결정할 수 있고, 나아가 제2 부호화 단위(710a, 710b) 각각을 독립적으로 분할하거나 분할하지 않는 것으로 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 좌측의 제2 부호화 단위(710a)를 수평 방향으로 분할하여 제3 부호화 단위(720a, 720b)로 분할할 수 있고, 우측의 제2 부호화 단위(710b)는 분할하지 않을 수 있다.
일 실시예에 따라 부호화 단위들의 처리 순서는 부호화 단위의 분할 과정에 기초하여 결정될 수 있다. 다시 말해, 분할된 부호화 단위들의 처리 순서는 분할되기 직전의 부호화 단위들의 처리 순서에 기초하여 결정될 수 있다. 영상 복호화 장치(100)는 좌측의 제2 부호화 단위(710a)가 분할되어 결정된 제3 부호화 단위(720a, 720b)가 처리되는 순서를 우측의 제2 부호화 단위(710b)와 독립적으로 결정할 수 있다. 좌측의 제2 부호화 단위(710a)가 수평 방향으로 분할되어 제3 부호화 단위(720a, 720b)가 결정되었으므로 제3 부호화 단위(720a, 720b)는 수직 방향(720c)으로 처리될 수 있다. 또한 좌측의 제2 부호화 단위(710a) 및 우측의 제2 부호화 단위(710b)가 처리되는 순서는 수평 방향(710c)에 해당하므로, 좌측의 제2 부호화 단위(710a)에 포함되는 제3 부호화 단위(720a, 720b)가 수직 방향(720c)으로 처리된 후에 우측 부호화 단위(710b)가 처리될 수 있다. 상술한 내용은 부호화 단위들이 각각 분할 전의 부호화 단위에 따라 처리 순서가 결정되는 과정을 설명하기 위한 것이므로, 상술한 실시예에 한정하여 해석되어서는 안되고, 다양한 형태로 분할되어 결정되는 부호화 단위들이 소정의 순서에 따라 독립적으로 처리될 수 있는 다양한 방법으로 이용되는 것으로 해석되어야 한다.
도 8는 일 실시예에 따라 영상 복호화 장치(100)가 소정의 순서로 부호화 단위가 처리될 수 없는 경우, 현재 부호화 단위가 홀수개의 부호화 단위로 분할되는 것임을 결정하는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 획득된 블록 형태 정보 및 분할 형태 모드에 대한 정보에 기초하여 현재 부호화 단위가 홀수개의 부호화 단위들로 분할되는 것을 결정할 수 있다. 도 8를 참조하면 정사각형 형태의 제1 부호화 단위(800)가 비-정사각형 형태의 제2 부호화 단위(810a, 810b)로 분할될 수 있고, 제2 부호화 단위(810a, 810b)는 각각 독립적으로 제3 부호화 단위(820a, 820b, 820c, 820d, 820e)로 분할될 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 제2 부호화 단위 중 좌측 부호화 단위(810a)는 수평 방향으로 분할하여 복수개의 제3 부호화 단위(820a, 820b)를 결정할 수 있고, 우측 부호화 단위(810b)는 홀수개의 제3 부호화 단위(820c, 820d, 820e)로 분할할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 제3 부호화 단위들(820a, 820b, 820c, 820d, 820e)이 소정의 순서로 처리될 수 있는지 여부를 판단하여 홀수개로 분할된 부호화 단위가 존재하는지를 결정할 수 있다. 도 8를 참조하면, 영상 복호화 장치(100)는 제1 부호화 단위(800)를 재귀적으로 분할하여 제3 부호화 단위(820a, 820b, 820c, 820d, 820e)를 결정할 수 있다. 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여, 제1 부호화 단위(800), 제2 부호화 단위(810a, 810b) 또는 제3 부호화 단위(820a, 820b, 820c, 820d, 820e)가 분할되는 형태 중 홀수개의 부호화 단위로 분할되는지 여부를 결정할 수 있다. 예를 들면, 제2 부호화 단위(810a, 810b) 중 우측에 위치하는 부호화 단위가 홀수개의 제3 부호화 단위(820c, 820d, 820e)로 분할될 수 있다. 제1 부호화 단위(800)에 포함되는 복수개의 부호화 단위들이 처리되는 순서는 소정의 순서(예를 들면, z-스캔 순서(z-scan order)(830))가 될 수 있고, 영상 복호화 장치(100)는 우측 제2 부호화 단위(810b)가 홀수개로 분할되어 결정된 제3 부호화 단위(820c, 820d, 820e)가 상기 소정의 순서에 따라 처리될 수 있는 조건을 만족하는지를 판단할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 제1 부호화 단위(800)에 포함되는 제3 부호화 단위(820a, 820b, 820c, 820d, 820e)가 소정의 순서에 따라 처리될 수 있는 조건을 만족하는지를 결정할 수 있으며, 상기 조건은 제3 부호화 단위(820a, 820b, 820c, 820d, 820e)의 경계에 따라 제2 부호화 단위(810a, 810b)의 너비 및 높이 중 적어도 하나를 반으로 분할되는지 여부와 관련된다. 예를 들면 비-정사각형 형태의 좌측 제2 부호화 단위(810a)의 높이를 반으로 분할하여 결정되는 제3 부호화 단위(820a, 820b)는 조건을 만족할 수 있다. 우측 제2 부호화 단위(810b)를 3개의 부호화 단위로 분할하여 결정되는 제3 부호화 단위(820c, 820d, 820e)들의 경계가 우측 제2 부호화 단위(810b)의 너비 또는 높이를 반으로 분할하지 못하므로 제3 부호화 단위(820c, 820d, 820e)는 조건을 만족하지 못하는 것으로 결정될 수 있다. 영상 복호화 장치(100)는 이러한 조건 불만족의 경우 스캔 순서의 단절(disconnection)로 판단하고, 판단 결과에 기초하여 우측 제2 부호화 단위(810b)는 홀수개의 부호화 단위로 분할되는 것으로 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 홀수개의 부호화 단위로 분할되는 경우 분할된 부호화 단위들 중 소정 위치의 부호화 단위에 대하여 소정의 제한을 둘 수 있으며, 이러한 제한 내용 또는 소정 위치 등에 대하여는 다양한 실시예를 통해 상술하였으므로 자세한 설명은 생략하도록 한다.
도 9은 일 실시예에 따라 영상 복호화 장치(100)가 제1 부호화 단위(900)를 분할하여 적어도 하나의 부호화 단위를 결정하는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 수신부(미도시)를 통해 획득한 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 제1 부호화 단위(900)를 분할할 수 있다. 정사각형 형태의 제1 부호화 단위(900)는 4개의 정사각형 형태를 가지는 부호화 단위로 분할되거나 또는 비-정사각형 형태의 복수개의 부호화 단위로 분할할 수 있다. 예를 들면 도 9을 참조하면, 블록 형태 정보가 제1 부호화 단위(900)는 정사각형임을 나타내고 분할 형태 모드에 대한 정보가 비-정사각형의 부호화 단위로 분할됨을 나타내는 경우 영상 복호화 장치(100)는 제1 부호화 단위(900)를 복수개의 비-정사각형의 부호화 단위들로 분할할 수 있다. 구체적으로, 분할 형태 모드에 대한 정보가 제1 부호화 단위(900)를 수평 방향 또는 수직 방향으로 분할하여 홀수개의 부호화 단위를 결정하는 것을 나타내는 경우, 영상 복호화 장치(100)는 정사각형 형태의 제1 부호화 단위(900)를 홀수개의 부호화 단위들로서 수직 방향으로 분할되어 결정된 제2 부호화 단위(910a, 910b, 910c) 또는 수평 방향으로 분할되어 결정된 제2 부호화 단위(920a, 920b, 920c)로 분할할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 제1 부호화 단위(900)에 포함되는 제2 부호화 단위(910a, 910b, 910c, 920a, 920b, 920c)가 소정의 순서에 따라 처리될 수 있는 조건을 만족하는지를 결정할 수 있으며, 상기 조건은 제2 부호화 단위(910a, 910b, 910c, 920a, 920b, 920c)의 경계에 따라 제1 부호화 단위(900)의 너비 및 높이 중 적어도 하나를 반으로 분할되는지 여부와 관련된다. 도 9를 참조하면 정사각형 형태의 제1 부호화 단위(900)를 수직 방향으로 분할하여 결정되는 제2 부호화 단위(910a, 910b, 910c)들의 경계가 제1 부호화 단위(900)의 너비를 반으로 분할하지 못하므로 제1 부호화 단위(900)는 소정의 순서에 따라 처리될 수 있는 조건을 만족하지 못하는 것으로 결정될 수 있다. 또한 정사각형 형태의 제1 부호화 단위(900)를 수평 방향으로 분할하여 결정되는 제2 부호화 단위(920a, 920b, 920c)들의 경계가 제1 부호화 단위(900)의 너비를 반으로 분할하지 못하므로 제1 부호화 단위(900)는 소정의 순서에 따라 처리될 수 있는 조건을 만족하지 못하는 것으로 결정될 수 있다. 영상 복호화 장치(100)는 이러한 조건 불만족의 경우 스캔 순서의 단절(disconnection)로 판단하고, 판단 결과에 기초하여 제1 부호화 단위(900)는 홀수개의 부호화 단위로 분할되는 것으로 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 홀수개의 부호화 단위로 분할되는 경우 분할된 부호화 단위들 중 소정 위치의 부호화 단위에 대하여 소정의 제한을 둘 수 있으며, 이러한 제한 내용 또는 소정 위치 등에 대하여는 다양한 실시예를 통해 상술하였으므로 자세한 설명은 생략하도록 한다.
일 실시예에 따라, 영상 복호화 장치(100)는 제1 부호화 단위를 분할하여 다양한 형태의 부호화 단위들을 결정할 수 있다.
도 9을 참조하면, 영상 복호화 장치(100)는 정사각형 형태의 제1 부호화 단위(900), 비-정사각형 형태의 제1 부호화 단위(930 또는 950)를 다양한 형태의 부호화 단위들로 분할할 수 있다.
도 10은 일 실시예에 따라 영상 복호화 장치(100)가 제1 부호화 단위(1000)가 분할되어 결정된 비-정사각형 형태의 제2 부호화 단위가 소정의 조건을 만족하는 경우 제2 부호화 단위가 분할될 수 있는 형태가 제한되는 것을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 수신부(미도시)를 통해 획득한 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 정사각형 형태의 제1 부호화 단위(1000)를 비-정사각형 형태의 제2 부호화 단위(1010a, 1010b, 1020a, 1020b)로 분할하는 것으로 결정할 수 있다. 제2 부호화 단위(1010a, 1010b, 1020a, 1020b)는 독립적으로 분할될 수 있다. 이에 따라 영상 복호화 장치(100)는 제2 부호화 단위(1010a, 1010b, 1020a, 1020b) 각각에 관련된 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 복수개의 부호화 단위로 분할하거나 분할하지 않는 것을 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 수직 방향으로 제1 부호화 단위(1000)가 분할되어 결정된 비-정사각형 형태의 좌측 제2 부호화 단위(1010a)를 수평 방향으로 분할하여 제3 부호화 단위(1012a, 1012b)를 결정할 수 있다. 다만 영상 복호화 장치(100)는 좌측 제2 부호화 단위(1010a)를 수평 방향으로 분할한 경우, 우측 제2 부호화 단위(1010b)는 좌측 제2 부호화 단위(1010a)가 분할된 방향과 동일하게 수평 방향으로 분할될 수 없도록 제한할 수 있다. 만일 우측 제2 부호화 단위(1010b)가 동일한 방향으로 분할되어 제3 부호화 단위(1014a, 1014b)가 결정된 경우, 좌측 제2 부호화 단위(1010a) 및 우측 제2 부호화 단위(1010b)가 수평 방향으로 각각 독립적으로 분할됨으로써 제3 부호화 단위(1012a, 1012b, 1014a, 1014b)가 결정될 수 있다. 하지만 이는 영상 복호화 장치(100)가 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 제1 부호화 단위(1000)를 4개의 정사각형 형태의 제2 부호화 단위(1030a, 1030b, 1030c, 1030d)로 분할한 것과 동일한 결과이며 이는 영상 복호화 측면에서 비효율적일 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 수평 방향으로 제1 부호화 단위(1000)가 분할되어 결정된 비-정사각형 형태의 제2 부호화 단위(1020a 또는 1020b)를 수직 방향으로 분할하여 제3 부호화 단위(1022a, 1022b, 1024a, 1024b)를 결정할 수 있다. 다만 영상 복호화 장치(100)는 제2 부호화 단위 중 하나(예를 들면 상단 제2 부호화 단위(1020a))를 수직 방향으로 분할한 경우, 상술한 이유에 따라 다른 제2 부호화 단위(예를 들면 하단 부호화 단위(1020b))는 상단 제2 부호화 단위(1020a)가 분할된 방향과 동일하게 수직 방향으로 분할될 수 없도록 제한할 수 있다.
도 11은 일 실시예에 따라 분할 형태 모드에 대한 정보가 4개의 정사각형 형태의 부호화 단위로 분할하는 것을 나타낼 수 없는 경우, 영상 복호화 장치(100)가 정사각형 형태의 부호화 단위를 분할하는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 제1 부호화 단위(1100)를 분할하여 제2 부호화 단위(1110a, 1110b, 1120a, 1120b 등)를 결정할 수 있다. 분할 형태 모드에 대한 정보에는 부호화 단위가 분할될 수 있는 다양한 형태에 대한 정보가 포함될 수 있으나, 다양한 형태에 대한 정보에는 정사각형 형태의 4개의 부호화 단위로 분할하기 위한 정보가 포함될 수 없는 경우가 있다. 이러한 분할 형태 모드에 대한 정보에 따르면, 영상 복호화 장치(100)는 정사각형 형태의 제1 부호화 단위(1100)를 4개의 정사각형 형태의 제2 부호화 단위(1130a, 1130b, 1130c, 1130d)로 분할하지 못한다. 분할 형태 모드에 대한 정보에 기초하여 영상 복호화 장치(100)는 비-정사각형 형태의 제2 부호화 단위(1110a, 1110b, 1120a, 1120b 등)를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 비-정사각형 형태의 제2 부호화 단위(1110a, 1110b, 1120a, 1120b 등)를 각각 독립적으로 분할할 수 있다. 재귀적인 방법을 통해 제2 부호화 단위(1110a, 1110b, 1120a, 1120b 등) 각각이 소정의 순서대로 분할될 수 있으며, 이는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 제1 부호화 단위(1100)가 분할되는 방법에 대응하는 분할 방법일 수 있다.
예를 들면 영상 복호화 장치(100)는 좌측 제2 부호화 단위(1110a)가 수평 방향으로 분할되어 정사각형 형태의 제3 부호화 단위(1112a, 1112b)를 결정할 수 있고, 우측 제2 부호화 단위(1110b)가 수평 방향으로 분할되어 정사각형 형태의 제3 부호화 단위(1114a, 1114b)를 결정할 수 있다. 나아가 영상 복호화 장치(100)는 좌측 제2 부호화 단위(1110a) 및 우측 제2 부호화 단위(1110b) 모두 수평 방향으로 분할되어 정사각형 형태의 제3 부호화 단위(1116a, 1116b, 1116c, 1116d)를 결정할 수도 있다. 이러한 경우 제1 부호화 단위(1100)가 4개의 정사각형 형태의 제2 부호화 단위(1130a, 1130b, 1130c, 1130d)로 분할된 것과 동일한 형태로 부호화 단위가 결정될 수 있다.
또 다른 예를 들면 영상 복호화 장치(100)는 상단 제2 부호화 단위(1120a)가 수직 방향으로 분할되어 정사각형 형태의 제3 부호화 단위(1122a, 1122b)를 결정할 수 있고, 하단 제2 부호화 단위(1120b)가 수직 방향으로 분할되어 정사각형 형태의 제3 부호화 단위(1124a, 1124b)를 결정할 수 있다. 나아가 영상 복호화 장치(100)는 상단 제2 부호화 단위(1120a) 및 하단 제2 부호화 단위(1120b) 모두 수직 방향으로 분할되어 정사각형 형태의 제3 부호화 단위(1126a, 1126b, 1126a, 1126b)를 결정할 수도 있다. 이러한 경우 제1 부호화 단위(1100)가 4개의 정사각형 형태의 제2 부호화 단위(1130a, 1130b, 1130c, 1130d)로 분할된 것과 동일한 형태로 부호화 단위가 결정될 수 있다.
도 12는 일 실시예에 따라 복수개의 부호화 단위들 간의 처리 순서가 부호화 단위의 분할 과정에 따라 달라질 수 있음을 도시한 것이다.
일 실시예에 따라 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보에 기초하여 제1 부호화 단위(1200)를 분할할 수 있다. 블록 형태 정보가 정사각형 형태를 나타내고, 분할 형태 모드에 대한 정보가 제1 부호화 단위(1200)가 수평 방향 및 수직 방향 중 적어도 하나의 방향으로 분할됨을 나타내는 경우, 영상 복호화 장치(100)는 제1 부호화 단위(1200)를 분할하여 제2 부호화 단위(예를 들면, 1210a, 1210b, 1220a, 1220b 등)를 결정할 수 있다. 도 12를 참조하면 제1 부호화 단위1200)가 수평 방향 또는 수직 방향만으로 분할되어 결정된 비-정사각형 형태의 제2 부호화 단위(1210a, 1210b, 1220a, 1220b)는 각각에 대한 블록 형태 정보 및 분할 형태 모드에 대한 정보에 기초하여 독립적으로 분할될 수 있다. 예를 들면 영상 복호화 장치(100)는 제1 부호화 단위(1200)가 수직 방향으로 분할되어 생성된 제2 부호화 단위(1210a, 1210b)를 수평 방향으로 각각 분할하여 제3 부호화 단위(1216a, 1216b, 1216c, 1216d)를 결정할 수 있고, 제1 부호화 단위(1200)가 수평 방향으로 분할되어 생성된 제2 부호화 단위(1220a, 1220b)를 수평 방향으로 각각 분할하여 제3 부호화 단위(1226a, 1226b, 1226c, 1226d)를 결정할 수 있다. 이러한 제2 부호화 단위(1210a, 1210b, 1220a, 1220b)의 분할 과정은 도 11과 관련하여 상술하였으므로 자세한 설명은 생략하도록 한다.
일 실시예에 따라 영상 복호화 장치(100)는 소정의 순서에 따라 부호화 단위를 처리할 수 있다. 소정의 순서에 따른 부호화 단위의 처리에 대한 특징은 도 7와 관련하여 상술하였으므로 자세한 설명은 생략하도록 한다. 도 12를 참조하면 영상 복호화 장치(100)는 정사각형 형태의 제1 부호화 단위(1200)를 분할하여 4개의 정사각형 형태의 제3 부호화 단위(1216a, 1216b, 1216c, 1216d, 1226a, 1226b, 1226c, 1226d)를 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 제1 부호화 단위(1200)가 분할되는 형태에 따라 제3 부호화 단위(1216a, 1216b, 1216c, 1216d, 1226a, 1226b, 1226c, 1226d)의 처리 순서를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 수직 방향으로 분할되어 생성된 제2 부호화 단위(1210a, 1210b)를 수평 방향으로 각각 분할하여 제3 부호화 단위(1216a, 1216b, 1216c, 1216d)를 결정할 수 있고, 영상 복호화 장치(100)는 좌측 제2 부호화 단위(1210a)에 포함되는 제3 부호화 단위(1216a, 1216c)를 수직 방향으로 먼저 처리한 후, 우측 제2 부호화 단위(1210b)에 포함되는 제3 부호화 단위(1216b, 1216d)를 수직 방향으로 처리하는 순서(1217)에 따라 제3 부호화 단위(1216a, 1216b, 1216c, 1216d)를 처리할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 수평 방향으로 분할되어 생성된 제2 부호화 단위(1220a, 1220b)를 수직 방향으로 각각 분할하여 제3 부호화 단위(1226a, 1226b, 1226c, 1226d)를 결정할 수 있고, 영상 복호화 장치(100)는 상단 제2 부호화 단위(1220a)에 포함되는 제3 부호화 단위(1226a, 1226b)를 수평 방향으로 먼저 처리한 후, 하단 제2 부호화 단위(1220b)에 포함되는 제3 부호화 단위(1226c, 1226d)를 수평 방향으로 처리하는 순서(1227)에 따라 제3 부호화 단위(1226a, 1226b, 1226c, 1226d)를 처리할 수 있다.
도 12를 참조하면, 제2 부호화 단위(1210a, 1210b, 1220a, 1220b)가 각각 분할되어 정사각형 형태의 제3 부호화 단위(1216a, 1216b, 1216c, 1216d, 1226a, 1226b, 1226c, 1226d)가 결정될 수 있다. 수직 방향으로 분할되어 결정된 제2 부호화 단위(1210a, 1210b) 및 수평 방향으로 분할되어 결정된 제2 부호화 단위(1220a, 1220b)는 서로 다른 형태로 분할된 것이지만, 이후에 결정되는 제3 부호화 단위(1216a, 1216b, 1216c, 1216d, 1226a, 1226b, 1226c, 1226d)에 따르면 결국 동일한 형태의 부호화 단위들로 제1 부호화 단위(1200)가 분할된 결과가 된다. 이에 따라 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 상이한 과정을 통해 재귀적으로 부호화 단위를 분할함으로써 결과적으로 동일한 형태의 부호화 단위들을 결정하더라도, 동일한 형태로 결정된 복수개의 부호화 단위들을 서로 다른 순서로 처리할 수 있다.
도 13은 일 실시예에 따라 부호화 단위가 재귀적으로 분할되어 복수개의 부호화 단위가 결정되는 경우, 부호화 단위의 형태 및 크기가 변함에 따라 부호화 단위의 심도가 결정되는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 부호화 단위의 심도를 소정의 기준에 따라 결정할 수 있다. 예를 들면 소정의 기준은 부호화 단위의 긴 변의 길이가 될 수 있다. 영상 복호화 장치(100)는 현재 부호화 단위의 긴 변의 길이가 분할되기 전의 부호화 단위의 긴 변의 길이보다 2n (n>0) 배로 분할된 경우, 현재 부호화 단위의 심도는 분할되기 전의 부호화 단위의 심도보다 n만큼 심도가 증가된 것으로 결정할 수 있다. 이하에서는 심도가 증가된 부호화 단위를 하위 심도의 부호화 단위로 표현하도록 한다.
도 13을 참조하면, 일 실시예에 따라 정사각형 형태임을 나타내는 블록 형태 정보(예를 들면 블록 형태 정보는 ′0: SQUARE′를 나타낼 수 있음)에 기초하여 영상 복호화 장치(100)는 정사각형 형태인 제1 부호화 단위(1300)를 분할하여 하위 심도의 제2 부호화 단위(1302), 제3 부호화 단위(1304) 등을 결정할 수 있다. 정사각형 형태의 제1 부호화 단위(1300)의 크기를 2Nx2N이라고 한다면, 제1 부호화 단위(1300)의 너비 및 높이를 1/2배로 분할하여 결정된 제2 부호화 단위(1302)는 NxN의 크기를 가질 수 있다. 나아가 제2 부호화 단위(1302)의 너비 및 높이를 1/2크기로 분할하여 결정된 제3 부호화 단위(1304)는 N/2xN/2의 크기를 가질 수 있다. 이 경우 제3 부호화 단위(1304)의 너비 및 높이는 제1 부호화 단위(1300)의 1/4배에 해당한다. 제1 부호화 단위(1300)의 심도가 D인 경우 제1 부호화 단위(1300)의 너비 및 높이의 1/2배인 제2 부호화 단위(1302)의 심도는 D+1일 수 있고, 제1 부호화 단위(1300)의 너비 및 높이의 1/4배인 제3 부호화 단위(1304)의 심도는 D+2일 수 있다.
일 실시예에 따라 비-정사각형 형태를 나타내는 블록 형태 정보(예를 들면 블록 형태 정보는, 높이가 너비보다 긴 비-정사각형임을 나타내는 ′1: NS_VER′ 또는 너비가 높이보다 긴 비-정사각형임을 나타내는 ′2: NS_HOR′를 나타낼 수 있음)에 기초하여, 영상 복호화 장치(100)는 비-정사각형 형태인 제1 부호화 단위(1310 또는 1320)를 분할하여 하위 심도의 제2 부호화 단위(1312 또는 1322), 제3 부호화 단위(1314 또는 1324) 등을 결정할 수 있다.
영상 복호화 장치(100)는 Nx2N 크기의 제1 부호화 단위(1310)의 너비 및 높이 중 적어도 하나를 분할하여 제2 부호화 단위(예를 들면, 1302, 1312, 1322 등)를 결정할 수 있다. 즉, 영상 복호화 장치(100)는 제1 부호화 단위(1310)를 수평 방향으로 분할하여 NxN 크기의 제2 부호화 단위(1302) 또는 NxN/2 크기의 제2 부호화 단위(1322)를 결정할 수 있고, 수평 방향 및 수직 방향으로 분할하여 N/2xN 크기의 제2 부호화 단위(1312)를 결정할 수도 있다.
일 실시예에 따라 영상 복호화 장치(100)는 2NxN 크기의 제1 부호화 단위(1320) 의 너비 및 높이 중 적어도 하나를 분할하여 제2 부호화 단위(예를 들면, 1302, 1312, 1322 등)를 결정할 수도 있다. 즉, 영상 복호화 장치(100)는 제1 부호화 단위(1320)를 수직 방향으로 분할하여 NxN 크기의 제2 부호화 단위(1302) 또는 N/2xN 크기의 제2 부호화 단위(1312)를 결정할 수 있고, 수평 방향 및 수직 방향으로 분할하여 NxN/2 크기의 제2 부호화 단위(1322)를 결정할 수도 있다.
일 실시예에 따라 영상 복호화 장치(100)는 NxN 크기의 제2 부호화 단위(1302) 의 너비 및 높이 중 적어도 하나를 분할하여 제3 부호화 단위(예를 들면, 1304, 1314, 1324 등)를 결정할 수도 있다. 즉, 영상 복호화 장치(100)는 제2 부호화 단위(1302)를 수직 방향 및 수평 방향으로 분할하여 N/2xN/2 크기의 제3 부호화 단위(1304)를 결정하거나 N/4xN/2 크기의 제3 부호화 단위(1314)를 결정하거나 N/2xN/4 크기의 제3 부호화 단위(1324)를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 N/2xN 크기의 제2 부호화 단위(1312)의 너비 및 높이 중 적어도 하나를 분할하여 제3 부호화 단위(예를 들면, 1304, 1314, 1324 등)를 결정할 수도 있다. 즉, 영상 복호화 장치(100)는 제2 부호화 단위(1312)를 수평 방향으로 분할하여 N/2xN/2 크기의 제3 부호화 단위(1304) 또는 N/2xN/4 크기의 제3 부호화 단위(1324)를 결정하거나 수직 방향 및 수평 방향으로 분할하여 N/4xN/2 크기의 제3 부호화 단위(1314)를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 NxN/2 크기의 제2 부호화 단위(1322)의 너비 및 높이 중 적어도 하나를 분할하여 제3 부호화 단위(예를 들면, 1304, 1314, 1324 등)를 결정할 수도 있다. 즉, 영상 복호화 장치(100)는 제2 부호화 단위(1322)를 수직 방향으로 분할하여 N/2xN/2 크기의 제3 부호화 단위(1304) 또는 N/4xN/2 크기의 제3 부호화 단위(1314)를 결정하거나 수직 방향 및 수평 방향으로 분할하여 N/2xN/4크기의 제3 부호화 단위(1324)를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 정사각형 형태의 부호화 단위(예를 들면, 1300, 1302, 1304)를 수평 방향 또는 수직 방향으로 분할할 수 있다. 예를 들면, 2Nx2N 크기의 제1 부호화 단위(1300)를 수직 방향으로 분할하여 Nx2N 크기의 제1 부호화 단위(1310)를 결정하거나 수평 방향으로 분할하여 2NxN 크기의 제1 부호화 단위(1320)를 결정할 수 있다. 일 실시예에 따라 심도가 부호화 단위의 가장 긴 변의 길이에 기초하여 결정되는 경우, 2Nx2N 크기의 제1 부호화 단위(1300)가 수평 방향 또는 수직 방향으로 분할되어 결정되는 부호화 단위의 심도는 제1 부호화 단위(1300)의 심도와 동일할 수 있다.
일 실시예에 따라 제3 부호화 단위(1314 또는 1324)의 너비 및 높이는 제1 부호화 단위(1310 또는 1320)의 1/4배에 해당할 수 있다. 제1 부호화 단위(1310 또는 1320)의 심도가 D인 경우 제1 부호화 단위(1310 또는 1320)의 너비 및 높이의 1/2배인 제2 부호화 단위(1312 또는 1322)의 심도는 D+1일 수 있고, 제1 부호화 단위(1310 또는 1320)의 너비 및 높이의 1/4배인 제3 부호화 단위(1314 또는 1324)의 심도는 D+2일 수 있다.
도 14은 일 실시예에 따라 부호화 단위들의 형태 및 크기에 따라 결정될 수 있는 심도 및 부호화 단위 구분을 위한 인덱스(part index, 이하 PID)를 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 정사각형 형태의 제1 부호화 단위(1400)를 분할하여 다양한 형태의 제2 부호화 단위를 결정할 수 있다. 도 14를 참조하면, 영상 복호화 장치(100)는 분할 형태 모드에 대한 정보에 따라 제1 부호화 단위(1400)를 수직 방향 및 수평 방향 중 적어도 하나의 방향으로 분할하여 제2 부호화 단위(1402a, 1402b, 1404a, 1404b, 1406a, 1406b, 1406c, 1406d)를 결정할 수 있다. 즉, 영상 복호화 장치(100)는 제1 부호화 단위(1400)에 대한 분할 형태 모드에 대한 정보에 기초하여 제2 부호화 단위(1402a, 1402b, 1404a, 1404b, 1406a, 1406b, 1406c, 1406d)를 결정할 수 있다.
일 실시예에 따라 정사각형 형태의 제1 부호화 단위(1400)에 대한 분할 형태 모드에 대한 정보에 따라 결정되는 제2 부호화 단위(1402a, 1402b, 1404a, 1404b, 1406a, 1406b, 1406c, 1406d)는 긴 변의 길이에 기초하여 심도가 결정될 수 있다. 예를 들면, 정사각형 형태의 제1 부호화 단위(1400)의 한 변의 길이와 비-정사각형 형태의 제2 부호화 단위(1402a, 1402b, 1404a, 1404b)의 긴 변의 길이가 동일하므로, 제1 부호화 단위(1400)와 비-정사각형 형태의 제2 부호화 단위(1402a, 1402b, 1404a, 1404b)의 심도는 D로 동일하다고 볼 수 있다. 이에 반해 영상 복호화 장치(100)가 분할 형태 모드에 대한 정보에 기초하여 제1 부호화 단위(1400)를 4개의 정사각형 형태의 제2 부호화 단위(1406a, 1406b, 1406c, 1406d)로 분할한 경우, 정사각형 형태의 제2 부호화 단위(1406a, 1406b, 1406c, 1406d)의 한 변의 길이는 제1 부호화 단위(1400)의 한 변의 길이의 1/2배 이므로, 제2 부호화 단위(1406a, 1406b, 1406c, 1406d)의 심도는 제1 부호화 단위(1400)의 심도인 D보다 한 심도 하위인 D+1의 심도일 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 높이가 너비보다 긴 형태의 제1 부호화 단위(1410)를 분할 형태 모드에 대한 정보에 따라 수평 방향으로 분할하여 복수개의 제2 부호화 단위(1412a, 1412b, 1414a, 1414b, 1414c)로 분할할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 너비가 높이보다 긴 형태의 제1 부호화 단위(1420)를 분할 형태 모드에 대한 정보에 따라 수직 방향으로 분할하여 복수개의 제2 부호화 단위(1422a, 1422b, 1424a, 1424b, 1424c)로 분할할 수 있다.
일 실시예에 따라 비-정사각형 형태의 제1 부호화 단위(1410 또는 1420)에 대한 분할 형태 모드에 대한 정보에 따라 결정되는 제2 부호화 단위(1412a, 1412b, 1414a, 1414b, 1414c. 1422a, 1422b, 1424a, 1424b, 1424c)는 긴 변의 길이에 기초하여 심도가 결정될 수 있다. 예를 들면, 정사각형 형태의 제2 부호화 단위(1412a, 1412b)의 한 변의 길이는 높이가 너비보다 긴 비-정사각형 형태의 제1 부호화 단위(1410)의 한 변의 길이의 1/2배이므로, 정사각형 형태의 제2 부호화 단위(1412a, 1412b)의 심도는 비-정사각형 형태의 제1 부호화 단위(1410)의 심도 D보다 한 심도 하위의 심도인 D+1이다.
나아가 영상 복호화 장치(100)가 분할 형태 모드에 대한 정보에 기초하여 비-정사각형 형태의 제1 부호화 단위(1410)를 홀수개의 제2 부호화 단위(1414a, 1414b, 1414c)로 분할할 수 있다. 홀수개의 제2 부호화 단위(1414a, 1414b, 1414c)는 비-정사각형 형태의 제2 부호화 단위(1414a, 1414c) 및 정사각형 형태의 제2 부호화 단위(1414b)를 포함할 수 있다. 이 경우 비-정사각형 형태의 제2 부호화 단위(1414a, 1414c)의 긴 변의 길이 및 정사각형 형태의 제2 부호화 단위(1414b)의 한 변의 길이는 제1 부호화 단위(1410)의 한 변의 길이의 1/2배 이므로, 제2 부호화 단위(1414a, 1414b, 1414c)의 심도는 제1 부호화 단위(1410)의 심도인 D보다 한 심도 하위인 D+1의 심도일 수 있다. 영상 복호화 장치(100)는 제1 부호화 단위(1410)와 관련된 부호화 단위들의 심도를 결정하는 상기 방식에 대응하는 방식으로, 너비가 높이보다 긴 비-정사각형 형태의 제1 부호화 단위(1420)와 관련된 부호화 단위들의 심도를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 분할된 부호화 단위들의 구분을 위한 인덱스(PID)를 결정함에 있어서, 홀수개로 분할된 부호화 단위들이 서로 동일한 크기가 아닌 경우, 부호화 단위들 간의 크기 비율에 기초하여 인덱스를 결정할 수 있다. 도 14를 참조하면, 홀수개로 분할된 부호화 단위들(1414a, 1414b, 1414c) 중 가운데에 위치하는 부호화 단위(1414b)는 다른 부호화 단위들(1414a, 1414c)와 너비는 동일하지만 높이가 다른 부호화 단위들(1414a, 1414c)의 높이의 두 배일 수 있다. 즉, 이 경우 가운데에 위치하는 부호화 단위(1414b)는 다른 부호화 단위들(1414a, 1414c)의 두 개를 포함할 수 있다. 따라서, 스캔 순서에 따라 가운데에 위치하는 부호화 단위(1414b)의 인덱스(PID)가 1이라면 그 다음 순서에 위치하는 부호화 단위(1414c)는 인덱스가 2가 증가한 3일수 있다. 즉 인덱스의 값의 불연속성이 존재할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 이러한 분할된 부호화 단위들 간의 구분을 위한 인덱스의 불연속성의 존재 여부에 기초하여 홀수개로 분할된 부호화 단위들이 서로 동일한 크기가 아닌지 여부를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위로부터 분할되어 결정된 복수개의 부호화 단위들을 구분하기 위한 인덱스의 값에 기초하여 특정 분할 형태로 분할된 것인지를 결정할 수 있다. 도 14를 참조하면 영상 복호화 장치(100)는 높이가 너비보다 긴 직사각형 형태의 제1 부호화 단위(1410)를 분할하여 짝수개의 부호화 단위(1412a, 1412b)를 결정하거나 홀수개의 부호화 단위(1414a, 1414b, 1414c)를 결정할 수 있다. 영상 복호화 장치(100)는 복수개의 부호화 단위 각각을 구분하기 위하여 각 부호화 단위를 나타내는 인덱스(PID)를 이용할 수 있다. 일 실시예에 따라 PID는 각각의 부호화 단위의 소정 위치의 샘플(예를 들면, 좌측 상단 샘플)에서 획득될 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 부호화 단위의 구분을 위한 인덱스를 이용하여 분할되어 결정된 부호화 단위들 중 소정 위치의 부호화 단위를 결정할 수 있다. 일 실시예에 따라 높이가 너비보다 긴 직사각형 형태의 제1 부호화 단위(1410)에 대한 분할 형태 모드에 대한 정보가 3개의 부호화 단위로 분할됨을 나타내는 경우 영상 복호화 장치(100)는 제1 부호화 단위(1410)를 3개의 부호화 단위(1414a, 1414b, 1414c)로 분할할 수 있다. 영상 복호화 장치(100)는 3개의 부호화 단위(1414a, 1414b, 1414c) 각각에 대한 인덱스를 할당할 수 있다. 영상 복호화 장치(100)는 홀수개로 분할된 부호화 단위 중 가운데 부호화 단위를 결정하기 위하여 각 부호화 단위에 대한 인덱스를 비교할 수 있다. 영상 복호화 장치(100)는 부호화 단위들의 인덱스에 기초하여 인덱스들 중 가운데 값에 해당하는 인덱스를 갖는 부호화 단위(1414b)를, 제1 부호화 단위(1410)가 분할되어 결정된 부호화 단위 중 가운데 위치의 부호화 단위로서 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 분할된 부호화 단위들의 구분을 위한 인덱스를 결정함에 있어서, 부호화 단위들이 서로 동일한 크기가 아닌 경우, 부호화 단위들 간의 크기 비율에 기초하여 인덱스를 결정할 수 있다. 도 14를 참조하면, 제1 부호화 단위(1410)가 분할되어 생성된 부호화 단위(1414b)는 다른 부호화 단위들(1414a, 1414c)와 너비는 동일하지만 높이가 다른 부호화 단위들(1414a, 1414c)의 높이의 두 배일 수 있다. 이 경우 가운데에 위치하는 부호화 단위(1414b)의 인덱스(PID)가 1이라면 그 다음 순서에 위치하는 부호화 단위(1414c)는 인덱스가 2가 증가한 3일수 있다. 이러한 경우처럼 균일하게 인덱스가 증가하다가 증가너비가이 달라지는 경우, 영상 복호화 장치(100)는 다른 부호화 단위들과 다른 크기를 가지는 부호화 단위를 포함하는 복수개의 부호화 단위로 분할된 것으로 결정할 수 있다, 일 실시예에 따라 분할 형태 모드에 대한 정보가 홀수개의 부호화 단위로 분할됨을 나타내는 경우, 영상 복호화 장치(100)는 홀수개의 부호화 단위 중 소정 위치의 부호화 단위(예를 들면 가운데 부호화 단위)가 다른 부호화 단위와 크기가 다른 형태로 현재 부호화 단위를 분할할 수 있다. 이 경우 영상 복호화 장치(100)는 부호화 단위에 대한 인덱스(PID)를 이용하여 다른 크기를 가지는 가운데 부호화 단위를 결정할 수 있다. 다만 상술한 인덱스, 결정하고자 하는 소정 위치의 부호화 단위의 크기 또는 위치는 일 실시예를 설명하기 위해 특정한 것이므로 이에 한정하여 해석되어서는 안되며, 다양한 인덱스, 부호화 단위의 위치 및 크기가 이용될 수 있는 것으로 해석되어야 한다.
일 실시예에 따라 영상 복호화 장치(100)는 부호화 단위의 재귀적인 분할이 시작되는 소정의 데이터 단위를 이용할 수 있다.
도 15는 일 실시예에 따라 픽쳐에 포함되는 복수개의 소정의 데이터 단위에 따라 복수개의 부호화 단위들이 결정된 것을 도시한다.
일 실시예에 따라 소정의 데이터 단위는 부호화 단위가 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나를 이용하여 재귀적으로 분할되기 시작하는 데이터 단위로 정의될 수 있다. 즉, 현재 픽쳐를 분할하는 복수개의 부호화 단위들이 결정되는 과정에서 이용되는 최상위 심도의 부호화 단위에 해당할 수 있다. 이하에서는 설명 상 편의를 위해 이러한 소정의 데이터 단위를 기준 데이터 단위라고 지칭하도록 한다.
일 실시예에 따라 기준 데이터 단위는 소정의 크기 및 형태를 나타낼 수 있다. 일 실시예에 따라, 기준 부호화 단위는 MxN의 샘플들을 포함할 수 있다. 여기서 M 및 N은 서로 동일할 수도 있으며, 2의 승수로 표현되는 정수일 수 있다. 즉, 기준 데이터 단위는 정사각형 또는 비-정사각형의 형태를 나타낼 수 있으며, 이후에 정수개의 부호화 단위로 분할될 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 픽쳐를 복수개의 기준 데이터 단위로 분할할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 현재 픽쳐를 분할하는 복수개의 기준 데이터 단위를 각각의 기준 데이터 단위에 대한 분할 형태 모드에 대한 정보를 이용하여 분할할 수 있다. 이러한 기준 데이터 단위의 분할 과정은 쿼드 트리(quad-tree)구조를 이용한 분할 과정에 대응될 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 픽쳐에 포함되는 기준 데이터 단위가 가질 수 있는 최소 크기를 미리 결정할 수 있다. 이에 따라, 영상 복호화 장치(100)는 최소 크기 이상의 크기를 갖는 다양한 크기의 기준 데이터 단위를 결정할 수 있고, 결정된 기준 데이터 단위를 기준으로 블록 형태 정보 및 분할 형태 모드에 대한 정보를 이용하여 적어도 하나의 부호화 단위를 결정할 수 있다.
도 15를 참조하면, 영상 복호화 장치(100)는 정사각형 형태의 기준 부호화 단위(1500)를 이용할 수 있고, 또는 비-정사각형 형태의 기준 부호화 단위(1502)를 이용할 수도 있다. 일 실시예에 따라 기준 부호화 단위의 형태 및 크기는 적어도 하나의 기준 부호화 단위를 포함할 수 있는 다양한 데이터 단위(예를 들면, 시퀀스(sequence), 픽쳐(picture), 슬라이스(slice), 슬라이스 세그먼트(slice segment), 타일(tile), 타일 그룹(tile group), 최대부호화단위 등)에 따라 결정될 수 있다.
일 실시예에 따라 영상 복호화 장치(100)의 수신부(미도시)는 기준 부호화 단위의 형태에 대한 정보 및 기준 부호화 단위의 크기에 대한 정보 중 적어도 하나를 상기 다양한 데이터 단위마다 비트스트림으로부터 획득할 수 있다. 정사각형 형태의 기준 부호화 단위(1500)에 포함되는 적어도 하나의 부호화 단위가 결정되는 과정은 도 3의 현재 부호화 단위(300)가 분할되는 과정을 통해 상술하였고, 비-정사각형 형태의 기준 부호화 단위(1502)에 포함되는 적어도 하나의 부호화 단위가 결정되는 과정은 도 4의 현재 부호화 단위(400 또는 450)가 분할되는 과정을 통해 상술하였으므로 자세한 설명은 생략하도록 한다.
일 실시예에 따라 영상 복호화 장치(100)는 소정의 조건에 기초하여 미리 결정되는 일부 데이터 단위에 따라 기준 부호화 단위의 크기 및 형태를 결정하기 위하여, 기준 부호화 단위의 크기 및 형태를 식별하기 위한 인덱스를 이용할 수 있다. 즉, 수신부(미도시)는 비트스트림으로부터 상기 다양한 데이터 단위(예를 들면, 시퀀스, 픽쳐, 슬라이스, 슬라이스 세그먼트, 타일(tile), 타일 그룹(tile group), 최대부호화단위 등) 중 소정의 조건(예를 들면 슬라이스 이하의 크기를 갖는 데이터 단위)을 만족하는 데이터 단위로서 슬라이스, 슬라이스 세그먼트, 타일(tile), 타일 그룹(tile group), 최대부호화 단위 등 마다, 기준 부호화 단위의 크기 및 형태의 식별을 위한 인덱스만을 획득할 수 있다. 영상 복호화 장치(100)는 인덱스를 이용함으로써 상기 소정의 조건을 만족하는 데이터 단위마다 기준 데이터 단위의 크기 및 형태를 결정할 수 있다. 기준 부호화 단위의 형태에 대한 정보 및 기준 부호화 단위의 크기에 대한 정보를 상대적으로 작은 크기의 데이터 단위마다 비트스트림으로부터 획득하여 이용하는 경우, 비트스트림의 이용 효율이 좋지 않을 수 있으므로, 기준 부호화 단위의 형태에 대한 정보 및 기준 부호화 단위의 크기에 대한 정보를 직접 획득하는 대신 상기 인덱스만을 획득하여 이용할 수 있다. 이 경우 기준 부호화 단위의 크기 및 형태를 나타내는 인덱스에 대응하는 기준 부호화 단위의 크기 및 형태 중 적어도 하나는 미리 결정되어 있을 수 있다. 즉, 영상 복호화 장치(100)는 미리 결정된 기준 부호화 단위의 크기 및 형태 중 적어도 하나를 인덱스에 따라 선택함으로써, 인덱스 획득의 기준이 되는 데이터 단위에 포함되는 기준 부호화 단위의 크기 및 형태 중 적어도 하나를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 하나의 최대 부호화 단위에 포함하는 적어도 하나의 기준 부호화 단위를 이용할 수 있다. 즉, 영상을 분할하는 최대 부호화 단위에는 적어도 하나의 기준 부호화 단위가 포함될 수 있고, 각각의 기준 부호화 단위의 재귀적인 분할 과정을 통해 부호화 단위가 결정될 수 있다. 일 실시예에 따라 최대 부호화 단위의 너비 및 높이 중 적어도 하나는 기준 부호화 단위의 너비 및 높이 중 적어도 하나의 정수배에 해당할 수 있다. 일 실시예에 따라 기준 부호화 단위의 크기는 최대부호화단위를 쿼드 트리 구조에 따라 n번 분할한 크기일 수 있다. 즉, 영상 복호화 장치(100)는 최대부호화단위를 쿼드 트리 구조에 따라 n 번 분할하여 기준 부호화 단위를 결정할 수 있고, 다양한 실시예들에 따라 기준 부호화 단위를 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 분할할 수 있다.
도 16은 일 실시예에 따라 픽쳐(1600)에 포함되는 기준 부호화 단위의 결정 순서를 결정하는 기준이 되는 프로세싱 블록을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 픽쳐를 분할하는 적어도 하나의 프로세싱 블록을 결정할 수 있다. 프로세싱 블록이란, 영상을 분할하는 적어도 하나의 기준 부호화 단위를 포함하는 데이터 단위로서, 프로세싱 블록에 포함되는 적어도 하나의 기준 부호화 단위는 특정 순서대로 결정될 수 있다. 즉, 각각의 프로세싱 블록에서 결정되는 적어도 하나의 기준 부호화 단위의 결정 순서는 기준 부호화 단위가 결정될 수 있는 다양한 순서의 종류 중 하나에 해당할 수 있으며, 각각의 프로세싱 블록에서 결정되는 기준 부호화 단위 결정 순서는 프로세싱 블록마다 상이할 수 있다. 프로세싱 블록마다 결정되는 기준 부호화 단위의 결정 순서는 래스터 스캔(raster scan), Z 스캔(Z-scan), N 스캔(N-scan), 우상향 대각 스캔(up-right diagonal scan), 수평적 스캔(horizontal scan), 수직적 스캔(vertical scan) 등 다양한 순서 중 하나일 수 있으나, 결정될 수 있는 순서는 상기 스캔 순서들에 한정하여 해석되어서는 안 된다.
일 실시예에 따라 영상 복호화 장치(100)는 프로세싱 블록의 크기에 대한 정보를 획득하여 영상에 포함되는 적어도 하나의 프로세싱 블록의 크기를 결정할 수 있다. 영상 복호화 장치(100)는 프로세싱 블록의 크기에 대한 정보를 비트스트림으로부터 획득하여 영상에 포함되는 적어도 하나의 프로세싱 블록의 크기를 결정할 수 있다. 이러한 프로세싱 블록의 크기는 프로세싱 블록의 크기에 대한 정보가 나타내는 데이터 단위의 소정의 크기일 수 있다.
일 실시예에 따라 영상 복호화 장치(100)의 수신부(미도시)는 비트스트림으로부터 프로세싱 블록의 크기에 대한 정보를 특정의 데이터 단위마다 획득할 수 있다. 예를 들면 프로세싱 블록의 크기에 대한 정보는 영상, 시퀀스, 픽쳐, 슬라이스, 슬라이스 세그먼트 등의 데이터 단위로 비트스트림으로부터 획득될 수 있다. 즉 수신부(미도시)는 상기 여러 데이터 단위마다 비트스트림으로부터 프로세싱 블록의 크기에 대한 정보를 획득할 수 있고 영상 복호화 장치(100)는 획득된 프로세싱 블록의 크기에 대한 정보를 이용하여 픽쳐를 분할하는 적어도 하나의 프로세싱 블록의 크기를 결정할 수 있으며, 이러한 프로세싱 블록의 크기는 기준 부호화 단위의 정수배의 크기일 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 픽쳐(1600)에 포함되는 프로세싱 블록(1602, 1612)의 크기를 결정할 수 있다. 예를 들면, 영상 복호화 장치(100)는 비트스트림으로부터 획득된 프로세싱 블록의 크기에 대한 정보에 기초하여 프로세싱 블록의 크기를 결정할 수 있다. 도 16을 참조하면, 영상 복호화 장치(100)는 일 실시예에 따라 프로세싱 블록(1602, 1612)의 가로크기를 기준 부호화 단위 가로크기의 4배, 세로크기를 기준 부호화 단위의 세로크기의 4배로 결정할 수 있다. 영상 복호화 장치(100)는 적어도 하나의 프로세싱 블록 내에서 적어도 하나의 기준 부호화 단위가 결정되는 순서를 결정할 수 있다.
일 실시예에 따라, 영상 복호화 장치(100)는 프로세싱 블록의 크기에 기초하여 픽쳐(1600)에 포함되는 각각의 프로세싱 블록(1602, 1612)을 결정할 수 있고, 프로세싱 블록(1602, 1612)에 포함되는 적어도 하나의 기준 부호화 단위의 결정 순서를 결정할 수 있다. 일 실시예에 따라 기준 부호화 단위의 결정은 기준 부호화 단위의 크기의 결정을 포함할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 비트스트림으로부터 적어도 하나의 프로세싱 블록에 포함되는 적어도 하나의 기준 부호화 단위의 결정 순서에 대한 정보를 획득할 수 있고, 획득한 결정 순서에 대한 정보에 기초하여 적어도 하나의 기준 부호화 단위가 결정되는 순서를 결정할 수 있다. 결정 순서에 대한 정보는 프로세싱 블록 내에서 기준 부호화 단위들이 결정되는 순서 또는 방향으로 정의될 수 있다. 즉, 기준 부호화 단위들이 결정되는 순서는 각각의 프로세싱 블록마다 독립적으로 결정될 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 특정 데이터 단위마다 기준 부호화 단위의 결정 순서에 대한 정보를 비트스트림으로부터 획득할 수 있다. 예를 들면, 수신부(미도시)는 기준 부호화 단위의 결정 순서에 대한 정보를 영상, 시퀀스, 픽쳐, 슬라이스, 슬라이스 세그먼트, 타일(tile), 타일 그룹(tile group), 프로세싱 블록 등의 데이터 단위로마다 비트스트림으로부터 획득할 수 있다. 기준 부호화 단위의 결정 순서에 대한 정보는 프로세싱 블록 내에서의 기준 부호화 단위 결정 순서를 나타내므로, 결정 순서에 대한 정보는 정수개의 프로세싱 블록을 포함하는 특정 데이터 단위 마다 획득될 수 있다.
영상 복호화 장치(100)는 일 실시예에 따라 결정된 순서에 기초하여 적어도 하나의 기준 부호화 단위를 결정할 수 있다.
일 실시예에 따라 수신부(미도시)는 비트스트림으로부터 프로세싱 블록(1602, 1612)과 관련된 정보로서, 기준 부호화 단위 결정 순서에 대한 정보를 획득할 수 있고, 영상 복호화 장치(100)는 상기 프로세싱 블록(1602, 1612)에 포함된 적어도 하나의 기준 부호화 단위를 결정하는 순서를 결정하고 부호화 단위의 결정 순서에 따라 픽쳐(1600)에 포함되는 적어도 하나의 기준 부호화 단위를 결정할 수 있다. 도 16을 참조하면, 영상 복호화 장치(100)는 각각의 프로세싱 블록(1602, 1612)과 관련된 적어도 하나의 기준 부호화 단위의 결정 순서(1604, 1614)를 결정할 수 있다. 예를 들면, 기준 부호화 단위의 결정 순서에 대한 정보가 프로세싱 블록마다 획득되는 경우, 각각의 프로세싱 블록(1602, 1612)과 관련된 기준 부호화 단위 결정 순서는 프로세싱 블록마다 상이할 수 있다. 프로세싱 블록(1602)과 관련된 기준 부호화 단위 결정 순서(1604)가 래스터 스캔(raster scan)순서인 경우, 프로세싱 블록(1602)에 포함되는 기준 부호화 단위는 래스터 스캔 순서에 따라 결정될 수 있다. 이에 반해 다른 프로세싱 블록(1612)과 관련된 기준 부호화 단위 결정 순서(1614)가 래스터 스캔 순서의 역순인 경우, 프로세싱 블록(1612)에 포함되는 기준 부호화 단위는 래스터 스캔 순서의 역순에 따라 결정될 수 있다.
영상 복호화 장치(100)는 일 실시예에 따라, 결정된 적어도 하나의 기준 부호화 단위를 복호화할 수 있다. 영상 복호화 장치(100)는 상술한 실시예를 통해 결정된 기준 부호화 단위에 기초하여 영상을 복호화 할 수 있다. 기준 부호화 단위를 복호화 하는 방법은 영상을 복호화 하는 다양한 방법들을 포함할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위의 형태를 나타내는 블록 형태 정보 또는 현재 부호화 단위를 분할하는 방법을 나타내는 분할 형태 모드에 대한 정보를 비트스트림으로부터 획득하여 이용할 수 있다. 블록 형태 정보 또는 분할 형태 모드에 대한 정보는 다양한 데이터 단위와 관련된 비트스트림에 포함될 수 있다. 예를 들면, 영상 복호화 장치(100)는 시퀀스 파라미터 세트(sequence parameter set), 픽쳐 파라미터 세트(picture parameter set), 비디오 파라미터 세트(video parameter set), 슬라이스 헤더(slice header), 슬라이스 세그먼트 헤더(slice segment header), 타일 헤더(tile header), 타일 그룹 헤더(tile group header)에 포함된 블록 형태 정보 또는 분할 형태 모드에 대한 정보를 이용할 수 있다. 나아가, 영상 복호화 장치(100)는 최대 부호화 단위, 기준 부호화 단위, 프로세싱 블록마다 비트스트림으로부터 블록 형태 정보 또는 분할 형태 모드에 대한 정보에 대응하는 신택스 엘리먼트를 비트스트림으로부터 획득하여 이용할 수 있다.
도 17 내지 도 20를 참조하여 다양한 실시예에 따라 다양한 형태의 부호화 단위에 기초하여 영상을 부호화 또는 복호화하기 위한 영상 부호화 장치, 영상 복호화 장치, 영상 부호화 방법 및 영상 복호화 방법이 설명된다.
도 17 및 18은 다양한 실시예에 따라, 분할 트리 타입에 따라, 일정 크기 이하의 크로마 블록으로의 분할을 허용하지 않는 방법을 설명하기 위한 도면이다.
도 17a 내지 17b은 다양한 실시예에 따라, 분할 트리 타입이 싱글 트리인 경우, 일정 크기 이하의 크로마 블록으로의 분할을 허용하지 않는 방법을 설명하기 위한 도면이다
도 17a는 일 실시예에 따라, 분할 트리 타입이 싱글 트리인 경우, 일정 크기 이하의 크로마 블록을 분할을 허용하지 않는 방법을 설명하기 위한 도면이다.
분할 트리 타입이 싱글 트리인 경우, 하나의 부호화 단위들의 트리 구조에 따라, 루마 영상의 부호화 단위들의 트리 구조와 크로마 영상의 부호화 단위들의 트리 구조가 결정될 수 있다.
도 17a를 참조하면, 분할 트리 타입이 싱글 트리인 경우, 영상 복호화 장치(100)는 루마 블록(1705) 및 대응 크로마 블록(1710)을 수직 방향으로 바이너리 분할할 수 있다. 영상 복호화 장치(100)는 루마 블록의 허용가능한 최소 크기를 4x4로 결정할 수 있고, 수직 방향으로 바이너리 분할되어 생성될 블록(1715)의 크기가 루마 블록의 허용가능한 최소 크기보다 크므로, 영상 복호화 장치(100)는 루마 블록(1705)을 수직 방향으로 바이너리 분할할 수 있다.
영상 복호화 장치(100)는 크로마 블록의 허용가능한 최소 크기를 4x4로 결정할 수 있고, 영상 복호화 장치(100)는 수직 방향으로 바이너리 분할되어 생성될 블록의 크기가 크로마 블록의 허용가능한 최소 크기보다 작으므로, 크로마 블록(1710)을 분할하지 않는다고 결정할 수 있다.
영상 복호화 장치(100)는 루마 블록(1715) 및 대응 크로마 블록(1710)을 수평 방향으로 바이너리 분할할 수 있다. 영상 복호화 장치(100)는 루마 블록의 허용가능한 최소 크기를 4x4로 결정할 수 있고, 수평 방향으로 바이너리 분할되어 생성될 블록(1720)의 크기가 루마 블록의 허용가능한 최소 크기와 동일하므로, 영상 복호화 장치(100)는 루마 블록(1715)를 수평 방향으로 바이너리 분할할 수 있다.
영상 복호화 장치(100)는 크로마 블록의 허용가능한 최소 크기를 4x4로 결정할 수 있고, 영상 복호화 장치(100)는 수평 방향으로 바이너리 분할되어 생성될 블록의 크기가 크로마 블록의 허용가능한 최소 크기보다 작으므로, 크로마 블록을 더 이상 분할하지 않는다고 결정할 수 있다.
도 17b는 일 실시예에 따라, 분할 트리 타입이 싱글 트리인 경우, 일정 크기 이하의 크로마 블록으로의 분할을 허용하지 않는 방법을 설명하기 위한 도면이다.
도 17b는 다른 실시예에 따라, 분할 트리 타입이 싱글 트리인 경우, 일정 크기 이하의 크로마 블록으로의 분할을 허용하지 않는 방법을 설명하기 위한 도면이다.
도 17b를 참조하면, 분할 트리 타입이 싱글 트리인 경우, 영상 복호화 장치(100)는 루마 블록(1755) 및 대응 크로마 블록(1760)을 수직 방향으로 트라이 분할할 수 있다. 영상 복호화 장치(100)는 루마 블록의 허용가능한 최소 넓이를 16으로 결정할 수 있고, 수직 방향으로 트라이 분할되어 생성될 블록(1765)의 넓이가 루마 블록의 허용가능한 최소 넓이보다 크거나 같으므로, 영상 복호화 장치(100)는 루마 블록(1755)을 수직 방향으로 트라이 분할할 수 있다.
영상 복호화 장치(100)는 크로마 블록의 허용가능한 최소 넓이를 16으로 결정할 수 있고, 수직 방향으로 트라이 분할되어 생성될 블록의 넓이가 크로마 블록의 허용가능한 최소 넓이보다 작으므로, 영상 복호화 장치(100)는 크로마 블록(1760)을 분할하지 않는다고 결정할 수 있다.
도 18은 일 실시예에 따라, 분할 트리 타입이 듀얼 트리인 경우, 일정 크기 이하의 크로마 블록을 분할을 허용하지 않는 방법을 설명하기 위한 도면이다.
분할 트리 타입이 듀얼 트리인 경우, 루마 영상의 부호화 단위들의 트리 구조 및 크로마 영상의 부호화 단위들의 트리 구조가 별도로 결정될 수 있다.
도 18을 참조하면, 영상 복호화 장치(100)는 크로마 블록의 허용가능한 최소 크기를 4x4로 결정할 수 있고, 크로마 블록(1800, 1810, 1820, 1825)으로부터 특정 분할 타입에 따라 분할되어 생성될 블록의 크기가 크로마 블록의 허용가능한 최소 크기인 4x4보다 작으므로, 특정 분할 타입에 따라 크로마 블록(1800)을 분할하지 않는다고 결정할 수 있다.
영상 복호화 장치(100)는 크로마 블록(1800)의 분할 타입이 쿼드 분할인 경우, 크로마 블록(1800)으로부터 쿼드 분할에 따라 분할되어 생성될 블록의 크기가 2x2로 허용가능한 최소 크기인 4x4보다 작으므로, 쿼드 분할에 따라 크로마 블록(1800)을 분할하지 않는다고 결정할 수 있다. 이때, 영상 복호화 장치(100)는 크로마 블록(1800)의 크기에 기초한 조건으로, 분할되어 생성될 블록의 크기가 허용가능한 최소 크기인 4x4보다 작은지를 결정할 수 있다. 예를 들어, 영상 복호화 장치(100)는 크로마 블록(1800)의 높이 또는 너비가 4보다 작거나 같은지 여부를 결정하고, 그 결정 결과에 따라 분할되어 생성될 블록의 크기가 허용가능한 최소 크기인 4x4보다 작다고 결정할 수 있다.
영상 복호화 장치(100)는 크로마 블록(1810)의 분할 타입이 바이너리 분할인 경우, 크로마 블록(1810)으로부터 바이너리 분할에 따라 분할되어 생성될 블록의 크기가 4x2 또는 2x4로 허용가능한 최소 크기인 4x4보다 작으므로, 바이너리 분할에 따라 크로마 블록(1810)을 분할하지 않는다고 결정할 수 있다. 이때, 영상 복호화 장치(100)는 크로마 블록(1810)의 넓이에 기초한 조건으로, 분할되어 생성될 블록의 크기가 허용가능한 최소 크기인 4x4보다 작은지를 결정할 수 있다. 예를 들어, 영상 복호화 장치(100)는 크로마 블록(1810)의 넓이가 16보다 작거나 같은지 여부를 결정하고, 그 결정 결과에 따라 분할되어 생성될 블록의 크기가 허용가능한 최소 크기인 4x4보다 작다고 결정할 수 있다.
영상 복호화 장치(100)는 크로마 블록(1820, 1825)의 분할 타입이 트라이 분할인 경우, 크로마 블록(1820, 1825)으로부터 트라이 분할에 따라 분할되어 생성될 블록의 크기가 4x2 또는 2x4로 허용가능한 최소 크기인 4x4보다 작으므로, 트라이 분할에 따라 크로마 블록(1820, 1825)을 분할하지 않는다고 결정할 수 있다.
이때, 영상 복호화 장치(100)는 크로마 블록(1820, 1825)의 넓이에 기초한 조건으로, 분할되어 생성될 블록의 크기가 허용가능한 최소 크기인 4x4보다 작은지를 결정할 수 있다. 예를 들어, 영상 복호화 장치(100)는 크로마 블록(1820, 1825)의 넓이가 32보다 작거나 같은지 여부를 결정하고, 그 결정 결과에 따라 분할되어 생성될 블록의 크기가 허용가능한 최소 크기인 4x4보다 작다고 결정할 수 있다.
영상 복호화 장치(100)는 항상 크로마 블록의 부호화 단위를 허용가능한 최소 크기보다 크거나 같게 결정함으로써 크로마 블록의 복호화시에 처리량을 향상시킬 수 있다.
도 19 및 20은 다양한 실시예에 따라, 픽처 경계에 놓인 블록을 분할하는 방법을 설명하기 위한 도면이다.
도 19는 일 실시예에 따라 픽처의 경계에 놓인 블록을 경계의 방향에 기초한 분할 형태 모드를 이용하여 분할하는 방법을 설명하기 위한 도면이다.
영상 복호화 장치(100)는 쿼드 분할을 재귀적으로 수행하여 블록을 계층적으로 쿼드 분할할 수 있다. 이때, 쿼드 분할되어 생성될 수 있는 블록의 크기의 범위가 결정될 수 있다. 영상 복호화 장치(100)는 쿼드 분할되어 생성될 수 있는 블록의 크기의 범위 내에서 쿼드 분할을 재귀적으로 수행하여 블록을 계층적으로 쿼드 분할할 수 있다.
영상 복호화 장치(100)는 계층적으로 쿼드 분할하여 생성된 블록을 재귀적으로 바이너리 분할 또는 트라이 분할을 수행할 수 있다. 이때, 바이너리 분할 또는 트라이 분할의 분할 뎁스는 미리 결정될 수 있다. 영상 복호화 장치(100)는 계층적으로 쿼드 분할하여 생성된 블록으로부터 미리 결정된 바이너리 분할 또는 트라이 분할의 분할 뎁스에 기초하여 재귀적으로 바이너리 분할 또는 트라이 분할을 수행할 수 있다.
도 19를 참조하면, 영상 복호화 장치(100)는 현재 블록(1905)이 픽처 경계(1910) 상에 위치하는 경우, 비트스트림으로부터의 분할 형태 모드 정보의 획득 없이 현재 블록(1905)으로부터 허용되는 분할 형태 모드에 따라 현재 블록(1905)을 분할할 수 있다. 예를 들어, 영상 복호화 장치(100)는 허용가능한 현재 블록의 분할 형태 모드의 분할 타입이 트라이 분할 또는 바이너리 분할인 경우, 현재 블록(1905)을 바이너리 분할 (또는 트라이 분할)할 수 있다. 이때, 분할 방향은 현재 블록(1905)의 픽처 경계(1910)의 방향에 따라 수평 방향으로 결정될 수 있다.
영상 복호화 장치(100)는 허용가능한 현재 블록의 분할 형태 모드의 분할 타입이 트라이 분할 또는 바이너리 분할이 아닌 경우, 현재 블록(1910)을 쿼드 분할할 수 있다.
이때, 영상 복호화 장치(100)는 분할되어 생성된 블록이 픽처 경계(1910) 상에 위치하지 않을 때까지 현재 블록(1905)를 재귀적으로 분할할 수 있다.
도 20a 내지 20b는 일 실시예에 따라 허용하는 바이너리 분할 뎁스를 적용하여 픽처의 경계에 놓인 블록을 바이너리 분할하는 경우 최소 블록의 크기가 나오는지 여부에 기초하여 픽처의 경계에 놓인 블록을 분할하는 방법을 설명하기 위한 도면이다.
도 20a를 참조하면, 현재 블록(2000)의 크기가 128x128이고, 현재 블록(2000)의 허용가능한 분할 타입이 바이너리 분할이고, 현재 블록(2000)의 허용가능한 분할 뎁스가 3인 경우, 영상 복호화 장치(100)는 현재 블록(2000)이 현재 픽처의 영상 경계(2005) 상에 위치한다면, 제1 분할 경계(2010)를 기초로 바이너리 분할을 수행하고, 제2 분할 경계(2015)를 기초로 바이너리 분할을 수행하고, 제3 분할 경계(2020)를 기초로 바이너리 분할을 수행할 수 있다. 바이너리 분할 뎁스만큼 바이너리 분할을 수행하였으므로, 영상 복호화 장치(100)는 더 이상 바이너리 분할을 수행할 수 없다. 따라서, 부호화 단위로 결정된 영상 경계(2005) 안쪽의 블록(2025)의 크기는 16x128일 수 있다. 하지만 부호화 단위로 결정된 블록(2025)의 크기가 작지 않기 때문에 그 안에 다양한 움직임 정보 및 픽셀 값 정보를 포함하는 경우 복호화 효율이 낮아지는 문제점이 있다.
도 20b를 참조하면, 현재 블록(2030)의 크기가 128x128이고, 현재 블록(2030)의 허용가능한 분할 타입이 바이너리 분할이고, 현재 블록(2030)의 허용가능한 분할 뎁스가 3인 경우, 영상 복호화 장치(100)는 현재 픽처의 영상 경계(2035) 상에 위치한다면, 현재 블록(2030)의 크기와 현재 블록의 바이너리 분할의 허용 분할 뎁스를 고려하여 현재 블록으로부터 재귀적으로 바이너리 분할되어 생성될 블록의 크기가 최소 블록 크기(예를 들어, 4x4)보다 작거나 같은 경우, 바이너리 분할을 수행하고, 바이너리 분할의 허용 분할 뎁스를 고려하여 현재 블록으로부터 재귀적으로 바이너리 분할되어 생성된 블록의 크기가 최소 블록 크기보다 큰 경우, 쿼드 분할을 수행할 수 있다.
영상 복호화 장치(100)는 바이너리 분할의 허용 분할 뎁스를 고려하여 현재 블록(2030)으로부터 재귀적으로 바이너리 분할되어 생성된 블록의 크기가 최소 블록 크기보다 크므로, 제1 분할 경계(2040)를 기초로 현재 블록(2030)에 대한 쿼드 분할을 수행할 수 있다.
영상 복호화 장치(100)는 바이너리 분할의 최대 허용 분할 뎁스를 고려하여 현재 블록(2045)으로부터 재귀적으로 바이너리 분할되어 생성된 블록의 크기가 최소 블록 크기보다 크므로, 제2 분할 경계(2050)를 기초로 현재 블록(2045)에 대한 쿼드 분할을 수행할 수 있다.
영상 복호화 장치(100)는 바이너리 분할의 최대 허용 분할 뎁스를 고려하여 현재 블록(2055)으로부터 재귀적으로 바이너리 분할된 블록의 크기가 최소 블록 크기보다 작거나 같으므로, 제3 분할 경계(2060)를 기초로 현재 블록(2055)에 대한 바이너리 분할을 수행할 수 있다.
제3 분할 경계(2060)를 기초로 현재 블록(2055)에 대한 바이너리 분할을 수행하여 통해 생성된 영상 경계(2035) 안쪽의 블록(2065)의 크기는 16x32이고, 영상 복호화 장치(100)는 블록(2065)에 대해 추가적으로 바이너리 분할을 수행할 수도 있다. 따라서, 부호화 단위로 결정된 블록은 도 20a와 달리 그 크기가 작을 수 있고, 복호화 효율이 상대적으로 높아질 수 있다.
이상, 도 20a 내지 20b를 참조하여, 영상 복호화 장치(100)는 현재 블록(2000, 2030)의 크기를 128x128로 결정하고, 현재 블록(2000, 2030)의 허용가능한 분할 타입을 바이너리 분할로 결정하고, 현재 블록(2000, 2030)의 허용가능한 분할 뎁스를 3으로 결정하는 경우, 픽처 경계 상에 위치하는 현재 블록(2000, 2030)를 분할하는 방법에 대해서 설명하였으나, 이에 제한되지 않고, 하기와 같은 수도 코드(Psudo Code)에 따라 현재 블록이 픽처 경계 상에 위치하는 경우 현재 블록을 분할할 수 있다.
[Psudo Code]
Figure PCTKR2019005673-appb-img-000001
예를 들어, 상기와 같은 수도 코드(Psudo Code)를 따르는 영상 복호화 장치(100)는 현재 블록의 높이나 너비 중 큰 값을 기준으로 바이너리 분할에 따라 허용하는 분할 뎁스만큼 재귀적으로 분할(바이너리 트리에 기초한 분할)을 수행하였을 때, 해당하는 변이 특정 크기(혹은 그 이하)(여기서, 특정 크기는 최소 블록의 크기일 수 있으나, 사용자가 설정한 크기일 수 있음)가 되는 경우, 바이너리 분할에 따라 현재 블록을 재귀적으로 분할(바이너리 트리에 기초한 분할)할 수 있다. 그 외의 경우, 영상 복호화 장치(100)는 쿼드 분할에 따라 현재 블록을 분할할 수 있다. 구체적으로, 허용하는 바이너리 분할 뎁스(bt_depth)가 3인 경우, 현재 블록의 높이 및 너비 중 큰 값이 최소 크기(min_bt_size)x2x2x2(즉, 최소 크기 x 8) 이하인 경우에만 바이너리 분할에 따라 현재 블록을 재귀적으로 분할할 수 있다.
이상, 도 20a 내지 20b를 참조하여, 영상 복호화 장치(100)는 바이너리 분할 뎁스를 고려하여 바이너리 분할 또는 쿼드 분할하는 방법에 대해서 설명하였으나, 이에 제한되지 않고, 이와 유사하게 바이너리(및 트라이) 분할 뎁스를 고려하여 바이너리 분할, 트라이 분할 또는 쿼드 분할할 수 있음을 당업자는 용이하게 이해할 수 있다.
이제까지 다양한 실시예들을 중심으로 살펴보았다. 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자는 본 개시가 본 개시의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 개시의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 개시에 포함된 것으로 해석되어야 할 것이다.
한편, 상술한 본 개시의 실시예들은 컴퓨터에서 실행될 수 있는 프로그램으로 작성가능하고, 컴퓨터로 읽을 수 있는 기록매체를 이용하여 프로그램을 동작시키는 범용 디지털 컴퓨터에서 구현될 수 있다. 컴퓨터로 읽을 수 있는 기록매체는 마그네틱 저장매체(예를 들면, 롬, 플로피 디스크, 하드디스크 등), 광학적 판독 매체(예를 들면, 시디롬, 디브이디 등)와 같은 저장매체를 포함한다.

Claims (15)

  1. 현재 영상의 루마 영상에 포함된 블록들의 분할 형태 모드에 기초하여 상기 루마 영상을 계층적으로 분할하여 상기 루마 영상 내 복수의 부호화 단위를 결정하는 단계;
    상기 현재 영상의 크로마 영상 내 블록들의 분할 형태 모드에 기초하여 상기 크로마 영상을 계층적으로 분할하여 상기 크로마 영상 내 복수의 부호화 단위를 결정하는 단계; 및
    상기 결정된 루마 영상 내 복수의 부호화 단위 및 크로마 영상 내 복수의 부호화 단위를 기초로 상기 현재 영상을 복호화하는 단계를 포함하고,
    상기 분할 형태 모드는 블록의 분할 방향, 및 분할 타입 중 적어도 하나에 기초한 모드이고,
    상기 크로마 영상 내 복수의 부호화 단위를 결정하는 단계는,
    상기 크로마 영상 내 현재 크로마 블록의 분할 형태 모드에 기초하여 상기 크로마 영상 내 현재 크로마 블록을 분할하여 생성될 복수의 크로마 블록 중 하나의 크로마 블록의 크기 또는 넓이가 소정의 크기 또는 넓이보다 작거나 같은 경우, 상기 현재 크로마 블록의 분할 형태 모드에 기초한 현재 크로마 블록의 분할을 허용하지 않고, 상기 현재 크로마 블록에 포함된 적어도 하나의 부호화 단위를 결정하는 단계를 포함하는 것을 특징으로 하는 영상 복호화 방법.
  2. 제 1 항에 있어서,
    상기 분할 타입은 바이너리 분할(binary split), 트라이 분할(tri split), 쿼드 분할(quad split) 중 하나를 나타내는 것을 특징으로 하는 영상 복호화 방법.
  3. 제 1 항에 있어서,
    상기 소정의 크기는 4x2 및 2x4 및 2x2 중 하나인 것을 특징으로 하는 영상 복호화 방법.
  4. 제 1 항에 있어서,
    상기 소정의 넓이는 8 및 4 중 하나인 것을 특징으로 하는 영상 복호화 방법.
  5. 제 1 항에 있어서,
    상기 크로마 영상 내 현재 크로마 블록의 분할 형태 모드에 기초하여 상기 크로마 영상 내 현재 크로마 블록을 분할하여 생성될 복수의 크로마 블록 중 하나의 크로마 블록의 크기 또는 넓이가 소정의 크기 또는 넓이보다 작거나 같은 경우, 상기 현재 크로마 블록의 분할 형태 모드에 기초한 현재 크로마 블록의 분할을 허용하지 않고, 상기 현재 크로마 블록에 포함된 적어도 하나의 부호화 단위를 결정하는 단계는,
    상기 현재 크로마 블록의 크기 또는 넓이 및 상기 현재 크로마 블록의 분할 형태 모드에 기초한 조건을 만족하는지 여부에 따라, 상기 크로마 영상 내 현재 크로마 블록을 분할하여 생성될 복수의 크로마 블록 중 하나의 크로마 블록의 크기 또는 넓이가 소정의 크기 또는 넓이보다 작거나 같은지 여부를 결정하는 단계; 및
    상기 결정의 결과에 따라, 상기 현재 크로마 블록의 분할 형태 모드에 기초한 상기 현재 크로마 블록의 분할을 허용하지 않는다고 결정하고, 상기 현재 크로마 블록에 포함된 적어도 하나의 부호화 단위를 결정하는 단계를 포함하는 것을 특징으로 하는 영상 복호화 방법.
  6. 제 5 항에 있어서,
    상기 현재 크로마 블록의 크기 또는 넓이, 및 상기 현재 크로마 블록의 분할 형태 모드에 기초한 조건은,
    상기 현재 크로마 블록의 분할 타입이 쿼드 분할임을 나타내는 경우, 상기 현재 크로마 블록의 너비(width) 또는 높이(height)가 4보다 작거나 같은지에 관한 조건인 것을 특징으로 하는 영상 복호화 방법.
  7. 제 5 항에 있어서,
    상기 현재 크로마 블록의 크기 또는 넓이, 및 상기 현재 크로마 블록의 분할 형태 모드에 기초한 조건은,
    상기 현재 크로마 블록의 분할 타입이 바이너리 분할임을 나타내는 경우, 상기 현재 크로마 블록의 넓이가 16보다 작거나 같은지에 관한 조건인 것을 특징으로 하는 영상 복호화 방법.
  8. 제 5 항에 있어서,
    상기 현재 크로마 블록의 크기 또는 넓이, 및 상기 현재 크로마 블록의 분할 형태 모드에 기초한 조건은,
    상기 현재 크로마 블록의 분할 타입이 트라이 분할임을 나타내는 경우, 상기 현재 크로마 블록의 넓이가 32보다 작거나 같은지에 관한 조건인 것을 특징으로 하는 영상 복호화 방법.
  9. 제 1 항에 있어서,
    상기 현재 영상의 크로마 영상 내 블록들의 분할 형태 모드는 상기 현재 영상의 루마 영상에 포함된 블록들의 분할 형태 모드와 독립적인 것을 특징으로 하는 영상 복호화 방법.
  10. 제 1 항에 있어서,
    상기 현재 영상의 크로마 영상 내 블록들의 분할 형태 모드는 상기 크로마 영상 내 블록들에 대응하는 현재 영상의 루마 영상 내 대응 블록들의 분할 형태 모드에 종속적이고,
    상기 크로마 영상 내 블록의 크기는 상기 현재 영상의 크로마 서브 샘플링 방식(chroma sub sampling format) 및 상기 루마 영상 내 대응 블록의 크기에 기초하여 결정되는 것을 특징으로 하는 영상 복호화 방법.
  11. 제 10 항에 있어서,
    상기 크로마 영상 내 현재 크로마 블록의 분할 형태 모드에 기초하여 상기 크로마 영상의 현재 크로마 블록을 분할하여 생성될 복수의 블록 중 하나의 블록의 크기가 2xN(N은 2보다 크거나 같은 정수) 또는 Nx2보다 작거나 같은 경우,
    상기 현재 크로마 블록의 분할 형태 모드에 기초한 상기 현재 크로마 블록의 분할을 허용하지 않는다고 결정하고, 상기 현재 크로마 블록에 포함된 적어도 하나의 부호화 단위를 결정하는 단계를 포함하는 것을 특징으로 하는 영상 복호화 방법.
  12. 제 1 항에 있어서,
    상기 현재 영상의 루마 영상에 포함된 블록들의 분할 형태 모드에 기초하여 상기 루마 영상을 계층적으로 분할하여 상기 루마 영상 내 복수의 부호화 단위를 결정하는 단계는,
    루마 영상에 포함된 현재 루마 블록이 픽처의 오른쪽 경계 상에 위치하는 경우, 바이너리 분할 및 쿼드 분할 중 하나의 분할 타입을 나타내는 플래그를 비트스트림으로부터 획득하는 단계; 및
    상기 획득된 플래그를 기초로 상기 현재 루마 블록에 포함된 적어도 하나의 부호화 단위를 결정하는 단계를 포함하는 것을 특징으로 하는 영상 복호화 방법.
  13. 현재 영상의 루마 영상에 포함된 블록들의 분할 형태 모드에 기초하여 상기 루마 영상을 계층적으로 분할하여 상기 루마 영상 내 복수의 부호화 단위를 결정하고, 상기 현재 영상의 크로마 영상 내 블록들의 분할 형태 모드에 기초하여 상기 크로마 영상을 계층적으로 분할하여 상기 크로마 영상 내 복수의 부호화 단위를 결정하고,
    상기 결정된 루마 영상 내 복수의 부호화 단위 및 크로마 영상 내 복수의 부호화 단위를 기초로 상기 현재 영상을 복호화하는 적어도 하나의 프로세서를 포함하고,
    상기 분할 형태 모드는 블록의 분할 방향, 및 분할 타입 중 적어도 하나에 기초한 모드이고,
    상기 적어도 하나의 프로세서가 상기 크로마 영상 내 복수의 부호화 단위를 결정할 때, 상기 크로마 영상 내 현재 크로마 블록의 분할 형태 모드에 기초하여 상기 크로마 영상 내 현재 크로마 블록을 분할하여 생성될 복수의 크로마 블록 중 하나의 크로마 블록의 크기 또는 넓이가 소정의 크기 또는 넓이보다 작거나 같은 경우, 상기 적어도 하나의 프로세서가 상기 현재 크로마 블록의 분할 형태 모드에 기초한 현재 크로마 블록의 분할을 허용하지 않고, 상기 현재 크로마 블록에 포함된 적어도 하나의 부호화 단위를 결정하는 것을 특징으로 하는 영상 복호화 장치.
  14. 현재 영상의 루마 영상에 포함된 블록들의 분할 형태 모드에 기초하여 루마 영상을 계층적으로 분할하여 상기 루마 영상 내 복수의 부호화 단위를 결정하는 단계;
    상기 현재 영상의 크로마 영상 내 블록들의 분할 형태 모드에 기초하여 크로마 영상을 계층적으로 분할하여 상기 크로마 영상 내 복수의 부호화 단위를 결정하는 단계; 및
    상기 결정된 루마 영상 내 복수의 부호화 단위 및 크로마 영상 내 복수의 부호화 단위를 기초로 상기 현재 영상을 부호화하는 단계를 포함하고,
    상기 분할 형태 모드는 블록의 분할 방향, 및 분할 타입 중 적어도 하나에 기초한 모드이고,
    상기 크로마 영상 내 복수의 부호화 단위를 결정하는 단계는,
    상기 크로마 영상 내 현재 크로마 블록의 분할 형태 모드에 기초하여 상기 크로마 영상 내 현재 크로마 블록을 분할하여 생성될 복수의 크로마 블록 중 하나의 크로마 블록의 크기 또는 넓이가 소정의 크기 또는 넓이보다 작거나 같은 경우, 상기 현재 크로마 블록의 분할 형태 모드에 기초한 현재 크로마 블록의 분할을 허용하지 않고, 상기 현재 크로마 블록에 포함된 적어도 하나의 부호화 단위를 결정하는 단계를 포함하는 것을 특징으로 하는 영상 부호화 방법.
  15. 제 1 항의 영상 복호화 방법을 구현하기 위한 프로그램이 기록된 컴퓨터로 판독 가능한 기록매체.
PCT/KR2019/005673 2018-05-10 2019-05-10 영상 부호화 방법 및 장치, 영상 복호화 방법 및 장치 WO2019216718A1 (ko)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP19798875.1A EP3793195A4 (en) 2018-05-10 2019-05-10 PICTURE CODING METHOD AND APPARATUS, AND PICTURE DECODING METHOD AND APPARATUS
KR1020227020795A KR20220088813A (ko) 2018-05-10 2019-05-10 영상 부호화 방법 및 장치, 영상 복호화 방법 및 장치
US17/053,571 US11616963B2 (en) 2018-05-10 2019-05-10 Method and apparatus for image encoding, and method and apparatus for image decoding
KR1020237039925A KR102665187B1 (ko) 2018-05-10 2019-05-10 영상 부호화 방법 및 장치, 영상 복호화 방법 및 장치
KR1020207022246A KR102412123B1 (ko) 2018-05-10 2019-05-10 영상 부호화 방법 및 장치, 영상 복호화 방법 및 장치
CN201980045982.7A CN112385219B (zh) 2018-05-10 2019-05-10 用于图像编码的方法和装置以及用于图像解码的方法和装置
KR1020237013209A KR102606290B1 (ko) 2018-05-10 2019-05-10 영상 부호화 방법 및 장치, 영상 복호화 방법 및 장치
SG11202010629TA SG11202010629TA (en) 2018-05-10 2019-05-10 Method and apparatus for image encoding, and method and apparatus for image decoding
US18/160,712 US20230232023A1 (en) 2018-05-10 2023-01-27 Method and apparatus for image encoding, and method and apparatus for image decoding

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862669667P 2018-05-10 2018-05-10
US62/669,667 2018-05-10
US201862683255P 2018-06-11 2018-06-11
US62/683,255 2018-06-11

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/053,571 A-371-Of-International US11616963B2 (en) 2018-05-10 2019-05-10 Method and apparatus for image encoding, and method and apparatus for image decoding
US18/160,712 Continuation US20230232023A1 (en) 2018-05-10 2023-01-27 Method and apparatus for image encoding, and method and apparatus for image decoding

Publications (1)

Publication Number Publication Date
WO2019216718A1 true WO2019216718A1 (ko) 2019-11-14

Family

ID=68468169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/005673 WO2019216718A1 (ko) 2018-05-10 2019-05-10 영상 부호화 방법 및 장치, 영상 복호화 방법 및 장치

Country Status (5)

Country Link
US (2) US11616963B2 (ko)
EP (1) EP3793195A4 (ko)
CN (1) CN112385219B (ko)
SG (1) SG11202010629TA (ko)
WO (1) WO2019216718A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11509900B2 (en) 2018-08-24 2022-11-22 Samsung Electronics Co., Ltd. Video decoding method and apparatus, and video encoding method and apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101635830B1 (ko) * 2009-10-01 2016-07-05 에스케이텔레콤 주식회사 가변 크기의 매크로블록을 이용한 영상 부호화/복호화 방법 및 장치
KR101662739B1 (ko) * 2014-10-29 2016-10-05 삼성전자주식회사 픽처 경계의 부호화 단위를 부호화, 복호화 하는 방법 및 장치
US20170347128A1 (en) * 2016-05-25 2017-11-30 Arris Enterprises Llc Binary ternary quad tree partitioning for jvet
WO2018066809A1 (ko) * 2016-10-04 2018-04-12 엘지전자(주) 크로마 성분 코딩 유닛 분할 방법 및 장치
WO2018065302A1 (en) * 2016-10-05 2018-04-12 Thomson Licensing Method and apparatus for binary-tree split mode coding

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6888892B2 (en) * 2001-12-10 2005-05-03 University Of Washington Method for padding macroblocks
US7266247B2 (en) * 2002-09-30 2007-09-04 Samsung Electronics Co., Ltd. Image coding method and apparatus using spatial predictive coding of chrominance and image decoding method and apparatus
KR100647294B1 (ko) * 2004-11-09 2006-11-23 삼성전자주식회사 화상 데이터 부호화 및 복호화 방법 및 장치
KR101291196B1 (ko) * 2008-01-25 2013-07-31 삼성전자주식회사 영상의 부호화, 복호화 방법 및 장치
JP5049920B2 (ja) * 2008-08-26 2012-10-17 キヤノン株式会社 画像処理装置及び画像処理方法
KR101030369B1 (ko) * 2009-02-23 2011-04-20 인하대학교 산학협력단 영상 분류 장치 및 방법
KR101452713B1 (ko) 2009-10-30 2014-10-21 삼성전자주식회사 픽처 경계의 부호화 단위를 부호화, 복호화 하는 방법 및 장치
WO2012176405A1 (ja) * 2011-06-20 2012-12-27 株式会社Jvcケンウッド 画像符号化装置、画像符号化方法及び画像符号化プログラム、並びに画像復号装置、画像復号方法及び画像復号プログラム
US9807401B2 (en) * 2011-11-01 2017-10-31 Qualcomm Incorporated Transform unit partitioning for chroma components in video coding
GB2499841B (en) * 2012-03-02 2015-08-26 Canon Kk Methods for encoding and decoding an image, and corresponding devices
GB2501115B (en) * 2012-04-13 2015-02-18 Canon Kk Methods for segmenting and encoding an image, and corresponding devices
CN104604225B (zh) * 2012-09-10 2018-01-26 太阳专利托管公司 图像编码方法、图像解码方法、图像编码装置、图像解码装置及图像编码解码装置
EP2966866A4 (en) * 2013-04-05 2016-10-26 Samsung Electronics Co Ltd VIDEO CODING METHOD AND DEVICE THEREFOR, AND VIDEO CODING METHOD AND DEVICE THEREFOR
EP3276958A4 (en) * 2015-03-23 2018-08-29 LG Electronics Inc. Method for processing image on basis of intra prediction mode and apparatus therefor
US10674175B2 (en) * 2016-09-22 2020-06-02 Lg Electronics Inc. Inter-prediction method and apparatus in image coding system
JP6781340B2 (ja) * 2016-09-22 2020-11-04 エルジー エレクトロニクス インコーポレイティド 映像コーディングシステムにおける照度補償基盤インター予測方法及び装置
US10721479B2 (en) * 2016-09-30 2020-07-21 Lg Electronics Inc. Intra prediction method and apparatus in image coding system
WO2018062921A1 (ko) * 2016-09-30 2018-04-05 엘지전자 주식회사 영상 코딩 시스템에서 블록 분할 및 인트라 예측 방법 및 장치
WO2018070550A1 (ko) 2016-10-10 2018-04-19 삼성전자 주식회사 픽처 외곽선의 부호화 단위를 부호화 또는 복호화하는 방법 및 장치
EP3349459A1 (en) * 2017-01-11 2018-07-18 Thomson Licensing A method and a device for image encoding and decoding
EP3383043A1 (en) * 2017-03-27 2018-10-03 Thomson Licensing Methods and apparatus for picture encoding and decoding
US11196994B2 (en) 2017-07-06 2021-12-07 Samsung Electronics Co., Ltd. Video coding method and device, video decoding method and device
US11233996B2 (en) * 2018-02-22 2022-01-25 Lg Electronics Inc. Image decoding method and apparatus according to block division structure in image coding system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101635830B1 (ko) * 2009-10-01 2016-07-05 에스케이텔레콤 주식회사 가변 크기의 매크로블록을 이용한 영상 부호화/복호화 방법 및 장치
KR101662739B1 (ko) * 2014-10-29 2016-10-05 삼성전자주식회사 픽처 경계의 부호화 단위를 부호화, 복호화 하는 방법 및 장치
US20170347128A1 (en) * 2016-05-25 2017-11-30 Arris Enterprises Llc Binary ternary quad tree partitioning for jvet
WO2018066809A1 (ko) * 2016-10-04 2018-04-12 엘지전자(주) 크로마 성분 코딩 유닛 분할 방법 및 장치
WO2018065302A1 (en) * 2016-10-05 2018-04-12 Thomson Licensing Method and apparatus for binary-tree split mode coding

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3793195A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11509900B2 (en) 2018-08-24 2022-11-22 Samsung Electronics Co., Ltd. Video decoding method and apparatus, and video encoding method and apparatus
US11962780B2 (en) 2018-08-24 2024-04-16 Samsung Electronics Co., Ltd. Video decoding method and apparatus, and video encoding method and apparatus
US11968370B2 (en) 2018-08-24 2024-04-23 Samsung Electronics Co., Ltd. Video decoding method and apparatus, and video encoding method and apparatus
US11979576B2 (en) 2018-08-24 2024-05-07 Samsung Electronics Co., Ltd. Video decoding method and apparatus, and video encoding method and apparatus

Also Published As

Publication number Publication date
SG11202010629TA (en) 2020-12-30
EP3793195A1 (en) 2021-03-17
US20230232023A1 (en) 2023-07-20
US11616963B2 (en) 2023-03-28
EP3793195A4 (en) 2022-03-30
US20210235099A1 (en) 2021-07-29
CN112385219B (zh) 2024-04-19
CN112385219A (zh) 2021-02-19

Similar Documents

Publication Publication Date Title
WO2021006692A1 (ko) 비디오 복호화 방법 및 장치, 비디오 부호화 방법 및 장치
WO2020027551A1 (ko) 영상 부호화 방법 및 장치, 영상 복호화 방법 및 장치
WO2020040619A1 (ko) 비디오 복호화 방법 및 장치, 비디오 부호화 방법 및 장치
WO2019172676A1 (ko) 비디오 복호화 방법 및 장치, 비디오 부호화 방법 및 장치
WO2018012808A1 (ko) 크로마 인트라 예측 방법 및 그 장치
WO2020130730A1 (ko) 영상 부호화 방법 및 장치, 영상 복호화 방법 및 장치
WO2017090968A1 (ko) 영상을 부호화/복호화 하는 방법 및 그 장치
WO2020076130A1 (ko) 타일 및 타일 그룹을 이용하는 비디오 부호화 및 복호화 방법, 및 타일 및 타일 그룹을 이용하는 비디오 부호화 및 복호화 장치
WO2019066384A1 (ko) 크로스-성분 예측에 의한 비디오 복호화 방법 및 장치, 크로스-성분 예측에 의한 비디오 부호화 방법 및 장치
WO2020040623A1 (ko) 영상 부호화 방법 및 장치, 영상 복호화 방법 및 장치
WO2019209028A1 (ko) 비디오 부호화 방법 및 장치, 비디오 복호화 방법 및 장치
WO2019216712A1 (ko) 비디오 부호화 방법 및 장치, 비디오 복호화 방법 및 장치
WO2020235951A1 (ko) 영상 부호화 방법 및 장치, 영상 복호화 방법 및 장치
WO2019135558A1 (ko) 비디오 복호화 방법 및 장치, 비디오 부호화 방법 및 장치
WO2020013627A1 (ko) 비디오 복호화 방법 및 장치, 비디오 부호화 방법 및 장치
WO2020130712A1 (ko) 삼각 예측 모드를 이용하는 영상 부호화 장치 및 영상 복호화 장치, 및 이에 의한 영상 부호화 방법 및 영상 복호화 방법
WO2019066514A1 (ko) 부호화 방법 및 그 장치, 복호화 방법 및 그 장치
WO2021141451A1 (ko) 양자화 파라미터를 획득하기 위한 비디오 복호화 방법 및 장치, 양자화 파라미터를 전송하기 위한 비디오 부호화 방법 및 장치
WO2019009502A1 (ko) 비디오 부호화 방법 및 장치, 비디오 복호화 방법 및 장치
WO2019066472A1 (ko) 영상 부호화 방법 및 장치, 영상 복호화 방법 및 장치
WO2020117010A1 (ko) 비디오 복호화 방법 및 장치, 비디오 부호화 방법 및 장치
WO2019216710A1 (ko) 영상의 부호화 및 복호화를 위한 영상의 분할 방법 및 장치
WO2017195945A1 (ko) 영상을 부호화/복호화 하는 방법 및 그 장치
WO2020189980A1 (ko) 영상 부호화 방법 및 장치, 영상 복호화 방법 및 장치
WO2020256521A1 (ko) 제한된 예측 모드에서 복원후 필터링을 수행하는 비디오 부호화 방법 및 장치, 비디오 복호화 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19798875

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207022246

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019798875

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019798875

Country of ref document: EP

Effective date: 20201210